Mark as release
[official-gcc.git] / gcc / predict.c
blob249433f912952979a71835087d8a9bd323a760d7
1 /* Branch prediction routines for the GNU compiler.
2 Copyright (C) 2000-2014 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* References:
22 [1] "Branch Prediction for Free"
23 Ball and Larus; PLDI '93.
24 [2] "Static Branch Frequency and Program Profile Analysis"
25 Wu and Larus; MICRO-27.
26 [3] "Corpus-based Static Branch Prediction"
27 Calder, Grunwald, Lindsay, Martin, Mozer, and Zorn; PLDI '95. */
30 #include "config.h"
31 #include "system.h"
32 #include "coretypes.h"
33 #include "tm.h"
34 #include "tree.h"
35 #include "calls.h"
36 #include "rtl.h"
37 #include "tm_p.h"
38 #include "hard-reg-set.h"
39 #include "basic-block.h"
40 #include "insn-config.h"
41 #include "regs.h"
42 #include "flags.h"
43 #include "function.h"
44 #include "except.h"
45 #include "diagnostic-core.h"
46 #include "recog.h"
47 #include "expr.h"
48 #include "predict.h"
49 #include "coverage.h"
50 #include "sreal.h"
51 #include "params.h"
52 #include "target.h"
53 #include "cfgloop.h"
54 #include "pointer-set.h"
55 #include "tree-ssa-alias.h"
56 #include "internal-fn.h"
57 #include "gimple-expr.h"
58 #include "is-a.h"
59 #include "gimple.h"
60 #include "gimple-iterator.h"
61 #include "gimple-ssa.h"
62 #include "cgraph.h"
63 #include "tree-cfg.h"
64 #include "tree-phinodes.h"
65 #include "ssa-iterators.h"
66 #include "tree-ssa-loop-niter.h"
67 #include "tree-ssa-loop.h"
68 #include "tree-pass.h"
69 #include "tree-scalar-evolution.h"
70 #include "cfgloop.h"
72 /* real constants: 0, 1, 1-1/REG_BR_PROB_BASE, REG_BR_PROB_BASE,
73 1/REG_BR_PROB_BASE, 0.5, BB_FREQ_MAX. */
74 static sreal real_zero, real_one, real_almost_one, real_br_prob_base,
75 real_inv_br_prob_base, real_one_half, real_bb_freq_max;
77 static void combine_predictions_for_insn (rtx, basic_block);
78 static void dump_prediction (FILE *, enum br_predictor, int, basic_block, int);
79 static void predict_paths_leading_to (basic_block, enum br_predictor, enum prediction);
80 static void predict_paths_leading_to_edge (edge, enum br_predictor, enum prediction);
81 static bool can_predict_insn_p (const_rtx);
83 /* Information we hold about each branch predictor.
84 Filled using information from predict.def. */
86 struct predictor_info
88 const char *const name; /* Name used in the debugging dumps. */
89 const int hitrate; /* Expected hitrate used by
90 predict_insn_def call. */
91 const int flags;
94 /* Use given predictor without Dempster-Shaffer theory if it matches
95 using first_match heuristics. */
96 #define PRED_FLAG_FIRST_MATCH 1
98 /* Recompute hitrate in percent to our representation. */
100 #define HITRATE(VAL) ((int) ((VAL) * REG_BR_PROB_BASE + 50) / 100)
102 #define DEF_PREDICTOR(ENUM, NAME, HITRATE, FLAGS) {NAME, HITRATE, FLAGS},
103 static const struct predictor_info predictor_info[]= {
104 #include "predict.def"
106 /* Upper bound on predictors. */
107 {NULL, 0, 0}
109 #undef DEF_PREDICTOR
111 /* Return TRUE if frequency FREQ is considered to be hot. */
113 static inline bool
114 maybe_hot_frequency_p (struct function *fun, int freq)
116 struct cgraph_node *node = cgraph_get_node (fun->decl);
117 if (!profile_info || !flag_branch_probabilities)
119 if (node->frequency == NODE_FREQUENCY_UNLIKELY_EXECUTED)
120 return false;
121 if (node->frequency == NODE_FREQUENCY_HOT)
122 return true;
124 if (profile_status_for_fn (fun) == PROFILE_ABSENT)
125 return true;
126 if (node->frequency == NODE_FREQUENCY_EXECUTED_ONCE
127 && freq < (ENTRY_BLOCK_PTR_FOR_FN (fun)->frequency * 2 / 3))
128 return false;
129 if (PARAM_VALUE (HOT_BB_FREQUENCY_FRACTION) == 0)
130 return false;
131 if (freq < (ENTRY_BLOCK_PTR_FOR_FN (fun)->frequency
132 / PARAM_VALUE (HOT_BB_FREQUENCY_FRACTION)))
133 return false;
134 return true;
137 static gcov_type min_count = -1;
139 /* Determine the threshold for hot BB counts. */
141 gcov_type
142 get_hot_bb_threshold ()
144 gcov_working_set_t *ws;
145 if (min_count == -1)
147 ws = find_working_set (PARAM_VALUE (HOT_BB_COUNT_WS_PERMILLE));
148 gcc_assert (ws);
149 min_count = ws->min_counter;
151 return min_count;
154 /* Set the threshold for hot BB counts. */
156 void
157 set_hot_bb_threshold (gcov_type min)
159 min_count = min;
162 /* Return TRUE if frequency FREQ is considered to be hot. */
164 static inline bool
165 maybe_hot_count_p (struct function *fun, gcov_type count)
167 if (fun && profile_status_for_fn (fun) != PROFILE_READ)
168 return true;
169 /* Code executed at most once is not hot. */
170 if (profile_info->runs >= count)
171 return false;
172 return (count >= get_hot_bb_threshold ());
175 /* Return true in case BB can be CPU intensive and should be optimized
176 for maximal performance. */
178 bool
179 maybe_hot_bb_p (struct function *fun, const_basic_block bb)
181 gcc_checking_assert (fun);
182 if (profile_status_for_fn (fun) == PROFILE_READ)
183 return maybe_hot_count_p (fun, bb->count);
184 return maybe_hot_frequency_p (fun, bb->frequency);
187 /* Return true if the call can be hot. */
189 bool
190 cgraph_maybe_hot_edge_p (struct cgraph_edge *edge)
192 if (profile_info && flag_branch_probabilities
193 && !maybe_hot_count_p (NULL,
194 edge->count))
195 return false;
196 if (edge->caller->frequency == NODE_FREQUENCY_UNLIKELY_EXECUTED
197 || (edge->callee
198 && edge->callee->frequency == NODE_FREQUENCY_UNLIKELY_EXECUTED))
199 return false;
200 if (edge->caller->frequency > NODE_FREQUENCY_UNLIKELY_EXECUTED
201 && (edge->callee
202 && edge->callee->frequency <= NODE_FREQUENCY_EXECUTED_ONCE))
203 return false;
204 if (optimize_size)
205 return false;
206 if (edge->caller->frequency == NODE_FREQUENCY_HOT)
207 return true;
208 if (edge->caller->frequency == NODE_FREQUENCY_EXECUTED_ONCE
209 && edge->frequency < CGRAPH_FREQ_BASE * 3 / 2)
210 return false;
211 if (flag_guess_branch_prob)
213 if (PARAM_VALUE (HOT_BB_FREQUENCY_FRACTION) == 0
214 || edge->frequency <= (CGRAPH_FREQ_BASE
215 / PARAM_VALUE (HOT_BB_FREQUENCY_FRACTION)))
216 return false;
218 return true;
221 /* Return true in case BB can be CPU intensive and should be optimized
222 for maximal performance. */
224 bool
225 maybe_hot_edge_p (edge e)
227 if (profile_status_for_fn (cfun) == PROFILE_READ)
228 return maybe_hot_count_p (cfun, e->count);
229 return maybe_hot_frequency_p (cfun, EDGE_FREQUENCY (e));
234 /* Return true if profile COUNT and FREQUENCY, or function FUN static
235 node frequency reflects never being executed. */
237 static bool
238 probably_never_executed (struct function *fun,
239 gcov_type count, int frequency)
241 gcc_checking_assert (fun);
242 if (profile_status_for_fn (cfun) == PROFILE_READ)
244 int unlikely_count_fraction = PARAM_VALUE (UNLIKELY_BB_COUNT_FRACTION);
245 if (count * unlikely_count_fraction >= profile_info->runs)
246 return false;
247 if (!frequency)
248 return true;
249 if (!ENTRY_BLOCK_PTR_FOR_FN (cfun)->frequency)
250 return false;
251 if (ENTRY_BLOCK_PTR_FOR_FN (cfun)->count)
253 gcov_type computed_count;
254 /* Check for possibility of overflow, in which case entry bb count
255 is large enough to do the division first without losing much
256 precision. */
257 if (ENTRY_BLOCK_PTR_FOR_FN (cfun)->count < REG_BR_PROB_BASE *
258 REG_BR_PROB_BASE)
260 gcov_type scaled_count
261 = frequency * ENTRY_BLOCK_PTR_FOR_FN (cfun)->count *
262 unlikely_count_fraction;
263 computed_count = RDIV (scaled_count,
264 ENTRY_BLOCK_PTR_FOR_FN (cfun)->frequency);
266 else
268 computed_count = RDIV (ENTRY_BLOCK_PTR_FOR_FN (cfun)->count,
269 ENTRY_BLOCK_PTR_FOR_FN (cfun)->frequency);
270 computed_count *= frequency * unlikely_count_fraction;
272 if (computed_count >= profile_info->runs)
273 return false;
275 return true;
277 if ((!profile_info || !flag_branch_probabilities)
278 && (cgraph_get_node (fun->decl)->frequency
279 == NODE_FREQUENCY_UNLIKELY_EXECUTED))
280 return true;
281 return false;
285 /* Return true in case BB is probably never executed. */
287 bool
288 probably_never_executed_bb_p (struct function *fun, const_basic_block bb)
290 return probably_never_executed (fun, bb->count, bb->frequency);
294 /* Return true in case edge E is probably never executed. */
296 bool
297 probably_never_executed_edge_p (struct function *fun, edge e)
299 return probably_never_executed (fun, e->count, EDGE_FREQUENCY (e));
302 /* Return true if NODE should be optimized for size. */
304 bool
305 cgraph_optimize_for_size_p (struct cgraph_node *node)
307 if (optimize_size)
308 return true;
309 if (node && (node->frequency == NODE_FREQUENCY_UNLIKELY_EXECUTED))
310 return true;
311 else
312 return false;
315 /* Return true when current function should always be optimized for size. */
317 bool
318 optimize_function_for_size_p (struct function *fun)
320 if (optimize_size)
321 return true;
322 if (!fun || !fun->decl)
323 return false;
324 return cgraph_optimize_for_size_p (cgraph_get_node (fun->decl));
327 /* Return true when current function should always be optimized for speed. */
329 bool
330 optimize_function_for_speed_p (struct function *fun)
332 return !optimize_function_for_size_p (fun);
335 /* Return TRUE when BB should be optimized for size. */
337 bool
338 optimize_bb_for_size_p (const_basic_block bb)
340 return optimize_function_for_size_p (cfun) || !maybe_hot_bb_p (cfun, bb);
343 /* Return TRUE when BB should be optimized for speed. */
345 bool
346 optimize_bb_for_speed_p (const_basic_block bb)
348 return !optimize_bb_for_size_p (bb);
351 /* Return TRUE when BB should be optimized for size. */
353 bool
354 optimize_edge_for_size_p (edge e)
356 return optimize_function_for_size_p (cfun) || !maybe_hot_edge_p (e);
359 /* Return TRUE when BB should be optimized for speed. */
361 bool
362 optimize_edge_for_speed_p (edge e)
364 return !optimize_edge_for_size_p (e);
367 /* Return TRUE when BB should be optimized for size. */
369 bool
370 optimize_insn_for_size_p (void)
372 return optimize_function_for_size_p (cfun) || !crtl->maybe_hot_insn_p;
375 /* Return TRUE when BB should be optimized for speed. */
377 bool
378 optimize_insn_for_speed_p (void)
380 return !optimize_insn_for_size_p ();
383 /* Return TRUE when LOOP should be optimized for size. */
385 bool
386 optimize_loop_for_size_p (struct loop *loop)
388 return optimize_bb_for_size_p (loop->header);
391 /* Return TRUE when LOOP should be optimized for speed. */
393 bool
394 optimize_loop_for_speed_p (struct loop *loop)
396 return optimize_bb_for_speed_p (loop->header);
399 /* Return TRUE when LOOP nest should be optimized for speed. */
401 bool
402 optimize_loop_nest_for_speed_p (struct loop *loop)
404 struct loop *l = loop;
405 if (optimize_loop_for_speed_p (loop))
406 return true;
407 l = loop->inner;
408 while (l && l != loop)
410 if (optimize_loop_for_speed_p (l))
411 return true;
412 if (l->inner)
413 l = l->inner;
414 else if (l->next)
415 l = l->next;
416 else
418 while (l != loop && !l->next)
419 l = loop_outer (l);
420 if (l != loop)
421 l = l->next;
424 return false;
427 /* Return TRUE when LOOP nest should be optimized for size. */
429 bool
430 optimize_loop_nest_for_size_p (struct loop *loop)
432 return !optimize_loop_nest_for_speed_p (loop);
435 /* Return true when edge E is likely to be well predictable by branch
436 predictor. */
438 bool
439 predictable_edge_p (edge e)
441 if (profile_status_for_fn (cfun) == PROFILE_ABSENT)
442 return false;
443 if ((e->probability
444 <= PARAM_VALUE (PARAM_PREDICTABLE_BRANCH_OUTCOME) * REG_BR_PROB_BASE / 100)
445 || (REG_BR_PROB_BASE - e->probability
446 <= PARAM_VALUE (PARAM_PREDICTABLE_BRANCH_OUTCOME) * REG_BR_PROB_BASE / 100))
447 return true;
448 return false;
452 /* Set RTL expansion for BB profile. */
454 void
455 rtl_profile_for_bb (basic_block bb)
457 crtl->maybe_hot_insn_p = maybe_hot_bb_p (cfun, bb);
460 /* Set RTL expansion for edge profile. */
462 void
463 rtl_profile_for_edge (edge e)
465 crtl->maybe_hot_insn_p = maybe_hot_edge_p (e);
468 /* Set RTL expansion to default mode (i.e. when profile info is not known). */
469 void
470 default_rtl_profile (void)
472 crtl->maybe_hot_insn_p = true;
475 /* Return true if the one of outgoing edges is already predicted by
476 PREDICTOR. */
478 bool
479 rtl_predicted_by_p (const_basic_block bb, enum br_predictor predictor)
481 rtx note;
482 if (!INSN_P (BB_END (bb)))
483 return false;
484 for (note = REG_NOTES (BB_END (bb)); note; note = XEXP (note, 1))
485 if (REG_NOTE_KIND (note) == REG_BR_PRED
486 && INTVAL (XEXP (XEXP (note, 0), 0)) == (int)predictor)
487 return true;
488 return false;
491 /* This map contains for a basic block the list of predictions for the
492 outgoing edges. */
494 static struct pointer_map_t *bb_predictions;
496 /* Structure representing predictions in tree level. */
498 struct edge_prediction {
499 struct edge_prediction *ep_next;
500 edge ep_edge;
501 enum br_predictor ep_predictor;
502 int ep_probability;
505 /* Return true if the one of outgoing edges is already predicted by
506 PREDICTOR. */
508 bool
509 gimple_predicted_by_p (const_basic_block bb, enum br_predictor predictor)
511 struct edge_prediction *i;
512 void **preds = pointer_map_contains (bb_predictions, bb);
514 if (!preds)
515 return false;
517 for (i = (struct edge_prediction *) *preds; i; i = i->ep_next)
518 if (i->ep_predictor == predictor)
519 return true;
520 return false;
523 /* Return true when the probability of edge is reliable.
