PR c++/14122
[official-gcc.git] / gcc / cp / search.c
blob1b8c8c8afe46e83450111db5394821d673d9c978
1 /* Breadth-first and depth-first routines for
2 searching multiple-inheritance lattice for GNU C++.
3 Copyright (C) 1987, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
4 1999, 2000, 2002, 2003, 2004 Free Software Foundation, Inc.
5 Contributed by Michael Tiemann (tiemann@cygnus.com)
7 This file is part of GCC.
9 GCC is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2, or (at your option)
12 any later version.
14 GCC is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING. If not, write to
21 the Free Software Foundation, 59 Temple Place - Suite 330,
22 Boston, MA 02111-1307, USA. */
24 /* High-level class interface. */
26 #include "config.h"
27 #include "system.h"
28 #include "coretypes.h"
29 #include "tm.h"
30 #include "tree.h"
31 #include "cp-tree.h"
32 #include "obstack.h"
33 #include "flags.h"
34 #include "rtl.h"
35 #include "output.h"
36 #include "toplev.h"
37 #include "stack.h"
39 /* Obstack used for remembering decision points of breadth-first. */
41 static struct obstack search_obstack;
43 /* Methods for pushing and popping objects to and from obstacks. */
45 struct stack_level *
46 push_stack_level (struct obstack *obstack, char *tp,/* Sony NewsOS 5.0 compiler doesn't like void * here. */
47 int size)
49 struct stack_level *stack;
50 obstack_grow (obstack, tp, size);
51 stack = (struct stack_level *) ((char*)obstack_next_free (obstack) - size);
52 obstack_finish (obstack);
53 stack->obstack = obstack;
54 stack->first = (tree *) obstack_base (obstack);
55 stack->limit = obstack_room (obstack) / sizeof (tree *);
56 return stack;
59 struct stack_level *
60 pop_stack_level (struct stack_level *stack)
62 struct stack_level *tem = stack;
63 struct obstack *obstack = tem->obstack;
64 stack = tem->prev;
65 obstack_free (obstack, tem);
66 return stack;
69 #define search_level stack_level
70 static struct search_level *search_stack;
72 struct vbase_info
74 /* The class dominating the hierarchy. */
75 tree type;
76 /* A pointer to a complete object of the indicated TYPE. */
77 tree decl_ptr;
78 tree inits;
81 static tree dfs_check_overlap (tree, void *);
82 static tree dfs_no_overlap_yet (tree, int, void *);
83 static base_kind lookup_base_r (tree, tree, base_access, bool, tree *);
84 static int dynamic_cast_base_recurse (tree, tree, bool, tree *);
85 static tree marked_pushdecls_p (tree, int, void *);
86 static tree unmarked_pushdecls_p (tree, int, void *);
87 static tree dfs_debug_unmarkedp (tree, int, void *);
88 static tree dfs_debug_mark (tree, void *);
89 static tree dfs_push_type_decls (tree, void *);
90 static tree dfs_push_decls (tree, void *);
91 static tree dfs_unuse_fields (tree, void *);
92 static tree add_conversions (tree, void *);
93 static int look_for_overrides_r (tree, tree);
94 static struct search_level *push_search_level (struct stack_level *,
95 struct obstack *);
96 static struct search_level *pop_search_level (struct stack_level *);
97 static tree bfs_walk (tree, tree (*) (tree, void *),
98 tree (*) (tree, int, void *), void *);
99 static tree lookup_field_queue_p (tree, int, void *);
100 static int shared_member_p (tree);
101 static tree lookup_field_r (tree, void *);
102 static tree dfs_accessible_queue_p (tree, int, void *);
103 static tree dfs_accessible_p (tree, void *);
104 static tree dfs_access_in_type (tree, void *);
105 static access_kind access_in_type (tree, tree);
106 static int protected_accessible_p (tree, tree, tree);
107 static int friend_accessible_p (tree, tree, tree);
108 static void setup_class_bindings (tree, int);
109 static int template_self_reference_p (tree, tree);
110 static tree dfs_get_pure_virtuals (tree, void *);
112 /* Allocate a level of searching. */
114 static struct search_level *
115 push_search_level (struct stack_level *stack, struct obstack *obstack)
117 struct search_level tem;
119 tem.prev = stack;
120 return push_stack_level (obstack, (char *)&tem, sizeof (tem));
123 /* Discard a level of search allocation. */
125 static struct search_level *
126 pop_search_level (struct stack_level *obstack)
128 struct search_level *stack = pop_stack_level (obstack);
130 return stack;
133 /* Variables for gathering statistics. */
134 #ifdef GATHER_STATISTICS
135 static int n_fields_searched;
136 static int n_calls_lookup_field, n_calls_lookup_field_1;
137 static int n_calls_lookup_fnfields, n_calls_lookup_fnfields_1;
138 static int n_calls_get_base_type;
139 static int n_outer_fields_searched;
140 static int n_contexts_saved;
141 #endif /* GATHER_STATISTICS */
144 /* Worker for lookup_base. BINFO is the binfo we are searching at,
145 BASE is the RECORD_TYPE we are searching for. ACCESS is the
146 required access checks. IS_VIRTUAL indicates if BINFO is morally
147 virtual.
149 If BINFO is of the required type, then *BINFO_PTR is examined to
150 compare with any other instance of BASE we might have already
151 discovered. *BINFO_PTR is initialized and a base_kind return value
152 indicates what kind of base was located.
154 Otherwise BINFO's bases are searched. */
156 static base_kind
157 lookup_base_r (tree binfo, tree base, base_access access,
158 bool is_virtual, /* inside a virtual part */
159 tree *binfo_ptr)
161 int i;
162 tree bases, accesses;
163 base_kind found = bk_not_base;
165 if (same_type_p (BINFO_TYPE (binfo), base))
167 /* We have found a base. Check against what we have found
168 already. */
169 found = bk_same_type;
170 if (is_virtual)
171 found = bk_via_virtual;
173 if (!*binfo_ptr)
174 *binfo_ptr = binfo;
175 else if (binfo != *binfo_ptr)
177 if (access != ba_any)
178 *binfo_ptr = NULL;
179 else if (!is_virtual)
180 /* Prefer a non-virtual base. */
181 *binfo_ptr = binfo;
182 found = bk_ambig;
185 return found;
188 bases = BINFO_BASETYPES (binfo);
189 accesses = BINFO_BASEACCESSES (binfo);
190 if (!bases)
191 return bk_not_base;
193 for (i = TREE_VEC_LENGTH (bases); i--;)
195 tree base_binfo = TREE_VEC_ELT (bases, i);
196 base_kind bk;
198 bk = lookup_base_r (base_binfo, base,
199 access,
200 is_virtual || TREE_VIA_VIRTUAL (base_binfo),
201 binfo_ptr);
203 switch (bk)
205 case bk_ambig:
206 if (access != ba_any)
207 return bk;
208 found = bk;
209 break;
211 case bk_same_type:
212 bk = bk_proper_base;
213 /* Fall through. */
214 case bk_proper_base:
215 my_friendly_assert (found == bk_not_base, 20010723);
216 found = bk;
217 break;
219 case bk_via_virtual:
220 if (found != bk_ambig)
221 found = bk;
222 break;
224 case bk_not_base:
225 break;
227 default:
228 abort ();
231 return found;
234 /* Returns true if type BASE is accessible in T. (BASE is known to be
235 a base class of T.) */
237 bool
238 accessible_base_p (tree t, tree base)
240 tree decl;
242 /* [class.access.base]
244 A base class is said to be accessible if an invented public
245 member of the base class is accessible. */
246 /* Rather than inventing a public member, we use the implicit
247 public typedef created in the scope of every class. */
248 decl = TYPE_FIELDS (base);
249 while (!DECL_SELF_REFERENCE_P (decl))
250 decl = TREE_CHAIN (decl);
251 while (ANON_AGGR_TYPE_P (t))
252 t = TYPE_CONTEXT (t);
253 return accessible_p (t, decl);
256 /* Lookup BASE in the hierarchy dominated by T. Do access checking as
257 ACCESS specifies. Return the binfo we discover. If KIND_PTR is
258 non-NULL, fill with information about what kind of base we
259 discovered.
