stack-prot-kernel.c: Skip for x86_64-*-darwin.
[official-gcc.git] / gcc / tree-scalar-evolution.c
blob0c5955796181b30f514d44554b0c3c0ac58c0744
1 /* Scalar evolution detector.
2 Copyright (C) 2003, 2004, 2005 Free Software Foundation, Inc.
3 Contributed by Sebastian Pop <s.pop@laposte.net>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
20 02110-1301, USA. */
22 /*
23 Description:
25 This pass analyzes the evolution of scalar variables in loop
26 structures. The algorithm is based on the SSA representation,
27 and on the loop hierarchy tree. This algorithm is not based on
28 the notion of versions of a variable, as it was the case for the
29 previous implementations of the scalar evolution algorithm, but
30 it assumes that each defined name is unique.
32 The notation used in this file is called "chains of recurrences",
33 and has been proposed by Eugene Zima, Robert Van Engelen, and
34 others for describing induction variables in programs. For example
35 "b -> {0, +, 2}_1" means that the scalar variable "b" is equal to 0
36 when entering in the loop_1 and has a step 2 in this loop, in other
37 words "for (b = 0; b < N; b+=2);". Note that the coefficients of
38 this chain of recurrence (or chrec [shrek]) can contain the name of
39 other variables, in which case they are called parametric chrecs.
40 For example, "b -> {a, +, 2}_1" means that the initial value of "b"
41 is the value of "a". In most of the cases these parametric chrecs
42 are fully instantiated before their use because symbolic names can
43 hide some difficult cases such as self-references described later
44 (see the Fibonacci example).
46 A short sketch of the algorithm is:
48 Given a scalar variable to be analyzed, follow the SSA edge to
49 its definition:
51 - When the definition is a MODIFY_EXPR: if the right hand side
52 (RHS) of the definition cannot be statically analyzed, the answer
53 of the analyzer is: "don't know".
54 Otherwise, for all the variables that are not yet analyzed in the
55 RHS, try to determine their evolution, and finally try to
56 evaluate the operation of the RHS that gives the evolution
57 function of the analyzed variable.
59 - When the definition is a condition-phi-node: determine the
60 evolution function for all the branches of the phi node, and
61 finally merge these evolutions (see chrec_merge).
63 - When the definition is a loop-phi-node: determine its initial
64 condition, that is the SSA edge defined in an outer loop, and
65 keep it symbolic. Then determine the SSA edges that are defined
66 in the body of the loop. Follow the inner edges until ending on
67 another loop-phi-node of the same analyzed loop. If the reached
68 loop-phi-node is not the starting loop-phi-node, then we keep
69 this definition under a symbolic form. If the reached
70 loop-phi-node is the same as the starting one, then we compute a
71 symbolic stride on the return path. The result is then the
72 symbolic chrec {initial_condition, +, symbolic_stride}_loop.
74 Examples:
76 Example 1: Illustration of the basic algorithm.
78 | a = 3
79 | loop_1
80 | b = phi (a, c)
81 | c = b + 1
82 | if (c > 10) exit_loop
83 | endloop
85 Suppose that we want to know the number of iterations of the
86 loop_1. The exit_loop is controlled by a COND_EXPR (c > 10). We
87 ask the scalar evolution analyzer two questions: what's the
88 scalar evolution (scev) of "c", and what's the scev of "10". For
89 "10" the answer is "10" since it is a scalar constant. For the
90 scalar variable "c", it follows the SSA edge to its definition,
91 "c = b + 1", and then asks again what's the scev of "b".
92 Following the SSA edge, we end on a loop-phi-node "b = phi (a,
93 c)", where the initial condition is "a", and the inner loop edge
94 is "c". The initial condition is kept under a symbolic form (it
95 may be the case that the copy constant propagation has done its
96 work and we end with the constant "3" as one of the edges of the
97 loop-phi-node). The update edge is followed to the end of the
98 loop, and until reaching again the starting loop-phi-node: b -> c
99 -> b. At this point we have drawn a path from "b" to "b" from
100 which we compute the stride in the loop: in this example it is
101 "+1". The resulting scev for "b" is "b -> {a, +, 1}_1". Now
102 that the scev for "b" is known, it is possible to compute the
103 scev for "c", that is "c -> {a + 1, +, 1}_1". In order to
104 determine the number of iterations in the loop_1, we have to
105 instantiate_parameters ({a + 1, +, 1}_1), that gives after some
106 more analysis the scev {4, +, 1}_1, or in other words, this is
107 the function "f (x) = x + 4", where x is the iteration count of
108 the loop_1. Now we have to solve the inequality "x + 4 > 10",
109 and take the smallest iteration number for which the loop is
110 exited: x = 7. This loop runs from x = 0 to x = 7, and in total
111 there are 8 iterations. In terms of loop normalization, we have
112 created a variable that is implicitly defined, "x" or just "_1",
113 and all the other analyzed scalars of the loop are defined in
114 function of this variable:
116 a -> 3
117 b -> {3, +, 1}_1
118 c -> {4, +, 1}_1
120 or in terms of a C program:
122 | a = 3
123 | for (x = 0; x <= 7; x++)
125 | b = x + 3
126 | c = x + 4
129 Example 2: Illustration of the algorithm on nested loops.
131 | loop_1
132 | a = phi (1, b)
133 | c = a + 2
134 | loop_2 10 times
135 | b = phi (c, d)
136 | d = b + 3
137 | endloop
138 | endloop
140 For analyzing the scalar evolution of "a", the algorithm follows
141 the SSA edge into the loop's body: "a -> b". "b" is an inner
142 loop-phi-node, and its analysis as in Example 1, gives:
144 b -> {c, +, 3}_2
145 d -> {c + 3, +, 3}_2
147 Following the SSA edge for the initial condition, we end on "c = a
148 + 2", and then on the starting loop-phi-node "a". From this point,
149 the loop stride is computed: back on "c = a + 2" we get a "+2" in
150 the loop_1, then on the loop-phi-node "b" we compute the overall
151 effect of the inner loop that is "b = c + 30", and we get a "+30"
152 in the loop_1. That means that the overall stride in loop_1 is
153 equal to "+32", and the result is:
155 a -> {1, +, 32}_1
156 c -> {3, +, 32}_1
158 Example 3: Higher degree polynomials.
160 | loop_1
161 | a = phi (2, b)
162 | c = phi (5, d)
163 | b = a + 1
164 | d = c + a
165 | endloop
167 a -> {2, +, 1}_1
168 b -> {3, +, 1}_1
169 c -> {5, +, a}_1
170 d -> {5 + a, +, a}_1
172 instantiate_parameters ({5, +, a}_1) -> {5, +, 2, +, 1}_1
173 instantiate_parameters ({5 + a, +, a}_1) -> {7, +, 3, +, 1}_1
175 Example 4: Lucas, Fibonacci, or mixers in general.
177 | loop_1
178 | a = phi (1, b)
179 | c = phi (3, d)
180 | b = c
181 | d = c + a
182 | endloop
184 a -> (1, c)_1
185 c -> {3, +, a}_1
187 The syntax "(1, c)_1" stands for a PEELED_CHREC that has the
188 following semantics: during the first iteration of the loop_1, the
189 variable contains the value 1, and then it contains the value "c".
190 Note that this syntax is close to the syntax of the loop-phi-node:
191 "a -> (1, c)_1" vs. "a = phi (1, c)".
193 The symbolic chrec representation contains all the semantics of the
194 original code. What is more difficult is to use this information.
196 Example 5: Flip-flops, or exchangers.
198 | loop_1
199 | a = phi (1, b)
200 | c = phi (3, d)
201 | b = c
202 | d = a
203 | endloop
205 a -> (1, c)_1
206 c -> (3, a)_1
208 Based on these symbolic chrecs, it is possible to refine this
209 information into the more precise PERIODIC_CHRECs:
211 a -> |1, 3|_1
212 c -> |3, 1|_1
214 This transformation is not yet implemented.
216 Further readings:
218 You can find a more detailed description of the algorithm in:
219 http://icps.u-strasbg.fr/~pop/DEA_03_Pop.pdf
220 http://icps.u-strasbg.fr/~pop/DEA_03_Pop.ps.gz. But note that
221 this is a preliminary report and some of the details of the
222 algorithm have changed. I'm working on a research report that
223 updates the description of the algorithms to reflect the design
224 choices used in this implementation.
226 A set of slides show a high level overview of the algorithm and run
227 an example through the scalar evolution analyzer:
228 http://cri.ensmp.fr/~pop/gcc/mar04/slides.pdf
230 The slides that I have presented at the GCC Summit'04 are available
231 at: http://cri.ensmp.fr/~pop/gcc/20040604/gccsummit-lno-spop.pdf
234 #include "config.h"
235 #include "system.h"
236 #include "coretypes.h"
237 #include "tm.h"
238 #include "ggc.h"
239 #include "tree.h"
240 #include "real.h"
242 /* These RTL headers are needed for basic-block.h. */
243 #include "rtl.h"
244 #include "basic-block.h"
245 #include "diagnostic.h"
246 #include "tree-flow.h"
247 #include "tree-dump.h"
248 #include "timevar.h"
249 #include "cfgloop.h"
250 #include "tree-chrec.h"
251 #include "tree-scalar-evolution.h"
252 #include "tree-pass.h"
253 #include "flags.h"
254 #include "params.h"
256 static tree analyze_scalar_evolution_1 (struct loop *, tree, tree);
257 static tree resolve_mixers (struct loop *, tree);
259 /* The cached information about a ssa name VAR, claiming that inside LOOP,
260 the value of VAR can be expressed as CHREC. */
262 struct scev_info_str
264 tree var;
265 tree chrec;
268 /* Counters for the scev database. */
269 static unsigned nb_set_scev = 0;
270 static unsigned nb_get_scev = 0;
272 /* The following trees are unique elements. Thus the comparison of
273 another element to these elements should be done on the pointer to
274 these trees, and not on their value. */
276 /* The SSA_NAMEs that are not yet analyzed are qualified with NULL_TREE. */
277 tree chrec_not_analyzed_yet;
279 /* Reserved to the cases where the analyzer has detected an
280 undecidable property at compile time. */
281 tree chrec_dont_know;
283 /* When the analyzer has detected that a property will never
284 happen, then it qualifies it with chrec_known. */
285 tree chrec_known;
287 static bitmap already_instantiated;
289 static htab_t scalar_evolution_info;
292 /* Constructs a new SCEV_INFO_STR structure. */
294 static inline struct scev_info_str *
295 new_scev_info_str (tree var)
297 struct scev_info_str *res;
299 res = XNEW (struct scev_info_str);
300 res->var = var;
301 res->chrec = chrec_not_analyzed_yet;
303 return res;
306 /* Computes a hash function for database element ELT. */
308 static hashval_t
309 hash_scev_info (const void *elt)
311 return SSA_NAME_VERSION (((struct scev_info_str *) elt)->var);
314 /* Compares database elements E1 and E2. */
316 static int
317 eq_scev_info (const void *e1, const void *e2)
319 const struct scev_info_str *elt1 = (const struct scev_info_str *) e1;
320 const struct scev_info_str *elt2 = (const struct scev_info_str *) e2;
322 return elt1->var == elt2->var;
325 /* Deletes database element E. */
327 static void
328 del_scev_info (void *e)
330 free (e);
333 /* Get the index corresponding to VAR in the current LOOP. If
334 it's the first time we ask for this VAR, then we return
335 chrec_not_analyzed_yet for this VAR and return its index. */
337 static tree *
338 find_var_scev_info (tree var)
340 struct scev_info_str *res;
341 struct scev_info_str tmp;
342 PTR *slot;
344 tmp.var = var;
345 slot = htab_find_slot (scalar_evolution_info, &tmp, INSERT);
347 if (!*slot)
348 *slot = new_scev_info_str (var);
349 res = (struct scev_info_str *) *slot;
351 return &res->chrec;
354 /* Return true when CHREC contains symbolic names defined in
355 LOOP_NB. */
357 bool
358 chrec_contains_symbols_defined_in_loop (tree chrec, unsigned loop_nb)
360 if (chrec == NULL_TREE)
361 return false;
363 if (TREE_INVARIANT (chrec))
364 return false;
366 if (TREE_CODE (chrec) == VAR_DECL
367 || TREE_CODE (chrec) == PARM_DECL
368 || TREE_CODE (chrec) == FUNCTION_DECL
369 || TREE_CODE (chrec) == LABEL_DECL
370 || TREE_CODE (chrec) == RESULT_DECL
371 || TREE_CODE (chrec) == FIELD_DECL)
372 return true;
374 if (TREE_CODE (chrec) == SSA_NAME)
376 tree def = SSA_NAME_DEF_STMT (chrec);
377 struct loop *def_loop = loop_containing_stmt (def);
378 struct loop *loop = current_loops->parray[loop_nb];
380 if (def_loop == NULL)
381 return false;
383 if (loop == def_loop || flow_loop_nested_p (loop, def_loop))
384 return true;
386 return false;
389 switch (TREE_CODE_LENGTH (TREE_CODE (chrec)))
391 case 3:
392 if (chrec_contains_symbols_defined_in_loop (TREE_OPERAND (chrec, 2),
393 loop_nb))
394 return true;
396 case 2:
397 if (chrec_contains_symbols_defined_in_loop (TREE_OPERAND (chrec, 1),
398 loop_nb))
399 return true;
401 case 1:
402 if (chrec_contains_symbols_defined_in_loop (TREE_OPERAND (chrec, 0),
403 loop_nb))
404 return true;
406 default:
407 return false;
411 /* Return true when PHI is a loop-phi-node. */
413 static bool
414 loop_phi_node_p (tree phi)
416 /* The implementation of this function is based on the following
417 property: "all the loop-phi-nodes of a loop are contained in the
418 loop's header basic block". */
420 return loop_containing_stmt (phi)->header == bb_for_stmt (phi);
423 /* Compute the scalar evolution for EVOLUTION_FN after crossing LOOP.