525 The profile guessing code is good at predicting branch outcome (ie.
526 taken/not taken), that is predicted right slightly over 75% of time.
527 It is however notoriously poor on predicting the probability itself.
528 In general the profile appear a lot flatter (with probabilities closer
529 to 50%) than the reality so it is bad idea to use it to drive optimization
530 such as those disabling dynamic branch prediction for well predictable
531 branches.
533 There are two exceptions - edges leading to noreturn edges and edges
534 predicted by number of iterations heuristics are predicted well. This macro
535 should be able to distinguish those, but at the moment it simply check for
536 noreturn heuristic that is only one giving probability over 99% or bellow
537 1%. In future we might want to propagate reliability information across the
538 CFG if we find this information useful on multiple places. */
539 static bool
540 probability_reliable_p (int prob)
542 return (profile_status_for_fn (cfun) == PROFILE_READ
543 || (profile_status_for_fn (cfun) == PROFILE_GUESSED
544 && (prob <= HITRATE (1) || prob >= HITRATE (99))));
547 /* Same predicate as above, working on edges. */
548 bool
549 edge_probability_reliable_p (const_edge e)
551 return probability_reliable_p (e->probability);
554 /* Same predicate as edge_probability_reliable_p, working on notes. */
555 bool
556 br_prob_note_reliable_p (const_rtx note)
558 gcc_assert (REG_NOTE_KIND (note) == REG_BR_PROB);
559 return probability_reliable_p (XINT (note, 0));
562 static void
563 predict_insn (rtx insn, enum br_predictor predictor, int probability)
565 gcc_assert (any_condjump_p (insn));
566 if (!flag_guess_branch_prob)
567 return;
569 add_reg_note (insn, REG_BR_PRED,
570 gen_rtx_CONCAT (VOIDmode,
571 GEN_INT ((int) predictor),
572 GEN_INT ((int) probability)));
575 /* Predict insn by given predictor. */
577 void
578 predict_insn_def (rtx insn, enum br_predictor predictor,
579 enum prediction taken)
581 int probability = predictor_info[(int) predictor].hitrate;
583 if (taken != TAKEN)
584 probability = REG_BR_PROB_BASE - probability;
586 predict_insn (insn, predictor, probability);
589 /* Predict edge E with given probability if possible. */
591 void
592 rtl_predict_edge (edge e, enum br_predictor predictor, int probability)
594 rtx last_insn;
595 last_insn = BB_END (e->src);
597 /* We can store the branch prediction information only about
598 conditional jumps. */
599 if (!any_condjump_p (last_insn))
600 return;
602 /* We always store probability of branching. */
603 if (e->flags & EDGE_FALLTHRU)
604 probability = REG_BR_PROB_BASE - probability;
606 predict_insn (last_insn, predictor, probability);
609 /* Predict edge E with the given PROBABILITY. */
610 void
611 gimple_predict_edge (edge e, enum br_predictor predictor, int probability)
613 gcc_assert (profile_status_for_fn (cfun) != PROFILE_GUESSED);
614 if ((e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun) && EDGE_COUNT (e->src->succs) >
616 && flag_guess_branch_prob && optimize)
618 struct edge_prediction *i = XNEW (struct edge_prediction);
619 void **preds = pointer_map_insert (bb_predictions, e->src);
621 i->ep_next = (struct edge_prediction *) *preds;
622 *preds = i;
623 i->ep_probability = probability;
624 i->ep_predictor = predictor;
625 i->ep_edge = e;
629 /* Remove all predictions on given basic block that are attached
630 to edge E. */
631 void
632 remove_predictions_associated_with_edge (edge e)
634 void **preds;
636 if (!bb_predictions)
637 return;
639 preds = pointer_map_contains (bb_predictions, e->src);
641 if (preds)
643 struct edge_prediction **prediction = (struct edge_prediction **) preds;
644 struct edge_prediction *next;
646 while (*prediction)
648 if ((*prediction)->ep_edge == e)
650 next = (*prediction)->ep_next;
651 free (*prediction);
652 *prediction = next;
654 else
655 prediction = &((*prediction)->ep_next);
660 /* Clears the list of predictions stored for BB. */
662 static void
663 clear_bb_predictions (basic_block bb)
665 void **preds = pointer_map_contains (bb_predictions, bb);
666 struct edge_prediction *pred, *next;
668 if (!preds)
669 return;
671 for (pred = (struct edge_prediction *) *preds; pred; pred = next)
673 next = pred->ep_next;
674 free (pred);
676 *preds = NULL;
679 /* Return true when we can store prediction on insn INSN.
680 At the moment we represent predictions only on conditional
681 jumps, not at computed jump or other complicated cases. */
682 static bool
683 can_predict_insn_p (const_rtx insn)
685 return (JUMP_P (insn)
686 && any_condjump_p (insn)
687 && EDGE_COUNT (BLOCK_FOR_INSN (insn)->succs) >= 2);
690 /* Predict edge E by given predictor if possible. */
692 void
693 predict_edge_def (edge e, enum br_predictor predictor,
694 enum prediction taken)
696 int probability = predictor_info[(int) predictor].hitrate;
698 if (taken != TAKEN)
699 probability = REG_BR_PROB_BASE - probability;
701 predict_edge (e, predictor, probability);
704 /* Invert all branch predictions or probability notes in the INSN. This needs
705 to be done each time we invert the condition used by the jump. */
707 void
708 invert_br_probabilities (rtx insn)
710 rtx note;
712 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
713 if (REG_NOTE_KIND (note) == REG_BR_PROB)
714 XINT (note, 0) = REG_BR_PROB_BASE - XINT (note, 0);
715 else if (REG_NOTE_KIND (note) == REG_BR_PRED)
716 XEXP (XEXP (note, 0), 1)
717 = GEN_INT (REG_BR_PROB_BASE - INTVAL (XEXP (XEXP (note, 0), 1)));
720 /* Dump information about the branch prediction to the output file. */
722 static void
723 dump_prediction (FILE *file, enum br_predictor predictor, int probability,
724 basic_block bb, int used)
726 edge e;
727 edge_iterator ei;
729 if (!file)
730 return;
732 FOR_EACH_EDGE (e, ei, bb->succs)
733 if (! (e->flags & EDGE_FALLTHRU))
734 break;
736 fprintf (file, " %s heuristics%s: %.1f%%",
737 predictor_info[predictor].name,
738 used ? "" : " (ignored)", probability * 100.0 / REG_BR_PROB_BASE);
740 if (bb->count)
742 fprintf (file, " exec ");
743 fprintf (file, HOST_WIDEST_INT_PRINT_DEC, bb->count);
744 if (e)
746 fprintf (file, " hit ");
747 fprintf (file, HOST_WIDEST_INT_PRINT_DEC, e->count);
748 fprintf (file, " (%.1f%%)", e->count * 100.0 / bb->count);
752 fprintf (file, "\n");
755 /* We can not predict the probabilities of outgoing edges of bb. Set them
756 evenly and hope for the best. */
757 static void
758 set_even_probabilities (basic_block bb)
760 int nedges = 0;
761 edge e;
762 edge_iterator ei;
764 FOR_EACH_EDGE (e, ei, bb->succs)
765 if (!(e->flags & (EDGE_EH | EDGE_FAKE)))
766 nedges ++;
767 FOR_EACH_EDGE (e, ei, bb->succs)
768 if (!(e->flags & (EDGE_EH | EDGE_FAKE)))
769 e->probability = (REG_BR_PROB_BASE + nedges / 2) / nedges;
770 else
771 e->probability = 0;
774 /* Combine all REG_BR_PRED notes into single probability and attach REG_BR_PROB
775 note if not already present. Remove now useless REG_BR_PRED notes. */
777 static void
778 combine_predictions_for_insn (rtx insn, basic_block bb)
780 rtx prob_note;
781 rtx *pnote;
782 rtx note;
783 int best_probability = PROB_EVEN;
784 enum br_predictor best_predictor = END_PREDICTORS;
785 int combined_probability = REG_BR_PROB_BASE / 2;
786 int d;
787 bool first_match = false;
788 bool found = false;
790 if (!can_predict_insn_p (insn))
792 set_even_probabilities (bb);
793 return;
796 prob_note = find_reg_note (insn, REG_BR_PROB, 0);
797 pnote = &REG_NOTES (insn);
798 if (dump_file)
799 fprintf (dump_file, "Predictions for insn %i bb %i\n", INSN_UID (insn),
800 bb->index);
802 /* We implement "first match" heuristics and use probability guessed
803 by predictor with smallest index. */
804 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
805 if (REG_NOTE_KIND (note) == REG_BR_PRED)
807 enum br_predictor predictor = ((enum br_predictor)
808 INTVAL (XEXP (XEXP (note, 0), 0)));
809 int probability = INTVAL (XEXP (XEXP (note, 0), 1));
811 found = true;
812 if (best_predictor > predictor)
813 best_probability = probability, best_predictor = predictor;
815 d = (combined_probability * probability
816 + (REG_BR_PROB_BASE - combined_probability)
817 * (REG_BR_PROB_BASE - probability));
819 /* Use FP math to avoid overflows of 32bit integers. */
820 if (d == 0)
821 /* If one probability is 0% and one 100%, avoid division by zero. */
822 combined_probability = REG_BR_PROB_BASE / 2;
823 else
824 combined_probability = (((double) combined_probability) * probability
825 * REG_BR_PROB_BASE / d + 0.5);
828 /* Decide which heuristic to use. In case we didn't match anything,
829 use no_prediction heuristic, in case we did match, use either
830 first match or Dempster-Shaffer theory depending on the flags. */
832 if (predictor_info [best_predictor].flags & PRED_FLAG_FIRST_MATCH)
833 first_match = true;
835 if (!found)
836 dump_prediction (dump_file, PRED_NO_PREDICTION,
837 combined_probability, bb, true);
838 else
840 dump_prediction (dump_file, PRED_DS_THEORY, combined_probability,
841 bb, !first_match);
842 dump_prediction (dump_file, PRED_FIRST_MATCH, best_probability,
843 bb, first_match);
846 if (first_match)
847 combined_probability = best_probability;
848 dump_prediction (dump_file, PRED_COMBINED, combined_probability, bb, true);
850 while (*pnote)
852 if (REG_NOTE_KIND (*pnote) == REG_BR_PRED)
854 enum br_predictor predictor = ((enum br_predictor)
855 INTVAL (XEXP (XEXP (*pnote, 0), 0)));
856 int probability = INTVAL (XEXP (XEXP (*pnote, 0), 1));
858 dump_prediction (dump_file, predictor, probability, bb,
859 !first_match || best_predictor == predictor);
860 *pnote = XEXP (*pnote, 1);
862 else
863 pnote = &XEXP (*pnote, 1);
866 if (!prob_note)
868 add_int_reg_note (insn, REG_BR_PROB, combined_probability);
870 /* Save the prediction into CFG in case we are seeing non-degenerated
871 conditional jump. */
872 if (!single_succ_p (bb))
874 BRANCH_EDGE (bb)->probability = combined_probability;
875 FALLTHRU_EDGE (bb)->probability
876 = REG_BR_PROB_BASE - combined_probability;
879 else if (!single_succ_p (bb))
881 int prob = XINT (prob_note, 0);
883 BRANCH_EDGE (bb)->probability = prob;
884 FALLTHRU_EDGE (bb)->probability = REG_BR_PROB_BASE - prob;
886 else
887 single_succ_edge (bb)->probability = REG_BR_PROB_BASE;
890 /* Combine predictions into single probability and store them into CFG.
