Mark as release
[official-gcc.git] / gcc / tree-cfg.c
blob1469d782f733b791a52ae3532e51687ce1efe25c
1 /* Control flow functions for trees.
2 Copyright (C) 2001-2014 Free Software Foundation, Inc.
3 Contributed by Diego Novillo <dnovillo@redhat.com>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "hash-table.h"
25 #include "tm.h"
26 #include "tree.h"
27 #include "trans-mem.h"
28 #include "stor-layout.h"
29 #include "print-tree.h"
30 #include "tm_p.h"
31 #include "basic-block.h"
32 #include "flags.h"
33 #include "function.h"
34 #include "gimple-pretty-print.h"
35 #include "pointer-set.h"
36 #include "tree-ssa-alias.h"
37 #include "internal-fn.h"
38 #include "gimple-fold.h"
39 #include "tree-eh.h"
40 #include "gimple-expr.h"
41 #include "is-a.h"
42 #include "gimple.h"
43 #include "gimple-iterator.h"
44 #include "gimplify-me.h"
45 #include "gimple-walk.h"
46 #include "gimple-ssa.h"
47 #include "cgraph.h"
48 #include "tree-cfg.h"
49 #include "tree-phinodes.h"
50 #include "ssa-iterators.h"
51 #include "stringpool.h"
52 #include "tree-ssanames.h"
53 #include "tree-ssa-loop-manip.h"
54 #include "tree-ssa-loop-niter.h"
55 #include "tree-into-ssa.h"
56 #include "expr.h"
57 #include "tree-dfa.h"
58 #include "tree-ssa.h"
59 #include "tree-dump.h"
60 #include "tree-pass.h"
61 #include "diagnostic-core.h"
62 #include "except.h"
63 #include "cfgloop.h"
64 #include "tree-ssa-propagate.h"
65 #include "value-prof.h"
66 #include "tree-inline.h"
67 #include "target.h"
68 #include "tree-ssa-live.h"
69 #include "omp-low.h"
70 #include "tree-cfgcleanup.h"
72 /* This file contains functions for building the Control Flow Graph (CFG)
73 for a function tree. */
75 /* Local declarations. */
77 /* Initial capacity for the basic block array. */
78 static const int initial_cfg_capacity = 20;
80 /* This hash table allows us to efficiently lookup all CASE_LABEL_EXPRs
81 which use a particular edge. The CASE_LABEL_EXPRs are chained together
82 via their CASE_CHAIN field, which we clear after we're done with the
83 hash table to prevent problems with duplication of GIMPLE_SWITCHes.
85 Access to this list of CASE_LABEL_EXPRs allows us to efficiently
86 update the case vector in response to edge redirections.
88 Right now this table is set up and torn down at key points in the
89 compilation process. It would be nice if we could make the table
90 more persistent. The key is getting notification of changes to
91 the CFG (particularly edge removal, creation and redirection). */
93 static struct pointer_map_t *edge_to_cases;
95 /* If we record edge_to_cases, this bitmap will hold indexes
96 of basic blocks that end in a GIMPLE_SWITCH which we touched
97 due to edge manipulations. */
99 static bitmap touched_switch_bbs;
101 /* CFG statistics. */
102 struct cfg_stats_d
104 long num_merged_labels;
107 static struct cfg_stats_d cfg_stats;
109 /* Hash table to store last discriminator assigned for each locus. */
110 struct locus_discrim_map
112 location_t locus;
113 int discriminator;
116 /* Hashtable helpers. */
118 struct locus_discrim_hasher : typed_free_remove <locus_discrim_map>
120 typedef locus_discrim_map value_type;
121 typedef locus_discrim_map compare_type;
122 static inline hashval_t hash (const value_type *);
123 static inline bool equal (const value_type *, const compare_type *);
126 /* Trivial hash function for a location_t. ITEM is a pointer to
127 a hash table entry that maps a location_t to a discriminator. */
129 inline hashval_t
130 locus_discrim_hasher::hash (const value_type *item)
132 return LOCATION_LINE (item->locus);
135 /* Equality function for the locus-to-discriminator map. A and B
136 point to the two hash table entries to compare. */
138 inline bool
139 locus_discrim_hasher::equal (const value_type *a, const compare_type *b)
141 return LOCATION_LINE (a->locus) == LOCATION_LINE (b->locus);
144 static hash_table <locus_discrim_hasher> discriminator_per_locus;
146 /* Basic blocks and flowgraphs. */
147 static void make_blocks (gimple_seq);
149 /* Edges. */
150 static void make_edges (void);
151 static void assign_discriminators (void);
152 static void make_cond_expr_edges (basic_block);
153 static void make_gimple_switch_edges (basic_block);
154 static bool make_goto_expr_edges (basic_block);
155 static void make_gimple_asm_edges (basic_block);
156 static edge gimple_redirect_edge_and_branch (edge, basic_block);
157 static edge gimple_try_redirect_by_replacing_jump (edge, basic_block);
159 /* Various helpers. */
160 static inline bool stmt_starts_bb_p (gimple, gimple);
161 static int gimple_verify_flow_info (void);
162 static void gimple_make_forwarder_block (edge);
163 static gimple first_non_label_stmt (basic_block);
164 static bool verify_gimple_transaction (gimple);
165 static bool call_can_make_abnormal_goto (gimple);
167 /* Flowgraph optimization and cleanup. */
168 static void gimple_merge_blocks (basic_block, basic_block);
169 static bool gimple_can_merge_blocks_p (basic_block, basic_block);
170 static void remove_bb (basic_block);
171 static edge find_taken_edge_computed_goto (basic_block, tree);
172 static edge find_taken_edge_cond_expr (basic_block, tree);
173 static edge find_taken_edge_switch_expr (basic_block, tree);
174 static tree find_case_label_for_value (gimple, tree);
176 void
177 init_empty_tree_cfg_for_function (struct function *fn)
179 /* Initialize the basic block array. */
180 init_flow (fn);
181 profile_status_for_fn (fn) = PROFILE_ABSENT;
182 n_basic_blocks_for_fn (fn) = NUM_FIXED_BLOCKS;
183 last_basic_block_for_fn (fn) = NUM_FIXED_BLOCKS;
184 vec_alloc (basic_block_info_for_fn (fn), initial_cfg_capacity);
185 vec_safe_grow_cleared (basic_block_info_for_fn (fn),
186 initial_cfg_capacity);
188 /* Build a mapping of labels to their associated blocks. */
189 vec_alloc (label_to_block_map_for_fn (fn), initial_cfg_capacity);
190 vec_safe_grow_cleared (label_to_block_map_for_fn (fn),
191 initial_cfg_capacity);
193 SET_BASIC_BLOCK_FOR_FN (fn, ENTRY_BLOCK, ENTRY_BLOCK_PTR_FOR_FN (fn));
194 SET_BASIC_BLOCK_FOR_FN (fn, EXIT_BLOCK, EXIT_BLOCK_PTR_FOR_FN (fn));
196 ENTRY_BLOCK_PTR_FOR_FN (fn)->next_bb
197 = EXIT_BLOCK_PTR_FOR_FN (fn);
198 EXIT_BLOCK_PTR_FOR_FN (fn)->prev_bb
199 = ENTRY_BLOCK_PTR_FOR_FN (fn);
202 void
203 init_empty_tree_cfg (void)
205 init_empty_tree_cfg_for_function (cfun);
208 /*---------------------------------------------------------------------------
209 Create basic blocks
210 ---------------------------------------------------------------------------*/
212 /* Entry point to the CFG builder for trees. SEQ is the sequence of
213 statements to be added to the flowgraph. */
215 static void
216 build_gimple_cfg (gimple_seq seq)
218 /* Register specific gimple functions. */
219 gimple_register_cfg_hooks ();
221 memset ((void *) &cfg_stats, 0, sizeof (cfg_stats));
223 init_empty_tree_cfg ();
225 make_blocks (seq);
227 /* Make sure there is always at least one block, even if it's empty. */
228 if (n_basic_blocks_for_fn (cfun) == NUM_FIXED_BLOCKS)
229 create_empty_bb (ENTRY_BLOCK_PTR_FOR_FN (cfun));
231 /* Adjust the size of the array. */
232 if (basic_block_info_for_fn (cfun)->length ()
233 < (size_t) n_basic_blocks_for_fn (cfun))
234 vec_safe_grow_cleared (basic_block_info_for_fn (cfun),
235 n_basic_blocks_for_fn (cfun));
237 /* To speed up statement iterator walks, we first purge dead labels. */
238 cleanup_dead_labels ();
240 /* Group case nodes to reduce the number of edges.
241 We do this after cleaning up dead labels because otherwise we miss
242 a lot of obvious case merging opportunities. */
243 group_case_labels ();
245 /* Create the edges of the flowgraph. */
246 discriminator_per_locus.create (13);
247 make_edges ();
248 assign_discriminators ();
249 cleanup_dead_labels ();
250 discriminator_per_locus.dispose ();
254 /* Search for ANNOTATE call with annot_expr_ivdep_kind; if found, remove
255 it and set loop->safelen to INT_MAX. We assume that the annotation
256 comes immediately before the condition. */
258 static void
259 replace_loop_annotate ()
261 struct loop *loop;
262 basic_block bb;
263 gimple_stmt_iterator gsi;
264 gimple stmt;
266 FOR_EACH_LOOP (loop, 0)
268 gsi = gsi_last_bb (loop->header);
269 stmt = gsi_stmt (gsi);
270 if (stmt && gimple_code (stmt) == GIMPLE_COND)
272 gsi_prev_nondebug (&gsi);
273 if (gsi_end_p (gsi))
274 continue;
275 stmt = gsi_stmt (gsi);
276 if (gimple_code (stmt) != GIMPLE_CALL)
277 continue;
278 if (!gimple_call_internal_p (stmt)
279 || gimple_call_internal_fn (stmt) != IFN_ANNOTATE)
280 continue;
281 if ((annot_expr_kind) tree_to_shwi (gimple_call_arg (stmt, 1))
282 != annot_expr_ivdep_kind)
283 continue;
284 stmt = gimple_build_assign (gimple_call_lhs (stmt),
285 gimple_call_arg (stmt, 0));
286 gsi_replace (&gsi, stmt, true);
287 loop->safelen = INT_MAX;
291 /* Remove IFN_ANNOTATE. Safeguard for the case loop->latch == NULL. */
292 FOR_EACH_BB_FN (bb, cfun)
294 gsi = gsi_last_bb (bb);
295 stmt = gsi_stmt (gsi);
296 if (stmt && gimple_code (stmt) == GIMPLE_COND)
297 gsi_prev_nondebug (&gsi);
298 if (gsi_end_p (gsi))
299 continue;
300 stmt = gsi_stmt (gsi);
301 if (gimple_code (stmt) != GIMPLE_CALL)
302 continue;
303 if (!gimple_call_internal_p (stmt)
304 || gimple_call_internal_fn (stmt) != IFN_ANNOTATE)
305 continue;
306 if ((annot_expr_kind) tree_to_shwi (gimple_call_arg (stmt, 1))
307 != annot_expr_ivdep_kind)
308 continue;
309 warning_at (gimple_location (stmt), 0, "ignoring %<GCC ivdep%> "
310 "annotation");
311 stmt = gimple_build_assign (gimple_call_lhs (stmt),
312 gimple_call_arg (stmt, 0));
313 gsi_replace (&gsi, stmt, true);
318 static unsigned int
319 execute_build_cfg (void)
321 gimple_seq body = gimple_body (current_function_decl);
323 build_gimple_cfg (body);
324 gimple_set_body (current_function_decl, NULL);
325 if (dump_file && (dump_flags & TDF_DETAILS))
327 fprintf (dump_file, "Scope blocks:\n");
328 dump_scope_blocks (dump_file, dump_flags);
330 cleanup_tree_cfg ();
331 loop_optimizer_init (AVOID_CFG_MODIFICATIONS);
332 replace_loop_annotate ();
333 return 0;
336 namespace {
338 const pass_data pass_data_build_cfg =
340 GIMPLE_PASS, /* type */
341 "cfg", /* name */
342 OPTGROUP_NONE, /* optinfo_flags */
343 false, /* has_gate */
344 true, /* has_execute */
345 TV_TREE_CFG, /* tv_id */
346 PROP_gimple_leh, /* properties_required */
347 ( PROP_cfg | PROP_loops ), /* properties_provided */
348 0, /* properties_destroyed */
349 0, /* todo_flags_start */
350 TODO_verify_stmts, /* todo_flags_finish */
353 class pass_build_cfg : public gimple_opt_pass
355 public:
356 pass_build_cfg (gcc::context *ctxt)
357 : gimple_opt_pass (pass_data_build_cfg, ctxt)
360 /* opt_pass methods: */
361 unsigned int execute () { return execute_build_cfg (); }
363 }; // class pass_build_cfg
365 } // anon namespace
367 gimple_opt_pass *
368 make_pass_build_cfg (gcc::context *ctxt)
370 return new pass_build_cfg (ctxt);
374 /* Return true if T is a computed goto. */
376 bool
377 computed_goto_p (gimple t)
379 return (gimple_code (t) == GIMPLE_GOTO
380 && TREE_CODE (gimple_goto_dest (t)) != LABEL_DECL);
383 /* Returns true for edge E where e->src ends with a GIMPLE_COND and
384 the other edge points to a bb with just __builtin_unreachable ().
385 I.e. return true for C->M edge in:
386 <bb C>:
388 if (something)
389 goto <bb N>;
390 else
391 goto <bb M>;
392 <bb N>:
393 __builtin_unreachable ();
394 <bb M>: */
396 bool
397 assert_unreachable_fallthru_edge_p (edge e)
399 basic_block pred_bb = e->src;
400 gimple last = last_stmt (pred_bb);
401 if (last && gimple_code (last) == GIMPLE_COND)
403 basic_block other_bb = EDGE_SUCC (pred_bb, 0)->dest;
404 if (other_bb == e->dest)
405 other_bb = EDGE_SUCC (pred_bb, 1)->dest;
406 if (EDGE_COUNT (other_bb->succs) == 0)
408 gimple_stmt_iterator gsi = gsi_after_labels (other_bb);
409 gimple stmt;
411 if (gsi_end_p (gsi))
412 return false;
413 stmt = gsi_stmt (gsi);
414 while (is_gimple_debug (stmt) || gimple_clobber_p (stmt))
416 gsi_next (&gsi);
417 if (gsi_end_p (gsi))
418 return false;
419 stmt = gsi_stmt (gsi);
421 return gimple_call_builtin_p (stmt, BUILT_IN_UNREACHABLE);
424 return false;
428 /* Initialize GF_CALL_CTRL_ALTERING flag, which indicates the call
429 could alter control flow except via eh. We initialize the flag at
430 CFG build time and only ever clear it later. */
432 static void
433 gimple_call_initialize_ctrl_altering (gimple stmt)
435 int flags = gimple_call_flags (stmt);
437 /* A call alters control flow if it can make an abnormal goto. */
438 if (call_can_make_abnormal_goto (stmt)
439 /* A call also alters control flow if it does not return. */
440 || flags & ECF_NORETURN
441 /* TM ending statements have backedges out of the transaction.
442 Return true so we split the basic block containing them.
443 Note that the TM_BUILTIN test is merely an optimization. */
444 || ((flags & ECF_TM_BUILTIN)
445 && is_tm_ending_fndecl (gimple_call_fndecl (stmt)))
446 /* BUILT_IN_RETURN call is same as return statement. */
447 || gimple_call_builtin_p (stmt, BUILT_IN_RETURN))
448 gimple_call_set_ctrl_altering (stmt, true);
449 else
450 gimple_call_set_ctrl_altering (stmt, false);
454 /* Build a flowgraph for the sequence of stmts SEQ. */
456 static void
457 make_blocks (gimple_seq seq)
459 gimple_stmt_iterator i = gsi_start (seq);
460 gimple stmt = NULL;
461 bool start_new_block = true;
462 bool first_stmt_of_seq = true;
463 basic_block bb = ENTRY_BLOCK_PTR_FOR_FN (cfun);
465 while (!gsi_end_p (i))
467 gimple prev_stmt;
469 prev_stmt = stmt;
470 stmt = gsi_stmt (i);
472 if (stmt && is_gimple_call (stmt))
473 gimple_call_initialize_ctrl_altering (stmt);
475 /* If the statement starts a new basic block or if we have determined
476 in a previous pass that we need to create a new block for STMT, do
477 so now. */
478 if (start_new_block || stmt_starts_bb_p (stmt, prev_stmt))
480 if (!first_stmt_of_seq)
481 gsi_split_seq_before (&i, &seq);
482 bb = create_basic_block (seq, NULL, bb);
483 start_new_block = false;
486 /* Now add STMT to BB and create the subgraphs for special statement
487 codes. */
488 gimple_set_bb (stmt, bb);
490 /* If STMT is a basic block terminator, set START_NEW_BLOCK for the
491 next iteration. */
492 if (stmt_ends_bb_p (stmt))
494 /* If the stmt can make abnormal goto use a new temporary
495 for the assignment to the LHS. This makes sure the old value
496 of the LHS is available on the abnormal edge. Otherwise
497 we will end up with overlapping life-ranges for abnormal
498 SSA names. */
499 if (gimple_has_lhs (stmt)
500 && stmt_can_make_abnormal_goto (stmt)
501 && is_gimple_reg_type (TREE_TYPE (gimple_get_lhs (stmt))))
503 tree lhs = gimple_get_lhs (stmt);
504 tree tmp = create_tmp_var (TREE_TYPE (lhs), NULL);
505 gimple s = gimple_build_assign (lhs, tmp);
506 gimple_set_location (s, gimple_location (stmt));
507 gimple_set_block (s, gimple_block (stmt));
508 gimple_set_lhs (stmt, tmp);
509 if (TREE_CODE (TREE_TYPE (tmp)) == COMPLEX_TYPE
510 || TREE_CODE (TREE_TYPE (tmp)) == VECTOR_TYPE)
511 DECL_GIMPLE_REG_P (tmp) = 1;
512 gsi_insert_after (&i, s, GSI_SAME_STMT);
514 start_new_block = true;
517 gsi_next (&i);
518 first_stmt_of_seq = false;
523 /* Create and return a new empty basic block after bb AFTER. */
525 static basic_block
526 create_bb (void *h, void *e, basic_block after)
528 basic_block bb;
530 gcc_assert (!e);
532 /* Create and initialize a new basic block. Since alloc_block uses
533 GC allocation that clears memory to allocate a basic block, we do
534 not have to clear the newly allocated basic block here. */
535 bb = alloc_block ();
537 bb->index = last_basic_block_for_fn (cfun);
538 bb->flags = BB_NEW;
539 set_bb_seq (bb, h ? (gimple_seq) h : NULL);
541 /* Add the new block to the linked list of blocks. */
542 link_block (bb, after);
544 /* Grow the basic block array if needed. */
545 if ((size_t) last_basic_block_for_fn (cfun)
546 == basic_block_info_for_fn (cfun)->length ())
548 size_t new_size =
549 (last_basic_block_for_fn (cfun)
550 + (last_basic_block_for_fn (cfun) + 3) / 4);
551 vec_safe_grow_cleared (basic_block_info_for_fn (cfun), new_size);
554 /* Add the newly created block to the array. */
555 SET_BASIC_BLOCK_FOR_FN (cfun, last_basic_block_for_fn (cfun), bb);
557 n_basic_blocks_for_fn (cfun)++;
558 last_basic_block_for_fn (cfun)++;
560 return bb;
564 /*---------------------------------------------------------------------------
565 Edge creation
566 ---------------------------------------------------------------------------*/
568 /* Fold COND_EXPR_COND of each COND_EXPR. */
570 void
571 fold_cond_expr_cond (void)
573 basic_block bb;
575 FOR_EACH_BB_FN (bb, cfun)
577 gimple stmt = last_stmt (bb);
579 if (stmt && gimple_code (stmt) == GIMPLE_COND)
581 location_t loc = gimple_location (stmt);
582 tree cond;
583 bool zerop, onep;
585 fold_defer_overflow_warnings ();
586 cond = fold_binary_loc (loc, gimple_cond_code (stmt), boolean_type_node,
587 gimple_cond_lhs (stmt), gimple_cond_rhs (stmt));
588 if (cond)
590 zerop = integer_zerop (cond);
591 onep = integer_onep (cond);
593 else
594 zerop = onep = false;
596 fold_undefer_overflow_warnings (zerop || onep,
597 stmt,
598 WARN_STRICT_OVERFLOW_CONDITIONAL);
599 if (zerop)
600 gimple_cond_make_false (stmt);
601 else if (onep)
602 gimple_cond_make_true (stmt);
607 /* If basic block BB has an abnormal edge to a basic block
608 containing IFN_ABNORMAL_DISPATCHER internal call, return
609 that the dispatcher's basic block, otherwise return NULL. */
611 basic_block
612 get_abnormal_succ_dispatcher (basic_block bb)
614 edge e;
615 edge_iterator ei;
617 FOR_EACH_EDGE (e, ei, bb->succs)
618 if ((e->flags & (EDGE_ABNORMAL | EDGE_EH)) == EDGE_ABNORMAL)
620 gimple_stmt_iterator gsi
621 = gsi_start_nondebug_after_labels_bb (e->dest);
622 gimple g = gsi_stmt (gsi);
623 if (g
624 && is_gimple_call (g)
625 && gimple_call_internal_p (g)
626 && gimple_call_internal_fn (g) == IFN_ABNORMAL_DISPATCHER)
627 return e->dest;
629 return NULL;
632 /* Helper function for make_edges. Create a basic block with
633 with ABNORMAL_DISPATCHER internal call in it if needed, and
634 create abnormal edges from BBS to it and from it to FOR_BB
635 if COMPUTED_GOTO is false, otherwise factor the computed gotos. */
637 static void
638 handle_abnormal_edges (basic_block *dispatcher_bbs,
639 basic_block for_bb, int *bb_to_omp_idx,
640 auto_vec<basic_block> *bbs, bool computed_goto)
642 basic_block *dispatcher = dispatcher_bbs + (computed_goto ? 1 : 0);
643 unsigned int idx = 0;
644 basic_block bb;
645 bool inner = false;
647 if (bb_to_omp_idx)
649 dispatcher = dispatcher_bbs + 2 * bb_to_omp_idx[for_bb->index];
650 if (bb_to_omp_idx[for_bb->index] != 0)
651 inner = true;
654 /* If the dispatcher has been created already, then there are basic
655 blocks with abnormal edges to it, so just make a new edge to
656 for_bb. */
657 if (*dispatcher == NULL)
659 /* Check if there are any basic blocks that need to have
660 abnormal edges to this dispatcher. If there are none, return
661 early. */
662 if (bb_to_omp_idx == NULL)
664 if (bbs->is_empty ())
665 return;
667 else
669 FOR_EACH_VEC_ELT (*bbs, idx, bb)
670 if (bb_to_omp_idx[bb->index] == bb_to_omp_idx[for_bb->index])
671 break;
672 if (bb == NULL)
673 return;
676 /* Create the dispatcher bb. */
677 *dispatcher = create_basic_block (NULL, NULL, for_bb);
678 if (computed_goto)
680 /* Factor computed gotos into a common computed goto site. Also
681 record the location of that site so that we can un-factor the
682 gotos after we have converted back to normal form. */
683 gimple_stmt_iterator gsi = gsi_start_bb (*dispatcher);
685 /* Create the destination of the factored goto. Each original
686 computed goto will put its desired destination into this
687 variable and jump to the label we create immediately below. */
688 tree var = create_tmp_var (ptr_type_node, "gotovar");
690 /* Build a label for the new block which will contain the
691 factored computed goto. */
692 tree factored_label_decl
693 = create_artificial_label (UNKNOWN_LOCATION);
694 gimple factored_computed_goto_label
695 = gimple_build_label (factored_label_decl);
696 gsi_insert_after (&gsi, factored_computed_goto_label, GSI_NEW_STMT);
698 /* Build our new computed goto. */
699 gimple factored_computed_goto = gimple_build_goto (var);
700 gsi_insert_after (&gsi, factored_computed_goto, GSI_NEW_STMT);
702 FOR_EACH_VEC_ELT (*bbs, idx, bb)
704 if (bb_to_omp_idx
705 && bb_to_omp_idx[bb->index] != bb_to_omp_idx[for_bb->index])
706 continue;
708 gsi = gsi_last_bb (bb);
709 gimple last = gsi_stmt (gsi);
711 gcc_assert (computed_goto_p (last));
713 /* Copy the original computed goto's destination into VAR. */
714 gimple assignment
715 = gimple_build_assign (var, gimple_goto_dest (last));
716 gsi_insert_before (&gsi, assignment, GSI_SAME_STMT);
718 edge e = make_edge (bb, *dispatcher, EDGE_FALLTHRU);
719 e->goto_locus = gimple_location (last);
720 gsi_remove (&gsi, true);
723 else
725 tree arg = inner ? boolean_true_node : boolean_false_node;
726 gimple g = gimple_build_call_internal (IFN_ABNORMAL_DISPATCHER,
727 1, arg);
728 gimple_stmt_iterator gsi = gsi_after_labels (*dispatcher);
729 gsi_insert_after (&gsi, g, GSI_NEW_STMT);
731 /* Create predecessor edges of the dispatcher. */
732 FOR_EACH_VEC_ELT (*bbs, idx, bb)
734 if (bb_to_omp_idx
735 && bb_to_omp_idx[bb->index] != bb_to_omp_idx[for_bb->index])
736 continue;
737 make_edge (bb, *dispatcher, EDGE_ABNORMAL);
742 make_edge (*dispatcher, for_bb, EDGE_ABNORMAL);
745 /* Join all the blocks in the flowgraph. */
747 static void
748 make_edges (void)
750 basic_block bb;
751 struct omp_region *cur_region = NULL;
752 auto_vec<basic_block> ab_edge_goto;
753 auto_vec<basic_block> ab_edge_call;
754 int *bb_to_omp_idx = NULL;
755 int cur_omp_region_idx = 0;
757 /* Create an edge from entry to the first block with executable
758 statements in it. */
759 make_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun),
760 BASIC_BLOCK_FOR_FN (cfun, NUM_FIXED_BLOCKS),
761 EDGE_FALLTHRU);
763 /* Traverse the basic block array placing edges. */
764 FOR_EACH_BB_FN (bb, cfun)
766 gimple last = last_stmt (bb);
767 bool fallthru;
769 if (bb_to_omp_idx)
770 bb_to_omp_idx[bb->index] = cur_omp_region_idx;
772 if (last)
774 enum gimple_code code = gimple_code (last);
775 switch (code)
777 case GIMPLE_GOTO:
778 if (make_goto_expr_edges (bb))
779 ab_edge_goto.safe_push (bb);
780 fallthru = false;
781 break;
782 case GIMPLE_RETURN:
783 make_edge (bb, EXIT_BLOCK_PTR_FOR_FN (cfun), 0);
784 fallthru = false;
785 break;
786 case GIMPLE_COND:
787 make_cond_expr_edges (bb);
788 fallthru = false;
789 break;
790 case GIMPLE_SWITCH:
791 make_gimple_switch_edges (bb);
792 fallthru = false;
793 break;
794 case GIMPLE_RESX:
795 make_eh_edges (last);
796 fallthru = false;
797 break;
798 case GIMPLE_EH_DISPATCH:
799 fallthru = make_eh_dispatch_edges (last);
800 break;
802 case GIMPLE_CALL:
803 /* If this function receives a nonlocal goto, then we need to
804 make edges from this call site to all the nonlocal goto
805 handlers. */
806 if (stmt_can_make_abnormal_goto (last))
807 ab_edge_call.safe_push (bb);
809 /* If this statement has reachable exception handlers, then
810 create abnormal edges to them. */
811 make_eh_edges (last);
813 /* BUILTIN_RETURN is really a return statement. */
814 if (gimple_call_builtin_p (last, BUILT_IN_RETURN))
816 make_edge (bb, EXIT_BLOCK_PTR_FOR_FN (cfun), 0);
817 fallthru = false;
819 /* Some calls are known not to return. */
820 else
821 fallthru = !(gimple_call_flags (last) & ECF_NORETURN);
822 break;
824 case GIMPLE_ASSIGN:
825 /* A GIMPLE_ASSIGN may throw internally and thus be considered
826 control-altering. */
827 if (is_ctrl_altering_stmt (last))
828 make_eh_edges (last);
829 fallthru = true;
830 break;
832 case GIMPLE_ASM:
833 make_gimple_asm_edges (bb);
834 fallthru = true;
835 break;
837 CASE_GIMPLE_OMP:
838 fallthru = make_gimple_omp_edges (bb, &cur_region,
839 &cur_omp_region_idx);
840 if (cur_region && bb_to_omp_idx == NULL)
841 bb_to_omp_idx = XCNEWVEC (int, n_basic_blocks_for_fn (cfun));
842 break;
844 case GIMPLE_TRANSACTION:
846 tree abort_label = gimple_transaction_label (last);
847 if (abort_label)
848 make_edge (bb, label_to_block (abort_label), EDGE_TM_ABORT);
849 fallthru = true;
851 break;
853 default:
854 gcc_assert (!stmt_ends_bb_p (last));
855 fallthru = true;
858 else
859 fallthru = true;
861 if (fallthru)
862 make_edge (bb, bb->next_bb, EDGE_FALLTHRU);
865 /* Computed gotos are hell to deal with, especially if there are
866 lots of them with a large number of destinations. So we factor
867 them to a common computed goto location before we build the
868 edge list. After we convert back to normal form, we will un-factor
869 the computed gotos since factoring introduces an unwanted jump.
870 For non-local gotos and abnormal edges from calls to calls that return
871 twice or forced labels, factor the abnormal edges too, by having all
872 abnormal edges from the calls go to a common artificial basic block
873 with ABNORMAL_DISPATCHER internal call and abnormal edges from that
874 basic block to all forced labels and calls returning twice.
875 We do this per-OpenMP structured block, because those regions
876 are guaranteed to be single entry single exit by the standard,
877 so it is not allowed to enter or exit such regions abnormally this way,
878 thus all computed gotos, non-local gotos and setjmp/longjmp calls
879 must not transfer control across SESE region boundaries. */
880 if (!ab_edge_goto.is_empty () || !ab_edge_call.is_empty ())
882 gimple_stmt_iterator gsi;
883 basic_block dispatcher_bb_array[2] = { NULL, NULL };
884 basic_block *dispatcher_bbs = dispatcher_bb_array;
885 int count = n_basic_blocks_for_fn (cfun);
887 if (bb_to_omp_idx)
888 dispatcher_bbs = XCNEWVEC (basic_block, 2 * count);
890 FOR_EACH_BB_FN (bb, cfun)
892 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
894 gimple label_stmt = gsi_stmt (gsi);
895 tree target;
897 if (gimple_code (label_stmt) != GIMPLE_LABEL)
898 break;
900 target = gimple_label_label (label_stmt);
902 /* Make an edge to every label block that has been marked as a
903 potential target for a computed goto or a non-local goto. */
904 if (FORCED_LABEL (target))
905 handle_abnormal_edges (dispatcher_bbs, bb, bb_to_omp_idx,
906 &ab_edge_goto, true);
907 if (DECL_NONLOCAL (target))
909 handle_abnormal_edges (dispatcher_bbs, bb, bb_to_omp_idx,
910 &ab_edge_call, false);
911 break;
915 if (!gsi_end_p (gsi) && is_gimple_debug (gsi_stmt (gsi)))
916 gsi_next_nondebug (&gsi);
917 if (!gsi_end_p (gsi))
919 /* Make an edge to every setjmp-like call. */
920 gimple call_stmt = gsi_stmt (gsi);
921 if (is_gimple_call (call_stmt)
922 && ((gimple_call_flags (call_stmt) & ECF_RETURNS_TWICE)
923 || gimple_call_builtin_p (call_stmt,
924 BUILT_IN_SETJMP_RECEIVER)))
925 handle_abnormal_edges (dispatcher_bbs, bb, bb_to_omp_idx,
926 &ab_edge_call, false);
930 if (bb_to_omp_idx)
931 XDELETE (dispatcher_bbs);
934 XDELETE (bb_to_omp_idx);
936 free_omp_regions ();
938 /* Fold COND_EXPR_COND of each COND_EXPR. */
939 fold_cond_expr_cond ();
942 /* Find the next available discriminator value for LOCUS. The
943 discriminator distinguishes among several basic blocks that
944 share a common locus, allowing for more accurate sample-based
945 profiling. */
947 static int
948 next_discriminator_for_locus (location_t locus)
950 struct locus_discrim_map item;
951 struct locus_discrim_map **slot;
953 item.locus = locus;
954 item.discriminator = 0;
955 slot = discriminator_per_locus.find_slot_with_hash (
956 &item, LOCATION_LINE (locus), INSERT);
957 gcc_assert (slot);
958 if (*slot == HTAB_EMPTY_ENTRY)
960 *slot = XNEW (struct locus_discrim_map);
961 gcc_assert (*slot);
962 (*slot)->locus = locus;
963 (*slot)->discriminator = 0;
965 (*slot)->discriminator++;
966 return (*slot)->discriminator;
969 /* Return TRUE if LOCUS1 and LOCUS2 refer to the same source line. */
971 static bool
972 same_line_p (location_t locus1, location_t locus2)
974 expanded_location from, to;
976 if (locus1 == locus2)
977 return true;
979 from = expand_location (locus1);
980 to = expand_location (locus2);
982 if (from.line != to.line)
983 return false;
984 if (from.file == to.file)
985 return true;
986 return (from.file != NULL
987 && to.file != NULL
988 && filename_cmp (from.file, to.file) == 0);
991 /* Assign discriminators to each basic block. */
993 static void
994 assign_discriminators (void)
996 basic_block bb;
998 FOR_EACH_BB_FN (bb, cfun)
1000 edge e;
1001 edge_iterator ei;
1002 gimple last = last_stmt (bb);
1003 location_t locus = last ? gimple_location (last) : UNKNOWN_LOCATION;
1005 if (locus == UNKNOWN_LOCATION)
1006 continue;
1008 FOR_EACH_EDGE (e, ei, bb->succs)
1010 gimple first = first_non_label_stmt (e->dest);
1011 gimple last = last_stmt (e->dest);
1012 if ((first && same_line_p (locus, gimple_location (first)))
1013 || (last && same_line_p (locus, gimple_location (last))))
1015 if (e->dest->discriminator != 0 && bb->discriminator == 0)
1016 bb->discriminator = next_discriminator_for_locus (locus);
1017 else
1018 e->dest->discriminator = next_discriminator_for_locus (locus);
1024 /* Create the edges for a GIMPLE_COND starting at block BB. */
1026 static void
1027 make_cond_expr_edges (basic_block bb)
1029 gimple entry = last_stmt (bb);
1030 gimple then_stmt, else_stmt;
1031 basic_block then_bb, else_bb;
1032 tree then_label, else_label;
1033 edge e;
1035 gcc_assert (entry);
1036 gcc_assert (gimple_code (entry) == GIMPLE_COND);
1038 /* Entry basic blocks for each component. */
1039 then_label = gimple_cond_true_label (entry);
1040 else_label = gimple_cond_false_label (entry);
1041 then_bb = label_to_block (then_label);
1042 else_bb = label_to_block (else_label);
1043 then_stmt = first_stmt (then_bb);
1044 else_stmt = first_stmt (else_bb);
1046 e = make_edge (bb, then_bb, EDGE_TRUE_VALUE);
1047 e->goto_locus = gimple_location (then_stmt);
1048 e = make_edge (bb, else_bb, EDGE_FALSE_VALUE);
1049 if (e)
1050 e->goto_locus = gimple_location (else_stmt);
1052 /* We do not need the labels anymore. */
1053 gimple_cond_set_true_label (entry, NULL_TREE);
1054 gimple_cond_set_false_label (entry, NULL_TREE);
1058 /* Called for each element in the hash table (P) as we delete the
1059 edge to cases hash table.