261 If the base is inaccessible, or ambiguous, and the ba_quiet bit is
262 not set in ACCESS, then an error is issued and error_mark_node is
263 returned. If the ba_quiet bit is set, then no error is issued and
264 NULL_TREE is returned. */
266 tree
267 lookup_base (tree t, tree base, base_access access, base_kind *kind_ptr)
269 tree binfo = NULL; /* The binfo we've found so far. */
270 tree t_binfo = NULL;
271 base_kind bk;
273 if (t == error_mark_node || base == error_mark_node)
275 if (kind_ptr)
276 *kind_ptr = bk_not_base;
277 return error_mark_node;
279 my_friendly_assert (TYPE_P (base), 20011127);
281 if (!TYPE_P (t))
283 t_binfo = t;
284 t = BINFO_TYPE (t);
286 else
287 t_binfo = TYPE_BINFO (t);
289 /* Ensure that the types are instantiated. */
290 t = complete_type (TYPE_MAIN_VARIANT (t));
291 base = complete_type (TYPE_MAIN_VARIANT (base));
293 bk = lookup_base_r (t_binfo, base, access, 0, &binfo);
295 /* Check that the base is unambiguous and accessible. */
296 if (access != ba_any)
297 switch (bk)
299 case bk_not_base:
300 break;
302 case bk_ambig:
303 binfo = NULL_TREE;
304 if (!(access & ba_quiet))
306 error ("`%T' is an ambiguous base of `%T'", base, t);
307 binfo = error_mark_node;
309 break;
311 default:
312 if ((access & ~ba_quiet) != ba_ignore
313 /* If BASE is incomplete, then BASE and TYPE are probably
314 the same, in which case BASE is accessible. If they
315 are not the same, then TYPE is invalid. In that case,
316 there's no need to issue another error here, and
317 there's no implicit typedef to use in the code that
318 follows, so we skip the check. */
319 && COMPLETE_TYPE_P (base)
320 && !accessible_base_p (t, base))
322 if (!(access & ba_quiet))
324 error ("`%T' is an inaccessible base of `%T'", base, t);
325 binfo = error_mark_node;
327 else
328 binfo = NULL_TREE;
329 bk = bk_inaccessible;
331 break;
334 if (kind_ptr)
335 *kind_ptr = bk;
337 return binfo;
340 /* Worker function for get_dynamic_cast_base_type. */
342 static int
343 dynamic_cast_base_recurse (tree subtype, tree binfo, bool is_via_virtual,
344 tree *offset_ptr)
346 tree binfos, accesses;
347 int i, n_baselinks;
348 int worst = -2;
350 if (BINFO_TYPE (binfo) == subtype)
352 if (is_via_virtual)
353 return -1;
354 else
356 *offset_ptr = BINFO_OFFSET (binfo);
357 return 0;
361 binfos = BINFO_BASETYPES (binfo);
362 accesses = BINFO_BASEACCESSES (binfo);
363 n_baselinks = binfos ? TREE_VEC_LENGTH (binfos) : 0;
364 for (i = 0; i < n_baselinks; i++)
366 tree base_binfo = TREE_VEC_ELT (binfos, i);
367 tree base_access = TREE_VEC_ELT (accesses, i);
368 int rval;
370 if (base_access != access_public_node)
371 continue;
372 rval = dynamic_cast_base_recurse
373 (subtype, base_binfo,
374 is_via_virtual || TREE_VIA_VIRTUAL (base_binfo), offset_ptr);
375 if (worst == -2)
376 worst = rval;
377 else if (rval >= 0)
378 worst = worst >= 0 ? -3 : worst;
379 else if (rval == -1)
380 worst = -1;
381 else if (rval == -3 && worst != -1)
382 worst = -3;
384 return worst;
387 /* The dynamic cast runtime needs a hint about how the static SUBTYPE type
388 started from is related to the required TARGET type, in order to optimize
389 the inheritance graph search. This information is independent of the
390 current context, and ignores private paths, hence get_base_distance is
391 inappropriate. Return a TREE specifying the base offset, BOFF.
392 BOFF >= 0, there is only one public non-virtual SUBTYPE base at offset BOFF,
393 and there are no public virtual SUBTYPE bases.
394 BOFF == -1, SUBTYPE occurs as multiple public virtual or non-virtual bases.
395 BOFF == -2, SUBTYPE is not a public base.
396 BOFF == -3, SUBTYPE occurs as multiple public non-virtual bases. */
398 tree
399 get_dynamic_cast_base_type (tree subtype, tree target)
401 tree offset = NULL_TREE;
402 int boff = dynamic_cast_base_recurse (subtype, TYPE_BINFO (target),
403 false, &offset);
405 if (!boff)
406 return offset;
407 offset = build_int_2 (boff, -1);
408 TREE_TYPE (offset) = ssizetype;
409 return offset;
412 /* Search for a member with name NAME in a multiple inheritance
413 lattice specified by TYPE. If it does not exist, return NULL_TREE.
414 If the member is ambiguously referenced, return `error_mark_node'.
415 Otherwise, return a DECL with the indicated name. If WANT_TYPE is
416 true, type declarations are preferred. */
418 /* Do a 1-level search for NAME as a member of TYPE. The caller must
419 figure out whether it can access this field. (Since it is only one
420 level, this is reasonable.) */
422 tree
423 lookup_field_1 (tree type, tree name, bool want_type)
425 tree field;
427 if (TREE_CODE (type) == TEMPLATE_TYPE_PARM
428 || TREE_CODE (type) == BOUND_TEMPLATE_TEMPLATE_PARM
429 || TREE_CODE (type) == TYPENAME_TYPE)
430 /* The TYPE_FIELDS of a TEMPLATE_TYPE_PARM and
431 BOUND_TEMPLATE_TEMPLATE_PARM are not fields at all;
432 instead TYPE_FIELDS is the TEMPLATE_PARM_INDEX. (Miraculously,
433 the code often worked even when we treated the index as a list
434 of fields!)
435 The TYPE_FIELDS of TYPENAME_TYPE is its TYPENAME_TYPE_FULLNAME. */
436 return NULL_TREE;
438 if (TYPE_NAME (type)
439 && DECL_LANG_SPECIFIC (TYPE_NAME (type))
440 && DECL_SORTED_FIELDS (TYPE_NAME (type)))
442 tree *fields = &DECL_SORTED_FIELDS (TYPE_NAME (type))->elts[0];
443 int lo = 0, hi = DECL_SORTED_FIELDS (TYPE_NAME (type))->len;
444 int i;
446 while (lo < hi)
448 i = (lo + hi) / 2;
450 #ifdef GATHER_STATISTICS
451 n_fields_searched++;
452 #endif /* GATHER_STATISTICS */
454 if (DECL_NAME (fields[i]) > name)
455 hi = i;
456 else if (DECL_NAME (fields[i]) < name)
457 lo = i + 1;
458 else
460 field = NULL_TREE;
462 /* We might have a nested class and a field with the
463 same name; we sorted them appropriately via
464 field_decl_cmp, so just look for the first or last
465 field with this name. */
466 if (want_type)
469 field = fields[i--];
470 while (i >= lo && DECL_NAME (fields[i]) == name);
471 if (TREE_CODE (field) != TYPE_DECL
472 && !DECL_CLASS_TEMPLATE_P (field))
473 field = NULL_TREE;
475 else
478 field = fields[i++];
479 while (i < hi && DECL_NAME (fields[i]) == name);
481 return field;
484 return NULL_TREE;
487 field = TYPE_FIELDS (type);
489 #ifdef GATHER_STATISTICS
490 n_calls_lookup_field_1++;
491 #endif /* GATHER_STATISTICS */
492 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
494 #ifdef GATHER_STATISTICS
495 n_fields_searched++;
496 #endif /* GATHER_STATISTICS */
497 my_friendly_assert (DECL_P (field), 0);
498 if (DECL_NAME (field) == NULL_TREE
499 && ANON_AGGR_TYPE_P (TREE_TYPE (field)))
501 tree temp = lookup_field_1 (TREE_TYPE (field), name, want_type);
502 if (temp)
503 return temp;
505 if (TREE_CODE (field) == USING_DECL)
506 /* For now, we're just treating member using declarations as
507 old ARM-style access declarations. Thus, there's no reason
508 to return a USING_DECL, and the rest of the compiler can't
509 handle it. Once the class is defined, these are purged
510 from TYPE_FIELDS anyhow; see handle_using_decl. */
511 continue;
513 if (DECL_NAME (field) == name
514 && (!want_type
515 || TREE_CODE (field) == TYPE_DECL
516 || DECL_CLASS_TEMPLATE_P (field)))
517 return field;
519 /* Not found. */
520 if (name == vptr_identifier)
522 /* Give the user what s/he thinks s/he wants. */
523 if (TYPE_POLYMORPHIC_P (type))
524 return TYPE_VFIELD (type);
526 return NULL_TREE;
529 /* There are a number of cases we need to be aware of here:
530 current_class_type current_function_decl
531 global NULL NULL
532 fn-local NULL SET
533 class-local SET NULL
534 class->fn SET SET
535 fn->class SET SET
537 Those last two make life interesting. If we're in a function which is
538 itself inside a class, we need decls to go into the fn's decls (our