891 Remove now useless prediction entries. */
893 static void
894 combine_predictions_for_bb (basic_block bb)
896 int best_probability = PROB_EVEN;
897 enum br_predictor best_predictor = END_PREDICTORS;
898 int combined_probability = REG_BR_PROB_BASE / 2;
899 int d;
900 bool first_match = false;
901 bool found = false;
902 struct edge_prediction *pred;
903 int nedges = 0;
904 edge e, first = NULL, second = NULL;
905 edge_iterator ei;
906 void **preds;
908 FOR_EACH_EDGE (e, ei, bb->succs)
909 if (!(e->flags & (EDGE_EH | EDGE_FAKE)))
911 nedges ++;
912 if (first && !second)
913 second = e;
914 if (!first)
915 first = e;
918 /* When there is no successor or only one choice, prediction is easy.
920 We are lazy for now and predict only basic blocks with two outgoing
921 edges. It is possible to predict generic case too, but we have to
922 ignore first match heuristics and do more involved combining. Implement
923 this later. */
924 if (nedges != 2)
926 if (!bb->count)
927 set_even_probabilities (bb);
928 clear_bb_predictions (bb);
929 if (dump_file)
930 fprintf (dump_file, "%i edges in bb %i predicted to even probabilities\n",
931 nedges, bb->index);
932 return;
935 if (dump_file)
936 fprintf (dump_file, "Predictions for bb %i\n", bb->index);
938 preds = pointer_map_contains (bb_predictions, bb);
939 if (preds)
941 /* We implement "first match" heuristics and use probability guessed
942 by predictor with smallest index. */
943 for (pred = (struct edge_prediction *) *preds; pred; pred = pred->ep_next)
945 enum br_predictor predictor = pred->ep_predictor;
946 int probability = pred->ep_probability;
948 if (pred->ep_edge != first)
949 probability = REG_BR_PROB_BASE - probability;
951 found = true;
952 /* First match heuristics would be widly confused if we predicted
953 both directions. */
954 if (best_predictor > predictor)
956 struct edge_prediction *pred2;
957 int prob = probability;
959 for (pred2 = (struct edge_prediction *) *preds;
960 pred2; pred2 = pred2->ep_next)
961 if (pred2 != pred && pred2->ep_predictor == pred->ep_predictor)
963 int probability2 = pred->ep_probability;
965 if (pred2->ep_edge != first)
966 probability2 = REG_BR_PROB_BASE - probability2;
968 if ((probability < REG_BR_PROB_BASE / 2) !=
969 (probability2 < REG_BR_PROB_BASE / 2))
970 break;
972 /* If the same predictor later gave better result, go for it! */
973 if ((probability >= REG_BR_PROB_BASE / 2 && (probability2 > probability))
974 || (probability <= REG_BR_PROB_BASE / 2 && (probability2 < probability)))
975 prob = probability2;
977 if (!pred2)
978 best_probability = prob, best_predictor = predictor;
981 d = (combined_probability * probability
982 + (REG_BR_PROB_BASE - combined_probability)
983 * (REG_BR_PROB_BASE - probability));
985 /* Use FP math to avoid overflows of 32bit integers. */
986 if (d == 0)
987 /* If one probability is 0% and one 100%, avoid division by zero. */
988 combined_probability = REG_BR_PROB_BASE / 2;
989 else
990 combined_probability = (((double) combined_probability)
991 * probability
992 * REG_BR_PROB_BASE / d + 0.5);
996 /* Decide which heuristic to use. In case we didn't match anything,
997 use no_prediction heuristic, in case we did match, use either
998 first match or Dempster-Shaffer theory depending on the flags. */
1000 if (predictor_info [best_predictor].flags & PRED_FLAG_FIRST_MATCH)
1001 first_match = true;
1003 if (!found)
1004 dump_prediction (dump_file, PRED_NO_PREDICTION, combined_probability, bb, true);
1005 else
1007 dump_prediction (dump_file, PRED_DS_THEORY, combined_probability, bb,
1008 !first_match);
1009 dump_prediction (dump_file, PRED_FIRST_MATCH, best_probability, bb,
1010 first_match);
1013 if (first_match)
1014 combined_probability = best_probability;
1015 dump_prediction (dump_file, PRED_COMBINED, combined_probability, bb, true);
1017 if (preds)
1019 for (pred = (struct edge_prediction *) *preds; pred; pred = pred->ep_next)
1021 enum br_predictor predictor = pred->ep_predictor;
1022 int probability = pred->ep_probability;
1024 if (pred->ep_edge != EDGE_SUCC (bb, 0))
1025 probability = REG_BR_PROB_BASE - probability;
1026 dump_prediction (dump_file, predictor, probability, bb,
1027 !first_match || best_predictor == predictor);
1030 clear_bb_predictions (bb);
1032 if (!bb->count)
1034 first->probability = combined_probability;
1035 second->probability = REG_BR_PROB_BASE - combined_probability;
1039 /* Check if T1 and T2 satisfy the IV_COMPARE condition.
1040 Return the SSA_NAME if the condition satisfies, NULL otherwise.
1042 T1 and T2 should be one of the following cases:
1043 1. T1 is SSA_NAME, T2 is NULL
1044 2. T1 is SSA_NAME, T2 is INTEGER_CST between [-4, 4]
1045 3. T2 is SSA_NAME, T1 is INTEGER_CST between [-4, 4] */
1047 static tree
1048 strips_small_constant (tree t1, tree t2)
1050 tree ret = NULL;
1051 int value = 0;
1053 if (!t1)
1054 return NULL;
1055 else if (TREE_CODE (t1) == SSA_NAME)
1056 ret = t1;
1057 else if (tree_fits_shwi_p (t1))
1058 value = tree_to_shwi (t1);
1059 else
1060 return NULL;
1062 if (!t2)
1063 return ret;
1064 else if (tree_fits_shwi_p (t2))
1065 value = tree_to_shwi (t2);
1066 else if (TREE_CODE (t2) == SSA_NAME)
1068 if (ret)
1069 return NULL;
1070 else
1071 ret = t2;
1074 if (value <= 4 && value >= -4)
1075 return ret;
1076 else
1077 return NULL;
1080 /* Return the SSA_NAME in T or T's operands.
1081 Return NULL if SSA_NAME cannot be found. */
1083 static tree
1084 get_base_value (tree t)
1086 if (TREE_CODE (t) == SSA_NAME)
1087 return t;
1089 if (!BINARY_CLASS_P (t))
1090 return NULL;
1092 switch (TREE_OPERAND_LENGTH (t))
1094 case 1:
1095 return strips_small_constant (TREE_OPERAND (t, 0), NULL);
1096 case 2:
1097 return strips_small_constant (TREE_OPERAND (t, 0),
1098 TREE_OPERAND (t, 1));
1099 default:
1100 return NULL;
1104 /* Check the compare STMT in LOOP. If it compares an induction
1105 variable to a loop invariant, return true, and save
1106 LOOP_INVARIANT, COMPARE_CODE and LOOP_STEP.
1107 Otherwise return false and set LOOP_INVAIANT to NULL. */
1109 static bool
1110 is_comparison_with_loop_invariant_p (gimple stmt, struct loop *loop,
1111 tree *loop_invariant,
1112 enum tree_code *compare_code,
1113 tree *loop_step,
1114 tree *loop_iv_base)
1116 tree op0, op1, bound, base;
1117 affine_iv iv0, iv1;
1118 enum tree_code code;
1119 tree step;
1121 code = gimple_cond_code (stmt);
1122 *loop_invariant = NULL;
1124 switch (code)
1126 case GT_EXPR:
1127 case GE_EXPR:
1128 case NE_EXPR:
1129 case LT_EXPR:
1130 case LE_EXPR:
1131 case EQ_EXPR:
1132 break;
1134 default:
1135 return false;
1138 op0 = gimple_cond_lhs (stmt);
1139 op1 = gimple_cond_rhs (stmt);
1141 if ((TREE_CODE (op0) != SSA_NAME && TREE_CODE (op0) != INTEGER_CST)
1142 || (TREE_CODE (op1) != SSA_NAME && TREE_CODE (op1) != INTEGER_CST))
1143 return false;
1144 if (!simple_iv (loop, loop_containing_stmt (stmt), op0, &iv0, true))
1145 return false;
1146 if (!simple_iv (loop, loop_containing_stmt (stmt), op1, &iv1, true))
1147 return false;
1148 if (TREE_CODE (iv0.step) != INTEGER_CST
1149 || TREE_CODE (iv1.step) != INTEGER_CST)
1150 return false;
1151 if ((integer_zerop (iv0.step) && integer_zerop (iv1.step))
1152 || (!integer_zerop (iv0.step) && !integer_zerop (iv1.step)))
1153 return false;
1155 if (integer_zerop (iv0.step))
1157 if (code != NE_EXPR && code != EQ_EXPR)
1158 code = invert_tree_comparison (code, false);
1159 bound = iv0.base;
1160 base = iv1.base;
1161 if (tree_fits_shwi_p (iv1.step))
1162 step = iv1.step;
1163 else
1164 return false;
1166 else
1168 bound = iv1.base;
1169 base = iv0.base;
1170 if (tree_fits_shwi_p (iv0.step))
1171 step = iv0.step;
1172 else
1173 return false;
1176 if (TREE_CODE (bound) != INTEGER_CST)
1177 bound = get_base_value (bound);
1178 if (!bound)
1179 return false;
1180 if (TREE_CODE (base) != INTEGER_CST)
1181 base = get_base_value (base);
1182 if (!base)
1183 return false;
1185 *loop_invariant = bound;
1186 *compare_code = code;
1187 *loop_step = step;
1188 *loop_iv_base = base;
1189 return true;
1192 /* Compare two SSA_NAMEs: returns TRUE if T1 and T2 are value coherent. */
1194 static bool
1195 expr_coherent_p (tree t1, tree t2)
1197 gimple stmt;
1198 tree ssa_name_1 = NULL;
1199 tree ssa_name_2 = NULL;
1201 gcc_assert (TREE_CODE (t1) == SSA_NAME || TREE_CODE (t1) == INTEGER_CST);
1202 gcc_assert (TREE_CODE (t2) == SSA_NAME || TREE_CODE (t2) == INTEGER_CST);
1204 if (t1 == t2)
1205 return true;
1207 if (TREE_CODE (t1) == INTEGER_CST && TREE_CODE (t2) == INTEGER_CST)
1208 return true;
1209 if (TREE_CODE (t1) == INTEGER_CST || TREE_CODE (t2) == INTEGER_CST)
1210 return false;
1212 /* Check to see if t1 is expressed/defined with t2. */
1213 stmt = SSA_NAME_DEF_STMT (t1);
1214 gcc_assert (stmt != NULL);
1215 if (is_gimple_assign (stmt))
1217 ssa_name_1 = SINGLE_SSA_TREE_OPERAND (stmt, SSA_OP_USE);
1218 if (ssa_name_1 && ssa_name_1 == t2)
1219 return true;
1222 /* Check to see if t2 is expressed/defined with t1. */
1223 stmt = SSA_NAME_DEF_STMT (t2);
1224 gcc_assert (stmt != NULL);
1225 if (is_gimple_assign (stmt))
1227 ssa_name_2 = SINGLE_SSA_TREE_OPERAND (stmt, SSA_OP_USE);
1228 if (ssa_name_2 && ssa_name_2 == t1)
1229 return true;
1232 /* Compare if t1 and t2's def_stmts are identical. */
1233 if (ssa_name_2 != NULL && ssa_name_1 == ssa_name_2)
1234 return true;
1235 else
1236 return false;
1239 /* Predict branch probability of BB when BB contains a branch that compares
1240 an induction variable in LOOP with LOOP_IV_BASE_VAR to LOOP_BOUND_VAR. The
1241 loop exit is compared using LOOP_BOUND_CODE, with step of LOOP_BOUND_STEP.
