Make more use of HWI_COMPUTABLE_MODE_P
[official-gcc.git] / gcc / rtlanal.c
blob92fc7b81cebb44d6722145a17645d1ca9171fa5b
1 /* Analyze RTL for GNU compiler.
2 Copyright (C) 1987-2017 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "backend.h"
25 #include "target.h"
26 #include "rtl.h"
27 #include "tree.h"
28 #include "predict.h"
29 #include "df.h"
30 #include "memmodel.h"
31 #include "tm_p.h"
32 #include "insn-config.h"
33 #include "regs.h"
34 #include "emit-rtl.h" /* FIXME: Can go away once crtl is moved to rtl.h. */
35 #include "recog.h"
36 #include "addresses.h"
37 #include "rtl-iter.h"
39 /* Forward declarations */
40 static void set_of_1 (rtx, const_rtx, void *);
41 static bool covers_regno_p (const_rtx, unsigned int);
42 static bool covers_regno_no_parallel_p (const_rtx, unsigned int);
43 static int computed_jump_p_1 (const_rtx);
44 static void parms_set (rtx, const_rtx, void *);
46 static unsigned HOST_WIDE_INT cached_nonzero_bits (const_rtx, scalar_int_mode,
47 const_rtx, machine_mode,
48 unsigned HOST_WIDE_INT);
49 static unsigned HOST_WIDE_INT nonzero_bits1 (const_rtx, scalar_int_mode,
50 const_rtx, machine_mode,
51 unsigned HOST_WIDE_INT);
52 static unsigned int cached_num_sign_bit_copies (const_rtx, scalar_int_mode,
53 const_rtx, machine_mode,
54 unsigned int);
55 static unsigned int num_sign_bit_copies1 (const_rtx, scalar_int_mode,
56 const_rtx, machine_mode,
57 unsigned int);
59 rtx_subrtx_bound_info rtx_all_subrtx_bounds[NUM_RTX_CODE];
60 rtx_subrtx_bound_info rtx_nonconst_subrtx_bounds[NUM_RTX_CODE];
62 /* Truncation narrows the mode from SOURCE mode to DESTINATION mode.
63 If TARGET_MODE_REP_EXTENDED (DESTINATION, DESTINATION_REP) is
64 SIGN_EXTEND then while narrowing we also have to enforce the
65 representation and sign-extend the value to mode DESTINATION_REP.
67 If the value is already sign-extended to DESTINATION_REP mode we
68 can just switch to DESTINATION mode on it. For each pair of
69 integral modes SOURCE and DESTINATION, when truncating from SOURCE
70 to DESTINATION, NUM_SIGN_BIT_COPIES_IN_REP[SOURCE][DESTINATION]
71 contains the number of high-order bits in SOURCE that have to be
72 copies of the sign-bit so that we can do this mode-switch to
73 DESTINATION. */
75 static unsigned int
76 num_sign_bit_copies_in_rep[MAX_MODE_INT + 1][MAX_MODE_INT + 1];
78 /* Store X into index I of ARRAY. ARRAY is known to have at least I
79 elements. Return the new base of ARRAY. */
81 template <typename T>
82 typename T::value_type *
83 generic_subrtx_iterator <T>::add_single_to_queue (array_type &array,
84 value_type *base,
85 size_t i, value_type x)
87 if (base == array.stack)
89 if (i < LOCAL_ELEMS)
91 base[i] = x;
92 return base;
94 gcc_checking_assert (i == LOCAL_ELEMS);
95 /* A previous iteration might also have moved from the stack to the
96 heap, in which case the heap array will already be big enough. */
97 if (vec_safe_length (array.heap) <= i)
98 vec_safe_grow (array.heap, i + 1);
99 base = array.heap->address ();
100 memcpy (base, array.stack, sizeof (array.stack));
101 base[LOCAL_ELEMS] = x;
102 return base;
104 unsigned int length = array.heap->length ();
105 if (length > i)
107 gcc_checking_assert (base == array.heap->address ());
108 base[i] = x;
109 return base;
111 else
113 gcc_checking_assert (i == length);
114 vec_safe_push (array.heap, x);
115 return array.heap->address ();
119 /* Add the subrtxes of X to worklist ARRAY, starting at END. Return the
120 number of elements added to the worklist. */
122 template <typename T>
123 size_t
124 generic_subrtx_iterator <T>::add_subrtxes_to_queue (array_type &array,
125 value_type *base,
126 size_t end, rtx_type x)
128 enum rtx_code code = GET_CODE (x);
129 const char *format = GET_RTX_FORMAT (code);
130 size_t orig_end = end;
131 if (__builtin_expect (INSN_P (x), false))
133 /* Put the pattern at the top of the queue, since that's what
134 we're likely to want most. It also allows for the SEQUENCE
135 code below. */
136 for (int i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; --i)
137 if (format[i] == 'e')
139 value_type subx = T::get_value (x->u.fld[i].rt_rtx);
140 if (__builtin_expect (end < LOCAL_ELEMS, true))
141 base[end++] = subx;
142 else
143 base = add_single_to_queue (array, base, end++, subx);
146 else
147 for (int i = 0; format[i]; ++i)
148 if (format[i] == 'e')
150 value_type subx = T::get_value (x->u.fld[i].rt_rtx);
151 if (__builtin_expect (end < LOCAL_ELEMS, true))
152 base[end++] = subx;
153 else
154 base = add_single_to_queue (array, base, end++, subx);
156 else if (format[i] == 'E')
158 unsigned int length = GET_NUM_ELEM (x->u.fld[i].rt_rtvec);
159 rtx *vec = x->u.fld[i].rt_rtvec->elem;
160 if (__builtin_expect (end + length <= LOCAL_ELEMS, true))
161 for (unsigned int j = 0; j < length; j++)
162 base[end++] = T::get_value (vec[j]);
163 else
164 for (unsigned int j = 0; j < length; j++)
165 base = add_single_to_queue (array, base, end++,
166 T::get_value (vec[j]));
167 if (code == SEQUENCE && end == length)
168 /* If the subrtxes of the sequence fill the entire array then
169 we know that no other parts of a containing insn are queued.
170 The caller is therefore iterating over the sequence as a
171 PATTERN (...), so we also want the patterns of the
172 subinstructions. */
173 for (unsigned int j = 0; j < length; j++)
175 typename T::rtx_type x = T::get_rtx (base[j]);
176 if (INSN_P (x))
177 base[j] = T::get_value (PATTERN (x));
180 return end - orig_end;
183 template <typename T>
184 void
185 generic_subrtx_iterator <T>::free_array (array_type &array)
187 vec_free (array.heap);
190 template <typename T>
191 const size_t generic_subrtx_iterator <T>::LOCAL_ELEMS;
193 template class generic_subrtx_iterator <const_rtx_accessor>;
194 template class generic_subrtx_iterator <rtx_var_accessor>;
195 template class generic_subrtx_iterator <rtx_ptr_accessor>;
197 /* Return 1 if the value of X is unstable
198 (would be different at a different point in the program).
199 The frame pointer, arg pointer, etc. are considered stable
200 (within one function) and so is anything marked `unchanging'. */
203 rtx_unstable_p (const_rtx x)
205 const RTX_CODE code = GET_CODE (x);
206 int i;
207 const char *fmt;
209 switch (code)
211 case MEM:
212 return !MEM_READONLY_P (x) || rtx_unstable_p (XEXP (x, 0));
214 case CONST:
215 CASE_CONST_ANY:
216 case SYMBOL_REF:
217 case LABEL_REF:
218 return 0;
220 case REG:
221 /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
222 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
223 /* The arg pointer varies if it is not a fixed register. */
224 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
225 return 0;
226 /* ??? When call-clobbered, the value is stable modulo the restore
227 that must happen after a call. This currently screws up local-alloc
228 into believing that the restore is not needed. */
229 if (!PIC_OFFSET_TABLE_REG_CALL_CLOBBERED && x == pic_offset_table_rtx)
230 return 0;
231 return 1;
233 case ASM_OPERANDS:
234 if (MEM_VOLATILE_P (x))
235 return 1;
237 /* Fall through. */
239 default:
240 break;
243 fmt = GET_RTX_FORMAT (code);
244 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
245 if (fmt[i] == 'e')
247 if (rtx_unstable_p (XEXP (x, i)))
248 return 1;
250 else if (fmt[i] == 'E')
252 int j;
253 for (j = 0; j < XVECLEN (x, i); j++)
254 if (rtx_unstable_p (XVECEXP (x, i, j)))
255 return 1;
258 return 0;
261 /* Return 1 if X has a value that can vary even between two
262 executions of the program. 0 means X can be compared reliably
263 against certain constants or near-constants.
264 FOR_ALIAS is nonzero if we are called from alias analysis; if it is
265 zero, we are slightly more conservative.
266 The frame pointer and the arg pointer are considered constant. */
268 bool
269 rtx_varies_p (const_rtx x, bool for_alias)
271 RTX_CODE code;
272 int i;
273 const char *fmt;
275 if (!x)
276 return 0;
278 code = GET_CODE (x);
279 switch (code)
281 case MEM:
282 return !MEM_READONLY_P (x) || rtx_varies_p (XEXP (x, 0), for_alias);
284 case CONST:
285 CASE_CONST_ANY:
286 case SYMBOL_REF:
287 case LABEL_REF:
288 return 0;
290 case REG:
291 /* Note that we have to test for the actual rtx used for the frame
292 and arg pointers and not just the register number in case we have
293 eliminated the frame and/or arg pointer and are using it
294 for pseudos. */
295 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
296 /* The arg pointer varies if it is not a fixed register. */
297 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
298 return 0;
299 if (x == pic_offset_table_rtx
300 /* ??? When call-clobbered, the value is stable modulo the restore
301 that must happen after a call. This currently screws up
302 local-alloc into believing that the restore is not needed, so we
303 must return 0 only if we are called from alias analysis. */
304 && (!PIC_OFFSET_TABLE_REG_CALL_CLOBBERED || for_alias))
305 return 0;
306 return 1;
308 case LO_SUM:
309 /* The operand 0 of a LO_SUM is considered constant
310 (in fact it is related specifically to operand 1)
311 during alias analysis. */
312 return (! for_alias && rtx_varies_p (XEXP (x, 0), for_alias))
313 || rtx_varies_p (XEXP (x, 1), for_alias);
315 case ASM_OPERANDS:
316 if (MEM_VOLATILE_P (x))
317 return 1;
319 /* Fall through. */
321 default:
322 break;
325 fmt = GET_RTX_FORMAT (code);
326 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
327 if (fmt[i] == 'e')
329 if (rtx_varies_p (XEXP (x, i), for_alias))
330 return 1;
332 else if (fmt[i] == 'E')
334 int j;
335 for (j = 0; j < XVECLEN (x, i); j++)
336 if (rtx_varies_p (XVECEXP (x, i, j), for_alias))
337 return 1;
340 return 0;
343 /* Compute an approximation for the offset between the register
344 FROM and TO for the current function, as it was at the start
345 of the routine. */
347 static HOST_WIDE_INT
348 get_initial_register_offset (int from, int to)
350 static const struct elim_table_t
352 const int from;
353 const int to;
354 } table[] = ELIMINABLE_REGS;
355 HOST_WIDE_INT offset1, offset2;
356 unsigned int i, j;
358 if (to == from)
359 return 0;
361 /* It is not safe to call INITIAL_ELIMINATION_OFFSET
362 before the reload pass. We need to give at least
363 an estimation for the resulting frame size. */
364 if (! reload_completed)
366 offset1 = crtl->outgoing_args_size + get_frame_size ();
367 #if !STACK_GROWS_DOWNWARD
368 offset1 = - offset1;
369 #endif
370 if (to == STACK_POINTER_REGNUM)
371 return offset1;
372 else if (from == STACK_POINTER_REGNUM)
373 return - offset1;
374 else
375 return 0;
378 for (i = 0; i < ARRAY_SIZE (table); i++)
379 if (table[i].from == from)
381 if (table[i].to == to)
383 INITIAL_ELIMINATION_OFFSET (table[i].from, table[i].to,
384 offset1);
385 return offset1;
387 for (j = 0; j < ARRAY_SIZE (table); j++)
389 if (table[j].to == to
390 && table[j].from == table[i].to)
392 INITIAL_ELIMINATION_OFFSET (table[i].from, table[i].to,
393 offset1);
394 INITIAL_ELIMINATION_OFFSET (table[j].from, table[j].to,
395 offset2);
396 return offset1 + offset2;
398 if (table[j].from == to
399 && table[j].to == table[i].to)
401 INITIAL_ELIMINATION_OFFSET (table[i].from, table[i].to,
402 offset1);
403 INITIAL_ELIMINATION_OFFSET (table[j].from, table[j].to,
404 offset2);
405 return offset1 - offset2;
409 else if (table[i].to == from)
411 if (table[i].from == to)
413 INITIAL_ELIMINATION_OFFSET (table[i].from, table[i].to,
414 offset1);
415 return - offset1;
417 for (j = 0; j < ARRAY_SIZE (table); j++)
419 if (table[j].to == to
420 && table[j].from == table[i].from)
422 INITIAL_ELIMINATION_OFFSET (table[i].from, table[i].to,
423 offset1);
424 INITIAL_ELIMINATION_OFFSET (table[j].from, table[j].to,
425 offset2);
426 return - offset1 + offset2;
428 if (table[j].from == to
429 && table[j].to == table[i].from)
431 INITIAL_ELIMINATION_OFFSET (table[i].from, table[i].to,
432 offset1);
433 INITIAL_ELIMINATION_OFFSET (table[j].from, table[j].to,
434 offset2);
435 return - offset1 - offset2;
440 /* If the requested register combination was not found,
441 try a different more simple combination. */
442 if (from == ARG_POINTER_REGNUM)
443 return get_initial_register_offset (HARD_FRAME_POINTER_REGNUM, to);
444 else if (to == ARG_POINTER_REGNUM)
445 return get_initial_register_offset (from, HARD_FRAME_POINTER_REGNUM);
446 else if (from == HARD_FRAME_POINTER_REGNUM)
447 return get_initial_register_offset (FRAME_POINTER_REGNUM, to);
448 else if (to == HARD_FRAME_POINTER_REGNUM)
449 return get_initial_register_offset (from, FRAME_POINTER_REGNUM);
450 else
451 return 0;
454 /* Return nonzero if the use of X+OFFSET as an address in a MEM with SIZE
455 bytes can cause a trap. MODE is the mode of the MEM (not that of X) and
456 UNALIGNED_MEMS controls whether nonzero is returned for unaligned memory
457 references on strict alignment machines. */
459 static int
460 rtx_addr_can_trap_p_1 (const_rtx x, HOST_WIDE_INT offset, HOST_WIDE_INT size,
461 machine_mode mode, bool unaligned_mems)
463 enum rtx_code code = GET_CODE (x);
465 /* The offset must be a multiple of the mode size if we are considering
466 unaligned memory references on strict alignment machines. */
467 if (STRICT_ALIGNMENT && unaligned_mems && GET_MODE_SIZE (mode) != 0)
469 HOST_WIDE_INT actual_offset = offset;
471 #ifdef SPARC_STACK_BOUNDARY_HACK
472 /* ??? The SPARC port may claim a STACK_BOUNDARY higher than
473 the real alignment of %sp. However, when it does this, the
474 alignment of %sp+STACK_POINTER_OFFSET is STACK_BOUNDARY. */
475 if (SPARC_STACK_BOUNDARY_HACK
476 && (x == stack_pointer_rtx || x == hard_frame_pointer_rtx))
477 actual_offset -= STACK_POINTER_OFFSET;
478 #endif
480 if (actual_offset % GET_MODE_SIZE (mode) != 0)
481 return 1;
484 switch (code)
486 case SYMBOL_REF:
487 if (SYMBOL_REF_WEAK (x))
488 return 1;
489 if (!CONSTANT_POOL_ADDRESS_P (x) && !SYMBOL_REF_FUNCTION_P (x))
491 tree decl;
492 HOST_WIDE_INT decl_size;
494 if (offset < 0)
495 return 1;
496 if (size == 0)
497 size = GET_MODE_SIZE (mode);
498 if (size == 0)
499 return offset != 0;
501 /* If the size of the access or of the symbol is unknown,
502 assume the worst. */
503 decl = SYMBOL_REF_DECL (x);
505 /* Else check that the access is in bounds. TODO: restructure
506 expr_size/tree_expr_size/int_expr_size and just use the latter. */
507 if (!decl)
508 decl_size = -1;
509 else if (DECL_P (decl) && DECL_SIZE_UNIT (decl))
510 decl_size = (tree_fits_shwi_p (DECL_SIZE_UNIT (decl))
511 ? tree_to_shwi (DECL_SIZE_UNIT (decl))
512 : -1);
513 else if (TREE_CODE (decl) == STRING_CST)
514 decl_size = TREE_STRING_LENGTH (decl);
515 else if (TYPE_SIZE_UNIT (TREE_TYPE (decl)))
516 decl_size = int_size_in_bytes (TREE_TYPE (decl));
517 else
518 decl_size = -1;
520 return (decl_size <= 0 ? offset != 0 : offset + size > decl_size);
523 return 0;
525 case LABEL_REF:
526 return 0;
528 case REG:
529 /* Stack references are assumed not to trap, but we need to deal with
530 nonsensical offsets. */
531 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
532 || x == stack_pointer_rtx
533 /* The arg pointer varies if it is not a fixed register. */
534 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
536 #ifdef RED_ZONE_SIZE
537 HOST_WIDE_INT red_zone_size = RED_ZONE_SIZE;
538 #else
539 HOST_WIDE_INT red_zone_size = 0;
540 #endif
541 HOST_WIDE_INT stack_boundary = PREFERRED_STACK_BOUNDARY
542 / BITS_PER_UNIT;
543 HOST_WIDE_INT low_bound, high_bound;
545 if (size == 0)
546 size = GET_MODE_SIZE (mode);
547 if (size == 0)
548 return 1;
550 if (x == frame_pointer_rtx)
552 if (FRAME_GROWS_DOWNWARD)
554 high_bound = STARTING_FRAME_OFFSET;
555 low_bound = high_bound - get_frame_size ();
557 else
559 low_bound = STARTING_FRAME_OFFSET;
560 high_bound = low_bound + get_frame_size ();
563 else if (x == hard_frame_pointer_rtx)
565 HOST_WIDE_INT sp_offset
566 = get_initial_register_offset (STACK_POINTER_REGNUM,
567 HARD_FRAME_POINTER_REGNUM);
568 HOST_WIDE_INT ap_offset
569 = get_initial_register_offset (ARG_POINTER_REGNUM,
570 HARD_FRAME_POINTER_REGNUM);
572 #if STACK_GROWS_DOWNWARD
573 low_bound = sp_offset - red_zone_size - stack_boundary;
574 high_bound = ap_offset
575 + FIRST_PARM_OFFSET (current_function_decl)
576 #if !ARGS_GROW_DOWNWARD
577 + crtl->args.size
578 #endif
579 + stack_boundary;
580 #else
581 high_bound = sp_offset + red_zone_size + stack_boundary;
582 low_bound = ap_offset
583 + FIRST_PARM_OFFSET (current_function_decl)
584 #if ARGS_GROW_DOWNWARD
585 - crtl->args.size
586 #endif
587 - stack_boundary;
588 #endif
590 else if (x == stack_pointer_rtx)
592 HOST_WIDE_INT ap_offset
593 = get_initial_register_offset (ARG_POINTER_REGNUM,
594 STACK_POINTER_REGNUM);
596 #if STACK_GROWS_DOWNWARD
597 low_bound = - red_zone_size - stack_boundary;
598 high_bound = ap_offset
599 + FIRST_PARM_OFFSET (current_function_decl)
600 #if !ARGS_GROW_DOWNWARD
601 + crtl->args.size
602 #endif
603 + stack_boundary;
604 #else
605 high_bound = red_zone_size + stack_boundary;
606 low_bound = ap_offset
607 + FIRST_PARM_OFFSET (current_function_decl)
608 #if ARGS_GROW_DOWNWARD
609 - crtl->args.size
610 #endif
611 - stack_boundary;
612 #endif
614 else
616 /* We assume that accesses are safe to at least the
617 next stack boundary.
618 Examples are varargs and __builtin_return_address. */
619 #if ARGS_GROW_DOWNWARD
620 high_bound = FIRST_PARM_OFFSET (current_function_decl)
621 + stack_boundary;
622 low_bound = FIRST_PARM_OFFSET (current_function_decl)
623 - crtl->args.size - stack_boundary;
624 #else
625 low_bound = FIRST_PARM_OFFSET (current_function_decl)
626 - stack_boundary;
627 high_bound = FIRST_PARM_OFFSET (current_function_decl)
628 + crtl->args.size + stack_boundary;
629 #endif
632 if (offset >= low_bound && offset <= high_bound - size)
633 return 0;
634 return 1;
636 /* All of the virtual frame registers are stack references. */
637 if (REGNO (x) >= FIRST_VIRTUAL_REGISTER
638 && REGNO (x) <= LAST_VIRTUAL_REGISTER)
639 return 0;
640 return 1;
642 case CONST:
643 return rtx_addr_can_trap_p_1 (XEXP (x, 0), offset, size,
644 mode, unaligned_mems);
646 case PLUS:
647 /* An address is assumed not to trap if:
648 - it is the pic register plus a const unspec without offset. */
649 if (XEXP (x, 0) == pic_offset_table_rtx
650 && GET_CODE (XEXP (x, 1)) == CONST
651 && GET_CODE (XEXP (XEXP (x, 1), 0)) == UNSPEC
652 && offset == 0)
653 return 0;
655 /* - or it is an address that can't trap plus a constant integer. */
656 if (CONST_INT_P (XEXP (x, 1))
657 && !rtx_addr_can_trap_p_1 (XEXP (x, 0), offset + INTVAL (XEXP (x, 1)),
658 size, mode, unaligned_mems))
659 return 0;
661 return 1;
663 case LO_SUM:
664 case PRE_MODIFY:
665 return rtx_addr_can_trap_p_1 (XEXP (x, 1), offset, size,
666 mode, unaligned_mems);
668 case PRE_DEC:
669 case PRE_INC:
670 case POST_DEC:
671 case POST_INC:
672 case POST_MODIFY:
673 return rtx_addr_can_trap_p_1 (XEXP (x, 0), offset, size,
674 mode, unaligned_mems);
676 default:
677 break;
680 /* If it isn't one of the case above, it can cause a trap. */
681 return 1;
684 /* Return nonzero if the use of X as an address in a MEM can cause a trap. */
687 rtx_addr_can_trap_p (const_rtx x)
689 return rtx_addr_can_trap_p_1 (x, 0, 0, VOIDmode, false);
692 /* Return true if X contains a MEM subrtx. */
694 bool
695 contains_mem_rtx_p (rtx x)
697 subrtx_iterator::array_type array;
698 FOR_EACH_SUBRTX (iter, array, x, ALL)
699 if (MEM_P (*iter))
700 return true;
702 return false;
705 /* Return true if X is an address that is known to not be zero. */
707 bool
708 nonzero_address_p (const_rtx x)
710 const enum rtx_code code = GET_CODE (x);
712 switch (code)
714 case SYMBOL_REF:
715 return flag_delete_null_pointer_checks && !SYMBOL_REF_WEAK (x);
717 case LABEL_REF:
718 return true;
720 case REG:
721 /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
722 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
723 || x == stack_pointer_rtx
724 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
725 return true;
726 /* All of the virtual frame registers are stack references. */
727 if (REGNO (x) >= FIRST_VIRTUAL_REGISTER
728 && REGNO (x) <= LAST_VIRTUAL_REGISTER)
729 return true;
730 return false;
732 case CONST:
733 return nonzero_address_p (XEXP (x, 0));
735 case PLUS:
736 /* Handle PIC references. */
737 if (XEXP (x, 0) == pic_offset_table_rtx
738 && CONSTANT_P (XEXP (x, 1)))
739 return true;
740 return false;
742 case PRE_MODIFY:
743 /* Similar to the above; allow positive offsets. Further, since
744 auto-inc is only allowed in memories, the register must be a
745 pointer. */
746 if (CONST_INT_P (XEXP (x, 1))
747 && INTVAL (XEXP (x, 1)) > 0)
748 return true;
749 return nonzero_address_p (XEXP (x, 0));
751 case PRE_INC:
752 /* Similarly. Further, the offset is always positive. */
753 return true;
755 case PRE_DEC:
756 case POST_DEC:
757 case POST_INC:
758 case POST_MODIFY:
759 return nonzero_address_p (XEXP (x, 0));
761 case LO_SUM:
762 return nonzero_address_p (XEXP (x, 1));
764 default:
765 break;
768 /* If it isn't one of the case above, might be zero. */
769 return false;
772 /* Return 1 if X refers to a memory location whose address
773 cannot be compared reliably with constant addresses,
774 or if X refers to a BLKmode memory object.
775 FOR_ALIAS is nonzero if we are called from alias analysis; if it is
776 zero, we are slightly more conservative. */
778 bool
779 rtx_addr_varies_p (const_rtx x, bool for_alias)
781 enum rtx_code code;
782 int i;
783 const char *fmt;
785 if (x == 0)
786 return 0;
788 code = GET_CODE (x);
789 if (code == MEM)
790 return GET_MODE (x) == BLKmode || rtx_varies_p (XEXP (x, 0), for_alias);
792 fmt = GET_RTX_FORMAT (code);
793 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
794 if (fmt[i] == 'e')
796 if (rtx_addr_varies_p (XEXP (x, i), for_alias))
797 return 1;
799 else if (fmt[i] == 'E')
801 int j;
802 for (j = 0; j < XVECLEN (x, i); j++)
803 if (rtx_addr_varies_p (XVECEXP (x, i, j), for_alias))
804 return 1;
806 return 0;
809 /* Return the CALL in X if there is one. */
812 get_call_rtx_from (rtx x)
814 if (INSN_P (x))
815 x = PATTERN (x);
816 if (GET_CODE (x) == PARALLEL)
817 x = XVECEXP (x, 0, 0);
818 if (GET_CODE (x) == SET)
819 x = SET_SRC (x);
820 if (GET_CODE (x) == CALL && MEM_P (XEXP (x, 0)))
821 return x;
822 return NULL_RTX;
825 /* Return the value of the integer term in X, if one is apparent;
826 otherwise return 0.
827 Only obvious integer terms are detected.
828 This is used in cse.c with the `related_value' field. */
830 HOST_WIDE_INT
831 get_integer_term (const_rtx x)
833 if (GET_CODE (x) == CONST)
834 x = XEXP (x, 0);
836 if (GET_CODE (x) == MINUS
837 && CONST_INT_P (XEXP (x, 1)))
838 return - INTVAL (XEXP (x, 1));
839 if (GET_CODE (x) == PLUS
840 && CONST_INT_P (XEXP (x, 1)))
841 return INTVAL (XEXP (x, 1));
842 return 0;
845 /* If X is a constant, return the value sans apparent integer term;
846 otherwise return 0.
