gcc-defs.exp (dg-additional-files-options): Extend regsub for dg-additional-files...
[official-gcc.git] / gcc / ira-costs.c
blob424b99c2c53784a4c04e3de63fcbda1d5a48971e
1 /* IRA hard register and memory cost calculation for allocnos or pseudos.
2 Copyright (C) 2006-2013 Free Software Foundation, Inc.
3 Contributed by Vladimir Makarov <vmakarov@redhat.com>.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "hash-table.h"
26 #include "hard-reg-set.h"
27 #include "rtl.h"
28 #include "expr.h"
29 #include "tm_p.h"
30 #include "flags.h"
31 #include "basic-block.h"
32 #include "regs.h"
33 #include "addresses.h"
34 #include "insn-config.h"
35 #include "recog.h"
36 #include "reload.h"
37 #include "diagnostic-core.h"
38 #include "target.h"
39 #include "params.h"
40 #include "ira-int.h"
42 /* The flags is set up every time when we calculate pseudo register
43 classes through function ira_set_pseudo_classes. */
44 static bool pseudo_classes_defined_p = false;
46 /* TRUE if we work with allocnos. Otherwise we work with pseudos. */
47 static bool allocno_p;
49 /* Number of elements in array `costs'. */
50 static int cost_elements_num;
52 /* The `costs' struct records the cost of using hard registers of each
53 class considered for the calculation and of using memory for each
54 allocno or pseudo. */
55 struct costs
57 int mem_cost;
58 /* Costs for register classes start here. We process only some
59 allocno classes. */
60 int cost[1];
63 #define max_struct_costs_size \
64 (this_target_ira_int->x_max_struct_costs_size)
65 #define init_cost \
66 (this_target_ira_int->x_init_cost)
67 #define temp_costs \
68 (this_target_ira_int->x_temp_costs)
69 #define op_costs \
70 (this_target_ira_int->x_op_costs)
71 #define this_op_costs \
72 (this_target_ira_int->x_this_op_costs)
74 /* Costs of each class for each allocno or pseudo. */
75 static struct costs *costs;
77 /* Accumulated costs of each class for each allocno. */
78 static struct costs *total_allocno_costs;
80 /* It is the current size of struct costs. */
81 static int struct_costs_size;
83 /* Return pointer to structure containing costs of allocno or pseudo
84 with given NUM in array ARR. */
85 #define COSTS(arr, num) \
86 ((struct costs *) ((char *) (arr) + (num) * struct_costs_size))
88 /* Return index in COSTS when processing reg with REGNO. */
89 #define COST_INDEX(regno) (allocno_p \
90 ? ALLOCNO_NUM (ira_curr_regno_allocno_map[regno]) \
91 : (int) regno)
93 /* Record register class preferences of each allocno or pseudo. Null
94 value means no preferences. It happens on the 1st iteration of the
95 cost calculation. */
96 static enum reg_class *pref;
98 /* Allocated buffers for pref. */
99 static enum reg_class *pref_buffer;
101 /* Record allocno class of each allocno with the same regno. */
102 static enum reg_class *regno_aclass;
104 /* Record cost gains for not allocating a register with an invariant
105 equivalence. */
106 static int *regno_equiv_gains;
108 /* Execution frequency of the current insn. */
109 static int frequency;
113 /* Info about reg classes whose costs are calculated for a pseudo. */
114 struct cost_classes
116 /* Number of the cost classes in the subsequent array. */
117 int num;
118 /* Container of the cost classes. */
119 enum reg_class classes[N_REG_CLASSES];
120 /* Map reg class -> index of the reg class in the previous array.
121 -1 if it is not a cost classe. */
122 int index[N_REG_CLASSES];
123 /* Map hard regno index of first class in array CLASSES containing
124 the hard regno, -1 otherwise. */
125 int hard_regno_index[FIRST_PSEUDO_REGISTER];
128 /* Types of pointers to the structure above. */
129 typedef struct cost_classes *cost_classes_t;
130 typedef const struct cost_classes *const_cost_classes_t;
132 /* Info about cost classes for each pseudo. */
133 static cost_classes_t *regno_cost_classes;
135 /* Helper for cost_classes hashing. */
137 struct cost_classes_hasher
139 typedef cost_classes value_type;
140 typedef cost_classes compare_type;
141 static inline hashval_t hash (const value_type *);
142 static inline bool equal (const value_type *, const compare_type *);
143 static inline void remove (value_type *);
146 /* Returns hash value for cost classes info HV. */
147 inline hashval_t
148 cost_classes_hasher::hash (const value_type *hv)
150 return iterative_hash (&hv->classes, sizeof (enum reg_class) * hv->num, 0);
153 /* Compares cost classes info HV1 and HV2. */
154 inline bool
155 cost_classes_hasher::equal (const value_type *hv1, const compare_type *hv2)
157 return hv1->num == hv2->num && memcmp (hv1->classes, hv2->classes,
158 sizeof (enum reg_class) * hv1->num);
161 /* Delete cost classes info V from the hash table. */
162 inline void
163 cost_classes_hasher::remove (value_type *v)
165 ira_free (v);
168 /* Hash table of unique cost classes. */
169 static hash_table <cost_classes_hasher> cost_classes_htab;
171 /* Map allocno class -> cost classes for pseudo of given allocno
172 class. */
173 static cost_classes_t cost_classes_aclass_cache[N_REG_CLASSES];
175 /* Map mode -> cost classes for pseudo of give mode. */
176 static cost_classes_t cost_classes_mode_cache[MAX_MACHINE_MODE];
178 /* Initialize info about the cost classes for each pseudo. */
179 static void
180 initiate_regno_cost_classes (void)
182 int size = sizeof (cost_classes_t) * max_reg_num ();
184 regno_cost_classes = (cost_classes_t *) ira_allocate (size);
185 memset (regno_cost_classes, 0, size);
186 memset (cost_classes_aclass_cache, 0,
187 sizeof (cost_classes_t) * N_REG_CLASSES);
188 memset (cost_classes_mode_cache, 0,
189 sizeof (cost_classes_t) * MAX_MACHINE_MODE);
190 cost_classes_htab.create (200);
193 /* Create new cost classes from cost classes FROM and set up members
194 index and hard_regno_index. Return the new classes. The function
195 implements some common code of two functions
196 setup_regno_cost_classes_by_aclass and
197 setup_regno_cost_classes_by_mode. */
198 static cost_classes_t
199 setup_cost_classes (cost_classes_t from)
201 cost_classes_t classes_ptr;
202 enum reg_class cl;
203 int i, j, hard_regno;
205 classes_ptr = (cost_classes_t) ira_allocate (sizeof (struct cost_classes));
206 classes_ptr->num = from->num;
207 for (i = 0; i < N_REG_CLASSES; i++)
208 classes_ptr->index[i] = -1;
209 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
210 classes_ptr->hard_regno_index[i] = -1;
211 for (i = 0; i < from->num; i++)
213 cl = classes_ptr->classes[i] = from->classes[i];
214 classes_ptr->index[cl] = i;
215 for (j = ira_class_hard_regs_num[cl] - 1; j >= 0; j--)
217 hard_regno = ira_class_hard_regs[cl][j];
218 if (classes_ptr->hard_regno_index[hard_regno] < 0)
219 classes_ptr->hard_regno_index[hard_regno] = i;
222 return classes_ptr;
225 /* Setup cost classes for pseudo REGNO whose allocno class is ACLASS.
226 This function is used when we know an initial approximation of
227 allocno class of the pseudo already, e.g. on the second iteration
228 of class cost calculation or after class cost calculation in
229 register-pressure sensitive insn scheduling or register-pressure
230 sensitive loop-invariant motion. */
231 static void
232 setup_regno_cost_classes_by_aclass (int regno, enum reg_class aclass)
234 static struct cost_classes classes;
235 cost_classes_t classes_ptr;
236 enum reg_class cl;
237 int i;
238 cost_classes **slot;
239 HARD_REG_SET temp, temp2;
240 bool exclude_p;
242 if ((classes_ptr = cost_classes_aclass_cache[aclass]) == NULL)
244 COPY_HARD_REG_SET (temp, reg_class_contents[aclass]);
245 AND_COMPL_HARD_REG_SET (temp, ira_no_alloc_regs);
246 /* We exclude classes from consideration which are subsets of
247 ACLASS only if ACLASS is an uniform class. */
248 exclude_p = ira_uniform_class_p[aclass];
249 classes.num = 0;
250 for (i = 0; i < ira_important_classes_num; i++)
252 cl = ira_important_classes[i];
253 if (exclude_p)
255 /* Exclude non-uniform classes which are subsets of
256 ACLASS. */
257 COPY_HARD_REG_SET (temp2, reg_class_contents[cl]);
258 AND_COMPL_HARD_REG_SET (temp2, ira_no_alloc_regs);
259 if (hard_reg_set_subset_p (temp2, temp) && cl != aclass)
260 continue;
262 classes.classes[classes.num++] = cl;
264 slot = cost_classes_htab.find_slot (&classes, INSERT);
265 if (*slot == NULL)
267 classes_ptr = setup_cost_classes (&classes);
268 *slot = classes_ptr;
270 classes_ptr = cost_classes_aclass_cache[aclass] = (cost_classes_t) *slot;
272 regno_cost_classes[regno] = classes_ptr;
275 /* Setup cost classes for pseudo REGNO with MODE. Usage of MODE can
276 decrease number of cost classes for the pseudo, if hard registers
277 of some important classes can not hold a value of MODE. So the
278 pseudo can not get hard register of some important classes and cost
279 calculation for such important classes is only waisting CPU
280 time. */
281 static void
282 setup_regno_cost_classes_by_mode (int regno, enum machine_mode mode)
284 static struct cost_classes classes;
285 cost_classes_t classes_ptr;
286 enum reg_class cl;
287 int i;
288 cost_classes **slot;
289 HARD_REG_SET temp;
291 if ((classes_ptr = cost_classes_mode_cache[mode]) == NULL)
293 classes.num = 0;
294 for (i = 0; i < ira_important_classes_num; i++)
296 cl = ira_important_classes[i];
297 COPY_HARD_REG_SET (temp, ira_prohibited_class_mode_regs[cl][mode]);
298 IOR_HARD_REG_SET (temp, ira_no_alloc_regs);
299 if (hard_reg_set_subset_p (reg_class_contents[cl], temp))
300 continue;
301 classes.classes[classes.num++] = cl;
303 slot = cost_classes_htab.find_slot (&classes, INSERT);
304 if (*slot == NULL)
306 classes_ptr = setup_cost_classes (&classes);
307 *slot = classes_ptr;
309 else
310 classes_ptr = (cost_classes_t) *slot;
311 cost_classes_mode_cache[mode] = (cost_classes_t) *slot;
313 regno_cost_classes[regno] = classes_ptr;
316 /* Finilize info about the cost classes for each pseudo. */
317 static void
318 finish_regno_cost_classes (void)
320 ira_free (regno_cost_classes);
321 cost_classes_htab.dispose ();
326 /* Compute the cost of loading X into (if TO_P is TRUE) or from (if
327 TO_P is FALSE) a register of class RCLASS in mode MODE. X must not
328 be a pseudo register. */
329 static int
330 copy_cost (rtx x, enum machine_mode mode, reg_class_t rclass, bool to_p,
331 secondary_reload_info *prev_sri)
333 secondary_reload_info sri;
334 reg_class_t secondary_class = NO_REGS;
336 /* If X is a SCRATCH, there is actually nothing to move since we are
337 assuming optimal allocation. */
338 if (GET_CODE (x) == SCRATCH)
339 return 0;
341 /* Get the class we will actually use for a reload. */
342 rclass = targetm.preferred_reload_class (x, rclass);
344 /* If we need a secondary reload for an intermediate, the cost is
345 that to load the input into the intermediate register, then to
346 copy it. */
347 sri.prev_sri = prev_sri;
348 sri.extra_cost = 0;
349 secondary_class = targetm.secondary_reload (to_p, x, rclass, mode, &sri);
351 if (secondary_class != NO_REGS)
353 ira_init_register_move_cost_if_necessary (mode);
354 return (ira_register_move_cost[mode][(int) secondary_class][(int) rclass]
355 + sri.extra_cost
356 + copy_cost (x, mode, secondary_class, to_p, &sri));
359 /* For memory, use the memory move cost, for (hard) registers, use
360 the cost to move between the register classes, and use 2 for
361 everything else (constants). */
362 if (MEM_P (x) || rclass == NO_REGS)
363 return sri.extra_cost
364 + ira_memory_move_cost[mode][(int) rclass][to_p != 0];
365 else if (REG_P (x))
367 reg_class_t x_class = REGNO_REG_CLASS (REGNO (x));
369 ira_init_register_move_cost_if_necessary (mode);
370 return (sri.extra_cost
371 + ira_register_move_cost[mode][(int) x_class][(int) rclass]);
373 else
374 /* If this is a constant, we may eventually want to call rtx_cost
375 here. */
376 return sri.extra_cost + COSTS_N_INSNS (1);
381 /* Record the cost of using memory or hard registers of various
382 classes for the operands in INSN.
