stack-prot-kernel.c: Skip for x86_64-*-darwin.
[official-gcc.git] / gcc / modulo-sched.c
blob4160e998c1b597763589fde434a3af232528dfca
1 /* Swing Modulo Scheduling implementation.
2 Copyright (C) 2004, 2005, 2006
3 Free Software Foundation, Inc.
4 Contributed by Ayal Zaks and Mustafa Hagog <zaks,mustafa@il.ibm.com>
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 2, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to the Free
20 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
21 02110-1301, USA. */
24 #include "config.h"
25 #include "system.h"
26 #include "coretypes.h"
27 #include "tm.h"
28 #include "toplev.h"
29 #include "rtl.h"
30 #include "tm_p.h"
31 #include "hard-reg-set.h"
32 #include "regs.h"
33 #include "function.h"
34 #include "flags.h"
35 #include "insn-config.h"
36 #include "insn-attr.h"
37 #include "except.h"
38 #include "toplev.h"
39 #include "recog.h"
40 #include "sched-int.h"
41 #include "target.h"
42 #include "cfglayout.h"
43 #include "cfgloop.h"
44 #include "cfghooks.h"
45 #include "expr.h"
46 #include "params.h"
47 #include "gcov-io.h"
48 #include "df.h"
49 #include "ddg.h"
50 #include "timevar.h"
51 #include "tree-pass.h"
53 #ifdef INSN_SCHEDULING
55 /* This file contains the implementation of the Swing Modulo Scheduler,
56 described in the following references:
57 [1] J. Llosa, A. Gonzalez, E. Ayguade, M. Valero., and J. Eckhardt.
58 Lifetime--sensitive modulo scheduling in a production environment.
59 IEEE Trans. on Comps., 50(3), March 2001
60 [2] J. Llosa, A. Gonzalez, E. Ayguade, and M. Valero.
61 Swing Modulo Scheduling: A Lifetime Sensitive Approach.
62 PACT '96 , pages 80-87, October 1996 (Boston - Massachusetts - USA).
64 The basic structure is:
65 1. Build a data-dependence graph (DDG) for each loop.
66 2. Use the DDG to order the insns of a loop (not in topological order
67 necessarily, but rather) trying to place each insn after all its
68 predecessors _or_ after all its successors.
69 3. Compute MII: a lower bound on the number of cycles to schedule the loop.
70 4. Use the ordering to perform list-scheduling of the loop:
71 1. Set II = MII. We will try to schedule the loop within II cycles.
72 2. Try to schedule the insns one by one according to the ordering.
73 For each insn compute an interval of cycles by considering already-
74 scheduled preds and succs (and associated latencies); try to place
75 the insn in the cycles of this window checking for potential
76 resource conflicts (using the DFA interface).
77 Note: this is different from the cycle-scheduling of schedule_insns;
78 here the insns are not scheduled monotonically top-down (nor bottom-
79 up).
80 3. If failed in scheduling all insns - bump II++ and try again, unless
81 II reaches an upper bound MaxII, in which case report failure.
82 5. If we succeeded in scheduling the loop within II cycles, we now
83 generate prolog and epilog, decrease the counter of the loop, and
84 perform modulo variable expansion for live ranges that span more than
85 II cycles (i.e. use register copies to prevent a def from overwriting
86 itself before reaching the use).
90 /* This page defines partial-schedule structures and functions for
91 modulo scheduling. */
93 typedef struct partial_schedule *partial_schedule_ptr;
94 typedef struct ps_insn *ps_insn_ptr;
96 /* The minimum (absolute) cycle that a node of ps was scheduled in. */
97 #define PS_MIN_CYCLE(ps) (((partial_schedule_ptr)(ps))->min_cycle)
99 /* The maximum (absolute) cycle that a node of ps was scheduled in. */
100 #define PS_MAX_CYCLE(ps) (((partial_schedule_ptr)(ps))->max_cycle)
102 /* Perform signed modulo, always returning a non-negative value. */
103 #define SMODULO(x,y) ((x) % (y) < 0 ? ((x) % (y) + (y)) : (x) % (y))
105 /* The number of different iterations the nodes in ps span, assuming
106 the stage boundaries are placed efficiently. */
107 #define PS_STAGE_COUNT(ps) ((PS_MAX_CYCLE (ps) - PS_MIN_CYCLE (ps) \
108 + 1 + (ps)->ii - 1) / (ps)->ii)
110 /* A single instruction in the partial schedule. */
111 struct ps_insn
113 /* The corresponding DDG_NODE. */
114 ddg_node_ptr node;
116 /* The (absolute) cycle in which the PS instruction is scheduled.
117 Same as SCHED_TIME (node). */
118 int cycle;
120 /* The next/prev PS_INSN in the same row. */
121 ps_insn_ptr next_in_row,
122 prev_in_row;
124 /* The number of nodes in the same row that come after this node. */
125 int row_rest_count;
128 /* Holds the partial schedule as an array of II rows. Each entry of the
129 array points to a linked list of PS_INSNs, which represents the
130 instructions that are scheduled for that row. */
131 struct partial_schedule
133 int ii; /* Number of rows in the partial schedule. */
134 int history; /* Threshold for conflict checking using DFA. */
136 /* rows[i] points to linked list of insns scheduled in row i (0<=i<ii). */
137 ps_insn_ptr *rows;
139 /* The earliest absolute cycle of an insn in the partial schedule. */
140 int min_cycle;
142 /* The latest absolute cycle of an insn in the partial schedule. */
143 int max_cycle;
145 ddg_ptr g; /* The DDG of the insns in the partial schedule. */
148 /* We use this to record all the register replacements we do in
149 the kernel so we can undo SMS if it is not profitable. */
150 struct undo_replace_buff_elem
152 rtx insn;
153 rtx orig_reg;
154 rtx new_reg;
155 struct undo_replace_buff_elem *next;
160 static partial_schedule_ptr create_partial_schedule (int ii, ddg_ptr, int history);
161 static void free_partial_schedule (partial_schedule_ptr);
162 static void reset_partial_schedule (partial_schedule_ptr, int new_ii);
163 void print_partial_schedule (partial_schedule_ptr, FILE *);
164 static int kernel_number_of_cycles (rtx first_insn, rtx last_insn);
165 static ps_insn_ptr ps_add_node_check_conflicts (partial_schedule_ptr,
166 ddg_node_ptr node, int cycle,
167 sbitmap must_precede,
168 sbitmap must_follow);
169 static void rotate_partial_schedule (partial_schedule_ptr, int);
170 void set_row_column_for_ps (partial_schedule_ptr);
171 static bool ps_unschedule_node (partial_schedule_ptr, ddg_node_ptr );
174 /* This page defines constants and structures for the modulo scheduling
175 driver. */
177 /* As in haifa-sched.c: */
178 /* issue_rate is the number of insns that can be scheduled in the same
179 machine cycle. It can be defined in the config/mach/mach.h file,
180 otherwise we set it to 1. */
182 static int issue_rate;
184 static int sms_order_nodes (ddg_ptr, int, int * result);
185 static void set_node_sched_params (ddg_ptr);
186 static partial_schedule_ptr sms_schedule_by_order (ddg_ptr, int, int, int *);
187 static void permute_partial_schedule (partial_schedule_ptr ps, rtx last);
188 static void generate_prolog_epilog (partial_schedule_ptr ,struct loop * loop, rtx);
189 static void duplicate_insns_of_cycles (partial_schedule_ptr ps,
190 int from_stage, int to_stage,
191 int is_prolog);
193 #define SCHED_ASAP(x) (((node_sched_params_ptr)(x)->aux.info)->asap)
194 #define SCHED_TIME(x) (((node_sched_params_ptr)(x)->aux.info)->time)
195 #define SCHED_FIRST_REG_MOVE(x) \
196 (((node_sched_params_ptr)(x)->aux.info)->first_reg_move)
197 #define SCHED_NREG_MOVES(x) \
198 (((node_sched_params_ptr)(x)->aux.info)->nreg_moves)
199 #define SCHED_ROW(x) (((node_sched_params_ptr)(x)->aux.info)->row)
200 #define SCHED_STAGE(x) (((node_sched_params_ptr)(x)->aux.info)->stage)
201 #define SCHED_COLUMN(x) (((node_sched_params_ptr)(x)->aux.info)->column)
203 /* The scheduling parameters held for each node. */
204 typedef struct node_sched_params
206 int asap; /* A lower-bound on the absolute scheduling cycle. */
207 int time; /* The absolute scheduling cycle (time >= asap). */
209 /* The following field (first_reg_move) is a pointer to the first
210 register-move instruction added to handle the modulo-variable-expansion
211 of the register defined by this node. This register-move copies the
212 original register defined by the node. */
213 rtx first_reg_move;
215 /* The number of register-move instructions added, immediately preceding
216 first_reg_move. */
217 int nreg_moves;
219 int row; /* Holds time % ii. */
220 int stage; /* Holds time / ii. */
222 /* The column of a node inside the ps. If nodes u, v are on the same row,
223 u will precede v if column (u) < column (v). */
224 int column;
225 } *node_sched_params_ptr;
228 /* The following three functions are copied from the current scheduler
229 code in order to use sched_analyze() for computing the dependencies.
230 They are used when initializing the sched_info structure. */
231 static const char *
232 sms_print_insn (rtx insn, int aligned ATTRIBUTE_UNUSED)
234 static char tmp[80];
236 sprintf (tmp, "i%4d", INSN_UID (insn));
237 return tmp;
240 static void
241 compute_jump_reg_dependencies (rtx insn ATTRIBUTE_UNUSED,
242 regset cond_exec ATTRIBUTE_UNUSED,
243 regset used ATTRIBUTE_UNUSED,
244 regset set ATTRIBUTE_UNUSED)
248 static struct sched_info sms_sched_info =
250 NULL,
251 NULL,
252 NULL,
253 NULL,
254 NULL,
255 sms_print_insn,
256 NULL,
257 compute_jump_reg_dependencies,
258 NULL, NULL,
259 NULL, NULL,
260 0, 0, 0,
262 NULL, NULL, NULL, NULL, NULL,
263 #ifdef ENABLE_CHECKING
264 NULL,
265 #endif
270 /* Return the register decremented and tested in INSN,
271 or zero if it is not a decrement-and-branch insn. */
273 static rtx
274 doloop_register_get (rtx insn ATTRIBUTE_UNUSED)
276 #ifdef HAVE_doloop_end
277 rtx pattern, reg, condition;
279 if (! JUMP_P (insn))
280 return NULL_RTX;
282 pattern = PATTERN (insn);
283 condition = doloop_condition_get (pattern);
284 if (! condition)
285 return NULL_RTX;
287 if (REG_P (XEXP (condition, 0)))
288 reg = XEXP (condition, 0);
289 else if (GET_CODE (XEXP (condition, 0)) == PLUS
290 && REG_P (XEXP (XEXP (condition, 0), 0)))
291 reg = XEXP (XEXP (condition, 0), 0);
292 else
293 gcc_unreachable ();
295 return reg;
296 #else
297 return NULL_RTX;
298 #endif
301 /* Check if COUNT_REG is set to a constant in the PRE_HEADER block, so
302 that the number of iterations is a compile-time constant. If so,
303 return the rtx that sets COUNT_REG to a constant, and set COUNT to
304 this constant. Otherwise return 0. */
305 static rtx
306 const_iteration_count (rtx count_reg, basic_block pre_header,
307 HOST_WIDEST_INT * count)
309 rtx insn;
310 rtx head, tail;
312 if (! pre_header)
313 return NULL_RTX;
315 get_ebb_head_tail (pre_header, pre_header, &head, &tail);
317 for (insn = tail; insn != PREV_INSN (head); insn = PREV_INSN (insn))
318 if (INSN_P (insn) && single_set (insn) &&
319 rtx_equal_p (count_reg, SET_DEST (single_set (insn))))
321 rtx pat = single_set (insn);
323 if (GET_CODE (SET_SRC (pat)) == CONST_INT)
325 *count = INTVAL (SET_SRC (pat));
326 return insn;
329 return NULL_RTX;
332 return NULL_RTX;
335 /* A very simple resource-based lower bound on the initiation interval.