847 Only obvious integer terms are detected. */
850 get_related_value (const_rtx x)
852 if (GET_CODE (x) != CONST)
853 return 0;
854 x = XEXP (x, 0);
855 if (GET_CODE (x) == PLUS
856 && CONST_INT_P (XEXP (x, 1)))
857 return XEXP (x, 0);
858 else if (GET_CODE (x) == MINUS
859 && CONST_INT_P (XEXP (x, 1)))
860 return XEXP (x, 0);
861 return 0;
864 /* Return true if SYMBOL is a SYMBOL_REF and OFFSET + SYMBOL points
865 to somewhere in the same object or object_block as SYMBOL. */
867 bool
868 offset_within_block_p (const_rtx symbol, HOST_WIDE_INT offset)
870 tree decl;
872 if (GET_CODE (symbol) != SYMBOL_REF)
873 return false;
875 if (offset == 0)
876 return true;
878 if (offset > 0)
880 if (CONSTANT_POOL_ADDRESS_P (symbol)
881 && offset < (int) GET_MODE_SIZE (get_pool_mode (symbol)))
882 return true;
884 decl = SYMBOL_REF_DECL (symbol);
885 if (decl && offset < int_size_in_bytes (TREE_TYPE (decl)))
886 return true;
889 if (SYMBOL_REF_HAS_BLOCK_INFO_P (symbol)
890 && SYMBOL_REF_BLOCK (symbol)
891 && SYMBOL_REF_BLOCK_OFFSET (symbol) >= 0
892 && ((unsigned HOST_WIDE_INT) offset + SYMBOL_REF_BLOCK_OFFSET (symbol)
893 < (unsigned HOST_WIDE_INT) SYMBOL_REF_BLOCK (symbol)->size))
894 return true;
896 return false;
899 /* Split X into a base and a constant offset, storing them in *BASE_OUT
900 and *OFFSET_OUT respectively. */
902 void
903 split_const (rtx x, rtx *base_out, rtx *offset_out)
905 if (GET_CODE (x) == CONST)
907 x = XEXP (x, 0);
908 if (GET_CODE (x) == PLUS && CONST_INT_P (XEXP (x, 1)))
910 *base_out = XEXP (x, 0);
911 *offset_out = XEXP (x, 1);
912 return;
915 *base_out = x;
916 *offset_out = const0_rtx;
919 /* Return the number of places FIND appears within X. If COUNT_DEST is
920 zero, we do not count occurrences inside the destination of a SET. */
923 count_occurrences (const_rtx x, const_rtx find, int count_dest)
925 int i, j;
926 enum rtx_code code;
927 const char *format_ptr;
928 int count;
930 if (x == find)
931 return 1;
933 code = GET_CODE (x);
935 switch (code)
937 case REG:
938 CASE_CONST_ANY:
939 case SYMBOL_REF:
940 case CODE_LABEL:
941 case PC:
942 case CC0:
943 return 0;
945 case EXPR_LIST:
946 count = count_occurrences (XEXP (x, 0), find, count_dest);
947 if (XEXP (x, 1))
948 count += count_occurrences (XEXP (x, 1), find, count_dest);
949 return count;
951 case MEM:
952 if (MEM_P (find) && rtx_equal_p (x, find))
953 return 1;
954 break;
956 case SET:
957 if (SET_DEST (x) == find && ! count_dest)
958 return count_occurrences (SET_SRC (x), find, count_dest);
959 break;
961 default:
962 break;
965 format_ptr = GET_RTX_FORMAT (code);
966 count = 0;
968 for (i = 0; i < GET_RTX_LENGTH (code); i++)
970 switch (*format_ptr++)
972 case 'e':
973 count += count_occurrences (XEXP (x, i), find, count_dest);
974 break;
976 case 'E':
977 for (j = 0; j < XVECLEN (x, i); j++)
978 count += count_occurrences (XVECEXP (x, i, j), find, count_dest);
979 break;
982 return count;
986 /* Return TRUE if OP is a register or subreg of a register that
987 holds an unsigned quantity. Otherwise, return FALSE. */
989 bool
990 unsigned_reg_p (rtx op)
992 if (REG_P (op)
993 && REG_EXPR (op)
994 && TYPE_UNSIGNED (TREE_TYPE (REG_EXPR (op))))
995 return true;
997 if (GET_CODE (op) == SUBREG
998 && SUBREG_PROMOTED_SIGN (op))
999 return true;
1001 return false;
1005 /* Nonzero if register REG appears somewhere within IN.
1006 Also works if REG is not a register; in this case it checks
1007 for a subexpression of IN that is Lisp "equal" to REG. */
1010 reg_mentioned_p (const_rtx reg, const_rtx in)
1012 const char *fmt;
1013 int i;
1014 enum rtx_code code;
1016 if (in == 0)
1017 return 0;
1019 if (reg == in)
1020 return 1;
1022 if (GET_CODE (in) == LABEL_REF)
1023 return reg == label_ref_label (in);
1025 code = GET_CODE (in);
1027 switch (code)
1029 /* Compare registers by number. */
1030 case REG:
1031 return REG_P (reg) && REGNO (in) == REGNO (reg);
1033 /* These codes have no constituent expressions
1034 and are unique. */
1035 case SCRATCH:
1036 case CC0:
1037 case PC:
1038 return 0;
1040 CASE_CONST_ANY:
1041 /* These are kept unique for a given value. */
1042 return 0;
1044 default:
1045 break;
1048 if (GET_CODE (reg) == code && rtx_equal_p (reg, in))
1049 return 1;
1051 fmt = GET_RTX_FORMAT (code);
1053 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1055 if (fmt[i] == 'E')
1057 int j;
1058 for (j = XVECLEN (in, i) - 1; j >= 0; j--)
1059 if (reg_mentioned_p (reg, XVECEXP (in, i, j)))
1060 return 1;
1062 else if (fmt[i] == 'e'
1063 && reg_mentioned_p (reg, XEXP (in, i)))
1064 return 1;
1066 return 0;
1069 /* Return 1 if in between BEG and END, exclusive of BEG and END, there is
1070 no CODE_LABEL insn. */
1073 no_labels_between_p (const rtx_insn *beg, const rtx_insn *end)
1075 rtx_insn *p;
1076 if (beg == end)
1077 return 0;
1078 for (p = NEXT_INSN (beg); p != end; p = NEXT_INSN (p))
1079 if (LABEL_P (p))
1080 return 0;
1081 return 1;
1084 /* Nonzero if register REG is used in an insn between
1085 FROM_INSN and TO_INSN (exclusive of those two). */
1088 reg_used_between_p (const_rtx reg, const rtx_insn *from_insn,
1089 const rtx_insn *to_insn)
1091 rtx_insn *insn;
1093 if (from_insn == to_insn)
1094 return 0;
1096 for (insn = NEXT_INSN (from_insn); insn != to_insn; insn = NEXT_INSN (insn))
1097 if (NONDEBUG_INSN_P (insn)
1098 && (reg_overlap_mentioned_p (reg, PATTERN (insn))
1099 || (CALL_P (insn) && find_reg_fusage (insn, USE, reg))))
1100 return 1;
1101 return 0;
1104 /* Nonzero if the old value of X, a register, is referenced in BODY. If X
1105 is entirely replaced by a new value and the only use is as a SET_DEST,
1106 we do not consider it a reference. */
1109 reg_referenced_p (const_rtx x, const_rtx body)
1111 int i;
1113 switch (GET_CODE (body))
1115 case SET:
1116 if (reg_overlap_mentioned_p (x, SET_SRC (body)))
1117 return 1;
1119 /* If the destination is anything other than CC0, PC, a REG or a SUBREG
1120 of a REG that occupies all of the REG, the insn references X if
1121 it is mentioned in the destination. */
1122 if (GET_CODE (SET_DEST (body)) != CC0
1123 && GET_CODE (SET_DEST (body)) != PC
1124 && !REG_P (SET_DEST (body))
1125 && ! (GET_CODE (SET_DEST (body)) == SUBREG
1126 && REG_P (SUBREG_REG (SET_DEST (body)))
1127 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (body))))
1128 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
1129 == ((GET_MODE_SIZE (GET_MODE (SET_DEST (body)))
1130 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)))
1131 && reg_overlap_mentioned_p (x, SET_DEST (body)))
1132 return 1;
1133 return 0;
1135 case ASM_OPERANDS:
1136 for (i = ASM_OPERANDS_INPUT_LENGTH (body) - 1; i >= 0; i--)
1137 if (reg_overlap_mentioned_p (x, ASM_OPERANDS_INPUT (body, i)))
1138 return 1;
1139 return 0;
1141 case CALL:
1142 case USE:
1143 case IF_THEN_ELSE:
1144 return reg_overlap_mentioned_p (x, body);
1146 case TRAP_IF:
1147 return reg_overlap_mentioned_p (x, TRAP_CONDITION (body));
1149 case PREFETCH:
1150 return reg_overlap_mentioned_p (x, XEXP (body, 0));
1152 case UNSPEC:
1153 case UNSPEC_VOLATILE:
1154 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1155 if (reg_overlap_mentioned_p (x, XVECEXP (body, 0, i)))
1156 return 1;
1157 return 0;
1159 case PARALLEL:
1160 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1161 if (reg_referenced_p (x, XVECEXP (body, 0, i)))
1162 return 1;
1163 return 0;
1165 case CLOBBER:
1166 if (MEM_P (XEXP (body, 0)))
1167 if (reg_overlap_mentioned_p (x, XEXP (XEXP (body, 0), 0)))
1168 return 1;
1169 return 0;
1171 case COND_EXEC:
1172 if (reg_overlap_mentioned_p (x, COND_EXEC_TEST (body)))
1173 return 1;
1174 return reg_referenced_p (x, COND_EXEC_CODE (body));
1176 default:
1177 return 0;
1181 /* Nonzero if register REG is set or clobbered in an insn between
1182 FROM_INSN and TO_INSN (exclusive of those two). */
1185 reg_set_between_p (const_rtx reg, const rtx_insn *from_insn,
1186 const rtx_insn *to_insn)
1188 const rtx_insn *insn;
1190 if (from_insn == to_insn)
1191 return 0;
1193 for (insn = NEXT_INSN (from_insn); insn != to_insn; insn = NEXT_INSN (insn))
1194 if (INSN_P (insn) && reg_set_p (reg, insn))
1195 return 1;
1196 return 0;
1199 /* Return true if REG is set or clobbered inside INSN. */
1202 reg_set_p (const_rtx reg, const_rtx insn)
1204 /* After delay slot handling, call and branch insns might be in a
1205 sequence. Check all the elements there. */
1206 if (INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
1208 for (int i = 0; i < XVECLEN (PATTERN (insn), 0); ++i)
1209 if (reg_set_p (reg, XVECEXP (PATTERN (insn), 0, i)))
1210 return true;
1212 return false;
1215 /* We can be passed an insn or part of one. If we are passed an insn,
1216 check if a side-effect of the insn clobbers REG. */
1217 if (INSN_P (insn)
1218 && (FIND_REG_INC_NOTE (insn, reg)
1219 || (CALL_P (insn)
1220 && ((REG_P (reg)
1221 && REGNO (reg) < FIRST_PSEUDO_REGISTER
1222 && overlaps_hard_reg_set_p (regs_invalidated_by_call,
1223 GET_MODE (reg), REGNO (reg)))
1224 || MEM_P (reg)
1225 || find_reg_fusage (insn, CLOBBER, reg)))))
1226 return true;
1228 /* There are no REG_INC notes for SP autoinc. */
1229 if (reg == stack_pointer_rtx && INSN_P (insn))
1231 subrtx_var_iterator::array_type array;
1232 FOR_EACH_SUBRTX_VAR (iter, array, PATTERN (insn), NONCONST)
1234 rtx mem = *iter;
1235 if (mem
1236 && MEM_P (mem)
1237 && GET_RTX_CLASS (GET_CODE (XEXP (mem, 0))) == RTX_AUTOINC)
1239 if (XEXP (XEXP (mem, 0), 0) == stack_pointer_rtx)
1240 return true;
1241 iter.skip_subrtxes ();
1246 return set_of (reg, insn) != NULL_RTX;
1249 /* Similar to reg_set_between_p, but check all registers in X. Return 0
1250 only if none of them are modified between START and END. Return 1 if
1251 X contains a MEM; this routine does use memory aliasing. */
1254 modified_between_p (const_rtx x, const rtx_insn *start, const rtx_insn *end)
1256 const enum rtx_code code = GET_CODE (x);
1257 const char *fmt;
1258 int i, j;
1259 rtx_insn *insn;
1261 if (start == end)
1262 return 0;
1264 switch (code)
1266 CASE_CONST_ANY:
1267 case CONST:
1268 case SYMBOL_REF:
1269 case LABEL_REF:
1270 return 0;
1272 case PC:
1273 case CC0:
1274 return 1;
1276 case MEM:
1277 if (modified_between_p (XEXP (x, 0), start, end))
1278 return 1;
1279 if (MEM_READONLY_P (x))
1280 return 0;
1281 for (insn = NEXT_INSN (start); insn != end; insn = NEXT_INSN (insn))
1282 if (memory_modified_in_insn_p (x, insn))
1283 return 1;
1284 return 0;
1286 case REG:
1287 return reg_set_between_p (x, start, end);
1289 default:
1290 break;
1293 fmt = GET_RTX_FORMAT (code);
1294 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1296 if (fmt[i] == 'e' && modified_between_p (XEXP (x, i), start, end))
1297 return 1;
1299 else if (fmt[i] == 'E')
1300 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1301 if (modified_between_p (XVECEXP (x, i, j), start, end))
1302 return 1;
1305 return 0;
1308 /* Similar to reg_set_p, but check all registers in X. Return 0 only if none
1309 of them are modified in INSN. Return 1 if X contains a MEM; this routine
1310 does use memory aliasing. */
1313 modified_in_p (const_rtx x, const_rtx insn)
1315 const enum rtx_code code = GET_CODE (x);
1316 const char *fmt;
1317 int i, j;
1319 switch (code)
1321 CASE_CONST_ANY:
1322 case CONST:
1323 case SYMBOL_REF:
1324 case LABEL_REF:
1325 return 0;
1327 case PC:
1328 case CC0:
1329 return 1;
1331 case MEM:
1332 if (modified_in_p (XEXP (x, 0), insn))
1333 return 1;
1334 if (MEM_READONLY_P (x))
1335 return 0;
1336 if (memory_modified_in_insn_p (x, insn))
1337 return 1;
1338 return 0;
1340 case REG:
1341 return reg_set_p (x, insn);
1343 default:
1344 break;
1347 fmt = GET_RTX_FORMAT (code);
1348 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1350 if (fmt[i] == 'e' && modified_in_p (XEXP (x, i), insn))
1351 return 1;
1353 else if (fmt[i] == 'E')
1354 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1355 if (modified_in_p (XVECEXP (x, i, j), insn))
1356 return 1;
1359 return 0;
1362 /* Return true if X is a SUBREG and if storing a value to X would
1363 preserve some of its SUBREG_REG. For example, on a normal 32-bit
1364 target, using a SUBREG to store to one half of a DImode REG would
1365 preserve the other half. */
1367 bool
1368 read_modify_subreg_p (const_rtx x)
1370 unsigned int isize, osize;
1371 if (GET_CODE (x) != SUBREG)
1372 return false;
1373 isize = GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)));
1374 osize = GET_MODE_SIZE (GET_MODE (x));
1375 return isize > osize
1376 && isize > REGMODE_NATURAL_SIZE (GET_MODE (SUBREG_REG (x)));
1379 /* Helper function for set_of. */
1380 struct set_of_data
1382 const_rtx found;
1383 const_rtx pat;
1386 static void
1387 set_of_1 (rtx x, const_rtx pat, void *data1)
1389 struct set_of_data *const data = (struct set_of_data *) (data1);
1390 if (rtx_equal_p (x, data->pat)
1391 || (!MEM_P (x) && reg_overlap_mentioned_p (data->pat, x)))
1392 data->found = pat;
1395 /* Give an INSN, return a SET or CLOBBER expression that does modify PAT
1396 (either directly or via STRICT_LOW_PART and similar modifiers). */
1397 const_rtx
1398 set_of (const_rtx pat, const_rtx insn)
1400 struct set_of_data data;
1401 data.found = NULL_RTX;
1402 data.pat = pat;
1403 note_stores (INSN_P (insn) ? PATTERN (insn) : insn, set_of_1, &data);
1404 return data.found;
1407 /* Add all hard register in X to *PSET. */
1408 void
1409 find_all_hard_regs (const_rtx x, HARD_REG_SET *pset)
1411 subrtx_iterator::array_type array;
1412 FOR_EACH_SUBRTX (iter, array, x, NONCONST)
1414 const_rtx x = *iter;
1415 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
1416 add_to_hard_reg_set (pset, GET_MODE (x), REGNO (x));
1420 /* This function, called through note_stores, collects sets and
1421 clobbers of hard registers in a HARD_REG_SET, which is pointed to
1422 by DATA. */
1423 void
1424 record_hard_reg_sets (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data)
1426 HARD_REG_SET *pset = (HARD_REG_SET *)data;
1427 if (REG_P (x) && HARD_REGISTER_P (x))
1428 add_to_hard_reg_set (pset, GET_MODE (x), REGNO (x));
1431 /* Examine INSN, and compute the set of hard registers written by it.
1432 Store it in *PSET. Should only be called after reload. */
1433 void
1434 find_all_hard_reg_sets (const rtx_insn *insn, HARD_REG_SET *pset, bool implicit)
1436 rtx link;
1438 CLEAR_HARD_REG_SET (*pset);
1439 note_stores (PATTERN (insn), record_hard_reg_sets, pset);
1440 if (CALL_P (insn))
1442 if (implicit)
1443 IOR_HARD_REG_SET (*pset, call_used_reg_set);
1445 for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1))
1446 record_hard_reg_sets (XEXP (link, 0), NULL, pset);
1448 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1449 if (REG_NOTE_KIND (link) == REG_INC)
1450 record_hard_reg_sets (XEXP (link, 0), NULL, pset);
1453 /* Like record_hard_reg_sets, but called through note_uses. */
1454 void
1455 record_hard_reg_uses (rtx *px, void *data)
1457 find_all_hard_regs (*px, (HARD_REG_SET *) data);
1460 /* Given an INSN, return a SET expression if this insn has only a single SET.
1461 It may also have CLOBBERs, USEs, or SET whose output
1462 will not be used, which we ignore. */
1465 single_set_2 (const rtx_insn *insn, const_rtx pat)
1467 rtx set = NULL;
1468 int set_verified = 1;
1469 int i;
1471 if (GET_CODE (pat) == PARALLEL)
1473 for (i = 0; i < XVECLEN (pat, 0); i++)
1475 rtx sub = XVECEXP (pat, 0, i);
1476 switch (GET_CODE (sub))
1478 case USE:
1479 case CLOBBER:
1480 break;
1482 case SET:
1483 /* We can consider insns having multiple sets, where all
1484 but one are dead as single set insns. In common case
1485 only single set is present in the pattern so we want
1486 to avoid checking for REG_UNUSED notes unless necessary.
1488 When we reach set first time, we just expect this is
1489 the single set we are looking for and only when more
1490 sets are found in the insn, we check them. */
1491 if (!set_verified)
1493 if (find_reg_note (insn, REG_UNUSED, SET_DEST (set))
1494 && !side_effects_p (set))
1495 set = NULL;
1496 else
1497 set_verified = 1;
1499 if (!set)
1500 set = sub, set_verified = 0;
1501 else if (!find_reg_note (insn, REG_UNUSED, SET_DEST (sub))
1502 || side_effects_p (sub))
1503 return NULL_RTX;
1504 break;
1506 default:
1507 return NULL_RTX;
1511 return set;
1514 /* Given an INSN, return nonzero if it has more than one SET, else return
1515 zero. */
1518 multiple_sets (const_rtx insn)
1520 int found;
1521 int i;
1523 /* INSN must be an insn. */
1524 if (! INSN_P (insn))
1525 return 0;
1527 /* Only a PARALLEL can have multiple SETs. */
1528 if (GET_CODE (PATTERN (insn)) == PARALLEL)
1530 for (i = 0, found = 0; i < XVECLEN (PATTERN (insn), 0); i++)
1531 if (GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == SET)
1533 /* If we have already found a SET, then return now. */
1534 if (found)
1535 return 1;
1536 else
1537 found = 1;
1541 /* Either zero or one SET. */
1542 return 0;
1545 /* Return nonzero if the destination of SET equals the source
1546 and there are no side effects. */
1549 set_noop_p (const_rtx set)
1551 rtx src = SET_SRC (set);
1552 rtx dst = SET_DEST (set);
1554 if (dst == pc_rtx && src == pc_rtx)
1555 return 1;
1557 if (MEM_P (dst) && MEM_P (src))
1558 return rtx_equal_p (dst, src) && !side_effects_p (dst);
1560 if (GET_CODE (dst) == ZERO_EXTRACT)
1561 return rtx_equal_p (XEXP (dst, 0), src)
1562 && !BITS_BIG_ENDIAN && XEXP (dst, 2) == const0_rtx
1563 && !side_effects_p (src);
1565 if (GET_CODE (dst) == STRICT_LOW_PART)
1566 dst = XEXP (dst, 0);
1568 if (GET_CODE (src) == SUBREG && GET_CODE (dst) == SUBREG)
1570 if (SUBREG_BYTE (src) != SUBREG_BYTE (dst))
1571 return 0;
1572 src = SUBREG_REG (src);
1573 dst = SUBREG_REG (dst);
1576 /* It is a NOOP if destination overlaps with selected src vector
1577 elements. */
1578 if (GET_CODE (src) == VEC_SELECT
1579 && REG_P (XEXP (src, 0)) && REG_P (dst)
1580 && HARD_REGISTER_P (XEXP (src, 0))
1581 && HARD_REGISTER_P (dst))
1583 int i;
1584 rtx par = XEXP (src, 1);
1585 rtx src0 = XEXP (src, 0);
1586 int c0 = INTVAL (XVECEXP (par, 0, 0));
1587 HOST_WIDE_INT offset = GET_MODE_UNIT_SIZE (GET_MODE (src0)) * c0;
1589 for (i = 1; i < XVECLEN (par, 0); i++)
1590 if (INTVAL (XVECEXP (par, 0, i)) != c0 + i)
1591 return 0;
1592 return
1593 simplify_subreg_regno (REGNO (src0), GET_MODE (src0),
1594 offset, GET_MODE (dst)) == (int) REGNO (dst);
1597 return (REG_P (src) && REG_P (dst)
1598 && REGNO (src) == REGNO (dst));
1601 /* Return nonzero if an insn consists only of SETs, each of which only sets a
1602 value to itself. */
1605 noop_move_p (const rtx_insn *insn)
1607 rtx pat = PATTERN (insn);
1609 if (INSN_CODE (insn) == NOOP_MOVE_INSN_CODE)
1610 return 1;
1612 /* Insns carrying these notes are useful later on. */
1613 if (find_reg_note (insn, REG_EQUAL, NULL_RTX))
1614 return 0;
1616 /* Check the code to be executed for COND_EXEC. */
1617 if (GET_CODE (pat) == COND_EXEC)
1618 pat = COND_EXEC_CODE (pat);
1620 if (GET_CODE (pat) == SET && set_noop_p (pat))
1621 return 1;
1623 if (GET_CODE (pat) == PARALLEL)
1625 int i;
1626 /* If nothing but SETs of registers to themselves,
1627 this insn can also be deleted. */
1628 for (i = 0; i < XVECLEN (pat, 0); i++)
1630 rtx tem = XVECEXP (pat, 0, i);
1632 if (GET_CODE (tem) == USE
1633 || GET_CODE (tem) == CLOBBER)
1634 continue;
1636 if (GET_CODE (tem) != SET || ! set_noop_p (tem))
1637 return 0;
1640 return 1;
1642 return 0;
1646 /* Return nonzero if register in range [REGNO, ENDREGNO)
1647 appears either explicitly or implicitly in X
1648 other than being stored into.