424 In general, in the case of multivariate evolutions we want to get
425 the evolution in different loops. LOOP specifies the level for
426 which to get the evolution.
428 Example:
430 | for (j = 0; j < 100; j++)
432 | for (k = 0; k < 100; k++)
434 | i = k + j; - Here the value of i is a function of j, k.
436 | ... = i - Here the value of i is a function of j.
438 | ... = i - Here the value of i is a scalar.
440 Example:
442 | i_0 = ...
443 | loop_1 10 times
444 | i_1 = phi (i_0, i_2)
445 | i_2 = i_1 + 2
446 | endloop
448 This loop has the same effect as:
449 LOOP_1 has the same effect as:
451 | i_1 = i_0 + 20
453 The overall effect of the loop, "i_0 + 20" in the previous example,
454 is obtained by passing in the parameters: LOOP = 1,
455 EVOLUTION_FN = {i_0, +, 2}_1.
458 static tree
459 compute_overall_effect_of_inner_loop (struct loop *loop, tree evolution_fn)
461 bool val = false;
463 if (evolution_fn == chrec_dont_know)
464 return chrec_dont_know;
466 else if (TREE_CODE (evolution_fn) == POLYNOMIAL_CHREC)
468 if (CHREC_VARIABLE (evolution_fn) >= (unsigned) loop->num)
470 struct loop *inner_loop =
471 current_loops->parray[CHREC_VARIABLE (evolution_fn)];
472 tree nb_iter = number_of_iterations_in_loop (inner_loop);
474 if (nb_iter == chrec_dont_know)
475 return chrec_dont_know;
476 else
478 tree res;
479 tree type = chrec_type (nb_iter);
481 /* Number of iterations is off by one (the ssa name we
482 analyze must be defined before the exit). */
483 nb_iter = chrec_fold_minus (type, nb_iter,
484 build_int_cst (type, 1));
486 /* evolution_fn is the evolution function in LOOP. Get
487 its value in the nb_iter-th iteration. */
488 res = chrec_apply (inner_loop->num, evolution_fn, nb_iter);
490 /* Continue the computation until ending on a parent of LOOP. */
491 return compute_overall_effect_of_inner_loop (loop, res);
494 else
495 return evolution_fn;
498 /* If the evolution function is an invariant, there is nothing to do. */
499 else if (no_evolution_in_loop_p (evolution_fn, loop->num, &val) && val)
500 return evolution_fn;
502 else
503 return chrec_dont_know;
506 /* Determine whether the CHREC is always positive/negative. If the expression
507 cannot be statically analyzed, return false, otherwise set the answer into
508 VALUE. */
510 bool
511 chrec_is_positive (tree chrec, bool *value)
513 bool value0, value1, value2;
514 tree type, end_value, nb_iter;
516 switch (TREE_CODE (chrec))
518 case POLYNOMIAL_CHREC:
519 if (!chrec_is_positive (CHREC_LEFT (chrec), &value0)
520 || !chrec_is_positive (CHREC_RIGHT (chrec), &value1))
521 return false;
523 /* FIXME -- overflows. */
524 if (value0 == value1)
526 *value = value0;
527 return true;
530 /* Otherwise the chrec is under the form: "{-197, +, 2}_1",
531 and the proof consists in showing that the sign never
532 changes during the execution of the loop, from 0 to
533 loop->nb_iterations. */
534 if (!evolution_function_is_affine_p (chrec))
535 return false;
537 nb_iter = number_of_iterations_in_loop
538 (current_loops->parray[CHREC_VARIABLE (chrec)]);
540 if (chrec_contains_undetermined (nb_iter))
541 return false;
543 type = chrec_type (nb_iter);
544 nb_iter = chrec_fold_minus (type, nb_iter, build_int_cst (type, 1));
546 #if 0
547 /* TODO -- If the test is after the exit, we may decrease the number of
548 iterations by one. */
549 if (after_exit)
550 nb_iter = chrec_fold_minus (type, nb_iter, build_int_cst (type, 1));
551 #endif
553 end_value = chrec_apply (CHREC_VARIABLE (chrec), chrec, nb_iter);
555 if (!chrec_is_positive (end_value, &value2))
556 return false;
558 *value = value0;
559 return value0 == value1;
561 case INTEGER_CST:
562 *value = (tree_int_cst_sgn (chrec) == 1);
563 return true;
565 default:
566 return false;
570 /* Associate CHREC to SCALAR. */
572 static void
573 set_scalar_evolution (tree scalar, tree chrec)
575 tree *scalar_info;
577 if (TREE_CODE (scalar) != SSA_NAME)
578 return;
580 scalar_info = find_var_scev_info (scalar);
582 if (dump_file)
584 if (dump_flags & TDF_DETAILS)
586 fprintf (dump_file, "(set_scalar_evolution \n");
587 fprintf (dump_file, " (scalar = ");
588 print_generic_expr (dump_file, scalar, 0);
589 fprintf (dump_file, ")\n (scalar_evolution = ");
590 print_generic_expr (dump_file, chrec, 0);
591 fprintf (dump_file, "))\n");
593 if (dump_flags & TDF_STATS)
594 nb_set_scev++;
597 *scalar_info = chrec;
600 /* Retrieve the chrec associated to SCALAR in the LOOP. */
602 static tree
603 get_scalar_evolution (tree scalar)
605 tree res;
607 if (dump_file)
609 if (dump_flags & TDF_DETAILS)
611 fprintf (dump_file, "(get_scalar_evolution \n");
612 fprintf (dump_file, " (scalar = ");
613 print_generic_expr (dump_file, scalar, 0);
614 fprintf (dump_file, ")\n");
616 if (dump_flags & TDF_STATS)
617 nb_get_scev++;
620 switch (TREE_CODE (scalar))
622 case SSA_NAME:
623 res = *find_var_scev_info (scalar);
624 break;
626 case REAL_CST:
627 case INTEGER_CST:
628 res = scalar;
629 break;
631 default:
632 res = chrec_not_analyzed_yet;
633 break;
636 if (dump_file && (dump_flags & TDF_DETAILS))
638 fprintf (dump_file, " (scalar_evolution = ");
639 print_generic_expr (dump_file, res, 0);
640 fprintf (dump_file, "))\n");
643 return res;
646 /* Helper function for add_to_evolution. Returns the evolution
647 function for an assignment of the form "a = b + c", where "a" and
648 "b" are on the strongly connected component. CHREC_BEFORE is the
649 information that we already have collected up to this point.
650 TO_ADD is the evolution of "c".
652 When CHREC_BEFORE has an evolution part in LOOP_NB, add to this
653 evolution the expression TO_ADD, otherwise construct an evolution
654 part for this loop. */
656 static tree
657 add_to_evolution_1 (unsigned loop_nb, tree chrec_before, tree to_add,
658 tree at_stmt)
660 tree type, left, right;
662 switch (TREE_CODE (chrec_before))
664 case POLYNOMIAL_CHREC:
665 if (CHREC_VARIABLE (chrec_before) <= loop_nb)
667 unsigned var;
669 type = chrec_type (chrec_before);
671 /* When there is no evolution part in this loop, build it. */
672 if (CHREC_VARIABLE (chrec_before) < loop_nb)
674 var = loop_nb;
675 left = chrec_before;
676 right = SCALAR_FLOAT_TYPE_P (type)
677 ? build_real (type, dconst0)
678 : build_int_cst (type, 0);
680 else
682 var = CHREC_VARIABLE (chrec_before);
683 left = CHREC_LEFT (chrec_before);
684 right = CHREC_RIGHT (chrec_before);
687 to_add = chrec_convert (type, to_add, at_stmt);
688 right = chrec_convert (type, right, at_stmt);
689 right = chrec_fold_plus (type, right, to_add);
690 return build_polynomial_chrec (var, left, right);
692 else
694 /* Search the evolution in LOOP_NB. */
695 left = add_to_evolution_1 (loop_nb, CHREC_LEFT (chrec_before),
696 to_add, at_stmt);
697 right = CHREC_RIGHT (chrec_before);
698 right = chrec_convert (chrec_type (left), right, at_stmt);
699 return build_polynomial_chrec (CHREC_VARIABLE (chrec_before),
700 left, right);
703 default:
704 /* These nodes do not depend on a loop. */
705 if (chrec_before == chrec_dont_know)
706 return chrec_dont_know;
708 left = chrec_before;
709 right = chrec_convert (chrec_type (left), to_add, at_stmt);
710 return build_polynomial_chrec (loop_nb, left, right);
714 /* Add TO_ADD to the evolution part of CHREC_BEFORE in the dimension
715 of LOOP_NB.
717 Description (provided for completeness, for those who read code in
718 a plane, and for my poor 62 bytes brain that would have forgotten
719 all this in the next two or three months):
721 The algorithm of translation of programs from the SSA representation
722 into the chrecs syntax is based on a pattern matching. After having
723 reconstructed the overall tree expression for a loop, there are only
724 two cases that can arise:
726 1. a = loop-phi (init, a + expr)
727 2. a = loop-phi (init, expr)
729 where EXPR is either a scalar constant with respect to the analyzed
730 loop (this is a degree 0 polynomial), or an expression containing
731 other loop-phi definitions (these are higher degree polynomials).
733 Examples:
736 | init = ...
737 | loop_1
738 | a = phi (init, a + 5)
739 | endloop
742 | inita = ...
743 | initb = ...
744 | loop_1
745 | a = phi (inita, 2 * b + 3)
746 | b = phi (initb, b + 1)
747 | endloop
749 For the first case, the semantics of the SSA representation is:
751 | a (x) = init + \sum_{j = 0}^{x - 1} expr (j)
753 that is, there is a loop index "x" that determines the scalar value
754 of the variable during the loop execution. During the first
755 iteration, the value is that of the initial condition INIT, while
756 during the subsequent iterations, it is the sum of the initial
757 condition with the sum of all the values of EXPR from the initial
758 iteration to the before last considered iteration.
760 For the second case, the semantics of the SSA program is:
762 | a (x) = init, if x = 0;
763 | expr (x - 1), otherwise.
765 The second case corresponds to the PEELED_CHREC, whose syntax is
766 close to the syntax of a loop-phi-node:
768 | phi (init, expr) vs. (init, expr)_x
770 The proof of the translation algorithm for the first case is a
771 proof by structural induction based on the degree of EXPR.
773 Degree 0:
774 When EXPR is a constant with respect to the analyzed loop, or in
775 other words when EXPR is a polynomial of degree 0, the evolution of
776 the variable A in the loop is an affine function with an initial
777 condition INIT, and a step EXPR. In order to show this, we start
778 from the semantics of the SSA representation:
780 f (x) = init + \sum_{j = 0}^{x - 1} expr (j)
782 and since "expr (j)" is a constant with respect to "j",
784 f (x) = init + x * expr
786 Finally, based on the semantics of the pure sum chrecs, by
787 identification we get the corresponding chrecs syntax:
789 f (x) = init * \binom{x}{0} + expr * \binom{x}{1}
790 f (x) -> {init, +, expr}_x
792 Higher degree:
793 Suppose that EXPR is a polynomial of degree N with respect to the
794 analyzed loop_x for which we have already determined that it is
795 written under the chrecs syntax:
797 | expr (x) -> {b_0, +, b_1, +, ..., +, b_{n-1}} (x)
799 We start from the semantics of the SSA program:
801 | f (x) = init + \sum_{j = 0}^{x - 1} expr (j)
803 | f (x) = init + \sum_{j = 0}^{x - 1}
804 | (b_0 * \binom{j}{0} + ... + b_{n-1} * \binom{j}{n-1})
806 | f (x) = init + \sum_{j = 0}^{x - 1}
807 | \sum_{k = 0}^{n - 1} (b_k * \binom{j}{k})
809 | f (x) = init + \sum_{k = 0}^{n - 1}
810 | (b_k * \sum_{j = 0}^{x - 1} \binom{j}{k})
812 | f (x) = init + \sum_{k = 0}^{n - 1}
813 | (b_k * \binom{x}{k + 1})
815 | f (x) = init + b_0 * \binom{x}{1} + ...