1061 Clear all the TREE_CHAINs to prevent problems with copying of
1062 SWITCH_EXPRs and structure sharing rules, then free the hash table
1063 element. */
1065 static bool
1066 edge_to_cases_cleanup (const void *key ATTRIBUTE_UNUSED, void **value,
1067 void *data ATTRIBUTE_UNUSED)
1069 tree t, next;
1071 for (t = (tree) *value; t; t = next)
1073 next = CASE_CHAIN (t);
1074 CASE_CHAIN (t) = NULL;
1077 *value = NULL;
1078 return true;
1081 /* Start recording information mapping edges to case labels. */
1083 void
1084 start_recording_case_labels (void)
1086 gcc_assert (edge_to_cases == NULL);
1087 edge_to_cases = pointer_map_create ();
1088 touched_switch_bbs = BITMAP_ALLOC (NULL);
1091 /* Return nonzero if we are recording information for case labels. */
1093 static bool
1094 recording_case_labels_p (void)
1096 return (edge_to_cases != NULL);
1099 /* Stop recording information mapping edges to case labels and
1100 remove any information we have recorded. */
1101 void
1102 end_recording_case_labels (void)
1104 bitmap_iterator bi;
1105 unsigned i;
1106 pointer_map_traverse (edge_to_cases, edge_to_cases_cleanup, NULL);
1107 pointer_map_destroy (edge_to_cases);
1108 edge_to_cases = NULL;
1109 EXECUTE_IF_SET_IN_BITMAP (touched_switch_bbs, 0, i, bi)
1111 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, i);
1112 if (bb)
1114 gimple stmt = last_stmt (bb);
1115 if (stmt && gimple_code (stmt) == GIMPLE_SWITCH)
1116 group_case_labels_stmt (stmt);
1119 BITMAP_FREE (touched_switch_bbs);
1122 /* If we are inside a {start,end}_recording_cases block, then return
1123 a chain of CASE_LABEL_EXPRs from T which reference E.
1125 Otherwise return NULL. */
1127 static tree
1128 get_cases_for_edge (edge e, gimple t)
1130 void **slot;
1131 size_t i, n;
1133 /* If we are not recording cases, then we do not have CASE_LABEL_EXPR
1134 chains available. Return NULL so the caller can detect this case. */
1135 if (!recording_case_labels_p ())
1136 return NULL;
1138 slot = pointer_map_contains (edge_to_cases, e);
1139 if (slot)
1140 return (tree) *slot;
1142 /* If we did not find E in the hash table, then this must be the first
1143 time we have been queried for information about E & T. Add all the
1144 elements from T to the hash table then perform the query again. */
1146 n = gimple_switch_num_labels (t);
1147 for (i = 0; i < n; i++)
1149 tree elt = gimple_switch_label (t, i);
1150 tree lab = CASE_LABEL (elt);
1151 basic_block label_bb = label_to_block (lab);
1152 edge this_edge = find_edge (e->src, label_bb);
1154 /* Add it to the chain of CASE_LABEL_EXPRs referencing E, or create
1155 a new chain. */
1156 slot = pointer_map_insert (edge_to_cases, this_edge);
1157 CASE_CHAIN (elt) = (tree) *slot;
1158 *slot = elt;
1161 return (tree) *pointer_map_contains (edge_to_cases, e);
1164 /* Create the edges for a GIMPLE_SWITCH starting at block BB. */
1166 static void
1167 make_gimple_switch_edges (basic_block bb)
1169 gimple entry = last_stmt (bb);
1170 size_t i, n;
1172 n = gimple_switch_num_labels (entry);
1174 for (i = 0; i < n; ++i)
1176 tree lab = CASE_LABEL (gimple_switch_label (entry, i));
1177 basic_block label_bb = label_to_block (lab);
1178 make_edge (bb, label_bb, 0);
1183 /* Return the basic block holding label DEST. */
1185 basic_block
1186 label_to_block_fn (struct function *ifun, tree dest)
1188 int uid = LABEL_DECL_UID (dest);
1190 /* We would die hard when faced by an undefined label. Emit a label to
1191 the very first basic block. This will hopefully make even the dataflow
1192 and undefined variable warnings quite right. */
1193 if (seen_error () && uid < 0)
1195 gimple_stmt_iterator gsi =
1196 gsi_start_bb (BASIC_BLOCK_FOR_FN (cfun, NUM_FIXED_BLOCKS));
1197 gimple stmt;
1199 stmt = gimple_build_label (dest);
1200 gsi_insert_before (&gsi, stmt, GSI_NEW_STMT);
1201 uid = LABEL_DECL_UID (dest);
1203 if (vec_safe_length (ifun->cfg->x_label_to_block_map) <= (unsigned int) uid)
1204 return NULL;
1205 return (*ifun->cfg->x_label_to_block_map)[uid];
1208 /* Create edges for a goto statement at block BB. Returns true
1209 if abnormal edges should be created. */
1211 static bool
1212 make_goto_expr_edges (basic_block bb)
1214 gimple_stmt_iterator last = gsi_last_bb (bb);
1215 gimple goto_t = gsi_stmt (last);
1217 /* A simple GOTO creates normal edges. */
1218 if (simple_goto_p (goto_t))
1220 tree dest = gimple_goto_dest (goto_t);
1221 basic_block label_bb = label_to_block (dest);
1222 edge e = make_edge (bb, label_bb, EDGE_FALLTHRU);
1223 e->goto_locus = gimple_location (goto_t);
1224 gsi_remove (&last, true);
1225 return false;
1228 /* A computed GOTO creates abnormal edges. */
1229 return true;
1232 /* Create edges for an asm statement with labels at block BB. */
1234 static void
1235 make_gimple_asm_edges (basic_block bb)
1237 gimple stmt = last_stmt (bb);
1238 int i, n = gimple_asm_nlabels (stmt);
1240 for (i = 0; i < n; ++i)
1242 tree label = TREE_VALUE (gimple_asm_label_op (stmt, i));
1243 basic_block label_bb = label_to_block (label);
1244 make_edge (bb, label_bb, 0);
1248 /*---------------------------------------------------------------------------
1249 Flowgraph analysis
1250 ---------------------------------------------------------------------------*/
1252 /* Cleanup useless labels in basic blocks. This is something we wish
1253 to do early because it allows us to group case labels before creating
1254 the edges for the CFG, and it speeds up block statement iterators in
1255 all passes later on.
1256 We rerun this pass after CFG is created, to get rid of the labels that
1257 are no longer referenced. After then we do not run it any more, since
1258 (almost) no new labels should be created. */
1260 /* A map from basic block index to the leading label of that block. */
1261 static struct label_record
1263 /* The label. */
1264 tree label;
1266 /* True if the label is referenced from somewhere. */
1267 bool used;
1268 } *label_for_bb;
1270 /* Given LABEL return the first label in the same basic block. */
1272 static tree
1273 main_block_label (tree label)
1275 basic_block bb = label_to_block (label);
1276 tree main_label = label_for_bb[bb->index].label;
1278 /* label_to_block possibly inserted undefined label into the chain. */
1279 if (!main_label)
1281 label_for_bb[bb->index].label = label;
1282 main_label = label;
1285 label_for_bb[bb->index].used = true;
1286 return main_label;
1289 /* Clean up redundant labels within the exception tree. */
1291 static void
1292 cleanup_dead_labels_eh (void)
1294 eh_landing_pad lp;
1295 eh_region r;
1296 tree lab;
1297 int i;
1299 if (cfun->eh == NULL)
1300 return;
1302 for (i = 1; vec_safe_iterate (cfun->eh->lp_array, i, &lp); ++i)
1303 if (lp && lp->post_landing_pad)
1305 lab = main_block_label (lp->post_landing_pad);
1306 if (lab != lp->post_landing_pad)
1308 EH_LANDING_PAD_NR (lp->post_landing_pad) = 0;
1309 EH_LANDING_PAD_NR (lab) = lp->index;
1313 FOR_ALL_EH_REGION (r)
1314 switch (r->type)
1316 case ERT_CLEANUP:
1317 case ERT_MUST_NOT_THROW:
1318 break;
1320 case ERT_TRY:
1322 eh_catch c;
1323 for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
1325 lab = c->label;
1326 if (lab)
1327 c->label = main_block_label (lab);
1330 break;
1332 case ERT_ALLOWED_EXCEPTIONS:
1333 lab = r->u.allowed.label;
1334 if (lab)
1335 r->u.allowed.label = main_block_label (lab);
1336 break;
1341 /* Cleanup redundant labels. This is a three-step process:
1342 1) Find the leading label for each block.
1343 2) Redirect all references to labels to the leading labels.
1344 3) Cleanup all useless labels. */
1346 void
1347 cleanup_dead_labels (void)
1349 basic_block bb;
1350 label_for_bb = XCNEWVEC (struct label_record, last_basic_block_for_fn (cfun));
1352 /* Find a suitable label for each block. We use the first user-defined
1353 label if there is one, or otherwise just the first label we see. */
1354 FOR_EACH_BB_FN (bb, cfun)
1356 gimple_stmt_iterator i;
1358 for (i = gsi_start_bb (bb); !gsi_end_p (i); gsi_next (&i))
1360 tree label;
1361 gimple stmt = gsi_stmt (i);
1363 if (gimple_code (stmt) != GIMPLE_LABEL)
1364 break;
1366 label = gimple_label_label (stmt);
1368 /* If we have not yet seen a label for the current block,
1369 remember this one and see if there are more labels. */
1370 if (!label_for_bb[bb->index].label)
1372 label_for_bb[bb->index].label = label;
1373 continue;
1376 /* If we did see a label for the current block already, but it
1377 is an artificially created label, replace it if the current
1378 label is a user defined label. */
1379 if (!DECL_ARTIFICIAL (label)
1380 && DECL_ARTIFICIAL (label_for_bb[bb->index].label))
1382 label_for_bb[bb->index].label = label;
1383 break;
1388 /* Now redirect all jumps/branches to the selected label.
1389 First do so for each block ending in a control statement. */
1390 FOR_EACH_BB_FN (bb, cfun)
1392 gimple stmt = last_stmt (bb);
1393 tree label, new_label;
1395 if (!stmt)
1396 continue;
1398 switch (gimple_code (stmt))
1400 case GIMPLE_COND:
1401 label = gimple_cond_true_label (stmt);
1402 if (label)
1404 new_label = main_block_label (label);
1405 if (new_label != label)
1406 gimple_cond_set_true_label (stmt, new_label);
1409 label = gimple_cond_false_label (stmt);
1410 if (label)
1412 new_label = main_block_label (label);
1413 if (new_label != label)
1414 gimple_cond_set_false_label (stmt, new_label);
1416 break;
1418 case GIMPLE_SWITCH:
1420 size_t i, n = gimple_switch_num_labels (stmt);
1422 /* Replace all destination labels. */
1423 for (i = 0; i < n; ++i)
1425 tree case_label = gimple_switch_label (stmt, i);
1426 label = CASE_LABEL (case_label);
1427 new_label = main_block_label (label);
1428 if (new_label != label)
1429 CASE_LABEL (case_label) = new_label;
1431 break;
1434 case GIMPLE_ASM:
1436 int i, n = gimple_asm_nlabels (stmt);
1438 for (i = 0; i < n; ++i)
1440 tree cons = gimple_asm_label_op (stmt, i);
1441 tree label = main_block_label (TREE_VALUE (cons));
1442 TREE_VALUE (cons) = label;
1444 break;
1447 /* We have to handle gotos until they're removed, and we don't
1448 remove them until after we've created the CFG edges. */
1449 case GIMPLE_GOTO:
1450 if (!computed_goto_p (stmt))
1452 label = gimple_goto_dest (stmt);
1453 new_label = main_block_label (label);
1454 if (new_label != label)
1455 gimple_goto_set_dest (stmt, new_label);
1457 break;
1459 case GIMPLE_TRANSACTION:
1461 tree label = gimple_transaction_label (stmt);
1462 if (label)
1464 tree new_label = main_block_label (label);
1465 if (new_label != label)
1466 gimple_transaction_set_label (stmt, new_label);
1469 break;
1471 default:
1472 break;
1476 /* Do the same for the exception region tree labels. */
1477 cleanup_dead_labels_eh ();
1479 /* Finally, purge dead labels. All user-defined labels and labels that
1480 can be the target of non-local gotos and labels which have their
1481 address taken are preserved. */
1482 FOR_EACH_BB_FN (bb, cfun)
1484 gimple_stmt_iterator i;
1485 tree label_for_this_bb = label_for_bb[bb->index].label;
1487 if (!label_for_this_bb)
1488 continue;
1490 /* If the main label of the block is unused, we may still remove it. */
1491 if (!label_for_bb[bb->index].used)
1492 label_for_this_bb = NULL;
1494 for (i = gsi_start_bb (bb); !gsi_end_p (i); )
1496 tree label;
1497 gimple stmt = gsi_stmt (i);
1499 if (gimple_code (stmt) != GIMPLE_LABEL)
1500 break;
1502 label = gimple_label_label (stmt);
1504 if (label == label_for_this_bb
1505 || !DECL_ARTIFICIAL (label)
1506 || DECL_NONLOCAL (label)
1507 || FORCED_LABEL (label))
1508 gsi_next (&i);
1509 else
1510 gsi_remove (&i, true);
1514 free (label_for_bb);
1517 /* Scan the sorted vector of cases in STMT (a GIMPLE_SWITCH) and combine
1518 the ones jumping to the same label.
1519 Eg. three separate entries 1: 2: 3: become one entry 1..3: */
1521 void
1522 group_case_labels_stmt (gimple stmt)
1524 int old_size = gimple_switch_num_labels (stmt);
1525 int i, j, new_size = old_size;
1526 basic_block default_bb = NULL;
1528 default_bb = label_to_block (CASE_LABEL (gimple_switch_default_label (stmt)));
1530 /* Look for possible opportunities to merge cases. */
1531 i = 1;
1532 while (i < old_size)
1534 tree base_case, base_high;
1535 basic_block base_bb;
1537 base_case = gimple_switch_label (stmt, i);
1539 gcc_assert (base_case);
1540 base_bb = label_to_block (CASE_LABEL (base_case));
1542 /* Discard cases that have the same destination as the
1543 default case. */
1544 if (base_bb == default_bb)
1546 gimple_switch_set_label (stmt, i, NULL_TREE);
1547 i++;
1548 new_size--;
1549 continue;
1552 base_high = CASE_HIGH (base_case)
1553 ? CASE_HIGH (base_case)
1554 : CASE_LOW (base_case);
1555 i++;
1557 /* Try to merge case labels. Break out when we reach the end
1558 of the label vector or when we cannot merge the next case
1559 label with the current one. */
1560 while (i < old_size)
1562 tree merge_case = gimple_switch_label (stmt, i);
1563 basic_block merge_bb = label_to_block (CASE_LABEL (merge_case));
1564 double_int bhp1 = tree_to_double_int (base_high) + double_int_one;
1566 /* Merge the cases if they jump to the same place,
1567 and their ranges are consecutive. */
1568 if (merge_bb == base_bb
1569 && tree_to_double_int (CASE_LOW (merge_case)) == bhp1)
1571 base_high = CASE_HIGH (merge_case) ?
1572 CASE_HIGH (merge_case) : CASE_LOW (merge_case);
1573 CASE_HIGH (base_case) = base_high;
1574 gimple_switch_set_label (stmt, i, NULL_TREE);
1575 new_size--;
1576 i++;
1578 else
1579 break;
1583 /* Compress the case labels in the label vector, and adjust the
1584 length of the vector. */
1585 for (i = 0, j = 0; i < new_size; i++)
1587 while (! gimple_switch_label (stmt, j))
1588 j++;
1589 gimple_switch_set_label (stmt, i,
1590 gimple_switch_label (stmt, j++));
1593 gcc_assert (new_size <= old_size);
1594 gimple_switch_set_num_labels (stmt, new_size);
1597 /* Look for blocks ending in a multiway branch (a GIMPLE_SWITCH),
1598 and scan the sorted vector of cases. Combine the ones jumping to the
1599 same label. */
1601 void
1602 group_case_labels (void)
1604 basic_block bb;
1606 FOR_EACH_BB_FN (bb, cfun)
1608 gimple stmt = last_stmt (bb);
1609 if (stmt && gimple_code (stmt) == GIMPLE_SWITCH)
1610 group_case_labels_stmt (stmt);
1614 /* Checks whether we can merge block B into block A. */
1616 static bool
1617 gimple_can_merge_blocks_p (basic_block a, basic_block b)
1619 gimple stmt;
1620 gimple_stmt_iterator gsi;
1622 if (!single_succ_p (a))
1623 return false;
1625 if (single_succ_edge (a)->flags & EDGE_COMPLEX)
1626 return false;
1628 if (single_succ (a) != b)
1629 return false;
1631 if (!single_pred_p (b))
1632 return false;
1634 if (b == EXIT_BLOCK_PTR_FOR_FN (cfun))
1635 return false;
1637 /* If A ends by a statement causing exceptions or something similar, we
1638 cannot merge the blocks. */
1639 stmt = last_stmt (a);
1640 if (stmt && stmt_ends_bb_p (stmt))
1641 return false;
1643 /* Do not allow a block with only a non-local label to be merged. */
1644 if (stmt
1645 && gimple_code (stmt) == GIMPLE_LABEL
1646 && DECL_NONLOCAL (gimple_label_label (stmt)))
1647 return false;
1649 /* Examine the labels at the beginning of B. */
1650 for (gsi = gsi_start_bb (b); !gsi_end_p (gsi); gsi_next (&gsi))
1652 tree lab;
1653 stmt = gsi_stmt (gsi);
1654 if (gimple_code (stmt) != GIMPLE_LABEL)
1655 break;
1656 lab = gimple_label_label (stmt);
1658 /* Do not remove user forced labels or for -O0 any user labels. */
1659 if (!DECL_ARTIFICIAL (lab) && (!optimize || FORCED_LABEL (lab)))
1660 return false;
1663 /* Protect the loop latches. */
1664 if (current_loops && b->loop_father->latch == b)
1665 return false;
1667 /* It must be possible to eliminate all phi nodes in B. If ssa form
1668 is not up-to-date and a name-mapping is registered, we cannot eliminate
1669 any phis. Symbols marked for renaming are never a problem though. */
1670 for (gsi = gsi_start_phis (b); !gsi_end_p (gsi); gsi_next (&gsi))
1672 gimple phi = gsi_stmt (gsi);
1673 /* Technically only new names matter. */
1674 if (name_registered_for_update_p (PHI_RESULT (phi)))
1675 return false;
1678 /* When not optimizing, don't merge if we'd lose goto_locus. */
1679 if (!optimize
1680 && single_succ_edge (a)->goto_locus != UNKNOWN_LOCATION)
1682 location_t goto_locus = single_succ_edge (a)->goto_locus;
1683 gimple_stmt_iterator prev, next;
1684 prev = gsi_last_nondebug_bb (a);
1685 next = gsi_after_labels (b);
1686 if (!gsi_end_p (next) && is_gimple_debug (gsi_stmt (next)))
1687 gsi_next_nondebug (&next);
1688 if ((gsi_end_p (prev)
1689 || gimple_location (gsi_stmt (prev)) != goto_locus)
1690 && (gsi_end_p (next)
1691 || gimple_location (gsi_stmt (next)) != goto_locus))
1692 return false;
1695 return true;
1698 /* Replaces all uses of NAME by VAL. */
1700 void
1701 replace_uses_by (tree name, tree val)
1703 imm_use_iterator imm_iter;
1704 use_operand_p use;
1705 gimple stmt;
1706 edge e;
1708 FOR_EACH_IMM_USE_STMT (stmt, imm_iter, name)
1710 /* Mark the block if we change the last stmt in it. */
1711 if (cfgcleanup_altered_bbs
1712 && stmt_ends_bb_p (stmt))
1713 bitmap_set_bit (cfgcleanup_altered_bbs, gimple_bb (stmt)->index);
1715 FOR_EACH_IMM_USE_ON_STMT (use, imm_iter)
1717 replace_exp (use, val);
1719 if (gimple_code (stmt) == GIMPLE_PHI)
1721 e = gimple_phi_arg_edge (stmt, PHI_ARG_INDEX_FROM_USE (use));
1722 if (e->flags & EDGE_ABNORMAL)
1724 /* This can only occur for virtual operands, since
1725 for the real ones SSA_NAME_OCCURS_IN_ABNORMAL_PHI (name))
1726 would prevent replacement. */
1727 gcc_checking_assert (virtual_operand_p (name));
1728 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (val) = 1;
1733 if (gimple_code (stmt) != GIMPLE_PHI)
1735 gimple_stmt_iterator gsi = gsi_for_stmt (stmt);
1736 gimple orig_stmt = stmt;
1737 size_t i;
1739 /* FIXME. It shouldn't be required to keep TREE_CONSTANT
1740 on ADDR_EXPRs up-to-date on GIMPLE. Propagation will
1741 only change sth from non-invariant to invariant, and only
1742 when propagating constants. */
1743 if (is_gimple_min_invariant (val))
1744 for (i = 0; i < gimple_num_ops (stmt); i++)
1746 tree op = gimple_op (stmt, i);
1747 /* Operands may be empty here. For example, the labels
1748 of a GIMPLE_COND are nulled out following the creation
1749 of the corresponding CFG edges. */
1750 if (op && TREE_CODE (op) == ADDR_EXPR)
1751 recompute_tree_invariant_for_addr_expr (op);
1754 if (fold_stmt (&gsi))
1755 stmt = gsi_stmt (gsi);
1757 if (maybe_clean_or_replace_eh_stmt (orig_stmt, stmt))
1758 gimple_purge_dead_eh_edges (gimple_bb (stmt));
1760 update_stmt (stmt);
1764 gcc_checking_assert (has_zero_uses (name));
1766 /* Also update the trees stored in loop structures. */
1767 if (current_loops)
1769 struct loop *loop;
1771 FOR_EACH_LOOP (loop, 0)
1773 substitute_in_loop_info (loop, name, val);
1778 /* Merge block B into block A. */
1780 static void
1781 gimple_merge_blocks (basic_block a, basic_block b)
1783 gimple_stmt_iterator last, gsi, psi;
1785 if (dump_file)
1786 fprintf (dump_file, "Merging blocks %d and %d\n", a->index, b->index);
1788 /* Remove all single-valued PHI nodes from block B of the form
1789 V_i = PHI <V_j> by propagating V_j to all the uses of V_i. */
1790 gsi = gsi_last_bb (a);
1791 for (psi = gsi_start_phis (b); !gsi_end_p (psi); )
1793 gimple phi = gsi_stmt (psi);
1794 tree def = gimple_phi_result (phi), use = gimple_phi_arg_def (phi, 0);
1795 gimple copy;
1796 bool may_replace_uses = (virtual_operand_p (def)
1797 || may_propagate_copy (def, use));
1799 /* In case we maintain loop closed ssa form, do not propagate arguments
1800 of loop exit phi nodes. */
1801 if (current_loops
1802 && loops_state_satisfies_p (LOOP_CLOSED_SSA)
1803 && !virtual_operand_p (def)
1804 && TREE_CODE (use) == SSA_NAME
1805 && a->loop_father != b->loop_father)
1806 may_replace_uses = false;
1808 if (!may_replace_uses)
1810 gcc_assert (!virtual_operand_p (def));
1812 /* Note that just emitting the copies is fine -- there is no problem
1813 with ordering of phi nodes. This is because A is the single
1814 predecessor of B, therefore results of the phi nodes cannot
1815 appear as arguments of the phi nodes. */
1816 copy = gimple_build_assign (def, use);
1817 gsi_insert_after (&gsi, copy, GSI_NEW_STMT);
1818 remove_phi_node (&psi, false);
1820 else
1822 /* If we deal with a PHI for virtual operands, we can simply
1823 propagate these without fussing with folding or updating
1824 the stmt. */
1825 if (virtual_operand_p (def))
1827 imm_use_iterator iter;
1828 use_operand_p use_p;
1829 gimple stmt;
1831 FOR_EACH_IMM_USE_STMT (stmt, iter, def)
1832 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
1833 SET_USE (use_p, use);
1835 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (def))
1836 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (use) = 1;
1838 else
1839 replace_uses_by (def, use);
1841 remove_phi_node (&psi, true);
1845 /* Ensure that B follows A. */
1846 move_block_after (b, a);
1848 gcc_assert (single_succ_edge (a)->flags & EDGE_FALLTHRU);
1849 gcc_assert (!last_stmt (a) || !stmt_ends_bb_p (last_stmt (a)));
1851 /* Remove labels from B and set gimple_bb to A for other statements. */
1852 for (gsi = gsi_start_bb (b); !gsi_end_p (gsi);)
1854 gimple stmt = gsi_stmt (gsi);
1855 if (gimple_code (stmt) == GIMPLE_LABEL)
1857 tree label = gimple_label_label (stmt);
1858 int lp_nr;
1860 gsi_remove (&gsi, false);
1862 /* Now that we can thread computed gotos, we might have
1863 a situation where we have a forced label in block B
1864 However, the label at the start of block B might still be
1865 used in other ways (think about the runtime checking for
1866 Fortran assigned gotos). So we can not just delete the
1867 label. Instead we move the label to the start of block A. */
1868 if (FORCED_LABEL (label))
1870 gimple_stmt_iterator dest_gsi = gsi_start_bb (a);
1871 gsi_insert_before (&dest_gsi, stmt, GSI_NEW_STMT);
1873 /* Other user labels keep around in a form of a debug stmt. */
1874 else if (!DECL_ARTIFICIAL (label) && MAY_HAVE_DEBUG_STMTS)
1876 gimple dbg = gimple_build_debug_bind (label,
1877 integer_zero_node,
1878 stmt);
1879 gimple_debug_bind_reset_value (dbg);
1880 gsi_insert_before (&gsi, dbg, GSI_SAME_STMT);
1883 lp_nr = EH_LANDING_PAD_NR (label);
1884 if (lp_nr)
1886 eh_landing_pad lp = get_eh_landing_pad_from_number (lp_nr);
1887 lp->post_landing_pad = NULL;
1890 else
1892 gimple_set_bb (stmt, a);
1893 gsi_next (&gsi);
1897 /* Merge the sequences. */
1898 last = gsi_last_bb (a);
1899 gsi_insert_seq_after (&last, bb_seq (b), GSI_NEW_STMT);
1900 set_bb_seq (b, NULL);
1902 if (cfgcleanup_altered_bbs)
1903 bitmap_set_bit (cfgcleanup_altered_bbs, a->index);
1907 /* Return the one of two successors of BB that is not reachable by a
1908 complex edge, if there is one. Else, return BB. We use
1909 this in optimizations that use post-dominators for their heuristics,
1910 to catch the cases in C++ where function calls are involved. */
1912 basic_block
1913 single_noncomplex_succ (basic_block bb)
1915 edge e0, e1;
1916 if (EDGE_COUNT (bb->succs) != 2)
1917 return bb;
1919 e0 = EDGE_SUCC (bb, 0);
1920 e1 = EDGE_SUCC (bb, 1);
1921 if (e0->flags & EDGE_COMPLEX)
1922 return e1->dest;
1923 if (e1->flags & EDGE_COMPLEX)
1924 return e0->dest;
1926 return bb;
1929 /* T is CALL_EXPR. Set current_function_calls_* flags. */
1931 void
1932 notice_special_calls (gimple call)
1934 int flags = gimple_call_flags (call);
1936 if (flags & ECF_MAY_BE_ALLOCA)
1937 cfun->calls_alloca = true;
1938 if (flags & ECF_RETURNS_TWICE)
1939 cfun->calls_setjmp = true;
1943 /* Clear flags set by notice_special_calls. Used by dead code removal
1944 to update the flags. */
1946 void
1947 clear_special_calls (void)
1949 cfun->calls_alloca = false;
1950 cfun->calls_setjmp = false;
1953 /* Remove PHI nodes associated with basic block BB and all edges out of BB. */
1955 static void
1956 remove_phi_nodes_and_edges_for_unreachable_block (basic_block bb)
1958 /* Since this block is no longer reachable, we can just delete all
1959 of its PHI nodes. */
1960 remove_phi_nodes (bb);
1962 /* Remove edges to BB's successors. */
1963 while (EDGE_COUNT (bb->succs) > 0)
1964 remove_edge (EDGE_SUCC (bb, 0));
1968 /* Remove statements of basic block BB. */
1970 static void
1971 remove_bb (basic_block bb)
1973 gimple_stmt_iterator i;
1975 if (dump_file)
1977 fprintf (dump_file, "Removing basic block %d\n", bb->index);
1978 if (dump_flags & TDF_DETAILS)
1980 dump_bb (dump_file, bb, 0, dump_flags);
1981 fprintf (dump_file, "\n");
1985 if (current_loops)
1987 struct loop *loop = bb->loop_father;
1989 /* If a loop gets removed, clean up the information associated
1990 with it. */
1991 if (loop->latch == bb
1992 || loop->header == bb)
1993 free_numbers_of_iterations_estimates_loop (loop);
1996 /* Remove all the instructions in the block. */
1997 if (bb_seq (bb) != NULL)
1999 /* Walk backwards so as to get a chance to substitute all
2000 released DEFs into debug stmts. See
2001 eliminate_unnecessary_stmts() in tree-ssa-dce.c for more
2002 details. */
2003 for (i = gsi_last_bb (bb); !gsi_end_p (i);)
2005 gimple stmt = gsi_stmt (i);
2006 if (gimple_code (stmt) == GIMPLE_LABEL
2007 && (FORCED_LABEL (gimple_label_label (stmt))
2008 || DECL_NONLOCAL (gimple_label_label (stmt))))
2010 basic_block new_bb;
2011 gimple_stmt_iterator new_gsi;
2013 /* A non-reachable non-local label may still be referenced.
2014 But it no longer needs to carry the extra semantics of
2015 non-locality. */
2016 if (DECL_NONLOCAL (gimple_label_label (stmt)))
2018 DECL_NONLOCAL (gimple_label_label (stmt)) = 0;
2019 FORCED_LABEL (gimple_label_label (stmt)) = 1;
2022 new_bb = bb->prev_bb;
2023 new_gsi = gsi_start_bb (new_bb);
2024 gsi_remove (&i, false);
2025 gsi_insert_before (&new_gsi, stmt, GSI_NEW_STMT);
2027 else
2029 /* Release SSA definitions if we are in SSA. Note that we
2030 may be called when not in SSA. For example,
2031 final_cleanup calls this function via
2032 cleanup_tree_cfg. */
2033 if (gimple_in_ssa_p (cfun))
2034 release_defs (stmt);
2036 gsi_remove (&i, true);
2039 if (gsi_end_p (i))
2040 i = gsi_last_bb (bb);
2041 else
2042 gsi_prev (&i);
2046 remove_phi_nodes_and_edges_for_unreachable_block (bb);
2047 bb->il.gimple.seq = NULL;
2048 bb->il.gimple.phi_nodes = NULL;
2052 /* Given a basic block BB ending with COND_EXPR or SWITCH_EXPR, and a
2053 predicate VAL, return the edge that will be taken out of the block.
2054 If VAL does not match a unique edge, NULL is returned. */
2056 edge
2057 find_taken_edge (basic_block bb, tree val)
2059 gimple stmt;
2061 stmt = last_stmt (bb);
2063 gcc_assert (stmt);
2064 gcc_assert (is_ctrl_stmt (stmt));
2066 if (val == NULL)
2067 return NULL;
2069 if (!is_gimple_min_invariant (val))
2070 return NULL;
2072 if (gimple_code (stmt) == GIMPLE_COND)
2073 return find_taken_edge_cond_expr (bb, val);
2075 if (gimple_code (stmt) == GIMPLE_SWITCH)
2076 return find_taken_edge_switch_expr (bb, val);
2078 if (computed_goto_p (stmt))
2080 /* Only optimize if the argument is a label, if the argument is
2081 not a label then we can not construct a proper CFG.
2083 It may be the case that we only need to allow the LABEL_REF to
2084 appear inside an ADDR_EXPR, but we also allow the LABEL_REF to
2085 appear inside a LABEL_EXPR just to be safe. */
2086 if ((TREE_CODE (val) == ADDR_EXPR || TREE_CODE (val) == LABEL_EXPR)
2087 && TREE_CODE (TREE_OPERAND (val, 0)) == LABEL_DECL)
2088 return find_taken_edge_computed_goto (bb, TREE_OPERAND (val, 0));
2089 return NULL;
2092 gcc_unreachable ();
2095 /* Given a constant value VAL and the entry block BB to a GOTO_EXPR
2096 statement, determine which of the outgoing edges will be taken out of the
2097 block. Return NULL if either edge may be taken. */
2099 static edge
2100 find_taken_edge_computed_goto (basic_block bb, tree val)
2102 basic_block dest;
2103 edge e = NULL;
2105 dest = label_to_block (val);
2106 if (dest)
2108 e = find_edge (bb, dest);
2109 gcc_assert (e != NULL);
2112 return e;
2115 /* Given a constant value VAL and the entry block BB to a COND_EXPR
2116 statement, determine which of the two edges will be taken out of the
2117 block. Return NULL if either edge may be taken. */
2119 static edge
2120 find_taken_edge_cond_expr (basic_block bb, tree val)
2122 edge true_edge, false_edge;
2124 extract_true_false_edges_from_block (bb, &true_edge, &false_edge);
2126 gcc_assert (TREE_CODE (val) == INTEGER_CST);
2127 return (integer_zerop (val) ? false_edge : true_edge);
2130 /* Given an INTEGER_CST VAL and the entry block BB to a SWITCH_EXPR
2131 statement, determine which edge will be taken out of the block. Return
2132 NULL if any edge may be taken. */
2134 static edge
2135 find_taken_edge_switch_expr (basic_block bb, tree val)
2137 basic_block dest_bb;
2138 edge e;
2139 gimple switch_stmt;
2140 tree taken_case;
2142 switch_stmt = last_stmt (bb);
2143 taken_case = find_case_label_for_value (switch_stmt, val);
2144 dest_bb = label_to_block (CASE_LABEL (taken_case));
2146 e = find_edge (bb, dest_bb);
2147 gcc_assert (e);
2148 return e;
2152 /* Return the CASE_LABEL_EXPR that SWITCH_STMT will take for VAL.