1650 References contained within the substructure at LOC do not count.
1651 LOC may be zero, meaning don't ignore anything. */
1653 bool
1654 refers_to_regno_p (unsigned int regno, unsigned int endregno, const_rtx x,
1655 rtx *loc)
1657 int i;
1658 unsigned int x_regno;
1659 RTX_CODE code;
1660 const char *fmt;
1662 repeat:
1663 /* The contents of a REG_NONNEG note is always zero, so we must come here
1664 upon repeat in case the last REG_NOTE is a REG_NONNEG note. */
1665 if (x == 0)
1666 return false;
1668 code = GET_CODE (x);
1670 switch (code)
1672 case REG:
1673 x_regno = REGNO (x);
1675 /* If we modifying the stack, frame, or argument pointer, it will
1676 clobber a virtual register. In fact, we could be more precise,
1677 but it isn't worth it. */
1678 if ((x_regno == STACK_POINTER_REGNUM
1679 || (FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1680 && x_regno == ARG_POINTER_REGNUM)
1681 || x_regno == FRAME_POINTER_REGNUM)
1682 && regno >= FIRST_VIRTUAL_REGISTER && regno <= LAST_VIRTUAL_REGISTER)
1683 return true;
1685 return endregno > x_regno && regno < END_REGNO (x);
1687 case SUBREG:
1688 /* If this is a SUBREG of a hard reg, we can see exactly which
1689 registers are being modified. Otherwise, handle normally. */
1690 if (REG_P (SUBREG_REG (x))
1691 && REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
1693 unsigned int inner_regno = subreg_regno (x);
1694 unsigned int inner_endregno
1695 = inner_regno + (inner_regno < FIRST_PSEUDO_REGISTER
1696 ? subreg_nregs (x) : 1);
1698 return endregno > inner_regno && regno < inner_endregno;
1700 break;
1702 case CLOBBER:
1703 case SET:
1704 if (&SET_DEST (x) != loc
1705 /* Note setting a SUBREG counts as referring to the REG it is in for
1706 a pseudo but not for hard registers since we can
1707 treat each word individually. */
1708 && ((GET_CODE (SET_DEST (x)) == SUBREG
1709 && loc != &SUBREG_REG (SET_DEST (x))
1710 && REG_P (SUBREG_REG (SET_DEST (x)))
1711 && REGNO (SUBREG_REG (SET_DEST (x))) >= FIRST_PSEUDO_REGISTER
1712 && refers_to_regno_p (regno, endregno,
1713 SUBREG_REG (SET_DEST (x)), loc))
1714 || (!REG_P (SET_DEST (x))
1715 && refers_to_regno_p (regno, endregno, SET_DEST (x), loc))))
1716 return true;
1718 if (code == CLOBBER || loc == &SET_SRC (x))
1719 return false;
1720 x = SET_SRC (x);
1721 goto repeat;
1723 default:
1724 break;
1727 /* X does not match, so try its subexpressions. */
1729 fmt = GET_RTX_FORMAT (code);
1730 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1732 if (fmt[i] == 'e' && loc != &XEXP (x, i))
1734 if (i == 0)
1736 x = XEXP (x, 0);
1737 goto repeat;
1739 else
1740 if (refers_to_regno_p (regno, endregno, XEXP (x, i), loc))
1741 return true;
1743 else if (fmt[i] == 'E')
1745 int j;
1746 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1747 if (loc != &XVECEXP (x, i, j)
1748 && refers_to_regno_p (regno, endregno, XVECEXP (x, i, j), loc))
1749 return true;
1752 return false;
1755 /* Nonzero if modifying X will affect IN. If X is a register or a SUBREG,
1756 we check if any register number in X conflicts with the relevant register
1757 numbers. If X is a constant, return 0. If X is a MEM, return 1 iff IN
1758 contains a MEM (we don't bother checking for memory addresses that can't
1759 conflict because we expect this to be a rare case. */
1762 reg_overlap_mentioned_p (const_rtx x, const_rtx in)
1764 unsigned int regno, endregno;
1766 /* If either argument is a constant, then modifying X can not
1767 affect IN. Here we look at IN, we can profitably combine
1768 CONSTANT_P (x) with the switch statement below. */
1769 if (CONSTANT_P (in))
1770 return 0;
1772 recurse:
1773 switch (GET_CODE (x))
1775 case STRICT_LOW_PART:
1776 case ZERO_EXTRACT:
1777 case SIGN_EXTRACT:
1778 /* Overly conservative. */
1779 x = XEXP (x, 0);
1780 goto recurse;
1782 case SUBREG:
1783 regno = REGNO (SUBREG_REG (x));
1784 if (regno < FIRST_PSEUDO_REGISTER)
1785 regno = subreg_regno (x);
1786 endregno = regno + (regno < FIRST_PSEUDO_REGISTER
1787 ? subreg_nregs (x) : 1);
1788 goto do_reg;
1790 case REG:
1791 regno = REGNO (x);
1792 endregno = END_REGNO (x);
1793 do_reg:
1794 return refers_to_regno_p (regno, endregno, in, (rtx*) 0);
1796 case MEM:
1798 const char *fmt;
1799 int i;
1801 if (MEM_P (in))
1802 return 1;
1804 fmt = GET_RTX_FORMAT (GET_CODE (in));
1805 for (i = GET_RTX_LENGTH (GET_CODE (in)) - 1; i >= 0; i--)
1806 if (fmt[i] == 'e')
1808 if (reg_overlap_mentioned_p (x, XEXP (in, i)))
1809 return 1;
1811 else if (fmt[i] == 'E')
1813 int j;
1814 for (j = XVECLEN (in, i) - 1; j >= 0; --j)
1815 if (reg_overlap_mentioned_p (x, XVECEXP (in, i, j)))
1816 return 1;
1819 return 0;
1822 case SCRATCH:
1823 case PC:
1824 case CC0:
1825 return reg_mentioned_p (x, in);
1827 case PARALLEL:
1829 int i;
1831 /* If any register in here refers to it we return true. */
1832 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
1833 if (XEXP (XVECEXP (x, 0, i), 0) != 0
1834 && reg_overlap_mentioned_p (XEXP (XVECEXP (x, 0, i), 0), in))
1835 return 1;
1836 return 0;
1839 default:
1840 gcc_assert (CONSTANT_P (x));
1841 return 0;
1845 /* Call FUN on each register or MEM that is stored into or clobbered by X.
1846 (X would be the pattern of an insn). DATA is an arbitrary pointer,
1847 ignored by note_stores, but passed to FUN.
1849 FUN receives three arguments:
1850 1. the REG, MEM, CC0 or PC being stored in or clobbered,
1851 2. the SET or CLOBBER rtx that does the store,
1852 3. the pointer DATA provided to note_stores.
1854 If the item being stored in or clobbered is a SUBREG of a hard register,
1855 the SUBREG will be passed. */
1857 void
1858 note_stores (const_rtx x, void (*fun) (rtx, const_rtx, void *), void *data)
1860 int i;
1862 if (GET_CODE (x) == COND_EXEC)
1863 x = COND_EXEC_CODE (x);
1865 if (GET_CODE (x) == SET || GET_CODE (x) == CLOBBER)
1867 rtx dest = SET_DEST (x);
1869 while ((GET_CODE (dest) == SUBREG
1870 && (!REG_P (SUBREG_REG (dest))
1871 || REGNO (SUBREG_REG (dest)) >= FIRST_PSEUDO_REGISTER))
1872 || GET_CODE (dest) == ZERO_EXTRACT
1873 || GET_CODE (dest) == STRICT_LOW_PART)
1874 dest = XEXP (dest, 0);
1876 /* If we have a PARALLEL, SET_DEST is a list of EXPR_LIST expressions,
1877 each of whose first operand is a register. */
1878 if (GET_CODE (dest) == PARALLEL)
1880 for (i = XVECLEN (dest, 0) - 1; i >= 0; i--)
1881 if (XEXP (XVECEXP (dest, 0, i), 0) != 0)
1882 (*fun) (XEXP (XVECEXP (dest, 0, i), 0), x, data);
1884 else
1885 (*fun) (dest, x, data);
1888 else if (GET_CODE (x) == PARALLEL)
1889 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
1890 note_stores (XVECEXP (x, 0, i), fun, data);
1893 /* Like notes_stores, but call FUN for each expression that is being
1894 referenced in PBODY, a pointer to the PATTERN of an insn. We only call
1895 FUN for each expression, not any interior subexpressions. FUN receives a
1896 pointer to the expression and the DATA passed to this function.
1898 Note that this is not quite the same test as that done in reg_referenced_p
1899 since that considers something as being referenced if it is being
1900 partially set, while we do not. */
1902 void
1903 note_uses (rtx *pbody, void (*fun) (rtx *, void *), void *data)
1905 rtx body = *pbody;
1906 int i;
1908 switch (GET_CODE (body))
1910 case COND_EXEC:
1911 (*fun) (&COND_EXEC_TEST (body), data);
1912 note_uses (&COND_EXEC_CODE (body), fun, data);
1913 return;
1915 case PARALLEL:
1916 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1917 note_uses (&XVECEXP (body, 0, i), fun, data);
1918 return;
1920 case SEQUENCE:
1921 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1922 note_uses (&PATTERN (XVECEXP (body, 0, i)), fun, data);
1923 return;
1925 case USE:
1926 (*fun) (&XEXP (body, 0), data);
1927 return;
1929 case ASM_OPERANDS:
1930 for (i = ASM_OPERANDS_INPUT_LENGTH (body) - 1; i >= 0; i--)
1931 (*fun) (&ASM_OPERANDS_INPUT (body, i), data);
1932 return;
1934 case TRAP_IF:
1935 (*fun) (&TRAP_CONDITION (body), data);
1936 return;
1938 case PREFETCH:
1939 (*fun) (&XEXP (body, 0), data);
1940 return;
1942 case UNSPEC:
1943 case UNSPEC_VOLATILE:
1944 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1945 (*fun) (&XVECEXP (body, 0, i), data);
1946 return;
1948 case CLOBBER:
1949 if (MEM_P (XEXP (body, 0)))
1950 (*fun) (&XEXP (XEXP (body, 0), 0), data);
1951 return;
1953 case SET:
1955 rtx dest = SET_DEST (body);
1957 /* For sets we replace everything in source plus registers in memory
1958 expression in store and operands of a ZERO_EXTRACT. */
1959 (*fun) (&SET_SRC (body), data);
1961 if (GET_CODE (dest) == ZERO_EXTRACT)
1963 (*fun) (&XEXP (dest, 1), data);
1964 (*fun) (&XEXP (dest, 2), data);
1967 while (GET_CODE (dest) == SUBREG || GET_CODE (dest) == STRICT_LOW_PART)
1968 dest = XEXP (dest, 0);
1970 if (MEM_P (dest))
1971 (*fun) (&XEXP (dest, 0), data);
1973 return;
1975 default:
1976 /* All the other possibilities never store. */
1977 (*fun) (pbody, data);
1978 return;
1982 /* Return nonzero if X's old contents don't survive after INSN.
1983 This will be true if X is (cc0) or if X is a register and
1984 X dies in INSN or because INSN entirely sets X.
1986 "Entirely set" means set directly and not through a SUBREG, or
1987 ZERO_EXTRACT, so no trace of the old contents remains.
1988 Likewise, REG_INC does not count.
1990 REG may be a hard or pseudo reg. Renumbering is not taken into account,
1991 but for this use that makes no difference, since regs don't overlap
1992 during their lifetimes. Therefore, this function may be used
1993 at any time after deaths have been computed.
1995 If REG is a hard reg that occupies multiple machine registers, this
1996 function will only return 1 if each of those registers will be replaced
1997 by INSN. */
2000 dead_or_set_p (const rtx_insn *insn, const_rtx x)
2002 unsigned int regno, end_regno;
2003 unsigned int i;
2005 /* Can't use cc0_rtx below since this file is used by genattrtab.c. */
2006 if (GET_CODE (x) == CC0)
2007 return 1;
2009 gcc_assert (REG_P (x));
2011 regno = REGNO (x);
2012 end_regno = END_REGNO (x);
2013 for (i = regno; i < end_regno; i++)
2014 if (! dead_or_set_regno_p (insn, i))
2015 return 0;
2017 return 1;
2020 /* Return TRUE iff DEST is a register or subreg of a register and
2021 doesn't change the number of words of the inner register, and any
2022 part of the register is TEST_REGNO. */
2024 static bool
2025 covers_regno_no_parallel_p (const_rtx dest, unsigned int test_regno)
2027 unsigned int regno, endregno;
2029 if (GET_CODE (dest) == SUBREG
2030 && (((GET_MODE_SIZE (GET_MODE (dest))
2031 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
2032 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
2033 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)))
2034 dest = SUBREG_REG (dest);
2036 if (!REG_P (dest))
2037 return false;
2039 regno = REGNO (dest);
2040 endregno = END_REGNO (dest);
2041 return (test_regno >= regno && test_regno < endregno);
2044 /* Like covers_regno_no_parallel_p, but also handles PARALLELs where
2045 any member matches the covers_regno_no_parallel_p criteria. */
2047 static bool
2048 covers_regno_p (const_rtx dest, unsigned int test_regno)
2050 if (GET_CODE (dest) == PARALLEL)
2052 /* Some targets place small structures in registers for return
2053 values of functions, and those registers are wrapped in
2054 PARALLELs that we may see as the destination of a SET. */
2055 int i;
2057 for (i = XVECLEN (dest, 0) - 1; i >= 0; i--)
2059 rtx inner = XEXP (XVECEXP (dest, 0, i), 0);
2060 if (inner != NULL_RTX
2061 && covers_regno_no_parallel_p (inner, test_regno))
2062 return true;
2065 return false;
2067 else
2068 return covers_regno_no_parallel_p (dest, test_regno);
2071 /* Utility function for dead_or_set_p to check an individual register. */
2074 dead_or_set_regno_p (const rtx_insn *insn, unsigned int test_regno)
2076 const_rtx pattern;
2078 /* See if there is a death note for something that includes TEST_REGNO. */
2079 if (find_regno_note (insn, REG_DEAD, test_regno))
2080 return 1;
2082 if (CALL_P (insn)
2083 && find_regno_fusage (insn, CLOBBER, test_regno))
2084 return 1;
2086 pattern = PATTERN (insn);
2088 /* If a COND_EXEC is not executed, the value survives. */
2089 if (GET_CODE (pattern) == COND_EXEC)
2090 return 0;
2092 if (GET_CODE (pattern) == SET)
2093 return covers_regno_p (SET_DEST (pattern), test_regno);
2094 else if (GET_CODE (pattern) == PARALLEL)
2096 int i;
2098 for (i = XVECLEN (pattern, 0) - 1; i >= 0; i--)
2100 rtx body = XVECEXP (pattern, 0, i);
2102 if (GET_CODE (body) == COND_EXEC)
2103 body = COND_EXEC_CODE (body);
2105 if ((GET_CODE (body) == SET || GET_CODE (body) == CLOBBER)
2106 && covers_regno_p (SET_DEST (body), test_regno))
2107 return 1;
2111 return 0;
2114 /* Return the reg-note of kind KIND in insn INSN, if there is one.
2115 If DATUM is nonzero, look for one whose datum is DATUM. */
2118 find_reg_note (const_rtx insn, enum reg_note kind, const_rtx datum)
2120 rtx link;
2122 gcc_checking_assert (insn);
2124 /* Ignore anything that is not an INSN, JUMP_INSN or CALL_INSN. */
2125 if (! INSN_P (insn))
2126 return 0;
2127 if (datum == 0)
2129 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2130 if (REG_NOTE_KIND (link) == kind)
2131 return link;
2132 return 0;
2135 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2136 if (REG_NOTE_KIND (link) == kind && datum == XEXP (link, 0))
2137 return link;
2138 return 0;
2141 /* Return the reg-note of kind KIND in insn INSN which applies to register
2142 number REGNO, if any. Return 0 if there is no such reg-note. Note that
2143 the REGNO of this NOTE need not be REGNO if REGNO is a hard register;
2144 it might be the case that the note overlaps REGNO. */
2147 find_regno_note (const_rtx insn, enum reg_note kind, unsigned int regno)
2149 rtx link;
2151 /* Ignore anything that is not an INSN, JUMP_INSN or CALL_INSN. */
2152 if (! INSN_P (insn))
2153 return 0;
2155 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2156 if (REG_NOTE_KIND (link) == kind
2157 /* Verify that it is a register, so that scratch and MEM won't cause a
2158 problem here. */
2159 && REG_P (XEXP (link, 0))
2160 && REGNO (XEXP (link, 0)) <= regno
2161 && END_REGNO (XEXP (link, 0)) > regno)
2162 return link;
2163 return 0;
2166 /* Return a REG_EQUIV or REG_EQUAL note if insn has only a single set and
2167 has such a note. */
2170 find_reg_equal_equiv_note (const_rtx insn)
2172 rtx link;
2174 if (!INSN_P (insn))
2175 return 0;
2177 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2178 if (REG_NOTE_KIND (link) == REG_EQUAL
2179 || REG_NOTE_KIND (link) == REG_EQUIV)
2181 /* FIXME: We should never have REG_EQUAL/REG_EQUIV notes on
2182 insns that have multiple sets. Checking single_set to
2183 make sure of this is not the proper check, as explained
2184 in the comment in set_unique_reg_note.
2186 This should be changed into an assert. */
2187 if (GET_CODE (PATTERN (insn)) == PARALLEL && multiple_sets (insn))
2188 return 0;
2189 return link;
2191 return NULL;
2194 /* Check whether INSN is a single_set whose source is known to be
2195 equivalent to a constant. Return that constant if so, otherwise
2196 return null. */
2199 find_constant_src (const rtx_insn *insn)
2201 rtx note, set, x;
2203 set = single_set (insn);
2204 if (set)
2206 x = avoid_constant_pool_reference (SET_SRC (set));
2207 if (CONSTANT_P (x))
2208 return x;
2211 note = find_reg_equal_equiv_note (insn);
2212 if (note && CONSTANT_P (XEXP (note, 0)))
2213 return XEXP (note, 0);
2215 return NULL_RTX;
2218 /* Return true if DATUM, or any overlap of DATUM, of kind CODE is found
2219 in the CALL_INSN_FUNCTION_USAGE information of INSN. */
2222 find_reg_fusage (const_rtx insn, enum rtx_code code, const_rtx datum)
2224 /* If it's not a CALL_INSN, it can't possibly have a
2225 CALL_INSN_FUNCTION_USAGE field, so don't bother checking. */
2226 if (!CALL_P (insn))
2227 return 0;
2229 gcc_assert (datum);
2231 if (!REG_P (datum))
2233 rtx link;
2235 for (link = CALL_INSN_FUNCTION_USAGE (insn);
2236 link;
2237 link = XEXP (link, 1))
2238 if (GET_CODE (XEXP (link, 0)) == code
2239 && rtx_equal_p (datum, XEXP (XEXP (link, 0), 0)))
2240 return 1;
2242 else
2244 unsigned int regno = REGNO (datum);
2246 /* CALL_INSN_FUNCTION_USAGE information cannot contain references
2247 to pseudo registers, so don't bother checking. */
2249 if (regno < FIRST_PSEUDO_REGISTER)
2251 unsigned int end_regno = END_REGNO (datum);
2252 unsigned int i;
2254 for (i = regno; i < end_regno; i++)
2255 if (find_regno_fusage (insn, code, i))
2256 return 1;
2260 return 0;
2263 /* Return true if REGNO, or any overlap of REGNO, of kind CODE is found
2264 in the CALL_INSN_FUNCTION_USAGE information of INSN. */
2267 find_regno_fusage (const_rtx insn, enum rtx_code code, unsigned int regno)
2269 rtx link;
2271 /* CALL_INSN_FUNCTION_USAGE information cannot contain references
2272 to pseudo registers, so don't bother checking. */
2274 if (regno >= FIRST_PSEUDO_REGISTER
2275 || !CALL_P (insn) )
2276 return 0;
2278 for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1))
2280 rtx op, reg;
2282 if (GET_CODE (op = XEXP (link, 0)) == code
2283 && REG_P (reg = XEXP (op, 0))
2284 && REGNO (reg) <= regno
2285 && END_REGNO (reg) > regno)
2286 return 1;
2289 return 0;
2293 /* Return true if KIND is an integer REG_NOTE. */
2295 static bool
2296 int_reg_note_p (enum reg_note kind)
2298 return kind == REG_BR_PROB;
2301 /* Allocate a register note with kind KIND and datum DATUM. LIST is
2302 stored as the pointer to the next register note. */
2305 alloc_reg_note (enum reg_note kind, rtx datum, rtx list)
2307 rtx note;
2309 gcc_checking_assert (!int_reg_note_p (kind));
2310 switch (kind)
2312 case REG_CC_SETTER:
2313 case REG_CC_USER:
2314 case REG_LABEL_TARGET:
2315 case REG_LABEL_OPERAND:
2316 case REG_TM:
2317 /* These types of register notes use an INSN_LIST rather than an
2318 EXPR_LIST, so that copying is done right and dumps look
2319 better. */
2320 note = alloc_INSN_LIST (datum, list);
2321 PUT_REG_NOTE_KIND (note, kind);
2322 break;
2324 default:
2325 note = alloc_EXPR_LIST (kind, datum, list);
2326 break;
2329 return note;
2332 /* Add register note with kind KIND and datum DATUM to INSN. */
2334 void
2335 add_reg_note (rtx insn, enum reg_note kind, rtx datum)
2337 REG_NOTES (insn) = alloc_reg_note (kind, datum, REG_NOTES (insn));
2340 /* Add an integer register note with kind KIND and datum DATUM to INSN. */
2342 void
2343 add_int_reg_note (rtx_insn *insn, enum reg_note kind, int datum)
2345 gcc_checking_assert (int_reg_note_p (kind));
2346 REG_NOTES (insn) = gen_rtx_INT_LIST ((machine_mode) kind,
2347 datum, REG_NOTES (insn));
2350 /* Add a register note like NOTE to INSN. */
2352 void
2353 add_shallow_copy_of_reg_note (rtx_insn *insn, rtx note)
2355 if (GET_CODE (note) == INT_LIST)
2356 add_int_reg_note (insn, REG_NOTE_KIND (note), XINT (note, 0));
2357 else
2358 add_reg_note (insn, REG_NOTE_KIND (note), XEXP (note, 0));
2361 /* Duplicate NOTE and return the copy. */
2363 duplicate_reg_note (rtx note)
2365 reg_note kind = REG_NOTE_KIND (note);
2367 if (GET_CODE (note) == INT_LIST)
2368 return gen_rtx_INT_LIST ((machine_mode) kind, XINT (note, 0), NULL_RTX);
2369 else if (GET_CODE (note) == EXPR_LIST)
2370 return alloc_reg_note (kind, copy_insn_1 (XEXP (note, 0)), NULL_RTX);
2371 else
2372 return alloc_reg_note (kind, XEXP (note, 0), NULL_RTX);
2375 /* Remove register note NOTE from the REG_NOTES of INSN. */
2377 void
2378 remove_note (rtx_insn *insn, const_rtx note)
2380 rtx link;
2382 if (note == NULL_RTX)
2383 return;
2385 if (REG_NOTES (insn) == note)
2386 REG_NOTES (insn) = XEXP (note, 1);
2387 else
2388 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2389 if (XEXP (link, 1) == note)
2391 XEXP (link, 1) = XEXP (note, 1);
2392 break;
2395 switch (REG_NOTE_KIND (note))
2397 case REG_EQUAL:
2398 case REG_EQUIV:
2399 df_notes_rescan (insn);
2400 break;
2401 default:
2402 break;
2406 /* Remove REG_EQUAL and/or REG_EQUIV notes if INSN has such notes.
2407 Return true if any note has been removed. */
2409 bool
2410 remove_reg_equal_equiv_notes (rtx_insn *insn)
2412 rtx *loc;
2413 bool ret = false;
2415 loc = &REG_NOTES (insn);
2416 while (*loc)
2418 enum reg_note kind = REG_NOTE_KIND (*loc);
2419 if (kind == REG_EQUAL || kind == REG_EQUIV)
2421 *loc = XEXP (*loc, 1);
2422 ret = true;
2424 else
2425 loc = &XEXP (*loc, 1);
2427 return ret;
2430 /* Remove all REG_EQUAL and REG_EQUIV notes referring to REGNO. */
2432 void
2433 remove_reg_equal_equiv_notes_for_regno (unsigned int regno)
2435 df_ref eq_use;
2437 if (!df)
2438 return;
2440 /* This loop is a little tricky. We cannot just go down the chain because
2441 it is being modified by some actions in the loop. So we just iterate
2442 over the head. We plan to drain the list anyway. */
2443 while ((eq_use = DF_REG_EQ_USE_CHAIN (regno)) != NULL)
2445 rtx_insn *insn = DF_REF_INSN (eq_use);
2446 rtx note = find_reg_equal_equiv_note (insn);
2448 /* This assert is generally triggered when someone deletes a REG_EQUAL
2449 or REG_EQUIV note by hacking the list manually rather than calling
2450 remove_note. */
2451 gcc_assert (note);
2453 remove_note (insn, note);
2457 /* Search LISTP (an EXPR_LIST) for an entry whose first operand is NODE and
2458 return 1 if it is found. A simple equality test is used to determine if
2459 NODE matches. */
2461 bool
2462 in_insn_list_p (const rtx_insn_list *listp, const rtx_insn *node)
2464 const_rtx x;
2466 for (x = listp; x; x = XEXP (x, 1))
2467 if (node == XEXP (x, 0))
2468 return true;
2470 return false;
2473 /* Search LISTP (an EXPR_LIST) for an entry whose first operand is NODE and
2474 remove that entry from the list if it is found.
2476 A simple equality test is used to determine if NODE matches. */
2478 void
2479 remove_node_from_expr_list (const_rtx node, rtx_expr_list **listp)
2481 rtx_expr_list *temp = *listp;
2482 rtx_expr_list *prev = NULL;
2484 while (temp)
2486 if (node == temp->element ())
2488 /* Splice the node out of the list. */
2489 if (prev)
2490 XEXP (prev, 1) = temp->next ();
2491 else
2492 *listp = temp->next ();
2494 return;
2497 prev = temp;
2498 temp = temp->next ();
2502 /* Search LISTP (an INSN_LIST) for an entry whose first operand is NODE and
2503 remove that entry from the list if it is found.
2505 A simple equality test is used to determine if NODE matches. */
2507 void
2508 remove_node_from_insn_list (const rtx_insn *node, rtx_insn_list **listp)
2510 rtx_insn_list *temp = *listp;
2511 rtx_insn_list *prev = NULL;
2513 while (temp)
2515 if (node == temp->insn ())
2517 /* Splice the node out of the list. */
2518 if (prev)
2519 XEXP (prev, 1) = temp->next ();
2520 else
2521 *listp = temp->next ();
2523 return;
2526 prev = temp;
2527 temp = temp->next ();
2531 /* Nonzero if X contains any volatile instructions. These are instructions
2532 which may cause unpredictable machine state instructions, and thus no
2533 instructions or register uses should be moved or combined across them.