816 | + b_{n-1} * \binom{x}{n}
818 | f (x) = init * \binom{x}{0} + b_0 * \binom{x}{1} + ...
819 | + b_{n-1} * \binom{x}{n}
822 And finally from the definition of the chrecs syntax, we identify:
823 | f (x) -> {init, +, b_0, +, ..., +, b_{n-1}}_x
825 This shows the mechanism that stands behind the add_to_evolution
826 function. An important point is that the use of symbolic
827 parameters avoids the need of an analysis schedule.
829 Example:
831 | inita = ...
832 | initb = ...
833 | loop_1
834 | a = phi (inita, a + 2 + b)
835 | b = phi (initb, b + 1)
836 | endloop
838 When analyzing "a", the algorithm keeps "b" symbolically:
840 | a -> {inita, +, 2 + b}_1
842 Then, after instantiation, the analyzer ends on the evolution:
844 | a -> {inita, +, 2 + initb, +, 1}_1
848 static tree
849 add_to_evolution (unsigned loop_nb, tree chrec_before, enum tree_code code,
850 tree to_add, tree at_stmt)
852 tree type = chrec_type (to_add);
853 tree res = NULL_TREE;
855 if (to_add == NULL_TREE)
856 return chrec_before;
858 /* TO_ADD is either a scalar, or a parameter. TO_ADD is not
859 instantiated at this point. */
860 if (TREE_CODE (to_add) == POLYNOMIAL_CHREC)
861 /* This should not happen. */
862 return chrec_dont_know;
864 if (dump_file && (dump_flags & TDF_DETAILS))
866 fprintf (dump_file, "(add_to_evolution \n");
867 fprintf (dump_file, " (loop_nb = %d)\n", loop_nb);
868 fprintf (dump_file, " (chrec_before = ");
869 print_generic_expr (dump_file, chrec_before, 0);
870 fprintf (dump_file, ")\n (to_add = ");
871 print_generic_expr (dump_file, to_add, 0);
872 fprintf (dump_file, ")\n");
875 if (code == MINUS_EXPR)
876 to_add = chrec_fold_multiply (type, to_add, SCALAR_FLOAT_TYPE_P (type)
877 ? build_real (type, dconstm1)
878 : build_int_cst_type (type, -1));
880 res = add_to_evolution_1 (loop_nb, chrec_before, to_add, at_stmt);
882 if (dump_file && (dump_flags & TDF_DETAILS))
884 fprintf (dump_file, " (res = ");
885 print_generic_expr (dump_file, res, 0);
886 fprintf (dump_file, "))\n");
889 return res;
892 /* Helper function. */
894 static inline tree
895 set_nb_iterations_in_loop (struct loop *loop,
896 tree res)
898 tree type = chrec_type (res);
900 res = chrec_fold_plus (type, res, build_int_cst (type, 1));
902 /* FIXME HWI: However we want to store one iteration less than the
903 count of the loop in order to be compatible with the other
904 nb_iter computations in loop-iv. This also allows the
905 representation of nb_iters that are equal to MAX_INT. */
906 if (TREE_CODE (res) == INTEGER_CST
907 && (TREE_INT_CST_LOW (res) == 0
908 || TREE_OVERFLOW (res)))
909 res = chrec_dont_know;
911 if (dump_file && (dump_flags & TDF_DETAILS))
913 fprintf (dump_file, " (set_nb_iterations_in_loop = ");
914 print_generic_expr (dump_file, res, 0);
915 fprintf (dump_file, "))\n");
918 loop->nb_iterations = res;
919 return res;
924 /* This section selects the loops that will be good candidates for the
925 scalar evolution analysis. For the moment, greedily select all the
926 loop nests we could analyze. */
928 /* Return true when it is possible to analyze the condition expression
929 EXPR. */
931 static bool
932 analyzable_condition (tree expr)
934 tree condition;
936 if (TREE_CODE (expr) != COND_EXPR)
937 return false;
939 condition = TREE_OPERAND (expr, 0);
941 switch (TREE_CODE (condition))
943 case SSA_NAME:
944 return true;
946 case LT_EXPR:
947 case LE_EXPR:
948 case GT_EXPR:
949 case GE_EXPR:
950 case EQ_EXPR:
951 case NE_EXPR:
952 return true;
954 default:
955 return false;
958 return false;
961 /* For a loop with a single exit edge, return the COND_EXPR that
962 guards the exit edge. If the expression is too difficult to
963 analyze, then give up. */
965 tree
966 get_loop_exit_condition (struct loop *loop)
968 tree res = NULL_TREE;
969 edge exit_edge = single_exit (loop);
971 if (dump_file && (dump_flags & TDF_DETAILS))
972 fprintf (dump_file, "(get_loop_exit_condition \n ");
974 if (exit_edge)
976 tree expr;
978 expr = last_stmt (exit_edge->src);
979 if (analyzable_condition (expr))
980 res = expr;
983 if (dump_file && (dump_flags & TDF_DETAILS))
985 print_generic_expr (dump_file, res, 0);
986 fprintf (dump_file, ")\n");
989 return res;
992 /* Recursively determine and enqueue the exit conditions for a loop. */
994 static void
995 get_exit_conditions_rec (struct loop *loop,
996 VEC(tree,heap) **exit_conditions)
998 if (!loop)
999 return;
1001 /* Recurse on the inner loops, then on the next (sibling) loops. */
1002 get_exit_conditions_rec (loop->inner, exit_conditions);
1003 get_exit_conditions_rec (loop->next, exit_conditions);
1005 if (single_exit (loop))
1007 tree loop_condition = get_loop_exit_condition (loop);
1009 if (loop_condition)
1010 VEC_safe_push (tree, heap, *exit_conditions, loop_condition);
1014 /* Select the candidate loop nests for the analysis. This function
1015 initializes the EXIT_CONDITIONS array. */
1017 static void
1018 select_loops_exit_conditions (VEC(tree,heap) **exit_conditions)
1020 struct loop *function_body = current_loops->tree_root;
1022 get_exit_conditions_rec (function_body->inner, exit_conditions);
1026 /* Depth first search algorithm. */
1028 typedef enum t_bool {
1029 t_false,
1030 t_true,
1031 t_dont_know
1032 } t_bool;
1035 static t_bool follow_ssa_edge (struct loop *loop, tree, tree, tree *, int);
1037 /* Follow the ssa edge into the right hand side RHS of an assignment.
1038 Return true if the strongly connected component has been found. */
1040 static t_bool
1041 follow_ssa_edge_in_rhs (struct loop *loop, tree at_stmt, tree rhs,
1042 tree halting_phi, tree *evolution_of_loop, int limit)
1044 t_bool res = t_false;
1045 tree rhs0, rhs1;
1046 tree type_rhs = TREE_TYPE (rhs);
1047 tree evol;
1049 /* The RHS is one of the following cases:
1050 - an SSA_NAME,
1051 - an INTEGER_CST,
1052 - a PLUS_EXPR,
1053 - a MINUS_EXPR,
1054 - an ASSERT_EXPR,
1055 - other cases are not yet handled. */
1056 switch (TREE_CODE (rhs))
1058 case NOP_EXPR:
1059 /* This assignment is under the form "a_1 = (cast) rhs. */
1060 res = follow_ssa_edge_in_rhs (loop, at_stmt, TREE_OPERAND (rhs, 0),
1061 halting_phi, evolution_of_loop, limit);
1062 *evolution_of_loop = chrec_convert (TREE_TYPE (rhs),
1063 *evolution_of_loop, at_stmt);
1064 break;
1066 case INTEGER_CST:
1067 /* This assignment is under the form "a_1 = 7". */
1068 res = t_false;
1069 break;
1071 case SSA_NAME:
1072 /* This assignment is under the form: "a_1 = b_2". */
1073 res = follow_ssa_edge
1074 (loop, SSA_NAME_DEF_STMT (rhs), halting_phi, evolution_of_loop, limit);
1075 break;
1077 case PLUS_EXPR:
1078 /* This case is under the form "rhs0 + rhs1". */
1079 rhs0 = TREE_OPERAND (rhs, 0);
1080 rhs1 = TREE_OPERAND (rhs, 1);
1081 STRIP_TYPE_NOPS (rhs0);
1082 STRIP_TYPE_NOPS (rhs1);
1084 if (TREE_CODE (rhs0) == SSA_NAME)
1086 if (TREE_CODE (rhs1) == SSA_NAME)
1088 /* Match an assignment under the form:
1089 "a = b + c". */
1090 evol = *evolution_of_loop;
1091 res = follow_ssa_edge
1092 (loop, SSA_NAME_DEF_STMT (rhs0), halting_phi,
1093 &evol, limit);
1095 if (res == t_true)
1096 *evolution_of_loop = add_to_evolution
1097 (loop->num,
1098 chrec_convert (type_rhs, evol, at_stmt),
1099 PLUS_EXPR, rhs1, at_stmt);
1101 else if (res == t_false)
1103 res = follow_ssa_edge
1104 (loop, SSA_NAME_DEF_STMT (rhs1), halting_phi,
1105 evolution_of_loop, limit);
1107 if (res == t_true)
1108 *evolution_of_loop = add_to_evolution
1109 (loop->num,
1110 chrec_convert (type_rhs, *evolution_of_loop, at_stmt),
1111 PLUS_EXPR, rhs0, at_stmt);
1113 else if (res == t_dont_know)
1114 *evolution_of_loop = chrec_dont_know;
1117 else if (res == t_dont_know)
1118 *evolution_of_loop = chrec_dont_know;
1121 else
1123 /* Match an assignment under the form:
1124 "a = b + ...". */
1125 res = follow_ssa_edge
1126 (loop, SSA_NAME_DEF_STMT (rhs0), halting_phi,
1127 evolution_of_loop, limit);
1128 if (res == t_true)
1129 *evolution_of_loop = add_to_evolution
1130 (loop->num, chrec_convert (type_rhs, *evolution_of_loop,
1131 at_stmt),
1132 PLUS_EXPR, rhs1, at_stmt);
1134 else if (res == t_dont_know)
1135 *evolution_of_loop = chrec_dont_know;
1139 else if (TREE_CODE (rhs1) == SSA_NAME)
1141 /* Match an assignment under the form:
1142 "a = ... + c". */
1143 res = follow_ssa_edge
1144 (loop, SSA_NAME_DEF_STMT (rhs1), halting_phi,
1145 evolution_of_loop, limit);
1146 if (res == t_true)
1147 *evolution_of_loop = add_to_evolution
1148 (loop->num, chrec_convert (type_rhs, *evolution_of_loop,
1149 at_stmt),
1150 PLUS_EXPR, rhs0, at_stmt);
1152 else if (res == t_dont_know)
1153 *evolution_of_loop = chrec_dont_know;
1156 else
1157 /* Otherwise, match an assignment under the form:
1158 "a = ... + ...". */
1159 /* And there is nothing to do. */
1160 res = t_false;
1162 break;
1164 case MINUS_EXPR:
1165 /* This case is under the form "opnd0 = rhs0 - rhs1". */
1166 rhs0 = TREE_OPERAND (rhs, 0);
1167 rhs1 = TREE_OPERAND (rhs, 1);
1168 STRIP_TYPE_NOPS (rhs0);
1169 STRIP_TYPE_NOPS (rhs1);
1171 if (TREE_CODE (rhs0) == SSA_NAME)
1173 /* Match an assignment under the form:
1174 "a = b - ...". */
1175 res = follow_ssa_edge (loop, SSA_NAME_DEF_STMT (rhs0), halting_phi,
1176 evolution_of_loop, limit);
1177 if (res == t_true)
1178 *evolution_of_loop = add_to_evolution
1179 (loop->num, chrec_convert (type_rhs, *evolution_of_loop, at_stmt),
1180 MINUS_EXPR, rhs1, at_stmt);
1182 else if (res == t_dont_know)
1183 *evolution_of_loop = chrec_dont_know;
1185 else
1186 /* Otherwise, match an assignment under the form:
1187 "a = ... - ...". */
1188 /* And there is nothing to do. */
1189 res = t_false;
1191 break;
1193 case ASSERT_EXPR:
1195 /* This assignment is of the form: "a_1 = ASSERT_EXPR <a_2, ...>"
1196 It must be handled as a copy assignment of the form a_1 = a_2. */
1197 tree op0 = ASSERT_EXPR_VAR (rhs);
1198 if (TREE_CODE (op0) == SSA_NAME)
1199 res = follow_ssa_edge (loop, SSA_NAME_DEF_STMT (op0),
1200 halting_phi, evolution_of_loop, limit);
1201 else
1202 res = t_false;
1203 break;
1207 default:
1208 res = t_false;
1209 break;
1212 return res;
1215 /* Checks whether the I-th argument of a PHI comes from a backedge. */
1217 static bool
1218 backedge_phi_arg_p (tree phi, int i)
1220 edge e = PHI_ARG_EDGE (phi, i);
1222 /* We would in fact like to test EDGE_DFS_BACK here, but we do not care
1223 about updating it anywhere, and this should work as well most of the
1224 time. */
1225 if (e->flags & EDGE_IRREDUCIBLE_LOOP)
1226 return true;
1228 return false;
1231 /* Helper function for one branch of the condition-phi-node. Return
1232 true if the strongly connected component has been found following
1233 this path. */
1235 static inline t_bool
1236 follow_ssa_edge_in_condition_phi_branch (int i,
1237 struct loop *loop,
1238 tree condition_phi,
1239 tree halting_phi,
1240 tree *evolution_of_branch,
1241 tree init_cond, int limit)
1243 tree branch = PHI_ARG_DEF (condition_phi, i);
1244 *evolution_of_branch = chrec_dont_know;
1246 /* Do not follow back edges (they must belong to an irreducible loop, which
1247 we really do not want to worry about). */
1248 if (backedge_phi_arg_p (condition_phi, i))
1249 return t_false;
1251 if (TREE_CODE (branch) == SSA_NAME)
1253 *evolution_of_branch = init_cond;
1254 return follow_ssa_edge (loop, SSA_NAME_DEF_STMT (branch), halting_phi,
1255 evolution_of_branch, limit);
1258 /* This case occurs when one of the condition branches sets
1259 the variable to a constant: i.e. a phi-node like
1260 "a_2 = PHI <a_7(5), 2(6)>;".