2153 We can make optimal use here of the fact that the case labels are
2154 sorted: We can do a binary search for a case matching VAL. */
2156 static tree
2157 find_case_label_for_value (gimple switch_stmt, tree val)
2159 size_t low, high, n = gimple_switch_num_labels (switch_stmt);
2160 tree default_case = gimple_switch_default_label (switch_stmt);
2162 for (low = 0, high = n; high - low > 1; )
2164 size_t i = (high + low) / 2;
2165 tree t = gimple_switch_label (switch_stmt, i);
2166 int cmp;
2168 /* Cache the result of comparing CASE_LOW and val. */
2169 cmp = tree_int_cst_compare (CASE_LOW (t), val);
2171 if (cmp > 0)
2172 high = i;
2173 else
2174 low = i;
2176 if (CASE_HIGH (t) == NULL)
2178 /* A singe-valued case label. */
2179 if (cmp == 0)
2180 return t;
2182 else
2184 /* A case range. We can only handle integer ranges. */
2185 if (cmp <= 0 && tree_int_cst_compare (CASE_HIGH (t), val) >= 0)
2186 return t;
2190 return default_case;
2194 /* Dump a basic block on stderr. */
2196 void
2197 gimple_debug_bb (basic_block bb)
2199 dump_bb (stderr, bb, 0, TDF_VOPS|TDF_MEMSYMS|TDF_BLOCKS);
2203 /* Dump basic block with index N on stderr. */
2205 basic_block
2206 gimple_debug_bb_n (int n)
2208 gimple_debug_bb (BASIC_BLOCK_FOR_FN (cfun, n));
2209 return BASIC_BLOCK_FOR_FN (cfun, n);
2213 /* Dump the CFG on stderr.
2215 FLAGS are the same used by the tree dumping functions
2216 (see TDF_* in dumpfile.h). */
2218 void
2219 gimple_debug_cfg (int flags)
2221 gimple_dump_cfg (stderr, flags);
2225 /* Dump the program showing basic block boundaries on the given FILE.
2227 FLAGS are the same used by the tree dumping functions (see TDF_* in
2228 tree.h). */
2230 void
2231 gimple_dump_cfg (FILE *file, int flags)
2233 if (flags & TDF_DETAILS)
2235 dump_function_header (file, current_function_decl, flags);
2236 fprintf (file, ";; \n%d basic blocks, %d edges, last basic block %d.\n\n",
2237 n_basic_blocks_for_fn (cfun), n_edges_for_fn (cfun),
2238 last_basic_block_for_fn (cfun));
2240 brief_dump_cfg (file, flags | TDF_COMMENT);
2241 fprintf (file, "\n");
2244 if (flags & TDF_STATS)
2245 dump_cfg_stats (file);
2247 dump_function_to_file (current_function_decl, file, flags | TDF_BLOCKS);
2251 /* Dump CFG statistics on FILE. */
2253 void
2254 dump_cfg_stats (FILE *file)
2256 static long max_num_merged_labels = 0;
2257 unsigned long size, total = 0;
2258 long num_edges;
2259 basic_block bb;
2260 const char * const fmt_str = "%-30s%-13s%12s\n";
2261 const char * const fmt_str_1 = "%-30s%13d%11lu%c\n";
2262 const char * const fmt_str_2 = "%-30s%13ld%11lu%c\n";
2263 const char * const fmt_str_3 = "%-43s%11lu%c\n";
2264 const char *funcname = current_function_name ();
2266 fprintf (file, "\nCFG Statistics for %s\n\n", funcname);
2268 fprintf (file, "---------------------------------------------------------\n");
2269 fprintf (file, fmt_str, "", " Number of ", "Memory");
2270 fprintf (file, fmt_str, "", " instances ", "used ");
2271 fprintf (file, "---------------------------------------------------------\n");
2273 size = n_basic_blocks_for_fn (cfun) * sizeof (struct basic_block_def);
2274 total += size;
2275 fprintf (file, fmt_str_1, "Basic blocks", n_basic_blocks_for_fn (cfun),
2276 SCALE (size), LABEL (size));
2278 num_edges = 0;
2279 FOR_EACH_BB_FN (bb, cfun)
2280 num_edges += EDGE_COUNT (bb->succs);
2281 size = num_edges * sizeof (struct edge_def);
2282 total += size;
2283 fprintf (file, fmt_str_2, "Edges", num_edges, SCALE (size), LABEL (size));
2285 fprintf (file, "---------------------------------------------------------\n");
2286 fprintf (file, fmt_str_3, "Total memory used by CFG data", SCALE (total),
2287 LABEL (total));
2288 fprintf (file, "---------------------------------------------------------\n");
2289 fprintf (file, "\n");
2291 if (cfg_stats.num_merged_labels > max_num_merged_labels)
2292 max_num_merged_labels = cfg_stats.num_merged_labels;
2294 fprintf (file, "Coalesced label blocks: %ld (Max so far: %ld)\n",
2295 cfg_stats.num_merged_labels, max_num_merged_labels);
2297 fprintf (file, "\n");
2301 /* Dump CFG statistics on stderr. Keep extern so that it's always
2302 linked in the final executable. */
2304 DEBUG_FUNCTION void
2305 debug_cfg_stats (void)
2307 dump_cfg_stats (stderr);
2310 /*---------------------------------------------------------------------------
2311 Miscellaneous helpers
2312 ---------------------------------------------------------------------------*/
2314 /* Return true if T, a GIMPLE_CALL, can make an abnormal transfer of control
2315 flow. Transfers of control flow associated with EH are excluded. */
2317 static bool
2318 call_can_make_abnormal_goto (gimple t)
2320 /* If the function has no non-local labels, then a call cannot make an
2321 abnormal transfer of control. */
2322 if (!cfun->has_nonlocal_label
2323 && !cfun->calls_setjmp)
2324 return false;
2326 /* Likewise if the call has no side effects. */
2327 if (!gimple_has_side_effects (t))
2328 return false;
2330 /* Likewise if the called function is leaf. */
2331 if (gimple_call_flags (t) & ECF_LEAF)
2332 return false;
2334 return true;
2338 /* Return true if T can make an abnormal transfer of control flow.
2339 Transfers of control flow associated with EH are excluded. */
2341 bool
2342 stmt_can_make_abnormal_goto (gimple t)
2344 if (computed_goto_p (t))
2345 return true;
2346 if (is_gimple_call (t))
2347 return call_can_make_abnormal_goto (t);
2348 return false;
2352 /* Return true if T represents a stmt that always transfers control. */
2354 bool
2355 is_ctrl_stmt (gimple t)
2357 switch (gimple_code (t))
2359 case GIMPLE_COND:
2360 case GIMPLE_SWITCH:
2361 case GIMPLE_GOTO:
2362 case GIMPLE_RETURN:
2363 case GIMPLE_RESX:
2364 return true;
2365 default:
2366 return false;
2371 /* Return true if T is a statement that may alter the flow of control
2372 (e.g., a call to a non-returning function). */
2374 bool
2375 is_ctrl_altering_stmt (gimple t)
2377 gcc_assert (t);
2379 switch (gimple_code (t))
2381 case GIMPLE_CALL:
2382 /* Per stmt call flag indicates whether the call could alter
2383 controlflow. */
2384 if (gimple_call_ctrl_altering_p (t))
2385 return true;
2386 break;
2388 case GIMPLE_EH_DISPATCH:
2389 /* EH_DISPATCH branches to the individual catch handlers at
2390 this level of a try or allowed-exceptions region. It can
2391 fallthru to the next statement as well. */
2392 return true;
2394 case GIMPLE_ASM:
2395 if (gimple_asm_nlabels (t) > 0)
2396 return true;
2397 break;
2399 CASE_GIMPLE_OMP:
2400 /* OpenMP directives alter control flow. */
2401 return true;
2403 case GIMPLE_TRANSACTION:
2404 /* A transaction start alters control flow. */
2405 return true;
2407 default:
2408 break;
2411 /* If a statement can throw, it alters control flow. */
2412 return stmt_can_throw_internal (t);
2416 /* Return true if T is a simple local goto. */
2418 bool
2419 simple_goto_p (gimple t)
2421 return (gimple_code (t) == GIMPLE_GOTO
2422 && TREE_CODE (gimple_goto_dest (t)) == LABEL_DECL);
2426 /* Return true if STMT should start a new basic block. PREV_STMT is
2427 the statement preceding STMT. It is used when STMT is a label or a
2428 case label. Labels should only start a new basic block if their
2429 previous statement wasn't a label. Otherwise, sequence of labels
2430 would generate unnecessary basic blocks that only contain a single
2431 label. */
2433 static inline bool
2434 stmt_starts_bb_p (gimple stmt, gimple prev_stmt)
2436 if (stmt == NULL)
2437 return false;
2439 /* Labels start a new basic block only if the preceding statement
2440 wasn't a label of the same type. This prevents the creation of
2441 consecutive blocks that have nothing but a single label. */
2442 if (gimple_code (stmt) == GIMPLE_LABEL)
2444 /* Nonlocal and computed GOTO targets always start a new block. */
2445 if (DECL_NONLOCAL (gimple_label_label (stmt))
2446 || FORCED_LABEL (gimple_label_label (stmt)))
2447 return true;
2449 if (prev_stmt && gimple_code (prev_stmt) == GIMPLE_LABEL)
2451 if (DECL_NONLOCAL (gimple_label_label (prev_stmt)))
2452 return true;
2454 cfg_stats.num_merged_labels++;
2455 return false;
2457 else
2458 return true;
2460 else if (gimple_code (stmt) == GIMPLE_CALL
2461 && gimple_call_flags (stmt) & ECF_RETURNS_TWICE)
2462 /* setjmp acts similar to a nonlocal GOTO target and thus should
2463 start a new block. */
2464 return true;
2466 return false;
2470 /* Return true if T should end a basic block. */
2472 bool
2473 stmt_ends_bb_p (gimple t)
2475 return is_ctrl_stmt (t) || is_ctrl_altering_stmt (t);
2478 /* Remove block annotations and other data structures. */
2480 void
2481 delete_tree_cfg_annotations (void)
2483 vec_free (label_to_block_map_for_fn (cfun));
2487 /* Return the first statement in basic block BB. */
2489 gimple
2490 first_stmt (basic_block bb)
2492 gimple_stmt_iterator i = gsi_start_bb (bb);
2493 gimple stmt = NULL;
2495 while (!gsi_end_p (i) && is_gimple_debug ((stmt = gsi_stmt (i))))
2497 gsi_next (&i);
2498 stmt = NULL;
2500 return stmt;
2503 /* Return the first non-label statement in basic block BB. */
2505 static gimple
2506 first_non_label_stmt (basic_block bb)
2508 gimple_stmt_iterator i = gsi_start_bb (bb);
2509 while (!gsi_end_p (i) && gimple_code (gsi_stmt (i)) == GIMPLE_LABEL)
2510 gsi_next (&i);
2511 return !gsi_end_p (i) ? gsi_stmt (i) : NULL;
2514 /* Return the last statement in basic block BB. */
2516 gimple
2517 last_stmt (basic_block bb)
2519 gimple_stmt_iterator i = gsi_last_bb (bb);
2520 gimple stmt = NULL;
2522 while (!gsi_end_p (i) && is_gimple_debug ((stmt = gsi_stmt (i))))
2524 gsi_prev (&i);
2525 stmt = NULL;
2527 return stmt;
2530 /* Return the last statement of an otherwise empty block. Return NULL
2531 if the block is totally empty, or if it contains more than one
2532 statement. */
2534 gimple
2535 last_and_only_stmt (basic_block bb)
2537 gimple_stmt_iterator i = gsi_last_nondebug_bb (bb);
2538 gimple last, prev;
2540 if (gsi_end_p (i))
2541 return NULL;
2543 last = gsi_stmt (i);
2544 gsi_prev_nondebug (&i);
2545 if (gsi_end_p (i))
2546 return last;
2548 /* Empty statements should no longer appear in the instruction stream.
2549 Everything that might have appeared before should be deleted by
2550 remove_useless_stmts, and the optimizers should just gsi_remove
2551 instead of smashing with build_empty_stmt.
2553 Thus the only thing that should appear here in a block containing
2554 one executable statement is a label. */
2555 prev = gsi_stmt (i);
2556 if (gimple_code (prev) == GIMPLE_LABEL)
2557 return last;
2558 else
2559 return NULL;
2562 /* Reinstall those PHI arguments queued in OLD_EDGE to NEW_EDGE. */
2564 static void
2565 reinstall_phi_args (edge new_edge, edge old_edge)
2567 edge_var_map_vector *v;
2568 edge_var_map *vm;
2569 int i;
2570 gimple_stmt_iterator phis;
2572 v = redirect_edge_var_map_vector (old_edge);
2573 if (!v)
2574 return;
2576 for (i = 0, phis = gsi_start_phis (new_edge->dest);
2577 v->iterate (i, &vm) && !gsi_end_p (phis);
2578 i++, gsi_next (&phis))
2580 gimple phi = gsi_stmt (phis);
2581 tree result = redirect_edge_var_map_result (vm);
2582 tree arg = redirect_edge_var_map_def (vm);
2584 gcc_assert (result == gimple_phi_result (phi));
2586 add_phi_arg (phi, arg, new_edge, redirect_edge_var_map_location (vm));
2589 redirect_edge_var_map_clear (old_edge);
2592 /* Returns the basic block after which the new basic block created
2593 by splitting edge EDGE_IN should be placed. Tries to keep the new block
2594 near its "logical" location. This is of most help to humans looking
2595 at debugging dumps. */
2597 static basic_block
2598 split_edge_bb_loc (edge edge_in)
2600 basic_block dest = edge_in->dest;
2601 basic_block dest_prev = dest->prev_bb;
2603 if (dest_prev)
2605 edge e = find_edge (dest_prev, dest);
2606 if (e && !(e->flags & EDGE_COMPLEX))
2607 return edge_in->src;
2609 return dest_prev;
2612 /* Split a (typically critical) edge EDGE_IN. Return the new block.
2613 Abort on abnormal edges. */
2615 static basic_block
2616 gimple_split_edge (edge edge_in)
2618 basic_block new_bb, after_bb, dest;
2619 edge new_edge, e;
2621 /* Abnormal edges cannot be split. */
2622 gcc_assert (!(edge_in->flags & EDGE_ABNORMAL));
2624 dest = edge_in->dest;
2626 after_bb = split_edge_bb_loc (edge_in);
2628 new_bb = create_empty_bb (after_bb);
2629 new_bb->frequency = EDGE_FREQUENCY (edge_in);
2630 new_bb->count = edge_in->count;
2631 new_edge = make_edge (new_bb, dest, EDGE_FALLTHRU);
2632 new_edge->probability = REG_BR_PROB_BASE;
2633 new_edge->count = edge_in->count;
2635 e = redirect_edge_and_branch (edge_in, new_bb);
2636 gcc_assert (e == edge_in);
2637 reinstall_phi_args (new_edge, e);
2639 return new_bb;
2643 /* Verify properties of the address expression T with base object BASE. */
2645 static tree
2646 verify_address (tree t, tree base)
2648 bool old_constant;
2649 bool old_side_effects;
2650 bool new_constant;
2651 bool new_side_effects;
2653 old_constant = TREE_CONSTANT (t);
2654 old_side_effects = TREE_SIDE_EFFECTS (t);
2656 recompute_tree_invariant_for_addr_expr (t);
2657 new_side_effects = TREE_SIDE_EFFECTS (t);
2658 new_constant = TREE_CONSTANT (t);
2660 if (old_constant != new_constant)
2662 error ("constant not recomputed when ADDR_EXPR changed");
2663 return t;
2665 if (old_side_effects != new_side_effects)
2667 error ("side effects not recomputed when ADDR_EXPR changed");
2668 return t;
2671 if (!(TREE_CODE (base) == VAR_DECL
2672 || TREE_CODE (base) == PARM_DECL
2673 || TREE_CODE (base) == RESULT_DECL))
2674 return NULL_TREE;
2676 if (DECL_GIMPLE_REG_P (base))
2678 error ("DECL_GIMPLE_REG_P set on a variable with address taken");
2679 return base;
2682 return NULL_TREE;
2685 /* Callback for walk_tree, check that all elements with address taken are
2686 properly noticed as such. The DATA is an int* that is 1 if TP was seen
2687 inside a PHI node. */
2689 static tree
2690 verify_expr (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED)
2692 tree t = *tp, x;
2694 if (TYPE_P (t))
2695 *walk_subtrees = 0;
2697 /* Check operand N for being valid GIMPLE and give error MSG if not. */
2698 #define CHECK_OP(N, MSG) \
2699 do { if (!is_gimple_val (TREE_OPERAND (t, N))) \
2700 { error (MSG); return TREE_OPERAND (t, N); }} while (0)
2702 switch (TREE_CODE (t))
2704 case SSA_NAME:
2705 if (SSA_NAME_IN_FREE_LIST (t))
2707 error ("SSA name in freelist but still referenced");
2708 return *tp;
2710 break;
2712 case INDIRECT_REF:
2713 error ("INDIRECT_REF in gimple IL");
2714 return t;
2716 case MEM_REF:
2717 x = TREE_OPERAND (t, 0);
2718 if (!POINTER_TYPE_P (TREE_TYPE (x))
2719 || !is_gimple_mem_ref_addr (x))
2721 error ("invalid first operand of MEM_REF");
2722 return x;
2724 if (TREE_CODE (TREE_OPERAND (t, 1)) != INTEGER_CST
2725 || !POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (t, 1))))
2727 error ("invalid offset operand of MEM_REF");
2728 return TREE_OPERAND (t, 1);
2730 if (TREE_CODE (x) == ADDR_EXPR
2731 && (x = verify_address (x, TREE_OPERAND (x, 0))))
2732 return x;
2733 *walk_subtrees = 0;
2734 break;
2736 case ASSERT_EXPR:
2737 x = fold (ASSERT_EXPR_COND (t));
2738 if (x == boolean_false_node)
2740 error ("ASSERT_EXPR with an always-false condition");
2741 return *tp;
2743 break;
2745 case MODIFY_EXPR:
2746 error ("MODIFY_EXPR not expected while having tuples");
2747 return *tp;
2749 case ADDR_EXPR:
2751 tree tem;
2753 gcc_assert (is_gimple_address (t));
2755 /* Skip any references (they will be checked when we recurse down the
2756 tree) and ensure that any variable used as a prefix is marked
2757 addressable. */
2758 for (x = TREE_OPERAND (t, 0);
2759 handled_component_p (x);
2760 x = TREE_OPERAND (x, 0))
2763 if ((tem = verify_address (t, x)))
2764 return tem;
2766 if (!(TREE_CODE (x) == VAR_DECL
2767 || TREE_CODE (x) == PARM_DECL
2768 || TREE_CODE (x) == RESULT_DECL))
2769 return NULL;
2771 if (!TREE_ADDRESSABLE (x))
2773 error ("address taken, but ADDRESSABLE bit not set");
2774 return x;
2777 break;
2780 case COND_EXPR:
2781 x = COND_EXPR_COND (t);
2782 if (!INTEGRAL_TYPE_P (TREE_TYPE (x)))
2784 error ("non-integral used in condition");
2785 return x;
2787 if (!is_gimple_condexpr (x))
2789 error ("invalid conditional operand");
2790 return x;
2792 break;
2794 case NON_LVALUE_EXPR:
2795 case TRUTH_NOT_EXPR:
2796 gcc_unreachable ();
2798 CASE_CONVERT:
2799 case FIX_TRUNC_EXPR:
2800 case FLOAT_EXPR:
2801 case NEGATE_EXPR:
2802 case ABS_EXPR:
2803 case BIT_NOT_EXPR:
2804 CHECK_OP (0, "invalid operand to unary operator");
2805 break;
2807 case REALPART_EXPR:
2808 case IMAGPART_EXPR:
2809 case BIT_FIELD_REF:
2810 if (!is_gimple_reg_type (TREE_TYPE (t)))
2812 error ("non-scalar BIT_FIELD_REF, IMAGPART_EXPR or REALPART_EXPR");
2813 return t;
2816 if (TREE_CODE (t) == BIT_FIELD_REF)
2818 tree t0 = TREE_OPERAND (t, 0);
2819 tree t1 = TREE_OPERAND (t, 1);
2820 tree t2 = TREE_OPERAND (t, 2);
2821 if (!tree_fits_uhwi_p (t1)
2822 || !tree_fits_uhwi_p (t2))
2824 error ("invalid position or size operand to BIT_FIELD_REF");
2825 return t;
2827 if (INTEGRAL_TYPE_P (TREE_TYPE (t))
2828 && (TYPE_PRECISION (TREE_TYPE (t))
2829 != tree_to_uhwi (t1)))
2831 error ("integral result type precision does not match "
2832 "field size of BIT_FIELD_REF");
2833 return t;
2835 else if (!INTEGRAL_TYPE_P (TREE_TYPE (t))
2836 && TYPE_MODE (TREE_TYPE (t)) != BLKmode
2837 && (GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (t)))
2838 != tree_to_uhwi (t1)))
2840 error ("mode precision of non-integral result does not "
2841 "match field size of BIT_FIELD_REF");
2842 return t;
2844 if (!AGGREGATE_TYPE_P (TREE_TYPE (t0))
2845 && (tree_to_uhwi (t1) + tree_to_uhwi (t2)
2846 > tree_to_uhwi (TYPE_SIZE (TREE_TYPE (t0)))))
2848 error ("position plus size exceeds size of referenced object in "
2849 "BIT_FIELD_REF");
2850 return t;
2853 t = TREE_OPERAND (t, 0);
2855 /* Fall-through. */
2856 case COMPONENT_REF:
2857 case ARRAY_REF:
2858 case ARRAY_RANGE_REF:
2859 case VIEW_CONVERT_EXPR:
2860 /* We have a nest of references. Verify that each of the operands
2861 that determine where to reference is either a constant or a variable,
2862 verify that the base is valid, and then show we've already checked
2863 the subtrees. */
2864 while (handled_component_p (t))
2866 if (TREE_CODE (t) == COMPONENT_REF && TREE_OPERAND (t, 2))
2867 CHECK_OP (2, "invalid COMPONENT_REF offset operator");
2868 else if (TREE_CODE (t) == ARRAY_REF
2869 || TREE_CODE (t) == ARRAY_RANGE_REF)
2871 CHECK_OP (1, "invalid array index");
2872 if (TREE_OPERAND (t, 2))
2873 CHECK_OP (2, "invalid array lower bound");
2874 if (TREE_OPERAND (t, 3))
2875 CHECK_OP (3, "invalid array stride");
2877 else if (TREE_CODE (t) == BIT_FIELD_REF
2878 || TREE_CODE (t) == REALPART_EXPR
2879 || TREE_CODE (t) == IMAGPART_EXPR)
2881 error ("non-top-level BIT_FIELD_REF, IMAGPART_EXPR or "
2882 "REALPART_EXPR");
2883 return t;
2886 t = TREE_OPERAND (t, 0);
2889 if (!is_gimple_min_invariant (t) && !is_gimple_lvalue (t))
2891 error ("invalid reference prefix");
2892 return t;
2894 *walk_subtrees = 0;
2895 break;
2896 case PLUS_EXPR:
2897 case MINUS_EXPR:
2898 /* PLUS_EXPR and MINUS_EXPR don't work on pointers, they should be done using
2899 POINTER_PLUS_EXPR. */
2900 if (POINTER_TYPE_P (TREE_TYPE (t)))
2902 error ("invalid operand to plus/minus, type is a pointer");
2903 return t;
2905 CHECK_OP (0, "invalid operand to binary operator");
2906 CHECK_OP (1, "invalid operand to binary operator");
2907 break;
2909 case POINTER_PLUS_EXPR:
2910 /* Check to make sure the first operand is a pointer or reference type. */
2911 if (!POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (t, 0))))
2913 error ("invalid operand to pointer plus, first operand is not a pointer");
2914 return t;
2916 /* Check to make sure the second operand is a ptrofftype. */
2917 if (!ptrofftype_p (TREE_TYPE (TREE_OPERAND (t, 1))))
2919 error ("invalid operand to pointer plus, second operand is not an "
2920 "integer type of appropriate width");
2921 return t;
2923 /* FALLTHROUGH */
2924 case LT_EXPR:
2925 case LE_EXPR:
2926 case GT_EXPR:
2927 case GE_EXPR:
2928 case EQ_EXPR:
2929 case NE_EXPR:
2930 case UNORDERED_EXPR:
2931 case ORDERED_EXPR:
2932 case UNLT_EXPR:
2933 case UNLE_EXPR:
2934 case UNGT_EXPR:
2935 case UNGE_EXPR:
2936 case UNEQ_EXPR:
2937 case LTGT_EXPR:
2938 case MULT_EXPR:
2939 case TRUNC_DIV_EXPR:
2940 case CEIL_DIV_EXPR:
2941 case FLOOR_DIV_EXPR:
2942 case ROUND_DIV_EXPR:
2943 case TRUNC_MOD_EXPR:
2944 case CEIL_MOD_EXPR:
2945 case FLOOR_MOD_EXPR:
2946 case ROUND_MOD_EXPR:
2947 case RDIV_EXPR:
2948 case EXACT_DIV_EXPR:
2949 case MIN_EXPR:
2950 case MAX_EXPR:
2951 case LSHIFT_EXPR:
2952 case RSHIFT_EXPR:
2953 case LROTATE_EXPR:
2954 case RROTATE_EXPR:
2955 case BIT_IOR_EXPR:
2956 case BIT_XOR_EXPR:
2957 case BIT_AND_EXPR:
2958 CHECK_OP (0, "invalid operand to binary operator");
2959 CHECK_OP (1, "invalid operand to binary operator");
2960 break;
2962 case CONSTRUCTOR:
2963 if (TREE_CONSTANT (t) && TREE_CODE (TREE_TYPE (t)) == VECTOR_TYPE)
2964 *walk_subtrees = 0;
2965 break;
2967 case CASE_LABEL_EXPR:
2968 if (CASE_CHAIN (t))
2970 error ("invalid CASE_CHAIN");
2971 return t;
2973 break;
2975 default:
2976 break;
2978 return NULL;
2980 #undef CHECK_OP
2984 /* Verify if EXPR is either a GIMPLE ID or a GIMPLE indirect reference.
2985 Returns true if there is an error, otherwise false. */
2987 static bool
2988 verify_types_in_gimple_min_lval (tree expr)
2990 tree op;
2992 if (is_gimple_id (expr))
2993 return false;
2995 if (TREE_CODE (expr) != TARGET_MEM_REF
2996 && TREE_CODE (expr) != MEM_REF)
2998 error ("invalid expression for min lvalue");
2999 return true;
3002 /* TARGET_MEM_REFs are strange beasts. */
3003 if (TREE_CODE (expr) == TARGET_MEM_REF)
3004 return false;
3006 op = TREE_OPERAND (expr, 0);
3007 if (!is_gimple_val (op))
3009 error ("invalid operand in indirect reference");
3010 debug_generic_stmt (op);
3011 return true;
3013 /* Memory references now generally can involve a value conversion. */
3015 return false;
3018 /* Verify if EXPR is a valid GIMPLE reference expression. If
3019 REQUIRE_LVALUE is true verifies it is an lvalue. Returns true
3020 if there is an error, otherwise false. */
3022 static bool
3023 verify_types_in_gimple_reference (tree expr, bool require_lvalue)
3025 while (handled_component_p (expr))
3027 tree op = TREE_OPERAND (expr, 0);
3029 if (TREE_CODE (expr) == ARRAY_REF
3030 || TREE_CODE (expr) == ARRAY_RANGE_REF)
3032 if (!is_gimple_val (TREE_OPERAND (expr, 1))
3033 || (TREE_OPERAND (expr, 2)
3034 && !is_gimple_val (TREE_OPERAND (expr, 2)))
3035 || (TREE_OPERAND (expr, 3)
3036 && !is_gimple_val (TREE_OPERAND (expr, 3))))
3038 error ("invalid operands to array reference");
3039 debug_generic_stmt (expr);
3040 return true;
3044 /* Verify if the reference array element types are compatible. */
3045 if (TREE_CODE (expr) == ARRAY_REF
3046 && !useless_type_conversion_p (TREE_TYPE (expr),
3047 TREE_TYPE (TREE_TYPE (op))))
3049 error ("type mismatch in array reference");
3050 debug_generic_stmt (TREE_TYPE (expr));
3051 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
3052 return true;
3054 if (TREE_CODE (expr) == ARRAY_RANGE_REF
3055 && !useless_type_conversion_p (TREE_TYPE (TREE_TYPE (expr)),
3056 TREE_TYPE (TREE_TYPE (op))))
3058 error ("type mismatch in array range reference");
3059 debug_generic_stmt (TREE_TYPE (TREE_TYPE (expr)));
3060 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
3061 return true;
3064 if ((TREE_CODE (expr) == REALPART_EXPR
3065 || TREE_CODE (expr) == IMAGPART_EXPR)
3066 && !useless_type_conversion_p (TREE_TYPE (expr),
3067 TREE_TYPE (TREE_TYPE (op))))
3069 error ("type mismatch in real/imagpart reference");
3070 debug_generic_stmt (TREE_TYPE (expr));
3071 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
3072 return true;
3075 if (TREE_CODE (expr) == COMPONENT_REF
3076 && !useless_type_conversion_p (TREE_TYPE (expr),
3077 TREE_TYPE (TREE_OPERAND (expr, 1))))
3079 error ("type mismatch in component reference");
3080 debug_generic_stmt (TREE_TYPE (expr));
3081 debug_generic_stmt (TREE_TYPE (TREE_OPERAND (expr, 1)));
3082 return true;
3085 if (TREE_CODE (expr) == VIEW_CONVERT_EXPR)
3087 /* For VIEW_CONVERT_EXPRs which are allowed here too, we only check
3088 that their operand is not an SSA name or an invariant when
3089 requiring an lvalue (this usually means there is a SRA or IPA-SRA
3090 bug). Otherwise there is nothing to verify, gross mismatches at
3091 most invoke undefined behavior. */
3092 if (require_lvalue
3093 && (TREE_CODE (op) == SSA_NAME
3094 || is_gimple_min_invariant (op)))
3096 error ("conversion of an SSA_NAME on the left hand side");
3097 debug_generic_stmt (expr);
3098 return true;
3100 else if (TREE_CODE (op) == SSA_NAME
3101 && TYPE_SIZE (TREE_TYPE (expr)) != TYPE_SIZE (TREE_TYPE (op)))
3103 error ("conversion of register to a different size");
3104 debug_generic_stmt (expr);
3105 return true;
3107 else if (!handled_component_p (op))
3108 return false;
3111 expr = op;
3114 if (TREE_CODE (expr) == MEM_REF)
3116 if (!is_gimple_mem_ref_addr (TREE_OPERAND (expr, 0)))
3118 error ("invalid address operand in MEM_REF");
3119 debug_generic_stmt (expr);
3120 return true;
3122 if (TREE_CODE (TREE_OPERAND (expr, 1)) != INTEGER_CST
3123 || !POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (expr, 1))))
3125 error ("invalid offset operand in MEM_REF");
3126 debug_generic_stmt (expr);
3127 return true;
3130 else if (TREE_CODE (expr) == TARGET_MEM_REF)
3132 if (!TMR_BASE (expr)
3133 || !is_gimple_mem_ref_addr (TMR_BASE (expr)))
3135 error ("invalid address operand in TARGET_MEM_REF");
3136 return true;
3138 if (!TMR_OFFSET (expr)
3139 || TREE_CODE (TMR_OFFSET (expr)) != INTEGER_CST
3140 || !POINTER_TYPE_P (TREE_TYPE (TMR_OFFSET (expr))))
3142 error ("invalid offset operand in TARGET_MEM_REF");
3143 debug_generic_stmt (expr);
3144 return true;
3148 return ((require_lvalue || !is_gimple_min_invariant (expr))
3149 && verify_types_in_gimple_min_lval (expr));
3152 /* Returns true if there is one pointer type in TYPE_POINTER_TO (SRC_OBJ)
3153 list of pointer-to types that is trivially convertible to DEST. */
3155 static bool
3156 one_pointer_to_useless_type_conversion_p (tree dest, tree src_obj)
3158 tree src;
3160 if (!TYPE_POINTER_TO (src_obj))
3161 return true;
3163 for (src = TYPE_POINTER_TO (src_obj); src; src = TYPE_NEXT_PTR_TO (src))
3164 if (useless_type_conversion_p (dest, src))
3165 return true;
3167 return false;
3170 /* Return true if TYPE1 is a fixed-point type and if conversions to and
3171 from TYPE2 can be handled by FIXED_CONVERT_EXPR. */
3173 static bool
3174 valid_fixed_convert_types_p (tree type1, tree type2)
3176 return (FIXED_POINT_TYPE_P (type1)
3177 && (INTEGRAL_TYPE_P (type2)
3178 || SCALAR_FLOAT_TYPE_P (type2)
3179 || FIXED_POINT_TYPE_P (type2)));
3182 /* Verify the contents of a GIMPLE_CALL STMT. Returns true when there
3183 is a problem, otherwise false. */
3185 static bool
3186 verify_gimple_call (gimple stmt)
3188 tree fn = gimple_call_fn (stmt);
3189 tree fntype, fndecl;
3190 unsigned i;
3192 if (gimple_call_internal_p (stmt))
3194 if (fn)
3196 error ("gimple call has two targets");
3197 debug_generic_stmt (fn);
3198 return true;
3201 else
3203 if (!fn)
3205 error ("gimple call has no target");
3206 return true;
3210 if (fn && !is_gimple_call_addr (fn))
3212 error ("invalid function in gimple call");
3213 debug_generic_stmt (fn);
3214 return true;
3217 if (fn
3218 && (!POINTER_TYPE_P (TREE_TYPE (fn))
3219 || (TREE_CODE (TREE_TYPE (TREE_TYPE (fn))) != FUNCTION_TYPE
3220 && TREE_CODE (TREE_TYPE (TREE_TYPE (fn))) != METHOD_TYPE)))
3222 error ("non-function in gimple call");
3223 return true;
3226 fndecl = gimple_call_fndecl (stmt);
3227 if (fndecl
3228 && TREE_CODE (fndecl) == FUNCTION_DECL
3229 && DECL_LOOPING_CONST_OR_PURE_P (fndecl)
3230 && !DECL_PURE_P (fndecl)
3231 && !TREE_READONLY (fndecl))
3233 error ("invalid pure const state for function");
3234 return true;
3237 if (gimple_call_lhs (stmt)
3238 && (!is_gimple_lvalue (gimple_call_lhs (stmt))
3239 || verify_types_in_gimple_reference (gimple_call_lhs (stmt), true)))
3241 error ("invalid LHS in gimple call");
3242 return true;
3245 if (gimple_call_lhs (stmt) && gimple_call_noreturn_p (stmt))
3247 error ("LHS in noreturn call");
3248 return true;
3251 fntype = gimple_call_fntype (stmt);
3252 if (fntype
3253 && gimple_call_lhs (stmt)
3254 && !useless_type_conversion_p (TREE_TYPE (gimple_call_lhs (stmt)),
3255 TREE_TYPE (fntype))
3256 /* ??? At least C++ misses conversions at assignments from
3257 void * call results.
3258 ??? Java is completely off. Especially with functions
3259 returning java.lang.Object.