2534 This includes only volatile asms and UNSPEC_VOLATILE instructions. */
2537 volatile_insn_p (const_rtx x)
2539 const RTX_CODE code = GET_CODE (x);
2540 switch (code)
2542 case LABEL_REF:
2543 case SYMBOL_REF:
2544 case CONST:
2545 CASE_CONST_ANY:
2546 case CC0:
2547 case PC:
2548 case REG:
2549 case SCRATCH:
2550 case CLOBBER:
2551 case ADDR_VEC:
2552 case ADDR_DIFF_VEC:
2553 case CALL:
2554 case MEM:
2555 return 0;
2557 case UNSPEC_VOLATILE:
2558 return 1;
2560 case ASM_INPUT:
2561 case ASM_OPERANDS:
2562 if (MEM_VOLATILE_P (x))
2563 return 1;
2565 default:
2566 break;
2569 /* Recursively scan the operands of this expression. */
2572 const char *const fmt = GET_RTX_FORMAT (code);
2573 int i;
2575 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2577 if (fmt[i] == 'e')
2579 if (volatile_insn_p (XEXP (x, i)))
2580 return 1;
2582 else if (fmt[i] == 'E')
2584 int j;
2585 for (j = 0; j < XVECLEN (x, i); j++)
2586 if (volatile_insn_p (XVECEXP (x, i, j)))
2587 return 1;
2591 return 0;
2594 /* Nonzero if X contains any volatile memory references
2595 UNSPEC_VOLATILE operations or volatile ASM_OPERANDS expressions. */
2598 volatile_refs_p (const_rtx x)
2600 const RTX_CODE code = GET_CODE (x);
2601 switch (code)
2603 case LABEL_REF:
2604 case SYMBOL_REF:
2605 case CONST:
2606 CASE_CONST_ANY:
2607 case CC0:
2608 case PC:
2609 case REG:
2610 case SCRATCH:
2611 case CLOBBER:
2612 case ADDR_VEC:
2613 case ADDR_DIFF_VEC:
2614 return 0;
2616 case UNSPEC_VOLATILE:
2617 return 1;
2619 case MEM:
2620 case ASM_INPUT:
2621 case ASM_OPERANDS:
2622 if (MEM_VOLATILE_P (x))
2623 return 1;
2625 default:
2626 break;
2629 /* Recursively scan the operands of this expression. */
2632 const char *const fmt = GET_RTX_FORMAT (code);
2633 int i;
2635 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2637 if (fmt[i] == 'e')
2639 if (volatile_refs_p (XEXP (x, i)))
2640 return 1;
2642 else if (fmt[i] == 'E')
2644 int j;
2645 for (j = 0; j < XVECLEN (x, i); j++)
2646 if (volatile_refs_p (XVECEXP (x, i, j)))
2647 return 1;
2651 return 0;
2654 /* Similar to above, except that it also rejects register pre- and post-
2655 incrementing. */
2658 side_effects_p (const_rtx x)
2660 const RTX_CODE code = GET_CODE (x);
2661 switch (code)
2663 case LABEL_REF:
2664 case SYMBOL_REF:
2665 case CONST:
2666 CASE_CONST_ANY:
2667 case CC0:
2668 case PC:
2669 case REG:
2670 case SCRATCH:
2671 case ADDR_VEC:
2672 case ADDR_DIFF_VEC:
2673 case VAR_LOCATION:
2674 return 0;
2676 case CLOBBER:
2677 /* Reject CLOBBER with a non-VOID mode. These are made by combine.c
2678 when some combination can't be done. If we see one, don't think
2679 that we can simplify the expression. */
2680 return (GET_MODE (x) != VOIDmode);
2682 case PRE_INC:
2683 case PRE_DEC:
2684 case POST_INC:
2685 case POST_DEC:
2686 case PRE_MODIFY:
2687 case POST_MODIFY:
2688 case CALL:
2689 case UNSPEC_VOLATILE:
2690 return 1;
2692 case MEM:
2693 case ASM_INPUT:
2694 case ASM_OPERANDS:
2695 if (MEM_VOLATILE_P (x))
2696 return 1;
2698 default:
2699 break;
2702 /* Recursively scan the operands of this expression. */
2705 const char *fmt = GET_RTX_FORMAT (code);
2706 int i;
2708 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2710 if (fmt[i] == 'e')
2712 if (side_effects_p (XEXP (x, i)))
2713 return 1;
2715 else if (fmt[i] == 'E')
2717 int j;
2718 for (j = 0; j < XVECLEN (x, i); j++)
2719 if (side_effects_p (XVECEXP (x, i, j)))
2720 return 1;
2724 return 0;
2727 /* Return nonzero if evaluating rtx X might cause a trap.
2728 FLAGS controls how to consider MEMs. A nonzero means the context
2729 of the access may have changed from the original, such that the
2730 address may have become invalid. */
2733 may_trap_p_1 (const_rtx x, unsigned flags)
2735 int i;
2736 enum rtx_code code;
2737 const char *fmt;
2739 /* We make no distinction currently, but this function is part of
2740 the internal target-hooks ABI so we keep the parameter as
2741 "unsigned flags". */
2742 bool code_changed = flags != 0;
2744 if (x == 0)
2745 return 0;
2746 code = GET_CODE (x);
2747 switch (code)
2749 /* Handle these cases quickly. */
2750 CASE_CONST_ANY:
2751 case SYMBOL_REF:
2752 case LABEL_REF:
2753 case CONST:
2754 case PC:
2755 case CC0:
2756 case REG:
2757 case SCRATCH:
2758 return 0;
2760 case UNSPEC:
2761 return targetm.unspec_may_trap_p (x, flags);
2763 case UNSPEC_VOLATILE:
2764 case ASM_INPUT:
2765 case TRAP_IF:
2766 return 1;
2768 case ASM_OPERANDS:
2769 return MEM_VOLATILE_P (x);
2771 /* Memory ref can trap unless it's a static var or a stack slot. */
2772 case MEM:
2773 /* Recognize specific pattern of stack checking probes. */
2774 if (flag_stack_check
2775 && MEM_VOLATILE_P (x)
2776 && XEXP (x, 0) == stack_pointer_rtx)
2777 return 1;
2778 if (/* MEM_NOTRAP_P only relates to the actual position of the memory
2779 reference; moving it out of context such as when moving code
2780 when optimizing, might cause its address to become invalid. */
2781 code_changed
2782 || !MEM_NOTRAP_P (x))
2784 HOST_WIDE_INT size = MEM_SIZE_KNOWN_P (x) ? MEM_SIZE (x) : 0;
2785 return rtx_addr_can_trap_p_1 (XEXP (x, 0), 0, size,
2786 GET_MODE (x), code_changed);
2789 return 0;
2791 /* Division by a non-constant might trap. */
2792 case DIV:
2793 case MOD:
2794 case UDIV:
2795 case UMOD:
2796 if (HONOR_SNANS (x))
2797 return 1;
2798 if (SCALAR_FLOAT_MODE_P (GET_MODE (x)))
2799 return flag_trapping_math;
2800 if (!CONSTANT_P (XEXP (x, 1)) || (XEXP (x, 1) == const0_rtx))
2801 return 1;
2802 break;
2804 case EXPR_LIST:
2805 /* An EXPR_LIST is used to represent a function call. This
2806 certainly may trap. */
2807 return 1;
2809 case GE:
2810 case GT:
2811 case LE:
2812 case LT:
2813 case LTGT:
2814 case COMPARE:
2815 /* Some floating point comparisons may trap. */
2816 if (!flag_trapping_math)
2817 break;
2818 /* ??? There is no machine independent way to check for tests that trap
2819 when COMPARE is used, though many targets do make this distinction.
2820 For instance, sparc uses CCFPE for compares which generate exceptions
2821 and CCFP for compares which do not generate exceptions. */
2822 if (HONOR_NANS (x))
2823 return 1;
2824 /* But often the compare has some CC mode, so check operand
2825 modes as well. */
2826 if (HONOR_NANS (XEXP (x, 0))
2827 || HONOR_NANS (XEXP (x, 1)))
2828 return 1;
2829 break;
2831 case EQ:
2832 case NE:
2833 if (HONOR_SNANS (x))
2834 return 1;
2835 /* Often comparison is CC mode, so check operand modes. */
2836 if (HONOR_SNANS (XEXP (x, 0))
2837 || HONOR_SNANS (XEXP (x, 1)))
2838 return 1;
2839 break;
2841 case FIX:
2842 /* Conversion of floating point might trap. */
2843 if (flag_trapping_math && HONOR_NANS (XEXP (x, 0)))
2844 return 1;
2845 break;
2847 case NEG:
2848 case ABS:
2849 case SUBREG:
2850 /* These operations don't trap even with floating point. */
2851 break;
2853 default:
2854 /* Any floating arithmetic may trap. */
2855 if (SCALAR_FLOAT_MODE_P (GET_MODE (x)) && flag_trapping_math)
2856 return 1;
2859 fmt = GET_RTX_FORMAT (code);
2860 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2862 if (fmt[i] == 'e')
2864 if (may_trap_p_1 (XEXP (x, i), flags))
2865 return 1;
2867 else if (fmt[i] == 'E')
2869 int j;
2870 for (j = 0; j < XVECLEN (x, i); j++)
2871 if (may_trap_p_1 (XVECEXP (x, i, j), flags))
2872 return 1;
2875 return 0;
2878 /* Return nonzero if evaluating rtx X might cause a trap. */
2881 may_trap_p (const_rtx x)
2883 return may_trap_p_1 (x, 0);
2886 /* Same as above, but additionally return nonzero if evaluating rtx X might
2887 cause a fault. We define a fault for the purpose of this function as a
2888 erroneous execution condition that cannot be encountered during the normal
2889 execution of a valid program; the typical example is an unaligned memory
2890 access on a strict alignment machine. The compiler guarantees that it
2891 doesn't generate code that will fault from a valid program, but this
2892 guarantee doesn't mean anything for individual instructions. Consider
2893 the following example:
2895 struct S { int d; union { char *cp; int *ip; }; };
2897 int foo(struct S *s)
2899 if (s->d == 1)
2900 return *s->ip;
2901 else
2902 return *s->cp;
2905 on a strict alignment machine. In a valid program, foo will never be
2906 invoked on a structure for which d is equal to 1 and the underlying
2907 unique field of the union not aligned on a 4-byte boundary, but the
2908 expression *s->ip might cause a fault if considered individually.
2910 At the RTL level, potentially problematic expressions will almost always
2911 verify may_trap_p; for example, the above dereference can be emitted as
2912 (mem:SI (reg:P)) and this expression is may_trap_p for a generic register.
2913 However, suppose that foo is inlined in a caller that causes s->cp to
2914 point to a local character variable and guarantees that s->d is not set
2915 to 1; foo may have been effectively translated into pseudo-RTL as:
2917 if ((reg:SI) == 1)
2918 (set (reg:SI) (mem:SI (%fp - 7)))
2919 else
2920 (set (reg:QI) (mem:QI (%fp - 7)))
2922 Now (mem:SI (%fp - 7)) is considered as not may_trap_p since it is a
2923 memory reference to a stack slot, but it will certainly cause a fault
2924 on a strict alignment machine. */
2927 may_trap_or_fault_p (const_rtx x)
2929 return may_trap_p_1 (x, 1);
2932 /* Return nonzero if X contains a comparison that is not either EQ or NE,
2933 i.e., an inequality. */
2936 inequality_comparisons_p (const_rtx x)
2938 const char *fmt;
2939 int len, i;
2940 const enum rtx_code code = GET_CODE (x);
2942 switch (code)
2944 case REG:
2945 case SCRATCH:
2946 case PC:
2947 case CC0:
2948 CASE_CONST_ANY:
2949 case CONST:
2950 case LABEL_REF:
2951 case SYMBOL_REF:
2952 return 0;
2954 case LT:
2955 case LTU:
2956 case GT:
2957 case GTU:
2958 case LE:
2959 case LEU:
2960 case GE:
2961 case GEU:
2962 return 1;
2964 default:
2965 break;
2968 len = GET_RTX_LENGTH (code);
2969 fmt = GET_RTX_FORMAT (code);
2971 for (i = 0; i < len; i++)
2973 if (fmt[i] == 'e')
2975 if (inequality_comparisons_p (XEXP (x, i)))
2976 return 1;
2978 else if (fmt[i] == 'E')
2980 int j;
2981 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2982 if (inequality_comparisons_p (XVECEXP (x, i, j)))
2983 return 1;
2987 return 0;
2990 /* Replace any occurrence of FROM in X with TO. The function does
2991 not enter into CONST_DOUBLE for the replace.
2993 Note that copying is not done so X must not be shared unless all copies
2994 are to be modified.
2996 ALL_REGS is true if we want to replace all REGs equal to FROM, not just
2997 those pointer-equal ones. */
3000 replace_rtx (rtx x, rtx from, rtx to, bool all_regs)
3002 int i, j;
3003 const char *fmt;
3005 if (x == from)
3006 return to;
3008 /* Allow this function to make replacements in EXPR_LISTs. */
3009 if (x == 0)
3010 return 0;
3012 if (all_regs
3013 && REG_P (x)
3014 && REG_P (from)
3015 && REGNO (x) == REGNO (from))
3017 gcc_assert (GET_MODE (x) == GET_MODE (from));
3018 return to;
3020 else if (GET_CODE (x) == SUBREG)
3022 rtx new_rtx = replace_rtx (SUBREG_REG (x), from, to, all_regs);
3024 if (CONST_INT_P (new_rtx))
3026 x = simplify_subreg (GET_MODE (x), new_rtx,
3027 GET_MODE (SUBREG_REG (x)),
3028 SUBREG_BYTE (x));
3029 gcc_assert (x);
3031 else
3032 SUBREG_REG (x) = new_rtx;
3034 return x;
3036 else if (GET_CODE (x) == ZERO_EXTEND)
3038 rtx new_rtx = replace_rtx (XEXP (x, 0), from, to, all_regs);
3040 if (CONST_INT_P (new_rtx))
3042 x = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
3043 new_rtx, GET_MODE (XEXP (x, 0)));
3044 gcc_assert (x);
3046 else
3047 XEXP (x, 0) = new_rtx;
3049 return x;
3052 fmt = GET_RTX_FORMAT (GET_CODE (x));
3053 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
3055 if (fmt[i] == 'e')
3056 XEXP (x, i) = replace_rtx (XEXP (x, i), from, to, all_regs);
3057 else if (fmt[i] == 'E')
3058 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3059 XVECEXP (x, i, j) = replace_rtx (XVECEXP (x, i, j),
3060 from, to, all_regs);
3063 return x;
3066 /* Replace occurrences of the OLD_LABEL in *LOC with NEW_LABEL. Also track
3067 the change in LABEL_NUSES if UPDATE_LABEL_NUSES. */
3069 void
3070 replace_label (rtx *loc, rtx old_label, rtx new_label, bool update_label_nuses)
3072 /* Handle jump tables specially, since ADDR_{DIFF_,}VECs can be long. */
3073 rtx x = *loc;
3074 if (JUMP_TABLE_DATA_P (x))
3076 x = PATTERN (x);
3077 rtvec vec = XVEC (x, GET_CODE (x) == ADDR_DIFF_VEC);
3078 int len = GET_NUM_ELEM (vec);
3079 for (int i = 0; i < len; ++i)
3081 rtx ref = RTVEC_ELT (vec, i);
3082 if (XEXP (ref, 0) == old_label)
3084 XEXP (ref, 0) = new_label;
3085 if (update_label_nuses)
3087 ++LABEL_NUSES (new_label);
3088 --LABEL_NUSES (old_label);
3092 return;
3095 /* If this is a JUMP_INSN, then we also need to fix the JUMP_LABEL
3096 field. This is not handled by the iterator because it doesn't
3097 handle unprinted ('0') fields. */
3098 if (JUMP_P (x) && JUMP_LABEL (x) == old_label)
3099 JUMP_LABEL (x) = new_label;
3101 subrtx_ptr_iterator::array_type array;
3102 FOR_EACH_SUBRTX_PTR (iter, array, loc, ALL)
3104 rtx *loc = *iter;
3105 if (rtx x = *loc)
3107 if (GET_CODE (x) == SYMBOL_REF
3108 && CONSTANT_POOL_ADDRESS_P (x))
3110 rtx c = get_pool_constant (x);
3111 if (rtx_referenced_p (old_label, c))
3113 /* Create a copy of constant C; replace the label inside
3114 but do not update LABEL_NUSES because uses in constant pool
3115 are not counted. */
3116 rtx new_c = copy_rtx (c);
3117 replace_label (&new_c, old_label, new_label, false);
3119 /* Add the new constant NEW_C to constant pool and replace
3120 the old reference to constant by new reference. */
3121 rtx new_mem = force_const_mem (get_pool_mode (x), new_c);
3122 *loc = replace_rtx (x, x, XEXP (new_mem, 0));
3126 if ((GET_CODE (x) == LABEL_REF
3127 || GET_CODE (x) == INSN_LIST)
3128 && XEXP (x, 0) == old_label)
3130 XEXP (x, 0) = new_label;
3131 if (update_label_nuses)
3133 ++LABEL_NUSES (new_label);
3134 --LABEL_NUSES (old_label);
3141 void
3142 replace_label_in_insn (rtx_insn *insn, rtx_insn *old_label,
3143 rtx_insn *new_label, bool update_label_nuses)
3145 rtx insn_as_rtx = insn;
3146 replace_label (&insn_as_rtx, old_label, new_label, update_label_nuses);
3147 gcc_checking_assert (insn_as_rtx == insn);
3150 /* Return true if X is referenced in BODY. */
3152 bool
3153 rtx_referenced_p (const_rtx x, const_rtx body)
3155 subrtx_iterator::array_type array;
3156 FOR_EACH_SUBRTX (iter, array, body, ALL)
3157 if (const_rtx y = *iter)
3159 /* Check if a label_ref Y refers to label X. */
3160 if (GET_CODE (y) == LABEL_REF
3161 && LABEL_P (x)
3162 && label_ref_label (y) == x)
3163 return true;
3165 if (rtx_equal_p (x, y))
3166 return true;
3168 /* If Y is a reference to pool constant traverse the constant. */
3169 if (GET_CODE (y) == SYMBOL_REF
3170 && CONSTANT_POOL_ADDRESS_P (y))
3171 iter.substitute (get_pool_constant (y));
3173 return false;
3176 /* If INSN is a tablejump return true and store the label (before jump table) to
3177 *LABELP and the jump table to *TABLEP. LABELP and TABLEP may be NULL. */
3179 bool
3180 tablejump_p (const rtx_insn *insn, rtx_insn **labelp,
3181 rtx_jump_table_data **tablep)
3183 if (!JUMP_P (insn))
3184 return false;
3186 rtx target = JUMP_LABEL (insn);
3187 if (target == NULL_RTX || ANY_RETURN_P (target))
3188 return false;
3190 rtx_insn *label = as_a<rtx_insn *> (target);
3191 rtx_insn *table = next_insn (label);
3192 if (table == NULL_RTX || !JUMP_TABLE_DATA_P (table))
3193 return false;
3195 if (labelp)
3196 *labelp = label;
3197 if (tablep)
3198 *tablep = as_a <rtx_jump_table_data *> (table);
3199 return true;
3202 /* A subroutine of computed_jump_p, return 1 if X contains a REG or MEM or
3203 constant that is not in the constant pool and not in the condition
3204 of an IF_THEN_ELSE. */
3206 static int
3207 computed_jump_p_1 (const_rtx x)
3209 const enum rtx_code code = GET_CODE (x);
3210 int i, j;
3211 const char *fmt;
3213 switch (code)
3215 case LABEL_REF:
3216 case PC:
3217 return 0;
3219 case CONST:
3220 CASE_CONST_ANY:
3221 case SYMBOL_REF:
3222 case REG:
3223 return 1;
3225 case MEM:
3226 return ! (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
3227 && CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)));
3229 case IF_THEN_ELSE:
3230 return (computed_jump_p_1 (XEXP (x, 1))
3231 || computed_jump_p_1 (XEXP (x, 2)));
3233 default:
3234 break;
3237 fmt = GET_RTX_FORMAT (code);
3238 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3240 if (fmt[i] == 'e'
3241 && computed_jump_p_1 (XEXP (x, i)))
3242 return 1;
3244 else if (fmt[i] == 'E')
3245 for (j = 0; j < XVECLEN (x, i); j++)
3246 if (computed_jump_p_1 (XVECEXP (x, i, j)))
3247 return 1;
3250 return 0;
3253 /* Return nonzero if INSN is an indirect jump (aka computed jump).
3255 Tablejumps and casesi insns are not considered indirect jumps;
3256 we can recognize them by a (use (label_ref)). */
3259 computed_jump_p (const rtx_insn *insn)
3261 int i;
3262 if (JUMP_P (insn))
3264 rtx pat = PATTERN (insn);
3266 /* If we have a JUMP_LABEL set, we're not a computed jump. */
3267 if (JUMP_LABEL (insn) != NULL)
3268 return 0;
3270 if (GET_CODE (pat) == PARALLEL)
3272 int len = XVECLEN (pat, 0);
3273 int has_use_labelref = 0;
3275 for (i = len - 1; i >= 0; i--)
3276 if (GET_CODE (XVECEXP (pat, 0, i)) == USE
3277 && (GET_CODE (XEXP (XVECEXP (pat, 0, i), 0))
3278 == LABEL_REF))
3280 has_use_labelref = 1;
3281 break;
3284 if (! has_use_labelref)
3285 for (i = len - 1; i >= 0; i--)
3286 if (GET_CODE (XVECEXP (pat, 0, i)) == SET
3287 && SET_DEST (XVECEXP (pat, 0, i)) == pc_rtx
3288 && computed_jump_p_1 (SET_SRC (XVECEXP (pat, 0, i))))
3289 return 1;
3291 else if (GET_CODE (pat) == SET
3292 && SET_DEST (pat) == pc_rtx
3293 && computed_jump_p_1 (SET_SRC (pat)))
3294 return 1;
3296 return 0;
3301 /* MEM has a PRE/POST-INC/DEC/MODIFY address X. Extract the operands of
3302 the equivalent add insn and pass the result to FN, using DATA as the
3303 final argument. */
3305 static int
3306 for_each_inc_dec_find_inc_dec (rtx mem, for_each_inc_dec_fn fn, void *data)
3308 rtx x = XEXP (mem, 0);
3309 switch (GET_CODE (x))
3311 case PRE_INC:
3312 case POST_INC:
3314 int size = GET_MODE_SIZE (GET_MODE (mem));
3315 rtx r1 = XEXP (x, 0);
3316 rtx c = gen_int_mode (size, GET_MODE (r1));
3317 return fn (mem, x, r1, r1, c, data);
3320 case PRE_DEC:
3321 case POST_DEC:
3323 int size = GET_MODE_SIZE (GET_MODE (mem));
3324 rtx r1 = XEXP (x, 0);
3325 rtx c = gen_int_mode (-size, GET_MODE (r1));
3326 return fn (mem, x, r1, r1, c, data);
3329 case PRE_MODIFY:
3330 case POST_MODIFY:
3332 rtx r1 = XEXP (x, 0);
3333 rtx add = XEXP (x, 1);
3334 return fn (mem, x, r1, add, NULL, data);
3337 default:
3338 gcc_unreachable ();
3342 /* Traverse *LOC looking for MEMs that have autoinc addresses.
3343 For each such autoinc operation found, call FN, passing it
3344 the innermost enclosing MEM, the operation itself, the RTX modified
3345 by the operation, two RTXs (the second may be NULL) that, once
3346 added, represent the value to be held by the modified RTX
3347 afterwards, and DATA. FN is to return 0 to continue the
3348 traversal or any other value to have it returned to the caller of
3349 for_each_inc_dec. */
3352 for_each_inc_dec (rtx x,
3353 for_each_inc_dec_fn fn,
3354 void *data)
3356 subrtx_var_iterator::array_type array;
3357 FOR_EACH_SUBRTX_VAR (iter, array, x, NONCONST)
3359 rtx mem = *iter;
3360 if (mem
3361 && MEM_P (mem)
3362 && GET_RTX_CLASS (GET_CODE (XEXP (mem, 0))) == RTX_AUTOINC)
3364 int res = for_each_inc_dec_find_inc_dec (mem, fn, data);
3365 if (res != 0)
3366 return res;
3367 iter.skip_subrtxes ();
3370 return 0;
3374 /* Searches X for any reference to REGNO, returning the rtx of the
3375 reference found if any. Otherwise, returns NULL_RTX. */
3378 regno_use_in (unsigned int regno, rtx x)
3380 const char *fmt;
3381 int i, j;
3382 rtx tem;
3384 if (REG_P (x) && REGNO (x) == regno)
3385 return x;
3387 fmt = GET_RTX_FORMAT (GET_CODE (x));
3388 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
3390 if (fmt[i] == 'e')
3392 if ((tem = regno_use_in (regno, XEXP (x, i))))
3393 return tem;
3395 else if (fmt[i] == 'E')
3396 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3397 if ((tem = regno_use_in (regno , XVECEXP (x, i, j))))
3398 return tem;
3401 return NULL_RTX;
3404 /* Return a value indicating whether OP, an operand of a commutative
3405 operation, is preferred as the first or second operand. The more
3406 positive the value, the stronger the preference for being the first
3407 operand. */
3410 commutative_operand_precedence (rtx op)
3412 enum rtx_code code = GET_CODE (op);
3414 /* Constants always become the second operand. Prefer "nice" constants. */
3415 if (code == CONST_INT)
3416 return -8;
3417 if (code == CONST_WIDE_INT)
3418 return -7;
3419 if (code == CONST_DOUBLE)
3420 return -7;
3421 if (code == CONST_FIXED)
3422 return -7;
3423 op = avoid_constant_pool_reference (op);
3424 code = GET_CODE (op);
3426 switch (GET_RTX_CLASS (code))
3428 case RTX_CONST_OBJ:
3429 if (code == CONST_INT)
3430 return -6;
3431 if (code == CONST_WIDE_INT)
3432 return -6;
3433 if (code == CONST_DOUBLE)
3434 return -5;
3435 if (code == CONST_FIXED)
3436 return -5;
3437 return -4;
3439 case RTX_EXTRA:
3440 /* SUBREGs of objects should come second. */
3441 if (code == SUBREG && OBJECT_P (SUBREG_REG (op)))
3442 return -3;
3443 return 0;
3445 case RTX_OBJ:
3446 /* Complex expressions should be the first, so decrease priority
3447 of objects. Prefer pointer objects over non pointer objects. */
3448 if ((REG_P (op) && REG_POINTER (op))
3449 || (MEM_P (op) && MEM_POINTER (op)))
3450 return -1;
3451 return -2;
3453 case RTX_COMM_ARITH:
3454 /* Prefer operands that are themselves commutative to be first.