1262 FIXME: This case have to be refined correctly:
1263 in some cases it is possible to say something better than
1264 chrec_dont_know, for example using a wrap-around notation. */
1265 return t_false;
1268 /* This function merges the branches of a condition-phi-node in a
1269 loop. */
1271 static t_bool
1272 follow_ssa_edge_in_condition_phi (struct loop *loop,
1273 tree condition_phi,
1274 tree halting_phi,
1275 tree *evolution_of_loop, int limit)
1277 int i;
1278 tree init = *evolution_of_loop;
1279 tree evolution_of_branch;
1280 t_bool res = follow_ssa_edge_in_condition_phi_branch (0, loop, condition_phi,
1281 halting_phi,
1282 &evolution_of_branch,
1283 init, limit);
1284 if (res == t_false || res == t_dont_know)
1285 return res;
1287 *evolution_of_loop = evolution_of_branch;
1289 for (i = 1; i < PHI_NUM_ARGS (condition_phi); i++)
1291 /* Quickly give up when the evolution of one of the branches is
1292 not known. */
1293 if (*evolution_of_loop == chrec_dont_know)
1294 return t_true;
1296 res = follow_ssa_edge_in_condition_phi_branch (i, loop, condition_phi,
1297 halting_phi,
1298 &evolution_of_branch,
1299 init, limit);
1300 if (res == t_false || res == t_dont_know)
1301 return res;
1303 *evolution_of_loop = chrec_merge (*evolution_of_loop,
1304 evolution_of_branch);
1307 return t_true;
1310 /* Follow an SSA edge in an inner loop. It computes the overall
1311 effect of the loop, and following the symbolic initial conditions,
1312 it follows the edges in the parent loop. The inner loop is
1313 considered as a single statement. */
1315 static t_bool
1316 follow_ssa_edge_inner_loop_phi (struct loop *outer_loop,
1317 tree loop_phi_node,
1318 tree halting_phi,
1319 tree *evolution_of_loop, int limit)
1321 struct loop *loop = loop_containing_stmt (loop_phi_node);
1322 tree ev = analyze_scalar_evolution (loop, PHI_RESULT (loop_phi_node));
1324 /* Sometimes, the inner loop is too difficult to analyze, and the
1325 result of the analysis is a symbolic parameter. */
1326 if (ev == PHI_RESULT (loop_phi_node))
1328 t_bool res = t_false;
1329 int i;
1331 for (i = 0; i < PHI_NUM_ARGS (loop_phi_node); i++)
1333 tree arg = PHI_ARG_DEF (loop_phi_node, i);
1334 basic_block bb;
1336 /* Follow the edges that exit the inner loop. */
1337 bb = PHI_ARG_EDGE (loop_phi_node, i)->src;
1338 if (!flow_bb_inside_loop_p (loop, bb))
1339 res = follow_ssa_edge_in_rhs (outer_loop, loop_phi_node,
1340 arg, halting_phi,
1341 evolution_of_loop, limit);
1342 if (res == t_true)
1343 break;
1346 /* If the path crosses this loop-phi, give up. */
1347 if (res == t_true)
1348 *evolution_of_loop = chrec_dont_know;
1350 return res;
1353 /* Otherwise, compute the overall effect of the inner loop. */
1354 ev = compute_overall_effect_of_inner_loop (loop, ev);
1355 return follow_ssa_edge_in_rhs (outer_loop, loop_phi_node, ev, halting_phi,
1356 evolution_of_loop, limit);
1359 /* Follow an SSA edge from a loop-phi-node to itself, constructing a
1360 path that is analyzed on the return walk. */
1362 static t_bool
1363 follow_ssa_edge (struct loop *loop, tree def, tree halting_phi,
1364 tree *evolution_of_loop, int limit)
1366 struct loop *def_loop;
1368 if (TREE_CODE (def) == NOP_EXPR)
1369 return t_false;
1371 /* Give up if the path is longer than the MAX that we allow. */
1372 if (limit++ > PARAM_VALUE (PARAM_SCEV_MAX_EXPR_SIZE))
1373 return t_dont_know;
1375 def_loop = loop_containing_stmt (def);
1377 switch (TREE_CODE (def))
1379 case PHI_NODE:
1380 if (!loop_phi_node_p (def))
1381 /* DEF is a condition-phi-node. Follow the branches, and
1382 record their evolutions. Finally, merge the collected
1383 information and set the approximation to the main
1384 variable. */
1385 return follow_ssa_edge_in_condition_phi
1386 (loop, def, halting_phi, evolution_of_loop, limit);
1388 /* When the analyzed phi is the halting_phi, the
1389 depth-first search is over: we have found a path from
1390 the halting_phi to itself in the loop. */
1391 if (def == halting_phi)
1392 return t_true;
1394 /* Otherwise, the evolution of the HALTING_PHI depends
1395 on the evolution of another loop-phi-node, i.e. the
1396 evolution function is a higher degree polynomial. */
1397 if (def_loop == loop)
1398 return t_false;
1400 /* Inner loop. */
1401 if (flow_loop_nested_p (loop, def_loop))
1402 return follow_ssa_edge_inner_loop_phi
1403 (loop, def, halting_phi, evolution_of_loop, limit);
1405 /* Outer loop. */
1406 return t_false;
1408 case MODIFY_EXPR:
1409 return follow_ssa_edge_in_rhs (loop, def,
1410 TREE_OPERAND (def, 1),
1411 halting_phi,
1412 evolution_of_loop, limit);
1414 default:
1415 /* At this level of abstraction, the program is just a set
1416 of MODIFY_EXPRs and PHI_NODEs. In principle there is no
1417 other node to be handled. */
1418 return t_false;
1424 /* Given a LOOP_PHI_NODE, this function determines the evolution
1425 function from LOOP_PHI_NODE to LOOP_PHI_NODE in the loop. */
1427 static tree
1428 analyze_evolution_in_loop (tree loop_phi_node,
1429 tree init_cond)
1431 int i;
1432 tree evolution_function = chrec_not_analyzed_yet;
1433 struct loop *loop = loop_containing_stmt (loop_phi_node);
1434 basic_block bb;
1436 if (dump_file && (dump_flags & TDF_DETAILS))
1438 fprintf (dump_file, "(analyze_evolution_in_loop \n");
1439 fprintf (dump_file, " (loop_phi_node = ");
1440 print_generic_expr (dump_file, loop_phi_node, 0);
1441 fprintf (dump_file, ")\n");
1444 for (i = 0; i < PHI_NUM_ARGS (loop_phi_node); i++)
1446 tree arg = PHI_ARG_DEF (loop_phi_node, i);
1447 tree ssa_chain, ev_fn;
1448 t_bool res;
1450 /* Select the edges that enter the loop body. */
1451 bb = PHI_ARG_EDGE (loop_phi_node, i)->src;
1452 if (!flow_bb_inside_loop_p (loop, bb))
1453 continue;
1455 if (TREE_CODE (arg) == SSA_NAME)
1457 ssa_chain = SSA_NAME_DEF_STMT (arg);
1459 /* Pass in the initial condition to the follow edge function. */
1460 ev_fn = init_cond;
1461 res = follow_ssa_edge (loop, ssa_chain, loop_phi_node, &ev_fn, 0);
1463 else
1464 res = t_false;
1466 /* When it is impossible to go back on the same
1467 loop_phi_node by following the ssa edges, the
1468 evolution is represented by a peeled chrec, i.e. the
1469 first iteration, EV_FN has the value INIT_COND, then
1470 all the other iterations it has the value of ARG.
1471 For the moment, PEELED_CHREC nodes are not built. */
1472 if (res != t_true)
1473 ev_fn = chrec_dont_know;
1475 /* When there are multiple back edges of the loop (which in fact never
1476 happens currently, but nevertheless), merge their evolutions. */
1477 evolution_function = chrec_merge (evolution_function, ev_fn);
1480 if (dump_file && (dump_flags & TDF_DETAILS))
1482 fprintf (dump_file, " (evolution_function = ");
1483 print_generic_expr (dump_file, evolution_function, 0);
1484 fprintf (dump_file, "))\n");
1487 return evolution_function;
1490 /* Given a loop-phi-node, return the initial conditions of the
1491 variable on entry of the loop. When the CCP has propagated
1492 constants into the loop-phi-node, the initial condition is
1493 instantiated, otherwise the initial condition is kept symbolic.