336 ??? Improve the accuracy of this bound by considering the
337 utilization of various units. */
338 static int
339 res_MII (ddg_ptr g)
341 return (g->num_nodes / issue_rate);
345 /* Points to the array that contains the sched data for each node. */
346 static node_sched_params_ptr node_sched_params;
348 /* Allocate sched_params for each node and initialize it. Assumes that
349 the aux field of each node contain the asap bound (computed earlier),
350 and copies it into the sched_params field. */
351 static void
352 set_node_sched_params (ddg_ptr g)
354 int i;
356 /* Allocate for each node in the DDG a place to hold the "sched_data". */
357 /* Initialize ASAP/ALAP/HIGHT to zero. */
358 node_sched_params = (node_sched_params_ptr)
359 xcalloc (g->num_nodes,
360 sizeof (struct node_sched_params));
362 /* Set the pointer of the general data of the node to point to the
363 appropriate sched_params structure. */
364 for (i = 0; i < g->num_nodes; i++)
366 /* Watch out for aliasing problems? */
367 node_sched_params[i].asap = g->nodes[i].aux.count;
368 g->nodes[i].aux.info = &node_sched_params[i];
372 static void
373 print_node_sched_params (FILE * file, int num_nodes)
375 int i;
377 if (! file)
378 return;
379 for (i = 0; i < num_nodes; i++)
381 node_sched_params_ptr nsp = &node_sched_params[i];
382 rtx reg_move = nsp->first_reg_move;
383 int j;
385 fprintf (file, "Node %d:\n", i);
386 fprintf (file, " asap = %d:\n", nsp->asap);
387 fprintf (file, " time = %d:\n", nsp->time);
388 fprintf (file, " nreg_moves = %d:\n", nsp->nreg_moves);
389 for (j = 0; j < nsp->nreg_moves; j++)
391 fprintf (file, " reg_move = ");
392 print_rtl_single (file, reg_move);
393 reg_move = PREV_INSN (reg_move);
398 /* Calculate an upper bound for II. SMS should not schedule the loop if it
399 requires more cycles than this bound. Currently set to the sum of the
400 longest latency edge for each node. Reset based on experiments. */
401 static int
402 calculate_maxii (ddg_ptr g)
404 int i;
405 int maxii = 0;
407 for (i = 0; i < g->num_nodes; i++)
409 ddg_node_ptr u = &g->nodes[i];
410 ddg_edge_ptr e;
411 int max_edge_latency = 0;
413 for (e = u->out; e; e = e->next_out)
414 max_edge_latency = MAX (max_edge_latency, e->latency);
416 maxii += max_edge_latency;
418 return maxii;
422 Breaking intra-loop register anti-dependences:
423 Each intra-loop register anti-dependence implies a cross-iteration true
424 dependence of distance 1. Therefore, we can remove such false dependencies
425 and figure out if the partial schedule broke them by checking if (for a
426 true-dependence of distance 1): SCHED_TIME (def) < SCHED_TIME (use) and
427 if so generate a register move. The number of such moves is equal to:
428 SCHED_TIME (use) - SCHED_TIME (def) { 0 broken
429 nreg_moves = ----------------------------------- + 1 - { dependence.
430 ii { 1 if not.
432 static struct undo_replace_buff_elem *
433 generate_reg_moves (partial_schedule_ptr ps)
435 ddg_ptr g = ps->g;
436 int ii = ps->ii;
437 int i;
438 struct undo_replace_buff_elem *reg_move_replaces = NULL;
440 for (i = 0; i < g->num_nodes; i++)
442 ddg_node_ptr u = &g->nodes[i];
443 ddg_edge_ptr e;
444 int nreg_moves = 0, i_reg_move;
445 sbitmap *uses_of_defs;
446 rtx last_reg_move;
447 rtx prev_reg, old_reg;
449 /* Compute the number of reg_moves needed for u, by looking at life
450 ranges started at u (excluding self-loops). */
451 for (e = u->out; e; e = e->next_out)
452 if (e->type == TRUE_DEP && e->dest != e->src)
454 int nreg_moves4e = (SCHED_TIME (e->dest) - SCHED_TIME (e->src)) / ii;
456 if (e->distance == 1)
457 nreg_moves4e = (SCHED_TIME (e->dest) - SCHED_TIME (e->src) + ii) / ii;
459 /* If dest precedes src in the schedule of the kernel, then dest
460 will read before src writes and we can save one reg_copy. */
461 if (SCHED_ROW (e->dest) == SCHED_ROW (e->src)
462 && SCHED_COLUMN (e->dest) < SCHED_COLUMN (e->src))
463 nreg_moves4e--;
465 nreg_moves = MAX (nreg_moves, nreg_moves4e);
468 if (nreg_moves == 0)
469 continue;
471 /* Every use of the register defined by node may require a different
472 copy of this register, depending on the time the use is scheduled.
473 Set a bitmap vector, telling which nodes use each copy of this
474 register. */
475 uses_of_defs = sbitmap_vector_alloc (nreg_moves, g->num_nodes);
476 sbitmap_vector_zero (uses_of_defs, nreg_moves);
477 for (e = u->out; e; e = e->next_out)
478 if (e->type == TRUE_DEP && e->dest != e->src)
480 int dest_copy = (SCHED_TIME (e->dest) - SCHED_TIME (e->src)) / ii;
482 if (e->distance == 1)
483 dest_copy = (SCHED_TIME (e->dest) - SCHED_TIME (e->src) + ii) / ii;
485 if (SCHED_ROW (e->dest) == SCHED_ROW (e->src)
486 && SCHED_COLUMN (e->dest) < SCHED_COLUMN (e->src))
487 dest_copy--;
489 if (dest_copy)
490 SET_BIT (uses_of_defs[dest_copy - 1], e->dest->cuid);
493 /* Now generate the reg_moves, attaching relevant uses to them. */
494 SCHED_NREG_MOVES (u) = nreg_moves;
495 old_reg = prev_reg = copy_rtx (SET_DEST (single_set (u->insn)));
496 last_reg_move = u->insn;
498 for (i_reg_move = 0; i_reg_move < nreg_moves; i_reg_move++)
500 unsigned int i_use = 0;
501 rtx new_reg = gen_reg_rtx (GET_MODE (prev_reg));
502 rtx reg_move = gen_move_insn (new_reg, prev_reg);
503 sbitmap_iterator sbi;
505 add_insn_before (reg_move, last_reg_move);
506 last_reg_move = reg_move;
508 if (!SCHED_FIRST_REG_MOVE (u))
509 SCHED_FIRST_REG_MOVE (u) = reg_move;
511 EXECUTE_IF_SET_IN_SBITMAP (uses_of_defs[i_reg_move], 0, i_use, sbi)
513 struct undo_replace_buff_elem *rep;
515 rep = (struct undo_replace_buff_elem *)
516 xcalloc (1, sizeof (struct undo_replace_buff_elem));
517 rep->insn = g->nodes[i_use].insn;
518 rep->orig_reg = old_reg;
519 rep->new_reg = new_reg;
521 if (! reg_move_replaces)
522 reg_move_replaces = rep;
523 else
525 rep->next = reg_move_replaces;
526 reg_move_replaces = rep;
529 replace_rtx (g->nodes[i_use].insn, old_reg, new_reg);
532 prev_reg = new_reg;
534 sbitmap_vector_free (uses_of_defs);
536 return reg_move_replaces;
539 /* We call this when we want to undo the SMS schedule for a given loop.