539 second case below). But if we're in a class and the class itself is
540 inside a function, we need decls to go into the decls for the class. To
541 achieve this last goal, we must see if, when both current_class_ptr and
542 current_function_decl are set, the class was declared inside that
543 function. If so, we know to put the decls into the class's scope. */
545 tree
546 current_scope (void)
548 if (current_function_decl == NULL_TREE)
549 return current_class_type;
550 if (current_class_type == NULL_TREE)
551 return current_function_decl;
552 if ((DECL_FUNCTION_MEMBER_P (current_function_decl)
553 && same_type_p (DECL_CONTEXT (current_function_decl),
554 current_class_type))
555 || (DECL_FRIEND_CONTEXT (current_function_decl)
556 && same_type_p (DECL_FRIEND_CONTEXT (current_function_decl),
557 current_class_type)))
558 return current_function_decl;
560 return current_class_type;
563 /* Returns nonzero if we are currently in a function scope. Note
564 that this function returns zero if we are within a local class, but
565 not within a member function body of the local class. */
568 at_function_scope_p (void)
570 tree cs = current_scope ();
571 return cs && TREE_CODE (cs) == FUNCTION_DECL;
574 /* Returns true if the innermost active scope is a class scope. */
576 bool
577 at_class_scope_p (void)
579 tree cs = current_scope ();
580 return cs && TYPE_P (cs);
583 /* Returns true if the innermost active scope is a namespace scope. */
585 bool
586 at_namespace_scope_p (void)
588 /* We are in a namespace scope if we are not it a class scope or a
589 function scope. */
590 return !current_scope();
593 /* Return the scope of DECL, as appropriate when doing name-lookup. */
595 tree
596 context_for_name_lookup (tree decl)
598 /* [class.union]
600 For the purposes of name lookup, after the anonymous union
601 definition, the members of the anonymous union are considered to
602 have been defined in the scope in which the anonymous union is
603 declared. */
604 tree context = DECL_CONTEXT (decl);
606 while (context && TYPE_P (context) && ANON_AGGR_TYPE_P (context))
607 context = TYPE_CONTEXT (context);
608 if (!context)
609 context = global_namespace;
611 return context;
614 /* The accessibility routines use BINFO_ACCESS for scratch space
615 during the computation of the accessibility of some declaration. */
617 #define BINFO_ACCESS(NODE) \
618 ((access_kind) ((TREE_PUBLIC (NODE) << 1) | TREE_PRIVATE (NODE)))
620 /* Set the access associated with NODE to ACCESS. */
622 #define SET_BINFO_ACCESS(NODE, ACCESS) \
623 ((TREE_PUBLIC (NODE) = ((ACCESS) & 2) != 0), \
624 (TREE_PRIVATE (NODE) = ((ACCESS) & 1) != 0))
626 /* Called from access_in_type via dfs_walk. Calculate the access to
627 DATA (which is really a DECL) in BINFO. */
629 static tree
630 dfs_access_in_type (tree binfo, void *data)
632 tree decl = (tree) data;
633 tree type = BINFO_TYPE (binfo);
634 access_kind access = ak_none;
636 if (context_for_name_lookup (decl) == type)
638 /* If we have descended to the scope of DECL, just note the
639 appropriate access. */
640 if (TREE_PRIVATE (decl))
641 access = ak_private;
642 else if (TREE_PROTECTED (decl))
643 access = ak_protected;
644 else
645 access = ak_public;
647 else
649 /* First, check for an access-declaration that gives us more
650 access to the DECL. The CONST_DECL for an enumeration
651 constant will not have DECL_LANG_SPECIFIC, and thus no
652 DECL_ACCESS. */
653 if (DECL_LANG_SPECIFIC (decl) && !DECL_DISCRIMINATOR_P (decl))
655 tree decl_access = purpose_member (type, DECL_ACCESS (decl));
657 if (decl_access)
659 decl_access = TREE_VALUE (decl_access);
661 if (decl_access == access_public_node)
662 access = ak_public;
663 else if (decl_access == access_protected_node)
664 access = ak_protected;
665 else if (decl_access == access_private_node)
666 access = ak_private;
667 else
668 my_friendly_assert (false, 20030217);
672 if (!access)
674 int i;
675 int n_baselinks;
676 tree binfos, accesses;
678 /* Otherwise, scan our baseclasses, and pick the most favorable
679 access. */
680 binfos = BINFO_BASETYPES (binfo);
681 accesses = BINFO_BASEACCESSES (binfo);
682 n_baselinks = binfos ? TREE_VEC_LENGTH (binfos) : 0;
683 for (i = 0; i < n_baselinks; ++i)
685 tree base_binfo = TREE_VEC_ELT (binfos, i);
686 tree base_access = TREE_VEC_ELT (accesses, i);
687 access_kind base_access_now = BINFO_ACCESS (base_binfo);
689 if (base_access_now == ak_none || base_access_now == ak_private)
690 /* If it was not accessible in the base, or only
691 accessible as a private member, we can't access it
692 all. */
693 base_access_now = ak_none;
694 else if (base_access == access_protected_node)
695 /* Public and protected members in the base become
696 protected here. */
697 base_access_now = ak_protected;
698 else if (base_access == access_private_node)
699 /* Public and protected members in the base become
700 private here. */
701 base_access_now = ak_private;
703 /* See if the new access, via this base, gives more
704 access than our previous best access. */
705 if (base_access_now != ak_none
706 && (access == ak_none || base_access_now < access))
708 access = base_access_now;
710 /* If the new access is public, we can't do better. */
711 if (access == ak_public)
712 break;
718 /* Note the access to DECL in TYPE. */
719 SET_BINFO_ACCESS (binfo, access);
721 /* Mark TYPE as visited so that if we reach it again we do not
722 duplicate our efforts here. */
723 BINFO_MARKED (binfo) = 1;
725 return NULL_TREE;
728 /* Return the access to DECL in TYPE. */
730 static access_kind
731 access_in_type (tree type, tree decl)
733 tree binfo = TYPE_BINFO (type);
735 /* We must take into account
737 [class.paths]
739 If a name can be reached by several paths through a multiple
740 inheritance graph, the access is that of the path that gives
741 most access.
743 The algorithm we use is to make a post-order depth-first traversal
744 of the base-class hierarchy. As we come up the tree, we annotate
745 each node with the most lenient access. */
746 dfs_walk_real (binfo, 0, dfs_access_in_type, unmarkedp, decl);
747 dfs_walk (binfo, dfs_unmark, markedp, 0);
749 return BINFO_ACCESS (binfo);
752 /* Called from accessible_p via dfs_walk. */
754 static tree
755 dfs_accessible_queue_p (tree derived, int ix, void *data ATTRIBUTE_UNUSED)
757 tree binfo = BINFO_BASETYPE (derived, ix);
759 if (BINFO_MARKED (binfo))
760 return NULL_TREE;
762 /* If this class is inherited via private or protected inheritance,
763 then we can't see it, unless we are a friend of the derived class. */
764 if (BINFO_BASEACCESS (derived, ix) != access_public_node
765 && !is_friend (BINFO_TYPE (derived), current_scope ()))
766 return NULL_TREE;
768 return binfo;
771 /* Called from accessible_p via dfs_walk. */
773 static tree
774 dfs_accessible_p (tree binfo, void *data ATTRIBUTE_UNUSED)
776 access_kind access;
778 BINFO_MARKED (binfo) = 1;
779 access = BINFO_ACCESS (binfo);
780 if (access != ak_none
781 && is_friend (BINFO_TYPE (binfo), current_scope ()))
782 return binfo;
784 return NULL_TREE;
787 /* Returns nonzero if it is OK to access DECL through an object
788 indicated by BINFO in the context of DERIVED. */
790 static int
791 protected_accessible_p (tree decl, tree derived, tree binfo)
793 access_kind access;
795 /* We're checking this clause from [class.access.base]
797 m as a member of N is protected, and the reference occurs in a
798 member or friend of class N, or in a member or friend of a
799 class P derived from N, where m as a member of P is private or
800 protected.
802 Here DERIVED is a possible P and DECL is m. accessible_p will
803 iterate over various values of N, but the access to m in DERIVED
804 does not change.