384 N_ALTS is the number of alternatives.
385 N_OPS is the number of operands.
386 OPS is an array of the operands.
387 MODES are the modes of the operands, in case any are VOIDmode.
388 CONSTRAINTS are the constraints to use for the operands. This array
389 is modified by this procedure.
391 This procedure works alternative by alternative. For each
392 alternative we assume that we will be able to allocate all allocnos
393 to their ideal register class and calculate the cost of using that
394 alternative. Then we compute, for each operand that is a
395 pseudo-register, the cost of having the allocno allocated to each
396 register class and using it in that alternative. To this cost is
397 added the cost of the alternative.
399 The cost of each class for this insn is its lowest cost among all
400 the alternatives. */
401 static void
402 record_reg_classes (int n_alts, int n_ops, rtx *ops,
403 enum machine_mode *modes, const char **constraints,
404 rtx insn, enum reg_class *pref)
406 int alt;
407 int i, j, k;
408 int insn_allows_mem[MAX_RECOG_OPERANDS];
410 for (i = 0; i < n_ops; i++)
411 insn_allows_mem[i] = 0;
413 /* Process each alternative, each time minimizing an operand's cost
414 with the cost for each operand in that alternative. */
415 for (alt = 0; alt < n_alts; alt++)
417 enum reg_class classes[MAX_RECOG_OPERANDS];
418 int allows_mem[MAX_RECOG_OPERANDS];
419 enum reg_class rclass;
420 int alt_fail = 0;
421 int alt_cost = 0, op_cost_add;
423 if (!recog_data.alternative_enabled_p[alt])
425 for (i = 0; i < recog_data.n_operands; i++)
426 constraints[i] = skip_alternative (constraints[i]);
428 continue;
431 for (i = 0; i < n_ops; i++)
433 unsigned char c;
434 const char *p = constraints[i];
435 rtx op = ops[i];
436 enum machine_mode mode = modes[i];
437 int allows_addr = 0;
438 int win = 0;
440 /* Initially show we know nothing about the register class. */
441 classes[i] = NO_REGS;
442 allows_mem[i] = 0;
444 /* If this operand has no constraints at all, we can
445 conclude nothing about it since anything is valid. */
446 if (*p == 0)
448 if (REG_P (op) && REGNO (op) >= FIRST_PSEUDO_REGISTER)
449 memset (this_op_costs[i], 0, struct_costs_size);
450 continue;
453 /* If this alternative is only relevant when this operand
454 matches a previous operand, we do different things
455 depending on whether this operand is a allocno-reg or not.
456 We must process any modifiers for the operand before we
457 can make this test. */
458 while (*p == '%' || *p == '=' || *p == '+' || *p == '&')
459 p++;
461 if (p[0] >= '0' && p[0] <= '0' + i && (p[1] == ',' || p[1] == 0))
463 /* Copy class and whether memory is allowed from the
464 matching alternative. Then perform any needed cost
465 computations and/or adjustments. */
466 j = p[0] - '0';
467 classes[i] = classes[j];
468 allows_mem[i] = allows_mem[j];
469 if (allows_mem[i])
470 insn_allows_mem[i] = 1;
472 if (! REG_P (op) || REGNO (op) < FIRST_PSEUDO_REGISTER)
474 /* If this matches the other operand, we have no
475 added cost and we win. */
476 if (rtx_equal_p (ops[j], op))
477 win = 1;
478 /* If we can put the other operand into a register,
479 add to the cost of this alternative the cost to
480 copy this operand to the register used for the
481 other operand. */
482 else if (classes[j] != NO_REGS)
484 alt_cost += copy_cost (op, mode, classes[j], 1, NULL);
485 win = 1;
488 else if (! REG_P (ops[j])
489 || REGNO (ops[j]) < FIRST_PSEUDO_REGISTER)
491 /* This op is an allocno but the one it matches is
492 not. */
494 /* If we can't put the other operand into a
495 register, this alternative can't be used. */
497 if (classes[j] == NO_REGS)
498 alt_fail = 1;
499 /* Otherwise, add to the cost of this alternative
500 the cost to copy the other operand to the hard
501 register used for this operand. */
502 else
503 alt_cost += copy_cost (ops[j], mode, classes[j], 1, NULL);
505 else
507 /* The costs of this operand are not the same as the
508 other operand since move costs are not symmetric.
509 Moreover, if we cannot tie them, this alternative
510 needs to do a copy, which is one insn. */
511 struct costs *pp = this_op_costs[i];
512 int *pp_costs = pp->cost;
513 cost_classes_t cost_classes_ptr
514 = regno_cost_classes[REGNO (op)];
515 enum reg_class *cost_classes = cost_classes_ptr->classes;
516 bool in_p = recog_data.operand_type[i] != OP_OUT;
517 bool out_p = recog_data.operand_type[i] != OP_IN;
518 enum reg_class op_class = classes[i];
519 move_table *move_in_cost, *move_out_cost;
521 ira_init_register_move_cost_if_necessary (mode);
522 if (! in_p)
524 ira_assert (out_p);
525 move_out_cost = ira_may_move_out_cost[mode];
526 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
528 rclass = cost_classes[k];
529 pp_costs[k]
530 = move_out_cost[op_class][rclass] * frequency;
533 else if (! out_p)
535 ira_assert (in_p);
536 move_in_cost = ira_may_move_in_cost[mode];
537 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
539 rclass = cost_classes[k];
540 pp_costs[k]
541 = move_in_cost[rclass][op_class] * frequency;
544 else
546 move_in_cost = ira_may_move_in_cost[mode];
547 move_out_cost = ira_may_move_out_cost[mode];
548 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
550 rclass = cost_classes[k];
551 pp_costs[k] = ((move_in_cost[rclass][op_class]
552 + move_out_cost[op_class][rclass])
553 * frequency);
557 /* If the alternative actually allows memory, make
558 things a bit cheaper since we won't need an extra
559 insn to load it. */
560 pp->mem_cost
561 = ((out_p ? ira_memory_move_cost[mode][op_class][0] : 0)
562 + (in_p ? ira_memory_move_cost[mode][op_class][1] : 0)
563 - allows_mem[i]) * frequency;
565 /* If we have assigned a class to this allocno in
566 our first pass, add a cost to this alternative
567 corresponding to what we would add if this
568 allocno were not in the appropriate class. */
569 if (pref)
571 enum reg_class pref_class = pref[COST_INDEX (REGNO (op))];
573 if (pref_class == NO_REGS)
574 alt_cost
575 += ((out_p
576 ? ira_memory_move_cost[mode][op_class][0] : 0)
577 + (in_p
578 ? ira_memory_move_cost[mode][op_class][1]
579 : 0));
580 else if (ira_reg_class_intersect
581 [pref_class][op_class] == NO_REGS)
582 alt_cost
583 += ira_register_move_cost[mode][pref_class][op_class];
585 if (REGNO (ops[i]) != REGNO (ops[j])
586 && ! find_reg_note (insn, REG_DEAD, op))
587 alt_cost += 2;
589 /* This is in place of ordinary cost computation for
590 this operand, so skip to the end of the
591 alternative (should be just one character). */
592 while (*p && *p++ != ',')
595 constraints[i] = p;
596 continue;
600 /* Scan all the constraint letters. See if the operand
601 matches any of the constraints. Collect the valid
602 register classes and see if this operand accepts
603 memory. */
604 while ((c = *p))
606 switch (c)
608 case ',':
609 break;
610 case '*':
611 /* Ignore the next letter for this pass. */
612 c = *++p;
613 break;
615 case '?':
616 alt_cost += 2;
617 case '!': case '#': case '&':
618 case '0': case '1': case '2': case '3': case '4':
619 case '5': case '6': case '7': case '8': case '9':
620 break;
622 case 'p':
623 allows_addr = 1;
624 win = address_operand (op, GET_MODE (op));
625 /* We know this operand is an address, so we want it
626 to be allocated to a register that can be the
627 base of an address, i.e. BASE_REG_CLASS. */
628 classes[i]
629 = ira_reg_class_subunion[classes[i]]
630 [base_reg_class (VOIDmode, ADDR_SPACE_GENERIC,
631 ADDRESS, SCRATCH)];
632 break;
634 case 'm': case 'o': case 'V':
635 /* It doesn't seem worth distinguishing between
636 offsettable and non-offsettable addresses
637 here. */
638 insn_allows_mem[i] = allows_mem[i] = 1;
639 if (MEM_P (op))
640 win = 1;
641 break;
643 case '<':
644 if (MEM_P (op)
645 && (GET_CODE (XEXP (op, 0)) == PRE_DEC
646 || GET_CODE (XEXP (op, 0)) == POST_DEC))
647 win = 1;
648 break;
650 case '>':
651 if (MEM_P (op)
652 && (GET_CODE (XEXP (op, 0)) == PRE_INC