540 One of the things that we do is to delete the register moves generated
541 for the sake of SMS; this function deletes the register move instructions
542 recorded in the undo buffer. */
543 static void
544 undo_generate_reg_moves (partial_schedule_ptr ps,
545 struct undo_replace_buff_elem *reg_move_replaces)
547 int i,j;
549 for (i = 0; i < ps->g->num_nodes; i++)
551 ddg_node_ptr u = &ps->g->nodes[i];
552 rtx prev;
553 rtx crr = SCHED_FIRST_REG_MOVE (u);
555 for (j = 0; j < SCHED_NREG_MOVES (u); j++)
557 prev = PREV_INSN (crr);
558 delete_insn (crr);
559 crr = prev;
561 SCHED_FIRST_REG_MOVE (u) = NULL_RTX;
564 while (reg_move_replaces)
566 struct undo_replace_buff_elem *rep = reg_move_replaces;
568 reg_move_replaces = reg_move_replaces->next;
569 replace_rtx (rep->insn, rep->new_reg, rep->orig_reg);
573 /* Free memory allocated for the undo buffer. */
574 static void
575 free_undo_replace_buff (struct undo_replace_buff_elem *reg_move_replaces)
578 while (reg_move_replaces)
580 struct undo_replace_buff_elem *rep = reg_move_replaces;
582 reg_move_replaces = reg_move_replaces->next;
583 free (rep);
587 /* Bump the SCHED_TIMEs of all nodes to start from zero. Set the values
588 of SCHED_ROW and SCHED_STAGE. */
589 static void
590 normalize_sched_times (partial_schedule_ptr ps)
592 int i;
593 ddg_ptr g = ps->g;
594 int amount = PS_MIN_CYCLE (ps);
595 int ii = ps->ii;
597 /* Don't include the closing branch assuming that it is the last node. */
598 for (i = 0; i < g->num_nodes - 1; i++)
600 ddg_node_ptr u = &g->nodes[i];
601 int normalized_time = SCHED_TIME (u) - amount;
603 gcc_assert (normalized_time >= 0);
605 SCHED_TIME (u) = normalized_time;
606 SCHED_ROW (u) = normalized_time % ii;
607 SCHED_STAGE (u) = normalized_time / ii;
611 /* Set SCHED_COLUMN of each node according to its position in PS. */
612 static void
613 set_columns_for_ps (partial_schedule_ptr ps)
615 int row;
617 for (row = 0; row < ps->ii; row++)
619 ps_insn_ptr cur_insn = ps->rows[row];
620 int column = 0;
622 for (; cur_insn; cur_insn = cur_insn->next_in_row)
623 SCHED_COLUMN (cur_insn->node) = column++;
627 /* Permute the insns according to their order in PS, from row 0 to
628 row ii-1, and position them right before LAST. This schedules
629 the insns of the loop kernel. */
630 static void
631 permute_partial_schedule (partial_schedule_ptr ps, rtx last)
633 int ii = ps->ii;
634 int row;
635 ps_insn_ptr ps_ij;
637 for (row = 0; row < ii ; row++)
638 for (ps_ij = ps->rows[row]; ps_ij; ps_ij = ps_ij->next_in_row)
639 if (PREV_INSN (last) != ps_ij->node->insn)
640 reorder_insns_nobb (ps_ij->node->first_note, ps_ij->node->insn,
641 PREV_INSN (last));
644 /* As part of undoing SMS we return to the original ordering of the
645 instructions inside the loop kernel. Given the partial schedule PS, this
646 function returns the ordering of the instruction according to their CUID
647 in the DDG (PS->G), which is the original order of the instruction before
648 performing SMS. */
649 static void
650 undo_permute_partial_schedule (partial_schedule_ptr ps, rtx last)
652 int i;
654 for (i = 0 ; i < ps->g->num_nodes; i++)
655 if (last == ps->g->nodes[i].insn
656 || last == ps->g->nodes[i].first_note)
657 break;
658 else if (PREV_INSN (last) != ps->g->nodes[i].insn)
659 reorder_insns_nobb (ps->g->nodes[i].first_note, ps->g->nodes[i].insn,
660 PREV_INSN (last));
663 /* Used to generate the prologue & epilogue. Duplicate the subset of
664 nodes whose stages are between FROM_STAGE and TO_STAGE (inclusive
665 of both), together with a prefix/suffix of their reg_moves. */
666 static void
667 duplicate_insns_of_cycles (partial_schedule_ptr ps, int from_stage,
668 int to_stage, int for_prolog)
670 int row;
671 ps_insn_ptr ps_ij;
673 for (row = 0; row < ps->ii; row++)
674 for (ps_ij = ps->rows[row]; ps_ij; ps_ij = ps_ij->next_in_row)
676 ddg_node_ptr u_node = ps_ij->node;
677 int j, i_reg_moves;
678 rtx reg_move = NULL_RTX;
680 if (for_prolog)
682 /* SCHED_STAGE (u_node) >= from_stage == 0. Generate increasing
683 number of reg_moves starting with the second occurrence of
684 u_node, which is generated if its SCHED_STAGE <= to_stage. */
685 i_reg_moves = to_stage - SCHED_STAGE (u_node) + 1;
686 i_reg_moves = MAX (i_reg_moves, 0);
687 i_reg_moves = MIN (i_reg_moves, SCHED_NREG_MOVES (u_node));
689 /* The reg_moves start from the *first* reg_move backwards. */
690 if (i_reg_moves)
692 reg_move = SCHED_FIRST_REG_MOVE (u_node);
693 for (j = 1; j < i_reg_moves; j++)
694 reg_move = PREV_INSN (reg_move);
697 else /* It's for the epilog. */
699 /* SCHED_STAGE (u_node) <= to_stage. Generate all reg_moves,
700 starting to decrease one stage after u_node no longer occurs;
701 that is, generate all reg_moves until
702 SCHED_STAGE (u_node) == from_stage - 1. */
703 i_reg_moves = SCHED_NREG_MOVES (u_node)
704 - (from_stage - SCHED_STAGE (u_node) - 1);
705 i_reg_moves = MAX (i_reg_moves, 0);
706 i_reg_moves = MIN (i_reg_moves, SCHED_NREG_MOVES (u_node));
708 /* The reg_moves start from the *last* reg_move forwards. */
709 if (i_reg_moves)
711 reg_move = SCHED_FIRST_REG_MOVE (u_node);
712 for (j = 1; j < SCHED_NREG_MOVES (u_node); j++)
713 reg_move = PREV_INSN (reg_move);
717 for (j = 0; j < i_reg_moves; j++, reg_move = NEXT_INSN (reg_move))
718 emit_insn (copy_rtx (PATTERN (reg_move)));
719 if (SCHED_STAGE (u_node) >= from_stage
720 && SCHED_STAGE (u_node) <= to_stage)
721 duplicate_insn_chain (u_node->first_note, u_node->insn);
726 /* Generate the instructions (including reg_moves) for prolog & epilog. */
727 static void
728 generate_prolog_epilog (partial_schedule_ptr ps, struct loop * loop, rtx count_reg)
730 int i;
731 int last_stage = PS_STAGE_COUNT (ps) - 1;
732 edge e;
734 /* Generate the prolog, inserting its insns on the loop-entry edge. */
735 start_sequence ();
737 if (count_reg)
738 /* Generate a subtract instruction at the beginning of the prolog to
739 adjust the loop count by STAGE_COUNT. */
740 emit_insn (gen_sub2_insn (count_reg, GEN_INT (last_stage)));
742 for (i = 0; i < last_stage; i++)
743 duplicate_insns_of_cycles (ps, 0, i, 1);
745 /* Put the prolog on the entry edge. */
746 e = loop_preheader_edge (loop);
747 split_edge_and_insert (e, get_insns());
749 end_sequence ();
751 /* Generate the epilog, inserting its insns on the loop-exit edge. */
752 start_sequence ();
754 for (i = 0; i < last_stage; i++)
755 duplicate_insns_of_cycles (ps, i + 1, last_stage, 0);
757 /* Put the epilogue on the exit edge. */
758 gcc_assert (single_exit (loop));
759 e = single_exit (loop);
760 split_edge_and_insert (e, get_insns());
761 end_sequence ();
764 /* Return true if all the BBs of the loop are empty except the
765 loop header. */
766 static bool
767 loop_single_full_bb_p (struct loop *loop)
769 unsigned i;
770 basic_block *bbs = get_loop_body (loop);
772 for (i = 0; i < loop->num_nodes ; i++)
774 rtx head, tail;
775 bool empty_bb = true;
777 if (bbs[i] == loop->header)
778 continue;
780 /* Make sure that basic blocks other than the header
781 have only notes labels or jumps. */
782 get_ebb_head_tail (bbs[i], bbs[i], &head, &tail);
783 for (; head != NEXT_INSN (tail); head = NEXT_INSN (head))
785 if (NOTE_P (head) || LABEL_P (head)
786 || (INSN_P (head) && JUMP_P (head)))
787 continue;
788 empty_bb = false;
789 break;
792 if (! empty_bb)
794 free (bbs);
795 return false;
798 free (bbs);
799 return true;
802 /* A simple loop from SMS point of view; it is a loop that is composed of
803 either a single basic block or two BBs - a header and a latch. */
804 #define SIMPLE_SMS_LOOP_P(loop) ((loop->num_nodes < 3 ) \
805 && (EDGE_COUNT (loop->latch->preds) == 1) \
806 && (EDGE_COUNT (loop->latch->succs) == 1))
808 /* Return true if the loop is in its canonical form and false if not.
809 i.e. SIMPLE_SMS_LOOP_P and have one preheader block, and single exit. */
810 static bool
811 loop_canon_p (struct loop *loop)
814 if (loop->inner || ! loop->outer)
815 return false;
817 if (!single_exit (loop))
819 if (dump_file)
821 rtx insn = BB_END (loop->header);
823 fprintf (dump_file, "SMS loop many exits ");
824 fprintf (dump_file, " %s %d (file, line)\n",
825 insn_file (insn), insn_line (insn));
827 return false;
830 if (! SIMPLE_SMS_LOOP_P (loop) && ! loop_single_full_bb_p (loop))
832 if (dump_file)
834 rtx insn = BB_END (loop->header);
836 fprintf (dump_file, "SMS loop many BBs. ");
837 fprintf (dump_file, " %s %d (file, line)\n",
838 insn_file (insn), insn_line (insn));
840 return false;
843 return true;
846 /* If there are more than one entry for the loop,
847 make it one by splitting the first entry edge and
848 redirecting the others to the new BB. */
849 static void
850 canon_loop (struct loop *loop)
852 edge e;
853 edge_iterator i;
855 /* Avoid annoying special cases of edges going to exit
856 block. */
857 FOR_EACH_EDGE (e, i, EXIT_BLOCK_PTR->preds)
858 if ((e->flags & EDGE_FALLTHRU) && (EDGE_COUNT (e->src->succs) > 1))
859 split_edge (e);
861 if (loop->latch == loop->header
862 || EDGE_COUNT (loop->latch->succs) > 1)
864 FOR_EACH_EDGE (e, i, loop->header->preds)
865 if (e->src == loop->latch)
866 break;
867 split_edge (e);
871 /* Main entry point, perform SMS scheduling on the loops of the function
872 that consist of single basic blocks. */
873 static void
874 sms_schedule (void)
876 static int passes = 0;
877 rtx insn;
878 ddg_ptr *g_arr, g;
879 int * node_order;
880 int maxii;
881 unsigned i,num_loops;
882 partial_schedule_ptr ps;
883 struct df *df;
884 basic_block bb = NULL;
885 /* vars to the versioning only if needed*/
886 struct loop * nloop;
887 basic_block condition_bb = NULL;
888 edge latch_edge;
889 gcov_type trip_count = 0;
891 loop_optimizer_init (LOOPS_HAVE_PREHEADERS
892 | LOOPS_HAVE_MARKED_SINGLE_EXITS);
893 if (!current_loops)
894 return; /* There are no loops to schedule. */
896 /* Initialize issue_rate. */
897 if (targetm.sched.issue_rate)
899 int temp = reload_completed;
901 reload_completed = 1;
902 issue_rate = targetm.sched.issue_rate ();
903 reload_completed = temp;
905 else
906 issue_rate = 1;
908 /* Initialize the scheduler. */
909 current_sched_info = &sms_sched_info;
910 sched_init ();
912 /* Init Data Flow analysis, to be used in interloop dep calculation. */
913 df = df_init (DF_HARD_REGS | DF_EQUIV_NOTES | DF_SUBREGS);
914 df_rd_add_problem (df, 0);
915 df_ru_add_problem (df, 0);
916 df_chain_add_problem (df, DF_DU_CHAIN | DF_UD_CHAIN);
917 df_analyze (df);
919 if (dump_file)
920 df_dump (df, dump_file);
922 /* Allocate memory to hold the DDG array one entry for each loop.