806 Note that I believe that the passage above is wrong, and should read
807 "...is private or protected or public"; otherwise you get bizarre results
808 whereby a public using-decl can prevent you from accessing a protected
809 member of a base. (jason 2000/02/28) */
811 /* If DERIVED isn't derived from m's class, then it can't be a P. */
812 if (!DERIVED_FROM_P (context_for_name_lookup (decl), derived))
813 return 0;
815 access = access_in_type (derived, decl);
817 /* If m is inaccessible in DERIVED, then it's not a P. */
818 if (access == ak_none)
819 return 0;
821 /* [class.protected]
823 When a friend or a member function of a derived class references
824 a protected nonstatic member of a base class, an access check
825 applies in addition to those described earlier in clause
826 _class.access_) Except when forming a pointer to member
827 (_expr.unary.op_), the access must be through a pointer to,
828 reference to, or object of the derived class itself (or any class
829 derived from that class) (_expr.ref_). If the access is to form
830 a pointer to member, the nested-name-specifier shall name the
831 derived class (or any class derived from that class). */
832 if (DECL_NONSTATIC_MEMBER_P (decl))
834 /* We can tell through what the reference is occurring by
835 chasing BINFO up to the root. */
836 tree t = binfo;
837 while (BINFO_INHERITANCE_CHAIN (t))
838 t = BINFO_INHERITANCE_CHAIN (t);
840 if (!DERIVED_FROM_P (derived, BINFO_TYPE (t)))
841 return 0;
844 return 1;
847 /* Returns nonzero if SCOPE is a friend of a type which would be able
848 to access DECL through the object indicated by BINFO. */
850 static int
851 friend_accessible_p (tree scope, tree decl, tree binfo)
853 tree befriending_classes;
854 tree t;
856 if (!scope)
857 return 0;
859 if (TREE_CODE (scope) == FUNCTION_DECL
860 || DECL_FUNCTION_TEMPLATE_P (scope))
861 befriending_classes = DECL_BEFRIENDING_CLASSES (scope);
862 else if (TYPE_P (scope))
863 befriending_classes = CLASSTYPE_BEFRIENDING_CLASSES (scope);
864 else
865 return 0;
867 for (t = befriending_classes; t; t = TREE_CHAIN (t))
868 if (protected_accessible_p (decl, TREE_VALUE (t), binfo))
869 return 1;
871 /* Nested classes are implicitly friends of their enclosing types, as
872 per core issue 45 (this is a change from the standard). */
873 if (TYPE_P (scope))
874 for (t = TYPE_CONTEXT (scope); t && TYPE_P (t); t = TYPE_CONTEXT (t))
875 if (protected_accessible_p (decl, t, binfo))
876 return 1;
878 if (TREE_CODE (scope) == FUNCTION_DECL
879 || DECL_FUNCTION_TEMPLATE_P (scope))
881 /* Perhaps this SCOPE is a member of a class which is a
882 friend. */
883 if (DECL_CLASS_SCOPE_P (decl)
884 && friend_accessible_p (DECL_CONTEXT (scope), decl, binfo))
885 return 1;
887 /* Or an instantiation of something which is a friend. */
888 if (DECL_TEMPLATE_INFO (scope))
889 return friend_accessible_p (DECL_TI_TEMPLATE (scope), decl, binfo);
891 else if (CLASSTYPE_TEMPLATE_INFO (scope))
892 return friend_accessible_p (CLASSTYPE_TI_TEMPLATE (scope), decl, binfo);
894 return 0;
897 /* DECL is a declaration from a base class of TYPE, which was the
898 class used to name DECL. Return nonzero if, in the current
899 context, DECL is accessible. If TYPE is actually a BINFO node,
900 then we can tell in what context the access is occurring by looking
901 at the most derived class along the path indicated by BINFO. */
903 int
904 accessible_p (tree type, tree decl)
906 tree binfo;
907 tree t;
908 tree scope;
909 access_kind access;
911 /* Nonzero if it's OK to access DECL if it has protected
912 accessibility in TYPE. */
913 int protected_ok = 0;
915 /* If this declaration is in a block or namespace scope, there's no
916 access control. */
917 if (!TYPE_P (context_for_name_lookup (decl)))
918 return 1;
920 /* There is no need to perform access checks inside a thunk. */
921 scope = current_scope ();
922 if (scope && DECL_THUNK_P (scope))
923 return 1;
925 /* In a template declaration, we cannot be sure whether the
926 particular specialization that is instantiated will be a friend
927 or not. Therefore, all access checks are deferred until
928 instantiation. */
929 if (processing_template_decl)
930 return 1;
932 if (!TYPE_P (type))
934 binfo = type;
935 type = BINFO_TYPE (type);
937 else
938 binfo = TYPE_BINFO (type);
940 /* [class.access.base]
942 A member m is accessible when named in class N if
944 --m as a member of N is public, or
946 --m as a member of N is private, and the reference occurs in a
947 member or friend of class N, or
949 --m as a member of N is protected, and the reference occurs in a
950 member or friend of class N, or in a member or friend of a
951 class P derived from N, where m as a member of P is private or
952 protected, or
954 --there exists a base class B of N that is accessible at the point
955 of reference, and m is accessible when named in class B.
957 We walk the base class hierarchy, checking these conditions. */
959 /* Figure out where the reference is occurring. Check to see if
960 DECL is private or protected in this scope, since that will
961 determine whether protected access is allowed. */
962 if (current_class_type)
963 protected_ok = protected_accessible_p (decl, current_class_type, binfo);
965 /* Now, loop through the classes of which we are a friend. */
966 if (!protected_ok)
967 protected_ok = friend_accessible_p (scope, decl, binfo);
969 /* Standardize the binfo that access_in_type will use. We don't
970 need to know what path was chosen from this point onwards. */
971 binfo = TYPE_BINFO (type);
973 /* Compute the accessibility of DECL in the class hierarchy
974 dominated by type. */
975 access = access_in_type (type, decl);
976 if (access == ak_public
977 || (access == ak_protected && protected_ok))
978 return 1;
979 else
981 /* Walk the hierarchy again, looking for a base class that allows
982 access. */
983 t = dfs_walk (binfo, dfs_accessible_p, dfs_accessible_queue_p, 0);
984 /* Clear any mark bits. Note that we have to walk the whole tree
985 here, since we have aborted the previous walk from some point
986 deep in the tree. */
987 dfs_walk (binfo, dfs_unmark, 0, 0);
989 return t != NULL_TREE;
993 struct lookup_field_info {
994 /* The type in which we're looking. */
995 tree type;
996 /* The name of the field for which we're looking. */
997 tree name;
998 /* If non-NULL, the current result of the lookup. */
999 tree rval;
1000 /* The path to RVAL. */
1001 tree rval_binfo;
1002 /* If non-NULL, the lookup was ambiguous, and this is a list of the
1003 candidates. */
1004 tree ambiguous;
1005 /* If nonzero, we are looking for types, not data members. */
1006 int want_type;
1007 /* If something went wrong, a message indicating what. */
1008 const char *errstr;
1011 /* Returns nonzero if BINFO is not hidden by the value found by the
1012 lookup so far. If BINFO is hidden, then there's no need to look in
1013 it. DATA is really a struct lookup_field_info. Called from
1014 lookup_field via breadth_first_search. */
1016 static tree
1017 lookup_field_queue_p (tree derived, int ix, void *data)
1019 tree binfo = BINFO_BASETYPE (derived, ix);
1020 struct lookup_field_info *lfi = (struct lookup_field_info *) data;
1022 /* Don't look for constructors or destructors in base classes. */
1023 if (IDENTIFIER_CTOR_OR_DTOR_P (lfi->name))
1024 return NULL_TREE;
1026 /* If this base class is hidden by the best-known value so far, we
1027 don't need to look. */
1028 if (lfi->rval_binfo && original_binfo (binfo, lfi->rval_binfo))
1029 return NULL_TREE;
1031 /* If this is a dependent base, don't look in it. */
1032 if (BINFO_DEPENDENT_BASE_P (binfo))
1033 return NULL_TREE;
1035 return binfo;
1038 /* Within the scope of a template class, you can refer to the to the
1039 current specialization with the name of the template itself. For
1040 example:
1042 template <typename T> struct S { S* sp; }
1044 Returns nonzero if DECL is such a declaration in a class TYPE. */
1046 static int
1047 template_self_reference_p (tree type, tree decl)
1049 return (CLASSTYPE_USE_TEMPLATE (type)
1050 && PRIMARY_TEMPLATE_P (CLASSTYPE_TI_TEMPLATE (type))
1051 && TREE_CODE (decl) == TYPE_DECL
1052 && DECL_ARTIFICIAL (decl)
1053 && DECL_NAME (decl) == constructor_name (type));
1057 /* Nonzero for a class member means that it is shared between all objects
1058 of that class.
1060 [class.member.lookup]:If the resulting set of declarations are not all
1061 from sub-objects of the same type, or the set has a nonstatic member
1062 and includes members from distinct sub-objects, there is an ambiguity
1063 and the program is ill-formed.
1065 This function checks that T contains no nonstatic members. */
1067 static int
1068 shared_member_p (tree t)
1070 if (TREE_CODE (t) == VAR_DECL || TREE_CODE (t) == TYPE_DECL \
1071 || TREE_CODE (t) == CONST_DECL)
1072 return 1;
1073 if (is_overloaded_fn (t))
1075 for (; t; t = OVL_NEXT (t))
1077 tree fn = OVL_CURRENT (t);
1078 if (DECL_NONSTATIC_MEMBER_FUNCTION_P (fn))
1079 return 0;
1081 return 1;
1083 return 0;
1086 /* DATA is really a struct lookup_field_info. Look for a field with
1087 the name indicated there in BINFO. If this function returns a
1088 non-NULL value it is the result of the lookup. Called from
1089 lookup_field via breadth_first_search. */
1091 static tree
1092 lookup_field_r (tree binfo, void *data)
1094 struct lookup_field_info *lfi = (struct lookup_field_info *) data;
1095 tree type = BINFO_TYPE (binfo);
1096 tree nval = NULL_TREE;
1098 /* First, look for a function. There can't be a function and a data
1099 member with the same name, and if there's a function and a type
1100 with the same name, the type is hidden by the function. */
1101 if (!lfi->want_type)
1103 int idx = lookup_fnfields_1 (type, lfi->name);
1104 if (idx >= 0)
1105 nval = TREE_VEC_ELT (CLASSTYPE_METHOD_VEC (type), idx);
1108 if (!nval)
1109 /* Look for a data member or type. */
1110 nval = lookup_field_1 (type, lfi->name, lfi->want_type);
1112 /* If there is no declaration with the indicated name in this type,
1113 then there's nothing to do. */
1114 if (!nval)
1115 return NULL_TREE;
1117 /* If we're looking up a type (as with an elaborated type specifier)
1118 we ignore all non-types we find. */
1119 if (lfi->want_type && TREE_CODE (nval) != TYPE_DECL
1120 && !DECL_CLASS_TEMPLATE_P (nval))
1122 if (lfi->name == TYPE_IDENTIFIER (type))
1124 /* If the aggregate has no user defined constructors, we allow
1125 it to have fields with the same name as the enclosing type.