3260 For now simply allow arbitrary pointer type conversions. */
3261 && !(POINTER_TYPE_P (TREE_TYPE (gimple_call_lhs (stmt)))
3262 && POINTER_TYPE_P (TREE_TYPE (fntype))))
3264 error ("invalid conversion in gimple call");
3265 debug_generic_stmt (TREE_TYPE (gimple_call_lhs (stmt)));
3266 debug_generic_stmt (TREE_TYPE (fntype));
3267 return true;
3270 if (gimple_call_chain (stmt)
3271 && !is_gimple_val (gimple_call_chain (stmt)))
3273 error ("invalid static chain in gimple call");
3274 debug_generic_stmt (gimple_call_chain (stmt));
3275 return true;
3278 /* If there is a static chain argument, this should not be an indirect
3279 call, and the decl should have DECL_STATIC_CHAIN set. */
3280 if (gimple_call_chain (stmt))
3282 if (!gimple_call_fndecl (stmt))
3284 error ("static chain in indirect gimple call");
3285 return true;
3287 fn = TREE_OPERAND (fn, 0);
3289 if (!DECL_STATIC_CHAIN (fn))
3291 error ("static chain with function that doesn%'t use one");
3292 return true;
3296 /* ??? The C frontend passes unpromoted arguments in case it
3297 didn't see a function declaration before the call. So for now
3298 leave the call arguments mostly unverified. Once we gimplify
3299 unit-at-a-time we have a chance to fix this. */
3301 for (i = 0; i < gimple_call_num_args (stmt); ++i)
3303 tree arg = gimple_call_arg (stmt, i);
3304 if ((is_gimple_reg_type (TREE_TYPE (arg))
3305 && !is_gimple_val (arg))
3306 || (!is_gimple_reg_type (TREE_TYPE (arg))
3307 && !is_gimple_lvalue (arg)))
3309 error ("invalid argument to gimple call");
3310 debug_generic_expr (arg);
3311 return true;
3315 return false;
3318 /* Verifies the gimple comparison with the result type TYPE and
3319 the operands OP0 and OP1. */
3321 static bool
3322 verify_gimple_comparison (tree type, tree op0, tree op1)
3324 tree op0_type = TREE_TYPE (op0);
3325 tree op1_type = TREE_TYPE (op1);
3327 if (!is_gimple_val (op0) || !is_gimple_val (op1))
3329 error ("invalid operands in gimple comparison");
3330 return true;
3333 /* For comparisons we do not have the operations type as the
3334 effective type the comparison is carried out in. Instead
3335 we require that either the first operand is trivially
3336 convertible into the second, or the other way around.
3337 Because we special-case pointers to void we allow
3338 comparisons of pointers with the same mode as well. */
3339 if (!useless_type_conversion_p (op0_type, op1_type)
3340 && !useless_type_conversion_p (op1_type, op0_type)
3341 && (!POINTER_TYPE_P (op0_type)
3342 || !POINTER_TYPE_P (op1_type)
3343 || TYPE_MODE (op0_type) != TYPE_MODE (op1_type)))
3345 error ("mismatching comparison operand types");
3346 debug_generic_expr (op0_type);
3347 debug_generic_expr (op1_type);
3348 return true;
3351 /* The resulting type of a comparison may be an effective boolean type. */
3352 if (INTEGRAL_TYPE_P (type)
3353 && (TREE_CODE (type) == BOOLEAN_TYPE
3354 || TYPE_PRECISION (type) == 1))
3356 if (TREE_CODE (op0_type) == VECTOR_TYPE
3357 || TREE_CODE (op1_type) == VECTOR_TYPE)
3359 error ("vector comparison returning a boolean");
3360 debug_generic_expr (op0_type);
3361 debug_generic_expr (op1_type);
3362 return true;
3365 /* Or an integer vector type with the same size and element count
3366 as the comparison operand types. */
3367 else if (TREE_CODE (type) == VECTOR_TYPE
3368 && TREE_CODE (TREE_TYPE (type)) == INTEGER_TYPE)
3370 if (TREE_CODE (op0_type) != VECTOR_TYPE
3371 || TREE_CODE (op1_type) != VECTOR_TYPE)
3373 error ("non-vector operands in vector comparison");
3374 debug_generic_expr (op0_type);
3375 debug_generic_expr (op1_type);
3376 return true;
3379 if (TYPE_VECTOR_SUBPARTS (type) != TYPE_VECTOR_SUBPARTS (op0_type)
3380 || (GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (type)))
3381 != GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (op0_type))))
3382 /* The result of a vector comparison is of signed
3383 integral type. */
3384 || TYPE_UNSIGNED (TREE_TYPE (type)))
3386 error ("invalid vector comparison resulting type");
3387 debug_generic_expr (type);
3388 return true;
3391 else
3393 error ("bogus comparison result type");
3394 debug_generic_expr (type);
3395 return true;
3398 return false;
3401 /* Verify a gimple assignment statement STMT with an unary rhs.
3402 Returns true if anything is wrong. */
3404 static bool
3405 verify_gimple_assign_unary (gimple stmt)
3407 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3408 tree lhs = gimple_assign_lhs (stmt);
3409 tree lhs_type = TREE_TYPE (lhs);
3410 tree rhs1 = gimple_assign_rhs1 (stmt);
3411 tree rhs1_type = TREE_TYPE (rhs1);
3413 if (!is_gimple_reg (lhs))
3415 error ("non-register as LHS of unary operation");
3416 return true;
3419 if (!is_gimple_val (rhs1))
3421 error ("invalid operand in unary operation");
3422 return true;
3425 /* First handle conversions. */
3426 switch (rhs_code)
3428 CASE_CONVERT:
3430 /* Allow conversions from pointer type to integral type only if
3431 there is no sign or zero extension involved.
3432 For targets were the precision of ptrofftype doesn't match that
3433 of pointers we need to allow arbitrary conversions to ptrofftype. */
3434 if ((POINTER_TYPE_P (lhs_type)
3435 && INTEGRAL_TYPE_P (rhs1_type))
3436 || (POINTER_TYPE_P (rhs1_type)
3437 && INTEGRAL_TYPE_P (lhs_type)
3438 && (TYPE_PRECISION (rhs1_type) >= TYPE_PRECISION (lhs_type)
3439 || ptrofftype_p (sizetype))))
3440 return false;
3442 /* Allow conversion from integral to offset type and vice versa. */
3443 if ((TREE_CODE (lhs_type) == OFFSET_TYPE
3444 && INTEGRAL_TYPE_P (rhs1_type))
3445 || (INTEGRAL_TYPE_P (lhs_type)
3446 && TREE_CODE (rhs1_type) == OFFSET_TYPE))
3447 return false;
3449 /* Otherwise assert we are converting between types of the
3450 same kind. */
3451 if (INTEGRAL_TYPE_P (lhs_type) != INTEGRAL_TYPE_P (rhs1_type))
3453 error ("invalid types in nop conversion");
3454 debug_generic_expr (lhs_type);
3455 debug_generic_expr (rhs1_type);
3456 return true;
3459 return false;
3462 case ADDR_SPACE_CONVERT_EXPR:
3464 if (!POINTER_TYPE_P (rhs1_type) || !POINTER_TYPE_P (lhs_type)
3465 || (TYPE_ADDR_SPACE (TREE_TYPE (rhs1_type))
3466 == TYPE_ADDR_SPACE (TREE_TYPE (lhs_type))))
3468 error ("invalid types in address space conversion");
3469 debug_generic_expr (lhs_type);
3470 debug_generic_expr (rhs1_type);
3471 return true;
3474 return false;
3477 case FIXED_CONVERT_EXPR:
3479 if (!valid_fixed_convert_types_p (lhs_type, rhs1_type)
3480 && !valid_fixed_convert_types_p (rhs1_type, lhs_type))
3482 error ("invalid types in fixed-point conversion");
3483 debug_generic_expr (lhs_type);
3484 debug_generic_expr (rhs1_type);
3485 return true;
3488 return false;
3491 case FLOAT_EXPR:
3493 if ((!INTEGRAL_TYPE_P (rhs1_type) || !SCALAR_FLOAT_TYPE_P (lhs_type))
3494 && (!VECTOR_INTEGER_TYPE_P (rhs1_type)
3495 || !VECTOR_FLOAT_TYPE_P (lhs_type)))
3497 error ("invalid types in conversion to floating point");
3498 debug_generic_expr (lhs_type);
3499 debug_generic_expr (rhs1_type);
3500 return true;
3503 return false;
3506 case FIX_TRUNC_EXPR:
3508 if ((!INTEGRAL_TYPE_P (lhs_type) || !SCALAR_FLOAT_TYPE_P (rhs1_type))
3509 && (!VECTOR_INTEGER_TYPE_P (lhs_type)
3510 || !VECTOR_FLOAT_TYPE_P (rhs1_type)))
3512 error ("invalid types in conversion to integer");
3513 debug_generic_expr (lhs_type);
3514 debug_generic_expr (rhs1_type);
3515 return true;
3518 return false;
3521 case VEC_UNPACK_HI_EXPR:
3522 case VEC_UNPACK_LO_EXPR:
3523 case REDUC_MAX_EXPR:
3524 case REDUC_MIN_EXPR:
3525 case REDUC_PLUS_EXPR:
3526 case VEC_UNPACK_FLOAT_HI_EXPR:
3527 case VEC_UNPACK_FLOAT_LO_EXPR:
3528 /* FIXME. */
3529 return false;
3531 case NEGATE_EXPR:
3532 case ABS_EXPR:
3533 case BIT_NOT_EXPR:
3534 case PAREN_EXPR:
3535 case NON_LVALUE_EXPR:
3536 case CONJ_EXPR:
3537 break;
3539 default:
3540 gcc_unreachable ();
3543 /* For the remaining codes assert there is no conversion involved. */
3544 if (!useless_type_conversion_p (lhs_type, rhs1_type))
3546 error ("non-trivial conversion in unary operation");
3547 debug_generic_expr (lhs_type);
3548 debug_generic_expr (rhs1_type);
3549 return true;
3552 return false;
3555 /* Verify a gimple assignment statement STMT with a binary rhs.
3556 Returns true if anything is wrong. */
3558 static bool
3559 verify_gimple_assign_binary (gimple stmt)
3561 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3562 tree lhs = gimple_assign_lhs (stmt);
3563 tree lhs_type = TREE_TYPE (lhs);
3564 tree rhs1 = gimple_assign_rhs1 (stmt);
3565 tree rhs1_type = TREE_TYPE (rhs1);
3566 tree rhs2 = gimple_assign_rhs2 (stmt);
3567 tree rhs2_type = TREE_TYPE (rhs2);
3569 if (!is_gimple_reg (lhs))
3571 error ("non-register as LHS of binary operation");
3572 return true;
3575 if (!is_gimple_val (rhs1)
3576 || !is_gimple_val (rhs2))
3578 error ("invalid operands in binary operation");
3579 return true;
3582 /* First handle operations that involve different types. */
3583 switch (rhs_code)
3585 case COMPLEX_EXPR:
3587 if (TREE_CODE (lhs_type) != COMPLEX_TYPE
3588 || !(INTEGRAL_TYPE_P (rhs1_type)
3589 || SCALAR_FLOAT_TYPE_P (rhs1_type))
3590 || !(INTEGRAL_TYPE_P (rhs2_type)
3591 || SCALAR_FLOAT_TYPE_P (rhs2_type)))
3593 error ("type mismatch in complex expression");
3594 debug_generic_expr (lhs_type);
3595 debug_generic_expr (rhs1_type);
3596 debug_generic_expr (rhs2_type);
3597 return true;
3600 return false;
3603 case LSHIFT_EXPR:
3604 case RSHIFT_EXPR:
3605 case LROTATE_EXPR:
3606 case RROTATE_EXPR:
3608 /* Shifts and rotates are ok on integral types, fixed point
3609 types and integer vector types. */
3610 if ((!INTEGRAL_TYPE_P (rhs1_type)
3611 && !FIXED_POINT_TYPE_P (rhs1_type)
3612 && !(TREE_CODE (rhs1_type) == VECTOR_TYPE
3613 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))))
3614 || (!INTEGRAL_TYPE_P (rhs2_type)
3615 /* Vector shifts of vectors are also ok. */
3616 && !(TREE_CODE (rhs1_type) == VECTOR_TYPE
3617 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
3618 && TREE_CODE (rhs2_type) == VECTOR_TYPE
3619 && INTEGRAL_TYPE_P (TREE_TYPE (rhs2_type))))
3620 || !useless_type_conversion_p (lhs_type, rhs1_type))
3622 error ("type mismatch in shift expression");
3623 debug_generic_expr (lhs_type);
3624 debug_generic_expr (rhs1_type);
3625 debug_generic_expr (rhs2_type);
3626 return true;
3629 return false;
3632 case VEC_LSHIFT_EXPR:
3633 case VEC_RSHIFT_EXPR:
3635 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
3636 || !(INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
3637 || POINTER_TYPE_P (TREE_TYPE (rhs1_type))
3638 || FIXED_POINT_TYPE_P (TREE_TYPE (rhs1_type))
3639 || SCALAR_FLOAT_TYPE_P (TREE_TYPE (rhs1_type)))
3640 || (!INTEGRAL_TYPE_P (rhs2_type)
3641 && (TREE_CODE (rhs2_type) != VECTOR_TYPE
3642 || !INTEGRAL_TYPE_P (TREE_TYPE (rhs2_type))))
3643 || !useless_type_conversion_p (lhs_type, rhs1_type))
3645 error ("type mismatch in vector shift expression");
3646 debug_generic_expr (lhs_type);
3647 debug_generic_expr (rhs1_type);
3648 debug_generic_expr (rhs2_type);
3649 return true;
3651 /* For shifting a vector of non-integral components we
3652 only allow shifting by a constant multiple of the element size. */
3653 if (!INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
3654 && (TREE_CODE (rhs2) != INTEGER_CST
3655 || !div_if_zero_remainder (EXACT_DIV_EXPR, rhs2,
3656 TYPE_SIZE (TREE_TYPE (rhs1_type)))))
3658 error ("non-element sized vector shift of floating point vector");
3659 return true;
3662 return false;
3665 case WIDEN_LSHIFT_EXPR:
3667 if (!INTEGRAL_TYPE_P (lhs_type)
3668 || !INTEGRAL_TYPE_P (rhs1_type)
3669 || TREE_CODE (rhs2) != INTEGER_CST
3670 || (2 * TYPE_PRECISION (rhs1_type) > TYPE_PRECISION (lhs_type)))
3672 error ("type mismatch in widening vector shift expression");
3673 debug_generic_expr (lhs_type);
3674 debug_generic_expr (rhs1_type);
3675 debug_generic_expr (rhs2_type);
3676 return true;
3679 return false;
3682 case VEC_WIDEN_LSHIFT_HI_EXPR:
3683 case VEC_WIDEN_LSHIFT_LO_EXPR:
3685 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
3686 || TREE_CODE (lhs_type) != VECTOR_TYPE
3687 || !INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
3688 || !INTEGRAL_TYPE_P (TREE_TYPE (lhs_type))
3689 || TREE_CODE (rhs2) != INTEGER_CST
3690 || (2 * TYPE_PRECISION (TREE_TYPE (rhs1_type))
3691 > TYPE_PRECISION (TREE_TYPE (lhs_type))))
3693 error ("type mismatch in widening vector shift expression");
3694 debug_generic_expr (lhs_type);
3695 debug_generic_expr (rhs1_type);
3696 debug_generic_expr (rhs2_type);
3697 return true;
3700 return false;
3703 case PLUS_EXPR:
3704 case MINUS_EXPR:
3706 tree lhs_etype = lhs_type;
3707 tree rhs1_etype = rhs1_type;
3708 tree rhs2_etype = rhs2_type;
3709 if (TREE_CODE (lhs_type) == VECTOR_TYPE)
3711 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
3712 || TREE_CODE (rhs2_type) != VECTOR_TYPE)
3714 error ("invalid non-vector operands to vector valued plus");
3715 return true;
3717 lhs_etype = TREE_TYPE (lhs_type);
3718 rhs1_etype = TREE_TYPE (rhs1_type);
3719 rhs2_etype = TREE_TYPE (rhs2_type);
3721 if (POINTER_TYPE_P (lhs_etype)
3722 || POINTER_TYPE_P (rhs1_etype)
3723 || POINTER_TYPE_P (rhs2_etype))
3725 error ("invalid (pointer) operands to plus/minus");
3726 return true;
3729 /* Continue with generic binary expression handling. */
3730 break;
3733 case POINTER_PLUS_EXPR:
3735 if (!POINTER_TYPE_P (rhs1_type)
3736 || !useless_type_conversion_p (lhs_type, rhs1_type)
3737 || !ptrofftype_p (rhs2_type))
3739 error ("type mismatch in pointer plus expression");
3740 debug_generic_stmt (lhs_type);
3741 debug_generic_stmt (rhs1_type);
3742 debug_generic_stmt (rhs2_type);
3743 return true;
3746 return false;
3749 case TRUTH_ANDIF_EXPR:
3750 case TRUTH_ORIF_EXPR:
3751 case TRUTH_AND_EXPR:
3752 case TRUTH_OR_EXPR:
3753 case TRUTH_XOR_EXPR:
3755 gcc_unreachable ();
3757 case LT_EXPR:
3758 case LE_EXPR:
3759 case GT_EXPR:
3760 case GE_EXPR:
3761 case EQ_EXPR:
3762 case NE_EXPR:
3763 case UNORDERED_EXPR:
3764 case ORDERED_EXPR:
3765 case UNLT_EXPR:
3766 case UNLE_EXPR:
3767 case UNGT_EXPR:
3768 case UNGE_EXPR:
3769 case UNEQ_EXPR:
3770 case LTGT_EXPR:
3771 /* Comparisons are also binary, but the result type is not
3772 connected to the operand types. */
3773 return verify_gimple_comparison (lhs_type, rhs1, rhs2);
3775 case WIDEN_MULT_EXPR:
3776 if (TREE_CODE (lhs_type) != INTEGER_TYPE)
3777 return true;
3778 return ((2 * TYPE_PRECISION (rhs1_type) > TYPE_PRECISION (lhs_type))
3779 || (TYPE_PRECISION (rhs1_type) != TYPE_PRECISION (rhs2_type)));
3781 case WIDEN_SUM_EXPR:
3782 case VEC_WIDEN_MULT_HI_EXPR:
3783 case VEC_WIDEN_MULT_LO_EXPR:
3784 case VEC_WIDEN_MULT_EVEN_EXPR:
3785 case VEC_WIDEN_MULT_ODD_EXPR:
3786 case VEC_PACK_TRUNC_EXPR:
3787 case VEC_PACK_SAT_EXPR:
3788 case VEC_PACK_FIX_TRUNC_EXPR:
3789 /* FIXME. */
3790 return false;
3792 case MULT_EXPR:
3793 case MULT_HIGHPART_EXPR:
3794 case TRUNC_DIV_EXPR:
3795 case CEIL_DIV_EXPR:
3796 case FLOOR_DIV_EXPR:
3797 case ROUND_DIV_EXPR:
3798 case TRUNC_MOD_EXPR:
3799 case CEIL_MOD_EXPR:
3800 case FLOOR_MOD_EXPR:
3801 case ROUND_MOD_EXPR:
3802 case RDIV_EXPR:
3803 case EXACT_DIV_EXPR:
3804 case MIN_EXPR:
3805 case MAX_EXPR:
3806 case BIT_IOR_EXPR:
3807 case BIT_XOR_EXPR:
3808 case BIT_AND_EXPR:
3809 /* Continue with generic binary expression handling. */
3810 break;
3812 default:
3813 gcc_unreachable ();
3816 if (!useless_type_conversion_p (lhs_type, rhs1_type)
3817 || !useless_type_conversion_p (lhs_type, rhs2_type))
3819 error ("type mismatch in binary expression");
3820 debug_generic_stmt (lhs_type);
3821 debug_generic_stmt (rhs1_type);
3822 debug_generic_stmt (rhs2_type);
3823 return true;
3826 return false;
3829 /* Verify a gimple assignment statement STMT with a ternary rhs.
3830 Returns true if anything is wrong. */
3832 static bool
3833 verify_gimple_assign_ternary (gimple stmt)
3835 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3836 tree lhs = gimple_assign_lhs (stmt);
3837 tree lhs_type = TREE_TYPE (lhs);
3838 tree rhs1 = gimple_assign_rhs1 (stmt);
3839 tree rhs1_type = TREE_TYPE (rhs1);
3840 tree rhs2 = gimple_assign_rhs2 (stmt);
3841 tree rhs2_type = TREE_TYPE (rhs2);
3842 tree rhs3 = gimple_assign_rhs3 (stmt);
3843 tree rhs3_type = TREE_TYPE (rhs3);
3845 if (!is_gimple_reg (lhs))
3847 error ("non-register as LHS of ternary operation");
3848 return true;
3851 if (((rhs_code == VEC_COND_EXPR || rhs_code == COND_EXPR)
3852 ? !is_gimple_condexpr (rhs1) : !is_gimple_val (rhs1))
3853 || !is_gimple_val (rhs2)
3854 || !is_gimple_val (rhs3))
3856 error ("invalid operands in ternary operation");
3857 return true;
3860 /* First handle operations that involve different types. */
3861 switch (rhs_code)
3863 case WIDEN_MULT_PLUS_EXPR:
3864 case WIDEN_MULT_MINUS_EXPR:
3865 if ((!INTEGRAL_TYPE_P (rhs1_type)
3866 && !FIXED_POINT_TYPE_P (rhs1_type))
3867 || !useless_type_conversion_p (rhs1_type, rhs2_type)
3868 || !useless_type_conversion_p (lhs_type, rhs3_type)
3869 || 2 * TYPE_PRECISION (rhs1_type) > TYPE_PRECISION (lhs_type)
3870 || TYPE_PRECISION (rhs1_type) != TYPE_PRECISION (rhs2_type))
3872 error ("type mismatch in widening multiply-accumulate expression");
3873 debug_generic_expr (lhs_type);
3874 debug_generic_expr (rhs1_type);
3875 debug_generic_expr (rhs2_type);
3876 debug_generic_expr (rhs3_type);
3877 return true;
3879 break;
3881 case FMA_EXPR:
3882 if (!useless_type_conversion_p (lhs_type, rhs1_type)
3883 || !useless_type_conversion_p (lhs_type, rhs2_type)
3884 || !useless_type_conversion_p (lhs_type, rhs3_type))
3886 error ("type mismatch in fused multiply-add expression");
3887 debug_generic_expr (lhs_type);
3888 debug_generic_expr (rhs1_type);
3889 debug_generic_expr (rhs2_type);
3890 debug_generic_expr (rhs3_type);
3891 return true;
3893 break;
3895 case COND_EXPR:
3896 case VEC_COND_EXPR:
3897 if (!useless_type_conversion_p (lhs_type, rhs2_type)
3898 || !useless_type_conversion_p (lhs_type, rhs3_type))
3900 error ("type mismatch in conditional expression");
3901 debug_generic_expr (lhs_type);
3902 debug_generic_expr (rhs2_type);
3903 debug_generic_expr (rhs3_type);
3904 return true;
3906 break;
3908 case VEC_PERM_EXPR:
3909 if (!useless_type_conversion_p (lhs_type, rhs1_type)
3910 || !useless_type_conversion_p (lhs_type, rhs2_type))
3912 error ("type mismatch in vector permute expression");
3913 debug_generic_expr (lhs_type);
3914 debug_generic_expr (rhs1_type);
3915 debug_generic_expr (rhs2_type);
3916 debug_generic_expr (rhs3_type);
3917 return true;
3920 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
3921 || TREE_CODE (rhs2_type) != VECTOR_TYPE
3922 || TREE_CODE (rhs3_type) != VECTOR_TYPE)
3924 error ("vector types expected in vector permute expression");
3925 debug_generic_expr (lhs_type);
3926 debug_generic_expr (rhs1_type);
3927 debug_generic_expr (rhs2_type);
3928 debug_generic_expr (rhs3_type);
3929 return true;
3932 if (TYPE_VECTOR_SUBPARTS (rhs1_type) != TYPE_VECTOR_SUBPARTS (rhs2_type)
3933 || TYPE_VECTOR_SUBPARTS (rhs2_type)
3934 != TYPE_VECTOR_SUBPARTS (rhs3_type)
3935 || TYPE_VECTOR_SUBPARTS (rhs3_type)
3936 != TYPE_VECTOR_SUBPARTS (lhs_type))
3938 error ("vectors with different element number found "
3939 "in vector permute expression");
3940 debug_generic_expr (lhs_type);
3941 debug_generic_expr (rhs1_type);
3942 debug_generic_expr (rhs2_type);
3943 debug_generic_expr (rhs3_type);
3944 return true;
3947 if (TREE_CODE (TREE_TYPE (rhs3_type)) != INTEGER_TYPE
3948 || GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (rhs3_type)))
3949 != GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (rhs1_type))))
3951 error ("invalid mask type in vector permute expression");
3952 debug_generic_expr (lhs_type);
3953 debug_generic_expr (rhs1_type);
3954 debug_generic_expr (rhs2_type);
3955 debug_generic_expr (rhs3_type);
3956 return true;
3959 return false;
3961 case DOT_PROD_EXPR:
3962 case REALIGN_LOAD_EXPR:
3963 /* FIXME. */
3964 return false;
3966 default:
3967 gcc_unreachable ();
3969 return false;
3972 /* Verify a gimple assignment statement STMT with a single rhs.
3973 Returns true if anything is wrong. */
3975 static bool
3976 verify_gimple_assign_single (gimple stmt)
3978 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3979 tree lhs = gimple_assign_lhs (stmt);
3980 tree lhs_type = TREE_TYPE (lhs);
3981 tree rhs1 = gimple_assign_rhs1 (stmt);
3982 tree rhs1_type = TREE_TYPE (rhs1);
3983 bool res = false;
3985 if (!useless_type_conversion_p (lhs_type, rhs1_type))
3987 error ("non-trivial conversion at assignment");
3988 debug_generic_expr (lhs_type);
3989 debug_generic_expr (rhs1_type);
3990 return true;
3993 if (gimple_clobber_p (stmt)
3994 && !(DECL_P (lhs) || TREE_CODE (lhs) == MEM_REF))
3996 error ("non-decl/MEM_REF LHS in clobber statement");
3997 debug_generic_expr (lhs);
3998 return true;
4001 if (handled_component_p (lhs)
4002 || TREE_CODE (lhs) == MEM_REF
4003 || TREE_CODE (lhs) == TARGET_MEM_REF)
4004 res |= verify_types_in_gimple_reference (lhs, true);
4006 /* Special codes we cannot handle via their class. */
4007 switch (rhs_code)
4009 case ADDR_EXPR:
4011 tree op = TREE_OPERAND (rhs1, 0);
4012 if (!is_gimple_addressable (op))
4014 error ("invalid operand in unary expression");
4015 return true;
4018 /* Technically there is no longer a need for matching types, but
4019 gimple hygiene asks for this check. In LTO we can end up
4020 combining incompatible units and thus end up with addresses
4021 of globals that change their type to a common one. */
4022 if (!in_lto_p
4023 && !types_compatible_p (TREE_TYPE (op),
4024 TREE_TYPE (TREE_TYPE (rhs1)))
4025 && !one_pointer_to_useless_type_conversion_p (TREE_TYPE (rhs1),
4026 TREE_TYPE (op)))
4028 error ("type mismatch in address expression");
4029 debug_generic_stmt (TREE_TYPE (rhs1));
4030 debug_generic_stmt (TREE_TYPE (op));
4031 return true;
4034 return verify_types_in_gimple_reference (op, true);
4037 /* tcc_reference */
4038 case INDIRECT_REF:
4039 error ("INDIRECT_REF in gimple IL");
4040 return true;
4042 case COMPONENT_REF:
4043 case BIT_FIELD_REF:
4044 case ARRAY_REF:
4045 case ARRAY_RANGE_REF:
4046 case VIEW_CONVERT_EXPR:
4047 case REALPART_EXPR:
4048 case IMAGPART_EXPR:
4049 case TARGET_MEM_REF:
4050 case MEM_REF:
4051 if (!is_gimple_reg (lhs)
4052 && is_gimple_reg_type (TREE_TYPE (lhs)))
4054 error ("invalid rhs for gimple memory store");
4055 debug_generic_stmt (lhs);
4056 debug_generic_stmt (rhs1);
4057 return true;
4059 return res || verify_types_in_gimple_reference (rhs1, false);
4061 /* tcc_constant */
4062 case SSA_NAME:
4063 case INTEGER_CST:
4064 case REAL_CST:
4065 case FIXED_CST:
4066 case COMPLEX_CST:
4067 case VECTOR_CST:
4068 case STRING_CST:
4069 return res;
4071 /* tcc_declaration */
4072 case CONST_DECL:
4073 return res;
4074 case VAR_DECL:
4075 case PARM_DECL:
4076 if (!is_gimple_reg (lhs)
4077 && !is_gimple_reg (rhs1)
4078 && is_gimple_reg_type (TREE_TYPE (lhs)))
4080 error ("invalid rhs for gimple memory store");
4081 debug_generic_stmt (lhs);
4082 debug_generic_stmt (rhs1);
4083 return true;
4085 return res;
4087 case CONSTRUCTOR:
4088 if (TREE_CODE (rhs1_type) == VECTOR_TYPE)
4090 unsigned int i;
4091 tree elt_i, elt_v, elt_t = NULL_TREE;
4093 if (CONSTRUCTOR_NELTS (rhs1) == 0)
4094 return res;
4095 /* For vector CONSTRUCTORs we require that either it is empty
4096 CONSTRUCTOR, or it is a CONSTRUCTOR of smaller vector elements
4097 (then the element count must be correct to cover the whole
4098 outer vector and index must be NULL on all elements, or it is
4099 a CONSTRUCTOR of scalar elements, where we as an exception allow
4100 smaller number of elements (assuming zero filling) and
4101 consecutive indexes as compared to NULL indexes (such
4102 CONSTRUCTORs can appear in the IL from FEs). */
4103 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (rhs1), i, elt_i, elt_v)
4105 if (elt_t == NULL_TREE)
4107 elt_t = TREE_TYPE (elt_v);
4108 if (TREE_CODE (elt_t) == VECTOR_TYPE)
4110 tree elt_t = TREE_TYPE (elt_v);
4111 if (!useless_type_conversion_p (TREE_TYPE (rhs1_type),
4112 TREE_TYPE (elt_t)))
4114 error ("incorrect type of vector CONSTRUCTOR"
4115 " elements");
4116 debug_generic_stmt (rhs1);
4117 return true;
4119 else if (CONSTRUCTOR_NELTS (rhs1)
4120 * TYPE_VECTOR_SUBPARTS (elt_t)
4121 != TYPE_VECTOR_SUBPARTS (rhs1_type))
4123 error ("incorrect number of vector CONSTRUCTOR"
4124 " elements");
4125 debug_generic_stmt (rhs1);
4126 return true;
4129 else if (!useless_type_conversion_p (TREE_TYPE (rhs1_type),
4130 elt_t))
4132 error ("incorrect type of vector CONSTRUCTOR elements");
4133 debug_generic_stmt (rhs1);
4134 return true;
4136 else if (CONSTRUCTOR_NELTS (rhs1)
4137 > TYPE_VECTOR_SUBPARTS (rhs1_type))
4139 error ("incorrect number of vector CONSTRUCTOR elements");
4140 debug_generic_stmt (rhs1);
4141 return true;
4144 else if (!useless_type_conversion_p (elt_t, TREE_TYPE (elt_v)))
4146 error ("incorrect type of vector CONSTRUCTOR elements");
4147 debug_generic_stmt (rhs1);
4148 return true;
4150 if (elt_i != NULL_TREE
4151 && (TREE_CODE (elt_t) == VECTOR_TYPE
4152 || TREE_CODE (elt_i) != INTEGER_CST
4153 || compare_tree_int (elt_i, i) != 0))
4155 error ("vector CONSTRUCTOR with non-NULL element index");
4156 debug_generic_stmt (rhs1);
4157 return true;
4161 return res;
4162 case OBJ_TYPE_REF:
4163 case ASSERT_EXPR:
4164 case WITH_SIZE_EXPR:
4165 /* FIXME. */
4166 return res;
4168 default:;
4171 return res;
4174 /* Verify the contents of a GIMPLE_ASSIGN STMT. Returns true when there
4175 is a problem, otherwise false. */
4177 static bool
4178 verify_gimple_assign (gimple stmt)
4180 switch (gimple_assign_rhs_class (stmt))
4182 case GIMPLE_SINGLE_RHS:
4183 return verify_gimple_assign_single (stmt);
4185 case GIMPLE_UNARY_RHS:
4186 return verify_gimple_assign_unary (stmt);
4188 case GIMPLE_BINARY_RHS:
4189 return verify_gimple_assign_binary (stmt);
4191 case GIMPLE_TERNARY_RHS:
4192 return verify_gimple_assign_ternary (stmt);
4194 default:
4195 gcc_unreachable ();
4199 /* Verify the contents of a GIMPLE_RETURN STMT. Returns true when there
4200 is a problem, otherwise false. */
4202 static bool
4203 verify_gimple_return (gimple stmt)
4205 tree op = gimple_return_retval (stmt);
4206 tree restype = TREE_TYPE (TREE_TYPE (cfun->decl));
4208 /* We cannot test for present return values as we do not fix up missing
4209 return values from the original source. */
4210 if (op == NULL)
4211 return false;
4213 if (!is_gimple_val (op)
4214 && TREE_CODE (op) != RESULT_DECL)
4216 error ("invalid operand in return statement");
4217 debug_generic_stmt (op);
4218 return true;
4221 if ((TREE_CODE (op) == RESULT_DECL
4222 && DECL_BY_REFERENCE (op))
4223 || (TREE_CODE (op) == SSA_NAME
4224 && SSA_NAME_VAR (op)
4225 && TREE_CODE (SSA_NAME_VAR (op)) == RESULT_DECL
4226 && DECL_BY_REFERENCE (SSA_NAME_VAR (op))))
4227 op = TREE_TYPE (op);
4229 if (!useless_type_conversion_p (restype, TREE_TYPE (op)))
4231 error ("invalid conversion in return statement");
4232 debug_generic_stmt (restype);
4233 debug_generic_stmt (TREE_TYPE (op));
4234 return true;
4237 return false;
4241 /* Verify the contents of a GIMPLE_GOTO STMT. Returns true when there
4242 is a problem, otherwise false. */
4244 static bool
4245 verify_gimple_goto (gimple stmt)
4247 tree dest = gimple_goto_dest (stmt);
4249 /* ??? We have two canonical forms of direct goto destinations, a
4250 bare LABEL_DECL and an ADDR_EXPR of a LABEL_DECL. */
4251 if (TREE_CODE (dest) != LABEL_DECL
4252 && (!is_gimple_val (dest)
4253 || !POINTER_TYPE_P (TREE_TYPE (dest))))
4255 error ("goto destination is neither a label nor a pointer");
4256 return true;
4259 return false;
4262 /* Verify the contents of a GIMPLE_SWITCH STMT. Returns true when there
4263 is a problem, otherwise false. */
4265 static bool
4266 verify_gimple_switch (gimple stmt)
4268 unsigned int i, n;
4269 tree elt, prev_upper_bound = NULL_TREE;
4270 tree index_type, elt_type = NULL_TREE;
4272 if (!is_gimple_val (gimple_switch_index (stmt)))
4274 error ("invalid operand to switch statement");
4275 debug_generic_stmt (gimple_switch_index (stmt));
4276 return true;
4279 index_type = TREE_TYPE (gimple_switch_index (stmt));
4280 if (! INTEGRAL_TYPE_P (index_type))
4282 error ("non-integral type switch statement");
4283 debug_generic_expr (index_type);
4284 return true;
4287 elt = gimple_switch_label (stmt, 0);
4288 if (CASE_LOW (elt) != NULL_TREE || CASE_HIGH (elt) != NULL_TREE)
4290 error ("invalid default case label in switch statement");
4291 debug_generic_expr (elt);
4292 return true;
4295 n = gimple_switch_num_labels (stmt);
4296 for (i = 1; i < n; i++)
4298 elt = gimple_switch_label (stmt, i);
4300 if (! CASE_LOW (elt))
4302 error ("invalid case label in switch statement");
4303 debug_generic_expr (elt);
4304 return true;
4306 if (CASE_HIGH (elt)
4307 && ! tree_int_cst_lt (CASE_LOW (elt), CASE_HIGH (elt)))
4309 error ("invalid case range in switch statement");
4310 debug_generic_expr (elt);
4311 return true;
4314 if (elt_type)
4316 if (TREE_TYPE (CASE_LOW (elt)) != elt_type
4317 || (CASE_HIGH (elt) && TREE_TYPE (CASE_HIGH (elt)) != elt_type))
4319 error ("type mismatch for case label in switch statement");
4320 debug_generic_expr (elt);
4321 return true;
4324 else
4326 elt_type = TREE_TYPE (CASE_LOW (elt));
4327 if (TYPE_PRECISION (index_type) < TYPE_PRECISION (elt_type))
4329 error ("type precision mismatch in switch statement");
4330 return true;
4334 if (prev_upper_bound)
4336 if (! tree_int_cst_lt (prev_upper_bound, CASE_LOW (elt)))
4338 error ("case labels not sorted in switch statement");
4339 return true;
4343 prev_upper_bound = CASE_HIGH (elt);
4344 if (! prev_upper_bound)
4345 prev_upper_bound = CASE_LOW (elt);
4348 return false;
4351 /* Verify a gimple debug statement STMT.