923 We use loop->num as index into this array. */
924 g_arr = XCNEWVEC (ddg_ptr, current_loops->num);
927 /* Build DDGs for all the relevant loops and hold them in G_ARR
928 indexed by the loop index. */
929 for (i = 0; i < current_loops->num; i++)
931 rtx head, tail;
932 rtx count_reg;
933 struct loop *loop = current_loops->parray[i];
935 /* For debugging. */
936 if ((passes++ > MAX_SMS_LOOP_NUMBER) && (MAX_SMS_LOOP_NUMBER != -1))
938 if (dump_file)
939 fprintf (dump_file, "SMS reached MAX_PASSES... \n");
941 break;
944 if (! loop_canon_p (loop))
945 continue;
947 if (! loop_single_full_bb_p (loop))
948 continue;
950 bb = loop->header;
952 get_ebb_head_tail (bb, bb, &head, &tail);
953 latch_edge = loop_latch_edge (loop);
954 gcc_assert (single_exit (loop));
955 if (single_exit (loop)->count)
956 trip_count = latch_edge->count / single_exit (loop)->count;
958 /* Perfrom SMS only on loops that their average count is above threshold. */
960 if ( latch_edge->count
961 && (latch_edge->count < single_exit (loop)->count * SMS_LOOP_AVERAGE_COUNT_THRESHOLD))
963 if (dump_file)
965 fprintf (dump_file, " %s %d (file, line)\n",
966 insn_file (tail), insn_line (tail));
967 fprintf (dump_file, "SMS single-bb-loop\n");
968 if (profile_info && flag_branch_probabilities)
970 fprintf (dump_file, "SMS loop-count ");
971 fprintf (dump_file, HOST_WIDEST_INT_PRINT_DEC,
972 (HOST_WIDEST_INT) bb->count);
973 fprintf (dump_file, "\n");
974 fprintf (dump_file, "SMS trip-count ");
975 fprintf (dump_file, HOST_WIDEST_INT_PRINT_DEC,
976 (HOST_WIDEST_INT) trip_count);
977 fprintf (dump_file, "\n");
978 fprintf (dump_file, "SMS profile-sum-max ");
979 fprintf (dump_file, HOST_WIDEST_INT_PRINT_DEC,
980 (HOST_WIDEST_INT) profile_info->sum_max);
981 fprintf (dump_file, "\n");
984 continue;
987 /* Make sure this is a doloop. */
988 if ( !(count_reg = doloop_register_get (tail)))
989 continue;
991 /* Don't handle BBs with calls or barriers, or !single_set insns. */
992 for (insn = head; insn != NEXT_INSN (tail); insn = NEXT_INSN (insn))
993 if (CALL_P (insn)
994 || BARRIER_P (insn)
995 || (INSN_P (insn) && !JUMP_P (insn)
996 && !single_set (insn) && GET_CODE (PATTERN (insn)) != USE))
997 break;
999 if (insn != NEXT_INSN (tail))
1001 if (dump_file)
1003 if (CALL_P (insn))
1004 fprintf (dump_file, "SMS loop-with-call\n");
1005 else if (BARRIER_P (insn))
1006 fprintf (dump_file, "SMS loop-with-barrier\n");
1007 else
1008 fprintf (dump_file, "SMS loop-with-not-single-set\n");
1009 print_rtl_single (dump_file, insn);
1012 continue;
1015 if (! (g = create_ddg (bb, df, 0)))
1017 if (dump_file)
1018 fprintf (dump_file, "SMS doloop\n");
1019 continue;
1022 g_arr[i] = g;
1025 /* Release Data Flow analysis data structures. */
1026 df_finish (df);
1027 df = NULL;
1029 /* We don't want to perform SMS on new loops - created by versioning. */
1030 num_loops = current_loops->num;
1031 /* Go over the built DDGs and perfrom SMS for each one of them. */
1032 for (i = 0; i < num_loops; i++)
1034 rtx head, tail;
1035 rtx count_reg, count_init;
1036 int mii, rec_mii;
1037 unsigned stage_count = 0;
1038 HOST_WIDEST_INT loop_count = 0;
1039 struct loop *loop = current_loops->parray[i];
1041 if (! (g = g_arr[i]))
1042 continue;
1044 if (dump_file)
1045 print_ddg (dump_file, g);
1047 get_ebb_head_tail (loop->header, loop->header, &head, &tail);
1049 latch_edge = loop_latch_edge (loop);
1050 gcc_assert (single_exit (loop));
1051 if (single_exit (loop)->count)
1052 trip_count = latch_edge->count / single_exit (loop)->count;
1054 if (dump_file)
1056 fprintf (dump_file, " %s %d (file, line)\n",
1057 insn_file (tail), insn_line (tail));
1058 fprintf (dump_file, "SMS single-bb-loop\n");
1059 if (profile_info && flag_branch_probabilities)
1061 fprintf (dump_file, "SMS loop-count ");
1062 fprintf (dump_file, HOST_WIDEST_INT_PRINT_DEC,
1063 (HOST_WIDEST_INT) bb->count);
1064 fprintf (dump_file, "\n");
1065 fprintf (dump_file, "SMS profile-sum-max ");
1066 fprintf (dump_file, HOST_WIDEST_INT_PRINT_DEC,
1067 (HOST_WIDEST_INT) profile_info->sum_max);
1068 fprintf (dump_file, "\n");
1070 fprintf (dump_file, "SMS doloop\n");
1071 fprintf (dump_file, "SMS built-ddg %d\n", g->num_nodes);
1072 fprintf (dump_file, "SMS num-loads %d\n", g->num_loads);
1073 fprintf (dump_file, "SMS num-stores %d\n", g->num_stores);
1077 /* In case of th loop have doloop register it gets special
1078 handling. */
1079 count_init = NULL_RTX;
1080 if ((count_reg = doloop_register_get (tail)))
1082 basic_block pre_header;
1084 pre_header = loop_preheader_edge (loop)->src;
1085 count_init = const_iteration_count (count_reg, pre_header,
1086 &loop_count);
1088 gcc_assert (count_reg);
1090 if (dump_file && count_init)
1092 fprintf (dump_file, "SMS const-doloop ");
1093 fprintf (dump_file, HOST_WIDEST_INT_PRINT_DEC,
1094 loop_count);
1095 fprintf (dump_file, "\n");
1098 node_order = XNEWVEC (int, g->num_nodes);
1100 mii = 1; /* Need to pass some estimate of mii. */
1101 rec_mii = sms_order_nodes (g, mii, node_order);
1102 mii = MAX (res_MII (g), rec_mii);
1103 maxii = (calculate_maxii (g) * SMS_MAX_II_FACTOR) / 100;
1105 if (dump_file)
1106 fprintf (dump_file, "SMS iis %d %d %d (rec_mii, mii, maxii)\n",
1107 rec_mii, mii, maxii);
1109 /* After sms_order_nodes and before sms_schedule_by_order, to copy over
1110 ASAP. */
1111 set_node_sched_params (g);
1113 ps = sms_schedule_by_order (g, mii, maxii, node_order);
1115 if (ps)
1116 stage_count = PS_STAGE_COUNT (ps);
1118 /* Stage count of 1 means that there is no interleaving between
1119 iterations, let the scheduling passes do the job. */
1120 if (stage_count < 1
1121 || (count_init && (loop_count <= stage_count))
1122 || (flag_branch_probabilities && (trip_count <= stage_count)))
1124 if (dump_file)
1126 fprintf (dump_file, "SMS failed... \n");
1127 fprintf (dump_file, "SMS sched-failed (stage-count=%d, loop-count=", stage_count);
1128 fprintf (dump_file, HOST_WIDEST_INT_PRINT_DEC, loop_count);
1129 fprintf (dump_file, ", trip-count=");
1130 fprintf (dump_file, HOST_WIDEST_INT_PRINT_DEC, trip_count);
1131 fprintf (dump_file, ")\n");
1133 continue;
1135 else
1137 int orig_cycles = kernel_number_of_cycles (BB_HEAD (g->bb), BB_END (g->bb));
1138 int new_cycles;
1139 struct undo_replace_buff_elem *reg_move_replaces;
1141 if (dump_file)
1143 fprintf (dump_file,
1144 "SMS succeeded %d %d (with ii, sc)\n", ps->ii,
1145 stage_count);
1146 print_partial_schedule (ps, dump_file);
1147 fprintf (dump_file,
1148 "SMS Branch (%d) will later be scheduled at cycle %d.\n",
1149 g->closing_branch->cuid, PS_MIN_CYCLE (ps) - 1);
1152 /* Set the stage boundaries. If the DDG is built with closing_branch_deps,
1153 the closing_branch was scheduled and should appear in the last (ii-1)
1154 row. Otherwise, we are free to schedule the branch, and we let nodes
1155 that were scheduled at the first PS_MIN_CYCLE cycle appear in the first
1156 row; this should reduce stage_count to minimum. */
1157 normalize_sched_times (ps);
1158 rotate_partial_schedule (ps, PS_MIN_CYCLE (ps));
1159 set_columns_for_ps (ps);
1161 /* Generate the kernel just to be able to measure its cycles. */
1162 permute_partial_schedule (ps, g->closing_branch->first_note);
1163 reg_move_replaces = generate_reg_moves (ps);
1165 /* Get the number of cycles the new kernel expect to execute in. */
1166 new_cycles = kernel_number_of_cycles (BB_HEAD (g->bb), BB_END (g->bb));
1168 /* Get back to the original loop so we can do loop versioning. */
1169 undo_permute_partial_schedule (ps, g->closing_branch->first_note);
1170 if (reg_move_replaces)
1171 undo_generate_reg_moves (ps, reg_move_replaces);
1173 if ( new_cycles >= orig_cycles)
1175 /* SMS is not profitable so undo the permutation and reg move generation
1176 and return the kernel to its original state. */
1177 if (dump_file)
1178 fprintf (dump_file, "Undoing SMS because it is not profitable.\n");
1181 else
1183 canon_loop (loop);
1185 /* case the BCT count is not known , Do loop-versioning */
1186 if (count_reg && ! count_init)
1188 rtx comp_rtx = gen_rtx_fmt_ee (GT, VOIDmode, count_reg,
1189 GEN_INT(stage_count));
1191 nloop = loop_version (loop, comp_rtx, &condition_bb, true);
1194 /* Set new iteration count of loop kernel. */
1195 if (count_reg && count_init)
1196 SET_SRC (single_set (count_init)) = GEN_INT (loop_count
1197 - stage_count + 1);
1199 /* Now apply the scheduled kernel to the RTL of the loop. */
1200 permute_partial_schedule (ps, g->closing_branch->first_note);
1202 /* Mark this loop as software pipelined so the later
1203 scheduling passes doesn't touch it. */
1204 if (! flag_resched_modulo_sched)
1205 g->bb->flags |= BB_DISABLE_SCHEDULE;
1206 /* The life-info is not valid any more. */
1207 g->bb->flags |= BB_DIRTY;
1209 reg_move_replaces = generate_reg_moves (ps);
1210 if (dump_file)
1211 print_node_sched_params (dump_file, g->num_nodes);
1212 /* Generate prolog and epilog. */
1213 if (count_reg && !count_init)
1214 generate_prolog_epilog (ps, loop, count_reg);
1215 else
1216 generate_prolog_epilog (ps, loop, NULL_RTX);
1218 free_undo_replace_buff (reg_move_replaces);
1221 free_partial_schedule (ps);
1222 free (node_sched_params);
1223 free (node_order);
1224 free_ddg (g);
1227 free (g_arr);
1229 /* Release scheduler data, needed until now because of DFA. */
1230 sched_finish ();
1231 loop_optimizer_finalize ();
1234 /* The SMS scheduling algorithm itself
1235 -----------------------------------
1236 Input: 'O' an ordered list of insns of a loop.
1237 Output: A scheduling of the loop - kernel, prolog, and epilogue.
1239 'Q' is the empty Set
1240 'PS' is the partial schedule; it holds the currently scheduled nodes with
1241 their cycle/slot.
1242 'PSP' previously scheduled predecessors.
1243 'PSS' previously scheduled successors.
1244 't(u)' the cycle where u is scheduled.
1245 'l(u)' is the latency of u.
1246 'd(v,u)' is the dependence distance from v to u.