3455 This helps to make things linear. In particular,
3456 (and (and (reg) (reg)) (not (reg))) is canonical. */
3457 return 4;
3459 case RTX_BIN_ARITH:
3460 /* If only one operand is a binary expression, it will be the first
3461 operand. In particular, (plus (minus (reg) (reg)) (neg (reg)))
3462 is canonical, although it will usually be further simplified. */
3463 return 2;
3465 case RTX_UNARY:
3466 /* Then prefer NEG and NOT. */
3467 if (code == NEG || code == NOT)
3468 return 1;
3469 /* FALLTHRU */
3471 default:
3472 return 0;
3476 /* Return 1 iff it is necessary to swap operands of commutative operation
3477 in order to canonicalize expression. */
3479 bool
3480 swap_commutative_operands_p (rtx x, rtx y)
3482 return (commutative_operand_precedence (x)
3483 < commutative_operand_precedence (y));
3486 /* Return 1 if X is an autoincrement side effect and the register is
3487 not the stack pointer. */
3489 auto_inc_p (const_rtx x)
3491 switch (GET_CODE (x))
3493 case PRE_INC:
3494 case POST_INC:
3495 case PRE_DEC:
3496 case POST_DEC:
3497 case PRE_MODIFY:
3498 case POST_MODIFY:
3499 /* There are no REG_INC notes for SP. */
3500 if (XEXP (x, 0) != stack_pointer_rtx)
3501 return 1;
3502 default:
3503 break;
3505 return 0;
3508 /* Return nonzero if IN contains a piece of rtl that has the address LOC. */
3510 loc_mentioned_in_p (rtx *loc, const_rtx in)
3512 enum rtx_code code;
3513 const char *fmt;
3514 int i, j;
3516 if (!in)
3517 return 0;
3519 code = GET_CODE (in);
3520 fmt = GET_RTX_FORMAT (code);
3521 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3523 if (fmt[i] == 'e')
3525 if (loc == &XEXP (in, i) || loc_mentioned_in_p (loc, XEXP (in, i)))
3526 return 1;
3528 else if (fmt[i] == 'E')
3529 for (j = XVECLEN (in, i) - 1; j >= 0; j--)
3530 if (loc == &XVECEXP (in, i, j)
3531 || loc_mentioned_in_p (loc, XVECEXP (in, i, j)))
3532 return 1;
3534 return 0;
3537 /* Helper function for subreg_lsb. Given a subreg's OUTER_MODE, INNER_MODE,
3538 and SUBREG_BYTE, return the bit offset where the subreg begins
3539 (counting from the least significant bit of the operand). */
3541 unsigned int
3542 subreg_lsb_1 (machine_mode outer_mode,
3543 machine_mode inner_mode,
3544 unsigned int subreg_byte)
3546 unsigned int bitpos;
3547 unsigned int byte;
3548 unsigned int word;
3550 /* A paradoxical subreg begins at bit position 0. */
3551 if (paradoxical_subreg_p (outer_mode, inner_mode))
3552 return 0;
3554 if (WORDS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
3555 /* If the subreg crosses a word boundary ensure that
3556 it also begins and ends on a word boundary. */
3557 gcc_assert (!((subreg_byte % UNITS_PER_WORD
3558 + GET_MODE_SIZE (outer_mode)) > UNITS_PER_WORD
3559 && (subreg_byte % UNITS_PER_WORD
3560 || GET_MODE_SIZE (outer_mode) % UNITS_PER_WORD)));
3562 if (WORDS_BIG_ENDIAN)
3563 word = (GET_MODE_SIZE (inner_mode)
3564 - (subreg_byte + GET_MODE_SIZE (outer_mode))) / UNITS_PER_WORD;
3565 else
3566 word = subreg_byte / UNITS_PER_WORD;
3567 bitpos = word * BITS_PER_WORD;
3569 if (BYTES_BIG_ENDIAN)
3570 byte = (GET_MODE_SIZE (inner_mode)
3571 - (subreg_byte + GET_MODE_SIZE (outer_mode))) % UNITS_PER_WORD;
3572 else
3573 byte = subreg_byte % UNITS_PER_WORD;
3574 bitpos += byte * BITS_PER_UNIT;
3576 return bitpos;
3579 /* Given a subreg X, return the bit offset where the subreg begins
3580 (counting from the least significant bit of the reg). */
3582 unsigned int
3583 subreg_lsb (const_rtx x)
3585 return subreg_lsb_1 (GET_MODE (x), GET_MODE (SUBREG_REG (x)),
3586 SUBREG_BYTE (x));
3589 /* Return the subreg byte offset for a subreg whose outer value has
3590 OUTER_BYTES bytes, whose inner value has INNER_BYTES bytes, and where
3591 there are LSB_SHIFT *bits* between the lsb of the outer value and the
3592 lsb of the inner value. This is the inverse of the calculation
3593 performed by subreg_lsb_1 (which converts byte offsets to bit shifts). */
3595 unsigned int
3596 subreg_size_offset_from_lsb (unsigned int outer_bytes,
3597 unsigned int inner_bytes,
3598 unsigned int lsb_shift)
3600 /* A paradoxical subreg begins at bit position 0. */
3601 if (outer_bytes > inner_bytes)
3603 gcc_checking_assert (lsb_shift == 0);
3604 return 0;
3607 gcc_assert (lsb_shift % BITS_PER_UNIT == 0);
3608 unsigned int lower_bytes = lsb_shift / BITS_PER_UNIT;
3609 unsigned int upper_bytes = inner_bytes - (lower_bytes + outer_bytes);
3610 if (WORDS_BIG_ENDIAN && BYTES_BIG_ENDIAN)
3611 return upper_bytes;
3612 else if (!WORDS_BIG_ENDIAN && !BYTES_BIG_ENDIAN)
3613 return lower_bytes;
3614 else
3616 unsigned int lower_word_part = lower_bytes & -UNITS_PER_WORD;
3617 unsigned int upper_word_part = upper_bytes & -UNITS_PER_WORD;
3618 if (WORDS_BIG_ENDIAN)
3619 return upper_word_part + (lower_bytes - lower_word_part);
3620 else
3621 return lower_word_part + (upper_bytes - upper_word_part);
3625 /* Fill in information about a subreg of a hard register.
3626 xregno - A regno of an inner hard subreg_reg (or what will become one).
3627 xmode - The mode of xregno.
3628 offset - The byte offset.
3629 ymode - The mode of a top level SUBREG (or what may become one).
3630 info - Pointer to structure to fill in.
3632 Rather than considering one particular inner register (and thus one
3633 particular "outer" register) in isolation, this function really uses
3634 XREGNO as a model for a sequence of isomorphic hard registers. Thus the
3635 function does not check whether adding INFO->offset to XREGNO gives
3636 a valid hard register; even if INFO->offset + XREGNO is out of range,
3637 there might be another register of the same type that is in range.
3638 Likewise it doesn't check whether targetm.hard_regno_mode_ok accepts
3639 the new register, since that can depend on things like whether the final
3640 register number is even or odd. Callers that want to check whether
3641 this particular subreg can be replaced by a simple (reg ...) should
3642 use simplify_subreg_regno. */
3644 void
3645 subreg_get_info (unsigned int xregno, machine_mode xmode,
3646 unsigned int offset, machine_mode ymode,
3647 struct subreg_info *info)
3649 unsigned int nregs_xmode, nregs_ymode;
3651 gcc_assert (xregno < FIRST_PSEUDO_REGISTER);
3653 unsigned int xsize = GET_MODE_SIZE (xmode);
3654 unsigned int ysize = GET_MODE_SIZE (ymode);
3655 bool rknown = false;
3657 /* If the register representation of a non-scalar mode has holes in it,
3658 we expect the scalar units to be concatenated together, with the holes
3659 distributed evenly among the scalar units. Each scalar unit must occupy
3660 at least one register. */
3661 if (HARD_REGNO_NREGS_HAS_PADDING (xregno, xmode))
3663 nregs_xmode = HARD_REGNO_NREGS_WITH_PADDING (xregno, xmode);
3664 unsigned int nunits = GET_MODE_NUNITS (xmode);
3665 scalar_mode xmode_unit = GET_MODE_INNER (xmode);
3666 gcc_assert (HARD_REGNO_NREGS_HAS_PADDING (xregno, xmode_unit));
3667 gcc_assert (nregs_xmode
3668 == (nunits
3669 * HARD_REGNO_NREGS_WITH_PADDING (xregno, xmode_unit)));
3670 gcc_assert (hard_regno_nregs (xregno, xmode)
3671 == hard_regno_nregs (xregno, xmode_unit) * nunits);
3673 /* You can only ask for a SUBREG of a value with holes in the middle
3674 if you don't cross the holes. (Such a SUBREG should be done by
3675 picking a different register class, or doing it in memory if
3676 necessary.) An example of a value with holes is XCmode on 32-bit
3677 x86 with -m128bit-long-double; it's represented in 6 32-bit registers,
3678 3 for each part, but in memory it's two 128-bit parts.
3679 Padding is assumed to be at the end (not necessarily the 'high part')
3680 of each unit. */
3681 if ((offset / GET_MODE_SIZE (xmode_unit) + 1 < nunits)
3682 && (offset / GET_MODE_SIZE (xmode_unit)
3683 != ((offset + ysize - 1) / GET_MODE_SIZE (xmode_unit))))
3685 info->representable_p = false;
3686 rknown = true;
3689 else
3690 nregs_xmode = hard_regno_nregs (xregno, xmode);
3692 nregs_ymode = hard_regno_nregs (xregno, ymode);
3694 /* Paradoxical subregs are otherwise valid. */
3695 if (!rknown && offset == 0 && ysize > xsize)
3697 info->representable_p = true;
3698 /* If this is a big endian paradoxical subreg, which uses more
3699 actual hard registers than the original register, we must
3700 return a negative offset so that we find the proper highpart
3701 of the register.
3703 We assume that the ordering of registers within a multi-register
3704 value has a consistent endianness: if bytes and register words
3705 have different endianness, the hard registers that make up a
3706 multi-register value must be at least word-sized. */
3707 if (REG_WORDS_BIG_ENDIAN)
3708 info->offset = (int) nregs_xmode - (int) nregs_ymode;
3709 else
3710 info->offset = 0;
3711 info->nregs = nregs_ymode;
3712 return;
3715 /* If registers store different numbers of bits in the different
3716 modes, we cannot generally form this subreg. */
3717 if (!HARD_REGNO_NREGS_HAS_PADDING (xregno, xmode)
3718 && !HARD_REGNO_NREGS_HAS_PADDING (xregno, ymode)
3719 && (xsize % nregs_xmode) == 0
3720 && (ysize % nregs_ymode) == 0)
3722 int regsize_xmode = xsize / nregs_xmode;
3723 int regsize_ymode = ysize / nregs_ymode;
3724 if (!rknown
3725 && ((nregs_ymode > 1 && regsize_xmode > regsize_ymode)
3726 || (nregs_xmode > 1 && regsize_ymode > regsize_xmode)))
3728 info->representable_p = false;
3729 info->nregs = CEIL (ysize, regsize_xmode);
3730 info->offset = offset / regsize_xmode;
3731 return;
3733 /* It's not valid to extract a subreg of mode YMODE at OFFSET that
3734 would go outside of XMODE. */
3735 if (!rknown && ysize + offset > xsize)
3737 info->representable_p = false;
3738 info->nregs = nregs_ymode;
3739 info->offset = offset / regsize_xmode;
3740 return;
3742 /* Quick exit for the simple and common case of extracting whole
3743 subregisters from a multiregister value. */
3744 /* ??? It would be better to integrate this into the code below,
3745 if we can generalize the concept enough and figure out how
3746 odd-sized modes can coexist with the other weird cases we support. */
3747 if (!rknown
3748 && WORDS_BIG_ENDIAN == REG_WORDS_BIG_ENDIAN
3749 && regsize_xmode == regsize_ymode
3750 && (offset % regsize_ymode) == 0)
3752 info->representable_p = true;
3753 info->nregs = nregs_ymode;
3754 info->offset = offset / regsize_ymode;
3755 gcc_assert (info->offset + info->nregs <= (int) nregs_xmode);
3756 return;
3760 /* Lowpart subregs are otherwise valid. */
3761 if (!rknown && offset == subreg_lowpart_offset (ymode, xmode))
3763 info->representable_p = true;
3764 rknown = true;
3766 if (offset == 0 || nregs_xmode == nregs_ymode)
3768 info->offset = 0;
3769 info->nregs = nregs_ymode;
3770 return;
3774 /* Set NUM_BLOCKS to the number of independently-representable YMODE
3775 values there are in (reg:XMODE XREGNO). We can view the register
3776 as consisting of this number of independent "blocks", where each
3777 block occupies NREGS_YMODE registers and contains exactly one
3778 representable YMODE value. */
3779 gcc_assert ((nregs_xmode % nregs_ymode) == 0);
3780 unsigned int num_blocks = nregs_xmode / nregs_ymode;
3782 /* Calculate the number of bytes in each block. This must always
3783 be exact, otherwise we don't know how to verify the constraint.
3784 These conditions may be relaxed but subreg_regno_offset would
3785 need to be redesigned. */
3786 gcc_assert ((xsize % num_blocks) == 0);
3787 unsigned int bytes_per_block = xsize / num_blocks;
3789 /* Get the number of the first block that contains the subreg and the byte
3790 offset of the subreg from the start of that block. */
3791 unsigned int block_number = offset / bytes_per_block;
3792 unsigned int subblock_offset = offset % bytes_per_block;
3794 if (!rknown)
3796 /* Only the lowpart of each block is representable. */
3797 info->representable_p
3798 = (subblock_offset
3799 == subreg_size_lowpart_offset (ysize, bytes_per_block));
3800 rknown = true;
3803 /* We assume that the ordering of registers within a multi-register
3804 value has a consistent endianness: if bytes and register words
3805 have different endianness, the hard registers that make up a
3806 multi-register value must be at least word-sized. */
3807 if (WORDS_BIG_ENDIAN != REG_WORDS_BIG_ENDIAN)
3808 /* The block number we calculated above followed memory endianness.
3809 Convert it to register endianness by counting back from the end.
3810 (Note that, because of the assumption above, each block must be
3811 at least word-sized.) */
3812 info->offset = (num_blocks - block_number - 1) * nregs_ymode;
3813 else
3814 info->offset = block_number * nregs_ymode;
3815 info->nregs = nregs_ymode;
3818 /* This function returns the regno offset of a subreg expression.
3819 xregno - A regno of an inner hard subreg_reg (or what will become one).
3820 xmode - The mode of xregno.
3821 offset - The byte offset.
3822 ymode - The mode of a top level SUBREG (or what may become one).
3823 RETURN - The regno offset which would be used. */
3824 unsigned int
3825 subreg_regno_offset (unsigned int xregno, machine_mode xmode,
3826 unsigned int offset, machine_mode ymode)
3828 struct subreg_info info;
3829 subreg_get_info (xregno, xmode, offset, ymode, &info);
3830 return info.offset;
3833 /* This function returns true when the offset is representable via
3834 subreg_offset in the given regno.
3835 xregno - A regno of an inner hard subreg_reg (or what will become one).
3836 xmode - The mode of xregno.
3837 offset - The byte offset.
3838 ymode - The mode of a top level SUBREG (or what may become one).
3839 RETURN - Whether the offset is representable. */
3840 bool
3841 subreg_offset_representable_p (unsigned int xregno, machine_mode xmode,
3842 unsigned int offset, machine_mode ymode)
3844 struct subreg_info info;
3845 subreg_get_info (xregno, xmode, offset, ymode, &info);
3846 return info.representable_p;
3849 /* Return the number of a YMODE register to which
3851 (subreg:YMODE (reg:XMODE XREGNO) OFFSET)
3853 can be simplified. Return -1 if the subreg can't be simplified.
3855 XREGNO is a hard register number. */
3858 simplify_subreg_regno (unsigned int xregno, machine_mode xmode,
3859 unsigned int offset, machine_mode ymode)
3861 struct subreg_info info;
3862 unsigned int yregno;
3864 /* Give the backend a chance to disallow the mode change. */
3865 if (GET_MODE_CLASS (xmode) != MODE_COMPLEX_INT
3866 && GET_MODE_CLASS (xmode) != MODE_COMPLEX_FLOAT
3867 && !REG_CAN_CHANGE_MODE_P (xregno, xmode, ymode)
3868 /* We can use mode change in LRA for some transformations. */
3869 && ! lra_in_progress)
3870 return -1;
3872 /* We shouldn't simplify stack-related registers. */
3873 if ((!reload_completed || frame_pointer_needed)
3874 && xregno == FRAME_POINTER_REGNUM)
3875 return -1;
3877 if (FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
3878 && xregno == ARG_POINTER_REGNUM)
3879 return -1;
3881 if (xregno == STACK_POINTER_REGNUM
3882 /* We should convert hard stack register in LRA if it is
3883 possible. */
3884 && ! lra_in_progress)
3885 return -1;
3887 /* Try to get the register offset. */
3888 subreg_get_info (xregno, xmode, offset, ymode, &info);
3889 if (!info.representable_p)
3890 return -1;
3892 /* Make sure that the offsetted register value is in range. */
3893 yregno = xregno + info.offset;
3894 if (!HARD_REGISTER_NUM_P (yregno))
3895 return -1;
3897 /* See whether (reg:YMODE YREGNO) is valid.
3899 ??? We allow invalid registers if (reg:XMODE XREGNO) is also invalid.
3900 This is a kludge to work around how complex FP arguments are passed
3901 on IA-64 and should be fixed. See PR target/49226. */
3902 if (!targetm.hard_regno_mode_ok (yregno, ymode)
3903 && targetm.hard_regno_mode_ok (xregno, xmode))
3904 return -1;
3906 return (int) yregno;
3909 /* Return the final regno that a subreg expression refers to. */
3910 unsigned int
3911 subreg_regno (const_rtx x)
3913 unsigned int ret;
3914 rtx subreg = SUBREG_REG (x);
3915 int regno = REGNO (subreg);
3917 ret = regno + subreg_regno_offset (regno,
3918 GET_MODE (subreg),
3919 SUBREG_BYTE (x),
3920 GET_MODE (x));
3921 return ret;
3925 /* Return the number of registers that a subreg expression refers
3926 to. */
3927 unsigned int
3928 subreg_nregs (const_rtx x)
3930 return subreg_nregs_with_regno (REGNO (SUBREG_REG (x)), x);
3933 /* Return the number of registers that a subreg REG with REGNO
3934 expression refers to. This is a copy of the rtlanal.c:subreg_nregs
3935 changed so that the regno can be passed in. */
3937 unsigned int
3938 subreg_nregs_with_regno (unsigned int regno, const_rtx x)
3940 struct subreg_info info;
3941 rtx subreg = SUBREG_REG (x);
3943 subreg_get_info (regno, GET_MODE (subreg), SUBREG_BYTE (x), GET_MODE (x),
3944 &info);
3945 return info.nregs;
3948 struct parms_set_data
3950 int nregs;
3951 HARD_REG_SET regs;
3954 /* Helper function for noticing stores to parameter registers. */
3955 static void
3956 parms_set (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data)
3958 struct parms_set_data *const d = (struct parms_set_data *) data;
3959 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER
3960 && TEST_HARD_REG_BIT (d->regs, REGNO (x)))
3962 CLEAR_HARD_REG_BIT (d->regs, REGNO (x));
3963 d->nregs--;
3967 /* Look backward for first parameter to be loaded.
3968 Note that loads of all parameters will not necessarily be
3969 found if CSE has eliminated some of them (e.g., an argument
3970 to the outer function is passed down as a parameter).
3971 Do not skip BOUNDARY. */
3972 rtx_insn *
3973 find_first_parameter_load (rtx_insn *call_insn, rtx_insn *boundary)
3975 struct parms_set_data parm;
3976 rtx p;
3977 rtx_insn *before, *first_set;
3979 /* Since different machines initialize their parameter registers
3980 in different orders, assume nothing. Collect the set of all
3981 parameter registers. */
3982 CLEAR_HARD_REG_SET (parm.regs);
3983 parm.nregs = 0;
3984 for (p = CALL_INSN_FUNCTION_USAGE (call_insn); p; p = XEXP (p, 1))
3985 if (GET_CODE (XEXP (p, 0)) == USE
3986 && REG_P (XEXP (XEXP (p, 0), 0))
3987 && !STATIC_CHAIN_REG_P (XEXP (XEXP (p, 0), 0)))
3989 gcc_assert (REGNO (XEXP (XEXP (p, 0), 0)) < FIRST_PSEUDO_REGISTER);
3991 /* We only care about registers which can hold function
3992 arguments. */
3993 if (!FUNCTION_ARG_REGNO_P (REGNO (XEXP (XEXP (p, 0), 0))))
3994 continue;
3996 SET_HARD_REG_BIT (parm.regs, REGNO (XEXP (XEXP (p, 0), 0)));
3997 parm.nregs++;
3999 before = call_insn;
4000 first_set = call_insn;
4002 /* Search backward for the first set of a register in this set. */
4003 while (parm.nregs && before != boundary)
4005 before = PREV_INSN (before);
4007 /* It is possible that some loads got CSEed from one call to
4008 another. Stop in that case. */
4009 if (CALL_P (before))
4010 break;
4012 /* Our caller needs either ensure that we will find all sets
4013 (in case code has not been optimized yet), or take care
4014 for possible labels in a way by setting boundary to preceding
4015 CODE_LABEL. */
4016 if (LABEL_P (before))
4018 gcc_assert (before == boundary);
4019 break;
4022 if (INSN_P (before))
4024 int nregs_old = parm.nregs;
4025 note_stores (PATTERN (before), parms_set, &parm);
4026 /* If we found something that did not set a parameter reg,
4027 we're done. Do not keep going, as that might result
4028 in hoisting an insn before the setting of a pseudo
4029 that is used by the hoisted insn. */
4030 if (nregs_old != parm.nregs)
4031 first_set = before;
4032 else
4033 break;
4036 return first_set;
4039 /* Return true if we should avoid inserting code between INSN and preceding
4040 call instruction. */
4042 bool
4043 keep_with_call_p (const rtx_insn *insn)
4045 rtx set;
4047 if (INSN_P (insn) && (set = single_set (insn)) != NULL)
4049 if (REG_P (SET_DEST (set))
4050 && REGNO (SET_DEST (set)) < FIRST_PSEUDO_REGISTER
4051 && fixed_regs[REGNO (SET_DEST (set))]
4052 && general_operand (SET_SRC (set), VOIDmode))
4053 return true;
4054 if (REG_P (SET_SRC (set))
4055 && targetm.calls.function_value_regno_p (REGNO (SET_SRC (set)))
4056 && REG_P (SET_DEST (set))
4057 && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER)
4058 return true;
4059 /* There may be a stack pop just after the call and before the store
4060 of the return register. Search for the actual store when deciding
4061 if we can break or not. */
4062 if (SET_DEST (set) == stack_pointer_rtx)
4064 /* This CONST_CAST is okay because next_nonnote_insn just
4065 returns its argument and we assign it to a const_rtx
4066 variable. */
4067 const rtx_insn *i2
4068 = next_nonnote_insn (const_cast<rtx_insn *> (insn));
4069 if (i2 && keep_with_call_p (i2))
4070 return true;
4073 return false;
4076 /* Return true if LABEL is a target of JUMP_INSN. This applies only
4077 to non-complex jumps. That is, direct unconditional, conditional,
4078 and tablejumps, but not computed jumps or returns. It also does
4079 not apply to the fallthru case of a conditional jump. */
4081 bool
4082 label_is_jump_target_p (const_rtx label, const rtx_insn *jump_insn)
4084 rtx tmp = JUMP_LABEL (jump_insn);
4085 rtx_jump_table_data *table;
4087 if (label == tmp)
4088 return true;
4090 if (tablejump_p (jump_insn, NULL, &table))
4092 rtvec vec = table->get_labels ();
4093 int i, veclen = GET_NUM_ELEM (vec);
4095 for (i = 0; i < veclen; ++i)
4096 if (XEXP (RTVEC_ELT (vec, i), 0) == label)
4097 return true;
4100 if (find_reg_note (jump_insn, REG_LABEL_TARGET, label))
4101 return true;
4103 return false;
4107 /* Return an estimate of the cost of computing rtx X.
4108 One use is in cse, to decide which expression to keep in the hash table.
4109 Another is in rtl generation, to pick the cheapest way to multiply.
4110 Other uses like the latter are expected in the future.
4112 X appears as operand OPNO in an expression with code OUTER_CODE.
4113 SPEED specifies whether costs optimized for speed or size should
4114 be returned. */
4117 rtx_cost (rtx x, machine_mode mode, enum rtx_code outer_code,
4118 int opno, bool speed)
4120 int i, j;
4121 enum rtx_code code;
4122 const char *fmt;
4123 int total;
4124 int factor;
4126 if (x == 0)
4127 return 0;
4129 if (GET_MODE (x) != VOIDmode)
4130 mode = GET_MODE (x);
4132 /* A size N times larger than UNITS_PER_WORD likely needs N times as
4133 many insns, taking N times as long. */
4134 factor = GET_MODE_SIZE (mode) / UNITS_PER_WORD;
4135 if (factor == 0)
4136 factor = 1;
4138 /* Compute the default costs of certain things.
4139 Note that targetm.rtx_costs can override the defaults. */
4141 code = GET_CODE (x);
4142 switch (code)
4144 case MULT:
4145 /* Multiplication has time-complexity O(N*N), where N is the
4146 number of units (translated from digits) when using
4147 schoolbook long multiplication. */
4148 total = factor * factor * COSTS_N_INSNS (5);
4149 break;
4150 case DIV:
4151 case UDIV:
4152 case MOD:
4153 case UMOD:
4154 /* Similarly, complexity for schoolbook long division. */
4155 total = factor * factor * COSTS_N_INSNS (7);
4156 break;
4157 case USE:
4158 /* Used in combine.c as a marker. */
4159 total = 0;
4160 break;
4161 case SET:
4162 /* A SET doesn't have a mode, so let's look at the SET_DEST to get
4163 the mode for the factor. */
4164 mode = GET_MODE (SET_DEST (x));
4165 factor = GET_MODE_SIZE (mode) / UNITS_PER_WORD;
4166 if (factor == 0)
4167 factor = 1;
4168 /* FALLTHRU */
4169 default:
4170 total = factor * COSTS_N_INSNS (1);
4173 switch (code)
4175 case REG:
4176 return 0;
4178 case SUBREG:
4179 total = 0;
4180 /* If we can't tie these modes, make this expensive. The larger
4181 the mode, the more expensive it is. */
4182 if (!targetm.modes_tieable_p (mode, GET_MODE (SUBREG_REG (x))))
4183 return COSTS_N_INSNS (2 + factor);
4184 break;
4186 case TRUNCATE:
4187 if (targetm.modes_tieable_p (mode, GET_MODE (XEXP (x, 0))))
4189 total = 0;
4190 break;
4192 /* FALLTHRU */
4193 default:
4194 if (targetm.rtx_costs (x, mode, outer_code, opno, &total, speed))
4195 return total;
4196 break;
4199 /* Sum the costs of the sub-rtx's, plus cost of this operation,
4200 which is already in total. */
4202 fmt = GET_RTX_FORMAT (code);
4203 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4204 if (fmt[i] == 'e')
4205 total += rtx_cost (XEXP (x, i), mode, code, i, speed);
4206 else if (fmt[i] == 'E')
4207 for (j = 0; j < XVECLEN (x, i); j++)
4208 total += rtx_cost (XVECEXP (x, i, j), mode, code, i, speed);
4210 return total;
4213 /* Fill in the structure C with information about both speed and size rtx
4214 costs for X, which is operand OPNO in an expression with code OUTER. */
4216 void
4217 get_full_rtx_cost (rtx x, machine_mode mode, enum rtx_code outer, int opno,
4218 struct full_rtx_costs *c)
4220 c->speed = rtx_cost (x, mode, outer, opno, true);
4221 c->size = rtx_cost (x, mode, outer, opno, false);
4225 /* Return cost of address expression X.