653 || GET_CODE (XEXP (op, 0)) == POST_INC))
654 win = 1;
655 break;
657 case 'E':
658 case 'F':
659 if (CONST_DOUBLE_AS_FLOAT_P (op)
660 || (GET_CODE (op) == CONST_VECTOR
661 && (GET_MODE_CLASS (GET_MODE (op))
662 == MODE_VECTOR_FLOAT)))
663 win = 1;
664 break;
666 case 'G':
667 case 'H':
668 if (CONST_DOUBLE_AS_FLOAT_P (op)
669 && CONST_DOUBLE_OK_FOR_CONSTRAINT_P (op, c, p))
670 win = 1;
671 break;
673 case 's':
674 if (CONST_SCALAR_INT_P (op))
675 break;
677 case 'i':
678 if (CONSTANT_P (op)
679 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op)))
680 win = 1;
681 break;
683 case 'n':
684 if (CONST_SCALAR_INT_P (op))
685 win = 1;
686 break;
688 case 'I':
689 case 'J':
690 case 'K':
691 case 'L':
692 case 'M':
693 case 'N':
694 case 'O':
695 case 'P':
696 if (CONST_INT_P (op)
697 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), c, p))
698 win = 1;
699 break;
701 case 'X':
702 win = 1;
703 break;
705 case 'g':
706 if (MEM_P (op)
707 || (CONSTANT_P (op)
708 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))))
709 win = 1;
710 insn_allows_mem[i] = allows_mem[i] = 1;
711 case 'r':
712 classes[i] = ira_reg_class_subunion[classes[i]][GENERAL_REGS];
713 break;
715 default:
716 if (REG_CLASS_FROM_CONSTRAINT (c, p) != NO_REGS)
717 classes[i] = ira_reg_class_subunion[classes[i]]
718 [REG_CLASS_FROM_CONSTRAINT (c, p)];
719 #ifdef EXTRA_CONSTRAINT_STR
720 else if (EXTRA_CONSTRAINT_STR (op, c, p))
721 win = 1;
723 if (EXTRA_MEMORY_CONSTRAINT (c, p))
725 /* Every MEM can be reloaded to fit. */
726 insn_allows_mem[i] = allows_mem[i] = 1;
727 if (MEM_P (op))
728 win = 1;
730 if (EXTRA_ADDRESS_CONSTRAINT (c, p))
732 /* Every address can be reloaded to fit. */
733 allows_addr = 1;
734 if (address_operand (op, GET_MODE (op)))
735 win = 1;
736 /* We know this operand is an address, so we
737 want it to be allocated to a hard register
738 that can be the base of an address,
739 i.e. BASE_REG_CLASS. */
740 classes[i]
741 = ira_reg_class_subunion[classes[i]]
742 [base_reg_class (VOIDmode, ADDR_SPACE_GENERIC,
743 ADDRESS, SCRATCH)];
745 #endif
746 break;
748 p += CONSTRAINT_LEN (c, p);
749 if (c == ',')
750 break;
753 constraints[i] = p;
755 /* How we account for this operand now depends on whether it
756 is a pseudo register or not. If it is, we first check if
757 any register classes are valid. If not, we ignore this
758 alternative, since we want to assume that all allocnos get
759 allocated for register preferencing. If some register
760 class is valid, compute the costs of moving the allocno
761 into that class. */
762 if (REG_P (op) && REGNO (op) >= FIRST_PSEUDO_REGISTER)
764 if (classes[i] == NO_REGS)
766 /* We must always fail if the operand is a REG, but
767 we did not find a suitable class.
769 Otherwise we may perform an uninitialized read
770 from this_op_costs after the `continue' statement
771 below. */
772 alt_fail = 1;
774 else
776 unsigned int regno = REGNO (op);
777 struct costs *pp = this_op_costs[i];
778 int *pp_costs = pp->cost;
779 cost_classes_t cost_classes_ptr = regno_cost_classes[regno];
780 enum reg_class *cost_classes = cost_classes_ptr->classes;
781 bool in_p = recog_data.operand_type[i] != OP_OUT;
782 bool out_p = recog_data.operand_type[i] != OP_IN;
783 enum reg_class op_class = classes[i];
784 move_table *move_in_cost, *move_out_cost;
786 ira_init_register_move_cost_if_necessary (mode);
787 if (! in_p)
789 ira_assert (out_p);
790 move_out_cost = ira_may_move_out_cost[mode];
791 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
793 rclass = cost_classes[k];
794 pp_costs[k]
795 = move_out_cost[op_class][rclass] * frequency;
798 else if (! out_p)
800 ira_assert (in_p);
801 move_in_cost = ira_may_move_in_cost[mode];
802 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
804 rclass = cost_classes[k];
805 pp_costs[k]
806 = move_in_cost[rclass][op_class] * frequency;
809 else
811 move_in_cost = ira_may_move_in_cost[mode];
812 move_out_cost = ira_may_move_out_cost[mode];
813 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
815 rclass = cost_classes[k];
816 pp_costs[k] = ((move_in_cost[rclass][op_class]
817 + move_out_cost[op_class][rclass])
818 * frequency);
822 /* If the alternative actually allows memory, make
823 things a bit cheaper since we won't need an extra
824 insn to load it. */
825 pp->mem_cost
826 = ((out_p ? ira_memory_move_cost[mode][op_class][0] : 0)
827 + (in_p ? ira_memory_move_cost[mode][op_class][1] : 0)
828 - allows_mem[i]) * frequency;
829 /* If we have assigned a class to this allocno in
830 our first pass, add a cost to this alternative
831 corresponding to what we would add if this
832 allocno were not in the appropriate class. */
833 if (pref)
835 enum reg_class pref_class = pref[COST_INDEX (REGNO (op))];
837 if (pref_class == NO_REGS)
838 alt_cost
839 += ((out_p
840 ? ira_memory_move_cost[mode][op_class][0] : 0)
841 + (in_p
842 ? ira_memory_move_cost[mode][op_class][1]
843 : 0));
844 else if (ira_reg_class_intersect[pref_class][op_class]
845 == NO_REGS)
846 alt_cost += ira_register_move_cost[mode][pref_class][op_class];
851 /* Otherwise, if this alternative wins, either because we
852 have already determined that or if we have a hard
853 register of the proper class, there is no cost for this
854 alternative. */
855 else if (win || (REG_P (op)
856 && reg_fits_class_p (op, classes[i],
857 0, GET_MODE (op))))
860 /* If registers are valid, the cost of this alternative
861 includes copying the object to and/or from a
862 register. */
863 else if (classes[i] != NO_REGS)
865 if (recog_data.operand_type[i] != OP_OUT)
866 alt_cost += copy_cost (op, mode, classes[i], 1, NULL);
868 if (recog_data.operand_type[i] != OP_IN)
869 alt_cost += copy_cost (op, mode, classes[i], 0, NULL);
871 /* The only other way this alternative can be used is if
872 this is a constant that could be placed into memory. */
873 else if (CONSTANT_P (op) && (allows_addr || allows_mem[i]))
874 alt_cost += ira_memory_move_cost[mode][classes[i]][1];
875 else
876 alt_fail = 1;
879 if (alt_fail)
880 continue;
882 op_cost_add = alt_cost * frequency;
883 /* Finally, update the costs with the information we've
884 calculated about this alternative. */
885 for (i = 0; i < n_ops; i++)
886 if (REG_P (ops[i]) && REGNO (ops[i]) >= FIRST_PSEUDO_REGISTER)
888 struct costs *pp = op_costs[i], *qq = this_op_costs[i];
889 int *pp_costs = pp->cost, *qq_costs = qq->cost;
890 int scale = 1 + (recog_data.operand_type[i] == OP_INOUT);
891 cost_classes_t cost_classes_ptr
892 = regno_cost_classes[REGNO (ops[i])];
894 pp->mem_cost = MIN (pp->mem_cost,
895 (qq->mem_cost + op_cost_add) * scale);
897 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
898 pp_costs[k]
899 = MIN (pp_costs[k], (qq_costs[k] + op_cost_add) * scale);
903 if (allocno_p)
904 for (i = 0; i < n_ops; i++)
906 ira_allocno_t a;
907 rtx op = ops[i];
909 if (! REG_P (op) || REGNO (op) < FIRST_PSEUDO_REGISTER)
910 continue;
911 a = ira_curr_regno_allocno_map [REGNO (op)];
912 if (! ALLOCNO_BAD_SPILL_P (a) && insn_allows_mem[i] == 0)
913 ALLOCNO_BAD_SPILL_P (a) = true;
920 /* Wrapper around REGNO_OK_FOR_INDEX_P, to allow pseudo registers. */
921 static inline bool
922 ok_for_index_p_nonstrict (rtx reg)
924 unsigned regno = REGNO (reg);
926 return regno >= FIRST_PSEUDO_REGISTER || REGNO_OK_FOR_INDEX_P (regno);
929 /* A version of regno_ok_for_base_p for use here, when all
930 pseudo-registers should count as OK. Arguments as for
931 regno_ok_for_base_p. */
932 static inline bool
933 ok_for_base_p_nonstrict (rtx reg, enum machine_mode mode, addr_space_t as,
934 enum rtx_code outer_code, enum rtx_code index_code)
936 unsigned regno = REGNO (reg);
938 if (regno >= FIRST_PSEUDO_REGISTER)
939 return true;
940 return ok_for_base_p_1 (regno, mode, as, outer_code, index_code);
943 /* Record the pseudo registers we must reload into hard registers in a
944 subexpression of a memory address, X.