1247 'ASAP(u)' the earliest time at which u could be scheduled as computed in
1248 the node ordering phase.
1249 'check_hardware_resources_conflicts(u, PS, c)'
1250 run a trace around cycle/slot through DFA model
1251 to check resource conflicts involving instruction u
1252 at cycle c given the partial schedule PS.
1253 'add_to_partial_schedule_at_time(u, PS, c)'
1254 Add the node/instruction u to the partial schedule
1255 PS at time c.
1256 'calculate_register_pressure(PS)'
1257 Given a schedule of instructions, calculate the register
1258 pressure it implies. One implementation could be the
1259 maximum number of overlapping live ranges.
1260 'maxRP' The maximum allowed register pressure, it is usually derived from the number
1261 registers available in the hardware.
1263 1. II = MII.
1264 2. PS = empty list
1265 3. for each node u in O in pre-computed order
1266 4. if (PSP(u) != Q && PSS(u) == Q) then
1267 5. Early_start(u) = max ( t(v) + l(v) - d(v,u)*II ) over all every v in PSP(u).
1268 6. start = Early_start; end = Early_start + II - 1; step = 1
1269 11. else if (PSP(u) == Q && PSS(u) != Q) then
1270 12. Late_start(u) = min ( t(v) - l(v) + d(v,u)*II ) over all every v in PSS(u).
1271 13. start = Late_start; end = Late_start - II + 1; step = -1
1272 14. else if (PSP(u) != Q && PSS(u) != Q) then
1273 15. Early_start(u) = max ( t(v) + l(v) - d(v,u)*II ) over all every v in PSP(u).
1274 16. Late_start(u) = min ( t(v) - l(v) + d(v,u)*II ) over all every v in PSS(u).
1275 17. start = Early_start;
1276 18. end = min(Early_start + II - 1 , Late_start);
1277 19. step = 1
1278 20. else "if (PSP(u) == Q && PSS(u) == Q)"
1279 21. start = ASAP(u); end = start + II - 1; step = 1
1280 22. endif
1282 23. success = false
1283 24. for (c = start ; c != end ; c += step)
1284 25. if check_hardware_resources_conflicts(u, PS, c) then
1285 26. add_to_partial_schedule_at_time(u, PS, c)
1286 27. success = true
1287 28. break
1288 29. endif
1289 30. endfor
1290 31. if (success == false) then
1291 32. II = II + 1
1292 33. if (II > maxII) then
1293 34. finish - failed to schedule
1294 35. endif
1295 36. goto 2.
1296 37. endif
1297 38. endfor
1298 39. if (calculate_register_pressure(PS) > maxRP) then
1299 40. goto 32.
1300 41. endif
1301 42. compute epilogue & prologue
1302 43. finish - succeeded to schedule
1305 /* A limit on the number of cycles that resource conflicts can span. ??? Should
1306 be provided by DFA, and be dependent on the type of insn scheduled. Currently
1307 set to 0 to save compile time. */
1308 #define DFA_HISTORY SMS_DFA_HISTORY
1310 /* Given the partial schedule PS, this function calculates and returns the
1311 cycles in which we can schedule the node with the given index I.
1312 NOTE: Here we do the backtracking in SMS, in some special cases. We have
1313 noticed that there are several cases in which we fail to SMS the loop
1314 because the sched window of a node is empty due to tight data-deps. In
1315 such cases we want to unschedule some of the predecessors/successors
1316 until we get non-empty scheduling window. It returns -1 if the
1317 scheduling window is empty and zero otherwise. */
1319 static int
1320 get_sched_window (partial_schedule_ptr ps, int *nodes_order, int i,
1321 sbitmap sched_nodes, int ii, int *start_p, int *step_p, int *end_p)
1323 int start, step, end;
1324 ddg_edge_ptr e;
1325 int u = nodes_order [i];
1326 ddg_node_ptr u_node = &ps->g->nodes[u];
1327 sbitmap psp = sbitmap_alloc (ps->g->num_nodes);
1328 sbitmap pss = sbitmap_alloc (ps->g->num_nodes);
1329 sbitmap u_node_preds = NODE_PREDECESSORS (u_node);
1330 sbitmap u_node_succs = NODE_SUCCESSORS (u_node);
1331 int psp_not_empty;
1332 int pss_not_empty;
1334 /* 1. compute sched window for u (start, end, step). */
1335 sbitmap_zero (psp);
1336 sbitmap_zero (pss);
1337 psp_not_empty = sbitmap_a_and_b_cg (psp, u_node_preds, sched_nodes);
1338 pss_not_empty = sbitmap_a_and_b_cg (pss, u_node_succs, sched_nodes);
1340 if (psp_not_empty && !pss_not_empty)
1342 int early_start = INT_MIN;
1344 end = INT_MAX;
1345 for (e = u_node->in; e != 0; e = e->next_in)
1347 ddg_node_ptr v_node = e->src;
1348 if (TEST_BIT (sched_nodes, v_node->cuid))
1350 int node_st = SCHED_TIME (v_node)
1351 + e->latency - (e->distance * ii);
1353 early_start = MAX (early_start, node_st);
1355 if (e->data_type == MEM_DEP)
1356 end = MIN (end, SCHED_TIME (v_node) + ii - 1);
1359 start = early_start;
1360 end = MIN (end, early_start + ii);
1361 step = 1;
1364 else if (!psp_not_empty && pss_not_empty)
1366 int late_start = INT_MAX;
1368 end = INT_MIN;
1369 for (e = u_node->out; e != 0; e = e->next_out)
1371 ddg_node_ptr v_node = e->dest;
1372 if (TEST_BIT (sched_nodes, v_node->cuid))
1374 late_start = MIN (late_start,
1375 SCHED_TIME (v_node) - e->latency
1376 + (e->distance * ii));
1377 if (e->data_type == MEM_DEP)
1378 end = MAX (end, SCHED_TIME (v_node) - ii + 1);
1381 start = late_start;
1382 end = MAX (end, late_start - ii);
1383 step = -1;
1386 else if (psp_not_empty && pss_not_empty)
1388 int early_start = INT_MIN;
1389 int late_start = INT_MAX;
1391 start = INT_MIN;
1392 end = INT_MAX;
1393 for (e = u_node->in; e != 0; e = e->next_in)
1395 ddg_node_ptr v_node = e->src;
1397 if (TEST_BIT (sched_nodes, v_node->cuid))
1399 early_start = MAX (early_start,
1400 SCHED_TIME (v_node) + e->latency
1401 - (e->distance * ii));
1402 if (e->data_type == MEM_DEP)
1403 end = MIN (end, SCHED_TIME (v_node) + ii - 1);
1406 for (e = u_node->out; e != 0; e = e->next_out)
1408 ddg_node_ptr v_node = e->dest;
1410 if (TEST_BIT (sched_nodes, v_node->cuid))
1412 late_start = MIN (late_start,
1413 SCHED_TIME (v_node) - e->latency
1414 + (e->distance * ii));
1415 if (e->data_type == MEM_DEP)
1416 start = MAX (start, SCHED_TIME (v_node) - ii + 1);
1419 start = MAX (start, early_start);
1420 end = MIN (end, MIN (early_start + ii, late_start + 1));
1421 step = 1;
1423 else /* psp is empty && pss is empty. */
1425 start = SCHED_ASAP (u_node);
1426 end = start + ii;
1427 step = 1;
1430 *start_p = start;
1431 *step_p = step;
1432 *end_p = end;
1433 sbitmap_free (psp);
1434 sbitmap_free (pss);
1436 if ((start >= end && step == 1) || (start <= end && step == -1))
1437 return -1;
1438 else
1439 return 0;
1442 /* This function implements the scheduling algorithm for SMS according to the
1443 above algorithm. */
1444 static partial_schedule_ptr
1445 sms_schedule_by_order (ddg_ptr g, int mii, int maxii, int *nodes_order)
1447 int ii = mii;
1448 int i, c, success;
1449 int try_again_with_larger_ii = true;
1450 int num_nodes = g->num_nodes;
1451 ddg_edge_ptr e;
1452 int start, end, step; /* Place together into one struct? */
1453 sbitmap sched_nodes = sbitmap_alloc (num_nodes);
1454 sbitmap must_precede = sbitmap_alloc (num_nodes);
1455 sbitmap must_follow = sbitmap_alloc (num_nodes);
1456 sbitmap tobe_scheduled = sbitmap_alloc (num_nodes);
1458 partial_schedule_ptr ps = create_partial_schedule (ii, g, DFA_HISTORY);
1460 sbitmap_ones (tobe_scheduled);
1461 sbitmap_zero (sched_nodes);
1463 while ((! sbitmap_equal (tobe_scheduled, sched_nodes)
1464 || try_again_with_larger_ii ) && ii < maxii)
1466 int j;
1467 bool unscheduled_nodes = false;
1469 if (dump_file)
1470 fprintf(dump_file, "Starting with ii=%d\n", ii);
1471 if (try_again_with_larger_ii)
1473 try_again_with_larger_ii = false;
1474 sbitmap_zero (sched_nodes);
1477 for (i = 0; i < num_nodes; i++)
1479 int u = nodes_order[i];
1480 ddg_node_ptr u_node = &ps->g->nodes[u];
1481 rtx insn = u_node->insn;
1483 if (!INSN_P (insn))
1485 RESET_BIT (tobe_scheduled, u);
1486 continue;
1489 if (JUMP_P (insn)) /* Closing branch handled later. */
1491 RESET_BIT (tobe_scheduled, u);
1492 continue;
1495 if (TEST_BIT (sched_nodes, u))
1496 continue;
1498 /* Try to get non-empty scheduling window. */
1499 j = i;
1500 while (get_sched_window (ps, nodes_order, i, sched_nodes, ii, &start, &step, &end) < 0
1501 && j > 0)
1503 unscheduled_nodes = true;
1504 if (TEST_BIT (NODE_PREDECESSORS (u_node), nodes_order[j - 1])
1505 || TEST_BIT (NODE_SUCCESSORS (u_node), nodes_order[j - 1]))
1507 ps_unschedule_node (ps, &ps->g->nodes[nodes_order[j - 1]]);
1508 RESET_BIT (sched_nodes, nodes_order [j - 1]);
1510 j--;
1512 if (j < 0)
1514 /* ??? Try backtracking instead of immediately ii++? */
1515 ii++;
1516 try_again_with_larger_ii = true;
1517 reset_partial_schedule (ps, ii);
1518 break;
1520 /* 2. Try scheduling u in window. */
1521 if (dump_file)
1522 fprintf(dump_file, "Trying to schedule node %d in (%d .. %d) step %d\n",
1523 u, start, end, step);
1525 /* use must_follow & must_precede bitmaps to determine order
1526 of nodes within the cycle. */
1527 sbitmap_zero (must_precede);