4352 Returns true if anything is wrong. */
4354 static bool
4355 verify_gimple_debug (gimple stmt ATTRIBUTE_UNUSED)
4357 /* There isn't much that could be wrong in a gimple debug stmt. A
4358 gimple debug bind stmt, for example, maps a tree, that's usually
4359 a VAR_DECL or a PARM_DECL, but that could also be some scalarized
4360 component or member of an aggregate type, to another tree, that
4361 can be an arbitrary expression. These stmts expand into debug
4362 insns, and are converted to debug notes by var-tracking.c. */
4363 return false;
4366 /* Verify a gimple label statement STMT.
4367 Returns true if anything is wrong. */
4369 static bool
4370 verify_gimple_label (gimple stmt)
4372 tree decl = gimple_label_label (stmt);
4373 int uid;
4374 bool err = false;
4376 if (TREE_CODE (decl) != LABEL_DECL)
4377 return true;
4378 if (!DECL_NONLOCAL (decl) && !FORCED_LABEL (decl)
4379 && DECL_CONTEXT (decl) != current_function_decl)
4381 error ("label's context is not the current function decl");
4382 err |= true;
4385 uid = LABEL_DECL_UID (decl);
4386 if (cfun->cfg
4387 && (uid == -1
4388 || (*label_to_block_map_for_fn (cfun))[uid] != gimple_bb (stmt)))
4390 error ("incorrect entry in label_to_block_map");
4391 err |= true;
4394 uid = EH_LANDING_PAD_NR (decl);
4395 if (uid)
4397 eh_landing_pad lp = get_eh_landing_pad_from_number (uid);
4398 if (decl != lp->post_landing_pad)
4400 error ("incorrect setting of landing pad number");
4401 err |= true;
4405 return err;
4408 /* Verify the GIMPLE statement STMT. Returns true if there is an
4409 error, otherwise false. */
4411 static bool
4412 verify_gimple_stmt (gimple stmt)
4414 switch (gimple_code (stmt))
4416 case GIMPLE_ASSIGN:
4417 return verify_gimple_assign (stmt);
4419 case GIMPLE_LABEL:
4420 return verify_gimple_label (stmt);
4422 case GIMPLE_CALL:
4423 return verify_gimple_call (stmt);
4425 case GIMPLE_COND:
4426 if (TREE_CODE_CLASS (gimple_cond_code (stmt)) != tcc_comparison)
4428 error ("invalid comparison code in gimple cond");
4429 return true;
4431 if (!(!gimple_cond_true_label (stmt)
4432 || TREE_CODE (gimple_cond_true_label (stmt)) == LABEL_DECL)
4433 || !(!gimple_cond_false_label (stmt)
4434 || TREE_CODE (gimple_cond_false_label (stmt)) == LABEL_DECL))
4436 error ("invalid labels in gimple cond");
4437 return true;
4440 return verify_gimple_comparison (boolean_type_node,
4441 gimple_cond_lhs (stmt),
4442 gimple_cond_rhs (stmt));
4444 case GIMPLE_GOTO:
4445 return verify_gimple_goto (stmt);
4447 case GIMPLE_SWITCH:
4448 return verify_gimple_switch (stmt);
4450 case GIMPLE_RETURN:
4451 return verify_gimple_return (stmt);
4453 case GIMPLE_ASM:
4454 return false;
4456 case GIMPLE_TRANSACTION:
4457 return verify_gimple_transaction (stmt);
4459 /* Tuples that do not have tree operands. */
4460 case GIMPLE_NOP:
4461 case GIMPLE_PREDICT:
4462 case GIMPLE_RESX:
4463 case GIMPLE_EH_DISPATCH:
4464 case GIMPLE_EH_MUST_NOT_THROW:
4465 return false;
4467 CASE_GIMPLE_OMP:
4468 /* OpenMP directives are validated by the FE and never operated
4469 on by the optimizers. Furthermore, GIMPLE_OMP_FOR may contain
4470 non-gimple expressions when the main index variable has had
4471 its address taken. This does not affect the loop itself
4472 because the header of an GIMPLE_OMP_FOR is merely used to determine
4473 how to setup the parallel iteration. */
4474 return false;
4476 case GIMPLE_DEBUG:
4477 return verify_gimple_debug (stmt);
4479 default:
4480 gcc_unreachable ();
4484 /* Verify the contents of a GIMPLE_PHI. Returns true if there is a problem,
4485 and false otherwise. */
4487 static bool
4488 verify_gimple_phi (gimple phi)
4490 bool err = false;
4491 unsigned i;
4492 tree phi_result = gimple_phi_result (phi);
4493 bool virtual_p;
4495 if (!phi_result)
4497 error ("invalid PHI result");
4498 return true;
4501 virtual_p = virtual_operand_p (phi_result);
4502 if (TREE_CODE (phi_result) != SSA_NAME
4503 || (virtual_p
4504 && SSA_NAME_VAR (phi_result) != gimple_vop (cfun)))
4506 error ("invalid PHI result");
4507 err = true;
4510 for (i = 0; i < gimple_phi_num_args (phi); i++)
4512 tree t = gimple_phi_arg_def (phi, i);
4514 if (!t)
4516 error ("missing PHI def");
4517 err |= true;
4518 continue;
4520 /* Addressable variables do have SSA_NAMEs but they
4521 are not considered gimple values. */
4522 else if ((TREE_CODE (t) == SSA_NAME
4523 && virtual_p != virtual_operand_p (t))
4524 || (virtual_p
4525 && (TREE_CODE (t) != SSA_NAME
4526 || SSA_NAME_VAR (t) != gimple_vop (cfun)))
4527 || (!virtual_p
4528 && !is_gimple_val (t)))
4530 error ("invalid PHI argument");
4531 debug_generic_expr (t);
4532 err |= true;
4534 #ifdef ENABLE_TYPES_CHECKING
4535 if (!useless_type_conversion_p (TREE_TYPE (phi_result), TREE_TYPE (t)))
4537 error ("incompatible types in PHI argument %u", i);
4538 debug_generic_stmt (TREE_TYPE (phi_result));
4539 debug_generic_stmt (TREE_TYPE (t));
4540 err |= true;
4542 #endif
4545 return err;
4548 /* Verify the GIMPLE statements inside the sequence STMTS. */
4550 static bool
4551 verify_gimple_in_seq_2 (gimple_seq stmts)
4553 gimple_stmt_iterator ittr;
4554 bool err = false;
4556 for (ittr = gsi_start (stmts); !gsi_end_p (ittr); gsi_next (&ittr))
4558 gimple stmt = gsi_stmt (ittr);
4560 switch (gimple_code (stmt))
4562 case GIMPLE_BIND:
4563 err |= verify_gimple_in_seq_2 (gimple_bind_body (stmt));
4564 break;
4566 case GIMPLE_TRY:
4567 err |= verify_gimple_in_seq_2 (gimple_try_eval (stmt));
4568 err |= verify_gimple_in_seq_2 (gimple_try_cleanup (stmt));
4569 break;
4571 case GIMPLE_EH_FILTER:
4572 err |= verify_gimple_in_seq_2 (gimple_eh_filter_failure (stmt));
4573 break;
4575 case GIMPLE_EH_ELSE:
4576 err |= verify_gimple_in_seq_2 (gimple_eh_else_n_body (stmt));
4577 err |= verify_gimple_in_seq_2 (gimple_eh_else_e_body (stmt));
4578 break;
4580 case GIMPLE_CATCH:
4581 err |= verify_gimple_in_seq_2 (gimple_catch_handler (stmt));
4582 break;
4584 case GIMPLE_TRANSACTION:
4585 err |= verify_gimple_transaction (stmt);
4586 break;
4588 default:
4590 bool err2 = verify_gimple_stmt (stmt);
4591 if (err2)
4592 debug_gimple_stmt (stmt);
4593 err |= err2;
4598 return err;
4601 /* Verify the contents of a GIMPLE_TRANSACTION. Returns true if there
4602 is a problem, otherwise false. */
4604 static bool
4605 verify_gimple_transaction (gimple stmt)
4607 tree lab = gimple_transaction_label (stmt);
4608 if (lab != NULL && TREE_CODE (lab) != LABEL_DECL)
4609 return true;
4610 return verify_gimple_in_seq_2 (gimple_transaction_body (stmt));
4614 /* Verify the GIMPLE statements inside the statement list STMTS. */
4616 DEBUG_FUNCTION void
4617 verify_gimple_in_seq (gimple_seq stmts)
4619 timevar_push (TV_TREE_STMT_VERIFY);
4620 if (verify_gimple_in_seq_2 (stmts))
4621 internal_error ("verify_gimple failed");
4622 timevar_pop (TV_TREE_STMT_VERIFY);
4625 /* Return true when the T can be shared. */
4627 static bool
4628 tree_node_can_be_shared (tree t)
4630 if (IS_TYPE_OR_DECL_P (t)
4631 || is_gimple_min_invariant (t)
4632 || TREE_CODE (t) == SSA_NAME
4633 || t == error_mark_node
4634 || TREE_CODE (t) == IDENTIFIER_NODE)
4635 return true;
4637 if (TREE_CODE (t) == CASE_LABEL_EXPR)
4638 return true;
4640 if (DECL_P (t))
4641 return true;
4643 return false;
4646 /* Called via walk_tree. Verify tree sharing. */
4648 static tree
4649 verify_node_sharing_1 (tree *tp, int *walk_subtrees, void *data)
4651 struct pointer_set_t *visited = (struct pointer_set_t *) data;
4653 if (tree_node_can_be_shared (*tp))
4655 *walk_subtrees = false;
4656 return NULL;
4659 if (pointer_set_insert (visited, *tp))
4660 return *tp;
4662 return NULL;
4665 /* Called via walk_gimple_stmt. Verify tree sharing. */
4667 static tree
4668 verify_node_sharing (tree *tp, int *walk_subtrees, void *data)
4670 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
4671 return verify_node_sharing_1 (tp, walk_subtrees, wi->info);
4674 static bool eh_error_found;
4675 static int
4676 verify_eh_throw_stmt_node (void **slot, void *data)
4678 struct throw_stmt_node *node = (struct throw_stmt_node *)*slot;
4679 struct pointer_set_t *visited = (struct pointer_set_t *) data;
4681 if (!pointer_set_contains (visited, node->stmt))
4683 error ("dead STMT in EH table");
4684 debug_gimple_stmt (node->stmt);
4685 eh_error_found = true;
4687 return 1;
4690 /* Verify if the location LOCs block is in BLOCKS. */
4692 static bool
4693 verify_location (pointer_set_t *blocks, location_t loc)
4695 tree block = LOCATION_BLOCK (loc);
4696 if (block != NULL_TREE
4697 && !pointer_set_contains (blocks, block))
4699 error ("location references block not in block tree");
4700 return true;
4702 if (block != NULL_TREE)
4703 return verify_location (blocks, BLOCK_SOURCE_LOCATION (block));
4704 return false;
4707 /* Called via walk_tree. Verify that expressions have no blocks. */
4709 static tree
4710 verify_expr_no_block (tree *tp, int *walk_subtrees, void *)
4712 if (!EXPR_P (*tp))
4714 *walk_subtrees = false;
4715 return NULL;
4718 location_t loc = EXPR_LOCATION (*tp);
4719 if (LOCATION_BLOCK (loc) != NULL)
4720 return *tp;
4722 return NULL;
4725 /* Called via walk_tree. Verify locations of expressions. */
4727 static tree
4728 verify_expr_location_1 (tree *tp, int *walk_subtrees, void *data)
4730 struct pointer_set_t *blocks = (struct pointer_set_t *) data;
4732 if (TREE_CODE (*tp) == VAR_DECL
4733 && DECL_HAS_DEBUG_EXPR_P (*tp))
4735 tree t = DECL_DEBUG_EXPR (*tp);
4736 tree addr = walk_tree (&t, verify_expr_no_block, NULL, NULL);
4737 if (addr)
4738 return addr;
4740 if ((TREE_CODE (*tp) == VAR_DECL
4741 || TREE_CODE (*tp) == PARM_DECL
4742 || TREE_CODE (*tp) == RESULT_DECL)
4743 && DECL_HAS_VALUE_EXPR_P (*tp))
4745 tree t = DECL_VALUE_EXPR (*tp);
4746 tree addr = walk_tree (&t, verify_expr_no_block, NULL, NULL);
4747 if (addr)
4748 return addr;
4751 if (!EXPR_P (*tp))
4753 *walk_subtrees = false;
4754 return NULL;
4757 location_t loc = EXPR_LOCATION (*tp);
4758 if (verify_location (blocks, loc))
4759 return *tp;
4761 return NULL;
4764 /* Called via walk_gimple_op. Verify locations of expressions. */
4766 static tree
4767 verify_expr_location (tree *tp, int *walk_subtrees, void *data)
4769 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
4770 return verify_expr_location_1 (tp, walk_subtrees, wi->info);
4773 /* Insert all subblocks of BLOCK into BLOCKS and recurse. */
4775 static void
4776 collect_subblocks (pointer_set_t *blocks, tree block)
4778 tree t;
4779 for (t = BLOCK_SUBBLOCKS (block); t; t = BLOCK_CHAIN (t))
4781 pointer_set_insert (blocks, t);
4782 collect_subblocks (blocks, t);
4786 /* Verify the GIMPLE statements in the CFG of FN. */
4788 DEBUG_FUNCTION void
4789 verify_gimple_in_cfg (struct function *fn)
4791 basic_block bb;
4792 bool err = false;
4793 struct pointer_set_t *visited, *visited_stmts, *blocks;
4795 timevar_push (TV_TREE_STMT_VERIFY);
4796 visited = pointer_set_create ();
4797 visited_stmts = pointer_set_create ();
4799 /* Collect all BLOCKs referenced by the BLOCK tree of FN. */
4800 blocks = pointer_set_create ();
4801 if (DECL_INITIAL (fn->decl))
4803 pointer_set_insert (blocks, DECL_INITIAL (fn->decl));
4804 collect_subblocks (blocks, DECL_INITIAL (fn->decl));
4807 FOR_EACH_BB_FN (bb, fn)
4809 gimple_stmt_iterator gsi;
4811 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
4813 gimple phi = gsi_stmt (gsi);
4814 bool err2 = false;
4815 unsigned i;
4817 pointer_set_insert (visited_stmts, phi);
4819 if (gimple_bb (phi) != bb)
4821 error ("gimple_bb (phi) is set to a wrong basic block");
4822 err2 = true;
4825 err2 |= verify_gimple_phi (phi);
4827 /* Only PHI arguments have locations. */
4828 if (gimple_location (phi) != UNKNOWN_LOCATION)
4830 error ("PHI node with location");
4831 err2 = true;
4834 for (i = 0; i < gimple_phi_num_args (phi); i++)
4836 tree arg = gimple_phi_arg_def (phi, i);
4837 tree addr = walk_tree (&arg, verify_node_sharing_1,
4838 visited, NULL);
4839 if (addr)
4841 error ("incorrect sharing of tree nodes");
4842 debug_generic_expr (addr);
4843 err2 |= true;
4845 location_t loc = gimple_phi_arg_location (phi, i);
4846 if (virtual_operand_p (gimple_phi_result (phi))
4847 && loc != UNKNOWN_LOCATION)
4849 error ("virtual PHI with argument locations");
4850 err2 = true;
4852 addr = walk_tree (&arg, verify_expr_location_1, blocks, NULL);
4853 if (addr)
4855 debug_generic_expr (addr);
4856 err2 = true;
4858 err2 |= verify_location (blocks, loc);
4861 if (err2)
4862 debug_gimple_stmt (phi);
4863 err |= err2;
4866 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
4868 gimple stmt = gsi_stmt (gsi);
4869 bool err2 = false;
4870 struct walk_stmt_info wi;
4871 tree addr;
4872 int lp_nr;
4874 pointer_set_insert (visited_stmts, stmt);
4876 if (gimple_bb (stmt) != bb)
4878 error ("gimple_bb (stmt) is set to a wrong basic block");
4879 err2 = true;
4882 err2 |= verify_gimple_stmt (stmt);
4883 err2 |= verify_location (blocks, gimple_location (stmt));
4885 memset (&wi, 0, sizeof (wi));
4886 wi.info = (void *) visited;
4887 addr = walk_gimple_op (stmt, verify_node_sharing, &wi);
4888 if (addr)
4890 error ("incorrect sharing of tree nodes");
4891 debug_generic_expr (addr);
4892 err2 |= true;
4895 memset (&wi, 0, sizeof (wi));
4896 wi.info = (void *) blocks;
4897 addr = walk_gimple_op (stmt, verify_expr_location, &wi);
4898 if (addr)
4900 debug_generic_expr (addr);
4901 err2 |= true;
4904 /* ??? Instead of not checking these stmts at all the walker
4905 should know its context via wi. */
4906 if (!is_gimple_debug (stmt)
4907 && !is_gimple_omp (stmt))
4909 memset (&wi, 0, sizeof (wi));
4910 addr = walk_gimple_op (stmt, verify_expr, &wi);
4911 if (addr)
4913 debug_generic_expr (addr);
4914 inform (gimple_location (stmt), "in statement");
4915 err2 |= true;
4919 /* If the statement is marked as part of an EH region, then it is
4920 expected that the statement could throw. Verify that when we
4921 have optimizations that simplify statements such that we prove
4922 that they cannot throw, that we update other data structures
4923 to match. */
4924 lp_nr = lookup_stmt_eh_lp (stmt);
4925 if (lp_nr != 0)
4927 if (!stmt_could_throw_p (stmt))
4929 error ("statement marked for throw, but doesn%'t");
4930 err2 |= true;
4932 else if (lp_nr > 0
4933 && !gsi_one_before_end_p (gsi)
4934 && stmt_can_throw_internal (stmt))
4936 error ("statement marked for throw in middle of block");
4937 err2 |= true;
4941 if (err2)
4942 debug_gimple_stmt (stmt);
4943 err |= err2;
4947 eh_error_found = false;
4948 if (get_eh_throw_stmt_table (cfun))
4949 htab_traverse (get_eh_throw_stmt_table (cfun),
4950 verify_eh_throw_stmt_node,
4951 visited_stmts);
4953 if (err || eh_error_found)
4954 internal_error ("verify_gimple failed");
4956 pointer_set_destroy (visited);
4957 pointer_set_destroy (visited_stmts);
4958 pointer_set_destroy (blocks);
4959 verify_histograms ();
4960 timevar_pop (TV_TREE_STMT_VERIFY);
4964 /* Verifies that the flow information is OK. */
4966 static int
4967 gimple_verify_flow_info (void)
4969 int err = 0;
4970 basic_block bb;
4971 gimple_stmt_iterator gsi;
4972 gimple stmt;
4973 edge e;
4974 edge_iterator ei;
4976 if (ENTRY_BLOCK_PTR_FOR_FN (cfun)->il.gimple.seq
4977 || ENTRY_BLOCK_PTR_FOR_FN (cfun)->il.gimple.phi_nodes)
4979 error ("ENTRY_BLOCK has IL associated with it");
4980 err = 1;
4983 if (EXIT_BLOCK_PTR_FOR_FN (cfun)->il.gimple.seq
4984 || EXIT_BLOCK_PTR_FOR_FN (cfun)->il.gimple.phi_nodes)
4986 error ("EXIT_BLOCK has IL associated with it");
4987 err = 1;
4990 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
4991 if (e->flags & EDGE_FALLTHRU)
4993 error ("fallthru to exit from bb %d", e->src->index);
4994 err = 1;
4997 FOR_EACH_BB_FN (bb, cfun)
4999 bool found_ctrl_stmt = false;
5001 stmt = NULL;
5003 /* Skip labels on the start of basic block. */
5004 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
5006 tree label;
5007 gimple prev_stmt = stmt;
5009 stmt = gsi_stmt (gsi);
5011 if (gimple_code (stmt) != GIMPLE_LABEL)
5012 break;
5014 label = gimple_label_label (stmt);
5015 if (prev_stmt && DECL_NONLOCAL (label))
5017 error ("nonlocal label ");
5018 print_generic_expr (stderr, label, 0);
5019 fprintf (stderr, " is not first in a sequence of labels in bb %d",
5020 bb->index);
5021 err = 1;
5024 if (prev_stmt && EH_LANDING_PAD_NR (label) != 0)
5026 error ("EH landing pad label ");
5027 print_generic_expr (stderr, label, 0);
5028 fprintf (stderr, " is not first in a sequence of labels in bb %d",
5029 bb->index);
5030 err = 1;
5033 if (label_to_block (label) != bb)
5035 error ("label ");
5036 print_generic_expr (stderr, label, 0);
5037 fprintf (stderr, " to block does not match in bb %d",
5038 bb->index);
5039 err = 1;
5042 if (decl_function_context (label) != current_function_decl)
5044 error ("label ");
5045 print_generic_expr (stderr, label, 0);
5046 fprintf (stderr, " has incorrect context in bb %d",
5047 bb->index);
5048 err = 1;
5052 /* Verify that body of basic block BB is free of control flow. */
5053 for (; !gsi_end_p (gsi); gsi_next (&gsi))
5055 gimple stmt = gsi_stmt (gsi);
5057 if (found_ctrl_stmt)
5059 error ("control flow in the middle of basic block %d",
5060 bb->index);
5061 err = 1;
5064 if (stmt_ends_bb_p (stmt))
5065 found_ctrl_stmt = true;
5067 if (gimple_code (stmt) == GIMPLE_LABEL)
5069 error ("label ");
5070 print_generic_expr (stderr, gimple_label_label (stmt), 0);
5071 fprintf (stderr, " in the middle of basic block %d", bb->index);
5072 err = 1;
5076 gsi = gsi_last_bb (bb);
5077 if (gsi_end_p (gsi))
5078 continue;
5080 stmt = gsi_stmt (gsi);
5082 if (gimple_code (stmt) == GIMPLE_LABEL)
5083 continue;
5085 err |= verify_eh_edges (stmt);
5087 if (is_ctrl_stmt (stmt))
5089 FOR_EACH_EDGE (e, ei, bb->succs)
5090 if (e->flags & EDGE_FALLTHRU)
5092 error ("fallthru edge after a control statement in bb %d",
5093 bb->index);
5094 err = 1;
5098 if (gimple_code (stmt) != GIMPLE_COND)
5100 /* Verify that there are no edges with EDGE_TRUE/FALSE_FLAG set
5101 after anything else but if statement. */
5102 FOR_EACH_EDGE (e, ei, bb->succs)
5103 if (e->flags & (EDGE_TRUE_VALUE | EDGE_FALSE_VALUE))
5105 error ("true/false edge after a non-GIMPLE_COND in bb %d",
5106 bb->index);
5107 err = 1;
5111 switch (gimple_code (stmt))
5113 case GIMPLE_COND:
5115 edge true_edge;
5116 edge false_edge;
5118 extract_true_false_edges_from_block (bb, &true_edge, &false_edge);
5120 if (!true_edge
5121 || !false_edge
5122 || !(true_edge->flags & EDGE_TRUE_VALUE)
5123 || !(false_edge->flags & EDGE_FALSE_VALUE)
5124 || (true_edge->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL))
5125 || (false_edge->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL))
5126 || EDGE_COUNT (bb->succs) >= 3)
5128 error ("wrong outgoing edge flags at end of bb %d",
5129 bb->index);
5130 err = 1;
5133 break;
5135 case GIMPLE_GOTO:
5136 if (simple_goto_p (stmt))
5138 error ("explicit goto at end of bb %d", bb->index);
5139 err = 1;
5141 else
5143 /* FIXME. We should double check that the labels in the
5144 destination blocks have their address taken. */
5145 FOR_EACH_EDGE (e, ei, bb->succs)
5146 if ((e->flags & (EDGE_FALLTHRU | EDGE_TRUE_VALUE
5147 | EDGE_FALSE_VALUE))
5148 || !(e->flags & EDGE_ABNORMAL))
5150 error ("wrong outgoing edge flags at end of bb %d",
5151 bb->index);
5152 err = 1;
5155 break;
5157 case GIMPLE_CALL:
5158 if (!gimple_call_builtin_p (stmt, BUILT_IN_RETURN))
5159 break;
5160 /* ... fallthru ... */
5161 case GIMPLE_RETURN:
5162 if (!single_succ_p (bb)
5163 || (single_succ_edge (bb)->flags
5164 & (EDGE_FALLTHRU | EDGE_ABNORMAL
5165 | EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
5167 error ("wrong outgoing edge flags at end of bb %d", bb->index);
5168 err = 1;
5170 if (single_succ (bb) != EXIT_BLOCK_PTR_FOR_FN (cfun))
5172 error ("return edge does not point to exit in bb %d",
5173 bb->index);
5174 err = 1;
5176 break;
5178 case GIMPLE_SWITCH:
5180 tree prev;
5181 edge e;
5182 size_t i, n;
5184 n = gimple_switch_num_labels (stmt);
5186 /* Mark all the destination basic blocks. */
5187 for (i = 0; i < n; ++i)
5189 tree lab = CASE_LABEL (gimple_switch_label (stmt, i));
5190 basic_block label_bb = label_to_block (lab);
5191 gcc_assert (!label_bb->aux || label_bb->aux == (void *)1);
5192 label_bb->aux = (void *)1;
5195 /* Verify that the case labels are sorted. */
5196 prev = gimple_switch_label (stmt, 0);
5197 for (i = 1; i < n; ++i)
5199 tree c = gimple_switch_label (stmt, i);
5200 if (!CASE_LOW (c))
5202 error ("found default case not at the start of "
5203 "case vector");
5204 err = 1;
5205 continue;
5207 if (CASE_LOW (prev)
5208 && !tree_int_cst_lt (CASE_LOW (prev), CASE_LOW (c)))
5210 error ("case labels not sorted: ");
5211 print_generic_expr (stderr, prev, 0);
5212 fprintf (stderr," is greater than ");
5213 print_generic_expr (stderr, c, 0);
5214 fprintf (stderr," but comes before it.\n");
5215 err = 1;
5217 prev = c;
5219 /* VRP will remove the default case if it can prove it will
5220 never be executed. So do not verify there always exists
5221 a default case here. */
5223 FOR_EACH_EDGE (e, ei, bb->succs)
5225 if (!e->dest->aux)
5227 error ("extra outgoing edge %d->%d",
5228 bb->index, e->dest->index);
5229 err = 1;
5232 e->dest->aux = (void *)2;
5233 if ((e->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL
5234 | EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
5236 error ("wrong outgoing edge flags at end of bb %d",
5237 bb->index);
5238 err = 1;
5242 /* Check that we have all of them. */
5243 for (i = 0; i < n; ++i)
5245 tree lab = CASE_LABEL (gimple_switch_label (stmt, i));
5246 basic_block label_bb = label_to_block (lab);
5248 if (label_bb->aux != (void *)2)
5250 error ("missing edge %i->%i", bb->index, label_bb->index);
5251 err = 1;
5255 FOR_EACH_EDGE (e, ei, bb->succs)
5256 e->dest->aux = (void *)0;
5258 break;
5260 case GIMPLE_EH_DISPATCH:
5261 err |= verify_eh_dispatch_edge (stmt);
5262 break;
5264 default:
5265 break;
5269 if (dom_info_state (CDI_DOMINATORS) >= DOM_NO_FAST_QUERY)
5270 verify_dominators (CDI_DOMINATORS);
5272 return err;
5276 /* Updates phi nodes after creating a forwarder block joined
5277 by edge FALLTHRU. */
5279 static void
5280 gimple_make_forwarder_block (edge fallthru)
5282 edge e;
5283 edge_iterator ei;
5284 basic_block dummy, bb;
5285 tree var;
5286 gimple_stmt_iterator gsi;
5288 dummy = fallthru->src;
5289 bb = fallthru->dest;
5291 if (single_pred_p (bb))
5292 return;
5294 /* If we redirected a branch we must create new PHI nodes at the
5295 start of BB. */
5296 for (gsi = gsi_start_phis (dummy); !gsi_end_p (gsi); gsi_next (&gsi))
5298 gimple phi, new_phi;
5300 phi = gsi_stmt (gsi);
5301 var = gimple_phi_result (phi);
5302 new_phi = create_phi_node (var, bb);
5303 gimple_phi_set_result (phi, copy_ssa_name (var, phi));
5304 add_phi_arg (new_phi, gimple_phi_result (phi), fallthru,
5305 UNKNOWN_LOCATION);
5308 /* Add the arguments we have stored on edges. */
5309 FOR_EACH_EDGE (e, ei, bb->preds)
5311 if (e == fallthru)
5312 continue;
5314 flush_pending_stmts (e);
5319 /* Return a non-special label in the head of basic block BLOCK.
5320 Create one if it doesn't exist. */
5322 tree
5323 gimple_block_label (basic_block bb)
5325 gimple_stmt_iterator i, s = gsi_start_bb (bb);
5326 bool first = true;
5327 tree label;
5328 gimple stmt;
5330 for (i = s; !gsi_end_p (i); first = false, gsi_next (&i))
5332 stmt = gsi_stmt (i);
5333 if (gimple_code (stmt) != GIMPLE_LABEL)
5334 break;
5335 label = gimple_label_label (stmt);
5336 if (!DECL_NONLOCAL (label))
5338 if (!first)
5339 gsi_move_before (&i, &s);
5340 return label;
5344 label = create_artificial_label (UNKNOWN_LOCATION);
5345 stmt = gimple_build_label (label);
5346 gsi_insert_before (&s, stmt, GSI_NEW_STMT);
5347 return label;
5351 /* Attempt to perform edge redirection by replacing a possibly complex
5352 jump instruction by a goto or by removing the jump completely.