1243 E.g.
1244 for (int i = 0; i < bound; i++) {
1245 if (i < bound - 2)
1246 computation_1();
1247 else
1248 computation_2();
1251 In this loop, we will predict the branch inside the loop to be taken. */
1253 static void
1254 predict_iv_comparison (struct loop *loop, basic_block bb,
1255 tree loop_bound_var,
1256 tree loop_iv_base_var,
1257 enum tree_code loop_bound_code,
1258 int loop_bound_step)
1260 gimple stmt;
1261 tree compare_var, compare_base;
1262 enum tree_code compare_code;
1263 tree compare_step_var;
1264 edge then_edge;
1265 edge_iterator ei;
1267 if (predicted_by_p (bb, PRED_LOOP_ITERATIONS_GUESSED)
1268 || predicted_by_p (bb, PRED_LOOP_ITERATIONS)
1269 || predicted_by_p (bb, PRED_LOOP_EXIT))
1270 return;
1272 stmt = last_stmt (bb);
1273 if (!stmt || gimple_code (stmt) != GIMPLE_COND)
1274 return;
1275 if (!is_comparison_with_loop_invariant_p (stmt, loop, &compare_var,
1276 &compare_code,
1277 &compare_step_var,
1278 &compare_base))
1279 return;
1281 /* Find the taken edge. */
1282 FOR_EACH_EDGE (then_edge, ei, bb->succs)
1283 if (then_edge->flags & EDGE_TRUE_VALUE)
1284 break;
1286 /* When comparing an IV to a loop invariant, NE is more likely to be
1287 taken while EQ is more likely to be not-taken. */
1288 if (compare_code == NE_EXPR)
1290 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, TAKEN);
1291 return;
1293 else if (compare_code == EQ_EXPR)
1295 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, NOT_TAKEN);
1296 return;
1299 if (!expr_coherent_p (loop_iv_base_var, compare_base))
1300 return;
1302 /* If loop bound, base and compare bound are all constants, we can
1303 calculate the probability directly. */
1304 if (tree_fits_shwi_p (loop_bound_var)
1305 && tree_fits_shwi_p (compare_var)
1306 && tree_fits_shwi_p (compare_base))
1308 int probability;
1309 bool of, overflow = false;
1310 double_int mod, compare_count, tem, loop_count;
1312 double_int loop_bound = tree_to_double_int (loop_bound_var);
1313 double_int compare_bound = tree_to_double_int (compare_var);
1314 double_int base = tree_to_double_int (compare_base);
1315 double_int compare_step = tree_to_double_int (compare_step_var);
1317 /* (loop_bound - base) / compare_step */
1318 tem = loop_bound.sub_with_overflow (base, &of);
1319 overflow |= of;
1320 loop_count = tem.divmod_with_overflow (compare_step,
1321 0, TRUNC_DIV_EXPR,
1322 &mod, &of);
1323 overflow |= of;
1325 if ((!compare_step.is_negative ())
1326 ^ (compare_code == LT_EXPR || compare_code == LE_EXPR))
1328 /* (loop_bound - compare_bound) / compare_step */
1329 tem = loop_bound.sub_with_overflow (compare_bound, &of);
1330 overflow |= of;
1331 compare_count = tem.divmod_with_overflow (compare_step,
1332 0, TRUNC_DIV_EXPR,
1333 &mod, &of);
1334 overflow |= of;
1336 else
1338 /* (compare_bound - base) / compare_step */
1339 tem = compare_bound.sub_with_overflow (base, &of);
1340 overflow |= of;
1341 compare_count = tem.divmod_with_overflow (compare_step,
1342 0, TRUNC_DIV_EXPR,
1343 &mod, &of);
1344 overflow |= of;
1346 if (compare_code == LE_EXPR || compare_code == GE_EXPR)
1347 ++compare_count;
1348 if (loop_bound_code == LE_EXPR || loop_bound_code == GE_EXPR)
1349 ++loop_count;
1350 if (compare_count.is_negative ())
1351 compare_count = double_int_zero;
1352 if (loop_count.is_negative ())
1353 loop_count = double_int_zero;
1354 if (loop_count.is_zero ())
1355 probability = 0;
1356 else if (compare_count.scmp (loop_count) == 1)
1357 probability = REG_BR_PROB_BASE;
1358 else
1360 /* If loop_count is too big, such that REG_BR_PROB_BASE * loop_count
1361 could overflow, shift both loop_count and compare_count right
1362 a bit so that it doesn't overflow. Note both counts are known not
1363 to be negative at this point. */
1364 int clz_bits = clz_hwi (loop_count.high);
1365 gcc_assert (REG_BR_PROB_BASE < 32768);
1366 if (clz_bits < 16)
1368 loop_count.arshift (16 - clz_bits, HOST_BITS_PER_DOUBLE_INT);
1369 compare_count.arshift (16 - clz_bits, HOST_BITS_PER_DOUBLE_INT);
1371 tem = compare_count.mul_with_sign (double_int::from_shwi
1372 (REG_BR_PROB_BASE), true, &of);
1373 gcc_assert (!of);
1374 tem = tem.divmod (loop_count, true, TRUNC_DIV_EXPR, &mod);
1375 probability = tem.to_uhwi ();
1378 if (!overflow)
1379 predict_edge (then_edge, PRED_LOOP_IV_COMPARE, probability);
1381 return;
1384 if (expr_coherent_p (loop_bound_var, compare_var))
1386 if ((loop_bound_code == LT_EXPR || loop_bound_code == LE_EXPR)
1387 && (compare_code == LT_EXPR || compare_code == LE_EXPR))
1388 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, TAKEN);
1389 else if ((loop_bound_code == GT_EXPR || loop_bound_code == GE_EXPR)
1390 && (compare_code == GT_EXPR || compare_code == GE_EXPR))
1391 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, TAKEN);
1392 else if (loop_bound_code == NE_EXPR)
1394 /* If the loop backedge condition is "(i != bound)", we do
1395 the comparison based on the step of IV:
1396 * step < 0 : backedge condition is like (i > bound)
1397 * step > 0 : backedge condition is like (i < bound) */
1398 gcc_assert (loop_bound_step != 0);
1399 if (loop_bound_step > 0
1400 && (compare_code == LT_EXPR
1401 || compare_code == LE_EXPR))
1402 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, TAKEN);
1403 else if (loop_bound_step < 0
1404 && (compare_code == GT_EXPR
1405 || compare_code == GE_EXPR))
1406 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, TAKEN);
1407 else
1408 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, NOT_TAKEN);
1410 else
1411 /* The branch is predicted not-taken if loop_bound_code is
1412 opposite with compare_code. */
1413 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, NOT_TAKEN);
1415 else if (expr_coherent_p (loop_iv_base_var, compare_var))
1417 /* For cases like:
1418 for (i = s; i < h; i++)
1419 if (i > s + 2) ....
1420 The branch should be predicted taken. */
1421 if (loop_bound_step > 0
1422 && (compare_code == GT_EXPR || compare_code == GE_EXPR))
1423 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, TAKEN);
1424 else if (loop_bound_step < 0
1425 && (compare_code == LT_EXPR || compare_code == LE_EXPR))
1426 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, TAKEN);
1427 else
1428 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, NOT_TAKEN);
1432 /* Predict for extra loop exits that will lead to EXIT_EDGE. The extra loop
1433 exits are resulted from short-circuit conditions that will generate an
1434 if_tmp. E.g.:
1436 if (foo() || global > 10)
1437 break;
1439 This will be translated into:
1441 BB3:
1442 loop header...
1443 BB4:
1444 if foo() goto BB6 else goto BB5
1445 BB5:
1446 if global > 10 goto BB6 else goto BB7
1447 BB6:
1448 goto BB7
1449 BB7:
1450 iftmp = (PHI 0(BB5), 1(BB6))
1451 if iftmp == 1 goto BB8 else goto BB3
1452 BB8:
1453 outside of the loop...
1455 The edge BB7->BB8 is loop exit because BB8 is outside of the loop.
1456 From the dataflow, we can infer that BB4->BB6 and BB5->BB6 are also loop
1457 exits. This function takes BB7->BB8 as input, and finds out the extra loop
1458 exits to predict them using PRED_LOOP_EXIT. */
1460 static void
1461 predict_extra_loop_exits (edge exit_edge)
1463 unsigned i;
1464 bool check_value_one;
1465 gimple phi_stmt;
1466 tree cmp_rhs, cmp_lhs;
1467 gimple cmp_stmt = last_stmt (exit_edge->src);
1469 if (!cmp_stmt || gimple_code (cmp_stmt) != GIMPLE_COND)
1470 return;
1471 cmp_rhs = gimple_cond_rhs (cmp_stmt);
1472 cmp_lhs = gimple_cond_lhs (cmp_stmt);
1473 if (!TREE_CONSTANT (cmp_rhs)
1474 || !(integer_zerop (cmp_rhs) || integer_onep (cmp_rhs)))
1475 return;
1476 if (TREE_CODE (cmp_lhs) != SSA_NAME)
1477 return;
1479 /* If check_value_one is true, only the phi_args with value '1' will lead
1480 to loop exit. Otherwise, only the phi_args with value '0' will lead to
1481 loop exit. */
1482 check_value_one = (((integer_onep (cmp_rhs))
1483 ^ (gimple_cond_code (cmp_stmt) == EQ_EXPR))
1484 ^ ((exit_edge->flags & EDGE_TRUE_VALUE) != 0));
1486 phi_stmt = SSA_NAME_DEF_STMT (cmp_lhs);
1487 if (!phi_stmt || gimple_code (phi_stmt) != GIMPLE_PHI)
1488 return;
1490 for (i = 0; i < gimple_phi_num_args (phi_stmt); i++)
1492 edge e1;
1493 edge_iterator ei;
1494 tree val = gimple_phi_arg_def (phi_stmt, i);
1495 edge e = gimple_phi_arg_edge (phi_stmt, i);
1497 if (!TREE_CONSTANT (val) || !(integer_zerop (val) || integer_onep (val)))
1498 continue;
1499 if ((check_value_one ^ integer_onep (val)) == 1)
1500 continue;
1501 if (EDGE_COUNT (e->src->succs) != 1)
1503 predict_paths_leading_to_edge (e, PRED_LOOP_EXIT, NOT_TAKEN);
1504 continue;
1507 FOR_EACH_EDGE (e1, ei, e->src->preds)
1508 predict_paths_leading_to_edge (e1, PRED_LOOP_EXIT, NOT_TAKEN);
1512 /* Predict edge probabilities by exploiting loop structure. */
1514 static void
1515 predict_loops (void)
1517 struct loop *loop;
1519 /* Try to predict out blocks in a loop that are not part of a
1520 natural loop. */
1521 FOR_EACH_LOOP (loop, 0)
1523 basic_block bb, *bbs;
1524 unsigned j, n_exits;
1525 vec<edge> exits;
1526 struct tree_niter_desc niter_desc;
1527 edge ex;
1528 struct nb_iter_bound *nb_iter;
1529 enum tree_code loop_bound_code = ERROR_MARK;
1530 tree loop_bound_step = NULL;
1531 tree loop_bound_var = NULL;
1532 tree loop_iv_base = NULL;
1533 gimple stmt = NULL;
1535 exits = get_loop_exit_edges (loop);
1536 n_exits = exits.length ();
1537 if (!n_exits)
1539 exits.release ();
1540 continue;
1543 FOR_EACH_VEC_ELT (exits, j, ex)
1545 tree niter = NULL;
1546 HOST_WIDE_INT nitercst;
1547 int max = PARAM_VALUE (PARAM_MAX_PREDICTED_ITERATIONS);
1548 int probability;
1549 enum br_predictor predictor;
1551 predict_extra_loop_exits (ex);
1553 if (number_of_iterations_exit (loop, ex, &niter_desc, false, false))
1554 niter = niter_desc.niter;
1555 if (!niter || TREE_CODE (niter_desc.niter) != INTEGER_CST)
1556 niter = loop_niter_by_eval (loop, ex);
1558 if (TREE_CODE (niter) == INTEGER_CST)
1560 if (tree_fits_uhwi_p (niter)
1561 && max
1562 && compare_tree_int (niter, max - 1) == -1)
1563 nitercst = tree_to_uhwi (niter) + 1;
1564 else
1565 nitercst = max;
1566 predictor = PRED_LOOP_ITERATIONS;
1568 /* If we have just one exit and we can derive some information about
1569 the number of iterations of the loop from the statements inside
1570 the loop, use it to predict this exit. */
1571 else if (n_exits == 1)
1573 nitercst = estimated_stmt_executions_int (loop);
1574 if (nitercst < 0)
1575 continue;
1576 if (nitercst > max)
1577 nitercst = max;
1579 predictor = PRED_LOOP_ITERATIONS_GUESSED;
1581 else
1582 continue;
1584 /* If the prediction for number of iterations is zero, do not
1585 predict the exit edges. */
1586 if (nitercst == 0)
1587 continue;
1589 probability = ((REG_BR_PROB_BASE + nitercst / 2) / nitercst);
1590 predict_edge (ex, predictor, probability);
1592 exits.release ();
1594 /* Find information about loop bound variables. */
1595 for (nb_iter = loop->bounds; nb_iter;
1596 nb_iter = nb_iter->next)
1597 if (nb_iter->stmt
1598 && gimple_code (nb_iter->stmt) == GIMPLE_COND)
1600 stmt = nb_iter->stmt;
1601 break;
1603 if (!stmt && last_stmt (loop->header)
1604 && gimple_code (last_stmt (loop->header)) == GIMPLE_COND)
1605 stmt = last_stmt (loop->header);
1606 if (stmt)
1607 is_comparison_with_loop_invariant_p (stmt, loop,
1608 &loop_bound_var,
1609 &loop_bound_code,
1610 &loop_bound_step,
1611 &loop_iv_base);
1613 bbs = get_loop_body (loop);
1615 for (j = 0; j < loop->num_nodes; j++)
1617 int header_found = 0;
1618 edge e;
1619 edge_iterator ei;
1621 bb = bbs[j];
1623 /* Bypass loop heuristics on continue statement. These
1624 statements construct loops via "non-loop" constructs
1625 in the source language and are better to be handled
1626 separately. */
1627 if (predicted_by_p (bb, PRED_CONTINUE))
1628 continue;
1630 /* Loop branch heuristics - predict an edge back to a
1631 loop's head as taken. */
1632 if (bb == loop->latch)
1634 e = find_edge (loop->latch, loop->header);
1635 if (e)
1637 header_found = 1;
1638 predict_edge_def (e, PRED_LOOP_BRANCH, TAKEN);
1642 /* Loop exit heuristics - predict an edge exiting the loop if the
1643 conditional has no loop header successors as not taken. */
1644 if (!header_found
1645 /* If we already used more reliable loop exit predictors, do not
1646 bother with PRED_LOOP_EXIT. */
1647 && !predicted_by_p (bb, PRED_LOOP_ITERATIONS_GUESSED)
1648 && !predicted_by_p (bb, PRED_LOOP_ITERATIONS))
1650 /* For loop with many exits we don't want to predict all exits
1651 with the pretty large probability, because if all exits are
1652 considered in row, the loop would be predicted to iterate
1653 almost never. The code to divide probability by number of
1654 exits is very rough. It should compute the number of exits
1655 taken in each patch through function (not the overall number
1656 of exits that might be a lot higher for loops with wide switch
1657 statements in them) and compute n-th square root.
1659 We limit the minimal probability by 2% to avoid
1660 EDGE_PROBABILITY_RELIABLE from trusting the branch prediction
1661 as this was causing regression in perl benchmark containing such
1662 a wide loop. */
1664 int probability = ((REG_BR_PROB_BASE
1665 - predictor_info [(int) PRED_LOOP_EXIT].hitrate)
1666 / n_exits);
1667 if (probability < HITRATE (2))
1668 probability = HITRATE (2);
1669 FOR_EACH_EDGE (e, ei, bb->succs)
1670 if (e->dest->index < NUM_FIXED_BLOCKS
1671 || !flow_bb_inside_loop_p (loop, e->dest))
1672 predict_edge (e, PRED_LOOP_EXIT, probability);
1674 if (loop_bound_var)
1675 predict_iv_comparison (loop, bb, loop_bound_var, loop_iv_base,
1676 loop_bound_code,
1677 tree_to_shwi (loop_bound_step));
1680 /* Free basic blocks from get_loop_body. */
1681 free (bbs);
1685 /* Attempt to predict probabilities of BB outgoing edges using local
1686 properties. */
1687 static void
1688 bb_estimate_probability_locally (basic_block bb)
1690 rtx last_insn = BB_END (bb);
1691 rtx cond;
1693 if (! can_predict_insn_p (last_insn))
1694 return;
1695 cond = get_condition (last_insn, NULL, false, false);
1696 if (! cond)
1697 return;
1699 /* Try "pointer heuristic."