1494 This analyzer does not analyze the evolution outside the current
1495 loop, and leaves this task to the on-demand tree reconstructor. */
1497 static tree
1498 analyze_initial_condition (tree loop_phi_node)
1500 int i;
1501 tree init_cond = chrec_not_analyzed_yet;
1502 struct loop *loop = bb_for_stmt (loop_phi_node)->loop_father;
1504 if (dump_file && (dump_flags & TDF_DETAILS))
1506 fprintf (dump_file, "(analyze_initial_condition \n");
1507 fprintf (dump_file, " (loop_phi_node = \n");
1508 print_generic_expr (dump_file, loop_phi_node, 0);
1509 fprintf (dump_file, ")\n");
1512 for (i = 0; i < PHI_NUM_ARGS (loop_phi_node); i++)
1514 tree branch = PHI_ARG_DEF (loop_phi_node, i);
1515 basic_block bb = PHI_ARG_EDGE (loop_phi_node, i)->src;
1517 /* When the branch is oriented to the loop's body, it does
1518 not contribute to the initial condition. */
1519 if (flow_bb_inside_loop_p (loop, bb))
1520 continue;
1522 if (init_cond == chrec_not_analyzed_yet)
1524 init_cond = branch;
1525 continue;
1528 if (TREE_CODE (branch) == SSA_NAME)
1530 init_cond = chrec_dont_know;
1531 break;
1534 init_cond = chrec_merge (init_cond, branch);
1537 /* Ooops -- a loop without an entry??? */
1538 if (init_cond == chrec_not_analyzed_yet)
1539 init_cond = chrec_dont_know;
1541 if (dump_file && (dump_flags & TDF_DETAILS))
1543 fprintf (dump_file, " (init_cond = ");
1544 print_generic_expr (dump_file, init_cond, 0);
1545 fprintf (dump_file, "))\n");
1548 return init_cond;
1551 /* Analyze the scalar evolution for LOOP_PHI_NODE. */
1553 static tree
1554 interpret_loop_phi (struct loop *loop, tree loop_phi_node)
1556 tree res;
1557 struct loop *phi_loop = loop_containing_stmt (loop_phi_node);
1558 tree init_cond;
1560 if (phi_loop != loop)
1562 struct loop *subloop;
1563 tree evolution_fn = analyze_scalar_evolution
1564 (phi_loop, PHI_RESULT (loop_phi_node));
1566 /* Dive one level deeper. */
1567 subloop = superloop_at_depth (phi_loop, loop->depth + 1);
1569 /* Interpret the subloop. */
1570 res = compute_overall_effect_of_inner_loop (subloop, evolution_fn);
1571 return res;
1574 /* Otherwise really interpret the loop phi. */
1575 init_cond = analyze_initial_condition (loop_phi_node);
1576 res = analyze_evolution_in_loop (loop_phi_node, init_cond);
1578 return res;
1581 /* This function merges the branches of a condition-phi-node,
1582 contained in the outermost loop, and whose arguments are already
1583 analyzed. */
1585 static tree
1586 interpret_condition_phi (struct loop *loop, tree condition_phi)
1588 int i;
1589 tree res = chrec_not_analyzed_yet;
1591 for (i = 0; i < PHI_NUM_ARGS (condition_phi); i++)
1593 tree branch_chrec;
1595 if (backedge_phi_arg_p (condition_phi, i))
1597 res = chrec_dont_know;
1598 break;
1601 branch_chrec = analyze_scalar_evolution
1602 (loop, PHI_ARG_DEF (condition_phi, i));
1604 res = chrec_merge (res, branch_chrec);
1607 return res;
1610 /* Interpret the right hand side of a modify_expr OPND1. If we didn't
1611 analyze this node before, follow the definitions until ending
1612 either on an analyzed modify_expr, or on a loop-phi-node. On the
1613 return path, this function propagates evolutions (ala constant copy
1614 propagation). OPND1 is not a GIMPLE expression because we could
1615 analyze the effect of an inner loop: see interpret_loop_phi. */
1617 static tree
1618 interpret_rhs_modify_expr (struct loop *loop, tree at_stmt,
1619 tree opnd1, tree type)
1621 tree res, opnd10, opnd11, chrec10, chrec11;
1623 if (is_gimple_min_invariant (opnd1))
1624 return chrec_convert (type, opnd1, at_stmt);
1626 switch (TREE_CODE (opnd1))
1628 case PLUS_EXPR:
1629 opnd10 = TREE_OPERAND (opnd1, 0);
1630 opnd11 = TREE_OPERAND (opnd1, 1);
1631 chrec10 = analyze_scalar_evolution (loop, opnd10);
1632 chrec11 = analyze_scalar_evolution (loop, opnd11);
1633 chrec10 = chrec_convert (type, chrec10, at_stmt);
1634 chrec11 = chrec_convert (type, chrec11, at_stmt);
1635 res = chrec_fold_plus (type, chrec10, chrec11);
1636 break;
1638 case MINUS_EXPR:
1639 opnd10 = TREE_OPERAND (opnd1, 0);
1640 opnd11 = TREE_OPERAND (opnd1, 1);
1641 chrec10 = analyze_scalar_evolution (loop, opnd10);
1642 chrec11 = analyze_scalar_evolution (loop, opnd11);
1643 chrec10 = chrec_convert (type, chrec10, at_stmt);
1644 chrec11 = chrec_convert (type, chrec11, at_stmt);
1645 res = chrec_fold_minus (type, chrec10, chrec11);
1646 break;
1648 case NEGATE_EXPR:
1649 opnd10 = TREE_OPERAND (opnd1, 0);
1650 chrec10 = analyze_scalar_evolution (loop, opnd10);
1651 chrec10 = chrec_convert (type, chrec10, at_stmt);
1652 /* TYPE may be integer, real or complex, so use fold_convert. */
1653 res = chrec_fold_multiply (type, chrec10,
1654 fold_convert (type, integer_minus_one_node));
1655 break;
1657 case MULT_EXPR:
1658 opnd10 = TREE_OPERAND (opnd1, 0);
1659 opnd11 = TREE_OPERAND (opnd1, 1);
1660 chrec10 = analyze_scalar_evolution (loop, opnd10);
1661 chrec11 = analyze_scalar_evolution (loop, opnd11);
1662 chrec10 = chrec_convert (type, chrec10, at_stmt);
1663 chrec11 = chrec_convert (type, chrec11, at_stmt);
1664 res = chrec_fold_multiply (type, chrec10, chrec11);
1665 break;
1667 case SSA_NAME:
1668 res = chrec_convert (type, analyze_scalar_evolution (loop, opnd1),
1669 at_stmt);
1670 break;
1672 case ASSERT_EXPR:
1673 opnd10 = ASSERT_EXPR_VAR (opnd1);
1674 res = chrec_convert (type, analyze_scalar_evolution (loop, opnd10),
1675 at_stmt);
1676 break;
1678 case NOP_EXPR:
1679 case CONVERT_EXPR:
1680 opnd10 = TREE_OPERAND (opnd1, 0);
1681 chrec10 = analyze_scalar_evolution (loop, opnd10);
1682 res = chrec_convert (type, chrec10, at_stmt);
1683 break;
1685 default:
1686 res = chrec_dont_know;
1687 break;
1690 return res;
1695 /* This section contains all the entry points:
1696 - number_of_iterations_in_loop,
1697 - analyze_scalar_evolution,
1698 - instantiate_parameters.
1701 /* Compute and return the evolution function in WRTO_LOOP, the nearest
1702 common ancestor of DEF_LOOP and USE_LOOP. */
1704 static tree
1705 compute_scalar_evolution_in_loop (struct loop *wrto_loop,
1706 struct loop *def_loop,
1707 tree ev)
1709 tree res;
1710 if (def_loop == wrto_loop)
1711 return ev;
1713 def_loop = superloop_at_depth (def_loop, wrto_loop->depth + 1);
1714 res = compute_overall_effect_of_inner_loop (def_loop, ev);
1716 return analyze_scalar_evolution_1 (wrto_loop, res, chrec_not_analyzed_yet);
1719 /* Folds EXPR, if it is a cast to pointer, assuming that the created
1720 polynomial_chrec does not wrap. */
1722 static tree
1723 fold_used_pointer_cast (tree expr)
1725 tree op;
1726 tree type, inner_type;
1728 if (TREE_CODE (expr) != NOP_EXPR && TREE_CODE (expr) != CONVERT_EXPR)
1729 return expr;
1731 op = TREE_OPERAND (expr, 0);
1732 if (TREE_CODE (op) != POLYNOMIAL_CHREC)
1733 return expr;
1735 type = TREE_TYPE (expr);
1736 inner_type = TREE_TYPE (op);
1738 if (!INTEGRAL_TYPE_P (inner_type)
1739 || TYPE_PRECISION (inner_type) != TYPE_PRECISION (type))
1740 return expr;
1742 return build_polynomial_chrec (CHREC_VARIABLE (op),
1743 chrec_convert (type, CHREC_LEFT (op), NULL_TREE),
1744 chrec_convert (type, CHREC_RIGHT (op), NULL_TREE));
1747 /* Returns true if EXPR is an expression corresponding to offset of pointer
1748 in p + offset. */
1750 static bool
1751 pointer_offset_p (tree expr)
1753 if (TREE_CODE (expr) == INTEGER_CST)
1754 return true;
1756 if ((TREE_CODE (expr) == NOP_EXPR || TREE_CODE (expr) == CONVERT_EXPR)
1757 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (expr, 0))))
1758 return true;
1760 return false;
1763 /* EXPR is a scalar evolution of a pointer that is dereferenced or used in
1764 comparison. This means that it must point to a part of some object in
1765 memory, which enables us to argue about overflows and possibly simplify
1766 the EXPR. AT_STMT is the statement in which this conversion has to be
1767 performed. Returns the simplified value.
1769 Currently, for
1771 int i, n;
1772 int *p;
1774 for (i = -n; i < n; i++)
1775 *(p + i) = ...;
1777 We generate the following code (assuming that size of int and size_t is
1778 4 bytes):
1780 for (i = -n; i < n; i++)
1782 size_t tmp1, tmp2;
1783 int *tmp3, *tmp4;
1785 tmp1 = (size_t) i; (1)
1786 tmp2 = 4 * tmp1; (2)
1787 tmp3 = (int *) tmp2; (3)
1788 tmp4 = p + tmp3; (4)
1790 *tmp4 = ...;
1793 We in general assume that pointer arithmetics does not overflow (since its
1794 behavior is undefined in that case). One of the problems is that our
1795 translation does not capture this property very well -- (int *) is
1796 considered unsigned, hence the computation in (4) does overflow if i is
1797 negative.
1799 This impreciseness creates complications in scev analysis. The scalar
1800 evolution of i is [-n, +, 1]. Since int and size_t have the same precision
1801 (in this example), and size_t is unsigned (so we do not care about
1802 overflows), we succeed to derive that scev of tmp1 is [(size_t) -n, +, 1]
1803 and scev of tmp2 is [4 * (size_t) -n, +, 4]. With tmp3, we run into
1804 problem -- [(int *) (4 * (size_t) -n), +, 4] wraps, and since we on several
1805 places assume that this is not the case for scevs with pointer type, we
1806 cannot use this scev for tmp3; hence, its scev is
1807 (int *) [(4 * (size_t) -n), +, 4], and scev of tmp4 is
1808 p + (int *) [(4 * (size_t) -n), +, 4]. Most of the optimizers are unable to
1809 work with scevs of this shape.
1811 However, since tmp4 is dereferenced, all its values must belong to a single
1812 object, and taking into account that the precision of int * and size_t is
1813 the same, it is impossible for its scev to wrap. Hence, we can derive that
1814 its evolution is [p + (int *) (4 * (size_t) -n), +, 4], which the optimizers
1815 can work with.
1817 ??? Maybe we should use different representation for pointer arithmetics,
1818 however that is a long-term project with a lot of potential for creating
1819 bugs. */
1821 static tree
1822 fold_used_pointer (tree expr, tree at_stmt)
1824 tree op0, op1, new0, new1;
1825 enum tree_code code = TREE_CODE (expr);
1827 if (code == PLUS_EXPR
1828 || code == MINUS_EXPR)
1830 op0 = TREE_OPERAND (expr, 0);
1831 op1 = TREE_OPERAND (expr, 1);
1833 if (pointer_offset_p (op1))
1835 new0 = fold_used_pointer (op0, at_stmt);
1836 new1 = fold_used_pointer_cast (op1);
1838 else if (code == PLUS_EXPR && pointer_offset_p (op0))
1840 new0 = fold_used_pointer_cast (op0);
1841 new1 = fold_used_pointer (op1, at_stmt);
1843 else
1844 return expr;
1846 if (new0 == op0 && new1 == op1)
1847 return expr;
1849 new0 = chrec_convert (TREE_TYPE (expr), new0, at_stmt);
1850 new1 = chrec_convert (TREE_TYPE (expr), new1, at_stmt);
1852 if (code == PLUS_EXPR)
1853 expr = chrec_fold_plus (TREE_TYPE (expr), new0, new1);
1854 else
1855 expr = chrec_fold_minus (TREE_TYPE (expr), new0, new1);
1857 return expr;
1859 else
1860 return fold_used_pointer_cast (expr);
1863 /* Returns true if PTR is dereferenced, or used in comparison. */
1865 static bool
1866 pointer_used_p (tree ptr)
1868 use_operand_p use_p;
1869 imm_use_iterator imm_iter;
1870 tree stmt, rhs;
1871 struct ptr_info_def *pi = get_ptr_info (ptr);
1872 var_ann_t v_ann = var_ann (SSA_NAME_VAR (ptr));
1874 /* Check whether the pointer has a memory tag; if it does, it is
1875 (or at least used to be) dereferenced. */
1876 if ((pi != NULL && pi->name_mem_tag != NULL)
1877 || v_ann->symbol_mem_tag)
1878 return true;
1880 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, ptr)
1882 stmt = USE_STMT (use_p);
1883 if (TREE_CODE (stmt) == COND_EXPR)
1884 return true;
1886 if (TREE_CODE (stmt) != MODIFY_EXPR)
1887 continue;
1889 rhs = TREE_OPERAND (stmt, 1);
1890 if (!COMPARISON_CLASS_P (rhs))
1891 continue;
1893 if (TREE_OPERAND (stmt, 0) == ptr
1894 || TREE_OPERAND (stmt, 1) == ptr)
1895 return true;
1898 return false;
1901 /* Helper recursive function. */
1903 static tree
1904 analyze_scalar_evolution_1 (struct loop *loop, tree var, tree res)
1906 tree def, type = TREE_TYPE (var);
1907 basic_block bb;
1908 struct loop *def_loop;
1910 if (loop == NULL || TREE_CODE (type) == VECTOR_TYPE)
1911 return chrec_dont_know;
1913 if (TREE_CODE (var) != SSA_NAME)
1914 return interpret_rhs_modify_expr (loop, NULL_TREE, var, type);
1916 def = SSA_NAME_DEF_STMT (var);
1917 bb = bb_for_stmt (def);
1918 def_loop = bb ? bb->loop_father : NULL;
1920 if (bb == NULL
1921 || !flow_bb_inside_loop_p (loop, bb))
1923 /* Keep the symbolic form. */
1924 res = var;
1925 goto set_and_end;
1928 if (res != chrec_not_analyzed_yet)
1930 if (loop != bb->loop_father)
1931 res = compute_scalar_evolution_in_loop
1932 (find_common_loop (loop, bb->loop_father), bb->loop_father, res);
1934 goto set_and_end;
1937 if (loop != def_loop)
1939 res = analyze_scalar_evolution_1 (def_loop, var, chrec_not_analyzed_yet);
1940 res = compute_scalar_evolution_in_loop (loop, def_loop, res);
1942 goto set_and_end;
1945 switch (TREE_CODE (def))
1947 case MODIFY_EXPR:
1948 res = interpret_rhs_modify_expr (loop, def, TREE_OPERAND (def, 1), type);
1950 if (POINTER_TYPE_P (type)
1951 && !automatically_generated_chrec_p (res)
1952 && pointer_used_p (var))
1953 res = fold_used_pointer (res, def);
1954 break;
1956 case PHI_NODE:
1957 if (loop_phi_node_p (def))
1958 res = interpret_loop_phi (loop, def);
1959 else
1960 res = interpret_condition_phi (loop, def);
1961 break;
1963 default:
1964 res = chrec_dont_know;
1965 break;
1968 set_and_end:
1970 /* Keep the symbolic form. */
1971 if (res == chrec_dont_know)
1972 res = var;
1974 if (loop == def_loop)
1975 set_scalar_evolution (var, res);
1977 return res;
1980 /* Entry point for the scalar evolution analyzer.