5353 This can apply only if all edges now point to the same block. The
5354 parameters and return values are equivalent to
5355 redirect_edge_and_branch. */
5357 static edge
5358 gimple_try_redirect_by_replacing_jump (edge e, basic_block target)
5360 basic_block src = e->src;
5361 gimple_stmt_iterator i;
5362 gimple stmt;
5364 /* We can replace or remove a complex jump only when we have exactly
5365 two edges. */
5366 if (EDGE_COUNT (src->succs) != 2
5367 /* Verify that all targets will be TARGET. Specifically, the
5368 edge that is not E must also go to TARGET. */
5369 || EDGE_SUCC (src, EDGE_SUCC (src, 0) == e)->dest != target)
5370 return NULL;
5372 i = gsi_last_bb (src);
5373 if (gsi_end_p (i))
5374 return NULL;
5376 stmt = gsi_stmt (i);
5378 if (gimple_code (stmt) == GIMPLE_COND || gimple_code (stmt) == GIMPLE_SWITCH)
5380 gsi_remove (&i, true);
5381 e = ssa_redirect_edge (e, target);
5382 e->flags = EDGE_FALLTHRU;
5383 return e;
5386 return NULL;
5390 /* Redirect E to DEST. Return NULL on failure. Otherwise, return the
5391 edge representing the redirected branch. */
5393 static edge
5394 gimple_redirect_edge_and_branch (edge e, basic_block dest)
5396 basic_block bb = e->src;
5397 gimple_stmt_iterator gsi;
5398 edge ret;
5399 gimple stmt;
5401 if (e->flags & EDGE_ABNORMAL)
5402 return NULL;
5404 if (e->dest == dest)
5405 return NULL;
5407 if (e->flags & EDGE_EH)
5408 return redirect_eh_edge (e, dest);
5410 if (e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun))
5412 ret = gimple_try_redirect_by_replacing_jump (e, dest);
5413 if (ret)
5414 return ret;
5417 gsi = gsi_last_bb (bb);
5418 stmt = gsi_end_p (gsi) ? NULL : gsi_stmt (gsi);
5420 switch (stmt ? gimple_code (stmt) : GIMPLE_ERROR_MARK)
5422 case GIMPLE_COND:
5423 /* For COND_EXPR, we only need to redirect the edge. */
5424 break;
5426 case GIMPLE_GOTO:
5427 /* No non-abnormal edges should lead from a non-simple goto, and
5428 simple ones should be represented implicitly. */
5429 gcc_unreachable ();
5431 case GIMPLE_SWITCH:
5433 tree label = gimple_block_label (dest);
5434 tree cases = get_cases_for_edge (e, stmt);
5436 /* If we have a list of cases associated with E, then use it
5437 as it's a lot faster than walking the entire case vector. */
5438 if (cases)
5440 edge e2 = find_edge (e->src, dest);
5441 tree last, first;
5443 first = cases;
5444 while (cases)
5446 last = cases;
5447 CASE_LABEL (cases) = label;
5448 cases = CASE_CHAIN (cases);
5451 /* If there was already an edge in the CFG, then we need
5452 to move all the cases associated with E to E2. */
5453 if (e2)
5455 tree cases2 = get_cases_for_edge (e2, stmt);
5457 CASE_CHAIN (last) = CASE_CHAIN (cases2);
5458 CASE_CHAIN (cases2) = first;
5460 bitmap_set_bit (touched_switch_bbs, gimple_bb (stmt)->index);
5462 else
5464 size_t i, n = gimple_switch_num_labels (stmt);
5466 for (i = 0; i < n; i++)
5468 tree elt = gimple_switch_label (stmt, i);
5469 if (label_to_block (CASE_LABEL (elt)) == e->dest)
5470 CASE_LABEL (elt) = label;
5474 break;
5476 case GIMPLE_ASM:
5478 int i, n = gimple_asm_nlabels (stmt);
5479 tree label = NULL;
5481 for (i = 0; i < n; ++i)
5483 tree cons = gimple_asm_label_op (stmt, i);
5484 if (label_to_block (TREE_VALUE (cons)) == e->dest)
5486 if (!label)
5487 label = gimple_block_label (dest);
5488 TREE_VALUE (cons) = label;
5492 /* If we didn't find any label matching the former edge in the
5493 asm labels, we must be redirecting the fallthrough
5494 edge. */
5495 gcc_assert (label || (e->flags & EDGE_FALLTHRU));
5497 break;
5499 case GIMPLE_RETURN:
5500 gsi_remove (&gsi, true);
5501 e->flags |= EDGE_FALLTHRU;
5502 break;
5504 case GIMPLE_OMP_RETURN:
5505 case GIMPLE_OMP_CONTINUE:
5506 case GIMPLE_OMP_SECTIONS_SWITCH:
5507 case GIMPLE_OMP_FOR:
5508 /* The edges from OMP constructs can be simply redirected. */
5509 break;
5511 case GIMPLE_EH_DISPATCH:
5512 if (!(e->flags & EDGE_FALLTHRU))
5513 redirect_eh_dispatch_edge (stmt, e, dest);
5514 break;
5516 case GIMPLE_TRANSACTION:
5517 /* The ABORT edge has a stored label associated with it, otherwise
5518 the edges are simply redirectable. */
5519 if (e->flags == 0)
5520 gimple_transaction_set_label (stmt, gimple_block_label (dest));
5521 break;
5523 default:
5524 /* Otherwise it must be a fallthru edge, and we don't need to
5525 do anything besides redirecting it. */
5526 gcc_assert (e->flags & EDGE_FALLTHRU);
5527 break;
5530 /* Update/insert PHI nodes as necessary. */
5532 /* Now update the edges in the CFG. */
5533 e = ssa_redirect_edge (e, dest);
5535 return e;
5538 /* Returns true if it is possible to remove edge E by redirecting
5539 it to the destination of the other edge from E->src. */
5541 static bool
5542 gimple_can_remove_branch_p (const_edge e)
5544 if (e->flags & (EDGE_ABNORMAL | EDGE_EH))
5545 return false;
5547 return true;
5550 /* Simple wrapper, as we can always redirect fallthru edges. */
5552 static basic_block
5553 gimple_redirect_edge_and_branch_force (edge e, basic_block dest)
5555 e = gimple_redirect_edge_and_branch (e, dest);
5556 gcc_assert (e);
5558 return NULL;
5562 /* Splits basic block BB after statement STMT (but at least after the
5563 labels). If STMT is NULL, BB is split just after the labels. */
5565 static basic_block
5566 gimple_split_block (basic_block bb, void *stmt)
5568 gimple_stmt_iterator gsi;
5569 gimple_stmt_iterator gsi_tgt;
5570 gimple act;
5571 gimple_seq list;
5572 basic_block new_bb;
5573 edge e;
5574 edge_iterator ei;
5576 new_bb = create_empty_bb (bb);
5578 /* Redirect the outgoing edges. */
5579 new_bb->succs = bb->succs;
5580 bb->succs = NULL;
5581 FOR_EACH_EDGE (e, ei, new_bb->succs)
5582 e->src = new_bb;
5584 if (stmt && gimple_code ((gimple) stmt) == GIMPLE_LABEL)
5585 stmt = NULL;
5587 /* Move everything from GSI to the new basic block. */
5588 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
5590 act = gsi_stmt (gsi);
5591 if (gimple_code (act) == GIMPLE_LABEL)
5592 continue;
5594 if (!stmt)
5595 break;
5597 if (stmt == act)
5599 gsi_next (&gsi);
5600 break;
5604 if (gsi_end_p (gsi))
5605 return new_bb;
5607 /* Split the statement list - avoid re-creating new containers as this
5608 brings ugly quadratic memory consumption in the inliner.
5609 (We are still quadratic since we need to update stmt BB pointers,
5610 sadly.) */
5611 gsi_split_seq_before (&gsi, &list);
5612 set_bb_seq (new_bb, list);
5613 for (gsi_tgt = gsi_start (list);
5614 !gsi_end_p (gsi_tgt); gsi_next (&gsi_tgt))
5615 gimple_set_bb (gsi_stmt (gsi_tgt), new_bb);
5617 return new_bb;
5621 /* Moves basic block BB after block AFTER. */
5623 static bool
5624 gimple_move_block_after (basic_block bb, basic_block after)
5626 if (bb->prev_bb == after)
5627 return true;
5629 unlink_block (bb);
5630 link_block (bb, after);
5632 return true;
5636 /* Return TRUE if block BB has no executable statements, otherwise return
5637 FALSE. */
5639 static bool
5640 gimple_empty_block_p (basic_block bb)
5642 /* BB must have no executable statements. */
5643 gimple_stmt_iterator gsi = gsi_after_labels (bb);
5644 if (phi_nodes (bb))
5645 return false;
5646 if (gsi_end_p (gsi))
5647 return true;
5648 if (is_gimple_debug (gsi_stmt (gsi)))
5649 gsi_next_nondebug (&gsi);
5650 return gsi_end_p (gsi);
5654 /* Split a basic block if it ends with a conditional branch and if the
5655 other part of the block is not empty. */
5657 static basic_block
5658 gimple_split_block_before_cond_jump (basic_block bb)
5660 gimple last, split_point;
5661 gimple_stmt_iterator gsi = gsi_last_nondebug_bb (bb);
5662 if (gsi_end_p (gsi))
5663 return NULL;
5664 last = gsi_stmt (gsi);
5665 if (gimple_code (last) != GIMPLE_COND
5666 && gimple_code (last) != GIMPLE_SWITCH)
5667 return NULL;
5668 gsi_prev_nondebug (&gsi);
5669 split_point = gsi_stmt (gsi);
5670 return split_block (bb, split_point)->dest;
5674 /* Return true if basic_block can be duplicated. */
5676 static bool
5677 gimple_can_duplicate_bb_p (const_basic_block bb ATTRIBUTE_UNUSED)
5679 return true;
5682 /* Create a duplicate of the basic block BB. NOTE: This does not
5683 preserve SSA form. */
5685 static basic_block
5686 gimple_duplicate_bb (basic_block bb)
5688 basic_block new_bb;
5689 gimple_stmt_iterator gsi, gsi_tgt;
5690 gimple_seq phis = phi_nodes (bb);
5691 gimple phi, stmt, copy;
5693 new_bb = create_empty_bb (EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb);
5695 /* Copy the PHI nodes. We ignore PHI node arguments here because
5696 the incoming edges have not been setup yet. */
5697 for (gsi = gsi_start (phis); !gsi_end_p (gsi); gsi_next (&gsi))
5699 phi = gsi_stmt (gsi);
5700 copy = create_phi_node (NULL_TREE, new_bb);
5701 create_new_def_for (gimple_phi_result (phi), copy,
5702 gimple_phi_result_ptr (copy));
5703 gimple_set_uid (copy, gimple_uid (phi));
5706 gsi_tgt = gsi_start_bb (new_bb);
5707 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
5709 def_operand_p def_p;
5710 ssa_op_iter op_iter;
5711 tree lhs;
5713 stmt = gsi_stmt (gsi);
5714 if (gimple_code (stmt) == GIMPLE_LABEL)
5715 continue;
5717 /* Don't duplicate label debug stmts. */
5718 if (gimple_debug_bind_p (stmt)
5719 && TREE_CODE (gimple_debug_bind_get_var (stmt))
5720 == LABEL_DECL)
5721 continue;
5723 /* Create a new copy of STMT and duplicate STMT's virtual
5724 operands. */
5725 copy = gimple_copy (stmt);
5726 gsi_insert_after (&gsi_tgt, copy, GSI_NEW_STMT);
5728 maybe_duplicate_eh_stmt (copy, stmt);
5729 gimple_duplicate_stmt_histograms (cfun, copy, cfun, stmt);
5731 /* When copying around a stmt writing into a local non-user
5732 aggregate, make sure it won't share stack slot with other
5733 vars. */
5734 lhs = gimple_get_lhs (stmt);
5735 if (lhs && TREE_CODE (lhs) != SSA_NAME)
5737 tree base = get_base_address (lhs);
5738 if (base
5739 && (TREE_CODE (base) == VAR_DECL
5740 || TREE_CODE (base) == RESULT_DECL)
5741 && DECL_IGNORED_P (base)
5742 && !TREE_STATIC (base)
5743 && !DECL_EXTERNAL (base)
5744 && (TREE_CODE (base) != VAR_DECL
5745 || !DECL_HAS_VALUE_EXPR_P (base)))
5746 DECL_NONSHAREABLE (base) = 1;
5749 /* Create new names for all the definitions created by COPY and
5750 add replacement mappings for each new name. */
5751 FOR_EACH_SSA_DEF_OPERAND (def_p, copy, op_iter, SSA_OP_ALL_DEFS)
5752 create_new_def_for (DEF_FROM_PTR (def_p), copy, def_p);
5755 return new_bb;
5758 /* Adds phi node arguments for edge E_COPY after basic block duplication. */
5760 static void
5761 add_phi_args_after_copy_edge (edge e_copy)
5763 basic_block bb, bb_copy = e_copy->src, dest;
5764 edge e;
5765 edge_iterator ei;
5766 gimple phi, phi_copy;
5767 tree def;
5768 gimple_stmt_iterator psi, psi_copy;
5770 if (gimple_seq_empty_p (phi_nodes (e_copy->dest)))
5771 return;
5773 bb = bb_copy->flags & BB_DUPLICATED ? get_bb_original (bb_copy) : bb_copy;
5775 if (e_copy->dest->flags & BB_DUPLICATED)
5776 dest = get_bb_original (e_copy->dest);
5777 else
5778 dest = e_copy->dest;
5780 e = find_edge (bb, dest);
5781 if (!e)
5783 /* During loop unrolling the target of the latch edge is copied.
5784 In this case we are not looking for edge to dest, but to
5785 duplicated block whose original was dest. */
5786 FOR_EACH_EDGE (e, ei, bb->succs)
5788 if ((e->dest->flags & BB_DUPLICATED)
5789 && get_bb_original (e->dest) == dest)
5790 break;
5793 gcc_assert (e != NULL);
5796 for (psi = gsi_start_phis (e->dest),
5797 psi_copy = gsi_start_phis (e_copy->dest);
5798 !gsi_end_p (psi);
5799 gsi_next (&psi), gsi_next (&psi_copy))
5801 phi = gsi_stmt (psi);
5802 phi_copy = gsi_stmt (psi_copy);
5803 def = PHI_ARG_DEF_FROM_EDGE (phi, e);
5804 add_phi_arg (phi_copy, def, e_copy,
5805 gimple_phi_arg_location_from_edge (phi, e));
5810 /* Basic block BB_COPY was created by code duplication. Add phi node
5811 arguments for edges going out of BB_COPY. The blocks that were
5812 duplicated have BB_DUPLICATED set. */
5814 void
5815 add_phi_args_after_copy_bb (basic_block bb_copy)
5817 edge e_copy;
5818 edge_iterator ei;
5820 FOR_EACH_EDGE (e_copy, ei, bb_copy->succs)
5822 add_phi_args_after_copy_edge (e_copy);
5826 /* Blocks in REGION_COPY array of length N_REGION were created by
5827 duplication of basic blocks. Add phi node arguments for edges
5828 going from these blocks. If E_COPY is not NULL, also add
5829 phi node arguments for its destination.*/
5831 void
5832 add_phi_args_after_copy (basic_block *region_copy, unsigned n_region,
5833 edge e_copy)
5835 unsigned i;
5837 for (i = 0; i < n_region; i++)
5838 region_copy[i]->flags |= BB_DUPLICATED;
5840 for (i = 0; i < n_region; i++)
5841 add_phi_args_after_copy_bb (region_copy[i]);
5842 if (e_copy)
5843 add_phi_args_after_copy_edge (e_copy);
5845 for (i = 0; i < n_region; i++)
5846 region_copy[i]->flags &= ~BB_DUPLICATED;
5849 /* Duplicates a REGION (set of N_REGION basic blocks) with just a single
5850 important exit edge EXIT. By important we mean that no SSA name defined
5851 inside region is live over the other exit edges of the region. All entry
5852 edges to the region must go to ENTRY->dest. The edge ENTRY is redirected
5853 to the duplicate of the region. Dominance and loop information is
5854 updated if UPDATE_DOMINANCE is true, but not the SSA web. If
5855 UPDATE_DOMINANCE is false then we assume that the caller will update the
5856 dominance information after calling this function. The new basic
5857 blocks are stored to REGION_COPY in the same order as they had in REGION,
5858 provided that REGION_COPY is not NULL.
5859 The function returns false if it is unable to copy the region,
5860 true otherwise. */
5862 bool
5863 gimple_duplicate_sese_region (edge entry, edge exit,
5864 basic_block *region, unsigned n_region,
5865 basic_block *region_copy,
5866 bool update_dominance)
5868 unsigned i;
5869 bool free_region_copy = false, copying_header = false;
5870 struct loop *loop = entry->dest->loop_father;
5871 edge exit_copy;
5872 vec<basic_block> doms;
5873 edge redirected;
5874 int total_freq = 0, entry_freq = 0;
5875 gcov_type total_count = 0, entry_count = 0;
5877 if (!can_copy_bbs_p (region, n_region))
5878 return false;
5880 /* Some sanity checking. Note that we do not check for all possible
5881 missuses of the functions. I.e. if you ask to copy something weird,
5882 it will work, but the state of structures probably will not be
5883 correct. */
5884 for (i = 0; i < n_region; i++)
5886 /* We do not handle subloops, i.e. all the blocks must belong to the
5887 same loop. */
5888 if (region[i]->loop_father != loop)
5889 return false;
5891 if (region[i] != entry->dest
5892 && region[i] == loop->header)
5893 return false;
5896 /* In case the function is used for loop header copying (which is the primary
5897 use), ensure that EXIT and its copy will be new latch and entry edges. */
5898 if (loop->header == entry->dest)
5900 copying_header = true;
5902 if (!dominated_by_p (CDI_DOMINATORS, loop->latch, exit->src))
5903 return false;
5905 for (i = 0; i < n_region; i++)
5906 if (region[i] != exit->src
5907 && dominated_by_p (CDI_DOMINATORS, region[i], exit->src))
5908 return false;
5911 initialize_original_copy_tables ();
5913 if (copying_header)
5914 set_loop_copy (loop, loop_outer (loop));
5915 else
5916 set_loop_copy (loop, loop);
5918 if (!region_copy)
5920 region_copy = XNEWVEC (basic_block, n_region);
5921 free_region_copy = true;
5924 /* Record blocks outside the region that are dominated by something
5925 inside. */
5926 if (update_dominance)
5928 doms.create (0);
5929 doms = get_dominated_by_region (CDI_DOMINATORS, region, n_region);
5932 if (entry->dest->count)
5934 total_count = entry->dest->count;
5935 entry_count = entry->count;
5936 /* Fix up corner cases, to avoid division by zero or creation of negative
5937 frequencies. */
5938 if (entry_count > total_count)
5939 entry_count = total_count;
5941 else
5943 total_freq = entry->dest->frequency;
5944 entry_freq = EDGE_FREQUENCY (entry);
5945 /* Fix up corner cases, to avoid division by zero or creation of negative
5946 frequencies. */
5947 if (total_freq == 0)
5948 total_freq = 1;
5949 else if (entry_freq > total_freq)
5950 entry_freq = total_freq;
5953 copy_bbs (region, n_region, region_copy, &exit, 1, &exit_copy, loop,
5954 split_edge_bb_loc (entry), update_dominance);
5955 if (total_count)
5957 scale_bbs_frequencies_gcov_type (region, n_region,
5958 total_count - entry_count,
5959 total_count);
5960 scale_bbs_frequencies_gcov_type (region_copy, n_region, entry_count,
5961 total_count);
5963 else
5965 scale_bbs_frequencies_int (region, n_region, total_freq - entry_freq,
5966 total_freq);
5967 scale_bbs_frequencies_int (region_copy, n_region, entry_freq, total_freq);
5970 if (copying_header)
5972 loop->header = exit->dest;
5973 loop->latch = exit->src;
5976 /* Redirect the entry and add the phi node arguments. */
5977 redirected = redirect_edge_and_branch (entry, get_bb_copy (entry->dest));
5978 gcc_assert (redirected != NULL);
5979 flush_pending_stmts (entry);
5981 /* Concerning updating of dominators: We must recount dominators
5982 for entry block and its copy. Anything that is outside of the
5983 region, but was dominated by something inside needs recounting as
5984 well. */
5985 if (update_dominance)
5987 set_immediate_dominator (CDI_DOMINATORS, entry->dest, entry->src);
5988 doms.safe_push (get_bb_original (entry->dest));
5989 iterate_fix_dominators (CDI_DOMINATORS, doms, false);
5990 doms.release ();
5993 /* Add the other PHI node arguments. */
5994 add_phi_args_after_copy (region_copy, n_region, NULL);
5996 if (free_region_copy)
5997 free (region_copy);
5999 free_original_copy_tables ();
6000 return true;
6003 /* Checks if BB is part of the region defined by N_REGION BBS. */
6004 static bool
6005 bb_part_of_region_p (basic_block bb, basic_block* bbs, unsigned n_region)
6007 unsigned int n;
6009 for (n = 0; n < n_region; n++)
6011 if (bb == bbs[n])
6012 return true;
6014 return false;
6017 /* Duplicates REGION consisting of N_REGION blocks. The new blocks
6018 are stored to REGION_COPY in the same order in that they appear
6019 in REGION, if REGION_COPY is not NULL. ENTRY is the entry to
6020 the region, EXIT an exit from it. The condition guarding EXIT
6021 is moved to ENTRY. Returns true if duplication succeeds, false
6022 otherwise.
6024 For example,
6026 some_code;
6027 if (cond)
6029 else
6032 is transformed to
6034 if (cond)
6036 some_code;
6039 else
6041 some_code;
6046 bool
6047 gimple_duplicate_sese_tail (edge entry ATTRIBUTE_UNUSED, edge exit ATTRIBUTE_UNUSED,
6048 basic_block *region ATTRIBUTE_UNUSED, unsigned n_region ATTRIBUTE_UNUSED,
6049 basic_block *region_copy ATTRIBUTE_UNUSED)
6051 unsigned i;
6052 bool free_region_copy = false;
6053 struct loop *loop = exit->dest->loop_father;
6054 struct loop *orig_loop = entry->dest->loop_father;
6055 basic_block switch_bb, entry_bb, nentry_bb;
6056 vec<basic_block> doms;
6057 int total_freq = 0, exit_freq = 0;
6058 gcov_type total_count = 0, exit_count = 0;
6059 edge exits[2], nexits[2], e;
6060 gimple_stmt_iterator gsi;
6061 gimple cond_stmt;
6062 edge sorig, snew;
6063 basic_block exit_bb;
6064 gimple_stmt_iterator psi;
6065 gimple phi;
6066 tree def;
6067 struct loop *target, *aloop, *cloop;
6069 gcc_assert (EDGE_COUNT (exit->src->succs) == 2);
6070 exits[0] = exit;
6071 exits[1] = EDGE_SUCC (exit->src, EDGE_SUCC (exit->src, 0) == exit);
6073 if (!can_copy_bbs_p (region, n_region))
6074 return false;
6076 initialize_original_copy_tables ();
6077 set_loop_copy (orig_loop, loop);
6079 target= loop;
6080 for (aloop = orig_loop->inner; aloop; aloop = aloop->next)
6082 if (bb_part_of_region_p (aloop->header, region, n_region))
6084 cloop = duplicate_loop (aloop, target);
6085 duplicate_subloops (aloop, cloop);
6089 if (!region_copy)
6091 region_copy = XNEWVEC (basic_block, n_region);
6092 free_region_copy = true;
6095 gcc_assert (!need_ssa_update_p (cfun));
6097 /* Record blocks outside the region that are dominated by something
6098 inside. */
6099 doms = get_dominated_by_region (CDI_DOMINATORS, region, n_region);
6101 if (exit->src->count)
6103 total_count = exit->src->count;
6104 exit_count = exit->count;
6105 /* Fix up corner cases, to avoid division by zero or creation of negative
6106 frequencies. */
6107 if (exit_count > total_count)
6108 exit_count = total_count;
6110 else
6112 total_freq = exit->src->frequency;
6113 exit_freq = EDGE_FREQUENCY (exit);
6114 /* Fix up corner cases, to avoid division by zero or creation of negative
6115 frequencies. */
6116 if (total_freq == 0)
6117 total_freq = 1;
6118 if (exit_freq > total_freq)
6119 exit_freq = total_freq;
6122 copy_bbs (region, n_region, region_copy, exits, 2, nexits, orig_loop,
6123 split_edge_bb_loc (exit), true);
6124 if (total_count)
6126 scale_bbs_frequencies_gcov_type (region, n_region,
6127 total_count - exit_count,
6128 total_count);
6129 scale_bbs_frequencies_gcov_type (region_copy, n_region, exit_count,
6130 total_count);
6132 else
6134 scale_bbs_frequencies_int (region, n_region, total_freq - exit_freq,
6135 total_freq);
6136 scale_bbs_frequencies_int (region_copy, n_region, exit_freq, total_freq);
6139 /* Create the switch block, and put the exit condition to it. */
6140 entry_bb = entry->dest;
6141 nentry_bb = get_bb_copy (entry_bb);
6142 if (!last_stmt (entry->src)
6143 || !stmt_ends_bb_p (last_stmt (entry->src)))
6144 switch_bb = entry->src;
6145 else
6146 switch_bb = split_edge (entry);
6147 set_immediate_dominator (CDI_DOMINATORS, nentry_bb, switch_bb);
6149 gsi = gsi_last_bb (switch_bb);
6150 cond_stmt = last_stmt (exit->src);
6151 gcc_assert (gimple_code (cond_stmt) == GIMPLE_COND);
6152 cond_stmt = gimple_copy (cond_stmt);
6154 gsi_insert_after (&gsi, cond_stmt, GSI_NEW_STMT);
6156 sorig = single_succ_edge (switch_bb);
6157 sorig->flags = exits[1]->flags;
6158 snew = make_edge (switch_bb, nentry_bb, exits[0]->flags);
6160 /* Register the new edge from SWITCH_BB in loop exit lists. */
6161 rescan_loop_exit (snew, true, false);
6163 /* Add the PHI node arguments. */
6164 add_phi_args_after_copy (region_copy, n_region, snew);
6166 /* Get rid of now superfluous conditions and associated edges (and phi node
6167 arguments). */
6168 exit_bb = exit->dest;
6170 e = redirect_edge_and_branch (exits[0], exits[1]->dest);
6171 PENDING_STMT (e) = NULL;
6173 /* The latch of ORIG_LOOP was copied, and so was the backedge
6174 to the original header. We redirect this backedge to EXIT_BB. */
6175 for (i = 0; i < n_region; i++)
6176 if (get_bb_original (region_copy[i]) == orig_loop->latch)
6178 gcc_assert (single_succ_edge (region_copy[i]));
6179 e = redirect_edge_and_branch (single_succ_edge (region_copy[i]), exit_bb);
6180 PENDING_STMT (e) = NULL;
6181 for (psi = gsi_start_phis (exit_bb);
6182 !gsi_end_p (psi);
6183 gsi_next (&psi))
6185 phi = gsi_stmt (psi);
6186 def = PHI_ARG_DEF (phi, nexits[0]->dest_idx);
6187 add_phi_arg (phi, def, e, gimple_phi_arg_location_from_edge (phi, e));
6190 e = redirect_edge_and_branch (nexits[1], nexits[0]->dest);
6191 PENDING_STMT (e) = NULL;
6193 /* Anything that is outside of the region, but was dominated by something
6194 inside needs to update dominance info. */
6195 iterate_fix_dominators (CDI_DOMINATORS, doms, false);
6196 doms.release ();
6197 /* Update the SSA web. */
6198 update_ssa (TODO_update_ssa);
6200 if (free_region_copy)
6201 free (region_copy);
6203 free_original_copy_tables ();
6204 return true;
6207 /* Add all the blocks dominated by ENTRY to the array BBS_P. Stop
6208 adding blocks when the dominator traversal reaches EXIT. This
6209 function silently assumes that ENTRY strictly dominates EXIT. */
6211 void
6212 gather_blocks_in_sese_region (basic_block entry, basic_block exit,
6213 vec<basic_block> *bbs_p)
6215 basic_block son;
6217 for (son = first_dom_son (CDI_DOMINATORS, entry);
6218 son;
6219 son = next_dom_son (CDI_DOMINATORS, son))
6221 bbs_p->safe_push (son);
6222 if (son != exit)
6223 gather_blocks_in_sese_region (son, exit, bbs_p);
6227 /* Replaces *TP with a duplicate (belonging to function TO_CONTEXT).
6228 The duplicates are recorded in VARS_MAP. */
6230 static void
6231 replace_by_duplicate_decl (tree *tp, struct pointer_map_t *vars_map,
6232 tree to_context)
6234 tree t = *tp, new_t;
6235 struct function *f = DECL_STRUCT_FUNCTION (to_context);
6236 void **loc;
6238 if (DECL_CONTEXT (t) == to_context)
6239 return;
6241 loc = pointer_map_contains (vars_map, t);
6243 if (!loc)
6245 loc = pointer_map_insert (vars_map, t);
6247 if (SSA_VAR_P (t))
6249 new_t = copy_var_decl (t, DECL_NAME (t), TREE_TYPE (t));
6250 add_local_decl (f, new_t);
6252 else
6254 gcc_assert (TREE_CODE (t) == CONST_DECL);
6255 new_t = copy_node (t);
6257 DECL_CONTEXT (new_t) = to_context;
6259 *loc = new_t;
6261 else
6262 new_t = (tree) *loc;
6264 *tp = new_t;
6268 /* Creates an ssa name in TO_CONTEXT equivalent to NAME.
6269 VARS_MAP maps old ssa names and var_decls to the new ones. */
6271 static tree
6272 replace_ssa_name (tree name, struct pointer_map_t *vars_map,
6273 tree to_context)
6275 void **loc;
6276 tree new_name;
6278 gcc_assert (!virtual_operand_p (name));
6280 loc = pointer_map_contains (vars_map, name);
6282 if (!loc)
6284 tree decl = SSA_NAME_VAR (name);
6285 if (decl)
6287 replace_by_duplicate_decl (&decl, vars_map, to_context);
6288 new_name = make_ssa_name_fn (DECL_STRUCT_FUNCTION (to_context),
6289 decl, SSA_NAME_DEF_STMT (name));
6290 if (SSA_NAME_IS_DEFAULT_DEF (name))
6291 set_ssa_default_def (DECL_STRUCT_FUNCTION (to_context),
6292 decl, new_name);
6294 else
6295 new_name = copy_ssa_name_fn (DECL_STRUCT_FUNCTION (to_context),
6296 name, SSA_NAME_DEF_STMT (name));
6298 loc = pointer_map_insert (vars_map, name);
6299 *loc = new_name;
6301 else
6302 new_name = (tree) *loc;
6304 return new_name;
6307 struct move_stmt_d
6309 tree orig_block;
6310 tree new_block;
6311 tree from_context;
6312 tree to_context;
6313 struct pointer_map_t *vars_map;
6314 htab_t new_label_map;
6315 struct pointer_map_t *eh_map;
6316 bool remap_decls_p;
6319 /* Helper for move_block_to_fn. Set TREE_BLOCK in every expression
6320 contained in *TP if it has been ORIG_BLOCK previously and change the
6321 DECL_CONTEXT of every local variable referenced in *TP. */
6323 static tree
6324 move_stmt_op (tree *tp, int *walk_subtrees, void *data)
6326 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
6327 struct move_stmt_d *p = (struct move_stmt_d *) wi->info;
6328 tree t = *tp;
6330 if (EXPR_P (t))
6332 tree block = TREE_BLOCK (t);
6333 if (block == p->orig_block
6334 || (p->orig_block == NULL_TREE
6335 && block != NULL_TREE))
6336 TREE_SET_BLOCK (t, p->new_block);
6337 #ifdef ENABLE_CHECKING
6338 else if (block != NULL_TREE)
6340 while (block && TREE_CODE (block) == BLOCK && block != p->orig_block)
6341 block = BLOCK_SUPERCONTEXT (block);
6342 gcc_assert (block == p->orig_block);
6344 #endif
6346 else if (DECL_P (t) || TREE_CODE (t) == SSA_NAME)
6348 if (TREE_CODE (t) == SSA_NAME)
6349 *tp = replace_ssa_name (t, p->vars_map, p->to_context);
6350 else if (TREE_CODE (t) == LABEL_DECL)
6352 if (p->new_label_map)
6354 struct tree_map in, *out;
6355 in.base.from = t;
6356 out = (struct tree_map *)
6357 htab_find_with_hash (p->new_label_map, &in, DECL_UID (t));
6358 if (out)
6359 *tp = t = out->to;
6362 DECL_CONTEXT (t) = p->to_context;
6364 else if (p->remap_decls_p)
6366 /* Replace T with its duplicate. T should no longer appear in the
6367 parent function, so this looks wasteful; however, it may appear
6368 in referenced_vars, and more importantly, as virtual operands of
6369 statements, and in alias lists of other variables. It would be
6370 quite difficult to expunge it from all those places. ??? It might
6371 suffice to do this for addressable variables. */
6372 if ((TREE_CODE (t) == VAR_DECL
6373 && !is_global_var (t))
6374 || TREE_CODE (t) == CONST_DECL)
6375 replace_by_duplicate_decl (tp, p->vars_map, p->to_context);
6377 *walk_subtrees = 0;
6379 else if (TYPE_P (t))
6380 *walk_subtrees = 0;
6382 return NULL_TREE;
6385 /* Helper for move_stmt_r. Given an EH region number for the source
6386 function, map that to the duplicate EH regio number in the dest. */
6388 static int
6389 move_stmt_eh_region_nr (int old_nr, struct move_stmt_d *p)
6391 eh_region old_r, new_r;
6392 void **slot;
6394 old_r = get_eh_region_from_number (old_nr);
6395 slot = pointer_map_contains (p->eh_map, old_r);
6396 new_r = (eh_region) *slot;
6398 return new_r->index;
6401 /* Similar, but operate on INTEGER_CSTs. */
6403 static tree
6404 move_stmt_eh_region_tree_nr (tree old_t_nr, struct move_stmt_d *p)
6406 int old_nr, new_nr;
6408 old_nr = tree_to_shwi (old_t_nr);
6409 new_nr = move_stmt_eh_region_nr (old_nr, p);
6411 return build_int_cst (integer_type_node, new_nr);
6414 /* Like move_stmt_op, but for gimple statements.
6416 Helper for move_block_to_fn. Set GIMPLE_BLOCK in every expression
6417 contained in the current statement in *GSI_P and change the
6418 DECL_CONTEXT of every local variable referenced in the current
6419 statement. */
6421 static tree
6422 move_stmt_r (gimple_stmt_iterator *gsi_p, bool *handled_ops_p,
6423 struct walk_stmt_info *wi)
6425 struct move_stmt_d *p = (struct move_stmt_d *) wi->info;
6426 gimple stmt = gsi_stmt (*gsi_p);
6427 tree block = gimple_block (stmt);
6429 if (block == p->orig_block
6430 || (p->orig_block == NULL_TREE
6431 && block != NULL_TREE))
6432 gimple_set_block (stmt, p->new_block);
6434 switch (gimple_code (stmt))
6436 case GIMPLE_CALL:
6437 /* Remap the region numbers for __builtin_eh_{pointer,filter}. */
6439 tree r, fndecl = gimple_call_fndecl (stmt);
6440 if (fndecl && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
6441 switch (DECL_FUNCTION_CODE (fndecl))
6443 case BUILT_IN_EH_COPY_VALUES:
6444 r = gimple_call_arg (stmt, 1);
6445 r = move_stmt_eh_region_tree_nr (r, p);
6446 gimple_call_set_arg (stmt, 1, r);
6447 /* FALLTHRU */
6449 case BUILT_IN_EH_POINTER:
6450 case BUILT_IN_EH_FILTER:
6451 r = gimple_call_arg (stmt, 0);
6452 r = move_stmt_eh_region_tree_nr (r, p);
6453 gimple_call_set_arg (stmt, 0, r);
6454 break;
6456 default:
6457 break;
6460 break;
6462 case GIMPLE_RESX:
6464 int r = gimple_resx_region (stmt);
6465 r = move_stmt_eh_region_nr (r, p);
6466 gimple_resx_set_region (stmt, r);
6468 break;
6470 case GIMPLE_EH_DISPATCH:
6472 int r = gimple_eh_dispatch_region (stmt);
6473 r = move_stmt_eh_region_nr (r, p);
6474 gimple_eh_dispatch_set_region (stmt, r);
6476 break;
6478 case GIMPLE_OMP_RETURN:
6479 case GIMPLE_OMP_CONTINUE:
6480 break;
6481 default:
6482 if (is_gimple_omp (stmt))
6484 /* Do not remap variables inside OMP directives. Variables
6485 referenced in clauses and directive header belong to the
6486 parent function and should not be moved into the child
6487 function. */
6488 bool save_remap_decls_p = p->remap_decls_p;
6489 p->remap_decls_p = false;
6490 *handled_ops_p = true;
6492 walk_gimple_seq_mod (gimple_omp_body_ptr (stmt), move_stmt_r,
6493 move_stmt_op, wi);
6495 p->remap_decls_p = save_remap_decls_p;
6497 break;
6500 return NULL_TREE;
6503 /* Move basic block BB from function CFUN to function DEST_FN. The
6504 block is moved out of the original linked list and placed after
6505 block AFTER in the new list. Also, the block is removed from the
6506 original array of blocks and placed in DEST_FN's array of blocks.
6507 If UPDATE_EDGE_COUNT_P is true, the edge counts on both CFGs is
6508 updated to reflect the moved edges.