1700 A comparison ptr == 0 is predicted as false.
1701 Similarly, a comparison ptr1 == ptr2 is predicted as false. */
1702 if (COMPARISON_P (cond)
1703 && ((REG_P (XEXP (cond, 0)) && REG_POINTER (XEXP (cond, 0)))
1704 || (REG_P (XEXP (cond, 1)) && REG_POINTER (XEXP (cond, 1)))))
1706 if (GET_CODE (cond) == EQ)
1707 predict_insn_def (last_insn, PRED_POINTER, NOT_TAKEN);
1708 else if (GET_CODE (cond) == NE)
1709 predict_insn_def (last_insn, PRED_POINTER, TAKEN);
1711 else
1713 /* Try "opcode heuristic."
1714 EQ tests are usually false and NE tests are usually true. Also,
1715 most quantities are positive, so we can make the appropriate guesses
1716 about signed comparisons against zero. */
1717 switch (GET_CODE (cond))
1719 case CONST_INT:
1720 /* Unconditional branch. */
1721 predict_insn_def (last_insn, PRED_UNCONDITIONAL,
1722 cond == const0_rtx ? NOT_TAKEN : TAKEN);
1723 break;
1725 case EQ:
1726 case UNEQ:
1727 /* Floating point comparisons appears to behave in a very
1728 unpredictable way because of special role of = tests in
1729 FP code. */
1730 if (FLOAT_MODE_P (GET_MODE (XEXP (cond, 0))))
1732 /* Comparisons with 0 are often used for booleans and there is
1733 nothing useful to predict about them. */
1734 else if (XEXP (cond, 1) == const0_rtx
1735 || XEXP (cond, 0) == const0_rtx)
1737 else
1738 predict_insn_def (last_insn, PRED_OPCODE_NONEQUAL, NOT_TAKEN);
1739 break;
1741 case NE:
1742 case LTGT:
1743 /* Floating point comparisons appears to behave in a very
1744 unpredictable way because of special role of = tests in
1745 FP code. */
1746 if (FLOAT_MODE_P (GET_MODE (XEXP (cond, 0))))
1748 /* Comparisons with 0 are often used for booleans and there is
1749 nothing useful to predict about them. */
1750 else if (XEXP (cond, 1) == const0_rtx
1751 || XEXP (cond, 0) == const0_rtx)
1753 else
1754 predict_insn_def (last_insn, PRED_OPCODE_NONEQUAL, TAKEN);
1755 break;
1757 case ORDERED:
1758 predict_insn_def (last_insn, PRED_FPOPCODE, TAKEN);
1759 break;
1761 case UNORDERED:
1762 predict_insn_def (last_insn, PRED_FPOPCODE, NOT_TAKEN);
1763 break;
1765 case LE:
1766 case LT:
1767 if (XEXP (cond, 1) == const0_rtx || XEXP (cond, 1) == const1_rtx
1768 || XEXP (cond, 1) == constm1_rtx)
1769 predict_insn_def (last_insn, PRED_OPCODE_POSITIVE, NOT_TAKEN);
1770 break;
1772 case GE:
1773 case GT:
1774 if (XEXP (cond, 1) == const0_rtx || XEXP (cond, 1) == const1_rtx
1775 || XEXP (cond, 1) == constm1_rtx)
1776 predict_insn_def (last_insn, PRED_OPCODE_POSITIVE, TAKEN);
1777 break;
1779 default:
1780 break;
1784 /* Set edge->probability for each successor edge of BB. */
1785 void
1786 guess_outgoing_edge_probabilities (basic_block bb)
1788 bb_estimate_probability_locally (bb);
1789 combine_predictions_for_insn (BB_END (bb), bb);
1792 static tree expr_expected_value (tree, bitmap, enum br_predictor *predictor);
1794 /* Helper function for expr_expected_value. */
1796 static tree
1797 expr_expected_value_1 (tree type, tree op0, enum tree_code code,
1798 tree op1, bitmap visited, enum br_predictor *predictor)
1800 gimple def;
1802 if (predictor)
1803 *predictor = PRED_UNCONDITIONAL;
1805 if (get_gimple_rhs_class (code) == GIMPLE_SINGLE_RHS)
1807 if (TREE_CONSTANT (op0))
1808 return op0;
1810 if (code != SSA_NAME)
1811 return NULL_TREE;
1813 def = SSA_NAME_DEF_STMT (op0);
1815 /* If we were already here, break the infinite cycle. */
1816 if (!bitmap_set_bit (visited, SSA_NAME_VERSION (op0)))
1817 return NULL;
1819 if (gimple_code (def) == GIMPLE_PHI)
1821 /* All the arguments of the PHI node must have the same constant
1822 length. */
1823 int i, n = gimple_phi_num_args (def);
1824 tree val = NULL, new_val;
1826 for (i = 0; i < n; i++)
1828 tree arg = PHI_ARG_DEF (def, i);
1829 enum br_predictor predictor2;
1831 /* If this PHI has itself as an argument, we cannot
1832 determine the string length of this argument. However,
1833 if we can find an expected constant value for the other
1834 PHI args then we can still be sure that this is
1835 likely a constant. So be optimistic and just
1836 continue with the next argument. */
1837 if (arg == PHI_RESULT (def))
1838 continue;
1840 new_val = expr_expected_value (arg, visited, &predictor2);
1842 /* It is difficult to combine value predictors. Simply assume
1843 that later predictor is weaker and take its prediction. */
1844 if (predictor && *predictor < predictor2)
1845 *predictor = predictor2;
1846 if (!new_val)
1847 return NULL;
1848 if (!val)
1849 val = new_val;
1850 else if (!operand_equal_p (val, new_val, false))
1851 return NULL;
1853 return val;
1855 if (is_gimple_assign (def))
1857 if (gimple_assign_lhs (def) != op0)
1858 return NULL;
1860 return expr_expected_value_1 (TREE_TYPE (gimple_assign_lhs (def)),
1861 gimple_assign_rhs1 (def),
1862 gimple_assign_rhs_code (def),
1863 gimple_assign_rhs2 (def),
1864 visited, predictor);
1867 if (is_gimple_call (def))
1869 tree decl = gimple_call_fndecl (def);
1870 if (!decl)
1872 if (gimple_call_internal_p (def)
1873 && gimple_call_internal_fn (def) == IFN_BUILTIN_EXPECT)
1875 gcc_assert (gimple_call_num_args (def) == 3);
1876 tree val = gimple_call_arg (def, 0);
1877 if (TREE_CONSTANT (val))
1878 return val;
1879 if (predictor)
1881 *predictor = PRED_BUILTIN_EXPECT;
1882 tree val2 = gimple_call_arg (def, 2);
1883 gcc_assert (TREE_CODE (val2) == INTEGER_CST
1884 && tree_fits_uhwi_p (val2)
1885 && tree_to_uhwi (val2) < END_PREDICTORS);
1886 *predictor = (enum br_predictor) tree_to_uhwi (val2);
1888 return gimple_call_arg (def, 1);
1890 return NULL;
1892 if (DECL_BUILT_IN_CLASS (decl) == BUILT_IN_NORMAL)
1893 switch (DECL_FUNCTION_CODE (decl))
1895 case BUILT_IN_EXPECT:
1897 tree val;
1898 if (gimple_call_num_args (def) != 2)
1899 return NULL;
1900 val = gimple_call_arg (def, 0);
1901 if (TREE_CONSTANT (val))
1902 return val;
1903 if (predictor)
1904 *predictor = PRED_BUILTIN_EXPECT;
1905 return gimple_call_arg (def, 1);
1908 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_N:
1909 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_1:
1910 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_2:
1911 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_4:
1912 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_8:
1913 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_16:
1914 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE:
1915 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_N:
1916 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_1:
1917 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_2:
1918 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_4:
1919 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_8:
1920 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_16:
1921 /* Assume that any given atomic operation has low contention,
1922 and thus the compare-and-swap operation succeeds. */
1923 if (predictor)
1924 *predictor = PRED_COMPARE_AND_SWAP;
1925 return boolean_true_node;
1929 return NULL;
1932 if (get_gimple_rhs_class (code) == GIMPLE_BINARY_RHS)
1934 tree res;
1935 enum br_predictor predictor2;
1936 op0 = expr_expected_value (op0, visited, predictor);
1937 if (!op0)
1938 return NULL;
1939 op1 = expr_expected_value (op1, visited, &predictor2);
1940 if (predictor && *predictor < predictor2)
1941 *predictor = predictor2;
1942 if (!op1)
1943 return NULL;
1944 res = fold_build2 (code, type, op0, op1);
1945 if (TREE_CONSTANT (res))
1946 return res;
1947 return NULL;
1949 if (get_gimple_rhs_class (code) == GIMPLE_UNARY_RHS)
1951 tree res;
1952 op0 = expr_expected_value (op0, visited, predictor);
1953 if (!op0)
1954 return NULL;
1955 res = fold_build1 (code, type, op0);
1956 if (TREE_CONSTANT (res))
1957 return res;
1958 return NULL;
1960 return NULL;
1963 /* Return constant EXPR will likely have at execution time, NULL if unknown.
1964 The function is used by builtin_expect branch predictor so the evidence
1965 must come from this construct and additional possible constant folding.
1967 We may want to implement more involved value guess (such as value range
1968 propagation based prediction), but such tricks shall go to new
1969 implementation. */
1971 static tree
1972 expr_expected_value (tree expr, bitmap visited,
1973 enum br_predictor *predictor)
1975 enum tree_code code;
1976 tree op0, op1;
1978 if (TREE_CONSTANT (expr))
1980 if (predictor)
1981 *predictor = PRED_UNCONDITIONAL;
1982 return expr;
1985 extract_ops_from_tree (expr, &code, &op0, &op1);
1986 return expr_expected_value_1 (TREE_TYPE (expr),
1987 op0, code, op1, visited, predictor);
1991 /* Get rid of all builtin_expect calls and GIMPLE_PREDICT statements
1992 we no longer need. */
1993 static unsigned int
1994 strip_predict_hints (void)
1996 basic_block bb;
1997 gimple ass_stmt;
1998 tree var;
2000 FOR_EACH_BB_FN (bb, cfun)
2002 gimple_stmt_iterator bi;
2003 for (bi = gsi_start_bb (bb); !gsi_end_p (bi);)
2005 gimple stmt = gsi_stmt (bi);
2007 if (gimple_code (stmt) == GIMPLE_PREDICT)
2009 gsi_remove (&bi, true);
2010 continue;
2012 else if (is_gimple_call (stmt))
2014 tree fndecl = gimple_call_fndecl (stmt);
2016 if ((fndecl
2017 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
2018 && DECL_FUNCTION_CODE (fndecl) == BUILT_IN_EXPECT
2019 && gimple_call_num_args (stmt) == 2)
2020 || (gimple_call_internal_p (stmt)
2021 && gimple_call_internal_fn (stmt) == IFN_BUILTIN_EXPECT))
2023 var = gimple_call_lhs (stmt);
2024 if (var)
2026 ass_stmt
2027 = gimple_build_assign (var, gimple_call_arg (stmt, 0));
2028 gsi_replace (&bi, ass_stmt, true);
2030 else
2032 gsi_remove (&bi, true);
2033 continue;
2037 gsi_next (&bi);
2040 return 0;
2043 /* Predict using opcode of the last statement in basic block. */
2044 static void
2045 tree_predict_by_opcode (basic_block bb)
2047 gimple stmt = last_stmt (bb);
2048 edge then_edge;
2049 tree op0, op1;
2050 tree type;
2051 tree val;
2052 enum tree_code cmp;
2053 bitmap visited;
2054 edge_iterator ei;
2055 enum br_predictor predictor;
2057 if (!stmt || gimple_code (stmt) != GIMPLE_COND)
2058 return;
2059 FOR_EACH_EDGE (then_edge, ei, bb->succs)
2060 if (then_edge->flags & EDGE_TRUE_VALUE)
2061 break;
2062 op0 = gimple_cond_lhs (stmt);
2063 op1 = gimple_cond_rhs (stmt);
2064 cmp = gimple_cond_code (stmt);
2065 type = TREE_TYPE (op0);
2066 visited = BITMAP_ALLOC (NULL);
2067 val = expr_expected_value_1 (boolean_type_node, op0, cmp, op1, visited,
2068 &predictor);
2069 BITMAP_FREE (visited);
2070 if (val && TREE_CODE (val) == INTEGER_CST)
2072 if (predictor == PRED_BUILTIN_EXPECT)
2074 int percent = PARAM_VALUE (BUILTIN_EXPECT_PROBABILITY);
2076 gcc_assert (percent >= 0 && percent <= 100);
2077 if (integer_zerop (val))
2078 percent = 100 - percent;
2079 predict_edge (then_edge, PRED_BUILTIN_EXPECT, HITRATE (percent));
2081 else
2082 predict_edge (then_edge, predictor,
2083 integer_zerop (val) ? NOT_TAKEN : TAKEN);
2085 /* Try "pointer heuristic."
2086 A comparison ptr == 0 is predicted as false.
2087 Similarly, a comparison ptr1 == ptr2 is predicted as false. */
2088 if (POINTER_TYPE_P (type))
2090 if (cmp == EQ_EXPR)
2091 predict_edge_def (then_edge, PRED_TREE_POINTER, NOT_TAKEN);
2092 else if (cmp == NE_EXPR)
2093 predict_edge_def (then_edge, PRED_TREE_POINTER, TAKEN);
2095 else
2097 /* Try "opcode heuristic."