4226 Expect that X is properly formed address reference.
4228 SPEED parameter specify whether costs optimized for speed or size should
4229 be returned. */
4232 address_cost (rtx x, machine_mode mode, addr_space_t as, bool speed)
4234 /* We may be asked for cost of various unusual addresses, such as operands
4235 of push instruction. It is not worthwhile to complicate writing
4236 of the target hook by such cases. */
4238 if (!memory_address_addr_space_p (mode, x, as))
4239 return 1000;
4241 return targetm.address_cost (x, mode, as, speed);
4244 /* If the target doesn't override, compute the cost as with arithmetic. */
4247 default_address_cost (rtx x, machine_mode, addr_space_t, bool speed)
4249 return rtx_cost (x, Pmode, MEM, 0, speed);
4253 unsigned HOST_WIDE_INT
4254 nonzero_bits (const_rtx x, machine_mode mode)
4256 if (mode == VOIDmode)
4257 mode = GET_MODE (x);
4258 scalar_int_mode int_mode;
4259 if (!is_a <scalar_int_mode> (mode, &int_mode))
4260 return GET_MODE_MASK (mode);
4261 return cached_nonzero_bits (x, int_mode, NULL_RTX, VOIDmode, 0);
4264 unsigned int
4265 num_sign_bit_copies (const_rtx x, machine_mode mode)
4267 if (mode == VOIDmode)
4268 mode = GET_MODE (x);
4269 scalar_int_mode int_mode;
4270 if (!is_a <scalar_int_mode> (mode, &int_mode))
4271 return 1;
4272 return cached_num_sign_bit_copies (x, int_mode, NULL_RTX, VOIDmode, 0);
4275 /* Return true if nonzero_bits1 might recurse into both operands
4276 of X. */
4278 static inline bool
4279 nonzero_bits_binary_arith_p (const_rtx x)
4281 if (!ARITHMETIC_P (x))
4282 return false;
4283 switch (GET_CODE (x))
4285 case AND:
4286 case XOR:
4287 case IOR:
4288 case UMIN:
4289 case UMAX:
4290 case SMIN:
4291 case SMAX:
4292 case PLUS:
4293 case MINUS:
4294 case MULT:
4295 case DIV:
4296 case UDIV:
4297 case MOD:
4298 case UMOD:
4299 return true;
4300 default:
4301 return false;
4305 /* The function cached_nonzero_bits is a wrapper around nonzero_bits1.
4306 It avoids exponential behavior in nonzero_bits1 when X has
4307 identical subexpressions on the first or the second level. */
4309 static unsigned HOST_WIDE_INT
4310 cached_nonzero_bits (const_rtx x, scalar_int_mode mode, const_rtx known_x,
4311 machine_mode known_mode,
4312 unsigned HOST_WIDE_INT known_ret)
4314 if (x == known_x && mode == known_mode)
4315 return known_ret;
4317 /* Try to find identical subexpressions. If found call
4318 nonzero_bits1 on X with the subexpressions as KNOWN_X and the
4319 precomputed value for the subexpression as KNOWN_RET. */
4321 if (nonzero_bits_binary_arith_p (x))
4323 rtx x0 = XEXP (x, 0);
4324 rtx x1 = XEXP (x, 1);
4326 /* Check the first level. */
4327 if (x0 == x1)
4328 return nonzero_bits1 (x, mode, x0, mode,
4329 cached_nonzero_bits (x0, mode, known_x,
4330 known_mode, known_ret));
4332 /* Check the second level. */
4333 if (nonzero_bits_binary_arith_p (x0)
4334 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
4335 return nonzero_bits1 (x, mode, x1, mode,
4336 cached_nonzero_bits (x1, mode, known_x,
4337 known_mode, known_ret));
4339 if (nonzero_bits_binary_arith_p (x1)
4340 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
4341 return nonzero_bits1 (x, mode, x0, mode,
4342 cached_nonzero_bits (x0, mode, known_x,
4343 known_mode, known_ret));
4346 return nonzero_bits1 (x, mode, known_x, known_mode, known_ret);
4349 /* We let num_sign_bit_copies recur into nonzero_bits as that is useful.
4350 We don't let nonzero_bits recur into num_sign_bit_copies, because that
4351 is less useful. We can't allow both, because that results in exponential
4352 run time recursion. There is a nullstone testcase that triggered
4353 this. This macro avoids accidental uses of num_sign_bit_copies. */
4354 #define cached_num_sign_bit_copies sorry_i_am_preventing_exponential_behavior
4356 /* Given an expression, X, compute which bits in X can be nonzero.
4357 We don't care about bits outside of those defined in MODE.
4359 For most X this is simply GET_MODE_MASK (GET_MODE (X)), but if X is
4360 an arithmetic operation, we can do better. */
4362 static unsigned HOST_WIDE_INT
4363 nonzero_bits1 (const_rtx x, scalar_int_mode mode, const_rtx known_x,
4364 machine_mode known_mode,
4365 unsigned HOST_WIDE_INT known_ret)
4367 unsigned HOST_WIDE_INT nonzero = GET_MODE_MASK (mode);
4368 unsigned HOST_WIDE_INT inner_nz;
4369 enum rtx_code code;
4370 machine_mode inner_mode;
4371 scalar_int_mode xmode;
4373 unsigned int mode_width = GET_MODE_PRECISION (mode);
4375 if (CONST_INT_P (x))
4377 if (SHORT_IMMEDIATES_SIGN_EXTEND
4378 && INTVAL (x) > 0
4379 && mode_width < BITS_PER_WORD
4380 && (UINTVAL (x) & (HOST_WIDE_INT_1U << (mode_width - 1))) != 0)
4381 return UINTVAL (x) | (HOST_WIDE_INT_M1U << mode_width);
4383 return UINTVAL (x);
4386 if (!is_a <scalar_int_mode> (GET_MODE (x), &xmode))
4387 return nonzero;
4388 unsigned int xmode_width = GET_MODE_PRECISION (xmode);
4390 /* If X is wider than MODE, use its mode instead. */
4391 if (xmode_width > mode_width)
4393 mode = xmode;
4394 nonzero = GET_MODE_MASK (mode);
4395 mode_width = xmode_width;
4398 if (mode_width > HOST_BITS_PER_WIDE_INT)
4399 /* Our only callers in this case look for single bit values. So
4400 just return the mode mask. Those tests will then be false. */
4401 return nonzero;
4403 /* If MODE is wider than X, but both are a single word for both the host
4404 and target machines, we can compute this from which bits of the
4405 object might be nonzero in its own mode, taking into account the fact
4406 that on many CISC machines, accessing an object in a wider mode
4407 causes the high-order bits to become undefined. So they are
4408 not known to be zero. */
4410 if (!WORD_REGISTER_OPERATIONS
4411 && mode_width > xmode_width
4412 && xmode_width <= BITS_PER_WORD
4413 && xmode_width <= HOST_BITS_PER_WIDE_INT)
4415 nonzero &= cached_nonzero_bits (x, xmode,
4416 known_x, known_mode, known_ret);
4417 nonzero |= GET_MODE_MASK (mode) & ~GET_MODE_MASK (xmode);
4418 return nonzero;
4421 /* Please keep nonzero_bits_binary_arith_p above in sync with
4422 the code in the switch below. */
4423 code = GET_CODE (x);
4424 switch (code)
4426 case REG:
4427 #if defined(POINTERS_EXTEND_UNSIGNED)
4428 /* If pointers extend unsigned and this is a pointer in Pmode, say that
4429 all the bits above ptr_mode are known to be zero. */
4430 /* As we do not know which address space the pointer is referring to,
4431 we can do this only if the target does not support different pointer
4432 or address modes depending on the address space. */
4433 if (target_default_pointer_address_modes_p ()
4434 && POINTERS_EXTEND_UNSIGNED
4435 && xmode == Pmode
4436 && REG_POINTER (x)
4437 && !targetm.have_ptr_extend ())
4438 nonzero &= GET_MODE_MASK (ptr_mode);
4439 #endif
4441 /* Include declared information about alignment of pointers. */
4442 /* ??? We don't properly preserve REG_POINTER changes across
4443 pointer-to-integer casts, so we can't trust it except for
4444 things that we know must be pointers. See execute/960116-1.c. */
4445 if ((x == stack_pointer_rtx
4446 || x == frame_pointer_rtx
4447 || x == arg_pointer_rtx)
4448 && REGNO_POINTER_ALIGN (REGNO (x)))
4450 unsigned HOST_WIDE_INT alignment
4451 = REGNO_POINTER_ALIGN (REGNO (x)) / BITS_PER_UNIT;
4453 #ifdef PUSH_ROUNDING
4454 /* If PUSH_ROUNDING is defined, it is possible for the
4455 stack to be momentarily aligned only to that amount,
4456 so we pick the least alignment. */
4457 if (x == stack_pointer_rtx && PUSH_ARGS)
4458 alignment = MIN ((unsigned HOST_WIDE_INT) PUSH_ROUNDING (1),
4459 alignment);
4460 #endif
4462 nonzero &= ~(alignment - 1);
4466 unsigned HOST_WIDE_INT nonzero_for_hook = nonzero;
4467 rtx new_rtx = rtl_hooks.reg_nonzero_bits (x, xmode, mode,
4468 &nonzero_for_hook);
4470 if (new_rtx)
4471 nonzero_for_hook &= cached_nonzero_bits (new_rtx, mode, known_x,
4472 known_mode, known_ret);
4474 return nonzero_for_hook;
4477 case MEM:
4478 /* In many, if not most, RISC machines, reading a byte from memory
4479 zeros the rest of the register. Noticing that fact saves a lot
4480 of extra zero-extends. */
4481 if (load_extend_op (xmode) == ZERO_EXTEND)
4482 nonzero &= GET_MODE_MASK (xmode);
4483 break;
4485 case EQ: case NE:
4486 case UNEQ: case LTGT:
4487 case GT: case GTU: case UNGT:
4488 case LT: case LTU: case UNLT:
4489 case GE: case GEU: case UNGE:
4490 case LE: case LEU: case UNLE:
4491 case UNORDERED: case ORDERED:
4492 /* If this produces an integer result, we know which bits are set.
4493 Code here used to clear bits outside the mode of X, but that is
4494 now done above. */
4495 /* Mind that MODE is the mode the caller wants to look at this
4496 operation in, and not the actual operation mode. We can wind
4497 up with (subreg:DI (gt:V4HI x y)), and we don't have anything
4498 that describes the results of a vector compare. */
4499 if (GET_MODE_CLASS (xmode) == MODE_INT
4500 && mode_width <= HOST_BITS_PER_WIDE_INT)
4501 nonzero = STORE_FLAG_VALUE;
4502 break;
4504 case NEG:
4505 #if 0
4506 /* Disabled to avoid exponential mutual recursion between nonzero_bits
4507 and num_sign_bit_copies. */
4508 if (num_sign_bit_copies (XEXP (x, 0), xmode) == xmode_width)
4509 nonzero = 1;
4510 #endif
4512 if (xmode_width < mode_width)
4513 nonzero |= (GET_MODE_MASK (mode) & ~GET_MODE_MASK (xmode));
4514 break;
4516 case ABS:
4517 #if 0
4518 /* Disabled to avoid exponential mutual recursion between nonzero_bits
4519 and num_sign_bit_copies. */
4520 if (num_sign_bit_copies (XEXP (x, 0), xmode) == xmode_width)
4521 nonzero = 1;
4522 #endif
4523 break;
4525 case TRUNCATE:
4526 nonzero &= (cached_nonzero_bits (XEXP (x, 0), mode,
4527 known_x, known_mode, known_ret)
4528 & GET_MODE_MASK (mode));
4529 break;
4531 case ZERO_EXTEND:
4532 nonzero &= cached_nonzero_bits (XEXP (x, 0), mode,
4533 known_x, known_mode, known_ret);
4534 if (GET_MODE (XEXP (x, 0)) != VOIDmode)
4535 nonzero &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
4536 break;
4538 case SIGN_EXTEND:
4539 /* If the sign bit is known clear, this is the same as ZERO_EXTEND.
4540 Otherwise, show all the bits in the outer mode but not the inner
4541 may be nonzero. */
4542 inner_nz = cached_nonzero_bits (XEXP (x, 0), mode,
4543 known_x, known_mode, known_ret);
4544 if (GET_MODE (XEXP (x, 0)) != VOIDmode)
4546 inner_nz &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
4547 if (val_signbit_known_set_p (GET_MODE (XEXP (x, 0)), inner_nz))
4548 inner_nz |= (GET_MODE_MASK (mode)
4549 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0))));
4552 nonzero &= inner_nz;
4553 break;
4555 case AND:
4556 nonzero &= cached_nonzero_bits (XEXP (x, 0), mode,
4557 known_x, known_mode, known_ret)
4558 & cached_nonzero_bits (XEXP (x, 1), mode,
4559 known_x, known_mode, known_ret);
4560 break;
4562 case XOR: case IOR:
4563 case UMIN: case UMAX: case SMIN: case SMAX:
4565 unsigned HOST_WIDE_INT nonzero0
4566 = cached_nonzero_bits (XEXP (x, 0), mode,
4567 known_x, known_mode, known_ret);
4569 /* Don't call nonzero_bits for the second time if it cannot change
4570 anything. */
4571 if ((nonzero & nonzero0) != nonzero)
4572 nonzero &= nonzero0
4573 | cached_nonzero_bits (XEXP (x, 1), mode,
4574 known_x, known_mode, known_ret);
4576 break;
4578 case PLUS: case MINUS:
4579 case MULT:
4580 case DIV: case UDIV:
4581 case MOD: case UMOD:
4582 /* We can apply the rules of arithmetic to compute the number of
4583 high- and low-order zero bits of these operations. We start by
4584 computing the width (position of the highest-order nonzero bit)
4585 and the number of low-order zero bits for each value. */
4587 unsigned HOST_WIDE_INT nz0
4588 = cached_nonzero_bits (XEXP (x, 0), mode,
4589 known_x, known_mode, known_ret);
4590 unsigned HOST_WIDE_INT nz1
4591 = cached_nonzero_bits (XEXP (x, 1), mode,
4592 known_x, known_mode, known_ret);
4593 int sign_index = xmode_width - 1;
4594 int width0 = floor_log2 (nz0) + 1;
4595 int width1 = floor_log2 (nz1) + 1;
4596 int low0 = ctz_or_zero (nz0);
4597 int low1 = ctz_or_zero (nz1);
4598 unsigned HOST_WIDE_INT op0_maybe_minusp
4599 = nz0 & (HOST_WIDE_INT_1U << sign_index);
4600 unsigned HOST_WIDE_INT op1_maybe_minusp
4601 = nz1 & (HOST_WIDE_INT_1U << sign_index);
4602 unsigned int result_width = mode_width;
4603 int result_low = 0;
4605 switch (code)
4607 case PLUS:
4608 result_width = MAX (width0, width1) + 1;
4609 result_low = MIN (low0, low1);
4610 break;
4611 case MINUS:
4612 result_low = MIN (low0, low1);
4613 break;
4614 case MULT:
4615 result_width = width0 + width1;
4616 result_low = low0 + low1;
4617 break;
4618 case DIV:
4619 if (width1 == 0)
4620 break;
4621 if (!op0_maybe_minusp && !op1_maybe_minusp)
4622 result_width = width0;
4623 break;
4624 case UDIV:
4625 if (width1 == 0)
4626 break;
4627 result_width = width0;
4628 break;
4629 case MOD:
4630 if (width1 == 0)
4631 break;
4632 if (!op0_maybe_minusp && !op1_maybe_minusp)
4633 result_width = MIN (width0, width1);
4634 result_low = MIN (low0, low1);
4635 break;
4636 case UMOD:
4637 if (width1 == 0)
4638 break;
4639 result_width = MIN (width0, width1);
4640 result_low = MIN (low0, low1);
4641 break;
4642 default:
4643 gcc_unreachable ();
4646 if (result_width < mode_width)
4647 nonzero &= (HOST_WIDE_INT_1U << result_width) - 1;
4649 if (result_low > 0)
4650 nonzero &= ~((HOST_WIDE_INT_1U << result_low) - 1);
4652 break;
4654 case ZERO_EXTRACT:
4655 if (CONST_INT_P (XEXP (x, 1))
4656 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
4657 nonzero &= (HOST_WIDE_INT_1U << INTVAL (XEXP (x, 1))) - 1;
4658 break;
4660 case SUBREG:
4661 /* If this is a SUBREG formed for a promoted variable that has
4662 been zero-extended, we know that at least the high-order bits
4663 are zero, though others might be too. */
4664 if (SUBREG_PROMOTED_VAR_P (x) && SUBREG_PROMOTED_UNSIGNED_P (x))
4665 nonzero = GET_MODE_MASK (xmode)
4666 & cached_nonzero_bits (SUBREG_REG (x), xmode,
4667 known_x, known_mode, known_ret);
4669 /* If the inner mode is a single word for both the host and target
4670 machines, we can compute this from which bits of the inner
4671 object might be nonzero. */
4672 inner_mode = GET_MODE (SUBREG_REG (x));
4673 if (GET_MODE_PRECISION (inner_mode) <= BITS_PER_WORD
4674 && GET_MODE_PRECISION (inner_mode) <= HOST_BITS_PER_WIDE_INT)
4676 nonzero &= cached_nonzero_bits (SUBREG_REG (x), mode,
4677 known_x, known_mode, known_ret);
4679 /* On many CISC machines, accessing an object in a wider mode
4680 causes the high-order bits to become undefined. So they are
4681 not known to be zero. */
4682 rtx_code extend_op;
4683 if ((!WORD_REGISTER_OPERATIONS
4684 /* If this is a typical RISC machine, we only have to worry
4685 about the way loads are extended. */
4686 || ((extend_op = load_extend_op (inner_mode)) == SIGN_EXTEND
4687 ? val_signbit_known_set_p (inner_mode, nonzero)
4688 : extend_op != ZERO_EXTEND)
4689 || (!MEM_P (SUBREG_REG (x)) && !REG_P (SUBREG_REG (x))))
4690 && xmode_width > GET_MODE_PRECISION (inner_mode))
4691 nonzero |= (GET_MODE_MASK (xmode) & ~GET_MODE_MASK (inner_mode));
4693 break;
4695 case ASHIFTRT:
4696 case LSHIFTRT:
4697 case ASHIFT:
4698 case ROTATE:
4699 /* The nonzero bits are in two classes: any bits within MODE
4700 that aren't in xmode are always significant. The rest of the
4701 nonzero bits are those that are significant in the operand of
4702 the shift when shifted the appropriate number of bits. This
4703 shows that high-order bits are cleared by the right shift and
4704 low-order bits by left shifts. */
4705 if (CONST_INT_P (XEXP (x, 1))
4706 && INTVAL (XEXP (x, 1)) >= 0
4707 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
4708 && INTVAL (XEXP (x, 1)) < xmode_width)
4710 int count = INTVAL (XEXP (x, 1));
4711 unsigned HOST_WIDE_INT mode_mask = GET_MODE_MASK (xmode);
4712 unsigned HOST_WIDE_INT op_nonzero
4713 = cached_nonzero_bits (XEXP (x, 0), mode,
4714 known_x, known_mode, known_ret);
4715 unsigned HOST_WIDE_INT inner = op_nonzero & mode_mask;
4716 unsigned HOST_WIDE_INT outer = 0;
4718 if (mode_width > xmode_width)
4719 outer = (op_nonzero & nonzero & ~mode_mask);
4721 if (code == LSHIFTRT)
4722 inner >>= count;
4723 else if (code == ASHIFTRT)
4725 inner >>= count;
4727 /* If the sign bit may have been nonzero before the shift, we
4728 need to mark all the places it could have been copied to
4729 by the shift as possibly nonzero. */
4730 if (inner & (HOST_WIDE_INT_1U << (xmode_width - 1 - count)))
4731 inner |= (((HOST_WIDE_INT_1U << count) - 1)
4732 << (xmode_width - count));
4734 else if (code == ASHIFT)
4735 inner <<= count;
4736 else
4737 inner = ((inner << (count % xmode_width)
4738 | (inner >> (xmode_width - (count % xmode_width))))
4739 & mode_mask);
4741 nonzero &= (outer | inner);
4743 break;
4745 case FFS:
4746 case POPCOUNT:
4747 /* This is at most the number of bits in the mode. */
4748 nonzero = ((unsigned HOST_WIDE_INT) 2 << (floor_log2 (mode_width))) - 1;
4749 break;
4751 case CLZ:
4752 /* If CLZ has a known value at zero, then the nonzero bits are
4753 that value, plus the number of bits in the mode minus one. */
4754 if (CLZ_DEFINED_VALUE_AT_ZERO (mode, nonzero))
4755 nonzero
4756 |= (HOST_WIDE_INT_1U << (floor_log2 (mode_width))) - 1;
4757 else
4758 nonzero = -1;
4759 break;
4761 case CTZ:
4762 /* If CTZ has a known value at zero, then the nonzero bits are
4763 that value, plus the number of bits in the mode minus one. */
4764 if (CTZ_DEFINED_VALUE_AT_ZERO (mode, nonzero))
4765 nonzero
4766 |= (HOST_WIDE_INT_1U << (floor_log2 (mode_width))) - 1;
4767 else
4768 nonzero = -1;
4769 break;
4771 case CLRSB:
4772 /* This is at most the number of bits in the mode minus 1. */
4773 nonzero = (HOST_WIDE_INT_1U << (floor_log2 (mode_width))) - 1;
4774 break;
4776 case PARITY:
4777 nonzero = 1;
4778 break;
4780 case IF_THEN_ELSE:
4782 unsigned HOST_WIDE_INT nonzero_true
4783 = cached_nonzero_bits (XEXP (x, 1), mode,
4784 known_x, known_mode, known_ret);
4786 /* Don't call nonzero_bits for the second time if it cannot change
4787 anything. */
4788 if ((nonzero & nonzero_true) != nonzero)
4789 nonzero &= nonzero_true
4790 | cached_nonzero_bits (XEXP (x, 2), mode,
4791 known_x, known_mode, known_ret);
4793 break;
4795 default:
4796 break;
4799 return nonzero;
4802 /* See the macro definition above. */
4803 #undef cached_num_sign_bit_copies
4806 /* Return true if num_sign_bit_copies1 might recurse into both operands
4807 of X. */
4809 static inline bool
4810 num_sign_bit_copies_binary_arith_p (const_rtx x)
4812 if (!ARITHMETIC_P (x))
4813 return false;
4814 switch (GET_CODE (x))
4816 case IOR:
4817 case AND:
4818 case XOR:
4819 case SMIN:
4820 case SMAX:
4821 case UMIN:
4822 case UMAX:
4823 case PLUS:
4824 case MINUS:
4825 case MULT:
4826 return true;
4827 default:
4828 return false;
4832 /* The function cached_num_sign_bit_copies is a wrapper around
4833 num_sign_bit_copies1. It avoids exponential behavior in
4834 num_sign_bit_copies1 when X has identical subexpressions on the
4835 first or the second level. */
4837 static unsigned int
4838 cached_num_sign_bit_copies (const_rtx x, scalar_int_mode mode,
4839 const_rtx known_x, machine_mode known_mode,
4840 unsigned int known_ret)
4842 if (x == known_x && mode == known_mode)
4843 return known_ret;
4845 /* Try to find identical subexpressions. If found call
4846 num_sign_bit_copies1 on X with the subexpressions as KNOWN_X and
4847 the precomputed value for the subexpression as KNOWN_RET. */
4849 if (num_sign_bit_copies_binary_arith_p (x))
4851 rtx x0 = XEXP (x, 0);
4852 rtx x1 = XEXP (x, 1);
4854 /* Check the first level. */
4855 if (x0 == x1)
4856 return
4857 num_sign_bit_copies1 (x, mode, x0, mode,
4858 cached_num_sign_bit_copies (x0, mode, known_x,
4859 known_mode,
4860 known_ret));
4862 /* Check the second level. */
4863 if (num_sign_bit_copies_binary_arith_p (x0)
4864 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
4865 return
4866 num_sign_bit_copies1 (x, mode, x1, mode,
4867 cached_num_sign_bit_copies (x1, mode, known_x,
4868 known_mode,
4869 known_ret));
4871 if (num_sign_bit_copies_binary_arith_p (x1)
4872 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
4873 return
4874 num_sign_bit_copies1 (x, mode, x0, mode,
4875 cached_num_sign_bit_copies (x0, mode, known_x,
4876 known_mode,
4877 known_ret));
4880 return num_sign_bit_copies1 (x, mode, known_x, known_mode, known_ret);
4883 /* Return the number of bits at the high-order end of X that are known to
4884 be equal to the sign bit. X will be used in mode MODE. The returned
4885 value will always be between 1 and the number of bits in MODE. */
4887 static unsigned int
4888 num_sign_bit_copies1 (const_rtx x, scalar_int_mode mode, const_rtx known_x,
4889 machine_mode known_mode,
4890 unsigned int known_ret)
4892 enum rtx_code code = GET_CODE (x);
4893 unsigned int bitwidth = GET_MODE_PRECISION (mode);
4894 int num0, num1, result;
4895 unsigned HOST_WIDE_INT nonzero;
4897 if (CONST_INT_P (x))
4899 /* If the constant is negative, take its 1's complement and remask.