6510 The local variables are remapped to new instances, VARS_MAP is used
6511 to record the mapping. */
6513 static void
6514 move_block_to_fn (struct function *dest_cfun, basic_block bb,
6515 basic_block after, bool update_edge_count_p,
6516 struct move_stmt_d *d)
6518 struct control_flow_graph *cfg;
6519 edge_iterator ei;
6520 edge e;
6521 gimple_stmt_iterator si;
6522 unsigned old_len, new_len;
6524 /* Remove BB from dominance structures. */
6525 delete_from_dominance_info (CDI_DOMINATORS, bb);
6527 /* Move BB from its current loop to the copy in the new function. */
6528 if (current_loops)
6530 struct loop *new_loop = (struct loop *)bb->loop_father->aux;
6531 if (new_loop)
6532 bb->loop_father = new_loop;
6535 /* Link BB to the new linked list. */
6536 move_block_after (bb, after);
6538 /* Update the edge count in the corresponding flowgraphs. */
6539 if (update_edge_count_p)
6540 FOR_EACH_EDGE (e, ei, bb->succs)
6542 cfun->cfg->x_n_edges--;
6543 dest_cfun->cfg->x_n_edges++;
6546 /* Remove BB from the original basic block array. */
6547 (*cfun->cfg->x_basic_block_info)[bb->index] = NULL;
6548 cfun->cfg->x_n_basic_blocks--;
6550 /* Grow DEST_CFUN's basic block array if needed. */
6551 cfg = dest_cfun->cfg;
6552 cfg->x_n_basic_blocks++;
6553 if (bb->index >= cfg->x_last_basic_block)
6554 cfg->x_last_basic_block = bb->index + 1;
6556 old_len = vec_safe_length (cfg->x_basic_block_info);
6557 if ((unsigned) cfg->x_last_basic_block >= old_len)
6559 new_len = cfg->x_last_basic_block + (cfg->x_last_basic_block + 3) / 4;
6560 vec_safe_grow_cleared (cfg->x_basic_block_info, new_len);
6563 (*cfg->x_basic_block_info)[bb->index] = bb;
6565 /* Remap the variables in phi nodes. */
6566 for (si = gsi_start_phis (bb); !gsi_end_p (si); )
6568 gimple phi = gsi_stmt (si);
6569 use_operand_p use;
6570 tree op = PHI_RESULT (phi);
6571 ssa_op_iter oi;
6572 unsigned i;
6574 if (virtual_operand_p (op))
6576 /* Remove the phi nodes for virtual operands (alias analysis will be
6577 run for the new function, anyway). */
6578 remove_phi_node (&si, true);
6579 continue;
6582 SET_PHI_RESULT (phi,
6583 replace_ssa_name (op, d->vars_map, dest_cfun->decl));
6584 FOR_EACH_PHI_ARG (use, phi, oi, SSA_OP_USE)
6586 op = USE_FROM_PTR (use);
6587 if (TREE_CODE (op) == SSA_NAME)
6588 SET_USE (use, replace_ssa_name (op, d->vars_map, dest_cfun->decl));
6591 for (i = 0; i < EDGE_COUNT (bb->preds); i++)
6593 location_t locus = gimple_phi_arg_location (phi, i);
6594 tree block = LOCATION_BLOCK (locus);
6596 if (locus == UNKNOWN_LOCATION)
6597 continue;
6598 if (d->orig_block == NULL_TREE || block == d->orig_block)
6600 if (d->new_block == NULL_TREE)
6601 locus = LOCATION_LOCUS (locus);
6602 else
6603 locus = COMBINE_LOCATION_DATA (line_table, locus, d->new_block);
6604 gimple_phi_arg_set_location (phi, i, locus);
6608 gsi_next (&si);
6611 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
6613 gimple stmt = gsi_stmt (si);
6614 struct walk_stmt_info wi;
6616 memset (&wi, 0, sizeof (wi));
6617 wi.info = d;
6618 walk_gimple_stmt (&si, move_stmt_r, move_stmt_op, &wi);
6620 if (gimple_code (stmt) == GIMPLE_LABEL)
6622 tree label = gimple_label_label (stmt);
6623 int uid = LABEL_DECL_UID (label);
6625 gcc_assert (uid > -1);
6627 old_len = vec_safe_length (cfg->x_label_to_block_map);
6628 if (old_len <= (unsigned) uid)
6630 new_len = 3 * uid / 2 + 1;
6631 vec_safe_grow_cleared (cfg->x_label_to_block_map, new_len);
6634 (*cfg->x_label_to_block_map)[uid] = bb;
6635 (*cfun->cfg->x_label_to_block_map)[uid] = NULL;
6637 gcc_assert (DECL_CONTEXT (label) == dest_cfun->decl);
6639 if (uid >= dest_cfun->cfg->last_label_uid)
6640 dest_cfun->cfg->last_label_uid = uid + 1;
6643 maybe_duplicate_eh_stmt_fn (dest_cfun, stmt, cfun, stmt, d->eh_map, 0);
6644 remove_stmt_from_eh_lp_fn (cfun, stmt);
6646 gimple_duplicate_stmt_histograms (dest_cfun, stmt, cfun, stmt);
6647 gimple_remove_stmt_histograms (cfun, stmt);
6649 /* We cannot leave any operands allocated from the operand caches of
6650 the current function. */
6651 free_stmt_operands (cfun, stmt);
6652 push_cfun (dest_cfun);
6653 update_stmt (stmt);
6654 pop_cfun ();
6657 FOR_EACH_EDGE (e, ei, bb->succs)
6658 if (e->goto_locus != UNKNOWN_LOCATION)
6660 tree block = LOCATION_BLOCK (e->goto_locus);
6661 if (d->orig_block == NULL_TREE
6662 || block == d->orig_block)
6663 e->goto_locus = d->new_block ?
6664 COMBINE_LOCATION_DATA (line_table, e->goto_locus, d->new_block) :
6665 LOCATION_LOCUS (e->goto_locus);
6669 /* Examine the statements in BB (which is in SRC_CFUN); find and return
6670 the outermost EH region. Use REGION as the incoming base EH region. */
6672 static eh_region
6673 find_outermost_region_in_block (struct function *src_cfun,
6674 basic_block bb, eh_region region)
6676 gimple_stmt_iterator si;
6678 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
6680 gimple stmt = gsi_stmt (si);
6681 eh_region stmt_region;
6682 int lp_nr;
6684 lp_nr = lookup_stmt_eh_lp_fn (src_cfun, stmt);
6685 stmt_region = get_eh_region_from_lp_number_fn (src_cfun, lp_nr);
6686 if (stmt_region)
6688 if (region == NULL)
6689 region = stmt_region;
6690 else if (stmt_region != region)
6692 region = eh_region_outermost (src_cfun, stmt_region, region);
6693 gcc_assert (region != NULL);
6698 return region;
6701 static tree
6702 new_label_mapper (tree decl, void *data)
6704 htab_t hash = (htab_t) data;
6705 struct tree_map *m;
6706 void **slot;
6708 gcc_assert (TREE_CODE (decl) == LABEL_DECL);
6710 m = XNEW (struct tree_map);
6711 m->hash = DECL_UID (decl);
6712 m->base.from = decl;
6713 m->to = create_artificial_label (UNKNOWN_LOCATION);
6714 LABEL_DECL_UID (m->to) = LABEL_DECL_UID (decl);
6715 if (LABEL_DECL_UID (m->to) >= cfun->cfg->last_label_uid)
6716 cfun->cfg->last_label_uid = LABEL_DECL_UID (m->to) + 1;
6718 slot = htab_find_slot_with_hash (hash, m, m->hash, INSERT);
6719 gcc_assert (*slot == NULL);
6721 *slot = m;
6723 return m->to;
6726 /* Change DECL_CONTEXT of all BLOCK_VARS in block, including
6727 subblocks. */
6729 static void
6730 replace_block_vars_by_duplicates (tree block, struct pointer_map_t *vars_map,
6731 tree to_context)
6733 tree *tp, t;
6735 for (tp = &BLOCK_VARS (block); *tp; tp = &DECL_CHAIN (*tp))
6737 t = *tp;
6738 if (TREE_CODE (t) != VAR_DECL && TREE_CODE (t) != CONST_DECL)
6739 continue;
6740 replace_by_duplicate_decl (&t, vars_map, to_context);
6741 if (t != *tp)
6743 if (TREE_CODE (*tp) == VAR_DECL && DECL_HAS_VALUE_EXPR_P (*tp))
6745 SET_DECL_VALUE_EXPR (t, DECL_VALUE_EXPR (*tp));
6746 DECL_HAS_VALUE_EXPR_P (t) = 1;
6748 DECL_CHAIN (t) = DECL_CHAIN (*tp);
6749 *tp = t;
6753 for (block = BLOCK_SUBBLOCKS (block); block; block = BLOCK_CHAIN (block))
6754 replace_block_vars_by_duplicates (block, vars_map, to_context);
6757 /* Fixup the loop arrays and numbers after moving LOOP and its subloops
6758 from FN1 to FN2. */
6760 static void
6761 fixup_loop_arrays_after_move (struct function *fn1, struct function *fn2,
6762 struct loop *loop)
6764 /* Discard it from the old loop array. */
6765 (*get_loops (fn1))[loop->num] = NULL;
6767 /* Place it in the new loop array, assigning it a new number. */
6768 loop->num = number_of_loops (fn2);
6769 vec_safe_push (loops_for_fn (fn2)->larray, loop);
6771 /* Recurse to children. */
6772 for (loop = loop->inner; loop; loop = loop->next)
6773 fixup_loop_arrays_after_move (fn1, fn2, loop);
6776 /* Move a single-entry, single-exit region delimited by ENTRY_BB and
6777 EXIT_BB to function DEST_CFUN. The whole region is replaced by a
6778 single basic block in the original CFG and the new basic block is
6779 returned. DEST_CFUN must not have a CFG yet.
6781 Note that the region need not be a pure SESE region. Blocks inside
6782 the region may contain calls to abort/exit. The only restriction
6783 is that ENTRY_BB should be the only entry point and it must
6784 dominate EXIT_BB.
6786 Change TREE_BLOCK of all statements in ORIG_BLOCK to the new
6787 functions outermost BLOCK, move all subblocks of ORIG_BLOCK
6788 to the new function.
6790 All local variables referenced in the region are assumed to be in
6791 the corresponding BLOCK_VARS and unexpanded variable lists
6792 associated with DEST_CFUN. */
6794 basic_block
6795 move_sese_region_to_fn (struct function *dest_cfun, basic_block entry_bb,
6796 basic_block exit_bb, tree orig_block)
6798 vec<basic_block> bbs, dom_bbs;
6799 basic_block dom_entry = get_immediate_dominator (CDI_DOMINATORS, entry_bb);
6800 basic_block after, bb, *entry_pred, *exit_succ, abb;
6801 struct function *saved_cfun = cfun;
6802 int *entry_flag, *exit_flag;
6803 unsigned *entry_prob, *exit_prob;
6804 unsigned i, num_entry_edges, num_exit_edges, num_nodes;
6805 edge e;
6806 edge_iterator ei;
6807 htab_t new_label_map;
6808 struct pointer_map_t *vars_map, *eh_map;
6809 struct loop *loop = entry_bb->loop_father;
6810 struct loop *loop0 = get_loop (saved_cfun, 0);
6811 struct move_stmt_d d;
6813 /* If ENTRY does not strictly dominate EXIT, this cannot be an SESE
6814 region. */
6815 gcc_assert (entry_bb != exit_bb
6816 && (!exit_bb
6817 || dominated_by_p (CDI_DOMINATORS, exit_bb, entry_bb)));
6819 /* Collect all the blocks in the region. Manually add ENTRY_BB
6820 because it won't be added by dfs_enumerate_from. */
6821 bbs.create (0);
6822 bbs.safe_push (entry_bb);
6823 gather_blocks_in_sese_region (entry_bb, exit_bb, &bbs);
6825 /* The blocks that used to be dominated by something in BBS will now be
6826 dominated by the new block. */
6827 dom_bbs = get_dominated_by_region (CDI_DOMINATORS,
6828 bbs.address (),
6829 bbs.length ());
6831 /* Detach ENTRY_BB and EXIT_BB from CFUN->CFG. We need to remember
6832 the predecessor edges to ENTRY_BB and the successor edges to
6833 EXIT_BB so that we can re-attach them to the new basic block that
6834 will replace the region. */
6835 num_entry_edges = EDGE_COUNT (entry_bb->preds);
6836 entry_pred = XNEWVEC (basic_block, num_entry_edges);
6837 entry_flag = XNEWVEC (int, num_entry_edges);
6838 entry_prob = XNEWVEC (unsigned, num_entry_edges);
6839 i = 0;
6840 for (ei = ei_start (entry_bb->preds); (e = ei_safe_edge (ei)) != NULL;)
6842 entry_prob[i] = e->probability;
6843 entry_flag[i] = e->flags;
6844 entry_pred[i++] = e->src;
6845 remove_edge (e);
6848 if (exit_bb)
6850 num_exit_edges = EDGE_COUNT (exit_bb->succs);
6851 exit_succ = XNEWVEC (basic_block, num_exit_edges);
6852 exit_flag = XNEWVEC (int, num_exit_edges);
6853 exit_prob = XNEWVEC (unsigned, num_exit_edges);
6854 i = 0;
6855 for (ei = ei_start (exit_bb->succs); (e = ei_safe_edge (ei)) != NULL;)
6857 exit_prob[i] = e->probability;
6858 exit_flag[i] = e->flags;
6859 exit_succ[i++] = e->dest;
6860 remove_edge (e);
6863 else
6865 num_exit_edges = 0;
6866 exit_succ = NULL;
6867 exit_flag = NULL;
6868 exit_prob = NULL;
6871 /* Switch context to the child function to initialize DEST_FN's CFG. */
6872 gcc_assert (dest_cfun->cfg == NULL);
6873 push_cfun (dest_cfun);
6875 init_empty_tree_cfg ();
6877 /* Initialize EH information for the new function. */
6878 eh_map = NULL;
6879 new_label_map = NULL;
6880 if (saved_cfun->eh)
6882 eh_region region = NULL;
6884 FOR_EACH_VEC_ELT (bbs, i, bb)
6885 region = find_outermost_region_in_block (saved_cfun, bb, region);
6887 init_eh_for_function ();
6888 if (region != NULL)
6890 new_label_map = htab_create (17, tree_map_hash, tree_map_eq, free);
6891 eh_map = duplicate_eh_regions (saved_cfun, region, 0,
6892 new_label_mapper, new_label_map);
6896 /* Initialize an empty loop tree. */
6897 struct loops *loops = ggc_alloc_cleared_loops ();
6898 init_loops_structure (dest_cfun, loops, 1);
6899 loops->state = LOOPS_MAY_HAVE_MULTIPLE_LATCHES;
6900 set_loops_for_fn (dest_cfun, loops);
6902 /* Move the outlined loop tree part. */
6903 num_nodes = bbs.length ();
6904 FOR_EACH_VEC_ELT (bbs, i, bb)
6906 if (bb->loop_father->header == bb)
6908 struct loop *this_loop = bb->loop_father;
6909 struct loop *outer = loop_outer (this_loop);
6910 if (outer == loop
6911 /* If the SESE region contains some bbs ending with
6912 a noreturn call, those are considered to belong
6913 to the outermost loop in saved_cfun, rather than
6914 the entry_bb's loop_father. */
6915 || outer == loop0)
6917 if (outer != loop)
6918 num_nodes -= this_loop->num_nodes;
6919 flow_loop_tree_node_remove (bb->loop_father);
6920 flow_loop_tree_node_add (get_loop (dest_cfun, 0), this_loop);
6921 fixup_loop_arrays_after_move (saved_cfun, cfun, this_loop);
6924 else if (bb->loop_father == loop0 && loop0 != loop)
6925 num_nodes--;
6927 /* Remove loop exits from the outlined region. */
6928 if (loops_for_fn (saved_cfun)->exits)
6929 FOR_EACH_EDGE (e, ei, bb->succs)
6931 void **slot = htab_find_slot_with_hash
6932 (loops_for_fn (saved_cfun)->exits, e,
6933 htab_hash_pointer (e), NO_INSERT);
6934 if (slot)
6935 htab_clear_slot (loops_for_fn (saved_cfun)->exits, slot);
6940 /* Adjust the number of blocks in the tree root of the outlined part. */
6941 get_loop (dest_cfun, 0)->num_nodes = bbs.length () + 2;
6943 /* Setup a mapping to be used by move_block_to_fn. */
6944 loop->aux = current_loops->tree_root;
6945 loop0->aux = current_loops->tree_root;
6947 pop_cfun ();
6949 /* Move blocks from BBS into DEST_CFUN. */
6950 gcc_assert (bbs.length () >= 2);
6951 after = dest_cfun->cfg->x_entry_block_ptr;
6952 vars_map = pointer_map_create ();
6954 memset (&d, 0, sizeof (d));
6955 d.orig_block = orig_block;
6956 d.new_block = DECL_INITIAL (dest_cfun->decl);
6957 d.from_context = cfun->decl;
6958 d.to_context = dest_cfun->decl;
6959 d.vars_map = vars_map;
6960 d.new_label_map = new_label_map;
6961 d.eh_map = eh_map;
6962 d.remap_decls_p = true;
6964 FOR_EACH_VEC_ELT (bbs, i, bb)
6966 /* No need to update edge counts on the last block. It has
6967 already been updated earlier when we detached the region from
6968 the original CFG. */
6969 move_block_to_fn (dest_cfun, bb, after, bb != exit_bb, &d);
6970 after = bb;
6973 loop->aux = NULL;
6974 loop0->aux = NULL;
6975 /* Loop sizes are no longer correct, fix them up. */
6976 loop->num_nodes -= num_nodes;
6977 for (struct loop *outer = loop_outer (loop);
6978 outer; outer = loop_outer (outer))
6979 outer->num_nodes -= num_nodes;
6980 loop0->num_nodes -= bbs.length () - num_nodes;
6982 if (saved_cfun->has_simduid_loops || saved_cfun->has_force_vect_loops)
6984 struct loop *aloop;
6985 for (i = 0; vec_safe_iterate (loops->larray, i, &aloop); i++)
6986 if (aloop != NULL)
6988 if (aloop->simduid)
6990 replace_by_duplicate_decl (&aloop->simduid, d.vars_map,
6991 d.to_context);
6992 dest_cfun->has_simduid_loops = true;
6994 if (aloop->force_vect)
6995 dest_cfun->has_force_vect_loops = true;
6999 /* Rewire BLOCK_SUBBLOCKS of orig_block. */
7000 if (orig_block)
7002 tree block;
7003 gcc_assert (BLOCK_SUBBLOCKS (DECL_INITIAL (dest_cfun->decl))
7004 == NULL_TREE);
7005 BLOCK_SUBBLOCKS (DECL_INITIAL (dest_cfun->decl))
7006 = BLOCK_SUBBLOCKS (orig_block);
7007 for (block = BLOCK_SUBBLOCKS (orig_block);
7008 block; block = BLOCK_CHAIN (block))
7009 BLOCK_SUPERCONTEXT (block) = DECL_INITIAL (dest_cfun->decl);
7010 BLOCK_SUBBLOCKS (orig_block) = NULL_TREE;
7013 replace_block_vars_by_duplicates (DECL_INITIAL (dest_cfun->decl),
7014 vars_map, dest_cfun->decl);
7016 if (new_label_map)
7017 htab_delete (new_label_map);
7018 if (eh_map)
7019 pointer_map_destroy (eh_map);
7020 pointer_map_destroy (vars_map);
7022 /* Rewire the entry and exit blocks. The successor to the entry
7023 block turns into the successor of DEST_FN's ENTRY_BLOCK_PTR in
7024 the child function. Similarly, the predecessor of DEST_FN's
7025 EXIT_BLOCK_PTR turns into the predecessor of EXIT_BLOCK_PTR. We
7026 need to switch CFUN between DEST_CFUN and SAVED_CFUN so that the
7027 various CFG manipulation function get to the right CFG.
7029 FIXME, this is silly. The CFG ought to become a parameter to
7030 these helpers. */
7031 push_cfun (dest_cfun);
7032 make_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun), entry_bb, EDGE_FALLTHRU);
7033 if (exit_bb)
7034 make_edge (exit_bb, EXIT_BLOCK_PTR_FOR_FN (cfun), 0);
7035 pop_cfun ();
7037 /* Back in the original function, the SESE region has disappeared,
7038 create a new basic block in its place. */
7039 bb = create_empty_bb (entry_pred[0]);
7040 if (current_loops)
7041 add_bb_to_loop (bb, loop);
7042 for (i = 0; i < num_entry_edges; i++)
7044 e = make_edge (entry_pred[i], bb, entry_flag[i]);
7045 e->probability = entry_prob[i];
7048 for (i = 0; i < num_exit_edges; i++)
7050 e = make_edge (bb, exit_succ[i], exit_flag[i]);
7051 e->probability = exit_prob[i];
7054 set_immediate_dominator (CDI_DOMINATORS, bb, dom_entry);
7055 FOR_EACH_VEC_ELT (dom_bbs, i, abb)
7056 set_immediate_dominator (CDI_DOMINATORS, abb, bb);
7057 dom_bbs.release ();
7059 if (exit_bb)
7061 free (exit_prob);
7062 free (exit_flag);
7063 free (exit_succ);
7065 free (entry_prob);
7066 free (entry_flag);
7067 free (entry_pred);
7068 bbs.release ();
7070 return bb;
7074 /* Dump FUNCTION_DECL FN to file FILE using FLAGS (see TDF_* in dumpfile.h)
7077 void
7078 dump_function_to_file (tree fndecl, FILE *file, int flags)
7080 tree arg, var, old_current_fndecl = current_function_decl;
7081 struct function *dsf;
7082 bool ignore_topmost_bind = false, any_var = false;
7083 basic_block bb;
7084 tree chain;
7085 bool tmclone = (TREE_CODE (fndecl) == FUNCTION_DECL
7086 && decl_is_tm_clone (fndecl));
7087 struct function *fun = DECL_STRUCT_FUNCTION (fndecl);
7089 current_function_decl = fndecl;
7090 fprintf (file, "%s %s(", function_name (fun), tmclone ? "[tm-clone] " : "");
7092 arg = DECL_ARGUMENTS (fndecl);
7093 while (arg)
7095 print_generic_expr (file, TREE_TYPE (arg), dump_flags);
7096 fprintf (file, " ");
7097 print_generic_expr (file, arg, dump_flags);
7098 if (flags & TDF_VERBOSE)
7099 print_node (file, "", arg, 4);
7100 if (DECL_CHAIN (arg))
7101 fprintf (file, ", ");
7102 arg = DECL_CHAIN (arg);
7104 fprintf (file, ")\n");
7106 if (flags & TDF_VERBOSE)
7107 print_node (file, "", fndecl, 2);
7109 dsf = DECL_STRUCT_FUNCTION (fndecl);
7110 if (dsf && (flags & TDF_EH))
7111 dump_eh_tree (file, dsf);
7113 if (flags & TDF_RAW && !gimple_has_body_p (fndecl))
7115 dump_node (fndecl, TDF_SLIM | flags, file);
7116 current_function_decl = old_current_fndecl;
7117 return;
7120 /* When GIMPLE is lowered, the variables are no longer available in
7121 BIND_EXPRs, so display them separately. */
7122 if (fun && fun->decl == fndecl && (fun->curr_properties & PROP_gimple_lcf))
7124 unsigned ix;
7125 ignore_topmost_bind = true;
7127 fprintf (file, "{\n");
7128 if (!vec_safe_is_empty (fun->local_decls))
7129 FOR_EACH_LOCAL_DECL (fun, ix, var)
7131 print_generic_decl (file, var, flags);
7132 if (flags & TDF_VERBOSE)
7133 print_node (file, "", var, 4);
7134 fprintf (file, "\n");
7136 any_var = true;
7138 if (gimple_in_ssa_p (cfun))
7139 for (ix = 1; ix < num_ssa_names; ++ix)
7141 tree name = ssa_name (ix);
7142 if (name && !SSA_NAME_VAR (name))
7144 fprintf (file, " ");
7145 print_generic_expr (file, TREE_TYPE (name), flags);
7146 fprintf (file, " ");
7147 print_generic_expr (file, name, flags);
7148 fprintf (file, ";\n");
7150 any_var = true;
7155 if (fun && fun->decl == fndecl
7156 && fun->cfg
7157 && basic_block_info_for_fn (fun))
7159 /* If the CFG has been built, emit a CFG-based dump. */
7160 if (!ignore_topmost_bind)
7161 fprintf (file, "{\n");
7163 if (any_var && n_basic_blocks_for_fn (fun))
7164 fprintf (file, "\n");
7166 FOR_EACH_BB_FN (bb, fun)
7167 dump_bb (file, bb, 2, flags | TDF_COMMENT);
7169 fprintf (file, "}\n");
7171 else if (DECL_SAVED_TREE (fndecl) == NULL)
7173 /* The function is now in GIMPLE form but the CFG has not been
7174 built yet. Emit the single sequence of GIMPLE statements
7175 that make up its body. */
7176 gimple_seq body = gimple_body (fndecl);
7178 if (gimple_seq_first_stmt (body)
7179 && gimple_seq_first_stmt (body) == gimple_seq_last_stmt (body)
7180 && gimple_code (gimple_seq_first_stmt (body)) == GIMPLE_BIND)
7181 print_gimple_seq (file, body, 0, flags);
7182 else
7184 if (!ignore_topmost_bind)
7185 fprintf (file, "{\n");
7187 if (any_var)
7188 fprintf (file, "\n");
7190 print_gimple_seq (file, body, 2, flags);
7191 fprintf (file, "}\n");
7194 else
7196 int indent;
7198 /* Make a tree based dump. */
7199 chain = DECL_SAVED_TREE (fndecl);
7200 if (chain && TREE_CODE (chain) == BIND_EXPR)
7202 if (ignore_topmost_bind)
7204 chain = BIND_EXPR_BODY (chain);
7205 indent = 2;
7207 else
7208 indent = 0;
7210 else
7212 if (!ignore_topmost_bind)
7213 fprintf (file, "{\n");
7214 indent = 2;
7217 if (any_var)
7218 fprintf (file, "\n");
7220 print_generic_stmt_indented (file, chain, flags, indent);
7221 if (ignore_topmost_bind)
7222 fprintf (file, "}\n");
7225 if (flags & TDF_ENUMERATE_LOCALS)
7226 dump_enumerated_decls (file, flags);
7227 fprintf (file, "\n\n");
7229 current_function_decl = old_current_fndecl;
7232 /* Dump FUNCTION_DECL FN to stderr using FLAGS (see TDF_* in tree.h) */
7234 DEBUG_FUNCTION void
7235 debug_function (tree fn, int flags)
7237 dump_function_to_file (fn, stderr, flags);
7241 /* Print on FILE the indexes for the predecessors of basic_block BB. */
7243 static void
7244 print_pred_bbs (FILE *file, basic_block bb)
7246 edge e;
7247 edge_iterator ei;
7249 FOR_EACH_EDGE (e, ei, bb->preds)
7250 fprintf (file, "bb_%d ", e->src->index);
7254 /* Print on FILE the indexes for the successors of basic_block BB. */
7256 static void
7257 print_succ_bbs (FILE *file, basic_block bb)
7259 edge e;
7260 edge_iterator ei;
7262 FOR_EACH_EDGE (e, ei, bb->succs)
7263 fprintf (file, "bb_%d ", e->dest->index);
7266 /* Print to FILE the basic block BB following the VERBOSITY level. */
7268 void
7269 print_loops_bb (FILE *file, basic_block bb, int indent, int verbosity)
7271 char *s_indent = (char *) alloca ((size_t) indent + 1);
7272 memset ((void *) s_indent, ' ', (size_t) indent);
7273 s_indent[indent] = '\0';
7275 /* Print basic_block's header. */
7276 if (verbosity >= 2)
7278 fprintf (file, "%s bb_%d (preds = {", s_indent, bb->index);
7279 print_pred_bbs (file, bb);
7280 fprintf (file, "}, succs = {");
7281 print_succ_bbs (file, bb);
7282 fprintf (file, "})\n");
7285 /* Print basic_block's body. */
7286 if (verbosity >= 3)
7288 fprintf (file, "%s {\n", s_indent);
7289 dump_bb (file, bb, indent + 4, TDF_VOPS|TDF_MEMSYMS);
7290 fprintf (file, "%s }\n", s_indent);
7294 static void print_loop_and_siblings (FILE *, struct loop *, int, int);
7296 /* Pretty print LOOP on FILE, indented INDENT spaces. Following
7297 VERBOSITY level this outputs the contents of the loop, or just its
7298 structure. */
7300 static void
7301 print_loop (FILE *file, struct loop *loop, int indent, int verbosity)
7303 char *s_indent;
7304 basic_block bb;
7306 if (loop == NULL)
7307 return;
7309 s_indent = (char *) alloca ((size_t) indent + 1);
7310 memset ((void *) s_indent, ' ', (size_t) indent);
7311 s_indent[indent] = '\0';
7313 /* Print loop's header. */
7314 fprintf (file, "%sloop_%d (", s_indent, loop->num);
7315 if (loop->header)
7316 fprintf (file, "header = %d", loop->header->index);
7317 else
7319 fprintf (file, "deleted)\n");
7320 return;
7322 if (loop->latch)
7323 fprintf (file, ", latch = %d", loop->latch->index);
7324 else
7325 fprintf (file, ", multiple latches");
7326 fprintf (file, ", niter = ");
7327 print_generic_expr (file, loop->nb_iterations, 0);
7329 if (loop->any_upper_bound)
7331 fprintf (file, ", upper_bound = ");
7332 dump_double_int (file, loop->nb_iterations_upper_bound, true);
7335 if (loop->any_estimate)
7337 fprintf (file, ", estimate = ");
7338 dump_double_int (file, loop->nb_iterations_estimate, true);
7340 fprintf (file, ")\n");
7342 /* Print loop's body. */
7343 if (verbosity >= 1)
7345 fprintf (file, "%s{\n", s_indent);
7346 FOR_EACH_BB_FN (bb, cfun)
7347 if (bb->loop_father == loop)
7348 print_loops_bb (file, bb, indent, verbosity);
7350 print_loop_and_siblings (file, loop->inner, indent + 2, verbosity);
7351 fprintf (file, "%s}\n", s_indent);
7355 /* Print the LOOP and its sibling loops on FILE, indented INDENT
7356 spaces. Following VERBOSITY level this outputs the contents of the
7357 loop, or just its structure. */
7359 static void
7360 print_loop_and_siblings (FILE *file, struct loop *loop, int indent,
7361 int verbosity)
7363 if (loop == NULL)
7364 return;
7366 print_loop (file, loop, indent, verbosity);
7367 print_loop_and_siblings (file, loop->next, indent, verbosity);
7370 /* Follow a CFG edge from the entry point of the program, and on entry
7371 of a loop, pretty print the loop structure on FILE. */
7373 void
7374 print_loops (FILE *file, int verbosity)
7376 basic_block bb;
7378 bb = ENTRY_BLOCK_PTR_FOR_FN (cfun);
7379 if (bb && bb->loop_father)
7380 print_loop_and_siblings (file, bb->loop_father, 0, verbosity);
7383 /* Dump a loop. */
7385 DEBUG_FUNCTION void
7386 debug (struct loop &ref)
7388 print_loop (stderr, &ref, 0, /*verbosity*/0);
7391 DEBUG_FUNCTION void
7392 debug (struct loop *ptr)
7394 if (ptr)
7395 debug (*ptr);
7396 else
7397 fprintf (stderr, "<nil>\n");
7400 /* Dump a loop verbosely. */
7402 DEBUG_FUNCTION void
7403 debug_verbose (struct loop &ref)
7405 print_loop (stderr, &ref, 0, /*verbosity*/3);
7408 DEBUG_FUNCTION void
7409 debug_verbose (struct loop *ptr)
7411 if (ptr)
7412 debug (*ptr);
7413 else
7414 fprintf (stderr, "<nil>\n");
7418 /* Debugging loops structure at tree level, at some VERBOSITY level. */
7420 DEBUG_FUNCTION void
7421 debug_loops (int verbosity)
7423 print_loops (stderr, verbosity);
7426 /* Print on stderr the code of LOOP, at some VERBOSITY level. */
7428 DEBUG_FUNCTION void
7429 debug_loop (struct loop *loop, int verbosity)
7431 print_loop (stderr, loop, 0, verbosity);
7434 /* Print on stderr the code of loop number NUM, at some VERBOSITY
7435 level. */
7437 DEBUG_FUNCTION void
7438 debug_loop_num (unsigned num, int verbosity)
7440 debug_loop (get_loop (cfun, num), verbosity);
7443 /* Return true if BB ends with a call, possibly followed by some
7444 instructions that must stay with the call. Return false,
7445 otherwise. */
7447 static bool
7448 gimple_block_ends_with_call_p (basic_block bb)
7450 gimple_stmt_iterator gsi = gsi_last_nondebug_bb (bb);
7451 return !gsi_end_p (gsi) && is_gimple_call (gsi_stmt (gsi));
7455 /* Return true if BB ends with a conditional branch. Return false,
7456 otherwise. */
7458 static bool
7459 gimple_block_ends_with_condjump_p (const_basic_block bb)
7461 gimple stmt = last_stmt (CONST_CAST_BB (bb));
7462 return (stmt && gimple_code (stmt) == GIMPLE_COND);
7466 /* Return true if we need to add fake edge to exit at statement T.
7467 Helper function for gimple_flow_call_edges_add. */
7469 static bool
7470 need_fake_edge_p (gimple t)
7472 tree fndecl = NULL_TREE;
7473 int call_flags = 0;
7475 /* NORETURN and LONGJMP calls already have an edge to exit.
7476 CONST and PURE calls do not need one.
7477 We don't currently check for CONST and PURE here, although
7478 it would be a good idea, because those attributes are
7479 figured out from the RTL in mark_constant_function, and
7480 the counter incrementation code from -fprofile-arcs
7481 leads to different results from -fbranch-probabilities. */
7482 if (is_gimple_call (t))
7484 fndecl = gimple_call_fndecl (t);
7485 call_flags = gimple_call_flags (t);
7488 if (is_gimple_call (t)
7489 && fndecl
7490 && DECL_BUILT_IN (fndecl)
7491 && (call_flags & ECF_NOTHROW)
7492 && !(call_flags & ECF_RETURNS_TWICE)
7493 /* fork() doesn't really return twice, but the effect of
7494 wrapping it in __gcov_fork() which calls __gcov_flush()
7495 and clears the counters before forking has the same
7496 effect as returning twice. Force a fake edge. */
7497 && !(DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
7498 && DECL_FUNCTION_CODE (fndecl) == BUILT_IN_FORK))
7499 return false;
7501 if (is_gimple_call (t))
7503 edge_iterator ei;
7504 edge e;
7505 basic_block bb;
7507 if (!(call_flags & ECF_NORETURN))
7508 return true;
7510 bb = gimple_bb (t);
7511 FOR_EACH_EDGE (e, ei, bb->succs)
7512 if ((e->flags & EDGE_FAKE) == 0)
7513 return true;
7516 if (gimple_code (t) == GIMPLE_ASM
7517 && (gimple_asm_volatile_p (t) || gimple_asm_input_p (t)))
7518 return true;
7520 return false;
7524 /* Add fake edges to the function exit for any non constant and non
7525 noreturn calls (or noreturn calls with EH/abnormal edges),
7526 volatile inline assembly in the bitmap of blocks specified by BLOCKS
7527 or to the whole CFG if BLOCKS is zero. Return the number of blocks
7528 that were split.
7530 The goal is to expose cases in which entering a basic block does
7531 not imply that all subsequent instructions must be executed. */
7533 static int
7534 gimple_flow_call_edges_add (sbitmap blocks)
7536 int i;
7537 int blocks_split = 0;
7538 int last_bb = last_basic_block_for_fn (cfun);
7539 bool check_last_block = false;
7541 if (n_basic_blocks_for_fn (cfun) == NUM_FIXED_BLOCKS)
7542 return 0;
7544 if (! blocks)
7545 check_last_block = true;
7546 else
7547 check_last_block = bitmap_bit_p (blocks,
7548 EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb->index);
7550 /* In the last basic block, before epilogue generation, there will be
7551 a fallthru edge to EXIT. Special care is required if the last insn
7552 of the last basic block is a call because make_edge folds duplicate
7553 edges, which would result in the fallthru edge also being marked
7554 fake, which would result in the fallthru edge being removed by
7555 remove_fake_edges, which would result in an invalid CFG.