946 If CONTEXT is 0, we are looking at the base part of an address,
947 otherwise we are looking at the index part.
949 MODE and AS are the mode and address space of the memory reference;
950 OUTER_CODE and INDEX_CODE give the context that the rtx appears in.
951 These four arguments are passed down to base_reg_class.
953 SCALE is twice the amount to multiply the cost by (it is twice so
954 we can represent half-cost adjustments). */
955 static void
956 record_address_regs (enum machine_mode mode, addr_space_t as, rtx x,
957 int context, enum rtx_code outer_code,
958 enum rtx_code index_code, int scale)
960 enum rtx_code code = GET_CODE (x);
961 enum reg_class rclass;
963 if (context == 1)
964 rclass = INDEX_REG_CLASS;
965 else
966 rclass = base_reg_class (mode, as, outer_code, index_code);
968 switch (code)
970 case CONST_INT:
971 case CONST:
972 case CC0:
973 case PC:
974 case SYMBOL_REF:
975 case LABEL_REF:
976 return;
978 case PLUS:
979 /* When we have an address that is a sum, we must determine
980 whether registers are "base" or "index" regs. If there is a
981 sum of two registers, we must choose one to be the "base".
982 Luckily, we can use the REG_POINTER to make a good choice
983 most of the time. We only need to do this on machines that
984 can have two registers in an address and where the base and
985 index register classes are different.
987 ??? This code used to set REGNO_POINTER_FLAG in some cases,
988 but that seems bogus since it should only be set when we are
989 sure the register is being used as a pointer. */
991 rtx arg0 = XEXP (x, 0);
992 rtx arg1 = XEXP (x, 1);
993 enum rtx_code code0 = GET_CODE (arg0);
994 enum rtx_code code1 = GET_CODE (arg1);
996 /* Look inside subregs. */
997 if (code0 == SUBREG)
998 arg0 = SUBREG_REG (arg0), code0 = GET_CODE (arg0);
999 if (code1 == SUBREG)
1000 arg1 = SUBREG_REG (arg1), code1 = GET_CODE (arg1);
1002 /* If this machine only allows one register per address, it
1003 must be in the first operand. */
1004 if (MAX_REGS_PER_ADDRESS == 1)
1005 record_address_regs (mode, as, arg0, 0, PLUS, code1, scale);
1007 /* If index and base registers are the same on this machine,
1008 just record registers in any non-constant operands. We
1009 assume here, as well as in the tests below, that all
1010 addresses are in canonical form. */
1011 else if (INDEX_REG_CLASS
1012 == base_reg_class (VOIDmode, as, PLUS, SCRATCH))
1014 record_address_regs (mode, as, arg0, context, PLUS, code1, scale);
1015 if (! CONSTANT_P (arg1))
1016 record_address_regs (mode, as, arg1, context, PLUS, code0, scale);
1019 /* If the second operand is a constant integer, it doesn't
1020 change what class the first operand must be. */
1021 else if (CONST_SCALAR_INT_P (arg1))
1022 record_address_regs (mode, as, arg0, context, PLUS, code1, scale);
1023 /* If the second operand is a symbolic constant, the first
1024 operand must be an index register. */
1025 else if (code1 == SYMBOL_REF || code1 == CONST || code1 == LABEL_REF)
1026 record_address_regs (mode, as, arg0, 1, PLUS, code1, scale);
1027 /* If both operands are registers but one is already a hard
1028 register of index or reg-base class, give the other the
1029 class that the hard register is not. */
1030 else if (code0 == REG && code1 == REG
1031 && REGNO (arg0) < FIRST_PSEUDO_REGISTER
1032 && (ok_for_base_p_nonstrict (arg0, mode, as, PLUS, REG)
1033 || ok_for_index_p_nonstrict (arg0)))
1034 record_address_regs (mode, as, arg1,
1035 ok_for_base_p_nonstrict (arg0, mode, as,
1036 PLUS, REG) ? 1 : 0,
1037 PLUS, REG, scale);
1038 else if (code0 == REG && code1 == REG
1039 && REGNO (arg1) < FIRST_PSEUDO_REGISTER
1040 && (ok_for_base_p_nonstrict (arg1, mode, as, PLUS, REG)
1041 || ok_for_index_p_nonstrict (arg1)))
1042 record_address_regs (mode, as, arg0,
1043 ok_for_base_p_nonstrict (arg1, mode, as,
1044 PLUS, REG) ? 1 : 0,
1045 PLUS, REG, scale);
1046 /* If one operand is known to be a pointer, it must be the
1047 base with the other operand the index. Likewise if the
1048 other operand is a MULT. */
1049 else if ((code0 == REG && REG_POINTER (arg0)) || code1 == MULT)
1051 record_address_regs (mode, as, arg0, 0, PLUS, code1, scale);
1052 record_address_regs (mode, as, arg1, 1, PLUS, code0, scale);
1054 else if ((code1 == REG && REG_POINTER (arg1)) || code0 == MULT)
1056 record_address_regs (mode, as, arg0, 1, PLUS, code1, scale);
1057 record_address_regs (mode, as, arg1, 0, PLUS, code0, scale);
1059 /* Otherwise, count equal chances that each might be a base or
1060 index register. This case should be rare. */
1061 else
1063 record_address_regs (mode, as, arg0, 0, PLUS, code1, scale / 2);
1064 record_address_regs (mode, as, arg0, 1, PLUS, code1, scale / 2);
1065 record_address_regs (mode, as, arg1, 0, PLUS, code0, scale / 2);
1066 record_address_regs (mode, as, arg1, 1, PLUS, code0, scale / 2);
1069 break;
1071 /* Double the importance of an allocno that is incremented or
1072 decremented, since it would take two extra insns if it ends
1073 up in the wrong place. */
1074 case POST_MODIFY:
1075 case PRE_MODIFY:
1076 record_address_regs (mode, as, XEXP (x, 0), 0, code,
1077 GET_CODE (XEXP (XEXP (x, 1), 1)), 2 * scale);
1078 if (REG_P (XEXP (XEXP (x, 1), 1)))
1079 record_address_regs (mode, as, XEXP (XEXP (x, 1), 1), 1, code, REG,
1080 2 * scale);
1081 break;
1083 case POST_INC:
1084 case PRE_INC:
1085 case POST_DEC:
1086 case PRE_DEC:
1087 /* Double the importance of an allocno that is incremented or
1088 decremented, since it would take two extra insns if it ends
1089 up in the wrong place. */
1090 record_address_regs (mode, as, XEXP (x, 0), 0, code, SCRATCH, 2 * scale);
1091 break;
1093 case REG:
1095 struct costs *pp;
1096 int *pp_costs;
1097 enum reg_class i;
1098 int k, regno, add_cost;
1099 cost_classes_t cost_classes_ptr;
1100 enum reg_class *cost_classes;
1101 move_table *move_in_cost;
1103 if (REGNO (x) < FIRST_PSEUDO_REGISTER)
1104 break;
1106 regno = REGNO (x);
1107 if (allocno_p)
1108 ALLOCNO_BAD_SPILL_P (ira_curr_regno_allocno_map[regno]) = true;
1109 pp = COSTS (costs, COST_INDEX (regno));
1110 add_cost = (ira_memory_move_cost[Pmode][rclass][1] * scale) / 2;
1111 if (INT_MAX - add_cost < pp->mem_cost)
1112 pp->mem_cost = INT_MAX;
1113 else
1114 pp->mem_cost += add_cost;
1115 cost_classes_ptr = regno_cost_classes[regno];
1116 cost_classes = cost_classes_ptr->classes;
1117 pp_costs = pp->cost;
1118 ira_init_register_move_cost_if_necessary (Pmode);
1119 move_in_cost = ira_may_move_in_cost[Pmode];
1120 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
1122 i = cost_classes[k];
1123 add_cost = (move_in_cost[i][rclass] * scale) / 2;
1124 if (INT_MAX - add_cost < pp_costs[k])
1125 pp_costs[k] = INT_MAX;
1126 else
1127 pp_costs[k] += add_cost;
1130 break;
1132 default:
1134 const char *fmt = GET_RTX_FORMAT (code);
1135 int i;
1136 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1137 if (fmt[i] == 'e')
1138 record_address_regs (mode, as, XEXP (x, i), context, code, SCRATCH,
1139 scale);
1146 /* Calculate the costs of insn operands. */
1147 static void
1148 record_operand_costs (rtx insn, enum reg_class *pref)
1150 const char *constraints[MAX_RECOG_OPERANDS];
1151 enum machine_mode modes[MAX_RECOG_OPERANDS];
1152 rtx ops[MAX_RECOG_OPERANDS];
1153 rtx set;
1154 int i;
1156 for (i = 0; i < recog_data.n_operands; i++)
1158 constraints[i] = recog_data.constraints[i];
1159 modes[i] = recog_data.operand_mode[i];
1162 /* If we get here, we are set up to record the costs of all the
1163 operands for this insn. Start by initializing the costs. Then
1164 handle any address registers. Finally record the desired classes
1165 for any allocnos, doing it twice if some pair of operands are
1166 commutative. */
1167 for (i = 0; i < recog_data.n_operands; i++)
1169 memcpy (op_costs[i], init_cost, struct_costs_size);
1171 ops[i] = recog_data.operand[i];
1172 if (GET_CODE (recog_data.operand[i]) == SUBREG)
1173 recog_data.operand[i] = SUBREG_REG (recog_data.operand[i]);
1175 if (MEM_P (recog_data.operand[i]))
1176 record_address_regs (GET_MODE (recog_data.operand[i]),
1177 MEM_ADDR_SPACE (recog_data.operand[i]),
1178 XEXP (recog_data.operand[i], 0),
1179 0, MEM, SCRATCH, frequency * 2);
1180 else if (constraints[i][0] == 'p'
1181 || EXTRA_ADDRESS_CONSTRAINT (constraints[i][0],
1182 constraints[i]))
1183 record_address_regs (VOIDmode, ADDR_SPACE_GENERIC,
1184 recog_data.operand[i], 0, ADDRESS, SCRATCH,
1185 frequency * 2);
1188 /* Check for commutative in a separate loop so everything will have
1189 been initialized. We must do this even if one operand is a
1190 constant--see addsi3 in m68k.md. */
1191 for (i = 0; i < (int) recog_data.n_operands - 1; i++)
1192 if (constraints[i][0] == '%')
1194 const char *xconstraints[MAX_RECOG_OPERANDS];
1195 int j;
1197 /* Handle commutative operands by swapping the constraints.