4900 Then see how many zero bits we have. */
4901 nonzero = UINTVAL (x) & GET_MODE_MASK (mode);
4902 if (bitwidth <= HOST_BITS_PER_WIDE_INT
4903 && (nonzero & (HOST_WIDE_INT_1U << (bitwidth - 1))) != 0)
4904 nonzero = (~nonzero) & GET_MODE_MASK (mode);
4906 return (nonzero == 0 ? bitwidth : bitwidth - floor_log2 (nonzero) - 1);
4909 scalar_int_mode xmode, inner_mode;
4910 if (!is_a <scalar_int_mode> (GET_MODE (x), &xmode))
4911 return 1;
4913 unsigned int xmode_width = GET_MODE_PRECISION (xmode);
4915 /* For a smaller mode, just ignore the high bits. */
4916 if (bitwidth < xmode_width)
4918 num0 = cached_num_sign_bit_copies (x, xmode,
4919 known_x, known_mode, known_ret);
4920 return MAX (1, num0 - (int) (xmode_width - bitwidth));
4923 if (bitwidth > xmode_width)
4925 /* If this machine does not do all register operations on the entire
4926 register and MODE is wider than the mode of X, we can say nothing
4927 at all about the high-order bits. */
4928 if (!WORD_REGISTER_OPERATIONS)
4929 return 1;
4931 /* Likewise on machines that do, if the mode of the object is smaller
4932 than a word and loads of that size don't sign extend, we can say
4933 nothing about the high order bits. */
4934 if (xmode_width < BITS_PER_WORD
4935 && load_extend_op (xmode) != SIGN_EXTEND)
4936 return 1;
4939 /* Please keep num_sign_bit_copies_binary_arith_p above in sync with
4940 the code in the switch below. */
4941 switch (code)
4943 case REG:
4945 #if defined(POINTERS_EXTEND_UNSIGNED)
4946 /* If pointers extend signed and this is a pointer in Pmode, say that
4947 all the bits above ptr_mode are known to be sign bit copies. */
4948 /* As we do not know which address space the pointer is referring to,
4949 we can do this only if the target does not support different pointer
4950 or address modes depending on the address space. */
4951 if (target_default_pointer_address_modes_p ()
4952 && ! POINTERS_EXTEND_UNSIGNED && xmode == Pmode
4953 && mode == Pmode && REG_POINTER (x)
4954 && !targetm.have_ptr_extend ())
4955 return GET_MODE_PRECISION (Pmode) - GET_MODE_PRECISION (ptr_mode) + 1;
4956 #endif
4959 unsigned int copies_for_hook = 1, copies = 1;
4960 rtx new_rtx = rtl_hooks.reg_num_sign_bit_copies (x, xmode, mode,
4961 &copies_for_hook);
4963 if (new_rtx)
4964 copies = cached_num_sign_bit_copies (new_rtx, mode, known_x,
4965 known_mode, known_ret);
4967 if (copies > 1 || copies_for_hook > 1)
4968 return MAX (copies, copies_for_hook);
4970 /* Else, use nonzero_bits to guess num_sign_bit_copies (see below). */
4972 break;
4974 case MEM:
4975 /* Some RISC machines sign-extend all loads of smaller than a word. */
4976 if (load_extend_op (xmode) == SIGN_EXTEND)
4977 return MAX (1, ((int) bitwidth - (int) xmode_width + 1));
4978 break;
4980 case SUBREG:
4981 /* If this is a SUBREG for a promoted object that is sign-extended
4982 and we are looking at it in a wider mode, we know that at least the
4983 high-order bits are known to be sign bit copies. */
4985 if (SUBREG_PROMOTED_VAR_P (x) && SUBREG_PROMOTED_SIGNED_P (x))
4987 num0 = cached_num_sign_bit_copies (SUBREG_REG (x), mode,
4988 known_x, known_mode, known_ret);
4989 return MAX ((int) bitwidth - (int) xmode_width + 1, num0);
4992 if (is_a <scalar_int_mode> (GET_MODE (SUBREG_REG (x)), &inner_mode))
4994 /* For a smaller object, just ignore the high bits. */
4995 if (bitwidth <= GET_MODE_PRECISION (inner_mode))
4997 num0 = cached_num_sign_bit_copies (SUBREG_REG (x), inner_mode,
4998 known_x, known_mode,
4999 known_ret);
5000 return MAX (1, num0 - (int) (GET_MODE_PRECISION (inner_mode)
5001 - bitwidth));
5004 /* For paradoxical SUBREGs on machines where all register operations
5005 affect the entire register, just look inside. Note that we are
5006 passing MODE to the recursive call, so the number of sign bit
5007 copies will remain relative to that mode, not the inner mode. */
5009 /* This works only if loads sign extend. Otherwise, if we get a
5010 reload for the inner part, it may be loaded from the stack, and
5011 then we lose all sign bit copies that existed before the store
5012 to the stack. */
5014 if (WORD_REGISTER_OPERATIONS
5015 && load_extend_op (inner_mode) == SIGN_EXTEND
5016 && paradoxical_subreg_p (x)
5017 && (MEM_P (SUBREG_REG (x)) || REG_P (SUBREG_REG (x))))
5018 return cached_num_sign_bit_copies (SUBREG_REG (x), mode,
5019 known_x, known_mode, known_ret);
5021 break;
5023 case SIGN_EXTRACT:
5024 if (CONST_INT_P (XEXP (x, 1)))
5025 return MAX (1, (int) bitwidth - INTVAL (XEXP (x, 1)));
5026 break;
5028 case SIGN_EXTEND:
5029 if (is_a <scalar_int_mode> (GET_MODE (XEXP (x, 0)), &inner_mode))
5030 return (bitwidth - GET_MODE_PRECISION (inner_mode)
5031 + cached_num_sign_bit_copies (XEXP (x, 0), inner_mode,
5032 known_x, known_mode, known_ret));
5033 break;
5035 case TRUNCATE:
5036 /* For a smaller object, just ignore the high bits. */
5037 inner_mode = as_a <scalar_int_mode> (GET_MODE (XEXP (x, 0)));
5038 num0 = cached_num_sign_bit_copies (XEXP (x, 0), inner_mode,
5039 known_x, known_mode, known_ret);
5040 return MAX (1, (num0 - (int) (GET_MODE_PRECISION (inner_mode)
5041 - bitwidth)));
5043 case NOT:
5044 return cached_num_sign_bit_copies (XEXP (x, 0), mode,
5045 known_x, known_mode, known_ret);
5047 case ROTATE: case ROTATERT:
5048 /* If we are rotating left by a number of bits less than the number
5049 of sign bit copies, we can just subtract that amount from the
5050 number. */
5051 if (CONST_INT_P (XEXP (x, 1))
5052 && INTVAL (XEXP (x, 1)) >= 0
5053 && INTVAL (XEXP (x, 1)) < (int) bitwidth)
5055 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
5056 known_x, known_mode, known_ret);
5057 return MAX (1, num0 - (code == ROTATE ? INTVAL (XEXP (x, 1))
5058 : (int) bitwidth - INTVAL (XEXP (x, 1))));
5060 break;
5062 case NEG:
5063 /* In general, this subtracts one sign bit copy. But if the value
5064 is known to be positive, the number of sign bit copies is the
5065 same as that of the input. Finally, if the input has just one bit
5066 that might be nonzero, all the bits are copies of the sign bit. */
5067 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
5068 known_x, known_mode, known_ret);
5069 if (bitwidth > HOST_BITS_PER_WIDE_INT)
5070 return num0 > 1 ? num0 - 1 : 1;
5072 nonzero = nonzero_bits (XEXP (x, 0), mode);
5073 if (nonzero == 1)
5074 return bitwidth;
5076 if (num0 > 1
5077 && ((HOST_WIDE_INT_1U << (bitwidth - 1)) & nonzero))
5078 num0--;
5080 return num0;
5082 case IOR: case AND: case XOR:
5083 case SMIN: case SMAX: case UMIN: case UMAX:
5084 /* Logical operations will preserve the number of sign-bit copies.
5085 MIN and MAX operations always return one of the operands. */
5086 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
5087 known_x, known_mode, known_ret);
5088 num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
5089 known_x, known_mode, known_ret);
5091 /* If num1 is clearing some of the top bits then regardless of
5092 the other term, we are guaranteed to have at least that many
5093 high-order zero bits. */
5094 if (code == AND
5095 && num1 > 1
5096 && bitwidth <= HOST_BITS_PER_WIDE_INT
5097 && CONST_INT_P (XEXP (x, 1))
5098 && (UINTVAL (XEXP (x, 1))
5099 & (HOST_WIDE_INT_1U << (bitwidth - 1))) == 0)
5100 return num1;
5102 /* Similarly for IOR when setting high-order bits. */
5103 if (code == IOR
5104 && num1 > 1
5105 && bitwidth <= HOST_BITS_PER_WIDE_INT
5106 && CONST_INT_P (XEXP (x, 1))
5107 && (UINTVAL (XEXP (x, 1))
5108 & (HOST_WIDE_INT_1U << (bitwidth - 1))) != 0)
5109 return num1;
5111 return MIN (num0, num1);
5113 case PLUS: case MINUS:
5114 /* For addition and subtraction, we can have a 1-bit carry. However,
5115 if we are subtracting 1 from a positive number, there will not
5116 be such a carry. Furthermore, if the positive number is known to
5117 be 0 or 1, we know the result is either -1 or 0. */
5119 if (code == PLUS && XEXP (x, 1) == constm1_rtx
5120 && bitwidth <= HOST_BITS_PER_WIDE_INT)
5122 nonzero = nonzero_bits (XEXP (x, 0), mode);
5123 if (((HOST_WIDE_INT_1U << (bitwidth - 1)) & nonzero) == 0)
5124 return (nonzero == 1 || nonzero == 0 ? bitwidth
5125 : bitwidth - floor_log2 (nonzero) - 1);
5128 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
5129 known_x, known_mode, known_ret);
5130 num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
5131 known_x, known_mode, known_ret);
5132 result = MAX (1, MIN (num0, num1) - 1);
5134 return result;
5136 case MULT:
5137 /* The number of bits of the product is the sum of the number of
5138 bits of both terms. However, unless one of the terms if known
5139 to be positive, we must allow for an additional bit since negating
5140 a negative number can remove one sign bit copy. */
5142 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
5143 known_x, known_mode, known_ret);
5144 num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
5145 known_x, known_mode, known_ret);
5147 result = bitwidth - (bitwidth - num0) - (bitwidth - num1);
5148 if (result > 0
5149 && (bitwidth > HOST_BITS_PER_WIDE_INT
5150 || (((nonzero_bits (XEXP (x, 0), mode)
5151 & (HOST_WIDE_INT_1U << (bitwidth - 1))) != 0)
5152 && ((nonzero_bits (XEXP (x, 1), mode)
5153 & (HOST_WIDE_INT_1U << (bitwidth - 1)))
5154 != 0))))
5155 result--;
5157 return MAX (1, result);
5159 case UDIV:
5160 /* The result must be <= the first operand. If the first operand
5161 has the high bit set, we know nothing about the number of sign
5162 bit copies. */
5163 if (bitwidth > HOST_BITS_PER_WIDE_INT)
5164 return 1;
5165 else if ((nonzero_bits (XEXP (x, 0), mode)
5166 & (HOST_WIDE_INT_1U << (bitwidth - 1))) != 0)
5167 return 1;
5168 else
5169 return cached_num_sign_bit_copies (XEXP (x, 0), mode,
5170 known_x, known_mode, known_ret);
5172 case UMOD:
5173 /* The result must be <= the second operand. If the second operand
5174 has (or just might have) the high bit set, we know nothing about
5175 the number of sign bit copies. */
5176 if (bitwidth > HOST_BITS_PER_WIDE_INT)
5177 return 1;
5178 else if ((nonzero_bits (XEXP (x, 1), mode)
5179 & (HOST_WIDE_INT_1U << (bitwidth - 1))) != 0)
5180 return 1;
5181 else
5182 return cached_num_sign_bit_copies (XEXP (x, 1), mode,
5183 known_x, known_mode, known_ret);
5185 case DIV:
5186 /* Similar to unsigned division, except that we have to worry about
5187 the case where the divisor is negative, in which case we have
5188 to add 1. */
5189 result = cached_num_sign_bit_copies (XEXP (x, 0), mode,
5190 known_x, known_mode, known_ret);
5191 if (result > 1
5192 && (bitwidth > HOST_BITS_PER_WIDE_INT
5193 || (nonzero_bits (XEXP (x, 1), mode)
5194 & (HOST_WIDE_INT_1U << (bitwidth - 1))) != 0))
5195 result--;
5197 return result;
5199 case MOD:
5200 result = cached_num_sign_bit_copies (XEXP (x, 1), mode,
5201 known_x, known_mode, known_ret);
5202 if (result > 1
5203 && (bitwidth > HOST_BITS_PER_WIDE_INT
5204 || (nonzero_bits (XEXP (x, 1), mode)
5205 & (HOST_WIDE_INT_1U << (bitwidth - 1))) != 0))
5206 result--;
5208 return result;
5210 case ASHIFTRT:
5211 /* Shifts by a constant add to the number of bits equal to the
5212 sign bit. */
5213 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
5214 known_x, known_mode, known_ret);
5215 if (CONST_INT_P (XEXP (x, 1))
5216 && INTVAL (XEXP (x, 1)) > 0
5217 && INTVAL (XEXP (x, 1)) < xmode_width)
5218 num0 = MIN ((int) bitwidth, num0 + INTVAL (XEXP (x, 1)));
5220 return num0;
5222 case ASHIFT:
5223 /* Left shifts destroy copies. */
5224 if (!CONST_INT_P (XEXP (x, 1))
5225 || INTVAL (XEXP (x, 1)) < 0
5226 || INTVAL (XEXP (x, 1)) >= (int) bitwidth
5227 || INTVAL (XEXP (x, 1)) >= xmode_width)
5228 return 1;
5230 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
5231 known_x, known_mode, known_ret);
5232 return MAX (1, num0 - INTVAL (XEXP (x, 1)));
5234 case IF_THEN_ELSE:
5235 num0 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
5236 known_x, known_mode, known_ret);
5237 num1 = cached_num_sign_bit_copies (XEXP (x, 2), mode,
5238 known_x, known_mode, known_ret);
5239 return MIN (num0, num1);
5241 case EQ: case NE: case GE: case GT: case LE: case LT:
5242 case UNEQ: case LTGT: case UNGE: case UNGT: case UNLE: case UNLT:
5243 case GEU: case GTU: case LEU: case LTU:
5244 case UNORDERED: case ORDERED:
5245 /* If the constant is negative, take its 1's complement and remask.
5246 Then see how many zero bits we have. */
5247 nonzero = STORE_FLAG_VALUE;
5248 if (bitwidth <= HOST_BITS_PER_WIDE_INT
5249 && (nonzero & (HOST_WIDE_INT_1U << (bitwidth - 1))) != 0)
5250 nonzero = (~nonzero) & GET_MODE_MASK (mode);
5252 return (nonzero == 0 ? bitwidth : bitwidth - floor_log2 (nonzero) - 1);
5254 default:
5255 break;
5258 /* If we haven't been able to figure it out by one of the above rules,
5259 see if some of the high-order bits are known to be zero. If so,
5260 count those bits and return one less than that amount. If we can't
5261 safely compute the mask for this mode, always return BITWIDTH. */
5263 bitwidth = GET_MODE_PRECISION (mode);
5264 if (bitwidth > HOST_BITS_PER_WIDE_INT)
5265 return 1;
5267 nonzero = nonzero_bits (x, mode);
5268 return nonzero & (HOST_WIDE_INT_1U << (bitwidth - 1))
5269 ? 1 : bitwidth - floor_log2 (nonzero) - 1;
5272 /* Calculate the rtx_cost of a single instruction pattern. A return value of
5273 zero indicates an instruction pattern without a known cost. */
5276 pattern_cost (rtx pat, bool speed)
5278 int i, cost;
5279 rtx set;
5281 /* Extract the single set rtx from the instruction pattern. We
5282 can't use single_set since we only have the pattern. We also
5283 consider PARALLELs of a normal set and a single comparison. In
5284 that case we use the cost of the non-comparison SET operation,
5285 which is most-likely to be the real cost of this operation. */
5286 if (GET_CODE (pat) == SET)
5287 set = pat;
5288 else if (GET_CODE (pat) == PARALLEL)
5290 set = NULL_RTX;
5291 rtx comparison = NULL_RTX;
5293 for (i = 0; i < XVECLEN (pat, 0); i++)
5295 rtx x = XVECEXP (pat, 0, i);
5296 if (GET_CODE (x) == SET)
5298 if (GET_CODE (SET_SRC (x)) == COMPARE)
5300 if (comparison)
5301 return 0;
5302 comparison = x;
5304 else
5306 if (set)
5307 return 0;
5308 set = x;
5313 if (!set && comparison)
5314 set = comparison;
5316 if (!set)
5317 return 0;
5319 else
5320 return 0;
5322 cost = set_src_cost (SET_SRC (set), GET_MODE (SET_DEST (set)), speed);
5323 return cost > 0 ? cost : COSTS_N_INSNS (1);
5326 /* Calculate the cost of a single instruction. A return value of zero
5327 indicates an instruction pattern without a known cost. */
5330 insn_cost (rtx_insn *insn, bool speed)
5332 if (targetm.insn_cost)
5333 return targetm.insn_cost (insn, speed);
5335 return pattern_cost (PATTERN (insn), speed);
5338 /* Returns estimate on cost of computing SEQ. */
5340 unsigned
5341 seq_cost (const rtx_insn *seq, bool speed)
5343 unsigned cost = 0;
5344 rtx set;
5346 for (; seq; seq = NEXT_INSN (seq))
5348 set = single_set (seq);
5349 if (set)
5350 cost += set_rtx_cost (set, speed);
5351 else
5352 cost++;
5355 return cost;
5358 /* Given an insn INSN and condition COND, return the condition in a
5359 canonical form to simplify testing by callers. Specifically:
5361 (1) The code will always be a comparison operation (EQ, NE, GT, etc.).
5362 (2) Both operands will be machine operands; (cc0) will have been replaced.
5363 (3) If an operand is a constant, it will be the second operand.
5364 (4) (LE x const) will be replaced with (LT x <const+1>) and similarly
5365 for GE, GEU, and LEU.
5367 If the condition cannot be understood, or is an inequality floating-point
5368 comparison which needs to be reversed, 0 will be returned.
5370 If REVERSE is nonzero, then reverse the condition prior to canonizing it.
5372 If EARLIEST is nonzero, it is a pointer to a place where the earliest
5373 insn used in locating the condition was found. If a replacement test
5374 of the condition is desired, it should be placed in front of that
5375 insn and we will be sure that the inputs are still valid.
5377 If WANT_REG is nonzero, we wish the condition to be relative to that
5378 register, if possible. Therefore, do not canonicalize the condition
5379 further. If ALLOW_CC_MODE is nonzero, allow the condition returned
5380 to be a compare to a CC mode register.
5382 If VALID_AT_INSN_P, the condition must be valid at both *EARLIEST
5383 and at INSN. */
5386 canonicalize_condition (rtx_insn *insn, rtx cond, int reverse,
5387 rtx_insn **earliest,
5388 rtx want_reg, int allow_cc_mode, int valid_at_insn_p)
5390 enum rtx_code code;
5391 rtx_insn *prev = insn;
5392 const_rtx set;
5393 rtx tem;
5394 rtx op0, op1;
5395 int reverse_code = 0;
5396 machine_mode mode;
5397 basic_block bb = BLOCK_FOR_INSN (insn);
5399 code = GET_CODE (cond);
5400 mode = GET_MODE (cond);
5401 op0 = XEXP (cond, 0);
5402 op1 = XEXP (cond, 1);
5404 if (reverse)
5405 code = reversed_comparison_code (cond, insn);
5406 if (code == UNKNOWN)
5407 return 0;
5409 if (earliest)
5410 *earliest = insn;
5412 /* If we are comparing a register with zero, see if the register is set
5413 in the previous insn to a COMPARE or a comparison operation. Perform
5414 the same tests as a function of STORE_FLAG_VALUE as find_comparison_args
5415 in cse.c */
5417 while ((GET_RTX_CLASS (code) == RTX_COMPARE
5418 || GET_RTX_CLASS (code) == RTX_COMM_COMPARE)
5419 && op1 == CONST0_RTX (GET_MODE (op0))
5420 && op0 != want_reg)
5422 /* Set nonzero when we find something of interest. */
5423 rtx x = 0;
5425 /* If comparison with cc0, import actual comparison from compare
5426 insn. */
5427 if (op0 == cc0_rtx)
5429 if ((prev = prev_nonnote_insn (prev)) == 0
5430 || !NONJUMP_INSN_P (prev)
5431 || (set = single_set (prev)) == 0
5432 || SET_DEST (set) != cc0_rtx)
5433 return 0;
5435 op0 = SET_SRC (set);
5436 op1 = CONST0_RTX (GET_MODE (op0));
5437 if (earliest)
5438 *earliest = prev;
5441 /* If this is a COMPARE, pick up the two things being compared. */
5442 if (GET_CODE (op0) == COMPARE)
5444 op1 = XEXP (op0, 1);
5445 op0 = XEXP (op0, 0);
5446 continue;
5448 else if (!REG_P (op0))
5449 break;
5451 /* Go back to the previous insn. Stop if it is not an INSN. We also
5452 stop if it isn't a single set or if it has a REG_INC note because
5453 we don't want to bother dealing with it. */
5455 prev = prev_nonnote_nondebug_insn (prev);
5457 if (prev == 0
5458 || !NONJUMP_INSN_P (prev)
5459 || FIND_REG_INC_NOTE (prev, NULL_RTX)
5460 /* In cfglayout mode, there do not have to be labels at the
5461 beginning of a block, or jumps at the end, so the previous
5462 conditions would not stop us when we reach bb boundary. */
5463 || BLOCK_FOR_INSN (prev) != bb)
5464 break;
5466 set = set_of (op0, prev);
5468 if (set
5469 && (GET_CODE (set) != SET
5470 || !rtx_equal_p (SET_DEST (set), op0)))
5471 break;
5473 /* If this is setting OP0, get what it sets it to if it looks
5474 relevant. */
5475 if (set)
5477 machine_mode inner_mode = GET_MODE (SET_DEST (set));
5478 #ifdef FLOAT_STORE_FLAG_VALUE
5479 REAL_VALUE_TYPE fsfv;
5480 #endif
5482 /* ??? We may not combine comparisons done in a CCmode with
5483 comparisons not done in a CCmode. This is to aid targets
5484 like Alpha that have an IEEE compliant EQ instruction, and
5485 a non-IEEE compliant BEQ instruction. The use of CCmode is
5486 actually artificial, simply to prevent the combination, but
5487 should not affect other platforms.
5489 However, we must allow VOIDmode comparisons to match either
5490 CCmode or non-CCmode comparison, because some ports have
5491 modeless comparisons inside branch patterns.
5493 ??? This mode check should perhaps look more like the mode check
5494 in simplify_comparison in combine. */
5495 if (((GET_MODE_CLASS (mode) == MODE_CC)
5496 != (GET_MODE_CLASS (inner_mode) == MODE_CC))
5497 && mode != VOIDmode
5498 && inner_mode != VOIDmode)
5499 break;
5500 if (GET_CODE (SET_SRC (set)) == COMPARE
5501 || (((code == NE
5502 || (code == LT
5503 && val_signbit_known_set_p (inner_mode,
5504 STORE_FLAG_VALUE))
5505 #ifdef FLOAT_STORE_FLAG_VALUE
5506 || (code == LT
5507 && SCALAR_FLOAT_MODE_P (inner_mode)
5508 && (fsfv = FLOAT_STORE_FLAG_VALUE (inner_mode),
5509 REAL_VALUE_NEGATIVE (fsfv)))
5510 #endif
5512 && COMPARISON_P (SET_SRC (set))))
5513 x = SET_SRC (set);
5514 else if (((code == EQ
5515 || (code == GE
5516 && val_signbit_known_set_p (inner_mode,
5517 STORE_FLAG_VALUE))
5518 #ifdef FLOAT_STORE_FLAG_VALUE
5519 || (code == GE
5520 && SCALAR_FLOAT_MODE_P (inner_mode)
5521 && (fsfv = FLOAT_STORE_FLAG_VALUE (inner_mode),
5522 REAL_VALUE_NEGATIVE (fsfv)))
5523 #endif
5525 && COMPARISON_P (SET_SRC (set)))
5527 reverse_code = 1;
5528 x = SET_SRC (set);
5530 else if ((code == EQ || code == NE)
5531 && GET_CODE (SET_SRC (set)) == XOR)
5532 /* Handle sequences like:
5534 (set op0 (xor X Y))
5535 ...(eq|ne op0 (const_int 0))...
5537 in which case:
5539 (eq op0 (const_int 0)) reduces to (eq X Y)
5540 (ne op0 (const_int 0)) reduces to (ne X Y)
5542 This is the form used by MIPS16, for example. */
5543 x = SET_SRC (set);
5544 else
5545 break;
5548 else if (reg_set_p (op0, prev))
5549 /* If this sets OP0, but not directly, we have to give up. */
5550 break;
5552 if (x)
5554 /* If the caller is expecting the condition to be valid at INSN,
5555 make sure X doesn't change before INSN. */
5556 if (valid_at_insn_p)
5557 if (modified_in_p (x, prev) || modified_between_p (x, prev, insn))
5558 break;
5559 if (COMPARISON_P (x))
5560 code = GET_CODE (x);
5561 if (reverse_code)
5563 code = reversed_comparison_code (x, prev);
5564 if (code == UNKNOWN)
5565 return 0;
5566 reverse_code = 0;
5569 op0 = XEXP (x, 0), op1 = XEXP (x, 1);
5570 if (earliest)
5571 *earliest = prev;
5575 /* If constant is first, put it last. */
5576 if (CONSTANT_P (op0))
5577 code = swap_condition (code), tem = op0, op0 = op1, op1 = tem;
5579 /* If OP0 is the result of a comparison, we weren't able to find what
5580 was really being compared, so fail. */
5581 if (!allow_cc_mode
5582 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC)
5583 return 0;
5585 /* Canonicalize any ordered comparison with integers involving equality
5586 if we can do computations in the relevant mode and we do not
5587 overflow. */
5589 scalar_int_mode op0_mode;
5590 if (CONST_INT_P (op1)
5591 && is_a <scalar_int_mode> (GET_MODE (op0), &op0_mode)
5592 && GET_MODE_PRECISION (op0_mode) <= HOST_BITS_PER_WIDE_INT)
5594 HOST_WIDE_INT const_val = INTVAL (op1);
5595 unsigned HOST_WIDE_INT uconst_val = const_val;
5596 unsigned HOST_WIDE_INT max_val
5597 = (unsigned HOST_WIDE_INT) GET_MODE_MASK (op0_mode);
5599 switch (code)
5601 case LE:
5602 if ((unsigned HOST_WIDE_INT) const_val != max_val >> 1)
5603 code = LT, op1 = gen_int_mode (const_val + 1, op0_mode);
5604 break;
5606 /* When cross-compiling, const_val might be sign-extended from
5607 BITS_PER_WORD to HOST_BITS_PER_WIDE_INT */
5608 case GE:
5609 if ((const_val & max_val)
5610 != (HOST_WIDE_INT_1U << (GET_MODE_PRECISION (op0_mode) - 1)))
5611 code = GT, op1 = gen_int_mode (const_val - 1, op0_mode);
5612 break;
5614 case LEU:
5615 if (uconst_val < max_val)
5616 code = LTU, op1 = gen_int_mode (uconst_val + 1, op0_mode);
5617 break;
5619 case GEU:
5620 if (uconst_val != 0)
5621 code = GTU, op1 = gen_int_mode (uconst_val - 1, op0_mode);
5622 break;
5624 default:
5625 break;
5629 /* Never return CC0; return zero instead. */
5630 if (CC0_P (op0))
5631 return 0;
5633 return gen_rtx_fmt_ee (code, VOIDmode, op0, op1);
5636 /* Given a jump insn JUMP, return the condition that will cause it to branch
5637 to its JUMP_LABEL. If the condition cannot be understood, or is an
5638 inequality floating-point comparison which needs to be reversed, 0 will
5639 be returned.
5641 If EARLIEST is nonzero, it is a pointer to a place where the earliest
5642 insn used in locating the condition was found. If a replacement test
5643 of the condition is desired, it should be placed in front of that
5644 insn and we will be sure that the inputs are still valid. If EARLIEST
5645 is null, the returned condition will be valid at INSN.
5647 If ALLOW_CC_MODE is nonzero, allow the condition returned to be a
5648 compare CC mode register.