1126 If we are looking for that name, find the corresponding
1127 TYPE_DECL. */
1128 for (nval = TREE_CHAIN (nval); nval; nval = TREE_CHAIN (nval))
1129 if (DECL_NAME (nval) == lfi->name
1130 && TREE_CODE (nval) == TYPE_DECL)
1131 break;
1133 else
1134 nval = NULL_TREE;
1135 if (!nval && CLASSTYPE_NESTED_UTDS (type) != NULL)
1137 binding_entry e = binding_table_find (CLASSTYPE_NESTED_UTDS (type),
1138 lfi->name);
1139 if (e != NULL)
1140 nval = TYPE_MAIN_DECL (e->type);
1141 else
1142 return NULL_TREE;
1146 /* You must name a template base class with a template-id. */
1147 if (!same_type_p (type, lfi->type)
1148 && template_self_reference_p (type, nval))
1149 return NULL_TREE;
1151 /* If the lookup already found a match, and the new value doesn't
1152 hide the old one, we might have an ambiguity. */
1153 if (lfi->rval_binfo && !original_binfo (lfi->rval_binfo, binfo))
1155 if (nval == lfi->rval && shared_member_p (nval))
1156 /* The two things are really the same. */
1158 else if (original_binfo (binfo, lfi->rval_binfo))
1159 /* The previous value hides the new one. */
1161 else
1163 /* We have a real ambiguity. We keep a chain of all the
1164 candidates. */
1165 if (!lfi->ambiguous && lfi->rval)
1167 /* This is the first time we noticed an ambiguity. Add
1168 what we previously thought was a reasonable candidate
1169 to the list. */
1170 lfi->ambiguous = tree_cons (NULL_TREE, lfi->rval, NULL_TREE);
1171 TREE_TYPE (lfi->ambiguous) = error_mark_node;
1174 /* Add the new value. */
1175 lfi->ambiguous = tree_cons (NULL_TREE, nval, lfi->ambiguous);
1176 TREE_TYPE (lfi->ambiguous) = error_mark_node;
1177 lfi->errstr = "request for member `%D' is ambiguous";
1180 else
1182 lfi->rval = nval;
1183 lfi->rval_binfo = binfo;
1186 return NULL_TREE;
1189 /* Return a "baselink" which BASELINK_BINFO, BASELINK_ACCESS_BINFO,
1190 BASELINK_FUNCTIONS, and BASELINK_OPTYPE set to BINFO, ACCESS_BINFO,
1191 FUNCTIONS, and OPTYPE respectively. */
1193 tree
1194 build_baselink (tree binfo, tree access_binfo, tree functions, tree optype)
1196 tree baselink;
1198 my_friendly_assert (TREE_CODE (functions) == FUNCTION_DECL
1199 || TREE_CODE (functions) == TEMPLATE_DECL
1200 || TREE_CODE (functions) == TEMPLATE_ID_EXPR
1201 || TREE_CODE (functions) == OVERLOAD,
1202 20020730);
1203 my_friendly_assert (!optype || TYPE_P (optype), 20020730);
1204 my_friendly_assert (TREE_TYPE (functions), 20020805);
1206 baselink = make_node (BASELINK);
1207 TREE_TYPE (baselink) = TREE_TYPE (functions);
1208 BASELINK_BINFO (baselink) = binfo;
1209 BASELINK_ACCESS_BINFO (baselink) = access_binfo;
1210 BASELINK_FUNCTIONS (baselink) = functions;
1211 BASELINK_OPTYPE (baselink) = optype;
1213 return baselink;
1216 /* Look for a member named NAME in an inheritance lattice dominated by
1217 XBASETYPE. If PROTECT is 0 or two, we do not check access. If it
1218 is 1, we enforce accessibility. If PROTECT is zero, then, for an
1219 ambiguous lookup, we return NULL. If PROTECT is 1, we issue error
1220 messages about inaccessible or ambiguous lookup. If PROTECT is 2,
1221 we return a TREE_LIST whose TREE_TYPE is error_mark_node and whose
1222 TREE_VALUEs are the list of ambiguous candidates.
1224 WANT_TYPE is 1 when we should only return TYPE_DECLs.
1226 If nothing can be found return NULL_TREE and do not issue an error. */
1228 tree
1229 lookup_member (tree xbasetype, tree name, int protect, bool want_type)
1231 tree rval, rval_binfo = NULL_TREE;
1232 tree type = NULL_TREE, basetype_path = NULL_TREE;
1233 struct lookup_field_info lfi;
1235 /* rval_binfo is the binfo associated with the found member, note,
1236 this can be set with useful information, even when rval is not
1237 set, because it must deal with ALL members, not just non-function
1238 members. It is used for ambiguity checking and the hidden
1239 checks. Whereas rval is only set if a proper (not hidden)
1240 non-function member is found. */
1242 const char *errstr = 0;
1244 my_friendly_assert (TREE_CODE (name) == IDENTIFIER_NODE, 20030624);
1246 if (TREE_CODE (xbasetype) == TREE_VEC)
1248 type = BINFO_TYPE (xbasetype);
1249 basetype_path = xbasetype;
1251 else
1253 my_friendly_assert (IS_AGGR_TYPE_CODE (TREE_CODE (xbasetype)), 20030624);
1254 type = xbasetype;
1255 basetype_path = TYPE_BINFO (type);
1256 my_friendly_assert (!BINFO_INHERITANCE_CHAIN (basetype_path), 980827);
1259 if (type == current_class_type && TYPE_BEING_DEFINED (type)
1260 && IDENTIFIER_CLASS_VALUE (name))
1262 tree field = IDENTIFIER_CLASS_VALUE (name);
1263 if (! is_overloaded_fn (field)
1264 && ! (want_type && TREE_CODE (field) != TYPE_DECL))
1265 /* We're in the scope of this class, and the value has already
1266 been looked up. Just return the cached value. */
1267 return field;
1270 complete_type (type);
1272 #ifdef GATHER_STATISTICS
1273 n_calls_lookup_field++;
1274 #endif /* GATHER_STATISTICS */
1276 memset (&lfi, 0, sizeof (lfi));
1277 lfi.type = type;
1278 lfi.name = name;
1279 lfi.want_type = want_type;
1280 bfs_walk (basetype_path, &lookup_field_r, &lookup_field_queue_p, &lfi);
1281 rval = lfi.rval;
1282 rval_binfo = lfi.rval_binfo;
1283 if (rval_binfo)
1284 type = BINFO_TYPE (rval_binfo);
1285 errstr = lfi.errstr;
1287 /* If we are not interested in ambiguities, don't report them;
1288 just return NULL_TREE. */
1289 if (!protect && lfi.ambiguous)
1290 return NULL_TREE;
1292 if (protect == 2)
1294 if (lfi.ambiguous)
1295 return lfi.ambiguous;
1296 else
1297 protect = 0;
1300 /* [class.access]
1302 In the case of overloaded function names, access control is
1303 applied to the function selected by overloaded resolution. */
1304 if (rval && protect && !is_overloaded_fn (rval))
1305 perform_or_defer_access_check (basetype_path, rval);
1307 if (errstr && protect)
1309 error (errstr, name, type);
1310 if (lfi.ambiguous)
1311 print_candidates (lfi.ambiguous);
1312 rval = error_mark_node;
1315 if (rval && is_overloaded_fn (rval))
1316 rval = build_baselink (rval_binfo, basetype_path, rval,
1317 (IDENTIFIER_TYPENAME_P (name)
1318 ? TREE_TYPE (name): NULL_TREE));
1319 return rval;
1322 /* Like lookup_member, except that if we find a function member we
1323 return NULL_TREE. */
1325 tree
1326 lookup_field (tree xbasetype, tree name, int protect, bool want_type)
1328 tree rval = lookup_member (xbasetype, name, protect, want_type);
1330 /* Ignore functions. */
1331 if (rval && BASELINK_P (rval))
1332 return NULL_TREE;
1334 return rval;
1337 /* Like lookup_member, except that if we find a non-function member we
1338 return NULL_TREE. */