1198 We assume the modes are the same. */
1199 for (j = 0; j < recog_data.n_operands; j++)
1200 xconstraints[j] = constraints[j];
1202 xconstraints[i] = constraints[i+1];
1203 xconstraints[i+1] = constraints[i];
1204 record_reg_classes (recog_data.n_alternatives, recog_data.n_operands,
1205 recog_data.operand, modes,
1206 xconstraints, insn, pref);
1208 record_reg_classes (recog_data.n_alternatives, recog_data.n_operands,
1209 recog_data.operand, modes,
1210 constraints, insn, pref);
1212 /* If this insn is a single set copying operand 1 to operand 0 and
1213 one operand is an allocno with the other a hard reg or an allocno
1214 that prefers a hard register that is in its own register class
1215 then we may want to adjust the cost of that register class to -1.
1217 Avoid the adjustment if the source does not die to avoid
1218 stressing of register allocator by preferrencing two colliding
1219 registers into single class.
1221 Also avoid the adjustment if a copy between hard registers of the
1222 class is expensive (ten times the cost of a default copy is
1223 considered arbitrarily expensive). This avoids losing when the
1224 preferred class is very expensive as the source of a copy
1225 instruction. */
1226 if ((set = single_set (insn)) != NULL_RTX
1227 && ops[0] == SET_DEST (set) && ops[1] == SET_SRC (set))
1229 int regno, other_regno;
1230 rtx dest = SET_DEST (set);
1231 rtx src = SET_SRC (set);
1233 dest = SET_DEST (set);
1234 src = SET_SRC (set);
1235 if (GET_CODE (dest) == SUBREG
1236 && (GET_MODE_SIZE (GET_MODE (dest))
1237 == GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))))
1238 dest = SUBREG_REG (dest);
1239 if (GET_CODE (src) == SUBREG
1240 && (GET_MODE_SIZE (GET_MODE (src))
1241 == GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))))
1242 src = SUBREG_REG (src);
1243 if (REG_P (src) && REG_P (dest)
1244 && find_regno_note (insn, REG_DEAD, REGNO (src))
1245 && (((regno = REGNO (src)) >= FIRST_PSEUDO_REGISTER
1246 && (other_regno = REGNO (dest)) < FIRST_PSEUDO_REGISTER)
1247 || ((regno = REGNO (dest)) >= FIRST_PSEUDO_REGISTER
1248 && (other_regno = REGNO (src)) < FIRST_PSEUDO_REGISTER)))
1250 enum machine_mode mode = GET_MODE (src);
1251 cost_classes_t cost_classes_ptr = regno_cost_classes[regno];
1252 enum reg_class *cost_classes = cost_classes_ptr->classes;
1253 reg_class_t rclass;
1254 int k, nr;
1256 i = regno == (int) REGNO (src) ? 1 : 0;
1257 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
1259 rclass = cost_classes[k];
1260 if (TEST_HARD_REG_BIT (reg_class_contents[rclass], other_regno)
1261 && (reg_class_size[(int) rclass]
1262 == ira_reg_class_max_nregs [(int) rclass][(int) mode]))
1264 if (reg_class_size[rclass] == 1)
1265 op_costs[i]->cost[k] = -frequency;
1266 else
1268 for (nr = 0;
1269 nr < hard_regno_nregs[other_regno][mode];
1270 nr++)
1271 if (! TEST_HARD_REG_BIT (reg_class_contents[rclass],
1272 other_regno + nr))
1273 break;
1275 if (nr == hard_regno_nregs[other_regno][mode])
1276 op_costs[i]->cost[k] = -frequency;
1286 /* Process one insn INSN. Scan it and record each time it would save
1287 code to put a certain allocnos in a certain class. Return the last
1288 insn processed, so that the scan can be continued from there. */
1289 static rtx
1290 scan_one_insn (rtx insn)
1292 enum rtx_code pat_code;
1293 rtx set, note;
1294 int i, k;
1295 bool counted_mem;
1297 if (!NONDEBUG_INSN_P (insn))
1298 return insn;
1300 pat_code = GET_CODE (PATTERN (insn));
1301 if (pat_code == USE || pat_code == CLOBBER || pat_code == ASM_INPUT)
1302 return insn;
1304 counted_mem = false;
1305 set = single_set (insn);
1306 extract_insn (insn);
1308 /* If this insn loads a parameter from its stack slot, then it
1309 represents a savings, rather than a cost, if the parameter is
1310 stored in memory. Record this fact.
1312 Similarly if we're loading other constants from memory (constant
1313 pool, TOC references, small data areas, etc) and this is the only
1314 assignment to the destination pseudo.
1316 Don't do this if SET_SRC (set) isn't a general operand, if it is
1317 a memory requiring special instructions to load it, decreasing
1318 mem_cost might result in it being loaded using the specialized
1319 instruction into a register, then stored into stack and loaded
1320 again from the stack. See PR52208.
1322 Don't do this if SET_SRC (set) has side effect. See PR56124. */
1323 if (set != 0 && REG_P (SET_DEST (set)) && MEM_P (SET_SRC (set))
1324 && (note = find_reg_note (insn, REG_EQUIV, NULL_RTX)) != NULL_RTX
1325 && ((MEM_P (XEXP (note, 0))
1326 && !side_effects_p (SET_SRC (set)))
1327 || (CONSTANT_P (XEXP (note, 0))
1328 && targetm.legitimate_constant_p (GET_MODE (SET_DEST (set)),
1329 XEXP (note, 0))
1330 && REG_N_SETS (REGNO (SET_DEST (set))) == 1))
1331 && general_operand (SET_SRC (set), GET_MODE (SET_SRC (set))))
1333 enum reg_class cl = GENERAL_REGS;
1334 rtx reg = SET_DEST (set);
1335 int num = COST_INDEX (REGNO (reg));
1337 COSTS (costs, num)->mem_cost
1338 -= ira_memory_move_cost[GET_MODE (reg)][cl][1] * frequency;
1339 record_address_regs (GET_MODE (SET_SRC (set)),
1340 MEM_ADDR_SPACE (SET_SRC (set)),
1341 XEXP (SET_SRC (set), 0), 0, MEM, SCRATCH,
1342 frequency * 2);
1343 counted_mem = true;
1346 record_operand_costs (insn, pref);
1348 /* Now add the cost for each operand to the total costs for its
1349 allocno. */
1350 for (i = 0; i < recog_data.n_operands; i++)
1351 if (REG_P (recog_data.operand[i])
1352 && REGNO (recog_data.operand[i]) >= FIRST_PSEUDO_REGISTER)
1354 int regno = REGNO (recog_data.operand[i]);
1355 struct costs *p = COSTS (costs, COST_INDEX (regno));
1356 struct costs *q = op_costs[i];
1357 int *p_costs = p->cost, *q_costs = q->cost;
1358 cost_classes_t cost_classes_ptr = regno_cost_classes[regno];
1359 int add_cost;
1361 /* If the already accounted for the memory "cost" above, don't
1362 do so again. */
1363 if (!counted_mem)
1365 add_cost = q->mem_cost;
1366 if (add_cost > 0 && INT_MAX - add_cost < p->mem_cost)
1367 p->mem_cost = INT_MAX;
1368 else
1369 p->mem_cost += add_cost;
1371 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
1373 add_cost = q_costs[k];
1374 if (add_cost > 0 && INT_MAX - add_cost < p_costs[k])
1375 p_costs[k] = INT_MAX;
1376 else
1377 p_costs[k] += add_cost;
1381 return insn;
1386 /* Print allocnos costs to file F. */
1387 static void
1388 print_allocno_costs (FILE *f)
1390 int k;
1391 ira_allocno_t a;
1392 ira_allocno_iterator ai;
1394 ira_assert (allocno_p);
1395 fprintf (f, "\n");
1396 FOR_EACH_ALLOCNO (a, ai)
1398 int i, rclass;
1399 basic_block bb;
1400 int regno = ALLOCNO_REGNO (a);
1401 cost_classes_t cost_classes_ptr = regno_cost_classes[regno];
1402 enum reg_class *cost_classes = cost_classes_ptr->classes;
1404 i = ALLOCNO_NUM (a);
1405 fprintf (f, " a%d(r%d,", i, regno);
1406 if ((bb = ALLOCNO_LOOP_TREE_NODE (a)->bb) != NULL)
1407 fprintf (f, "b%d", bb->index);
1408 else
1409 fprintf (f, "l%d", ALLOCNO_LOOP_TREE_NODE (a)->loop_num);
1410 fprintf (f, ") costs:");
1411 for (k = 0; k < cost_classes_ptr->num; k++)
1413 rclass = cost_classes[k];
1414 if (contains_reg_of_mode[rclass][PSEUDO_REGNO_MODE (regno)]
1415 #ifdef CANNOT_CHANGE_MODE_CLASS
1416 && ! invalid_mode_change_p (regno, (enum reg_class) rclass)
1417 #endif
1420 fprintf (f, " %s:%d", reg_class_names[rclass],
1421 COSTS (costs, i)->cost[k]);
1422 if (flag_ira_region == IRA_REGION_ALL
1423 || flag_ira_region == IRA_REGION_MIXED)
1424 fprintf (f, ",%d", COSTS (total_allocno_costs, i)->cost[k]);
1427 fprintf (f, " MEM:%i", COSTS (costs, i)->mem_cost);
1428 if (flag_ira_region == IRA_REGION_ALL
1429 || flag_ira_region == IRA_REGION_MIXED)
1430 fprintf (f, ",%d", COSTS (total_allocno_costs, i)->mem_cost);
1431 fprintf (f, "\n");
1435 /* Print pseudo costs to file F. */
1436 static void
1437 print_pseudo_costs (FILE *f)