2098 EQ tests are usually false and NE tests are usually true. Also,
2099 most quantities are positive, so we can make the appropriate guesses
2100 about signed comparisons against zero. */
2101 switch (cmp)
2103 case EQ_EXPR:
2104 case UNEQ_EXPR:
2105 /* Floating point comparisons appears to behave in a very
2106 unpredictable way because of special role of = tests in
2107 FP code. */
2108 if (FLOAT_TYPE_P (type))
2110 /* Comparisons with 0 are often used for booleans and there is
2111 nothing useful to predict about them. */
2112 else if (integer_zerop (op0) || integer_zerop (op1))
2114 else
2115 predict_edge_def (then_edge, PRED_TREE_OPCODE_NONEQUAL, NOT_TAKEN);
2116 break;
2118 case NE_EXPR:
2119 case LTGT_EXPR:
2120 /* Floating point comparisons appears to behave in a very
2121 unpredictable way because of special role of = tests in
2122 FP code. */
2123 if (FLOAT_TYPE_P (type))
2125 /* Comparisons with 0 are often used for booleans and there is
2126 nothing useful to predict about them. */
2127 else if (integer_zerop (op0)
2128 || integer_zerop (op1))
2130 else
2131 predict_edge_def (then_edge, PRED_TREE_OPCODE_NONEQUAL, TAKEN);
2132 break;
2134 case ORDERED_EXPR:
2135 predict_edge_def (then_edge, PRED_TREE_FPOPCODE, TAKEN);
2136 break;
2138 case UNORDERED_EXPR:
2139 predict_edge_def (then_edge, PRED_TREE_FPOPCODE, NOT_TAKEN);
2140 break;
2142 case LE_EXPR:
2143 case LT_EXPR:
2144 if (integer_zerop (op1)
2145 || integer_onep (op1)
2146 || integer_all_onesp (op1)
2147 || real_zerop (op1)
2148 || real_onep (op1)
2149 || real_minus_onep (op1))
2150 predict_edge_def (then_edge, PRED_TREE_OPCODE_POSITIVE, NOT_TAKEN);
2151 break;
2153 case GE_EXPR:
2154 case GT_EXPR:
2155 if (integer_zerop (op1)
2156 || integer_onep (op1)
2157 || integer_all_onesp (op1)
2158 || real_zerop (op1)
2159 || real_onep (op1)
2160 || real_minus_onep (op1))
2161 predict_edge_def (then_edge, PRED_TREE_OPCODE_POSITIVE, TAKEN);
2162 break;
2164 default:
2165 break;
2169 /* Try to guess whether the value of return means error code. */
2171 static enum br_predictor
2172 return_prediction (tree val, enum prediction *prediction)
2174 /* VOID. */
2175 if (!val)
2176 return PRED_NO_PREDICTION;
2177 /* Different heuristics for pointers and scalars. */
2178 if (POINTER_TYPE_P (TREE_TYPE (val)))
2180 /* NULL is usually not returned. */
2181 if (integer_zerop (val))
2183 *prediction = NOT_TAKEN;
2184 return PRED_NULL_RETURN;
2187 else if (INTEGRAL_TYPE_P (TREE_TYPE (val)))
2189 /* Negative return values are often used to indicate
2190 errors. */
2191 if (TREE_CODE (val) == INTEGER_CST
2192 && tree_int_cst_sgn (val) < 0)
2194 *prediction = NOT_TAKEN;
2195 return PRED_NEGATIVE_RETURN;
2197 /* Constant return values seems to be commonly taken.
2198 Zero/one often represent booleans so exclude them from the
2199 heuristics. */
2200 if (TREE_CONSTANT (val)
2201 && (!integer_zerop (val) && !integer_onep (val)))
2203 *prediction = TAKEN;
2204 return PRED_CONST_RETURN;
2207 return PRED_NO_PREDICTION;
2210 /* Find the basic block with return expression and look up for possible
2211 return value trying to apply RETURN_PREDICTION heuristics. */
2212 static void
2213 apply_return_prediction (void)
2215 gimple return_stmt = NULL;
2216 tree return_val;
2217 edge e;
2218 gimple phi;
2219 int phi_num_args, i;
2220 enum br_predictor pred;
2221 enum prediction direction;
2222 edge_iterator ei;
2224 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
2226 return_stmt = last_stmt (e->src);
2227 if (return_stmt
2228 && gimple_code (return_stmt) == GIMPLE_RETURN)
2229 break;
2231 if (!e)
2232 return;
2233 return_val = gimple_return_retval (return_stmt);
2234 if (!return_val)
2235 return;
2236 if (TREE_CODE (return_val) != SSA_NAME
2237 || !SSA_NAME_DEF_STMT (return_val)
2238 || gimple_code (SSA_NAME_DEF_STMT (return_val)) != GIMPLE_PHI)
2239 return;
2240 phi = SSA_NAME_DEF_STMT (return_val);
2241 phi_num_args = gimple_phi_num_args (phi);
2242 pred = return_prediction (PHI_ARG_DEF (phi, 0), &direction);
2244 /* Avoid the degenerate case where all return values form the function
2245 belongs to same category (ie they are all positive constants)
2246 so we can hardly say something about them. */
2247 for (i = 1; i < phi_num_args; i++)
2248 if (pred != return_prediction (PHI_ARG_DEF (phi, i), &direction))
2249 break;
2250 if (i != phi_num_args)
2251 for (i = 0; i < phi_num_args; i++)
2253 pred = return_prediction (PHI_ARG_DEF (phi, i), &direction);
2254 if (pred != PRED_NO_PREDICTION)
2255 predict_paths_leading_to_edge (gimple_phi_arg_edge (phi, i), pred,
2256 direction);
2260 /* Look for basic block that contains unlikely to happen events
2261 (such as noreturn calls) and mark all paths leading to execution
2262 of this basic blocks as unlikely. */
2264 static void
2265 tree_bb_level_predictions (void)
2267 basic_block bb;
2268 bool has_return_edges = false;
2269 edge e;
2270 edge_iterator ei;
2272 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
2273 if (!(e->flags & (EDGE_ABNORMAL | EDGE_FAKE | EDGE_EH)))
2275 has_return_edges = true;
2276 break;
2279 apply_return_prediction ();
2281 FOR_EACH_BB_FN (bb, cfun)
2283 gimple_stmt_iterator gsi;
2285 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
2287 gimple stmt = gsi_stmt (gsi);
2288 tree decl;
2290 if (is_gimple_call (stmt))
2292 if ((gimple_call_flags (stmt) & ECF_NORETURN)
2293 && has_return_edges)
2294 predict_paths_leading_to (bb, PRED_NORETURN,
2295 NOT_TAKEN);
2296 decl = gimple_call_fndecl (stmt);
2297 if (decl
2298 && lookup_attribute ("cold",
2299 DECL_ATTRIBUTES (decl)))
2300 predict_paths_leading_to (bb, PRED_COLD_FUNCTION,
2301 NOT_TAKEN);
2303 else if (gimple_code (stmt) == GIMPLE_PREDICT)
2305 predict_paths_leading_to (bb, gimple_predict_predictor (stmt),
2306 gimple_predict_outcome (stmt));
2307 /* Keep GIMPLE_PREDICT around so early inlining will propagate
2308 hints to callers. */
2314 #ifdef ENABLE_CHECKING
2316 /* Callback for pointer_map_traverse, asserts that the pointer map is
2317 empty. */
2319 static bool
2320 assert_is_empty (const void *key ATTRIBUTE_UNUSED, void **value,
2321 void *data ATTRIBUTE_UNUSED)
2323 gcc_assert (!*value);
2324 return false;
2326 #endif
2328 /* Predict branch probabilities and estimate profile for basic block BB. */
2330 static void
2331 tree_estimate_probability_bb (basic_block bb)
2333 edge e;
2334 edge_iterator ei;
2335 gimple last;
2337 FOR_EACH_EDGE (e, ei, bb->succs)
2339 /* Predict edges to user labels with attributes. */
2340 if (e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
2342 gimple_stmt_iterator gi;
2343 for (gi = gsi_start_bb (e->dest); !gsi_end_p (gi); gsi_next (&gi))
2345 gimple stmt = gsi_stmt (gi);
2346 tree decl;
2348 if (gimple_code (stmt) != GIMPLE_LABEL)
2349 break;
2350 decl = gimple_label_label (stmt);
2351 if (DECL_ARTIFICIAL (decl))
2352 continue;
2354 /* Finally, we have a user-defined label. */
2355 if (lookup_attribute ("cold", DECL_ATTRIBUTES (decl)))
2356 predict_edge_def (e, PRED_COLD_LABEL, NOT_TAKEN);
2357 else if (lookup_attribute ("hot", DECL_ATTRIBUTES (decl)))
2358 predict_edge_def (e, PRED_HOT_LABEL, TAKEN);
2362 /* Predict early returns to be probable, as we've already taken
2363 care for error returns and other cases are often used for
2364 fast paths through function.
2366 Since we've already removed the return statements, we are
2367 looking for CFG like:
2369 if (conditional)
2372 goto return_block
2374 some other blocks
2375 return_block:
2376 return_stmt. */
2377 if (e->dest != bb->next_bb
2378 && e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
2379 && single_succ_p (e->dest)
2380 && single_succ_edge (e->dest)->dest == EXIT_BLOCK_PTR_FOR_FN (cfun)
2381 && (last = last_stmt (e->dest)) != NULL
2382 && gimple_code (last) == GIMPLE_RETURN)
2384 edge e1;
2385 edge_iterator ei1;
2387 if (single_succ_p (bb))
2389 FOR_EACH_EDGE (e1, ei1, bb->preds)
2390 if (!predicted_by_p (e1->src, PRED_NULL_RETURN)
2391 && !predicted_by_p (e1->src, PRED_CONST_RETURN)
2392 && !predicted_by_p (e1->src, PRED_NEGATIVE_RETURN))
2393 predict_edge_def (e1, PRED_TREE_EARLY_RETURN, NOT_TAKEN);
2395 else
2396 if (!predicted_by_p (e->src, PRED_NULL_RETURN)
2397 && !predicted_by_p (e->src, PRED_CONST_RETURN)
2398 && !predicted_by_p (e->src, PRED_NEGATIVE_RETURN))
2399 predict_edge_def (e, PRED_TREE_EARLY_RETURN, NOT_TAKEN);
2402 /* Look for block we are guarding (ie we dominate it,
2403 but it doesn't postdominate us). */
2404 if (e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun) && e->dest != bb
2405 && dominated_by_p (CDI_DOMINATORS, e->dest, e->src)
2406 && !dominated_by_p (CDI_POST_DOMINATORS, e->src, e->dest))
2408 gimple_stmt_iterator bi;
2410 /* The call heuristic claims that a guarded function call
2411 is improbable. This is because such calls are often used
2412 to signal exceptional situations such as printing error
2413 messages. */
2414 for (bi = gsi_start_bb (e->dest); !gsi_end_p (bi);
2415 gsi_next (&bi))
2417 gimple stmt = gsi_stmt (bi);
2418 if (is_gimple_call (stmt)
2419 /* Constant and pure calls are hardly used to signalize
2420 something exceptional. */
2421 && gimple_has_side_effects (stmt))
2423 predict_edge_def (e, PRED_CALL, NOT_TAKEN);
2424 break;
2429 tree_predict_by_opcode (bb);
2432 /* Predict branch probabilities and estimate profile of the tree CFG.
2433 This function can be called from the loop optimizers to recompute
2434 the profile information. */
2436 void
2437 tree_estimate_probability (void)
2439 basic_block bb;
2441 add_noreturn_fake_exit_edges ();
2442 connect_infinite_loops_to_exit ();
2443 /* We use loop_niter_by_eval, which requires that the loops have
2444 preheaders. */
2445 create_preheaders (CP_SIMPLE_PREHEADERS);
2446 calculate_dominance_info (CDI_POST_DOMINATORS);
2448 bb_predictions = pointer_map_create ();
2449 tree_bb_level_predictions ();
2450 record_loop_exits ();
2452 if (number_of_loops (cfun) > 1)
2453 predict_loops ();
2455 FOR_EACH_BB_FN (bb, cfun)
2456 tree_estimate_probability_bb (bb);
2458 FOR_EACH_BB_FN (bb, cfun)
2459 combine_predictions_for_bb (bb);
2461 #ifdef ENABLE_CHECKING
2462 pointer_map_traverse (bb_predictions, assert_is_empty, NULL);
2463 #endif
2464 pointer_map_destroy (bb_predictions);
2465 bb_predictions = NULL;
2467 estimate_bb_frequencies (false);
2468 free_dominance_info (CDI_POST_DOMINATORS);
2469 remove_fake_exit_edges ();
2472 /* Predict branch probabilities and estimate profile of the tree CFG.