1340 tree
1341 lookup_fnfields (tree xbasetype, tree name, int protect)
1343 tree rval = lookup_member (xbasetype, name, protect, /*want_type=*/false);
1345 /* Ignore non-functions. */
1346 if (rval && !BASELINK_P (rval))
1347 return NULL_TREE;
1349 return rval;
1352 /* Return the index in the CLASSTYPE_METHOD_VEC for CLASS_TYPE
1353 corresponding to "operator TYPE ()", or -1 if there is no such
1354 operator. Only CLASS_TYPE itself is searched; this routine does
1355 not scan the base classes of CLASS_TYPE. */
1357 static int
1358 lookup_conversion_operator (tree class_type, tree type)
1360 int pass;
1361 int i;
1363 tree methods = CLASSTYPE_METHOD_VEC (class_type);
1365 for (pass = 0; pass < 2; ++pass)
1366 for (i = CLASSTYPE_FIRST_CONVERSION_SLOT;
1367 i < TREE_VEC_LENGTH (methods);
1368 ++i)
1370 tree fn = TREE_VEC_ELT (methods, i);
1371 /* The size of the vector may have some unused slots at the
1372 end. */
1373 if (!fn)
1374 break;
1376 /* All the conversion operators come near the beginning of the
1377 class. Therefore, if FN is not a conversion operator, there
1378 is no matching conversion operator in CLASS_TYPE. */
1379 fn = OVL_CURRENT (fn);
1380 if (!DECL_CONV_FN_P (fn))
1381 break;
1383 if (pass == 0)
1385 /* On the first pass we only consider exact matches. If
1386 the types match, this slot is the one where the right
1387 conversion operators can be found. */
1388 if (TREE_CODE (fn) != TEMPLATE_DECL
1389 && same_type_p (DECL_CONV_FN_TYPE (fn), type))
1390 return i;
1392 else
1394 /* On the second pass we look for template conversion
1395 operators. It may be possible to instantiate the
1396 template to get the type desired. All of the template
1397 conversion operators share a slot. By looking for
1398 templates second we ensure that specializations are
1399 preferred over templates. */
1400 if (TREE_CODE (fn) == TEMPLATE_DECL)
1401 return i;
1405 return -1;
1408 /* TYPE is a class type. Return the index of the fields within
1409 the method vector with name NAME, or -1 is no such field exists. */
1412 lookup_fnfields_1 (tree type, tree name)
1414 tree method_vec;
1415 tree *methods;
1416 tree tmp;
1417 int i;
1418 int len;
1420 if (!CLASS_TYPE_P (type))
1421 return -1;
1423 method_vec = CLASSTYPE_METHOD_VEC (type);
1425 if (!method_vec)
1426 return -1;
1428 methods = &TREE_VEC_ELT (method_vec, 0);
1429 len = TREE_VEC_LENGTH (method_vec);
1431 #ifdef GATHER_STATISTICS
1432 n_calls_lookup_fnfields_1++;
1433 #endif /* GATHER_STATISTICS */
1435 /* Constructors are first... */
1436 if (name == ctor_identifier)
1437 return (methods[CLASSTYPE_CONSTRUCTOR_SLOT]
1438 ? CLASSTYPE_CONSTRUCTOR_SLOT : -1);
1439 /* and destructors are second. */
1440 if (name == dtor_identifier)
1441 return (methods[CLASSTYPE_DESTRUCTOR_SLOT]
1442 ? CLASSTYPE_DESTRUCTOR_SLOT : -1);
1443 if (IDENTIFIER_TYPENAME_P (name))
1444 return lookup_conversion_operator (type, TREE_TYPE (name));
1446 /* Skip the conversion operators. */
1447 i = CLASSTYPE_FIRST_CONVERSION_SLOT;
1448 while (i < len && methods[i] && DECL_CONV_FN_P (OVL_CURRENT (methods[i])))
1449 i++;
1451 /* If the type is complete, use binary search. */
1452 if (COMPLETE_TYPE_P (type))
1454 int lo = i;
1455 int hi = len;
1457 while (lo < hi)
1459 i = (lo + hi) / 2;
1461 #ifdef GATHER_STATISTICS
1462 n_outer_fields_searched++;
1463 #endif /* GATHER_STATISTICS */
1465 tmp = methods[i];
1466 /* This slot may be empty; we allocate more slots than we
1467 need. In that case, the entry we're looking for is
1468 closer to the beginning of the list. */
1469 if (tmp)
1470 tmp = DECL_NAME (OVL_CURRENT (tmp));
1471 if (!tmp || tmp > name)
1472 hi = i;
1473 else if (tmp < name)
1474 lo = i + 1;
1475 else
1476 return i;
1479 else
1480 for (; i < len && methods[i]; ++i)
1482 #ifdef GATHER_STATISTICS
1483 n_outer_fields_searched++;
1484 #endif /* GATHER_STATISTICS */
1486 tmp = OVL_CURRENT (methods[i]);
1487 if (DECL_NAME (tmp) == name)
1488 return i;
1491 return -1;
1494 /* DECL is the result of a qualified name lookup. QUALIFYING_SCOPE is
1495 the class or namespace used to qualify the name. CONTEXT_CLASS is
1496 the class corresponding to the object in which DECL will be used.
1497 Return a possibly modified version of DECL that takes into account
1498 the CONTEXT_CLASS.
1500 In particular, consider an expression like `B::m' in the context of
1501 a derived class `D'. If `B::m' has been resolved to a BASELINK,
1502 then the most derived class indicated by the BASELINK_BINFO will be
1503 `B', not `D'. This function makes that adjustment. */
1505 tree
1506 adjust_result_of_qualified_name_lookup (tree decl,
1507 tree qualifying_scope,
1508 tree context_class)
1510 if (context_class && CLASS_TYPE_P (qualifying_scope)
1511 && DERIVED_FROM_P (qualifying_scope, context_class)
1512 && BASELINK_P (decl))
1514 tree base;
1516 my_friendly_assert (CLASS_TYPE_P (context_class), 20020808);
1518 /* Look for the QUALIFYING_SCOPE as a base of the CONTEXT_CLASS.
1519 Because we do not yet know which function will be chosen by
1520 overload resolution, we cannot yet check either accessibility
1521 or ambiguity -- in either case, the choice of a static member
1522 function might make the usage valid. */
1523 base = lookup_base (context_class, qualifying_scope,
1524 ba_ignore | ba_quiet, NULL);
1525 if (base)
1527 BASELINK_ACCESS_BINFO (decl) = base;
1528 BASELINK_BINFO (decl)
1529 = lookup_base (base, BINFO_TYPE (BASELINK_BINFO (decl)),
1530 ba_ignore | ba_quiet,
1531 NULL);
1535 return decl;
1539 /* Walk the class hierarchy dominated by TYPE. FN is called for each
1540 type in the hierarchy, in a breadth-first preorder traversal.
1541 If it ever returns a non-NULL value, that value is immediately
1542 returned and the walk is terminated. At each node, FN is passed a
1543 BINFO indicating the path from the currently visited base-class to
1544 TYPE. Before each base-class is walked QFN is called. If the
1545 value returned is nonzero, the base-class is walked; otherwise it
1546 is not. If QFN is NULL, it is treated as a function which always
1547 returns 1. Both FN and QFN are passed the DATA whenever they are
1548 called.
1550 Implementation notes: Uses a circular queue, which starts off on
1551 the stack but gets moved to the malloc arena if it needs to be
1552 enlarged. The underflow and overflow conditions are
1553 indistinguishable except by context: if head == tail and we just
1554 moved the head pointer, the queue is empty, but if we just moved
1555 the tail pointer, the queue is full.