1981 Analyzes and returns the scalar evolution of the ssa_name VAR.
1982 LOOP_NB is the identifier number of the loop in which the variable
1983 is used.
1985 Example of use: having a pointer VAR to a SSA_NAME node, STMT a
1986 pointer to the statement that uses this variable, in order to
1987 determine the evolution function of the variable, use the following
1988 calls:
1990 unsigned loop_nb = loop_containing_stmt (stmt)->num;
1991 tree chrec_with_symbols = analyze_scalar_evolution (loop_nb, var);
1992 tree chrec_instantiated = instantiate_parameters
1993 (loop_nb, chrec_with_symbols);
1996 tree
1997 analyze_scalar_evolution (struct loop *loop, tree var)
1999 tree res;
2001 if (dump_file && (dump_flags & TDF_DETAILS))
2003 fprintf (dump_file, "(analyze_scalar_evolution \n");
2004 fprintf (dump_file, " (loop_nb = %d)\n", loop->num);
2005 fprintf (dump_file, " (scalar = ");
2006 print_generic_expr (dump_file, var, 0);
2007 fprintf (dump_file, ")\n");
2010 res = analyze_scalar_evolution_1 (loop, var, get_scalar_evolution (var));
2012 if (TREE_CODE (var) == SSA_NAME && res == chrec_dont_know)
2013 res = var;
2015 if (dump_file && (dump_flags & TDF_DETAILS))
2016 fprintf (dump_file, ")\n");
2018 return res;
2021 /* Analyze scalar evolution of use of VERSION in USE_LOOP with respect to
2022 WRTO_LOOP (which should be a superloop of both USE_LOOP and definition
2023 of VERSION).
2025 FOLDED_CASTS is set to true if resolve_mixers used
2026 chrec_convert_aggressive (TODO -- not really, we are way too conservative
2027 at the moment in order to keep things simple). */
2029 static tree
2030 analyze_scalar_evolution_in_loop (struct loop *wrto_loop, struct loop *use_loop,
2031 tree version, bool *folded_casts)
2033 bool val = false;
2034 tree ev = version, tmp;
2036 if (folded_casts)
2037 *folded_casts = false;
2038 while (1)
2040 tmp = analyze_scalar_evolution (use_loop, ev);
2041 ev = resolve_mixers (use_loop, tmp);
2043 if (folded_casts && tmp != ev)
2044 *folded_casts = true;
2046 if (use_loop == wrto_loop)
2047 return ev;
2049 /* If the value of the use changes in the inner loop, we cannot express
2050 its value in the outer loop (we might try to return interval chrec,
2051 but we do not have a user for it anyway) */
2052 if (!no_evolution_in_loop_p (ev, use_loop->num, &val)
2053 || !val)
2054 return chrec_dont_know;
2056 use_loop = use_loop->outer;
2060 /* Returns instantiated value for VERSION in CACHE. */
2062 static tree
2063 get_instantiated_value (htab_t cache, tree version)
2065 struct scev_info_str *info, pattern;
2067 pattern.var = version;
2068 info = (struct scev_info_str *) htab_find (cache, &pattern);
2070 if (info)
2071 return info->chrec;
2072 else
2073 return NULL_TREE;
2076 /* Sets instantiated value for VERSION to VAL in CACHE. */
2078 static void
2079 set_instantiated_value (htab_t cache, tree version, tree val)
2081 struct scev_info_str *info, pattern;
2082 PTR *slot;
2084 pattern.var = version;
2085 slot = htab_find_slot (cache, &pattern, INSERT);
2087 if (!*slot)
2088 *slot = new_scev_info_str (version);
2089 info = (struct scev_info_str *) *slot;
2090 info->chrec = val;
2093 /* Return the closed_loop_phi node for VAR. If there is none, return
2094 NULL_TREE. */
2096 static tree
2097 loop_closed_phi_def (tree var)
2099 struct loop *loop;
2100 edge exit;
2101 tree phi;
2103 if (var == NULL_TREE
2104 || TREE_CODE (var) != SSA_NAME)
2105 return NULL_TREE;
2107 loop = loop_containing_stmt (SSA_NAME_DEF_STMT (var));
2108 exit = single_exit (loop);
2109 if (!exit)
2110 return NULL_TREE;
2112 for (phi = phi_nodes (exit->dest); phi; phi = PHI_CHAIN (phi))
2113 if (PHI_ARG_DEF_FROM_EDGE (phi, exit) == var)
2114 return PHI_RESULT (phi);
2116 return NULL_TREE;
2119 /* Analyze all the parameters of the chrec that were left under a symbolic form,
2120 with respect to LOOP. CHREC is the chrec to instantiate. CACHE is the cache
2121 of already instantiated values. FLAGS modify the way chrecs are
2122 instantiated. SIZE_EXPR is used for computing the size of the expression to
2123 be instantiated, and to stop if it exceeds some limit. */
2125 /* Values for FLAGS. */
2126 enum
2128 INSERT_SUPERLOOP_CHRECS = 1, /* Loop invariants are replaced with chrecs
2129 in outer loops. */
2130 FOLD_CONVERSIONS = 2 /* The conversions that may wrap in
2131 signed/pointer type are folded, as long as the
2132 value of the chrec is preserved. */
2135 static tree
2136 instantiate_parameters_1 (struct loop *loop, tree chrec, int flags, htab_t cache,
2137 int size_expr)
2139 tree res, op0, op1, op2;
2140 basic_block def_bb;
2141 struct loop *def_loop;
2142 tree type = chrec_type (chrec);
2144 /* Give up if the expression is larger than the MAX that we allow. */
2145 if (size_expr++ > PARAM_VALUE (PARAM_SCEV_MAX_EXPR_SIZE))
2146 return chrec_dont_know;
2148 if (automatically_generated_chrec_p (chrec)
2149 || is_gimple_min_invariant (chrec))
2150 return chrec;
2152 switch (TREE_CODE (chrec))
2154 case SSA_NAME:
2155 def_bb = bb_for_stmt (SSA_NAME_DEF_STMT (chrec));
2157 /* A parameter (or loop invariant and we do not want to include
2158 evolutions in outer loops), nothing to do. */
2159 if (!def_bb
2160 || (!(flags & INSERT_SUPERLOOP_CHRECS)
2161 && !flow_bb_inside_loop_p (loop, def_bb)))
2162 return chrec;
2164 /* We cache the value of instantiated variable to avoid exponential
2165 time complexity due to reevaluations. We also store the convenient
2166 value in the cache in order to prevent infinite recursion -- we do
2167 not want to instantiate the SSA_NAME if it is in a mixer
2168 structure. This is used for avoiding the instantiation of
2169 recursively defined functions, such as:
2171 | a_2 -> {0, +, 1, +, a_2}_1 */
2173 res = get_instantiated_value (cache, chrec);
2174 if (res)
2175 return res;
2177 /* Store the convenient value for chrec in the structure. If it
2178 is defined outside of the loop, we may just leave it in symbolic
2179 form, otherwise we need to admit that we do not know its behavior
2180 inside the loop. */
2181 res = !flow_bb_inside_loop_p (loop, def_bb) ? chrec : chrec_dont_know;
2182 set_instantiated_value (cache, chrec, res);
2184 /* To make things even more complicated, instantiate_parameters_1
2185 calls analyze_scalar_evolution that may call # of iterations
2186 analysis that may in turn call instantiate_parameters_1 again.