1528 sbitmap_zero (must_follow);
1529 for (e = u_node->in; e != 0; e = e->next_in)
1530 if (TEST_BIT (sched_nodes, e->src->cuid)
1531 && e->latency == (ii * e->distance)
1532 && start == SCHED_TIME (e->src))
1533 SET_BIT (must_precede, e->src->cuid);
1535 for (e = u_node->out; e != 0; e = e->next_out)
1536 if (TEST_BIT (sched_nodes, e->dest->cuid)
1537 && e->latency == (ii * e->distance)
1538 && end == SCHED_TIME (e->dest))
1539 SET_BIT (must_follow, e->dest->cuid);
1541 success = 0;
1542 if ((step > 0 && start < end) || (step < 0 && start > end))
1543 for (c = start; c != end; c += step)
1545 ps_insn_ptr psi;
1547 psi = ps_add_node_check_conflicts (ps, u_node, c,
1548 must_precede,
1549 must_follow);
1551 if (psi)
1553 SCHED_TIME (u_node) = c;
1554 SET_BIT (sched_nodes, u);
1555 success = 1;
1556 if (dump_file)
1557 fprintf(dump_file, "Schedule in %d\n", c);
1558 break;
1561 if (!success)
1563 /* ??? Try backtracking instead of immediately ii++? */
1564 ii++;
1565 try_again_with_larger_ii = true;
1566 reset_partial_schedule (ps, ii);
1567 break;
1569 if (unscheduled_nodes)
1570 break;
1572 /* ??? If (success), check register pressure estimates. */
1573 } /* Continue with next node. */
1574 } /* While try_again_with_larger_ii. */
1576 sbitmap_free (sched_nodes);
1577 sbitmap_free (must_precede);
1578 sbitmap_free (must_follow);
1579 sbitmap_free (tobe_scheduled);
1581 if (ii >= maxii)
1583 free_partial_schedule (ps);
1584 ps = NULL;
1586 return ps;
1590 /* This page implements the algorithm for ordering the nodes of a DDG
1591 for modulo scheduling, activated through the
1592 "int sms_order_nodes (ddg_ptr, int mii, int * result)" API. */
1594 #define ORDER_PARAMS(x) ((struct node_order_params *) (x)->aux.info)
1595 #define ASAP(x) (ORDER_PARAMS ((x))->asap)
1596 #define ALAP(x) (ORDER_PARAMS ((x))->alap)
1597 #define HEIGHT(x) (ORDER_PARAMS ((x))->height)
1598 #define MOB(x) (ALAP ((x)) - ASAP ((x)))
1599 #define DEPTH(x) (ASAP ((x)))
1601 typedef struct node_order_params * nopa;
1603 static void order_nodes_of_sccs (ddg_all_sccs_ptr, int * result);
1604 static int order_nodes_in_scc (ddg_ptr, sbitmap, sbitmap, int*, int);
1605 static nopa calculate_order_params (ddg_ptr, int mii);
1606 static int find_max_asap (ddg_ptr, sbitmap);
1607 static int find_max_hv_min_mob (ddg_ptr, sbitmap);
1608 static int find_max_dv_min_mob (ddg_ptr, sbitmap);
1610 enum sms_direction {BOTTOMUP, TOPDOWN};
1612 struct node_order_params
1614 int asap;
1615 int alap;
1616 int height;
1619 /* Check if NODE_ORDER contains a permutation of 0 .. NUM_NODES-1. */
1620 static void
1621 check_nodes_order (int *node_order, int num_nodes)
1623 int i;
1624 sbitmap tmp = sbitmap_alloc (num_nodes);
1626 sbitmap_zero (tmp);
1628 for (i = 0; i < num_nodes; i++)
1630 int u = node_order[i];
1632 gcc_assert (u < num_nodes && u >= 0 && !TEST_BIT (tmp, u));
1634 SET_BIT (tmp, u);
1637 sbitmap_free (tmp);
1640 /* Order the nodes of G for scheduling and pass the result in
1641 NODE_ORDER. Also set aux.count of each node to ASAP.
1642 Return the recMII for the given DDG. */
1643 static int
1644 sms_order_nodes (ddg_ptr g, int mii, int * node_order)
1646 int i;
1647 int rec_mii = 0;
1648 ddg_all_sccs_ptr sccs = create_ddg_all_sccs (g);
1650 nopa nops = calculate_order_params (g, mii);
1652 order_nodes_of_sccs (sccs, node_order);
1654 if (sccs->num_sccs > 0)
1655 /* First SCC has the largest recurrence_length. */
1656 rec_mii = sccs->sccs[0]->recurrence_length;
1658 /* Save ASAP before destroying node_order_params. */
1659 for (i = 0; i < g->num_nodes; i++)
1661 ddg_node_ptr v = &g->nodes[i];
1662 v->aux.count = ASAP (v);
1665 free (nops);
1666 free_ddg_all_sccs (sccs);
1667 check_nodes_order (node_order, g->num_nodes);
1669 return rec_mii;
1672 static void
1673 order_nodes_of_sccs (ddg_all_sccs_ptr all_sccs, int * node_order)
1675 int i, pos = 0;
1676 ddg_ptr g = all_sccs->ddg;
1677 int num_nodes = g->num_nodes;
1678 sbitmap prev_sccs = sbitmap_alloc (num_nodes);
1679 sbitmap on_path = sbitmap_alloc (num_nodes);
1680 sbitmap tmp = sbitmap_alloc (num_nodes);
1681 sbitmap ones = sbitmap_alloc (num_nodes);
1683 sbitmap_zero (prev_sccs);
1684 sbitmap_ones (ones);
1686 /* Perfrom the node ordering starting from the SCC with the highest recMII.
1687 For each SCC order the nodes according to their ASAP/ALAP/HEIGHT etc. */
1688 for (i = 0; i < all_sccs->num_sccs; i++)
1690 ddg_scc_ptr scc = all_sccs->sccs[i];
1692 /* Add nodes on paths from previous SCCs to the current SCC. */
1693 find_nodes_on_paths (on_path, g, prev_sccs, scc->nodes);
1694 sbitmap_a_or_b (tmp, scc->nodes, on_path);
1696 /* Add nodes on paths from the current SCC to previous SCCs. */
1697 find_nodes_on_paths (on_path, g, scc->nodes, prev_sccs);
1698 sbitmap_a_or_b (tmp, tmp, on_path);
1700 /* Remove nodes of previous SCCs from current extended SCC. */
1701 sbitmap_difference (tmp, tmp, prev_sccs);
1703 pos = order_nodes_in_scc (g, prev_sccs, tmp, node_order, pos);
1704 /* Above call to order_nodes_in_scc updated prev_sccs |= tmp. */
1707 /* Handle the remaining nodes that do not belong to any scc. Each call
1708 to order_nodes_in_scc handles a single connected component. */
1709 while (pos < g->num_nodes)
1711 sbitmap_difference (tmp, ones, prev_sccs);
1712 pos = order_nodes_in_scc (g, prev_sccs, tmp, node_order, pos);
1714 sbitmap_free (prev_sccs);
1715 sbitmap_free (on_path);
1716 sbitmap_free (tmp);
1717 sbitmap_free (ones);
1720 /* MII is needed if we consider backarcs (that do not close recursive cycles). */
1721 static struct node_order_params *
1722 calculate_order_params (ddg_ptr g, int mii ATTRIBUTE_UNUSED)
1724 int u;
1725 int max_asap;
1726 int num_nodes = g->num_nodes;
1727 ddg_edge_ptr e;
1728 /* Allocate a place to hold ordering params for each node in the DDG. */
1729 nopa node_order_params_arr;
1731 /* Initialize of ASAP/ALAP/HEIGHT to zero. */
1732 node_order_params_arr = (nopa) xcalloc (num_nodes,
1733 sizeof (struct node_order_params));
1735 /* Set the aux pointer of each node to point to its order_params structure. */
1736 for (u = 0; u < num_nodes; u++)
1737 g->nodes[u].aux.info = &node_order_params_arr[u];
1739 /* Disregarding a backarc from each recursive cycle to obtain a DAG,
1740 calculate ASAP, ALAP, mobility, distance, and height for each node
1741 in the dependence (direct acyclic) graph. */
1743 /* We assume that the nodes in the array are in topological order. */
1745 max_asap = 0;
1746 for (u = 0; u < num_nodes; u++)
1748 ddg_node_ptr u_node = &g->nodes[u];
1750 ASAP (u_node) = 0;
1751 for (e = u_node->in; e; e = e->next_in)
1752 if (e->distance == 0)
1753 ASAP (u_node) = MAX (ASAP (u_node),
1754 ASAP (e->src) + e->latency);
1755 max_asap = MAX (max_asap, ASAP (u_node));
1758 for (u = num_nodes - 1; u > -1; u--)
1760 ddg_node_ptr u_node = &g->nodes[u];
1762 ALAP (u_node) = max_asap;
1763 HEIGHT (u_node) = 0;
1764 for (e = u_node->out; e; e = e->next_out)
1765 if (e->distance == 0)
1767 ALAP (u_node) = MIN (ALAP (u_node),
1768 ALAP (e->dest) - e->latency);
1769 HEIGHT (u_node) = MAX (HEIGHT (u_node),
1770 HEIGHT (e->dest) + e->latency);
1774 return node_order_params_arr;
1777 static int
1778 find_max_asap (ddg_ptr g, sbitmap nodes)
1780 unsigned int u = 0;
1781 int max_asap = -1;
1782 int result = -1;
1783 sbitmap_iterator sbi;
1785 EXECUTE_IF_SET_IN_SBITMAP (nodes, 0, u, sbi)
1787 ddg_node_ptr u_node = &g->nodes[u];
1789 if (max_asap < ASAP (u_node))
1791 max_asap = ASAP (u_node);
1792 result = u;
1795 return result;
1798 static int
1799 find_max_hv_min_mob (ddg_ptr g, sbitmap nodes)
1801 unsigned int u = 0;
1802 int max_hv = -1;
1803 int min_mob = INT_MAX;
1804 int result = -1;
1805 sbitmap_iterator sbi;
1807 EXECUTE_IF_SET_IN_SBITMAP (nodes, 0, u, sbi)
1809 ddg_node_ptr u_node = &g->nodes[u];
1811 if (max_hv < HEIGHT (u_node))
1813 max_hv = HEIGHT (u_node);
1814 min_mob = MOB (u_node);
1815 result = u;
1817 else if ((max_hv == HEIGHT (u_node))
1818 && (min_mob > MOB (u_node)))
1820 min_mob = MOB (u_node);
1821 result = u;
1824 return result;
1827 static int
1828 find_max_dv_min_mob (ddg_ptr g, sbitmap nodes)
1830 unsigned int u = 0;
1831 int max_dv = -1;
1832 int min_mob = INT_MAX;
1833 int result = -1;
1834 sbitmap_iterator sbi;
1836 EXECUTE_IF_SET_IN_SBITMAP (nodes, 0, u, sbi)
1838 ddg_node_ptr u_node = &g->nodes[u];
1840 if (max_dv < DEPTH (u_node))
1842 max_dv = DEPTH (u_node);
1843 min_mob = MOB (u_node);
1844 result = u;
1846 else if ((max_dv == DEPTH (u_node))
1847 && (min_mob > MOB (u_node)))
1849 min_mob = MOB (u_node);
1850 result = u;
1853 return result;
1856 /* Places the nodes of SCC into the NODE_ORDER array starting
1857 at position POS, according to the SMS ordering algorithm.