1439 int regno, k;
1440 int rclass;
1441 cost_classes_t cost_classes_ptr;
1442 enum reg_class *cost_classes;
1444 ira_assert (! allocno_p);
1445 fprintf (f, "\n");
1446 for (regno = max_reg_num () - 1; regno >= FIRST_PSEUDO_REGISTER; regno--)
1448 if (REG_N_REFS (regno) <= 0)
1449 continue;
1450 cost_classes_ptr = regno_cost_classes[regno];
1451 cost_classes = cost_classes_ptr->classes;
1452 fprintf (f, " r%d costs:", regno);
1453 for (k = 0; k < cost_classes_ptr->num; k++)
1455 rclass = cost_classes[k];
1456 if (contains_reg_of_mode[rclass][PSEUDO_REGNO_MODE (regno)]
1457 #ifdef CANNOT_CHANGE_MODE_CLASS
1458 && ! invalid_mode_change_p (regno, (enum reg_class) rclass)
1459 #endif
1461 fprintf (f, " %s:%d", reg_class_names[rclass],
1462 COSTS (costs, regno)->cost[k]);
1464 fprintf (f, " MEM:%i\n", COSTS (costs, regno)->mem_cost);
1468 /* Traverse the BB represented by LOOP_TREE_NODE to update the allocno
1469 costs. */
1470 static void
1471 process_bb_for_costs (basic_block bb)
1473 rtx insn;
1475 frequency = REG_FREQ_FROM_BB (bb);
1476 if (frequency == 0)
1477 frequency = 1;
1478 FOR_BB_INSNS (bb, insn)
1479 insn = scan_one_insn (insn);
1482 /* Traverse the BB represented by LOOP_TREE_NODE to update the allocno
1483 costs. */
1484 static void
1485 process_bb_node_for_costs (ira_loop_tree_node_t loop_tree_node)
1487 basic_block bb;
1489 bb = loop_tree_node->bb;
1490 if (bb != NULL)
1491 process_bb_for_costs (bb);
1494 /* Find costs of register classes and memory for allocnos or pseudos
1495 and their best costs. Set up preferred, alternative and allocno
1496 classes for pseudos. */
1497 static void
1498 find_costs_and_classes (FILE *dump_file)
1500 int i, k, start, max_cost_classes_num;
1501 int pass;
1502 basic_block bb;
1503 enum reg_class *regno_best_class;
1505 init_recog ();
1506 regno_best_class
1507 = (enum reg_class *) ira_allocate (max_reg_num ()
1508 * sizeof (enum reg_class));
1509 for (i = max_reg_num () - 1; i >= FIRST_PSEUDO_REGISTER; i--)
1510 regno_best_class[i] = NO_REGS;
1511 if (!resize_reg_info () && allocno_p
1512 && pseudo_classes_defined_p && flag_expensive_optimizations)
1514 ira_allocno_t a;
1515 ira_allocno_iterator ai;
1517 pref = pref_buffer;
1518 max_cost_classes_num = 1;
1519 FOR_EACH_ALLOCNO (a, ai)
1521 pref[ALLOCNO_NUM (a)] = reg_preferred_class (ALLOCNO_REGNO (a));
1522 setup_regno_cost_classes_by_aclass
1523 (ALLOCNO_REGNO (a), pref[ALLOCNO_NUM (a)]);
1524 max_cost_classes_num
1525 = MAX (max_cost_classes_num,
1526 regno_cost_classes[ALLOCNO_REGNO (a)]->num);
1528 start = 1;
1530 else
1532 pref = NULL;
1533 max_cost_classes_num = ira_important_classes_num;
1534 for (i = max_reg_num () - 1; i >= FIRST_PSEUDO_REGISTER; i--)
1535 if (regno_reg_rtx[i] != NULL_RTX)
1536 setup_regno_cost_classes_by_mode (i, PSEUDO_REGNO_MODE (i));
1537 else
1538 setup_regno_cost_classes_by_aclass (i, ALL_REGS);
1539 start = 0;
1541 if (allocno_p)
1542 /* Clear the flag for the next compiled function. */
1543 pseudo_classes_defined_p = false;
1544 /* Normally we scan the insns once and determine the best class to
1545 use for each allocno. However, if -fexpensive-optimizations are
1546 on, we do so twice, the second time using the tentative best
1547 classes to guide the selection. */
1548 for (pass = start; pass <= flag_expensive_optimizations; pass++)
1550 if ((!allocno_p || internal_flag_ira_verbose > 0) && dump_file)
1551 fprintf (dump_file,
1552 "\nPass %i for finding pseudo/allocno costs\n\n", pass);
1554 if (pass != start)
1556 max_cost_classes_num = 1;
1557 for (i = max_reg_num () - 1; i >= FIRST_PSEUDO_REGISTER; i--)
1559 setup_regno_cost_classes_by_aclass (i, regno_best_class[i]);
1560 max_cost_classes_num
1561 = MAX (max_cost_classes_num, regno_cost_classes[i]->num);
1565 struct_costs_size
1566 = sizeof (struct costs) + sizeof (int) * (max_cost_classes_num - 1);
1567 /* Zero out our accumulation of the cost of each class for each
1568 allocno. */
1569 memset (costs, 0, cost_elements_num * struct_costs_size);
1571 if (allocno_p)
1573 /* Scan the instructions and record each time it would save code
1574 to put a certain allocno in a certain class. */
1575 ira_traverse_loop_tree (true, ira_loop_tree_root,
1576 process_bb_node_for_costs, NULL);
1578 memcpy (total_allocno_costs, costs,
1579 max_struct_costs_size * ira_allocnos_num);
1581 else
1583 basic_block bb;
1585 FOR_EACH_BB (bb)
1586 process_bb_for_costs (bb);
1589 if (pass == 0)
1590 pref = pref_buffer;
1592 /* Now for each allocno look at how desirable each class is and
1593 find which class is preferred. */
1594 for (i = max_reg_num () - 1; i >= FIRST_PSEUDO_REGISTER; i--)
1596 ira_allocno_t a, parent_a;
1597 int rclass, a_num, parent_a_num, add_cost;
1598 ira_loop_tree_node_t parent;
1599 int best_cost, allocno_cost;
1600 enum reg_class best, alt_class;
1601 cost_classes_t cost_classes_ptr = regno_cost_classes[i];
1602 enum reg_class *cost_classes = cost_classes_ptr->classes;
1603 int *i_costs = temp_costs->cost;
1604 int i_mem_cost;
1605 int equiv_savings = regno_equiv_gains[i];
1607 if (! allocno_p)
1609 if (regno_reg_rtx[i] == NULL_RTX)
1610 continue;
1611 memcpy (temp_costs, COSTS (costs, i), struct_costs_size);
1612 i_mem_cost = temp_costs->mem_cost;
1614 else
1616 if (ira_regno_allocno_map[i] == NULL)
1617 continue;
1618 memset (temp_costs, 0, struct_costs_size);
1619 i_mem_cost = 0;
1620 /* Find cost of all allocnos with the same regno. */
1621 for (a = ira_regno_allocno_map[i];
1622 a != NULL;
1623 a = ALLOCNO_NEXT_REGNO_ALLOCNO (a))
1625 int *a_costs, *p_costs;
1627 a_num = ALLOCNO_NUM (a);
1628 if ((flag_ira_region == IRA_REGION_ALL
1629 || flag_ira_region == IRA_REGION_MIXED)
1630 && (parent = ALLOCNO_LOOP_TREE_NODE (a)->parent) != NULL
1631 && (parent_a = parent->regno_allocno_map[i]) != NULL
1632 /* There are no caps yet. */
1633 && bitmap_bit_p (ALLOCNO_LOOP_TREE_NODE
1634 (a)->border_allocnos,
1635 ALLOCNO_NUM (a)))
1637 /* Propagate costs to upper levels in the region
1638 tree. */
1639 parent_a_num = ALLOCNO_NUM (parent_a);
1640 a_costs = COSTS (total_allocno_costs, a_num)->cost;
1641 p_costs = COSTS (total_allocno_costs, parent_a_num)->cost;
1642 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
1644 add_cost = a_costs[k];
1645 if (add_cost > 0 && INT_MAX - add_cost < p_costs[k])
1646 p_costs[k] = INT_MAX;
1647 else
1648 p_costs[k] += add_cost;
1650 add_cost = COSTS (total_allocno_costs, a_num)->mem_cost;
1651 if (add_cost > 0
1652 && (INT_MAX - add_cost
1653 < COSTS (total_allocno_costs,
1654 parent_a_num)->mem_cost))
1655 COSTS (total_allocno_costs, parent_a_num)->mem_cost
1656 = INT_MAX;
1657 else
1658 COSTS (total_allocno_costs, parent_a_num)->mem_cost
1659 += add_cost;
1661 if (i >= first_moveable_pseudo && i < last_moveable_pseudo)
1662 COSTS (total_allocno_costs, parent_a_num)->mem_cost = 0;
1664 a_costs = COSTS (costs, a_num)->cost;
1665 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
1667 add_cost = a_costs[k];
1668 if (add_cost > 0 && INT_MAX - add_cost < i_costs[k])
1669 i_costs[k] = INT_MAX;
1670 else
1671 i_costs[k] += add_cost;
1673 add_cost = COSTS (costs, a_num)->mem_cost;
1674 if (add_cost > 0 && INT_MAX - add_cost < i_mem_cost)
1675 i_mem_cost = INT_MAX;
1676 else
1677 i_mem_cost += add_cost;
1680 if (i >= first_moveable_pseudo && i < last_moveable_pseudo)
1681 i_mem_cost = 0;
1682 else if (equiv_savings < 0)
1683 i_mem_cost = -equiv_savings;
1684 else if (equiv_savings > 0)
1686 i_mem_cost = 0;
1687 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
1688 i_costs[k] += equiv_savings;
1691 best_cost = (1 << (HOST_BITS_PER_INT - 2)) - 1;
1692 best = ALL_REGS;
1693 alt_class = NO_REGS;
1694 /* Find best common class for all allocnos with the same
1695 regno. */
1696 for (k = 0; k < cost_classes_ptr->num; k++)
1698 rclass = cost_classes[k];