1556 Start with enough room for ten concurrent base classes. That
1557 will be enough for most hierarchies. */
1558 #define BFS_WALK_INITIAL_QUEUE_SIZE 10
1560 static tree
1561 bfs_walk (tree binfo,
1562 tree (*fn) (tree, void *),
1563 tree (*qfn) (tree, int, void *),
1564 void *data)
1566 tree rval = NULL_TREE;
1568 tree bases_initial[BFS_WALK_INITIAL_QUEUE_SIZE];
1569 /* A circular queue of the base classes of BINFO. These will be
1570 built up in breadth-first order, except where QFN prunes the
1571 search. */
1572 size_t head, tail;
1573 size_t base_buffer_size = BFS_WALK_INITIAL_QUEUE_SIZE;
1574 tree *base_buffer = bases_initial;
1576 head = tail = 0;
1577 base_buffer[tail++] = binfo;
1579 while (head != tail)
1581 int n_bases, ix;
1582 tree binfo = base_buffer[head++];
1583 if (head == base_buffer_size)
1584 head = 0;
1586 /* Is this the one we're looking for? If so, we're done. */
1587 rval = fn (binfo, data);
1588 if (rval)
1589 goto done;
1591 n_bases = BINFO_N_BASETYPES (binfo);
1592 for (ix = 0; ix != n_bases; ix++)
1594 tree base_binfo;
1596 if (qfn)
1597 base_binfo = (*qfn) (binfo, ix, data);
1598 else
1599 base_binfo = BINFO_BASETYPE (binfo, ix);
1601 if (base_binfo)
1603 base_buffer[tail++] = base_binfo;
1604 if (tail == base_buffer_size)
1605 tail = 0;
1606 if (tail == head)
1608 tree *new_buffer = xmalloc (2 * base_buffer_size
1609 * sizeof (tree));
1610 memcpy (&new_buffer[0], &base_buffer[0],
1611 tail * sizeof (tree));
1612 memcpy (&new_buffer[head + base_buffer_size],
1613 &base_buffer[head],
1614 (base_buffer_size - head) * sizeof (tree));
1615 if (base_buffer_size != BFS_WALK_INITIAL_QUEUE_SIZE)
1616 free (base_buffer);
1617 base_buffer = new_buffer;
1618 head += base_buffer_size;
1619 base_buffer_size *= 2;
1625 done:
1626 if (base_buffer_size != BFS_WALK_INITIAL_QUEUE_SIZE)
1627 free (base_buffer);
1628 return rval;
1631 /* Exactly like bfs_walk, except that a depth-first traversal is
1632 performed, and PREFN is called in preorder, while POSTFN is called
1633 in postorder. */
1635 tree
1636 dfs_walk_real (tree binfo,
1637 tree (*prefn) (tree, void *),
1638 tree (*postfn) (tree, void *),
1639 tree (*qfn) (tree, int, void *),
1640 void *data)
1642 tree rval = NULL_TREE;
1644 /* Call the pre-order walking function. */
1645 if (prefn)
1647 rval = (*prefn) (binfo, data);
1648 if (rval)
1649 return rval;
1652 /* Process the basetypes. */
1653 if (BINFO_BASETYPES (binfo))
1655 int i, n = TREE_VEC_LENGTH (BINFO_BASETYPES (binfo));
1656 for (i = 0; i != n; i++)
1658 tree base_binfo;
1660 if (qfn)
1661 base_binfo = (*qfn) (binfo, i, data);
1662 else
1663 base_binfo = BINFO_BASETYPE (binfo, i);
1665 if (base_binfo)
1667 rval = dfs_walk_real (base_binfo, prefn, postfn, qfn, data);
1668 if (rval)
1669 return rval;
1674 /* Call the post-order walking function. */
1675 if (postfn)
1676 rval = (*postfn) (binfo, data);
1678 return rval;
1681 /* Exactly like bfs_walk, except that a depth-first post-order traversal is
1682 performed. */
1684 tree
1685 dfs_walk (tree binfo,
1686 tree (*fn) (tree, void *),
1687 tree (*qfn) (tree, int, void *),
1688 void *data)
1690 return dfs_walk_real (binfo, 0, fn, qfn, data);
1693 /* Check that virtual overrider OVERRIDER is acceptable for base function
1694 BASEFN. Issue diagnostic, and return zero, if unacceptable. */
1697 check_final_overrider (tree overrider, tree basefn)
1699 tree over_type = TREE_TYPE (overrider);
1700 tree base_type = TREE_TYPE (basefn);
1701 tree over_return = TREE_TYPE (over_type);
1702 tree base_return = TREE_TYPE (base_type);
1703 tree over_throw = TYPE_RAISES_EXCEPTIONS (over_type);
1704 tree base_throw = TYPE_RAISES_EXCEPTIONS (base_type);
1705 int fail = 0;
1707 if (same_type_p (base_return, over_return))
1708 /* OK */;
1709 else if ((CLASS_TYPE_P (over_return) && CLASS_TYPE_P (base_return))
1710 || (TREE_CODE (base_return) == TREE_CODE (over_return)
1711 && POINTER_TYPE_P (base_return)))
1713 /* Potentially covariant. */
1714 unsigned base_quals, over_quals;
1716 fail = !POINTER_TYPE_P (base_return);
1717 if (!fail)
1719 fail = cp_type_quals (base_return) != cp_type_quals (over_return);
1721 base_return = TREE_TYPE (base_return);
1722 over_return = TREE_TYPE (over_return);
1724 base_quals = cp_type_quals (base_return);
1725 over_quals = cp_type_quals (over_return);
1727 if ((base_quals & over_quals) != over_quals)
1728 fail = 1;
1730 if (CLASS_TYPE_P (base_return) && CLASS_TYPE_P (over_return))
1732 tree binfo = lookup_base (over_return, base_return,
1733 ba_check | ba_quiet, NULL);
1735 if (!binfo)
1736 fail = 1;
1738 else if (!pedantic
1739 && can_convert (TREE_TYPE (base_type), TREE_TYPE (over_type)))
1740 /* GNU extension, allow trivial pointer conversions such as
1741 converting to void *, or qualification conversion. */
1743 /* can_convert will permit user defined conversion from a
1744 (reference to) class type. We must reject them. */
1745 over_return = non_reference (TREE_TYPE (over_type));
1746 if (CLASS_TYPE_P (over_return))
1747 fail = 2;
1749 else
1750 fail = 2;
1752 else
1753 fail = 2;
1754 if (!fail)
1755 /* OK */;
1756 else if (IDENTIFIER_ERROR_LOCUS (DECL_ASSEMBLER_NAME (overrider)))
1757 return 0;
1758 else
1760 if (fail == 1)
1762 cp_error_at ("invalid covariant return type for `%#D'", overrider);
1763 cp_error_at (" overriding `%#D'", basefn);
1765 else
1767 cp_error_at ("conflicting return type specified for `%#D'",
1768 overrider);
1769 cp_error_at (" overriding `%#D'", basefn);
1771 SET_IDENTIFIER_ERROR_LOCUS (DECL_ASSEMBLER_NAME (overrider),
1772 DECL_CONTEXT (overrider));
1773 return 0;
1776 /* Check throw specifier is at least as strict. */
1777 if (!comp_except_specs (base_throw, over_throw, 0))
1779 if (!IDENTIFIER_ERROR_LOCUS (DECL_ASSEMBLER_NAME (overrider)))
1781 cp_error_at ("looser throw specifier for `%#F'", overrider);
1782 cp_error_at (" overriding `%#F'", basefn);
1783 SET_IDENTIFIER_ERROR_LOCUS (DECL_ASSEMBLER_NAME (overrider),
1784 DECL_CONTEXT (overrider));
1786 return 0;
1789 return 1;
1792 /* Given a class TYPE, and a function decl FNDECL, look for
1793 virtual functions in TYPE's hierarchy which FNDECL overrides.
1794 We do not look in TYPE itself, only its bases.
1796 Returns nonzero, if we find any. Set FNDECL's DECL_VIRTUAL_P, if we
1797 find that it overrides anything.
1799 We check that every function which is overridden, is correctly
1800 overridden. */
1803 look_for_overrides (tree type, tree fndecl)
1805 tree binfo = TYPE_BINFO (type);
1806 tree basebinfos = BINFO_BASETYPES (binfo);
1807 int nbasebinfos = basebinfos ? TREE_VEC_LENGTH (basebinfos) : 0;
1808 int ix;
1809 int found = 0;
1811 for (ix = 0; ix != nbasebinfos; ix++)
1813 tree basetype = BINFO_TYPE (TREE_VEC_ELT (basebinfos, ix));
1815 if (TYPE_POLYMORPHIC_P (basetype))
1816 found += look_for_overrides_r (basetype, fndecl);
1818 return found;
1821 /* Look in TYPE for virtual functions with the same signature as
1822 FNDECL. */
1824 tree
1825 look_for_overrides_here (tree type, tree fndecl)
1827 int ix;
1829 if (DECL_MAYBE_IN_CHARGE_DESTRUCTOR_P (fndecl))
1830 ix = CLASSTYPE_DESTRUCTOR_SLOT;
1831 else
1832 ix = lookup_fnfields_1 (type, DECL_NAME (fndecl));
1833 if (ix >= 0)
1835 tree fns = TREE_VEC_ELT (CLASSTYPE_METHOD_VEC (type), ix);
1837 for (; fns; fns = OVL_NEXT (fns))
1839 tree fn = OVL_CURRENT (fns);
1841 if (!DECL_VIRTUAL_P (fn))
1842 /* Not a virtual. */;
1843 else if (DECL_CONTEXT (fn) != type)
1844 /* Introduced with a using declaration. */;
1845 else if (DECL_STATIC_FUNCTION_P (fndecl))
1847 tree btypes = TYPE_ARG_TYPES (TREE_TYPE (fn));
1848 tree dtypes = TYPE_ARG_TYPES (TREE_TYPE (fndecl));
1849 if (compparms (TREE_CHAIN (btypes), dtypes))
1850 return fn;
1852 else if (same_signature_p (fndecl, fn))
1853 return fn;
1856 return NULL_TREE;
1859 /* Look in TYPE for virtual functions overridden by FNDECL. Check both
1860 TYPE itself and its bases. */
1862 static int
1863 look_for_overrides_r (tree type, tree fndecl)
1865 tree fn = look_for_overrides_here (type, fndecl);
1866 if (fn)
1868 if (DECL_STATIC_FUNCTION_P (fndecl))
1870 /* A static member function cannot match an inherited
1871 virtual member function. */
1872 cp_error_at ("`%#D' cannot be declared", fndecl);
1873 cp_error_at (" since `%#D' declared in base class", fn);
1875 else
1877 /* It's definitely virtual, even if not explicitly set. */
1878 DECL_VIRTUAL_P (fndecl) = 1;
1879 check_final_overrider (fndecl, fn);
1881 return 1;
1884 /* We failed to find one declared in this class. Look in its bases. */
1885 return look_for_overrides (type, fndecl);
1888 /* Called via dfs_walk from dfs_get_pure_virtuals. */
1890 static tree
1891 dfs_get_pure_virtuals (tree binfo, void *data)
1893 tree type = (tree) data;
1895 /* We're not interested in primary base classes; the derived class
1896 of which they are a primary base will contain the information we
1897 need. */
1898 if (!BINFO_PRIMARY_P (binfo))
1900 tree virtuals;
1902 for (virtuals = BINFO_VIRTUALS (binfo);
1903 virtuals;
1904 virtuals = TREE_CHAIN (virtuals))
1905 if (DECL_PURE_VIRTUAL_P (BV_FN (virtuals)))
1906 CLASSTYPE_PURE_VIRTUALS (type)
1907 = tree_cons (NULL_TREE, BV_FN (virtuals),
1908 CLASSTYPE_PURE_VIRTUALS (type));
1911 BINFO_MARKED (binfo) = 1;
1913 return NULL_TREE;
1916 /* Set CLASSTYPE_PURE_VIRTUALS for TYPE. */
1918 void
1919 get_pure_virtuals (tree type)
1921 tree vbases;
1923 /* Clear the CLASSTYPE_PURE_VIRTUALS list; whatever is already there
1924 is going to be overridden. */
1925 CLASSTYPE_PURE_VIRTUALS (type) = NULL_TREE;
1926 /* Now, run through all the bases which are not primary bases, and
1927 collect the pure virtual functions. We look at the vtable in
1928 each class to determine what pure virtual functions are present.