1858 NODES_ORDERED (in&out parameter) holds the bitset of all nodes in
1859 the NODE_ORDER array, starting from position zero. */
1860 static int
1861 order_nodes_in_scc (ddg_ptr g, sbitmap nodes_ordered, sbitmap scc,
1862 int * node_order, int pos)
1864 enum sms_direction dir;
1865 int num_nodes = g->num_nodes;
1866 sbitmap workset = sbitmap_alloc (num_nodes);
1867 sbitmap tmp = sbitmap_alloc (num_nodes);
1868 sbitmap zero_bitmap = sbitmap_alloc (num_nodes);
1869 sbitmap predecessors = sbitmap_alloc (num_nodes);
1870 sbitmap successors = sbitmap_alloc (num_nodes);
1872 sbitmap_zero (predecessors);
1873 find_predecessors (predecessors, g, nodes_ordered);
1875 sbitmap_zero (successors);
1876 find_successors (successors, g, nodes_ordered);
1878 sbitmap_zero (tmp);
1879 if (sbitmap_a_and_b_cg (tmp, predecessors, scc))
1881 sbitmap_copy (workset, tmp);
1882 dir = BOTTOMUP;
1884 else if (sbitmap_a_and_b_cg (tmp, successors, scc))
1886 sbitmap_copy (workset, tmp);
1887 dir = TOPDOWN;
1889 else
1891 int u;
1893 sbitmap_zero (workset);
1894 if ((u = find_max_asap (g, scc)) >= 0)
1895 SET_BIT (workset, u);
1896 dir = BOTTOMUP;
1899 sbitmap_zero (zero_bitmap);
1900 while (!sbitmap_equal (workset, zero_bitmap))
1902 int v;
1903 ddg_node_ptr v_node;
1904 sbitmap v_node_preds;
1905 sbitmap v_node_succs;
1907 if (dir == TOPDOWN)
1909 while (!sbitmap_equal (workset, zero_bitmap))
1911 v = find_max_hv_min_mob (g, workset);
1912 v_node = &g->nodes[v];
1913 node_order[pos++] = v;
1914 v_node_succs = NODE_SUCCESSORS (v_node);
1915 sbitmap_a_and_b (tmp, v_node_succs, scc);
1917 /* Don't consider the already ordered successors again. */
1918 sbitmap_difference (tmp, tmp, nodes_ordered);
1919 sbitmap_a_or_b (workset, workset, tmp);
1920 RESET_BIT (workset, v);
1921 SET_BIT (nodes_ordered, v);
1923 dir = BOTTOMUP;
1924 sbitmap_zero (predecessors);
1925 find_predecessors (predecessors, g, nodes_ordered);
1926 sbitmap_a_and_b (workset, predecessors, scc);
1928 else
1930 while (!sbitmap_equal (workset, zero_bitmap))
1932 v = find_max_dv_min_mob (g, workset);
1933 v_node = &g->nodes[v];
1934 node_order[pos++] = v;
1935 v_node_preds = NODE_PREDECESSORS (v_node);
1936 sbitmap_a_and_b (tmp, v_node_preds, scc);
1938 /* Don't consider the already ordered predecessors again. */
1939 sbitmap_difference (tmp, tmp, nodes_ordered);
1940 sbitmap_a_or_b (workset, workset, tmp);
1941 RESET_BIT (workset, v);
1942 SET_BIT (nodes_ordered, v);
1944 dir = TOPDOWN;
1945 sbitmap_zero (successors);
1946 find_successors (successors, g, nodes_ordered);
1947 sbitmap_a_and_b (workset, successors, scc);
1950 sbitmap_free (tmp);
1951 sbitmap_free (workset);
1952 sbitmap_free (zero_bitmap);
1953 sbitmap_free (predecessors);
1954 sbitmap_free (successors);
1955 return pos;
1959 /* This page contains functions for manipulating partial-schedules during
1960 modulo scheduling. */
1962 /* Create a partial schedule and allocate a memory to hold II rows. */
1964 static partial_schedule_ptr
1965 create_partial_schedule (int ii, ddg_ptr g, int history)
1967 partial_schedule_ptr ps = XNEW (struct partial_schedule);
1968 ps->rows = (ps_insn_ptr *) xcalloc (ii, sizeof (ps_insn_ptr));
1969 ps->ii = ii;
1970 ps->history = history;
1971 ps->min_cycle = INT_MAX;
1972 ps->max_cycle = INT_MIN;
1973 ps->g = g;
1975 return ps;
1978 /* Free the PS_INSNs in rows array of the given partial schedule.
1979 ??? Consider caching the PS_INSN's. */
1980 static void
1981 free_ps_insns (partial_schedule_ptr ps)
1983 int i;
1985 for (i = 0; i < ps->ii; i++)
1987 while (ps->rows[i])
1989 ps_insn_ptr ps_insn = ps->rows[i]->next_in_row;
1991 free (ps->rows[i]);
1992 ps->rows[i] = ps_insn;
1994 ps->rows[i] = NULL;
1998 /* Free all the memory allocated to the partial schedule. */
2000 static void
2001 free_partial_schedule (partial_schedule_ptr ps)
2003 if (!ps)
2004 return;
2005 free_ps_insns (ps);
2006 free (ps->rows);
2007 free (ps);
2010 /* Clear the rows array with its PS_INSNs, and create a new one with
2011 NEW_II rows. */
2013 static void
2014 reset_partial_schedule (partial_schedule_ptr ps, int new_ii)
2016 if (!ps)
2017 return;
2018 free_ps_insns (ps);
2019 if (new_ii == ps->ii)
2020 return;
2021 ps->rows = (ps_insn_ptr *) xrealloc (ps->rows, new_ii
2022 * sizeof (ps_insn_ptr));
2023 memset (ps->rows, 0, new_ii * sizeof (ps_insn_ptr));
2024 ps->ii = new_ii;
2025 ps->min_cycle = INT_MAX;
2026 ps->max_cycle = INT_MIN;
2029 /* Prints the partial schedule as an ii rows array, for each rows
2030 print the ids of the insns in it. */
2031 void
2032 print_partial_schedule (partial_schedule_ptr ps, FILE *dump)
2034 int i;
2036 for (i = 0; i < ps->ii; i++)
2038 ps_insn_ptr ps_i = ps->rows[i];
2040 fprintf (dump, "\n[CYCLE %d ]: ", i);
2041 while (ps_i)
2043 fprintf (dump, "%d, ",
2044 INSN_UID (ps_i->node->insn));
2045 ps_i = ps_i->next_in_row;
2050 /* Creates an object of PS_INSN and initializes it to the given parameters. */
2051 static ps_insn_ptr
2052 create_ps_insn (ddg_node_ptr node, int rest_count, int cycle)
2054 ps_insn_ptr ps_i = XNEW (struct ps_insn);
2056 ps_i->node = node;
2057 ps_i->next_in_row = NULL;
2058 ps_i->prev_in_row = NULL;
2059 ps_i->row_rest_count = rest_count;
2060 ps_i->cycle = cycle;
2062 return ps_i;
2066 /* Removes the given PS_INSN from the partial schedule. Returns false if the
2067 node is not found in the partial schedule, else returns true. */
2068 static bool
2069 remove_node_from_ps (partial_schedule_ptr ps, ps_insn_ptr ps_i)
2071 int row;
2073 if (!ps || !ps_i)
2074 return false;
2076 row = SMODULO (ps_i->cycle, ps->ii);
2077 if (! ps_i->prev_in_row)
2079 if (ps_i != ps->rows[row])
2080 return false;
2082 ps->rows[row] = ps_i->next_in_row;
2083 if (ps->rows[row])
2084 ps->rows[row]->prev_in_row = NULL;
2086 else
2088 ps_i->prev_in_row->next_in_row = ps_i->next_in_row;
2089 if (ps_i->next_in_row)
2090 ps_i->next_in_row->prev_in_row = ps_i->prev_in_row;
2092 free (ps_i);
2093 return true;
2096 /* Unlike what literature describes for modulo scheduling (which focuses
2097 on VLIW machines) the order of the instructions inside a cycle is
2098 important. Given the bitmaps MUST_FOLLOW and MUST_PRECEDE we know
2099 where the current instruction should go relative to the already
2100 scheduled instructions in the given cycle. Go over these
2101 instructions and find the first possible column to put it in. */
2102 static bool
2103 ps_insn_find_column (partial_schedule_ptr ps, ps_insn_ptr ps_i,
2104 sbitmap must_precede, sbitmap must_follow)
2106 ps_insn_ptr next_ps_i;
2107 ps_insn_ptr first_must_follow = NULL;
2108 ps_insn_ptr last_must_precede = NULL;
2109 int row;
2111 if (! ps_i)
2112 return false;
2114 row = SMODULO (ps_i->cycle, ps->ii);
2116 /* Find the first must follow and the last must precede
2117 and insert the node immediately after the must precede
2118 but make sure that it there is no must follow after it. */
2119 for (next_ps_i = ps->rows[row];
2120 next_ps_i;
2121 next_ps_i = next_ps_i->next_in_row)
2123 if (TEST_BIT (must_follow, next_ps_i->node->cuid)
2124 && ! first_must_follow)
2125 first_must_follow = next_ps_i;
2126 if (TEST_BIT (must_precede, next_ps_i->node->cuid))
2128 /* If we have already met a node that must follow, then
2129 there is no possible column. */
2130 if (first_must_follow)
2131 return false;
2132 else
2133 last_must_precede = next_ps_i;
2137 /* Now insert the node after INSERT_AFTER_PSI. */
2139 if (! last_must_precede)
2141 ps_i->next_in_row = ps->rows[row];
2142 ps_i->prev_in_row = NULL;
2143 if (ps_i->next_in_row)
2144 ps_i->next_in_row->prev_in_row = ps_i;
2145 ps->rows[row] = ps_i;
2147 else
2149 ps_i->next_in_row = last_must_precede->next_in_row;
2150 last_must_precede->next_in_row = ps_i;
2151 ps_i->prev_in_row = last_must_precede;
2152 if (ps_i->next_in_row)
2153 ps_i->next_in_row->prev_in_row = ps_i;
2156 return true;
2159 /* Advances the PS_INSN one column in its current row; returns false
2160 in failure and true in success. Bit N is set in MUST_FOLLOW if
2161 the node with cuid N must be come after the node pointed to by
2162 PS_I when scheduled in the same cycle. */
2163 static int
2164 ps_insn_advance_column (partial_schedule_ptr ps, ps_insn_ptr ps_i,
2165 sbitmap must_follow)
2167 ps_insn_ptr prev, next;
2168 int row;
2169 ddg_node_ptr next_node;
2171 if (!ps || !ps_i)
2172 return false;
2174 row = SMODULO (ps_i->cycle, ps->ii);
2176 if (! ps_i->next_in_row)
2177 return false;
2179 next_node = ps_i->next_in_row->node;
2181 /* Check if next_in_row is dependent on ps_i, both having same sched
2182 times (typically ANTI_DEP). If so, ps_i cannot skip over it. */
2183 if (TEST_BIT (must_follow, next_node->cuid))
2184 return false;
2186 /* Advance PS_I over its next_in_row in the doubly linked list. */
2187 prev = ps_i->prev_in_row;
2188 next = ps_i->next_in_row;
2190 if (ps_i == ps->rows[row])
2191 ps->rows[row] = next;
2193 ps_i->next_in_row = next->next_in_row;
2195 if (next->next_in_row)
2196 next->next_in_row->prev_in_row = ps_i;
2198 next->next_in_row = ps_i;
2199 ps_i->prev_in_row = next;
2201 next->prev_in_row = prev;
2202 if (prev)
2203 prev->next_in_row = next;
2205 return true;
2208 /* Inserts a DDG_NODE to the given partial schedule at the given cycle.