2187 To prevent the infinite recursion, keep also the bitmap of
2188 ssa names that are being instantiated globally. */
2189 if (bitmap_bit_p (already_instantiated, SSA_NAME_VERSION (chrec)))
2190 return res;
2192 def_loop = find_common_loop (loop, def_bb->loop_father);
2194 /* If the analysis yields a parametric chrec, instantiate the
2195 result again. */
2196 bitmap_set_bit (already_instantiated, SSA_NAME_VERSION (chrec));
2197 res = analyze_scalar_evolution (def_loop, chrec);
2199 /* Don't instantiate loop-closed-ssa phi nodes. */
2200 if (TREE_CODE (res) == SSA_NAME
2201 && (loop_containing_stmt (SSA_NAME_DEF_STMT (res)) == NULL
2202 || (loop_containing_stmt (SSA_NAME_DEF_STMT (res))->depth
2203 > def_loop->depth)))
2205 if (res == chrec)
2206 res = loop_closed_phi_def (chrec);
2207 else
2208 res = chrec;
2210 if (res == NULL_TREE)
2211 res = chrec_dont_know;
2214 else if (res != chrec_dont_know)
2215 res = instantiate_parameters_1 (loop, res, flags, cache, size_expr);
2217 bitmap_clear_bit (already_instantiated, SSA_NAME_VERSION (chrec));
2219 /* Store the correct value to the cache. */
2220 set_instantiated_value (cache, chrec, res);
2221 return res;
2223 case POLYNOMIAL_CHREC:
2224 op0 = instantiate_parameters_1 (loop, CHREC_LEFT (chrec),
2225 flags, cache, size_expr);
2226 if (op0 == chrec_dont_know)
2227 return chrec_dont_know;
2229 op1 = instantiate_parameters_1 (loop, CHREC_RIGHT (chrec),
2230 flags, cache, size_expr);
2231 if (op1 == chrec_dont_know)
2232 return chrec_dont_know;
2234 if (CHREC_LEFT (chrec) != op0
2235 || CHREC_RIGHT (chrec) != op1)
2237 op1 = chrec_convert (chrec_type (op0), op1, NULL_TREE);
2238 chrec = build_polynomial_chrec (CHREC_VARIABLE (chrec), op0, op1);
2240 return chrec;
2242 case PLUS_EXPR:
2243 op0 = instantiate_parameters_1 (loop, TREE_OPERAND (chrec, 0),
2244 flags, cache, size_expr);
2245 if (op0 == chrec_dont_know)
2246 return chrec_dont_know;
2248 op1 = instantiate_parameters_1 (loop, TREE_OPERAND (chrec, 1),
2249 flags, cache, size_expr);
2250 if (op1 == chrec_dont_know)
2251 return chrec_dont_know;
2253 if (TREE_OPERAND (chrec, 0) != op0
2254 || TREE_OPERAND (chrec, 1) != op1)
2256 op0 = chrec_convert (type, op0, NULL_TREE);
2257 op1 = chrec_convert (type, op1, NULL_TREE);
2258 chrec = chrec_fold_plus (type, op0, op1);
2260 return chrec;
2262 case MINUS_EXPR:
2263 op0 = instantiate_parameters_1 (loop, TREE_OPERAND (chrec, 0),
2264 flags, cache, size_expr);
2265 if (op0 == chrec_dont_know)
2266 return chrec_dont_know;
2268 op1 = instantiate_parameters_1 (loop, TREE_OPERAND (chrec, 1),
2269 flags, cache, size_expr);
2270 if (op1 == chrec_dont_know)
2271 return chrec_dont_know;
2273 if (TREE_OPERAND (chrec, 0) != op0
2274 || TREE_OPERAND (chrec, 1) != op1)
2276 op0 = chrec_convert (type, op0, NULL_TREE);
2277 op1 = chrec_convert (type, op1, NULL_TREE);
2278 chrec = chrec_fold_minus (type, op0, op1);
2280 return chrec;
2282 case MULT_EXPR:
2283 op0 = instantiate_parameters_1 (loop, TREE_OPERAND (chrec, 0),
2284 flags, cache, size_expr);
2285 if (op0 == chrec_dont_know)
2286 return chrec_dont_know;
2288 op1 = instantiate_parameters_1 (loop, TREE_OPERAND (chrec, 1),
2289 flags, cache, size_expr);
2290 if (op1 == chrec_dont_know)
2291 return chrec_dont_know;
2293 if (TREE_OPERAND (chrec, 0) != op0
2294 || TREE_OPERAND (chrec, 1) != op1)
2296 op0 = chrec_convert (type, op0, NULL_TREE);
2297 op1 = chrec_convert (type, op1, NULL_TREE);
2298 chrec = chrec_fold_multiply (type, op0, op1);
2300 return chrec;
2302 case NOP_EXPR:
2303 case CONVERT_EXPR:
2304 case NON_LVALUE_EXPR:
2305 op0 = instantiate_parameters_1 (loop, TREE_OPERAND (chrec, 0),
2306 flags, cache, size_expr);
2307 if (op0 == chrec_dont_know)
2308 return chrec_dont_know;
2310 if (flags & FOLD_CONVERSIONS)
2312 tree tmp = chrec_convert_aggressive (TREE_TYPE (chrec), op0);
2313 if (tmp)
2314 return tmp;
2317 if (op0 == TREE_OPERAND (chrec, 0))
2318 return chrec;
2320 /* If we used chrec_convert_aggressive, we can no longer assume that
2321 signed chrecs do not overflow, as chrec_convert does, so avoid
2322 calling it in that case. */
2323 if (flags & FOLD_CONVERSIONS)
2324 return fold_convert (TREE_TYPE (chrec), op0);
2326 return chrec_convert (TREE_TYPE (chrec), op0, NULL_TREE);
2328 case SCEV_NOT_KNOWN:
2329 return chrec_dont_know;
2331 case SCEV_KNOWN:
2332 return chrec_known;
2334 default:
2335 break;
2338 switch (TREE_CODE_LENGTH (TREE_CODE (chrec)))
2340 case 3:
2341 op0 = instantiate_parameters_1 (loop, TREE_OPERAND (chrec, 0),
2342 flags, cache, size_expr);
2343 if (op0 == chrec_dont_know)
2344 return chrec_dont_know;
2346 op1 = instantiate_parameters_1 (loop, TREE_OPERAND (chrec, 1),
2347 flags, cache, size_expr);
2348 if (op1 == chrec_dont_know)
2349 return chrec_dont_know;
2351 op2 = instantiate_parameters_1 (loop, TREE_OPERAND (chrec, 2),
2352 flags, cache, size_expr);
2353 if (op2 == chrec_dont_know)
2354 return chrec_dont_know;
2356 if (op0 == TREE_OPERAND (chrec, 0)
2357 && op1 == TREE_OPERAND (chrec, 1)
2358 && op2 == TREE_OPERAND (chrec, 2))
2359 return chrec;
2361 return fold_build3 (TREE_CODE (chrec),
2362 TREE_TYPE (chrec), op0, op1, op2);
2364 case 2:
2365 op0 = instantiate_parameters_1 (loop, TREE_OPERAND (chrec, 0),
2366 flags, cache, size_expr);
2367 if (op0 == chrec_dont_know)
2368 return chrec_dont_know;
2370 op1 = instantiate_parameters_1 (loop, TREE_OPERAND (chrec, 1),
2371 flags, cache, size_expr);
2372 if (op1 == chrec_dont_know)
2373 return chrec_dont_know;
2375 if (op0 == TREE_OPERAND (chrec, 0)
2376 && op1 == TREE_OPERAND (chrec, 1))
2377 return chrec;
2378 return fold_build2 (TREE_CODE (chrec), TREE_TYPE (chrec), op0, op1);
2380 case 1:
2381 op0 = instantiate_parameters_1 (loop, TREE_OPERAND (chrec, 0),
2382 flags, cache, size_expr);
2383 if (op0 == chrec_dont_know)
2384 return chrec_dont_know;
2385 if (op0 == TREE_OPERAND (chrec, 0))
2386 return chrec;
2387 return fold_build1 (TREE_CODE (chrec), TREE_TYPE (chrec), op0);
2389 case 0:
2390 return chrec;
2392 default:
2393 break;
2396 /* Too complicated to handle. */
2397 return chrec_dont_know;
2400 /* Analyze all the parameters of the chrec that were left under a
2401 symbolic form. LOOP is the loop in which symbolic names have to
2402 be analyzed and instantiated. */
2404 tree
2405 instantiate_parameters (struct loop *loop,
2406 tree chrec)
2408 tree res;
2409 htab_t cache = htab_create (10, hash_scev_info, eq_scev_info, del_scev_info);
2411 if (dump_file && (dump_flags & TDF_DETAILS))
2413 fprintf (dump_file, "(instantiate_parameters \n");
2414 fprintf (dump_file, " (loop_nb = %d)\n", loop->num);
2415 fprintf (dump_file, " (chrec = ");
2416 print_generic_expr (dump_file, chrec, 0);
2417 fprintf (dump_file, ")\n");
2420 res = instantiate_parameters_1 (loop, chrec, INSERT_SUPERLOOP_CHRECS, cache,
2423 if (dump_file && (dump_flags & TDF_DETAILS))
2425 fprintf (dump_file, " (res = ");
2426 print_generic_expr (dump_file, res, 0);
2427 fprintf (dump_file, "))\n");
2430 htab_delete (cache);
2432 return res;
2435 /* Similar to instantiate_parameters, but does not introduce the
2436 evolutions in outer loops for LOOP invariants in CHREC, and does not
2437 care about causing overflows, as long as they do not affect value
2438 of an expression. */
2440 static tree
2441 resolve_mixers (struct loop *loop, tree chrec)
2443 htab_t cache = htab_create (10, hash_scev_info, eq_scev_info, del_scev_info);
2444 tree ret = instantiate_parameters_1 (loop, chrec, FOLD_CONVERSIONS, cache, 0);
2445 htab_delete (cache);
2446 return ret;
2449 /* Entry point for the analysis of the number of iterations pass.
2450 This function tries to safely approximate the number of iterations
2451 the loop will run. When this property is not decidable at compile
2452 time, the result is chrec_dont_know. Otherwise the result is
2453 a scalar or a symbolic parameter.
2455 Example of analysis: suppose that the loop has an exit condition:
2457 "if (b > 49) goto end_loop;"
2459 and that in a previous analysis we have determined that the
2460 variable 'b' has an evolution function:
2462 "EF = {23, +, 5}_2".
2464 When we evaluate the function at the point 5, i.e. the value of the
2465 variable 'b' after 5 iterations in the loop, we have EF (5) = 48,
2466 and EF (6) = 53. In this case the value of 'b' on exit is '53' and
2467 the loop body has been executed 6 times. */
2469 tree
2470 number_of_iterations_in_loop (struct loop *loop)
2472 tree res, type;
2473 edge exit;
2474 struct tree_niter_desc niter_desc;
2476 /* Determine whether the number_of_iterations_in_loop has already
2477 been computed. */
2478 res = loop->nb_iterations;
2479 if (res)
2480 return res;
2481 res = chrec_dont_know;
2483 if (dump_file && (dump_flags & TDF_DETAILS))
2484 fprintf (dump_file, "(number_of_iterations_in_loop\n");
2486 exit = single_exit (loop);
2487 if (!exit)
2488 goto end;
2490 if (!number_of_iterations_exit (loop, exit, &niter_desc, false))
2491 goto end;
2493 type = TREE_TYPE (niter_desc.niter);
2494 if (integer_nonzerop (niter_desc.may_be_zero))
2495 res = build_int_cst (type, 0);
2496 else if (integer_zerop (niter_desc.may_be_zero))
2497 res = niter_desc.niter;
2498 else
2499 res = chrec_dont_know;
2501 end:
2502 return set_nb_iterations_in_loop (loop, res);
2505 /* One of the drivers for testing the scalar evolutions analysis.
2506 This function computes the number of iterations for all the loops
2507 from the EXIT_CONDITIONS array. */
2509 static void
2510 number_of_iterations_for_all_loops (VEC(tree,heap) **exit_conditions)
2512 unsigned int i;
2513 unsigned nb_chrec_dont_know_loops = 0;
2514 unsigned nb_static_loops = 0;
2515 tree cond;
2517 for (i = 0; VEC_iterate (tree, *exit_conditions, i, cond); i++)
2519 tree res = number_of_iterations_in_loop (loop_containing_stmt (cond));
2520 if (chrec_contains_undetermined (res))
2521 nb_chrec_dont_know_loops++;
2522 else
2523 nb_static_loops++;
2526 if (dump_file)
2528 fprintf (dump_file, "\n(\n");
2529 fprintf (dump_file, "-----------------------------------------\n");
2530 fprintf (dump_file, "%d\tnb_chrec_dont_know_loops\n", nb_chrec_dont_know_loops);
2531 fprintf (dump_file, "%d\tnb_static_loops\n", nb_static_loops);
2532 fprintf (dump_file, "%d\tnb_total_loops\n", current_loops->num);
2533 fprintf (dump_file, "-----------------------------------------\n");
2534 fprintf (dump_file, ")\n\n");
2536 print_loop_ir (dump_file);
2542 /* Counters for the stats. */
2544 struct chrec_stats
2546 unsigned nb_chrecs;
2547 unsigned nb_affine;
2548 unsigned nb_affine_multivar;
2549 unsigned nb_higher_poly;
2550 unsigned nb_chrec_dont_know;
2551 unsigned nb_undetermined;
2554 /* Reset the counters. */
2556 static inline void
2557 reset_chrecs_counters (struct chrec_stats *stats)
2559 stats->nb_chrecs = 0;
2560 stats->nb_affine = 0;
2561 stats->nb_affine_multivar = 0;
2562 stats->nb_higher_poly = 0;
2563 stats->nb_chrec_dont_know = 0;
2564 stats->nb_undetermined = 0;
2567 /* Dump the contents of a CHREC_STATS structure. */
2569 static void
2570 dump_chrecs_stats (FILE *file, struct chrec_stats *stats)
2572 fprintf (file, "\n(\n");
2573 fprintf (file, "-----------------------------------------\n");
2574 fprintf (file, "%d\taffine univariate chrecs\n", stats->nb_affine);
2575 fprintf (file, "%d\taffine multivariate chrecs\n", stats->nb_affine_multivar);
2576 fprintf (file, "%d\tdegree greater than 2 polynomials\n",
2577 stats->nb_higher_poly);
2578 fprintf (file, "%d\tchrec_dont_know chrecs\n", stats->nb_chrec_dont_know);
2579 fprintf (file, "-----------------------------------------\n");
2580 fprintf (file, "%d\ttotal chrecs\n", stats->nb_chrecs);
2581 fprintf (file, "%d\twith undetermined coefficients\n",
2582 stats->nb_undetermined);
2583 fprintf (file, "-----------------------------------------\n");
2584 fprintf (file, "%d\tchrecs in the scev database\n",
2585 (int) htab_elements (scalar_evolution_info));
2586 fprintf (file, "%d\tsets in the scev database\n", nb_set_scev);
2587 fprintf (file, "%d\tgets in the scev database\n", nb_get_scev);
2588 fprintf (file, "-----------------------------------------\n");
2589 fprintf (file, ")\n\n");
2592 /* Gather statistics about CHREC. */
2594 static void
2595 gather_chrec_stats (tree chrec, struct chrec_stats *stats)
2597 if (dump_file && (dump_flags & TDF_STATS))
2599 fprintf (dump_file, "(classify_chrec ");
2600 print_generic_expr (dump_file, chrec, 0);
2601 fprintf (dump_file, "\n");
2604 stats->nb_chrecs++;
2606 if (chrec == NULL_TREE)
2608 stats->nb_undetermined++;
2609 return;
2612 switch (TREE_CODE (chrec))
2614 case POLYNOMIAL_CHREC:
2615 if (evolution_function_is_affine_p (chrec))
2617 if (dump_file && (dump_flags & TDF_STATS))
2618 fprintf (dump_file, " affine_univariate\n");
2619 stats->nb_affine++;
2621 else if (evolution_function_is_affine_multivariate_p (chrec))
2623 if (dump_file && (dump_flags & TDF_STATS))
2624 fprintf (dump_file, " affine_multivariate\n");
2625 stats->nb_affine_multivar++;
2627 else
2629 if (dump_file && (dump_flags & TDF_STATS))
2630 fprintf (dump_file, " higher_degree_polynomial\n");
2631 stats->nb_higher_poly++;
2634 break;
2636 default:
2637 break;
2640 if (chrec_contains_undetermined (chrec))
2642 if (dump_file && (dump_flags & TDF_STATS))
2643 fprintf (dump_file, " undetermined\n");
2644 stats->nb_undetermined++;
2647 if (dump_file && (dump_flags & TDF_STATS))
2648 fprintf (dump_file, ")\n");
2651 /* One of the drivers for testing the scalar evolutions analysis.