2473 This is the driver function for PASS_PROFILE. */
2475 static unsigned int
2476 tree_estimate_probability_driver (void)
2478 unsigned nb_loops;
2480 loop_optimizer_init (LOOPS_NORMAL);
2481 if (dump_file && (dump_flags & TDF_DETAILS))
2482 flow_loops_dump (dump_file, NULL, 0);
2484 mark_irreducible_loops ();
2486 nb_loops = number_of_loops (cfun);
2487 if (nb_loops > 1)
2488 scev_initialize ();
2490 tree_estimate_probability ();
2492 if (nb_loops > 1)
2493 scev_finalize ();
2495 loop_optimizer_finalize ();
2496 if (dump_file && (dump_flags & TDF_DETAILS))
2497 gimple_dump_cfg (dump_file, dump_flags);
2498 if (profile_status_for_fn (cfun) == PROFILE_ABSENT)
2499 profile_status_for_fn (cfun) = PROFILE_GUESSED;
2500 return 0;
2503 /* Predict edges to successors of CUR whose sources are not postdominated by
2504 BB by PRED and recurse to all postdominators. */
2506 static void
2507 predict_paths_for_bb (basic_block cur, basic_block bb,
2508 enum br_predictor pred,
2509 enum prediction taken,
2510 bitmap visited)
2512 edge e;
2513 edge_iterator ei;
2514 basic_block son;
2516 /* We are looking for all edges forming edge cut induced by
2517 set of all blocks postdominated by BB. */
2518 FOR_EACH_EDGE (e, ei, cur->preds)
2519 if (e->src->index >= NUM_FIXED_BLOCKS
2520 && !dominated_by_p (CDI_POST_DOMINATORS, e->src, bb))
2522 edge e2;
2523 edge_iterator ei2;
2524 bool found = false;
2526 /* Ignore fake edges and eh, we predict them as not taken anyway. */
2527 if (e->flags & (EDGE_EH | EDGE_FAKE))
2528 continue;
2529 gcc_assert (bb == cur || dominated_by_p (CDI_POST_DOMINATORS, cur, bb));
2531 /* See if there is an edge from e->src that is not abnormal
2532 and does not lead to BB. */
2533 FOR_EACH_EDGE (e2, ei2, e->src->succs)
2534 if (e2 != e
2535 && !(e2->flags & (EDGE_EH | EDGE_FAKE))
2536 && !dominated_by_p (CDI_POST_DOMINATORS, e2->dest, bb))
2538 found = true;
2539 break;
2542 /* If there is non-abnormal path leaving e->src, predict edge
2543 using predictor. Otherwise we need to look for paths
2544 leading to e->src.
2546 The second may lead to infinite loop in the case we are predicitng
2547 regions that are only reachable by abnormal edges. We simply
2548 prevent visiting given BB twice. */
2549 if (found)
2550 predict_edge_def (e, pred, taken);
2551 else if (bitmap_set_bit (visited, e->src->index))
2552 predict_paths_for_bb (e->src, e->src, pred, taken, visited);
2554 for (son = first_dom_son (CDI_POST_DOMINATORS, cur);
2555 son;
2556 son = next_dom_son (CDI_POST_DOMINATORS, son))
2557 predict_paths_for_bb (son, bb, pred, taken, visited);
2560 /* Sets branch probabilities according to PREDiction and
2561 FLAGS. */
2563 static void
2564 predict_paths_leading_to (basic_block bb, enum br_predictor pred,
2565 enum prediction taken)
2567 bitmap visited = BITMAP_ALLOC (NULL);
2568 predict_paths_for_bb (bb, bb, pred, taken, visited);
2569 BITMAP_FREE (visited);
2572 /* Like predict_paths_leading_to but take edge instead of basic block. */
2574 static void
2575 predict_paths_leading_to_edge (edge e, enum br_predictor pred,
2576 enum prediction taken)
2578 bool has_nonloop_edge = false;
2579 edge_iterator ei;
2580 edge e2;
2582 basic_block bb = e->src;
2583 FOR_EACH_EDGE (e2, ei, bb->succs)
2584 if (e2->dest != e->src && e2->dest != e->dest
2585 && !(e->flags & (EDGE_EH | EDGE_FAKE))
2586 && !dominated_by_p (CDI_POST_DOMINATORS, e->src, e2->dest))
2588 has_nonloop_edge = true;
2589 break;
2591 if (!has_nonloop_edge)
2593 bitmap visited = BITMAP_ALLOC (NULL);
2594 predict_paths_for_bb (bb, bb, pred, taken, visited);
2595 BITMAP_FREE (visited);
2597 else
2598 predict_edge_def (e, pred, taken);
2601 /* This is used to carry information about basic blocks. It is
2602 attached to the AUX field of the standard CFG block. */
2604 typedef struct block_info_def
2606 /* Estimated frequency of execution of basic_block. */
2607 sreal frequency;
2609 /* To keep queue of basic blocks to process. */
2610 basic_block next;
2612 /* Number of predecessors we need to visit first. */
2613 int npredecessors;
2614 } *block_info;
2616 /* Similar information for edges. */
2617 typedef struct edge_info_def
2619 /* In case edge is a loopback edge, the probability edge will be reached
2620 in case header is. Estimated number of iterations of the loop can be
2621 then computed as 1 / (1 - back_edge_prob). */
2622 sreal back_edge_prob;
2623 /* True if the edge is a loopback edge in the natural loop. */
2624 unsigned int back_edge:1;
2625 } *edge_info;
2627 #define BLOCK_INFO(B) ((block_info) (B)->aux)
2628 #define EDGE_INFO(E) ((edge_info) (E)->aux)
2630 /* Helper function for estimate_bb_frequencies.
2631 Propagate the frequencies in blocks marked in
2632 TOVISIT, starting in HEAD. */
2634 static void
2635 propagate_freq (basic_block head, bitmap tovisit)
2637 basic_block bb;
2638 basic_block last;
2639 unsigned i;
2640 edge e;
2641 basic_block nextbb;
2642 bitmap_iterator bi;
2644 /* For each basic block we need to visit count number of his predecessors
2645 we need to visit first. */
2646 EXECUTE_IF_SET_IN_BITMAP (tovisit, 0, i, bi)
2648 edge_iterator ei;
2649 int count = 0;
2651 bb = BASIC_BLOCK_FOR_FN (cfun, i);
2653 FOR_EACH_EDGE (e, ei, bb->preds)
2655 bool visit = bitmap_bit_p (tovisit, e->src->index);
2657 if (visit && !(e->flags & EDGE_DFS_BACK))
2658 count++;
2659 else if (visit && dump_file && !EDGE_INFO (e)->back_edge)
2660 fprintf (dump_file,
2661 "Irreducible region hit, ignoring edge to %i->%i\n",
2662 e->src->index, bb->index);
2664 BLOCK_INFO (bb)->npredecessors = count;
2665 /* When function never returns, we will never process exit block. */
2666 if (!count && bb == EXIT_BLOCK_PTR_FOR_FN (cfun))
2667 bb->count = bb->frequency = 0;
2670 memcpy (&BLOCK_INFO (head)->frequency, &real_one, sizeof (real_one));
2671 last = head;
2672 for (bb = head; bb; bb = nextbb)
2674 edge_iterator ei;
2675 sreal cyclic_probability, frequency;
2677 memcpy (&cyclic_probability, &real_zero, sizeof (real_zero));
2678 memcpy (&frequency, &real_zero, sizeof (real_zero));
2680 nextbb = BLOCK_INFO (bb)->next;
2681 BLOCK_INFO (bb)->next = NULL;
2683 /* Compute frequency of basic block. */
2684 if (bb != head)
2686 #ifdef ENABLE_CHECKING
2687 FOR_EACH_EDGE (e, ei, bb->preds)
2688 gcc_assert (!bitmap_bit_p (tovisit, e->src->index)
2689 || (e->flags & EDGE_DFS_BACK));
2690 #endif
2692 FOR_EACH_EDGE (e, ei, bb->preds)
2693 if (EDGE_INFO (e)->back_edge)
2695 sreal_add (&cyclic_probability, &cyclic_probability,
2696 &EDGE_INFO (e)->back_edge_prob);
2698 else if (!(e->flags & EDGE_DFS_BACK))
2700 sreal tmp;
2702 /* frequency += (e->probability
2703 * BLOCK_INFO (e->src)->frequency /
2704 REG_BR_PROB_BASE); */
2706 sreal_init (&tmp, e->probability, 0);
2707 sreal_mul (&tmp, &tmp, &BLOCK_INFO (e->src)->frequency);
2708 sreal_mul (&tmp, &tmp, &real_inv_br_prob_base);
2709 sreal_add (&frequency, &frequency, &tmp);
2712 if (sreal_compare (&cyclic_probability, &real_zero) == 0)
2714 memcpy (&BLOCK_INFO (bb)->frequency, &frequency,
2715 sizeof (frequency));
2717 else
2719 if (sreal_compare (&cyclic_probability, &real_almost_one) > 0)
2721 memcpy (&cyclic_probability, &real_almost_one,
2722 sizeof (real_almost_one));
2725 /* BLOCK_INFO (bb)->frequency = frequency
2726 / (1 - cyclic_probability) */
2728 sreal_sub (&cyclic_probability, &real_one, &cyclic_probability);
2729 sreal_div (&BLOCK_INFO (bb)->frequency,
2730 &frequency, &cyclic_probability);
2734 bitmap_clear_bit (tovisit, bb->index);
2736 e = find_edge (bb, head);
2737 if (e)
2739 sreal tmp;
2741 /* EDGE_INFO (e)->back_edge_prob
2742 = ((e->probability * BLOCK_INFO (bb)->frequency)
2743 / REG_BR_PROB_BASE); */
2745 sreal_init (&tmp, e->probability, 0);
2746 sreal_mul (&tmp, &tmp, &BLOCK_INFO (bb)->frequency);
2747 sreal_mul (&EDGE_INFO (e)->back_edge_prob,
2748 &tmp, &real_inv_br_prob_base);
2751 /* Propagate to successor blocks. */
2752 FOR_EACH_EDGE (e, ei, bb->succs)
2753 if (!(e->flags & EDGE_DFS_BACK)
2754 && BLOCK_INFO (e->dest)->npredecessors)
2756 BLOCK_INFO (e->dest)->npredecessors--;
2757 if (!BLOCK_INFO (e->dest)->npredecessors)
2759 if (!nextbb)
2760 nextbb = e->dest;
2761 else
2762 BLOCK_INFO (last)->next = e->dest;
2764 last = e->dest;
2770 /* Estimate frequencies in loops at same nest level. */
2772 static void
2773 estimate_loops_at_level (struct loop *first_loop)
2775 struct loop *loop;
2777 for (loop = first_loop; loop; loop = loop->next)
2779 edge e;
2780 basic_block *bbs;
2781 unsigned i;
2782 bitmap tovisit = BITMAP_ALLOC (NULL);
2784 estimate_loops_at_level (loop->inner);
2786 /* Find current loop back edge and mark it. */
2787 e = loop_latch_edge (loop);
2788 EDGE_INFO (e)->back_edge = 1;
2790 bbs = get_loop_body (loop);
2791 for (i = 0; i < loop->num_nodes; i++)
2792 bitmap_set_bit (tovisit, bbs[i]->index);
2793 free (bbs);
2794 propagate_freq (loop->header, tovisit);
2795 BITMAP_FREE (tovisit);
2799 /* Propagates frequencies through structure of loops. */
2801 static void
2802 estimate_loops (void)
2804 bitmap tovisit = BITMAP_ALLOC (NULL);
2805 basic_block bb;
2807 /* Start by estimating the frequencies in the loops. */
2808 if (number_of_loops (cfun) > 1)
2809 estimate_loops_at_level (current_loops->tree_root->inner);
2811 /* Now propagate the frequencies through all the blocks. */
2812 FOR_ALL_BB_FN (bb, cfun)
2814 bitmap_set_bit (tovisit, bb->index);
2816 propagate_freq (ENTRY_BLOCK_PTR_FOR_FN (cfun), tovisit);
2817 BITMAP_FREE (tovisit);
2820 /* Drop the profile for NODE to guessed, and update its frequency based on
2821 whether it is expected to be hot given the CALL_COUNT. */
2823 static void
2824 drop_profile (struct cgraph_node *node, gcov_type call_count)
2826 struct function *fn = DECL_STRUCT_FUNCTION (node->decl);
2827 /* In the case where this was called by another function with a
2828 dropped profile, call_count will be 0. Since there are no
2829 non-zero call counts to this function, we don't know for sure
2830 whether it is hot, and therefore it will be marked normal below. */
2831 bool hot = maybe_hot_count_p (NULL, call_count);
2833 if (dump_file)
2834 fprintf (dump_file,
2835 "Dropping 0 profile for %s/%i. %s based on calls.\n",
2836 node->name (), node->order,
2837 hot ? "Function is hot" : "Function is normal");
2838 /* We only expect to miss profiles for functions that are reached
2839 via non-zero call edges in cases where the function may have
2840 been linked from another module or library (COMDATs and extern
2841 templates). See the comments below for handle_missing_profiles.
2842 Also, only warn in cases where the missing counts exceed the
2843 number of training runs. In certain cases with an execv followed
2844 by a no-return call the profile for the no-return call is not
2845 dumped and there can be a mismatch. */
2846 if (!DECL_COMDAT (node->decl) && !DECL_EXTERNAL (node->decl)
2847 && call_count > profile_info->runs)
2849 if (flag_profile_correction)
2851 if (dump_file)
2852 fprintf (dump_file,
2853 "Missing counts for called function %s/%i\n",
2854 node->name (), node->order);
2856 else
2857 warning (0, "Missing counts for called function %s/%i",
2858 node->name (), node->order);
2861 profile_status_for_fn (fn)
2862 = (flag_guess_branch_prob ? PROFILE_GUESSED : PROFILE_ABSENT);
2863 node->frequency
2864 = hot ? NODE_FREQUENCY_HOT : NODE_FREQUENCY_NORMAL;
2867 /* In the case of COMDAT routines, multiple object files will contain the same
2868 function and the linker will select one for the binary. In that case
2869 all the other copies from the profile instrument binary will be missing
2870 profile counts. Look for cases where this happened, due to non-zero
2871 call counts going to 0-count functions, and drop the profile to guessed
2872 so that we can use the estimated probabilities and avoid optimizing only
2873 for size.