2209 Returns 0 if this is not possible and a PS_INSN otherwise. Bit N is
2210 set in MUST_PRECEDE/MUST_FOLLOW if the node with cuid N must be come
2211 before/after (respectively) the node pointed to by PS_I when scheduled
2212 in the same cycle. */
2213 static ps_insn_ptr
2214 add_node_to_ps (partial_schedule_ptr ps, ddg_node_ptr node, int cycle,
2215 sbitmap must_precede, sbitmap must_follow)
2217 ps_insn_ptr ps_i;
2218 int rest_count = 1;
2219 int row = SMODULO (cycle, ps->ii);
2221 if (ps->rows[row]
2222 && ps->rows[row]->row_rest_count >= issue_rate)
2223 return NULL;
2225 if (ps->rows[row])
2226 rest_count += ps->rows[row]->row_rest_count;
2228 ps_i = create_ps_insn (node, rest_count, cycle);
2230 /* Finds and inserts PS_I according to MUST_FOLLOW and
2231 MUST_PRECEDE. */
2232 if (! ps_insn_find_column (ps, ps_i, must_precede, must_follow))
2234 free (ps_i);
2235 return NULL;
2238 return ps_i;
2241 /* Advance time one cycle. Assumes DFA is being used. */
2242 static void
2243 advance_one_cycle (void)
2245 if (targetm.sched.dfa_pre_cycle_insn)
2246 state_transition (curr_state,
2247 targetm.sched.dfa_pre_cycle_insn ());
2249 state_transition (curr_state, NULL);
2251 if (targetm.sched.dfa_post_cycle_insn)
2252 state_transition (curr_state,
2253 targetm.sched.dfa_post_cycle_insn ());
2256 /* Given the kernel of a loop (from FIRST_INSN to LAST_INSN), finds
2257 the number of cycles according to DFA that the kernel fits in,
2258 we use this to check if we done well with SMS after we add
2259 register moves. In some cases register moves overhead makes
2260 it even worse than the original loop. We want SMS to be performed
2261 when it gives less cycles after register moves are added. */
2262 static int
2263 kernel_number_of_cycles (rtx first_insn, rtx last_insn)
2265 int cycles = 0;
2266 rtx insn;
2267 int can_issue_more = issue_rate;
2269 state_reset (curr_state);
2271 for (insn = first_insn;
2272 insn != NULL_RTX && insn != last_insn;
2273 insn = NEXT_INSN (insn))
2275 if (! INSN_P (insn) || GET_CODE (PATTERN (insn)) == USE)
2276 continue;
2278 /* Check if there is room for the current insn. */
2279 if (!can_issue_more || state_dead_lock_p (curr_state))
2281 cycles ++;
2282 advance_one_cycle ();
2283 can_issue_more = issue_rate;
2286 /* Update the DFA state and return with failure if the DFA found
2287 recource conflicts. */
2288 if (state_transition (curr_state, insn) >= 0)
2290 cycles ++;
2291 advance_one_cycle ();
2292 can_issue_more = issue_rate;
2295 if (targetm.sched.variable_issue)
2296 can_issue_more =
2297 targetm.sched.variable_issue (sched_dump, sched_verbose,
2298 insn, can_issue_more);
2299 /* A naked CLOBBER or USE generates no instruction, so don't
2300 let them consume issue slots. */
2301 else if (GET_CODE (PATTERN (insn)) != USE
2302 && GET_CODE (PATTERN (insn)) != CLOBBER)
2303 can_issue_more--;
2305 return cycles;
2308 /* Checks if PS has resource conflicts according to DFA, starting from
2309 FROM cycle to TO cycle; returns true if there are conflicts and false
2310 if there are no conflicts. Assumes DFA is being used. */
2311 static int
2312 ps_has_conflicts (partial_schedule_ptr ps, int from, int to)
2314 int cycle;
2316 state_reset (curr_state);
2318 for (cycle = from; cycle <= to; cycle++)
2320 ps_insn_ptr crr_insn;
2321 /* Holds the remaining issue slots in the current row. */
2322 int can_issue_more = issue_rate;
2324 /* Walk through the DFA for the current row. */
2325 for (crr_insn = ps->rows[SMODULO (cycle, ps->ii)];
2326 crr_insn;
2327 crr_insn = crr_insn->next_in_row)
2329 rtx insn = crr_insn->node->insn;
2331 if (!INSN_P (insn))
2332 continue;
2334 /* Check if there is room for the current insn. */
2335 if (!can_issue_more || state_dead_lock_p (curr_state))
2336 return true;
2338 /* Update the DFA state and return with failure if the DFA found
2339 recource conflicts. */
2340 if (state_transition (curr_state, insn) >= 0)
2341 return true;
2343 if (targetm.sched.variable_issue)
2344 can_issue_more =
2345 targetm.sched.variable_issue (sched_dump, sched_verbose,
2346 insn, can_issue_more);
2347 /* A naked CLOBBER or USE generates no instruction, so don't
2348 let them consume issue slots. */
2349 else if (GET_CODE (PATTERN (insn)) != USE
2350 && GET_CODE (PATTERN (insn)) != CLOBBER)
2351 can_issue_more--;
2354 /* Advance the DFA to the next cycle. */
2355 advance_one_cycle ();
2357 return false;
2360 /* Checks if the given node causes resource conflicts when added to PS at
2361 cycle C. If not the node is added to PS and returned; otherwise zero
2362 is returned. Bit N is set in MUST_PRECEDE/MUST_FOLLOW if the node with
2363 cuid N must be come before/after (respectively) the node pointed to by
2364 PS_I when scheduled in the same cycle. */
2365 ps_insn_ptr
2366 ps_add_node_check_conflicts (partial_schedule_ptr ps, ddg_node_ptr n,
2367 int c, sbitmap must_precede,
2368 sbitmap must_follow)
2370 int has_conflicts = 0;
2371 ps_insn_ptr ps_i;
2373 /* First add the node to the PS, if this succeeds check for
2374 conflicts, trying different issue slots in the same row. */
2375 if (! (ps_i = add_node_to_ps (ps, n, c, must_precede, must_follow)))
2376 return NULL; /* Failed to insert the node at the given cycle. */
2378 has_conflicts = ps_has_conflicts (ps, c, c)
2379 || (ps->history > 0
2380 && ps_has_conflicts (ps,
2381 c - ps->history,
2382 c + ps->history));
2384 /* Try different issue slots to find one that the given node can be
2385 scheduled in without conflicts. */
2386 while (has_conflicts)
2388 if (! ps_insn_advance_column (ps, ps_i, must_follow))
2389 break;
2390 has_conflicts = ps_has_conflicts (ps, c, c)
2391 || (ps->history > 0
2392 && ps_has_conflicts (ps,
2393 c - ps->history,
2394 c + ps->history));
2397 if (has_conflicts)
2399 remove_node_from_ps (ps, ps_i);
2400 return NULL;
2403 ps->min_cycle = MIN (ps->min_cycle, c);
2404 ps->max_cycle = MAX (ps->max_cycle, c);
2405 return ps_i;
2408 /* Rotate the rows of PS such that insns scheduled at time
2409 START_CYCLE will appear in row 0. Updates max/min_cycles. */
2410 void
2411 rotate_partial_schedule (partial_schedule_ptr ps, int start_cycle)
2413 int i, row, backward_rotates;
2414 int last_row = ps->ii - 1;
2416 if (start_cycle == 0)
2417 return;
2419 backward_rotates = SMODULO (start_cycle, ps->ii);
2421 /* Revisit later and optimize this into a single loop. */
2422 for (i = 0; i < backward_rotates; i++)
2424 ps_insn_ptr first_row = ps->rows[0];
2426 for (row = 0; row < last_row; row++)
2427 ps->rows[row] = ps->rows[row+1];
2429 ps->rows[last_row] = first_row;
2432 ps->max_cycle -= start_cycle;
2433 ps->min_cycle -= start_cycle;
2436 /* Remove the node N from the partial schedule PS; because we restart the DFA
2437 each time we want to check for resource conflicts; this is equivalent to
2438 unscheduling the node N. */
2439 static bool
2440 ps_unschedule_node (partial_schedule_ptr ps, ddg_node_ptr n)
2442 ps_insn_ptr ps_i;
2443 int row = SMODULO (SCHED_TIME (n), ps->ii);
2445 if (row < 0 || row > ps->ii)
2446 return false;
2448 for (ps_i = ps->rows[row];
2449 ps_i && ps_i->node != n;
2450 ps_i = ps_i->next_in_row);
2451 if (!ps_i)
2452 return false;
2454 return remove_node_from_ps (ps, ps_i);
2456 #endif /* INSN_SCHEDULING */
2458 static bool
2459 gate_handle_sms (void)
2461 return (optimize > 0 && flag_modulo_sched);
2465 /* Run instruction scheduler. */
2466 /* Perform SMS module scheduling. */
2467 static unsigned int
2468 rest_of_handle_sms (void)
2470 #ifdef INSN_SCHEDULING
2471 basic_block bb;
2473 /* We want to be able to create new pseudos. */
2474 no_new_pseudos = 0;
2475 /* Collect loop information to be used in SMS. */
2476 cfg_layout_initialize (CLEANUP_UPDATE_LIFE);
2477 sms_schedule ();
2479 /* Update the life information, because we add pseudos. */
2480 max_regno = max_reg_num ();
2481 allocate_reg_info (max_regno, FALSE, FALSE);
2482 update_life_info (NULL, UPDATE_LIFE_GLOBAL_RM_NOTES,
2483 (PROP_DEATH_NOTES
2484 | PROP_REG_INFO
2485 | PROP_KILL_DEAD_CODE
2486 | PROP_SCAN_DEAD_CODE));
2488 no_new_pseudos = 1;
2490 /* Finalize layout changes. */
2491 FOR_EACH_BB (bb)
2492 if (bb->next_bb != EXIT_BLOCK_PTR)
2493 bb->aux = bb->next_bb;
2494 cfg_layout_finalize ();
2495 free_dominance_info (CDI_DOMINATORS);
2496 #endif /* INSN_SCHEDULING */
2497 return 0;
2500 struct tree_opt_pass pass_sms =
2502 "sms", /* name */
2503 gate_handle_sms, /* gate */
2504 rest_of_handle_sms, /* execute */
2505 NULL, /* sub */
2506 NULL, /* next */
2507 0, /* static_pass_number */
2508 TV_SMS, /* tv_id */
2509 0, /* properties_required */
2510 0, /* properties_provided */
2511 0, /* properties_destroyed */
2512 TODO_dump_func, /* todo_flags_start */
2513 TODO_dump_func |
2514 TODO_ggc_collect, /* todo_flags_finish */
2515 'm' /* letter */