7557 Moreover, we can't elide the outgoing fake edge, since the block
7558 profiler needs to take this into account in order to solve the minimal
7559 spanning tree in the case that the call doesn't return.
7561 Handle this by adding a dummy instruction in a new last basic block. */
7562 if (check_last_block)
7564 basic_block bb = EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb;
7565 gimple_stmt_iterator gsi = gsi_last_nondebug_bb (bb);
7566 gimple t = NULL;
7568 if (!gsi_end_p (gsi))
7569 t = gsi_stmt (gsi);
7571 if (t && need_fake_edge_p (t))
7573 edge e;
7575 e = find_edge (bb, EXIT_BLOCK_PTR_FOR_FN (cfun));
7576 if (e)
7578 gsi_insert_on_edge (e, gimple_build_nop ());
7579 gsi_commit_edge_inserts ();
7584 /* Now add fake edges to the function exit for any non constant
7585 calls since there is no way that we can determine if they will
7586 return or not... */
7587 for (i = 0; i < last_bb; i++)
7589 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, i);
7590 gimple_stmt_iterator gsi;
7591 gimple stmt, last_stmt;
7593 if (!bb)
7594 continue;
7596 if (blocks && !bitmap_bit_p (blocks, i))
7597 continue;
7599 gsi = gsi_last_nondebug_bb (bb);
7600 if (!gsi_end_p (gsi))
7602 last_stmt = gsi_stmt (gsi);
7605 stmt = gsi_stmt (gsi);
7606 if (need_fake_edge_p (stmt))
7608 edge e;
7610 /* The handling above of the final block before the
7611 epilogue should be enough to verify that there is
7612 no edge to the exit block in CFG already.
7613 Calling make_edge in such case would cause us to
7614 mark that edge as fake and remove it later. */
7615 #ifdef ENABLE_CHECKING
7616 if (stmt == last_stmt)
7618 e = find_edge (bb, EXIT_BLOCK_PTR_FOR_FN (cfun));
7619 gcc_assert (e == NULL);
7621 #endif
7623 /* Note that the following may create a new basic block
7624 and renumber the existing basic blocks. */
7625 if (stmt != last_stmt)
7627 e = split_block (bb, stmt);
7628 if (e)
7629 blocks_split++;
7631 make_edge (bb, EXIT_BLOCK_PTR_FOR_FN (cfun), EDGE_FAKE);
7633 gsi_prev (&gsi);
7635 while (!gsi_end_p (gsi));
7639 if (blocks_split)
7640 verify_flow_info ();
7642 return blocks_split;
7645 /* Removes edge E and all the blocks dominated by it, and updates dominance
7646 information. The IL in E->src needs to be updated separately.
7647 If dominance info is not available, only the edge E is removed.*/
7649 void
7650 remove_edge_and_dominated_blocks (edge e)
7652 vec<basic_block> bbs_to_remove = vNULL;
7653 vec<basic_block> bbs_to_fix_dom = vNULL;
7654 bitmap df, df_idom;
7655 edge f;
7656 edge_iterator ei;
7657 bool none_removed = false;
7658 unsigned i;
7659 basic_block bb, dbb;
7660 bitmap_iterator bi;
7662 if (!dom_info_available_p (CDI_DOMINATORS))
7664 remove_edge (e);
7665 return;
7668 /* No updating is needed for edges to exit. */
7669 if (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
7671 if (cfgcleanup_altered_bbs)
7672 bitmap_set_bit (cfgcleanup_altered_bbs, e->src->index);
7673 remove_edge (e);
7674 return;
7677 /* First, we find the basic blocks to remove. If E->dest has a predecessor
7678 that is not dominated by E->dest, then this set is empty. Otherwise,
7679 all the basic blocks dominated by E->dest are removed.
7681 Also, to DF_IDOM we store the immediate dominators of the blocks in
7682 the dominance frontier of E (i.e., of the successors of the
7683 removed blocks, if there are any, and of E->dest otherwise). */
7684 FOR_EACH_EDGE (f, ei, e->dest->preds)
7686 if (f == e)
7687 continue;
7689 if (!dominated_by_p (CDI_DOMINATORS, f->src, e->dest))
7691 none_removed = true;
7692 break;
7696 df = BITMAP_ALLOC (NULL);
7697 df_idom = BITMAP_ALLOC (NULL);
7699 if (none_removed)
7700 bitmap_set_bit (df_idom,
7701 get_immediate_dominator (CDI_DOMINATORS, e->dest)->index);
7702 else
7704 bbs_to_remove = get_all_dominated_blocks (CDI_DOMINATORS, e->dest);
7705 FOR_EACH_VEC_ELT (bbs_to_remove, i, bb)
7707 FOR_EACH_EDGE (f, ei, bb->succs)
7709 if (f->dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
7710 bitmap_set_bit (df, f->dest->index);
7713 FOR_EACH_VEC_ELT (bbs_to_remove, i, bb)
7714 bitmap_clear_bit (df, bb->index);
7716 EXECUTE_IF_SET_IN_BITMAP (df, 0, i, bi)
7718 bb = BASIC_BLOCK_FOR_FN (cfun, i);
7719 bitmap_set_bit (df_idom,
7720 get_immediate_dominator (CDI_DOMINATORS, bb)->index);
7724 if (cfgcleanup_altered_bbs)
7726 /* Record the set of the altered basic blocks. */
7727 bitmap_set_bit (cfgcleanup_altered_bbs, e->src->index);
7728 bitmap_ior_into (cfgcleanup_altered_bbs, df);
7731 /* Remove E and the cancelled blocks. */
7732 if (none_removed)
7733 remove_edge (e);
7734 else
7736 /* Walk backwards so as to get a chance to substitute all
7737 released DEFs into debug stmts. See
7738 eliminate_unnecessary_stmts() in tree-ssa-dce.c for more
7739 details. */
7740 for (i = bbs_to_remove.length (); i-- > 0; )
7741 delete_basic_block (bbs_to_remove[i]);
7744 /* Update the dominance information. The immediate dominator may change only
7745 for blocks whose immediate dominator belongs to DF_IDOM:
7747 Suppose that idom(X) = Y before removal of E and idom(X) != Y after the
7748 removal. Let Z the arbitrary block such that idom(Z) = Y and
7749 Z dominates X after the removal. Before removal, there exists a path P
7750 from Y to X that avoids Z. Let F be the last edge on P that is
7751 removed, and let W = F->dest. Before removal, idom(W) = Y (since Y
7752 dominates W, and because of P, Z does not dominate W), and W belongs to
7753 the dominance frontier of E. Therefore, Y belongs to DF_IDOM. */
7754 EXECUTE_IF_SET_IN_BITMAP (df_idom, 0, i, bi)
7756 bb = BASIC_BLOCK_FOR_FN (cfun, i);
7757 for (dbb = first_dom_son (CDI_DOMINATORS, bb);
7758 dbb;
7759 dbb = next_dom_son (CDI_DOMINATORS, dbb))
7760 bbs_to_fix_dom.safe_push (dbb);
7763 iterate_fix_dominators (CDI_DOMINATORS, bbs_to_fix_dom, true);
7765 BITMAP_FREE (df);
7766 BITMAP_FREE (df_idom);
7767 bbs_to_remove.release ();
7768 bbs_to_fix_dom.release ();
7771 /* Purge dead EH edges from basic block BB. */
7773 bool
7774 gimple_purge_dead_eh_edges (basic_block bb)
7776 bool changed = false;
7777 edge e;
7778 edge_iterator ei;
7779 gimple stmt = last_stmt (bb);
7781 if (stmt && stmt_can_throw_internal (stmt))
7782 return false;
7784 for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
7786 if (e->flags & EDGE_EH)
7788 remove_edge_and_dominated_blocks (e);
7789 changed = true;
7791 else
7792 ei_next (&ei);
7795 return changed;
7798 /* Purge dead EH edges from basic block listed in BLOCKS. */
7800 bool
7801 gimple_purge_all_dead_eh_edges (const_bitmap blocks)
7803 bool changed = false;
7804 unsigned i;
7805 bitmap_iterator bi;
7807 EXECUTE_IF_SET_IN_BITMAP (blocks, 0, i, bi)
7809 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, i);
7811 /* Earlier gimple_purge_dead_eh_edges could have removed
7812 this basic block already. */
7813 gcc_assert (bb || changed);
7814 if (bb != NULL)
7815 changed |= gimple_purge_dead_eh_edges (bb);
7818 return changed;
7821 /* Purge dead abnormal call edges from basic block BB. */
7823 bool
7824 gimple_purge_dead_abnormal_call_edges (basic_block bb)
7826 bool changed = false;
7827 edge e;
7828 edge_iterator ei;
7829 gimple stmt = last_stmt (bb);
7831 if (!cfun->has_nonlocal_label
7832 && !cfun->calls_setjmp)
7833 return false;
7835 if (stmt && stmt_can_make_abnormal_goto (stmt))
7836 return false;
7838 for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
7840 if (e->flags & EDGE_ABNORMAL)
7842 if (e->flags & EDGE_FALLTHRU)
7843 e->flags &= ~EDGE_ABNORMAL;
7844 else
7845 remove_edge_and_dominated_blocks (e);
7846 changed = true;
7848 else
7849 ei_next (&ei);
7852 return changed;
7855 /* Purge dead abnormal call edges from basic block listed in BLOCKS. */
7857 bool
7858 gimple_purge_all_dead_abnormal_call_edges (const_bitmap blocks)
7860 bool changed = false;
7861 unsigned i;
7862 bitmap_iterator bi;
7864 EXECUTE_IF_SET_IN_BITMAP (blocks, 0, i, bi)
7866 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, i);
7868 /* Earlier gimple_purge_dead_abnormal_call_edges could have removed
7869 this basic block already. */
7870 gcc_assert (bb || changed);
7871 if (bb != NULL)
7872 changed |= gimple_purge_dead_abnormal_call_edges (bb);
7875 return changed;
7878 /* This function is called whenever a new edge is created or
7879 redirected. */
7881 static void
7882 gimple_execute_on_growing_pred (edge e)
7884 basic_block bb = e->dest;
7886 if (!gimple_seq_empty_p (phi_nodes (bb)))
7887 reserve_phi_args_for_new_edge (bb);
7890 /* This function is called immediately before edge E is removed from
7891 the edge vector E->dest->preds. */
7893 static void
7894 gimple_execute_on_shrinking_pred (edge e)
7896 if (!gimple_seq_empty_p (phi_nodes (e->dest)))
7897 remove_phi_args (e);
7900 /*---------------------------------------------------------------------------
7901 Helper functions for Loop versioning
7902 ---------------------------------------------------------------------------*/
7904 /* Adjust phi nodes for 'first' basic block. 'second' basic block is a copy
7905 of 'first'. Both of them are dominated by 'new_head' basic block. When
7906 'new_head' was created by 'second's incoming edge it received phi arguments
7907 on the edge by split_edge(). Later, additional edge 'e' was created to
7908 connect 'new_head' and 'first'. Now this routine adds phi args on this
7909 additional edge 'e' that new_head to second edge received as part of edge
7910 splitting. */
7912 static void
7913 gimple_lv_adjust_loop_header_phi (basic_block first, basic_block second,
7914 basic_block new_head, edge e)
7916 gimple phi1, phi2;
7917 gimple_stmt_iterator psi1, psi2;
7918 tree def;
7919 edge e2 = find_edge (new_head, second);
7921 /* Because NEW_HEAD has been created by splitting SECOND's incoming
7922 edge, we should always have an edge from NEW_HEAD to SECOND. */
7923 gcc_assert (e2 != NULL);
7925 /* Browse all 'second' basic block phi nodes and add phi args to
7926 edge 'e' for 'first' head. PHI args are always in correct order. */
7928 for (psi2 = gsi_start_phis (second),
7929 psi1 = gsi_start_phis (first);
7930 !gsi_end_p (psi2) && !gsi_end_p (psi1);
7931 gsi_next (&psi2), gsi_next (&psi1))
7933 phi1 = gsi_stmt (psi1);
7934 phi2 = gsi_stmt (psi2);
7935 def = PHI_ARG_DEF (phi2, e2->dest_idx);
7936 add_phi_arg (phi1, def, e, gimple_phi_arg_location_from_edge (phi2, e2));
7941 /* Adds a if else statement to COND_BB with condition COND_EXPR.
7942 SECOND_HEAD is the destination of the THEN and FIRST_HEAD is
7943 the destination of the ELSE part. */
7945 static void
7946 gimple_lv_add_condition_to_bb (basic_block first_head ATTRIBUTE_UNUSED,
7947 basic_block second_head ATTRIBUTE_UNUSED,
7948 basic_block cond_bb, void *cond_e)
7950 gimple_stmt_iterator gsi;
7951 gimple new_cond_expr;
7952 tree cond_expr = (tree) cond_e;
7953 edge e0;
7955 /* Build new conditional expr */
7956 new_cond_expr = gimple_build_cond_from_tree (cond_expr,
7957 NULL_TREE, NULL_TREE);
7959 /* Add new cond in cond_bb. */
7960 gsi = gsi_last_bb (cond_bb);
7961 gsi_insert_after (&gsi, new_cond_expr, GSI_NEW_STMT);
7963 /* Adjust edges appropriately to connect new head with first head
7964 as well as second head. */
7965 e0 = single_succ_edge (cond_bb);
7966 e0->flags &= ~EDGE_FALLTHRU;
7967 e0->flags |= EDGE_FALSE_VALUE;
7971 /* Do book-keeping of basic block BB for the profile consistency checker.
7972 If AFTER_PASS is 0, do pre-pass accounting, or if AFTER_PASS is 1
7973 then do post-pass accounting. Store the counting in RECORD. */
7974 static void
7975 gimple_account_profile_record (basic_block bb, int after_pass,
7976 struct profile_record *record)
7978 gimple_stmt_iterator i;
7979 for (i = gsi_start_bb (bb); !gsi_end_p (i); gsi_next (&i))
7981 record->size[after_pass]
7982 += estimate_num_insns (gsi_stmt (i), &eni_size_weights);
7983 if (profile_status_for_fn (cfun) == PROFILE_READ)
7984 record->time[after_pass]
7985 += estimate_num_insns (gsi_stmt (i),
7986 &eni_time_weights) * bb->count;
7987 else if (profile_status_for_fn (cfun) == PROFILE_GUESSED)
7988 record->time[after_pass]
7989 += estimate_num_insns (gsi_stmt (i),
7990 &eni_time_weights) * bb->frequency;
7994 struct cfg_hooks gimple_cfg_hooks = {
7995 "gimple",
7996 gimple_verify_flow_info,
7997 gimple_dump_bb, /* dump_bb */
7998 gimple_dump_bb_for_graph, /* dump_bb_for_graph */
7999 create_bb, /* create_basic_block */
8000 gimple_redirect_edge_and_branch, /* redirect_edge_and_branch */
8001 gimple_redirect_edge_and_branch_force, /* redirect_edge_and_branch_force */
8002 gimple_can_remove_branch_p, /* can_remove_branch_p */
8003 remove_bb, /* delete_basic_block */
8004 gimple_split_block, /* split_block */
8005 gimple_move_block_after, /* move_block_after */
8006 gimple_can_merge_blocks_p, /* can_merge_blocks_p */
8007 gimple_merge_blocks, /* merge_blocks */
8008 gimple_predict_edge, /* predict_edge */
8009 gimple_predicted_by_p, /* predicted_by_p */
8010 gimple_can_duplicate_bb_p, /* can_duplicate_block_p */
8011 gimple_duplicate_bb, /* duplicate_block */
8012 gimple_split_edge, /* split_edge */
8013 gimple_make_forwarder_block, /* make_forward_block */
8014 NULL, /* tidy_fallthru_edge */
8015 NULL, /* force_nonfallthru */
8016 gimple_block_ends_with_call_p,/* block_ends_with_call_p */
8017 gimple_block_ends_with_condjump_p, /* block_ends_with_condjump_p */
8018 gimple_flow_call_edges_add, /* flow_call_edges_add */
8019 gimple_execute_on_growing_pred, /* execute_on_growing_pred */
8020 gimple_execute_on_shrinking_pred, /* execute_on_shrinking_pred */
8021 gimple_duplicate_loop_to_header_edge, /* duplicate loop for trees */
8022 gimple_lv_add_condition_to_bb, /* lv_add_condition_to_bb */
8023 gimple_lv_adjust_loop_header_phi, /* lv_adjust_loop_header_phi*/
8024 extract_true_false_edges_from_block, /* extract_cond_bb_edges */
8025 flush_pending_stmts, /* flush_pending_stmts */
8026 gimple_empty_block_p, /* block_empty_p */
8027 gimple_split_block_before_cond_jump, /* split_block_before_cond_jump */
8028 gimple_account_profile_record,
8032 /* Split all critical edges. */
8034 unsigned int
8035 split_critical_edges (void)
8037 basic_block bb;
8038 edge e;
8039 edge_iterator ei;
8041 /* split_edge can redirect edges out of SWITCH_EXPRs, which can get
8042 expensive. So we want to enable recording of edge to CASE_LABEL_EXPR
8043 mappings around the calls to split_edge. */
8044 start_recording_case_labels ();
8045 FOR_ALL_BB_FN (bb, cfun)
8047 FOR_EACH_EDGE (e, ei, bb->succs)
8049 if (EDGE_CRITICAL_P (e) && !(e->flags & EDGE_ABNORMAL))
8050 split_edge (e);
8051 /* PRE inserts statements to edges and expects that
8052 since split_critical_edges was done beforehand, committing edge
8053 insertions will not split more edges. In addition to critical
8054 edges we must split edges that have multiple successors and
8055 end by control flow statements, such as RESX.
8056 Go ahead and split them too. This matches the logic in
8057 gimple_find_edge_insert_loc. */
8058 else if ((!single_pred_p (e->dest)
8059 || !gimple_seq_empty_p (phi_nodes (e->dest))
8060 || e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
8061 && e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun)
8062 && !(e->flags & EDGE_ABNORMAL))
8064 gimple_stmt_iterator gsi;
8066 gsi = gsi_last_bb (e->src);
8067 if (!gsi_end_p (gsi)
8068 && stmt_ends_bb_p (gsi_stmt (gsi))
8069 && (gimple_code (gsi_stmt (gsi)) != GIMPLE_RETURN
8070 && !gimple_call_builtin_p (gsi_stmt (gsi),
8071 BUILT_IN_RETURN)))
8072 split_edge (e);
8076 end_recording_case_labels ();
8077 return 0;
8080 namespace {
8082 const pass_data pass_data_split_crit_edges =
8084 GIMPLE_PASS, /* type */
8085 "crited", /* name */
8086 OPTGROUP_NONE, /* optinfo_flags */
8087 false, /* has_gate */
8088 true, /* has_execute */
8089 TV_TREE_SPLIT_EDGES, /* tv_id */
8090 PROP_cfg, /* properties_required */
8091 PROP_no_crit_edges, /* properties_provided */
8092 0, /* properties_destroyed */
8093 0, /* todo_flags_start */
8094 TODO_verify_flow, /* todo_flags_finish */
8097 class pass_split_crit_edges : public gimple_opt_pass
8099 public:
8100 pass_split_crit_edges (gcc::context *ctxt)
8101 : gimple_opt_pass (pass_data_split_crit_edges, ctxt)
8104 /* opt_pass methods: */
8105 unsigned int execute () { return split_critical_edges (); }
8107 opt_pass * clone () { return new pass_split_crit_edges (m_ctxt); }
8108 }; // class pass_split_crit_edges
8110 } // anon namespace
8112 gimple_opt_pass *
8113 make_pass_split_crit_edges (gcc::context *ctxt)
8115 return new pass_split_crit_edges (ctxt);
8119 /* Build a ternary operation and gimplify it. Emit code before GSI.
8120 Return the gimple_val holding the result. */
8122 tree
8123 gimplify_build3 (gimple_stmt_iterator *gsi, enum tree_code code,
8124 tree type, tree a, tree b, tree c)
8126 tree ret;
8127 location_t loc = gimple_location (gsi_stmt (*gsi));
8129 ret = fold_build3_loc (loc, code, type, a, b, c);
8130 STRIP_NOPS (ret);
8132 return force_gimple_operand_gsi (gsi, ret, true, NULL, true,
8133 GSI_SAME_STMT);
8136 /* Build a binary operation and gimplify it. Emit code before GSI.
8137 Return the gimple_val holding the result. */
8139 tree
8140 gimplify_build2 (gimple_stmt_iterator *gsi, enum tree_code code,
8141 tree type, tree a, tree b)
8143 tree ret;
8145 ret = fold_build2_loc (gimple_location (gsi_stmt (*gsi)), code, type, a, b);
8146 STRIP_NOPS (ret);
8148 return force_gimple_operand_gsi (gsi, ret, true, NULL, true,
8149 GSI_SAME_STMT);
8152 /* Build a unary operation and gimplify it. Emit code before GSI.
8153 Return the gimple_val holding the result. */
8155 tree
8156 gimplify_build1 (gimple_stmt_iterator *gsi, enum tree_code code, tree type,
8157 tree a)
8159 tree ret;
8161 ret = fold_build1_loc (gimple_location (gsi_stmt (*gsi)), code, type, a);
8162 STRIP_NOPS (ret);
8164 return force_gimple_operand_gsi (gsi, ret, true, NULL, true,
8165 GSI_SAME_STMT);
8170 /* Emit return warnings. */
8172 static unsigned int
8173 execute_warn_function_return (void)
8175 source_location location;
8176 gimple last;
8177 edge e;
8178 edge_iterator ei;
8180 if (!targetm.warn_func_return (cfun->decl))
8181 return 0;
8183 /* If we have a path to EXIT, then we do return. */
8184 if (TREE_THIS_VOLATILE (cfun->decl)
8185 && EDGE_COUNT (EXIT_BLOCK_PTR_FOR_FN (cfun)->preds) > 0)
8187 location = UNKNOWN_LOCATION;
8188 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
8190 last = last_stmt (e->src);
8191 if ((gimple_code (last) == GIMPLE_RETURN
8192 || gimple_call_builtin_p (last, BUILT_IN_RETURN))
8193 && (location = gimple_location (last)) != UNKNOWN_LOCATION)
8194 break;
8196 if (location == UNKNOWN_LOCATION)
8197 location = cfun->function_end_locus;
8198 warning_at (location, 0, "%<noreturn%> function does return");
8201 /* If we see "return;" in some basic block, then we do reach the end
8202 without returning a value. */
8203 else if (warn_return_type
8204 && !TREE_NO_WARNING (cfun->decl)
8205 && EDGE_COUNT (EXIT_BLOCK_PTR_FOR_FN (cfun)->preds) > 0
8206 && !VOID_TYPE_P (TREE_TYPE (TREE_TYPE (cfun->decl))))
8208 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
8210 gimple last = last_stmt (e->src);
8211 if (gimple_code (last) == GIMPLE_RETURN
8212 && gimple_return_retval (last) == NULL
8213 && !gimple_no_warning_p (last))
8215 location = gimple_location (last);
8216 if (location == UNKNOWN_LOCATION)
8217 location = cfun->function_end_locus;
8218 warning_at (location, OPT_Wreturn_type, "control reaches end of non-void function");
8219 TREE_NO_WARNING (cfun->decl) = 1;
8220 break;
8224 return 0;
8228 /* Given a basic block B which ends with a conditional and has
8229 precisely two successors, determine which of the edges is taken if
8230 the conditional is true and which is taken if the conditional is
8231 false. Set TRUE_EDGE and FALSE_EDGE appropriately. */
8233 void
8234 extract_true_false_edges_from_block (basic_block b,
8235 edge *true_edge,
8236 edge *false_edge)
8238 edge e = EDGE_SUCC (b, 0);
8240 if (e->flags & EDGE_TRUE_VALUE)
8242 *true_edge = e;
8243 *false_edge = EDGE_SUCC (b, 1);
8245 else
8247 *false_edge = e;
8248 *true_edge = EDGE_SUCC (b, 1);
8252 namespace {
8254 const pass_data pass_data_warn_function_return =
8256 GIMPLE_PASS, /* type */
8257 "*warn_function_return", /* name */
8258 OPTGROUP_NONE, /* optinfo_flags */
8259 false, /* has_gate */
8260 true, /* has_execute */
8261 TV_NONE, /* tv_id */
8262 PROP_cfg, /* properties_required */
8263 0, /* properties_provided */
8264 0, /* properties_destroyed */
8265 0, /* todo_flags_start */
8266 0, /* todo_flags_finish */
8269 class pass_warn_function_return : public gimple_opt_pass
8271 public:
8272 pass_warn_function_return (gcc::context *ctxt)
8273 : gimple_opt_pass (pass_data_warn_function_return, ctxt)
8276 /* opt_pass methods: */
8277 unsigned int execute () { return execute_warn_function_return (); }
8279 }; // class pass_warn_function_return
8281 } // anon namespace
8283 gimple_opt_pass *
8284 make_pass_warn_function_return (gcc::context *ctxt)
8286 return new pass_warn_function_return (ctxt);
8289 /* Walk a gimplified function and warn for functions whose return value is
8290 ignored and attribute((warn_unused_result)) is set. This is done before
8291 inlining, so we don't have to worry about that. */
8293 static void
8294 do_warn_unused_result (gimple_seq seq)
8296 tree fdecl, ftype;
8297 gimple_stmt_iterator i;
8299 for (i = gsi_start (seq); !gsi_end_p (i); gsi_next (&i))
8301 gimple g = gsi_stmt (i);
8303 switch (gimple_code (g))
8305 case GIMPLE_BIND:
8306 do_warn_unused_result (gimple_bind_body (g));
8307 break;
8308 case GIMPLE_TRY:
8309 do_warn_unused_result (gimple_try_eval (g));
8310 do_warn_unused_result (gimple_try_cleanup (g));
8311 break;
8312 case GIMPLE_CATCH:
8313 do_warn_unused_result (gimple_catch_handler (g));
8314 break;
8315 case GIMPLE_EH_FILTER:
8316 do_warn_unused_result (gimple_eh_filter_failure (g));
8317 break;
8319 case GIMPLE_CALL:
8320 if (gimple_call_lhs (g))
8321 break;
8322 if (gimple_call_internal_p (g))
8323 break;
8325 /* This is a naked call, as opposed to a GIMPLE_CALL with an
8326 LHS. All calls whose value is ignored should be
8327 represented like this. Look for the attribute. */
8328 fdecl = gimple_call_fndecl (g);
8329 ftype = gimple_call_fntype (g);
8331 if (lookup_attribute ("warn_unused_result", TYPE_ATTRIBUTES (ftype)))
8333 location_t loc = gimple_location (g);
8335 if (fdecl)
8336 warning_at (loc, OPT_Wunused_result,
8337 "ignoring return value of %qD, "
8338 "declared with attribute warn_unused_result",
8339 fdecl);
8340 else
8341 warning_at (loc, OPT_Wunused_result,
8342 "ignoring return value of function "
8343 "declared with attribute warn_unused_result");
8345 break;
8347 default:
8348 /* Not a container, not a call, or a call whose value is used. */
8349 break;
8354 static unsigned int
8355 run_warn_unused_result (void)
8357 do_warn_unused_result (gimple_body (current_function_decl));
8358 return 0;
8361 static bool
8362 gate_warn_unused_result (void)
8364 return flag_warn_unused_result;
8367 namespace {
8369 const pass_data pass_data_warn_unused_result =
8371 GIMPLE_PASS, /* type */
8372 "*warn_unused_result", /* name */
8373 OPTGROUP_NONE, /* optinfo_flags */
8374 true, /* has_gate */
8375 true, /* has_execute */
8376 TV_NONE, /* tv_id */
8377 PROP_gimple_any, /* properties_required */
8378 0, /* properties_provided */
8379 0, /* properties_destroyed */
8380 0, /* todo_flags_start */
8381 0, /* todo_flags_finish */
8384 class pass_warn_unused_result : public gimple_opt_pass
8386 public:
8387 pass_warn_unused_result (gcc::context *ctxt)
8388 : gimple_opt_pass (pass_data_warn_unused_result, ctxt)
8391 /* opt_pass methods: */
8392 bool gate () { return gate_warn_unused_result (); }
8393 unsigned int execute () { return run_warn_unused_result (); }
8395 }; // class pass_warn_unused_result
8397 } // anon namespace
8399 gimple_opt_pass *
8400 make_pass_warn_unused_result (gcc::context *ctxt)
8402 return new pass_warn_unused_result (ctxt);
8405 /* IPA passes, compilation of earlier functions or inlining
8406 might have changed some properties, such as marked functions nothrow,
8407 pure, const or noreturn.
8408 Remove redundant edges and basic blocks, and create new ones if necessary.
8410 This pass can't be executed as stand alone pass from pass manager, because
8411 in between inlining and this fixup the verify_flow_info would fail. */
8413 unsigned int
8414 execute_fixup_cfg (void)
8416 basic_block bb;
8417 gimple_stmt_iterator gsi;
8418 int todo = gimple_in_ssa_p (cfun) ? TODO_verify_ssa : 0;
8419 gcov_type count_scale;
8420 edge e;
8421 edge_iterator ei;
8423 count_scale
8424 = GCOV_COMPUTE_SCALE (cgraph_get_node (current_function_decl)->count,
8425 ENTRY_BLOCK_PTR_FOR_FN (cfun)->count);
8427 ENTRY_BLOCK_PTR_FOR_FN (cfun)->count =
8428 cgraph_get_node (current_function_decl)->count;
8429 EXIT_BLOCK_PTR_FOR_FN (cfun)->count =
8430 apply_scale (EXIT_BLOCK_PTR_FOR_FN (cfun)->count,
8431 count_scale);
8433 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR_FOR_FN (cfun)->succs)
8434 e->count = apply_scale (e->count, count_scale);
8436 FOR_EACH_BB_FN (bb, cfun)
8438 bb->count = apply_scale (bb->count, count_scale);
8439 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
8441 gimple stmt = gsi_stmt (gsi);
8442 tree decl = is_gimple_call (stmt)
8443 ? gimple_call_fndecl (stmt)
8444 : NULL;
8445 if (decl)
8447 int flags = gimple_call_flags (stmt);
8448 if (flags & (ECF_CONST | ECF_PURE | ECF_LOOPING_CONST_OR_PURE))
8450 if (gimple_purge_dead_abnormal_call_edges (bb))
8451 todo |= TODO_cleanup_cfg;
8453 if (gimple_in_ssa_p (cfun))
8455 todo |= TODO_update_ssa | TODO_cleanup_cfg;
8456 update_stmt (stmt);
8460 if (flags & ECF_NORETURN
8461 && fixup_noreturn_call (stmt))
8462 todo |= TODO_cleanup_cfg;
8465 if (maybe_clean_eh_stmt (stmt)
8466 && gimple_purge_dead_eh_edges (bb))
8467 todo |= TODO_cleanup_cfg;
8470 FOR_EACH_EDGE (e, ei, bb->succs)
8471 e->count = apply_scale (e->count, count_scale);
8473 /* If we have a basic block with no successors that does not
8474 end with a control statement or a noreturn call end it with
8475 a call to __builtin_unreachable. This situation can occur
8476 when inlining a noreturn call that does in fact return. */
8477 if (EDGE_COUNT (bb->succs) == 0)
8479 gimple stmt = last_stmt (bb);
8480 if (!stmt
8481 || (!is_ctrl_stmt (stmt)
8482 && (!is_gimple_call (stmt)
8483 || (gimple_call_flags (stmt) & ECF_NORETURN) == 0)))
8485 if (stmt && is_gimple_call (stmt))
8486 gimple_call_set_ctrl_altering (stmt, false);
8487 stmt = gimple_build_call
8488 (builtin_decl_implicit (BUILT_IN_UNREACHABLE), 0);
8489 gimple_stmt_iterator gsi = gsi_last_bb (bb);
8490 gsi_insert_after (&gsi, stmt, GSI_NEW_STMT);
8494 if (count_scale != REG_BR_PROB_BASE)
8495 compute_function_frequency ();
8497 /* Dump a textual representation of the flowgraph. */
8498 if (dump_file)
8499 gimple_dump_cfg (dump_file, dump_flags);
8501 if (current_loops
8502 && (todo & TODO_cleanup_cfg))
8503 loops_state_set (LOOPS_NEED_FIXUP);
8505 return todo;
8508 namespace {
8510 const pass_data pass_data_fixup_cfg =
8512 GIMPLE_PASS, /* type */
8513 "*free_cfg_annotations", /* name */
8514 OPTGROUP_NONE, /* optinfo_flags */
8515 false, /* has_gate */
8516 true, /* has_execute */
8517 TV_NONE, /* tv_id */
8518 PROP_cfg, /* properties_required */
8519 0, /* properties_provided */
8520 0, /* properties_destroyed */
8521 0, /* todo_flags_start */
8522 0, /* todo_flags_finish */
8525 class pass_fixup_cfg : public gimple_opt_pass
8527 public:
8528 pass_fixup_cfg (gcc::context *ctxt)
8529 : gimple_opt_pass (pass_data_fixup_cfg, ctxt)
8532 /* opt_pass methods: */
8533 opt_pass * clone () { return new pass_fixup_cfg (m_ctxt); }
8534 unsigned int execute () { return execute_fixup_cfg (); }
8536 }; // class pass_fixup_cfg
8538 } // anon namespace
8540 gimple_opt_pass *
8541 make_pass_fixup_cfg (gcc::context *ctxt)
8543 return new pass_fixup_cfg (ctxt);
8546 /* Garbage collection support for edge_def. */
8548 extern void gt_ggc_mx (tree&);
8549 extern void gt_ggc_mx (gimple&);
8550 extern void gt_ggc_mx (rtx&);
8551 extern void gt_ggc_mx (basic_block&);
8553 void
8554 gt_ggc_mx (edge_def *e)
8556 tree block = LOCATION_BLOCK (e->goto_locus);
8557 gt_ggc_mx (e->src);
8558 gt_ggc_mx (e->dest);
8559 if (current_ir_type () == IR_GIMPLE)
8560 gt_ggc_mx (e->insns.g);
8561 else
8562 gt_ggc_mx (e->insns.r);
8563 gt_ggc_mx (block);
8566 /* PCH support for edge_def. */
8568 extern void gt_pch_nx (tree&);
8569 extern void gt_pch_nx (gimple&);
8570 extern void gt_pch_nx (rtx&);
8571 extern void gt_pch_nx (basic_block&);
8573 void
8574 gt_pch_nx (edge_def *e)
8576 tree block = LOCATION_BLOCK (e->goto_locus);
8577 gt_pch_nx (e->src);
8578 gt_pch_nx (e->dest);
8579 if (current_ir_type () == IR_GIMPLE)
8580 gt_pch_nx (e->insns.g);
8581 else
8582 gt_pch_nx (e->insns.r);
8583 gt_pch_nx (block);
8586 void
8587 gt_pch_nx (edge_def *e, gt_pointer_operator op, void *cookie)
8589 tree block = LOCATION_BLOCK (e->goto_locus);
8590 op (&(e->src), cookie);
8591 op (&(e->dest), cookie);
8592 if (current_ir_type () == IR_GIMPLE)
8593 op (&(e->insns.g), cookie);
8594 else
8595 op (&(e->insns.r), cookie);
8596 op (&(block), cookie);