5650 VALID_AT_INSN_P is the same as for canonicalize_condition. */
5653 get_condition (rtx_insn *jump, rtx_insn **earliest, int allow_cc_mode,
5654 int valid_at_insn_p)
5656 rtx cond;
5657 int reverse;
5658 rtx set;
5660 /* If this is not a standard conditional jump, we can't parse it. */
5661 if (!JUMP_P (jump)
5662 || ! any_condjump_p (jump))
5663 return 0;
5664 set = pc_set (jump);
5666 cond = XEXP (SET_SRC (set), 0);
5668 /* If this branches to JUMP_LABEL when the condition is false, reverse
5669 the condition. */
5670 reverse
5671 = GET_CODE (XEXP (SET_SRC (set), 2)) == LABEL_REF
5672 && label_ref_label (XEXP (SET_SRC (set), 2)) == JUMP_LABEL (jump);
5674 return canonicalize_condition (jump, cond, reverse, earliest, NULL_RTX,
5675 allow_cc_mode, valid_at_insn_p);
5678 /* Initialize the table NUM_SIGN_BIT_COPIES_IN_REP based on
5679 TARGET_MODE_REP_EXTENDED.
5681 Note that we assume that the property of
5682 TARGET_MODE_REP_EXTENDED(B, C) is sticky to the integral modes
5683 narrower than mode B. I.e., if A is a mode narrower than B then in
5684 order to be able to operate on it in mode B, mode A needs to
5685 satisfy the requirements set by the representation of mode B. */
5687 static void
5688 init_num_sign_bit_copies_in_rep (void)
5690 opt_scalar_int_mode in_mode_iter;
5691 scalar_int_mode mode;
5693 FOR_EACH_MODE_IN_CLASS (in_mode_iter, MODE_INT)
5694 FOR_EACH_MODE_UNTIL (mode, in_mode_iter.require ())
5696 scalar_int_mode in_mode = in_mode_iter.require ();
5697 scalar_int_mode i;
5699 /* Currently, it is assumed that TARGET_MODE_REP_EXTENDED
5700 extends to the next widest mode. */
5701 gcc_assert (targetm.mode_rep_extended (mode, in_mode) == UNKNOWN
5702 || GET_MODE_WIDER_MODE (mode).require () == in_mode);
5704 /* We are in in_mode. Count how many bits outside of mode
5705 have to be copies of the sign-bit. */
5706 FOR_EACH_MODE (i, mode, in_mode)
5708 /* This must always exist (for the last iteration it will be
5709 IN_MODE). */
5710 scalar_int_mode wider = GET_MODE_WIDER_MODE (i).require ();
5712 if (targetm.mode_rep_extended (i, wider) == SIGN_EXTEND
5713 /* We can only check sign-bit copies starting from the
5714 top-bit. In order to be able to check the bits we
5715 have already seen we pretend that subsequent bits
5716 have to be sign-bit copies too. */
5717 || num_sign_bit_copies_in_rep [in_mode][mode])
5718 num_sign_bit_copies_in_rep [in_mode][mode]
5719 += GET_MODE_PRECISION (wider) - GET_MODE_PRECISION (i);
5724 /* Suppose that truncation from the machine mode of X to MODE is not a
5725 no-op. See if there is anything special about X so that we can
5726 assume it already contains a truncated value of MODE. */
5728 bool
5729 truncated_to_mode (machine_mode mode, const_rtx x)
5731 /* This register has already been used in MODE without explicit
5732 truncation. */
5733 if (REG_P (x) && rtl_hooks.reg_truncated_to_mode (mode, x))
5734 return true;
5736 /* See if we already satisfy the requirements of MODE. If yes we
5737 can just switch to MODE. */
5738 if (num_sign_bit_copies_in_rep[GET_MODE (x)][mode]
5739 && (num_sign_bit_copies (x, GET_MODE (x))
5740 >= num_sign_bit_copies_in_rep[GET_MODE (x)][mode] + 1))
5741 return true;
5743 return false;
5746 /* Return true if RTX code CODE has a single sequence of zero or more
5747 "e" operands and no rtvec operands. Initialize its rtx_all_subrtx_bounds
5748 entry in that case. */
5750 static bool
5751 setup_reg_subrtx_bounds (unsigned int code)
5753 const char *format = GET_RTX_FORMAT ((enum rtx_code) code);
5754 unsigned int i = 0;
5755 for (; format[i] != 'e'; ++i)
5757 if (!format[i])
5758 /* No subrtxes. Leave start and count as 0. */
5759 return true;
5760 if (format[i] == 'E' || format[i] == 'V')
5761 return false;
5764 /* Record the sequence of 'e's. */
5765 rtx_all_subrtx_bounds[code].start = i;
5767 ++i;
5768 while (format[i] == 'e');
5769 rtx_all_subrtx_bounds[code].count = i - rtx_all_subrtx_bounds[code].start;
5770 /* rtl-iter.h relies on this. */
5771 gcc_checking_assert (rtx_all_subrtx_bounds[code].count <= 3);
5773 for (; format[i]; ++i)
5774 if (format[i] == 'E' || format[i] == 'V' || format[i] == 'e')
5775 return false;
5777 return true;
5780 /* Initialize rtx_all_subrtx_bounds. */
5781 void
5782 init_rtlanal (void)
5784 int i;
5785 for (i = 0; i < NUM_RTX_CODE; i++)
5787 if (!setup_reg_subrtx_bounds (i))
5788 rtx_all_subrtx_bounds[i].count = UCHAR_MAX;
5789 if (GET_RTX_CLASS (i) != RTX_CONST_OBJ)
5790 rtx_nonconst_subrtx_bounds[i] = rtx_all_subrtx_bounds[i];
5793 init_num_sign_bit_copies_in_rep ();
5796 /* Check whether this is a constant pool constant. */
5797 bool
5798 constant_pool_constant_p (rtx x)
5800 x = avoid_constant_pool_reference (x);
5801 return CONST_DOUBLE_P (x);
5804 /* If M is a bitmask that selects a field of low-order bits within an item but
5805 not the entire word, return the length of the field. Return -1 otherwise.
5806 M is used in machine mode MODE. */
5809 low_bitmask_len (machine_mode mode, unsigned HOST_WIDE_INT m)
5811 if (mode != VOIDmode)
5813 if (!HWI_COMPUTABLE_MODE_P (mode))
5814 return -1;
5815 m &= GET_MODE_MASK (mode);
5818 return exact_log2 (m + 1);
5821 /* Return the mode of MEM's address. */
5823 scalar_int_mode
5824 get_address_mode (rtx mem)
5826 machine_mode mode;
5828 gcc_assert (MEM_P (mem));
5829 mode = GET_MODE (XEXP (mem, 0));
5830 if (mode != VOIDmode)
5831 return as_a <scalar_int_mode> (mode);
5832 return targetm.addr_space.address_mode (MEM_ADDR_SPACE (mem));
5835 /* Split up a CONST_DOUBLE or integer constant rtx
5836 into two rtx's for single words,
5837 storing in *FIRST the word that comes first in memory in the target
5838 and in *SECOND the other.
5840 TODO: This function needs to be rewritten to work on any size
5841 integer. */
5843 void
5844 split_double (rtx value, rtx *first, rtx *second)
5846 if (CONST_INT_P (value))
5848 if (HOST_BITS_PER_WIDE_INT >= (2 * BITS_PER_WORD))
5850 /* In this case the CONST_INT holds both target words.
5851 Extract the bits from it into two word-sized pieces.
5852 Sign extend each half to HOST_WIDE_INT. */
5853 unsigned HOST_WIDE_INT low, high;
5854 unsigned HOST_WIDE_INT mask, sign_bit, sign_extend;
5855 unsigned bits_per_word = BITS_PER_WORD;
5857 /* Set sign_bit to the most significant bit of a word. */
5858 sign_bit = 1;
5859 sign_bit <<= bits_per_word - 1;
5861 /* Set mask so that all bits of the word are set. We could
5862 have used 1 << BITS_PER_WORD instead of basing the
5863 calculation on sign_bit. However, on machines where
5864 HOST_BITS_PER_WIDE_INT == BITS_PER_WORD, it could cause a
5865 compiler warning, even though the code would never be
5866 executed. */
5867 mask = sign_bit << 1;
5868 mask--;
5870 /* Set sign_extend as any remaining bits. */
5871 sign_extend = ~mask;
5873 /* Pick the lower word and sign-extend it. */
5874 low = INTVAL (value);
5875 low &= mask;
5876 if (low & sign_bit)
5877 low |= sign_extend;
5879 /* Pick the higher word, shifted to the least significant
5880 bits, and sign-extend it. */
5881 high = INTVAL (value);
5882 high >>= bits_per_word - 1;
5883 high >>= 1;
5884 high &= mask;
5885 if (high & sign_bit)
5886 high |= sign_extend;
5888 /* Store the words in the target machine order. */
5889 if (WORDS_BIG_ENDIAN)
5891 *first = GEN_INT (high);
5892 *second = GEN_INT (low);
5894 else
5896 *first = GEN_INT (low);
5897 *second = GEN_INT (high);
5900 else
5902 /* The rule for using CONST_INT for a wider mode
5903 is that we regard the value as signed.
5904 So sign-extend it. */
5905 rtx high = (INTVAL (value) < 0 ? constm1_rtx : const0_rtx);
5906 if (WORDS_BIG_ENDIAN)
5908 *first = high;
5909 *second = value;
5911 else
5913 *first = value;
5914 *second = high;
5918 else if (GET_CODE (value) == CONST_WIDE_INT)
5920 /* All of this is scary code and needs to be converted to
5921 properly work with any size integer. */
5922 gcc_assert (CONST_WIDE_INT_NUNITS (value) == 2);
5923 if (WORDS_BIG_ENDIAN)
5925 *first = GEN_INT (CONST_WIDE_INT_ELT (value, 1));
5926 *second = GEN_INT (CONST_WIDE_INT_ELT (value, 0));
5928 else
5930 *first = GEN_INT (CONST_WIDE_INT_ELT (value, 0));
5931 *second = GEN_INT (CONST_WIDE_INT_ELT (value, 1));
5934 else if (!CONST_DOUBLE_P (value))
5936 if (WORDS_BIG_ENDIAN)
5938 *first = const0_rtx;
5939 *second = value;
5941 else
5943 *first = value;
5944 *second = const0_rtx;
5947 else if (GET_MODE (value) == VOIDmode
5948 /* This is the old way we did CONST_DOUBLE integers. */
5949 || GET_MODE_CLASS (GET_MODE (value)) == MODE_INT)
5951 /* In an integer, the words are defined as most and least significant.
5952 So order them by the target's convention. */
5953 if (WORDS_BIG_ENDIAN)
5955 *first = GEN_INT (CONST_DOUBLE_HIGH (value));
5956 *second = GEN_INT (CONST_DOUBLE_LOW (value));
5958 else
5960 *first = GEN_INT (CONST_DOUBLE_LOW (value));
5961 *second = GEN_INT (CONST_DOUBLE_HIGH (value));
5964 else
5966 long l[2];
5968 /* Note, this converts the REAL_VALUE_TYPE to the target's
5969 format, splits up the floating point double and outputs
5970 exactly 32 bits of it into each of l[0] and l[1] --
5971 not necessarily BITS_PER_WORD bits. */
5972 REAL_VALUE_TO_TARGET_DOUBLE (*CONST_DOUBLE_REAL_VALUE (value), l);
5974 /* If 32 bits is an entire word for the target, but not for the host,
5975 then sign-extend on the host so that the number will look the same
5976 way on the host that it would on the target. See for instance
5977 simplify_unary_operation. The #if is needed to avoid compiler
5978 warnings. */
5980 #if HOST_BITS_PER_LONG > 32
5981 if (BITS_PER_WORD < HOST_BITS_PER_LONG && BITS_PER_WORD == 32)
5983 if (l[0] & ((long) 1 << 31))
5984 l[0] |= ((unsigned long) (-1) << 32);
5985 if (l[1] & ((long) 1 << 31))
5986 l[1] |= ((unsigned long) (-1) << 32);
5988 #endif
5990 *first = GEN_INT (l[0]);
5991 *second = GEN_INT (l[1]);
5995 /* Return true if X is a sign_extract or zero_extract from the least
5996 significant bit. */
5998 static bool
5999 lsb_bitfield_op_p (rtx x)
6001 if (GET_RTX_CLASS (GET_CODE (x)) == RTX_BITFIELD_OPS)
6003 machine_mode mode = GET_MODE (XEXP (x, 0));
6004 HOST_WIDE_INT len = INTVAL (XEXP (x, 1));
6005 HOST_WIDE_INT pos = INTVAL (XEXP (x, 2));
6007 return (pos == (BITS_BIG_ENDIAN ? GET_MODE_PRECISION (mode) - len : 0));
6009 return false;
6012 /* Strip outer address "mutations" from LOC and return a pointer to the
6013 inner value. If OUTER_CODE is nonnull, store the code of the innermost
6014 stripped expression there.
6016 "Mutations" either convert between modes or apply some kind of
6017 extension, truncation or alignment. */
6019 rtx *
6020 strip_address_mutations (rtx *loc, enum rtx_code *outer_code)
6022 for (;;)
6024 enum rtx_code code = GET_CODE (*loc);
6025 if (GET_RTX_CLASS (code) == RTX_UNARY)
6026 /* Things like SIGN_EXTEND, ZERO_EXTEND and TRUNCATE can be
6027 used to convert between pointer sizes. */
6028 loc = &XEXP (*loc, 0);
6029 else if (lsb_bitfield_op_p (*loc))
6030 /* A [SIGN|ZERO]_EXTRACT from the least significant bit effectively
6031 acts as a combined truncation and extension. */
6032 loc = &XEXP (*loc, 0);
6033 else if (code == AND && CONST_INT_P (XEXP (*loc, 1)))
6034 /* (and ... (const_int -X)) is used to align to X bytes. */
6035 loc = &XEXP (*loc, 0);
6036 else if (code == SUBREG
6037 && !OBJECT_P (SUBREG_REG (*loc))
6038 && subreg_lowpart_p (*loc))
6039 /* (subreg (operator ...) ...) inside and is used for mode
6040 conversion too. */
6041 loc = &SUBREG_REG (*loc);
6042 else
6043 return loc;
6044 if (outer_code)
6045 *outer_code = code;
6049 /* Return true if CODE applies some kind of scale. The scaled value is
6050 is the first operand and the scale is the second. */
6052 static bool
6053 binary_scale_code_p (enum rtx_code code)
6055 return (code == MULT
6056 || code == ASHIFT
6057 /* Needed by ARM targets. */
6058 || code == ASHIFTRT
6059 || code == LSHIFTRT
6060 || code == ROTATE
6061 || code == ROTATERT);
6064 /* If *INNER can be interpreted as a base, return a pointer to the inner term
6065 (see address_info). Return null otherwise. */
6067 static rtx *
6068 get_base_term (rtx *inner)
6070 if (GET_CODE (*inner) == LO_SUM)
6071 inner = strip_address_mutations (&XEXP (*inner, 0));
6072 if (REG_P (*inner)
6073 || MEM_P (*inner)
6074 || GET_CODE (*inner) == SUBREG
6075 || GET_CODE (*inner) == SCRATCH)
6076 return inner;
6077 return 0;
6080 /* If *INNER can be interpreted as an index, return a pointer to the inner term
6081 (see address_info). Return null otherwise. */
6083 static rtx *
6084 get_index_term (rtx *inner)
6086 /* At present, only constant scales are allowed. */
6087 if (binary_scale_code_p (GET_CODE (*inner)) && CONSTANT_P (XEXP (*inner, 1)))
6088 inner = strip_address_mutations (&XEXP (*inner, 0));
6089 if (REG_P (*inner)
6090 || MEM_P (*inner)
6091 || GET_CODE (*inner) == SUBREG
6092 || GET_CODE (*inner) == SCRATCH)
6093 return inner;
6094 return 0;
6097 /* Set the segment part of address INFO to LOC, given that INNER is the
6098 unmutated value. */
6100 static void
6101 set_address_segment (struct address_info *info, rtx *loc, rtx *inner)
6103 gcc_assert (!info->segment);
6104 info->segment = loc;
6105 info->segment_term = inner;
6108 /* Set the base part of address INFO to LOC, given that INNER is the
6109 unmutated value. */
6111 static void
6112 set_address_base (struct address_info *info, rtx *loc, rtx *inner)
6114 gcc_assert (!info->base);
6115 info->base = loc;
6116 info->base_term = inner;
6119 /* Set the index part of address INFO to LOC, given that INNER is the
6120 unmutated value. */
6122 static void
6123 set_address_index (struct address_info *info, rtx *loc, rtx *inner)
6125 gcc_assert (!info->index);
6126 info->index = loc;
6127 info->index_term = inner;
6130 /* Set the displacement part of address INFO to LOC, given that INNER
6131 is the constant term. */
6133 static void
6134 set_address_disp (struct address_info *info, rtx *loc, rtx *inner)
6136 gcc_assert (!info->disp);
6137 info->disp = loc;
6138 info->disp_term = inner;
6141 /* INFO->INNER describes a {PRE,POST}_{INC,DEC} address. Set up the
6142 rest of INFO accordingly. */
6144 static void
6145 decompose_incdec_address (struct address_info *info)
6147 info->autoinc_p = true;
6149 rtx *base = &XEXP (*info->inner, 0);
6150 set_address_base (info, base, base);
6151 gcc_checking_assert (info->base == info->base_term);
6153 /* These addresses are only valid when the size of the addressed
6154 value is known. */
6155 gcc_checking_assert (info->mode != VOIDmode);
6158 /* INFO->INNER describes a {PRE,POST}_MODIFY address. Set up the rest
6159 of INFO accordingly. */
6161 static void
6162 decompose_automod_address (struct address_info *info)
6164 info->autoinc_p = true;
6166 rtx *base = &XEXP (*info->inner, 0);
6167 set_address_base (info, base, base);
6168 gcc_checking_assert (info->base == info->base_term);
6170 rtx plus = XEXP (*info->inner, 1);
6171 gcc_assert (GET_CODE (plus) == PLUS);
6173 info->base_term2 = &XEXP (plus, 0);
6174 gcc_checking_assert (rtx_equal_p (*info->base_term, *info->base_term2));
6176 rtx *step = &XEXP (plus, 1);
6177 rtx *inner_step = strip_address_mutations (step);
6178 if (CONSTANT_P (*inner_step))
6179 set_address_disp (info, step, inner_step);
6180 else
6181 set_address_index (info, step, inner_step);
6184 /* Treat *LOC as a tree of PLUS operands and store pointers to the summed
6185 values in [PTR, END). Return a pointer to the end of the used array. */
6187 static rtx **
6188 extract_plus_operands (rtx *loc, rtx **ptr, rtx **end)
6190 rtx x = *loc;
6191 if (GET_CODE (x) == PLUS)
6193 ptr = extract_plus_operands (&XEXP (x, 0), ptr, end);
6194 ptr = extract_plus_operands (&XEXP (x, 1), ptr, end);
6196 else
6198 gcc_assert (ptr != end);
6199 *ptr++ = loc;
6201 return ptr;
6204 /* Evaluate the likelihood of X being a base or index value, returning
6205 positive if it is likely to be a base, negative if it is likely to be
6206 an index, and 0 if we can't tell. Make the magnitude of the return
6207 value reflect the amount of confidence we have in the answer.
6209 MODE, AS, OUTER_CODE and INDEX_CODE are as for ok_for_base_p_1. */
6211 static int
6212 baseness (rtx x, machine_mode mode, addr_space_t as,
6213 enum rtx_code outer_code, enum rtx_code index_code)
6215 /* Believe *_POINTER unless the address shape requires otherwise. */
6216 if (REG_P (x) && REG_POINTER (x))
6217 return 2;
6218 if (MEM_P (x) && MEM_POINTER (x))
6219 return 2;
6221 if (REG_P (x) && HARD_REGISTER_P (x))
6223 /* X is a hard register. If it only fits one of the base
6224 or index classes, choose that interpretation. */
6225 int regno = REGNO (x);
6226 bool base_p = ok_for_base_p_1 (regno, mode, as, outer_code, index_code);
6227 bool index_p = REGNO_OK_FOR_INDEX_P (regno);
6228 if (base_p != index_p)
6229 return base_p ? 1 : -1;
6231 return 0;
6234 /* INFO->INNER describes a normal, non-automodified address.
6235 Fill in the rest of INFO accordingly. */
6237 static void
6238 decompose_normal_address (struct address_info *info)
6240 /* Treat the address as the sum of up to four values. */
6241 rtx *ops[4];
6242 size_t n_ops = extract_plus_operands (info->inner, ops,
6243 ops + ARRAY_SIZE (ops)) - ops;
6245 /* If there is more than one component, any base component is in a PLUS. */
6246 if (n_ops > 1)
6247 info->base_outer_code = PLUS;
6249 /* Try to classify each sum operand now. Leave those that could be
6250 either a base or an index in OPS. */
6251 rtx *inner_ops[4];
6252 size_t out = 0;
6253 for (size_t in = 0; in < n_ops; ++in)
6255 rtx *loc = ops[in];
6256 rtx *inner = strip_address_mutations (loc);
6257 if (CONSTANT_P (*inner))
6258 set_address_disp (info, loc, inner);
6259 else if (GET_CODE (*inner) == UNSPEC)
6260 set_address_segment (info, loc, inner);
6261 else
6263 /* The only other possibilities are a base or an index. */
6264 rtx *base_term = get_base_term (inner);
6265 rtx *index_term = get_index_term (inner);
6266 gcc_assert (base_term || index_term);
6267 if (!base_term)
6268 set_address_index (info, loc, index_term);
6269 else if (!index_term)
6270 set_address_base (info, loc, base_term);
6271 else
6273 gcc_assert (base_term == index_term);
6274 ops[out] = loc;
6275 inner_ops[out] = base_term;
6276 ++out;
6281 /* Classify the remaining OPS members as bases and indexes. */
6282 if (out == 1)
6284 /* If we haven't seen a base or an index yet, assume that this is
6285 the base. If we were confident that another term was the base
6286 or index, treat the remaining operand as the other kind. */
6287 if (!info->base)
6288 set_address_base (info, ops[0], inner_ops[0]);
6289 else
6290 set_address_index (info, ops[0], inner_ops[0]);
6292 else if (out == 2)
6294 /* In the event of a tie, assume the base comes first. */
6295 if (baseness (*inner_ops[0], info->mode, info->as, PLUS,
6296 GET_CODE (*ops[1]))
6297 >= baseness (*inner_ops[1], info->mode, info->as, PLUS,
6298 GET_CODE (*ops[0])))
6300 set_address_base (info, ops[0], inner_ops[0]);
6301 set_address_index (info, ops[1], inner_ops[1]);
6303 else
6305 set_address_base (info, ops[1], inner_ops[1]);
6306 set_address_index (info, ops[0], inner_ops[0]);
6309 else
6310 gcc_assert (out == 0);
6313 /* Describe address *LOC in *INFO. MODE is the mode of the addressed value,
6314 or VOIDmode if not known. AS is the address space associated with LOC.
6315 OUTER_CODE is MEM if *LOC is a MEM address and ADDRESS otherwise. */
6317 void
6318 decompose_address (struct address_info *info, rtx *loc, machine_mode mode,
6319 addr_space_t as, enum rtx_code outer_code)
6321 memset (info, 0, sizeof (*info));
6322 info->mode = mode;
6323 info->as = as;
6324 info->addr_outer_code = outer_code;
6325 info->outer = loc;
6326 info->inner = strip_address_mutations (loc, &outer_code);
6327 info->base_outer_code = outer_code;
6328 switch (GET_CODE (*info->inner))
6330 case PRE_DEC:
6331 case PRE_INC:
6332 case POST_DEC:
6333 case POST_INC:
6334 decompose_incdec_address (info);
6335 break;
6337 case PRE_MODIFY:
6338 case POST_MODIFY:
6339 decompose_automod_address (info);
6340 break;
6342 default:
6343 decompose_normal_address (info);
6344 break;
6348 /* Describe address operand LOC in INFO. */
6350 void
6351 decompose_lea_address (struct address_info *info, rtx *loc)
6353 decompose_address (info, loc, VOIDmode, ADDR_SPACE_GENERIC, ADDRESS);
6356 /* Describe the address of MEM X in INFO. */
6358 void
6359 decompose_mem_address (struct address_info *info, rtx x)
6361 gcc_assert (MEM_P (x));
6362 decompose_address (info, &XEXP (x, 0), GET_MODE (x),
6363 MEM_ADDR_SPACE (x), MEM);
6366 /* Update INFO after a change to the address it describes. */
6368 void
6369 update_address (struct address_info *info)
6371 decompose_address (info, info->outer, info->mode, info->as,
6372 info->addr_outer_code);
6375 /* Return the scale applied to *INFO->INDEX_TERM, or 0 if the index is
6376 more complicated than that. */
6378 HOST_WIDE_INT
6379 get_index_scale (const struct address_info *info)
6381 rtx index = *info->index;
6382 if (GET_CODE (index) == MULT
6383 && CONST_INT_P (XEXP (index, 1))
6384 && info->index_term == &XEXP (index, 0))
6385 return INTVAL (XEXP (index, 1));
6387 if (GET_CODE (index) == ASHIFT
6388 && CONST_INT_P (XEXP (index, 1))
6389 && info->index_term == &XEXP (index, 0))
6390 return HOST_WIDE_INT_1 << INTVAL (XEXP (index, 1));
6392 if (info->index == info->index_term)
6393 return 1;
6395 return 0;
6398 /* Return the "index code" of INFO, in the form required by
6399 ok_for_base_p_1. */
6401 enum rtx_code
6402 get_index_code (const struct address_info *info)
6404 if (info->index)
6405 return GET_CODE (*info->index);
6407 if (info->disp)
6408 return GET_CODE (*info->disp);
6410 return SCRATCH;
6413 /* Return true if RTL X contains a SYMBOL_REF. */
6415 bool
6416 contains_symbol_ref_p (const_rtx x)
6418 subrtx_iterator::array_type array;
6419 FOR_EACH_SUBRTX (iter, array, x, ALL)
6420 if (SYMBOL_REF_P (*iter))
6421 return true;
6423 return false;
6426 /* Return true if RTL X contains a SYMBOL_REF or LABEL_REF. */
6428 bool
6429 contains_symbolic_reference_p (const_rtx x)
6431 subrtx_iterator::array_type array;
6432 FOR_EACH_SUBRTX (iter, array, x, ALL)
6433 if (SYMBOL_REF_P (*iter) || GET_CODE (*iter) == LABEL_REF)
6434 return true;
6436 return false;
6439 /* Return true if X contains a thread-local symbol. */
6441 bool
6442 tls_referenced_p (const_rtx x)
6444 if (!targetm.have_tls)
6445 return false;
6447 subrtx_iterator::array_type array;
6448 FOR_EACH_SUBRTX (iter, array, x, ALL)
6449 if (GET_CODE (*iter) == SYMBOL_REF && SYMBOL_REF_TLS_MODEL (*iter) != 0)
6450 return true;
6451 return false;