1699 /* Ignore classes that are too small or invalid for this
1700 operand. */
1701 if (! contains_reg_of_mode[rclass][PSEUDO_REGNO_MODE (i)]
1702 #ifdef CANNOT_CHANGE_MODE_CLASS
1703 || invalid_mode_change_p (i, (enum reg_class) rclass)
1704 #endif
1706 continue;
1707 if (i_costs[k] < best_cost)
1709 best_cost = i_costs[k];
1710 best = (enum reg_class) rclass;
1712 else if (i_costs[k] == best_cost)
1713 best = ira_reg_class_subunion[best][rclass];
1714 if (pass == flag_expensive_optimizations
1715 /* We still prefer registers to memory even at this
1716 stage if their costs are the same. We will make
1717 a final decision during assigning hard registers
1718 when we have all info including more accurate
1719 costs which might be affected by assigning hard
1720 registers to other pseudos because the pseudos
1721 involved in moves can be coalesced. */
1722 && i_costs[k] <= i_mem_cost
1723 && (reg_class_size[reg_class_subunion[alt_class][rclass]]
1724 > reg_class_size[alt_class]))
1725 alt_class = reg_class_subunion[alt_class][rclass];
1727 alt_class = ira_allocno_class_translate[alt_class];
1728 if (best_cost > i_mem_cost)
1729 regno_aclass[i] = NO_REGS;
1730 else
1732 /* Make the common class the biggest class of best and
1733 alt_class. */
1734 regno_aclass[i]
1735 = ira_reg_class_superunion[best][alt_class];
1736 ira_assert (regno_aclass[i] != NO_REGS
1737 && ira_reg_allocno_class_p[regno_aclass[i]]);
1739 if (pass == flag_expensive_optimizations)
1741 if (best_cost > i_mem_cost)
1742 best = alt_class = NO_REGS;
1743 else if (best == alt_class)
1744 alt_class = NO_REGS;
1745 setup_reg_classes (i, best, alt_class, regno_aclass[i]);
1746 if ((!allocno_p || internal_flag_ira_verbose > 2)
1747 && dump_file != NULL)
1748 fprintf (dump_file,
1749 " r%d: preferred %s, alternative %s, allocno %s\n",
1750 i, reg_class_names[best], reg_class_names[alt_class],
1751 reg_class_names[regno_aclass[i]]);
1753 regno_best_class[i] = best;
1754 if (! allocno_p)
1756 pref[i] = best_cost > i_mem_cost ? NO_REGS : best;
1757 continue;
1759 for (a = ira_regno_allocno_map[i];
1760 a != NULL;
1761 a = ALLOCNO_NEXT_REGNO_ALLOCNO (a))
1763 enum reg_class aclass = regno_aclass[i];
1764 int a_num = ALLOCNO_NUM (a);
1765 int *total_a_costs = COSTS (total_allocno_costs, a_num)->cost;
1766 int *a_costs = COSTS (costs, a_num)->cost;
1768 if (aclass == NO_REGS)
1769 best = NO_REGS;
1770 else
1772 /* Finding best class which is subset of the common
1773 class. */
1774 best_cost = (1 << (HOST_BITS_PER_INT - 2)) - 1;
1775 allocno_cost = best_cost;
1776 best = ALL_REGS;
1777 for (k = 0; k < cost_classes_ptr->num; k++)
1779 rclass = cost_classes[k];
1780 if (! ira_class_subset_p[rclass][aclass])
1781 continue;
1782 /* Ignore classes that are too small or invalid
1783 for this operand. */
1784 if (! contains_reg_of_mode[rclass][PSEUDO_REGNO_MODE (i)]
1785 #ifdef CANNOT_CHANGE_MODE_CLASS
1786 || invalid_mode_change_p (i, (enum reg_class) rclass)
1787 #endif
1790 else if (total_a_costs[k] < best_cost)
1792 best_cost = total_a_costs[k];
1793 allocno_cost = a_costs[k];
1794 best = (enum reg_class) rclass;
1796 else if (total_a_costs[k] == best_cost)
1798 best = ira_reg_class_subunion[best][rclass];
1799 allocno_cost = MAX (allocno_cost, a_costs[k]);
1802 ALLOCNO_CLASS_COST (a) = allocno_cost;
1804 if (internal_flag_ira_verbose > 2 && dump_file != NULL
1805 && (pass == 0 || pref[a_num] != best))
1807 fprintf (dump_file, " a%d (r%d,", a_num, i);
1808 if ((bb = ALLOCNO_LOOP_TREE_NODE (a)->bb) != NULL)
1809 fprintf (dump_file, "b%d", bb->index);
1810 else
1811 fprintf (dump_file, "l%d",
1812 ALLOCNO_LOOP_TREE_NODE (a)->loop_num);
1813 fprintf (dump_file, ") best %s, allocno %s\n",
1814 reg_class_names[best],
1815 reg_class_names[aclass]);
1817 pref[a_num] = best;
1818 if (pass == flag_expensive_optimizations && best != aclass
1819 && ira_class_hard_regs_num[best] > 0
1820 && (ira_reg_class_max_nregs[best][ALLOCNO_MODE (a)]
1821 >= ira_class_hard_regs_num[best]))
1823 int ind = cost_classes_ptr->index[aclass];
1825 ira_assert (ind >= 0);
1826 ira_add_allocno_pref (a, ira_class_hard_regs[best][0],
1827 (a_costs[ind] - ALLOCNO_CLASS_COST (a))
1828 / (ira_register_move_cost
1829 [ALLOCNO_MODE (a)][best][aclass]));
1830 for (k = 0; k < cost_classes_ptr->num; k++)
1831 if (ira_class_subset_p[cost_classes[k]][best])
1832 a_costs[k] = a_costs[ind];
1837 if (internal_flag_ira_verbose > 4 && dump_file)
1839 if (allocno_p)
1840 print_allocno_costs (dump_file);
1841 else
1842 print_pseudo_costs (dump_file);
1843 fprintf (dump_file,"\n");
1846 ira_free (regno_best_class);
1851 /* Process moves involving hard regs to modify allocno hard register
1852 costs. We can do this only after determining allocno class. If a
1853 hard register forms a register class, than moves with the hard
1854 register are already taken into account in class costs for the
1855 allocno. */
1856 static void
1857 process_bb_node_for_hard_reg_moves (ira_loop_tree_node_t loop_tree_node)
1859 int i, freq, src_regno, dst_regno, hard_regno, a_regno;
1860 bool to_p;
1861 ira_allocno_t a, curr_a;
1862 ira_loop_tree_node_t curr_loop_tree_node;
1863 enum reg_class rclass;
1864 basic_block bb;
1865 rtx insn, set, src, dst;
1867 bb = loop_tree_node->bb;
1868 if (bb == NULL)
1869 return;
1870 freq = REG_FREQ_FROM_BB (bb);
1871 if (freq == 0)
1872 freq = 1;
1873 FOR_BB_INSNS (bb, insn)
1875 if (!NONDEBUG_INSN_P (insn))
1876 continue;
1877 set = single_set (insn);
1878 if (set == NULL_RTX)
1879 continue;
1880 dst = SET_DEST (set);
1881 src = SET_SRC (set);
1882 if (! REG_P (dst) || ! REG_P (src))
1883 continue;
1884 dst_regno = REGNO (dst);
1885 src_regno = REGNO (src);
1886 if (dst_regno >= FIRST_PSEUDO_REGISTER
1887 && src_regno < FIRST_PSEUDO_REGISTER)
1889 hard_regno = src_regno;
1890 a = ira_curr_regno_allocno_map[dst_regno];
1891 to_p = true;
1893 else if (src_regno >= FIRST_PSEUDO_REGISTER
1894 && dst_regno < FIRST_PSEUDO_REGISTER)
1896 hard_regno = dst_regno;
1897 a = ira_curr_regno_allocno_map[src_regno];
1898 to_p = false;
1900 else
1901 continue;
1902 rclass = ALLOCNO_CLASS (a);
1903 if (! TEST_HARD_REG_BIT (reg_class_contents[rclass], hard_regno))
1904 continue;
1905 i = ira_class_hard_reg_index[rclass][hard_regno];
1906 if (i < 0)
1907 continue;
1908 a_regno = ALLOCNO_REGNO (a);
1909 for (curr_loop_tree_node = ALLOCNO_LOOP_TREE_NODE (a);
1910 curr_loop_tree_node != NULL;
1911 curr_loop_tree_node = curr_loop_tree_node->parent)
1912 if ((curr_a = curr_loop_tree_node->regno_allocno_map[a_regno]) != NULL)
1913 ira_add_allocno_pref (curr_a, hard_regno, freq);
1915 int cost;
1916 enum reg_class hard_reg_class;
1917 enum machine_mode mode;
1919 mode = ALLOCNO_MODE (a);
1920 hard_reg_class = REGNO_REG_CLASS (hard_regno);
1921 ira_init_register_move_cost_if_necessary (mode);
1922 cost = (to_p ? ira_register_move_cost[mode][hard_reg_class][rclass]
1923 : ira_register_move_cost[mode][rclass][hard_reg_class]) * freq;
1924 ira_allocate_and_set_costs (&ALLOCNO_HARD_REG_COSTS (a), rclass,
1925 ALLOCNO_CLASS_COST (a));
1926 ira_allocate_and_set_costs (&ALLOCNO_CONFLICT_HARD_REG_COSTS (a),
1927 rclass, 0);
1928 ALLOCNO_HARD_REG_COSTS (a)[i] -= cost;
1929 ALLOCNO_CONFLICT_HARD_REG_COSTS (a)[i] -= cost;
1930 ALLOCNO_CLASS_COST (a) = MIN (ALLOCNO_CLASS_COST (a),
1931 ALLOCNO_HARD_REG_COSTS (a)[i]);
1936 /* After we find hard register and memory costs for allocnos, define
1937 its class and modify hard register cost because insns moving
1938 allocno to/from hard registers. */
1939 static void
1940 setup_allocno_class_and_costs (void)
1942 int i, j, n, regno, hard_regno, num;
1943 int *reg_costs;
1944 enum reg_class aclass, rclass;
1945 ira_allocno_t a;
1946 ira_allocno_iterator ai;
1947 cost_classes_t cost_classes_ptr;
1949 ira_assert (allocno_p);