2652 This function analyzes the scalar evolution of all the scalars
2653 defined as loop phi nodes in one of the loops from the
2654 EXIT_CONDITIONS array.
2656 TODO Optimization: A loop is in canonical form if it contains only
2657 a single scalar loop phi node. All the other scalars that have an
2658 evolution in the loop are rewritten in function of this single
2659 index. This allows the parallelization of the loop. */
2661 static void
2662 analyze_scalar_evolution_for_all_loop_phi_nodes (VEC(tree,heap) **exit_conditions)
2664 unsigned int i;
2665 struct chrec_stats stats;
2666 tree cond;
2668 reset_chrecs_counters (&stats);
2670 for (i = 0; VEC_iterate (tree, *exit_conditions, i, cond); i++)
2672 struct loop *loop;
2673 basic_block bb;
2674 tree phi, chrec;
2676 loop = loop_containing_stmt (cond);
2677 bb = loop->header;
2679 for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
2680 if (is_gimple_reg (PHI_RESULT (phi)))
2682 chrec = instantiate_parameters
2683 (loop,
2684 analyze_scalar_evolution (loop, PHI_RESULT (phi)));
2686 if (dump_file && (dump_flags & TDF_STATS))
2687 gather_chrec_stats (chrec, &stats);
2691 if (dump_file && (dump_flags & TDF_STATS))
2692 dump_chrecs_stats (dump_file, &stats);
2695 /* Callback for htab_traverse, gathers information on chrecs in the
2696 hashtable. */
2698 static int
2699 gather_stats_on_scev_database_1 (void **slot, void *stats)
2701 struct scev_info_str *entry = (struct scev_info_str *) *slot;
2703 gather_chrec_stats (entry->chrec, (struct chrec_stats *) stats);
2705 return 1;
2708 /* Classify the chrecs of the whole database. */
2710 void
2711 gather_stats_on_scev_database (void)
2713 struct chrec_stats stats;
2715 if (!dump_file)
2716 return;
2718 reset_chrecs_counters (&stats);
2720 htab_traverse (scalar_evolution_info, gather_stats_on_scev_database_1,
2721 &stats);
2723 dump_chrecs_stats (dump_file, &stats);
2728 /* Initializer. */
2730 static void
2731 initialize_scalar_evolutions_analyzer (void)
2733 /* The elements below are unique. */
2734 if (chrec_dont_know == NULL_TREE)
2736 chrec_not_analyzed_yet = NULL_TREE;
2737 chrec_dont_know = make_node (SCEV_NOT_KNOWN);
2738 chrec_known = make_node (SCEV_KNOWN);
2739 TREE_TYPE (chrec_dont_know) = void_type_node;
2740 TREE_TYPE (chrec_known) = void_type_node;
2744 /* Initialize the analysis of scalar evolutions for LOOPS. */
2746 void
2747 scev_initialize (void)
2749 unsigned i;
2751 scalar_evolution_info = htab_create (100, hash_scev_info,
2752 eq_scev_info, del_scev_info);
2753 already_instantiated = BITMAP_ALLOC (NULL);
2755 initialize_scalar_evolutions_analyzer ();
2757 for (i = 1; i < current_loops->num; i++)
2758 if (current_loops->parray[i])
2759 current_loops->parray[i]->nb_iterations = NULL_TREE;
2762 /* Cleans up the information cached by the scalar evolutions analysis. */
2764 void
2765 scev_reset (void)
2767 unsigned i;
2768 struct loop *loop;
2770 if (!scalar_evolution_info || !current_loops)
2771 return;
2773 htab_empty (scalar_evolution_info);
2774 for (i = 1; i < current_loops->num; i++)
2776 loop = current_loops->parray[i];
2777 if (loop)
2778 loop->nb_iterations = NULL_TREE;
2782 /* Checks whether OP behaves as a simple affine iv of LOOP in STMT and returns
2783 its base and step in IV if possible. If ALLOW_NONCONSTANT_STEP is true, we
2784 want step to be invariant in LOOP. Otherwise we require it to be an
2785 integer constant. IV->no_overflow is set to true if we are sure the iv cannot
2786 overflow (e.g. because it is computed in signed arithmetics). */
2788 bool
2789 simple_iv (struct loop *loop, tree stmt, tree op, affine_iv *iv,
2790 bool allow_nonconstant_step)
2792 basic_block bb = bb_for_stmt (stmt);
2793 tree type, ev;
2794 bool folded_casts;
2796 iv->base = NULL_TREE;
2797 iv->step = NULL_TREE;
2798 iv->no_overflow = false;
2800 type = TREE_TYPE (op);
2801 if (TREE_CODE (type) != INTEGER_TYPE
2802 && TREE_CODE (type) != POINTER_TYPE)
2803 return false;
2805 ev = analyze_scalar_evolution_in_loop (loop, bb->loop_father, op,
2806 &folded_casts);
2807 if (chrec_contains_undetermined (ev))
2808 return false;
2810 if (tree_does_not_contain_chrecs (ev)
2811 && !chrec_contains_symbols_defined_in_loop (ev, loop->num))
2813 iv->base = ev;
2814 iv->no_overflow = true;
2815 return true;
2818 if (TREE_CODE (ev) != POLYNOMIAL_CHREC
2819 || CHREC_VARIABLE (ev) != (unsigned) loop->num)
2820 return false;
2822 iv->step = CHREC_RIGHT (ev);
2823 if (allow_nonconstant_step)
2825 if (tree_contains_chrecs (iv->step, NULL)
2826 || chrec_contains_symbols_defined_in_loop (iv->step, loop->num))
2827 return false;
2829 else if (TREE_CODE (iv->step) != INTEGER_CST)
2830 return false;
2832 iv->base = CHREC_LEFT (ev);
2833 if (tree_contains_chrecs (iv->base, NULL)
2834 || chrec_contains_symbols_defined_in_loop (iv->base, loop->num))
2835 return false;
2837 iv->no_overflow = (!folded_casts
2838 && !flag_wrapv
2839 && !TYPE_UNSIGNED (type));
2840 return true;
2843 /* Runs the analysis of scalar evolutions. */
2845 void
2846 scev_analysis (void)
2848 VEC(tree,heap) *exit_conditions;
2850 exit_conditions = VEC_alloc (tree, heap, 37);
2851 select_loops_exit_conditions (&exit_conditions);
2853 if (dump_file && (dump_flags & TDF_STATS))
2854 analyze_scalar_evolution_for_all_loop_phi_nodes (&exit_conditions);
2856 number_of_iterations_for_all_loops (&exit_conditions);
2857 VEC_free (tree, heap, exit_conditions);
2860 /* Finalize the scalar evolution analysis. */
2862 void
2863 scev_finalize (void)
2865 htab_delete (scalar_evolution_info);
2866 BITMAP_FREE (already_instantiated);
2869 /* Returns true if EXPR looks expensive. */
2871 static bool
2872 expression_expensive_p (tree expr)
2874 return force_expr_to_var_cost (expr) >= target_spill_cost;
2877 /* Replace ssa names for that scev can prove they are constant by the
2878 appropriate constants. Also perform final value replacement in loops,
2879 in case the replacement expressions are cheap.
2881 We only consider SSA names defined by phi nodes; rest is left to the
2882 ordinary constant propagation pass. */
2884 unsigned int
2885 scev_const_prop (void)
2887 basic_block bb;
2888 tree name, phi, next_phi, type, ev;
2889 struct loop *loop, *ex_loop;
2890 bitmap ssa_names_to_remove = NULL;
2891 unsigned i;
2893 if (!current_loops)
2894 return 0;
2896 FOR_EACH_BB (bb)
2898 loop = bb->loop_father;
2900 for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
2902 name = PHI_RESULT (phi);
2904 if (!is_gimple_reg (name))
2905 continue;
2907 type = TREE_TYPE (name);
2909 if (!POINTER_TYPE_P (type)
2910 && !INTEGRAL_TYPE_P (type))
2911 continue;
2913 ev = resolve_mixers (loop, analyze_scalar_evolution (loop, name));
2914 if (!is_gimple_min_invariant (ev)
2915 || !may_propagate_copy (name, ev))
2916 continue;
2918 /* Replace the uses of the name. */
2919 if (name != ev)
2920 replace_uses_by (name, ev);
2922 if (!ssa_names_to_remove)
2923 ssa_names_to_remove = BITMAP_ALLOC (NULL);
2924 bitmap_set_bit (ssa_names_to_remove, SSA_NAME_VERSION (name));
2928 /* Remove the ssa names that were replaced by constants. We do not remove them
2929 directly in the previous cycle, since this invalidates scev cache. */
2930 if (ssa_names_to_remove)
2932 bitmap_iterator bi;
2933 unsigned i;
2935 EXECUTE_IF_SET_IN_BITMAP (ssa_names_to_remove, 0, i, bi)
2937 name = ssa_name (i);
2938 phi = SSA_NAME_DEF_STMT (name);
2940 gcc_assert (TREE_CODE (phi) == PHI_NODE);
2941 remove_phi_node (phi, NULL);
2944 BITMAP_FREE (ssa_names_to_remove);
2945 scev_reset ();
2948 /* Now the regular final value replacement. */
2949 for (i = current_loops->num - 1; i > 0; i--)
2951 edge exit;
2952 tree def, rslt, ass, niter;
2953 block_stmt_iterator bsi;
2955 loop = current_loops->parray[i];
2956 if (!loop)
2957 continue;
2959 /* If we do not know exact number of iterations of the loop, we cannot
2960 replace the final value. */
2961 exit = single_exit (loop);
2962 if (!exit)
2963 continue;
2965 niter = number_of_iterations_in_loop (loop);
2966 if (niter == chrec_dont_know
2967 /* If computing the number of iterations is expensive, it may be
2968 better not to introduce computations involving it. */
2969 || expression_expensive_p (niter))
2970 continue;
2972 /* Ensure that it is possible to insert new statements somewhere. */
2973 if (!single_pred_p (exit->dest))
2974 split_loop_exit_edge (exit);
2975 tree_block_label (exit->dest);
2976 bsi = bsi_after_labels (exit->dest);
2978 ex_loop = superloop_at_depth (loop, exit->dest->loop_father->depth + 1);
2980 for (phi = phi_nodes (exit->dest); phi; phi = next_phi)
2982 next_phi = PHI_CHAIN (phi);
2983 rslt = PHI_RESULT (phi);
2984 def = PHI_ARG_DEF_FROM_EDGE (phi, exit);
2985 if (!is_gimple_reg (def))
2986 continue;
2988 if (!POINTER_TYPE_P (TREE_TYPE (def))
2989 && !INTEGRAL_TYPE_P (TREE_TYPE (def)))
2990 continue;
2992 def = analyze_scalar_evolution_in_loop (ex_loop, loop, def, NULL);
2993 def = compute_overall_effect_of_inner_loop (ex_loop, def);
2994 if (!tree_does_not_contain_chrecs (def)
2995 || chrec_contains_symbols_defined_in_loop (def, ex_loop->num)
2996 /* Moving the computation from the loop may prolong life range
2997 of some ssa names, which may cause problems if they appear
2998 on abnormal edges. */
2999 || contains_abnormal_ssa_name_p (def))
3000 continue;
3002 /* Eliminate the phi node and replace it by a computation outside
3003 the loop. */
3004 def = unshare_expr (def);
3005 SET_PHI_RESULT (phi, NULL_TREE);
3006 remove_phi_node (phi, NULL_TREE);
3008 ass = build2 (MODIFY_EXPR, void_type_node, rslt, NULL_TREE);
3009 SSA_NAME_DEF_STMT (rslt) = ass;
3011 block_stmt_iterator dest = bsi;
3012 bsi_insert_before (&dest, ass, BSI_NEW_STMT);
3013 def = force_gimple_operand_bsi (&dest, def, false, NULL_TREE);
3015 TREE_OPERAND (ass, 1) = def;
3016 update_stmt (ass);
3019 return 0;