2875 The other case where the profile may be missing is when the routine
2876 is not going to be emitted to the object file, e.g. for "extern template"
2877 class methods. Those will be marked DECL_EXTERNAL. Emit a warning in
2878 all other cases of non-zero calls to 0-count functions. */
2880 void
2881 handle_missing_profiles (void)
2883 struct cgraph_node *node;
2884 int unlikely_count_fraction = PARAM_VALUE (UNLIKELY_BB_COUNT_FRACTION);
2885 vec<struct cgraph_node *> worklist;
2886 worklist.create (64);
2888 /* See if 0 count function has non-0 count callers. In this case we
2889 lost some profile. Drop its function profile to PROFILE_GUESSED. */
2890 FOR_EACH_DEFINED_FUNCTION (node)
2892 struct cgraph_edge *e;
2893 gcov_type call_count = 0;
2894 gcov_type max_tp_first_run = 0;
2895 struct function *fn = DECL_STRUCT_FUNCTION (node->decl);
2897 if (node->count)
2898 continue;
2899 for (e = node->callers; e; e = e->next_caller)
2901 call_count += e->count;
2903 if (e->caller->tp_first_run > max_tp_first_run)
2904 max_tp_first_run = e->caller->tp_first_run;
2907 /* If time profile is missing, let assign the maximum that comes from
2908 caller functions. */
2909 if (!node->tp_first_run && max_tp_first_run)
2910 node->tp_first_run = max_tp_first_run + 1;
2912 if (call_count
2913 && fn && fn->cfg
2914 && (call_count * unlikely_count_fraction >= profile_info->runs))
2916 drop_profile (node, call_count);
2917 worklist.safe_push (node);
2921 /* Propagate the profile dropping to other 0-count COMDATs that are
2922 potentially called by COMDATs we already dropped the profile on. */
2923 while (worklist.length () > 0)
2925 struct cgraph_edge *e;
2927 node = worklist.pop ();
2928 for (e = node->callees; e; e = e->next_caller)
2930 struct cgraph_node *callee = e->callee;
2931 struct function *fn = DECL_STRUCT_FUNCTION (callee->decl);
2933 if (callee->count > 0)
2934 continue;
2935 if (DECL_COMDAT (callee->decl) && fn && fn->cfg
2936 && profile_status_for_fn (fn) == PROFILE_READ)
2938 drop_profile (node, 0);
2939 worklist.safe_push (callee);
2943 worklist.release ();
2946 /* Convert counts measured by profile driven feedback to frequencies.
2947 Return nonzero iff there was any nonzero execution count. */
2950 counts_to_freqs (void)
2952 gcov_type count_max, true_count_max = 0;
2953 basic_block bb;
2955 /* Don't overwrite the estimated frequencies when the profile for
2956 the function is missing. We may drop this function PROFILE_GUESSED
2957 later in drop_profile (). */
2958 if (!ENTRY_BLOCK_PTR_FOR_FN (cfun)->count)
2959 return 0;
2961 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun), NULL, next_bb)
2962 true_count_max = MAX (bb->count, true_count_max);
2964 count_max = MAX (true_count_max, 1);
2965 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun), NULL, next_bb)
2966 bb->frequency = (bb->count * BB_FREQ_MAX + count_max / 2) / count_max;
2968 return true_count_max;
2971 /* Return true if function is likely to be expensive, so there is no point to
2972 optimize performance of prologue, epilogue or do inlining at the expense
2973 of code size growth. THRESHOLD is the limit of number of instructions
2974 function can execute at average to be still considered not expensive. */
2976 bool
2977 expensive_function_p (int threshold)
2979 unsigned int sum = 0;
2980 basic_block bb;
2981 unsigned int limit;
2983 /* We can not compute accurately for large thresholds due to scaled
2984 frequencies. */
2985 gcc_assert (threshold <= BB_FREQ_MAX);
2987 /* Frequencies are out of range. This either means that function contains
2988 internal loop executing more than BB_FREQ_MAX times or profile feedback
2989 is available and function has not been executed at all. */
2990 if (ENTRY_BLOCK_PTR_FOR_FN (cfun)->frequency == 0)
2991 return true;
2993 /* Maximally BB_FREQ_MAX^2 so overflow won't happen. */
2994 limit = ENTRY_BLOCK_PTR_FOR_FN (cfun)->frequency * threshold;
2995 FOR_EACH_BB_FN (bb, cfun)
2997 rtx insn;
2999 FOR_BB_INSNS (bb, insn)
3000 if (active_insn_p (insn))
3002 sum += bb->frequency;
3003 if (sum > limit)
3004 return true;
3008 return false;
3011 /* Estimate and propagate basic block frequencies using the given branch
3012 probabilities. If FORCE is true, the frequencies are used to estimate
3013 the counts even when there are already non-zero profile counts. */
3015 void
3016 estimate_bb_frequencies (bool force)
3018 basic_block bb;
3019 sreal freq_max;
3021 if (force || profile_status_for_fn (cfun) != PROFILE_READ || !counts_to_freqs ())
3023 static int real_values_initialized = 0;
3025 if (!real_values_initialized)
3027 real_values_initialized = 1;
3028 sreal_init (&real_zero, 0, 0);
3029 sreal_init (&real_one, 1, 0);
3030 sreal_init (&real_br_prob_base, REG_BR_PROB_BASE, 0);
3031 sreal_init (&real_bb_freq_max, BB_FREQ_MAX, 0);
3032 sreal_init (&real_one_half, 1, -1);
3033 sreal_div (&real_inv_br_prob_base, &real_one, &real_br_prob_base);
3034 sreal_sub (&real_almost_one, &real_one, &real_inv_br_prob_base);
3037 mark_dfs_back_edges ();
3039 single_succ_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun))->probability =
3040 REG_BR_PROB_BASE;
3042 /* Set up block info for each basic block. */
3043 alloc_aux_for_blocks (sizeof (struct block_info_def));
3044 alloc_aux_for_edges (sizeof (struct edge_info_def));
3045 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun), NULL, next_bb)
3047 edge e;
3048 edge_iterator ei;
3050 FOR_EACH_EDGE (e, ei, bb->succs)
3052 sreal_init (&EDGE_INFO (e)->back_edge_prob, e->probability, 0);
3053 sreal_mul (&EDGE_INFO (e)->back_edge_prob,
3054 &EDGE_INFO (e)->back_edge_prob,
3055 &real_inv_br_prob_base);
3059 /* First compute frequencies locally for each loop from innermost
3060 to outermost to examine frequencies for back edges. */
3061 estimate_loops ();
3063 memcpy (&freq_max, &real_zero, sizeof (real_zero));
3064 FOR_EACH_BB_FN (bb, cfun)
3065 if (sreal_compare (&freq_max, &BLOCK_INFO (bb)->frequency) < 0)
3066 memcpy (&freq_max, &BLOCK_INFO (bb)->frequency, sizeof (freq_max));
3068 sreal_div (&freq_max, &real_bb_freq_max, &freq_max);
3069 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun), NULL, next_bb)
3071 sreal tmp;
3073 sreal_mul (&tmp, &BLOCK_INFO (bb)->frequency, &freq_max);
3074 sreal_add (&tmp, &tmp, &real_one_half);
3075 bb->frequency = sreal_to_int (&tmp);
3078 free_aux_for_blocks ();
3079 free_aux_for_edges ();
3081 compute_function_frequency ();
3084 /* Decide whether function is hot, cold or unlikely executed. */
3085 void
3086 compute_function_frequency (void)
3088 basic_block bb;
3089 struct cgraph_node *node = cgraph_get_node (current_function_decl);
3091 if (DECL_STATIC_CONSTRUCTOR (current_function_decl)
3092 || MAIN_NAME_P (DECL_NAME (current_function_decl)))
3093 node->only_called_at_startup = true;
3094 if (DECL_STATIC_DESTRUCTOR (current_function_decl))
3095 node->only_called_at_exit = true;
3097 if (profile_status_for_fn (cfun) != PROFILE_READ)
3099 int flags = flags_from_decl_or_type (current_function_decl);
3100 if (lookup_attribute ("cold", DECL_ATTRIBUTES (current_function_decl))
3101 != NULL)
3102 node->frequency = NODE_FREQUENCY_UNLIKELY_EXECUTED;
3103 else if (lookup_attribute ("hot", DECL_ATTRIBUTES (current_function_decl))
3104 != NULL)
3105 node->frequency = NODE_FREQUENCY_HOT;
3106 else if (flags & ECF_NORETURN)
3107 node->frequency = NODE_FREQUENCY_EXECUTED_ONCE;
3108 else if (MAIN_NAME_P (DECL_NAME (current_function_decl)))
3109 node->frequency = NODE_FREQUENCY_EXECUTED_ONCE;
3110 else if (DECL_STATIC_CONSTRUCTOR (current_function_decl)
3111 || DECL_STATIC_DESTRUCTOR (current_function_decl))
3112 node->frequency = NODE_FREQUENCY_EXECUTED_ONCE;
3113 return;
3116 /* Only first time try to drop function into unlikely executed.
3117 After inlining the roundoff errors may confuse us.
3118 Ipa-profile pass will drop functions only called from unlikely
3119 functions to unlikely and that is most of what we care about. */
3120 if (!cfun->after_inlining)
3121 node->frequency = NODE_FREQUENCY_UNLIKELY_EXECUTED;
3122 FOR_EACH_BB_FN (bb, cfun)
3124 if (maybe_hot_bb_p (cfun, bb))
3126 node->frequency = NODE_FREQUENCY_HOT;
3127 return;
3129 if (!probably_never_executed_bb_p (cfun, bb))
3130 node->frequency = NODE_FREQUENCY_NORMAL;
3134 static bool
3135 gate_estimate_probability (void)
3137 return flag_guess_branch_prob;
3140 /* Build PREDICT_EXPR. */
3141 tree
3142 build_predict_expr (enum br_predictor predictor, enum prediction taken)
3144 tree t = build1 (PREDICT_EXPR, void_type_node,
3145 build_int_cst (integer_type_node, predictor));
3146 SET_PREDICT_EXPR_OUTCOME (t, taken);
3147 return t;
3150 const char *
3151 predictor_name (enum br_predictor predictor)
3153 return predictor_info[predictor].name;
3156 namespace {
3158 const pass_data pass_data_profile =
3160 GIMPLE_PASS, /* type */
3161 "profile_estimate", /* name */
3162 OPTGROUP_NONE, /* optinfo_flags */
3163 true, /* has_gate */
3164 true, /* has_execute */
3165 TV_BRANCH_PROB, /* tv_id */
3166 PROP_cfg, /* properties_required */
3167 0, /* properties_provided */
3168 0, /* properties_destroyed */
3169 0, /* todo_flags_start */
3170 TODO_verify_ssa, /* todo_flags_finish */
3173 class pass_profile : public gimple_opt_pass
3175 public:
3176 pass_profile (gcc::context *ctxt)
3177 : gimple_opt_pass (pass_data_profile, ctxt)
3180 /* opt_pass methods: */
3181 bool gate () { return gate_estimate_probability (); }
3182 unsigned int execute () { return tree_estimate_probability_driver (); }
3184 }; // class pass_profile
3186 } // anon namespace
3188 gimple_opt_pass *
3189 make_pass_profile (gcc::context *ctxt)
3191 return new pass_profile (ctxt);
3194 namespace {
3196 const pass_data pass_data_strip_predict_hints =
3198 GIMPLE_PASS, /* type */
3199 "*strip_predict_hints", /* name */
3200 OPTGROUP_NONE, /* optinfo_flags */
3201 false, /* has_gate */
3202 true, /* has_execute */
3203 TV_BRANCH_PROB, /* tv_id */
3204 PROP_cfg, /* properties_required */
3205 0, /* properties_provided */
3206 0, /* properties_destroyed */
3207 0, /* todo_flags_start */
3208 TODO_verify_ssa, /* todo_flags_finish */
3211 class pass_strip_predict_hints : public gimple_opt_pass
3213 public:
3214 pass_strip_predict_hints (gcc::context *ctxt)
3215 : gimple_opt_pass (pass_data_strip_predict_hints, ctxt)
3218 /* opt_pass methods: */
3219 opt_pass * clone () { return new pass_strip_predict_hints (m_ctxt); }
3220 unsigned int execute () { return strip_predict_hints (); }
3222 }; // class pass_strip_predict_hints
3224 } // anon namespace
3226 gimple_opt_pass *
3227 make_pass_strip_predict_hints (gcc::context *ctxt)
3229 return new pass_strip_predict_hints (ctxt);
3232 /* Rebuild function frequencies. Passes are in general expected to
3233 maintain profile by hand, however in some cases this is not possible:
3234 for example when inlining several functions with loops freuqencies might run
3235 out of scale and thus needs to be recomputed. */
3237 void
3238 rebuild_frequencies (void)
3240 timevar_push (TV_REBUILD_FREQUENCIES);
3242 /* When the max bb count in the function is small, there is a higher
3243 chance that there were truncation errors in the integer scaling
3244 of counts by inlining and other optimizations. This could lead
3245 to incorrect classification of code as being cold when it isn't.
3246 In that case, force the estimation of bb counts/frequencies from the
3247 branch probabilities, rather than computing frequencies from counts,
3248 which may also lead to frequencies incorrectly reduced to 0. There
3249 is less precision in the probabilities, so we only do this for small
3250 max counts. */
3251 gcov_type count_max = 0;
3252 basic_block bb;
3253 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun), NULL, next_bb)
3254 count_max = MAX (bb->count, count_max);
3256 if (profile_status_for_fn (cfun) == PROFILE_GUESSED
3257 || (profile_status_for_fn (cfun) == PROFILE_READ && count_max < REG_BR_PROB_BASE/10))
3259 loop_optimizer_init (0);
3260 add_noreturn_fake_exit_edges ();
3261 mark_irreducible_loops ();
3262 connect_infinite_loops_to_exit ();
3263 estimate_bb_frequencies (true);
3264 remove_fake_exit_edges ();
3265 loop_optimizer_finalize ();
3267 else if (profile_status_for_fn (cfun) == PROFILE_READ)
3268 counts_to_freqs ();
3269 else
3270 gcc_unreachable ();
3271 timevar_pop (TV_REBUILD_FREQUENCIES);