1950 FOR_EACH_ALLOCNO (a, ai)
1952 i = ALLOCNO_NUM (a);
1953 regno = ALLOCNO_REGNO (a);
1954 aclass = regno_aclass[regno];
1955 cost_classes_ptr = regno_cost_classes[regno];
1956 ira_assert (pref[i] == NO_REGS || aclass != NO_REGS);
1957 ALLOCNO_MEMORY_COST (a) = COSTS (costs, i)->mem_cost;
1958 ira_set_allocno_class (a, aclass);
1959 if (aclass == NO_REGS)
1960 continue;
1961 if (optimize && ALLOCNO_CLASS (a) != pref[i])
1963 n = ira_class_hard_regs_num[aclass];
1964 ALLOCNO_HARD_REG_COSTS (a)
1965 = reg_costs = ira_allocate_cost_vector (aclass);
1966 for (j = n - 1; j >= 0; j--)
1968 hard_regno = ira_class_hard_regs[aclass][j];
1969 if (TEST_HARD_REG_BIT (reg_class_contents[pref[i]], hard_regno))
1970 reg_costs[j] = ALLOCNO_CLASS_COST (a);
1971 else
1973 rclass = REGNO_REG_CLASS (hard_regno);
1974 num = cost_classes_ptr->index[rclass];
1975 if (num < 0)
1977 num = cost_classes_ptr->hard_regno_index[hard_regno];
1978 ira_assert (num >= 0);
1980 reg_costs[j] = COSTS (costs, i)->cost[num];
1985 if (optimize)
1986 ira_traverse_loop_tree (true, ira_loop_tree_root,
1987 process_bb_node_for_hard_reg_moves, NULL);
1992 /* Function called once during compiler work. */
1993 void
1994 ira_init_costs_once (void)
1996 int i;
1998 init_cost = NULL;
1999 for (i = 0; i < MAX_RECOG_OPERANDS; i++)
2001 op_costs[i] = NULL;
2002 this_op_costs[i] = NULL;
2004 temp_costs = NULL;
2007 /* Free allocated temporary cost vectors. */
2008 static void
2009 free_ira_costs (void)
2011 int i;
2013 free (init_cost);
2014 init_cost = NULL;
2015 for (i = 0; i < MAX_RECOG_OPERANDS; i++)
2017 free (op_costs[i]);
2018 free (this_op_costs[i]);
2019 op_costs[i] = this_op_costs[i] = NULL;
2021 free (temp_costs);
2022 temp_costs = NULL;
2025 /* This is called each time register related information is
2026 changed. */
2027 void
2028 ira_init_costs (void)
2030 int i;
2032 free_ira_costs ();
2033 max_struct_costs_size
2034 = sizeof (struct costs) + sizeof (int) * (ira_important_classes_num - 1);
2035 /* Don't use ira_allocate because vectors live through several IRA
2036 calls. */
2037 init_cost = (struct costs *) xmalloc (max_struct_costs_size);
2038 init_cost->mem_cost = 1000000;
2039 for (i = 0; i < ira_important_classes_num; i++)
2040 init_cost->cost[i] = 1000000;
2041 for (i = 0; i < MAX_RECOG_OPERANDS; i++)
2043 op_costs[i] = (struct costs *) xmalloc (max_struct_costs_size);
2044 this_op_costs[i] = (struct costs *) xmalloc (max_struct_costs_size);
2046 temp_costs = (struct costs *) xmalloc (max_struct_costs_size);
2049 /* Function called once at the end of compiler work. */
2050 void
2051 ira_finish_costs_once (void)
2053 free_ira_costs ();
2058 /* Common initialization function for ira_costs and
2059 ira_set_pseudo_classes. */
2060 static void
2061 init_costs (void)
2063 init_subregs_of_mode ();
2064 costs = (struct costs *) ira_allocate (max_struct_costs_size
2065 * cost_elements_num);
2066 pref_buffer = (enum reg_class *) ira_allocate (sizeof (enum reg_class)
2067 * cost_elements_num);
2068 regno_aclass = (enum reg_class *) ira_allocate (sizeof (enum reg_class)
2069 * max_reg_num ());
2070 regno_equiv_gains = (int *) ira_allocate (sizeof (int) * max_reg_num ());
2071 memset (regno_equiv_gains, 0, sizeof (int) * max_reg_num ());
2074 /* Common finalization function for ira_costs and
2075 ira_set_pseudo_classes. */
2076 static void
2077 finish_costs (void)
2079 finish_subregs_of_mode ();
2080 ira_free (regno_equiv_gains);
2081 ira_free (regno_aclass);
2082 ira_free (pref_buffer);
2083 ira_free (costs);
2086 /* Entry function which defines register class, memory and hard
2087 register costs for each allocno. */
2088 void
2089 ira_costs (void)
2091 allocno_p = true;
2092 cost_elements_num = ira_allocnos_num;
2093 init_costs ();
2094 total_allocno_costs = (struct costs *) ira_allocate (max_struct_costs_size
2095 * ira_allocnos_num);
2096 initiate_regno_cost_classes ();
2097 calculate_elim_costs_all_insns ();
2098 find_costs_and_classes (ira_dump_file);
2099 setup_allocno_class_and_costs ();
2100 finish_regno_cost_classes ();
2101 finish_costs ();
2102 ira_free (total_allocno_costs);
2105 /* Entry function which defines classes for pseudos.
2106 Set pseudo_classes_defined_p only if DEFINE_PSEUDO_CLASSES is true. */
2107 void
2108 ira_set_pseudo_classes (bool define_pseudo_classes, FILE *dump_file)
2110 allocno_p = false;
2111 internal_flag_ira_verbose = flag_ira_verbose;
2112 cost_elements_num = max_reg_num ();
2113 init_costs ();
2114 initiate_regno_cost_classes ();
2115 find_costs_and_classes (dump_file);
2116 finish_regno_cost_classes ();
2117 if (define_pseudo_classes)
2118 pseudo_classes_defined_p = true;
2120 finish_costs ();
2125 /* Change hard register costs for allocnos which lives through
2126 function calls. This is called only when we found all intersected
2127 calls during building allocno live ranges. */
2128 void
2129 ira_tune_allocno_costs (void)
2131 int j, n, regno;
2132 int cost, min_cost, *reg_costs;
2133 enum reg_class aclass, rclass;
2134 enum machine_mode mode;
2135 ira_allocno_t a;
2136 ira_allocno_iterator ai;
2137 ira_allocno_object_iterator oi;
2138 ira_object_t obj;
2139 bool skip_p;
2141 FOR_EACH_ALLOCNO (a, ai)
2143 aclass = ALLOCNO_CLASS (a);
2144 if (aclass == NO_REGS)
2145 continue;
2146 mode = ALLOCNO_MODE (a);
2147 n = ira_class_hard_regs_num[aclass];
2148 min_cost = INT_MAX;
2149 if (ALLOCNO_CALLS_CROSSED_NUM (a)
2150 != ALLOCNO_CHEAP_CALLS_CROSSED_NUM (a))
2152 ira_allocate_and_set_costs
2153 (&ALLOCNO_HARD_REG_COSTS (a), aclass,
2154 ALLOCNO_CLASS_COST (a));
2155 reg_costs = ALLOCNO_HARD_REG_COSTS (a);
2156 for (j = n - 1; j >= 0; j--)
2158 regno = ira_class_hard_regs[aclass][j];
2159 skip_p = false;
2160 FOR_EACH_ALLOCNO_OBJECT (a, obj, oi)
2162 if (ira_hard_reg_set_intersection_p (regno, mode,
2163 OBJECT_CONFLICT_HARD_REGS
2164 (obj)))
2166 skip_p = true;
2167 break;
2170 if (skip_p)
2171 continue;
2172 rclass = REGNO_REG_CLASS (regno);
2173 cost = 0;
2174 if (ira_hard_reg_set_intersection_p (regno, mode, call_used_reg_set)
2175 || HARD_REGNO_CALL_PART_CLOBBERED (regno, mode))
2176 cost += (ALLOCNO_CALL_FREQ (a)
2177 * (ira_memory_move_cost[mode][rclass][0]
2178 + ira_memory_move_cost[mode][rclass][1]));
2179 #ifdef IRA_HARD_REGNO_ADD_COST_MULTIPLIER
2180 cost += ((ira_memory_move_cost[mode][rclass][0]
2181 + ira_memory_move_cost[mode][rclass][1])
2182 * ALLOCNO_FREQ (a)
2183 * IRA_HARD_REGNO_ADD_COST_MULTIPLIER (regno) / 2);
2184 #endif
2185 if (INT_MAX - cost < reg_costs[j])
2186 reg_costs[j] = INT_MAX;
2187 else
2188 reg_costs[j] += cost;
2189 if (min_cost > reg_costs[j])
2190 min_cost = reg_costs[j];
2193 if (min_cost != INT_MAX)
2194 ALLOCNO_CLASS_COST (a) = min_cost;
2196 /* Some targets allow pseudos to be allocated to unaligned sequences
2197 of hard registers. However, selecting an unaligned sequence can
2198 unnecessarily restrict later allocations. So increase the cost of
2199 unaligned hard regs to encourage the use of aligned hard regs. */
2201 const int nregs = ira_reg_class_max_nregs[aclass][ALLOCNO_MODE (a)];
2203 if (nregs > 1)
2205 ira_allocate_and_set_costs
2206 (&ALLOCNO_HARD_REG_COSTS (a), aclass, ALLOCNO_CLASS_COST (a));
2207 reg_costs = ALLOCNO_HARD_REG_COSTS (a);
2208 for (j = n - 1; j >= 0; j--)
2210 regno = ira_non_ordered_class_hard_regs[aclass][j];
2211 if ((regno % nregs) != 0)
2213 int index = ira_class_hard_reg_index[aclass][regno];
2214 ira_assert (index != -1);
2215 reg_costs[index] += ALLOCNO_FREQ (a);
2223 /* Add COST to the estimated gain for eliminating REGNO with its
2224 equivalence. If COST is zero, record that no such elimination is
2225 possible. */
2227 void
2228 ira_adjust_equiv_reg_cost (unsigned regno, int cost)
2230 if (cost == 0)
2231 regno_equiv_gains[regno] = 0;
2232 else
2233 regno_equiv_gains[regno] += cost;