1929 (A primary base is not interesting because the derived class of
1930 which it is a primary base will contain vtable entries for the
1931 pure virtuals in the base class. */
1932 dfs_walk (TYPE_BINFO (type), dfs_get_pure_virtuals, unmarkedp, type);
1933 dfs_walk (TYPE_BINFO (type), dfs_unmark, markedp, type);
1935 /* Put the pure virtuals in dfs order. */
1936 CLASSTYPE_PURE_VIRTUALS (type) = nreverse (CLASSTYPE_PURE_VIRTUALS (type));
1938 for (vbases = CLASSTYPE_VBASECLASSES (type);
1939 vbases;
1940 vbases = TREE_CHAIN (vbases))
1942 tree virtuals;
1944 for (virtuals = BINFO_VIRTUALS (TREE_VALUE (vbases));
1945 virtuals;
1946 virtuals = TREE_CHAIN (virtuals))
1948 tree base_fndecl = BV_FN (virtuals);
1949 if (DECL_NEEDS_FINAL_OVERRIDER_P (base_fndecl))
1950 error ("`%#D' needs a final overrider", base_fndecl);
1955 /* DEPTH-FIRST SEARCH ROUTINES. */
1957 tree
1958 markedp (tree derived, int ix, void *data ATTRIBUTE_UNUSED)
1960 tree binfo = BINFO_BASETYPE (derived, ix);
1962 return BINFO_MARKED (binfo) ? binfo : NULL_TREE;
1965 tree
1966 unmarkedp (tree derived, int ix, void *data ATTRIBUTE_UNUSED)
1968 tree binfo = BINFO_BASETYPE (derived, ix);
1970 return !BINFO_MARKED (binfo) ? binfo : NULL_TREE;
1973 static tree
1974 marked_pushdecls_p (tree derived, int ix, void *data ATTRIBUTE_UNUSED)
1976 tree binfo = BINFO_BASETYPE (derived, ix);
1978 return (!BINFO_DEPENDENT_BASE_P (binfo)
1979 && BINFO_PUSHDECLS_MARKED (binfo)) ? binfo : NULL_TREE;
1982 static tree
1983 unmarked_pushdecls_p (tree derived, int ix, void *data ATTRIBUTE_UNUSED)
1985 tree binfo = BINFO_BASETYPE (derived, ix);
1987 return (!BINFO_DEPENDENT_BASE_P (binfo)
1988 && !BINFO_PUSHDECLS_MARKED (binfo)) ? binfo : NULL_TREE;
1991 /* The worker functions for `dfs_walk'. These do not need to
1992 test anything (vis a vis marking) if they are paired with
1993 a predicate function (above). */
1995 tree
1996 dfs_unmark (tree binfo, void *data ATTRIBUTE_UNUSED)
1998 BINFO_MARKED (binfo) = 0;
1999 return NULL_TREE;
2003 /* Debug info for C++ classes can get very large; try to avoid
2004 emitting it everywhere.
2006 Note that this optimization wins even when the target supports
2007 BINCL (if only slightly), and reduces the amount of work for the
2008 linker. */
2010 void
2011 maybe_suppress_debug_info (tree t)
2013 /* We can't do the usual TYPE_DECL_SUPPRESS_DEBUG thing with DWARF, which
2014 does not support name references between translation units. It supports
2015 symbolic references between translation units, but only within a single
2016 executable or shared library.
2018 For DWARF 2, we handle TYPE_DECL_SUPPRESS_DEBUG by pretending
2019 that the type was never defined, so we only get the members we
2020 actually define. */
2021 if (write_symbols == DWARF_DEBUG || write_symbols == NO_DEBUG)
2022 return;
2024 /* We might have set this earlier in cp_finish_decl. */
2025 TYPE_DECL_SUPPRESS_DEBUG (TYPE_MAIN_DECL (t)) = 0;
2027 /* If we already know how we're handling this class, handle debug info
2028 the same way. */
2029 if (CLASSTYPE_INTERFACE_KNOWN (t))
2031 if (CLASSTYPE_INTERFACE_ONLY (t))
2032 TYPE_DECL_SUPPRESS_DEBUG (TYPE_MAIN_DECL (t)) = 1;
2033 /* else don't set it. */
2035 /* If the class has a vtable, write out the debug info along with
2036 the vtable. */
2037 else if (TYPE_CONTAINS_VPTR_P (t))
2038 TYPE_DECL_SUPPRESS_DEBUG (TYPE_MAIN_DECL (t)) = 1;
2040 /* Otherwise, just emit the debug info normally. */
2043 /* Note that we want debugging information for a base class of a class
2044 whose vtable is being emitted. Normally, this would happen because
2045 calling the constructor for a derived class implies calling the
2046 constructors for all bases, which involve initializing the
2047 appropriate vptr with the vtable for the base class; but in the
2048 presence of optimization, this initialization may be optimized
2049 away, so we tell finish_vtable_vardecl that we want the debugging
2050 information anyway. */
2052 static tree
2053 dfs_debug_mark (tree binfo, void *data ATTRIBUTE_UNUSED)
2055 tree t = BINFO_TYPE (binfo);
2057 CLASSTYPE_DEBUG_REQUESTED (t) = 1;
2059 return NULL_TREE;
2062 /* Returns BINFO if we haven't already noted that we want debugging
2063 info for this base class. */
2065 static tree
2066 dfs_debug_unmarkedp (tree derived, int ix, void *data ATTRIBUTE_UNUSED)
2068 tree binfo = BINFO_BASETYPE (derived, ix);
2070 return (!CLASSTYPE_DEBUG_REQUESTED (BINFO_TYPE (binfo))
2071 ? binfo : NULL_TREE);
2074 /* Write out the debugging information for TYPE, whose vtable is being
2075 emitted. Also walk through our bases and note that we want to
2076 write out information for them. This avoids the problem of not
2077 writing any debug info for intermediate basetypes whose
2078 constructors, and thus the references to their vtables, and thus
2079 the vtables themselves, were optimized away. */
2081 void
2082 note_debug_info_needed (tree type)
2084 if (TYPE_DECL_SUPPRESS_DEBUG (TYPE_NAME (type)))
2086 TYPE_DECL_SUPPRESS_DEBUG (TYPE_NAME (type)) = 0;
2087 rest_of_type_compilation (type, toplevel_bindings_p ());
2090 dfs_walk (TYPE_BINFO (type), dfs_debug_mark, dfs_debug_unmarkedp, 0);
2093 /* Subroutines of push_class_decls (). */
2095 static void
2096 setup_class_bindings (tree name, int type_binding_p)
2098 tree type_binding = NULL_TREE;
2099 tree value_binding;
2101 /* If we've already done the lookup for this declaration, we're
2102 done. */
2103 if (IDENTIFIER_CLASS_VALUE (name))
2104 return;
2106 /* First, deal with the type binding. */
2107 if (type_binding_p)
2109 type_binding = lookup_member (current_class_type, name,
2110 /*protect=*/2, /*want_type=*/true);
2111 if (TREE_CODE (type_binding) == TREE_LIST
2112 && TREE_TYPE (type_binding) == error_mark_node)
2113 /* NAME is ambiguous. */
2114 push_class_level_binding (name, type_binding);
2115 else
2116 pushdecl_class_level (type_binding);
2119 /* Now, do the value binding. */
2120 value_binding = lookup_member (current_class_type, name,
2121 /*protect=*/2, /*want_type=*/false);
2123 if (type_binding_p
2124 && (TREE_CODE (value_binding) == TYPE_DECL
2125 || DECL_CLASS_TEMPLATE_P (value_binding)
2126 || (TREE_CODE (value_binding) == TREE_LIST
2127 && TREE_TYPE (value_binding) == error_mark_node
2128 && (TREE_CODE (TREE_VALUE (value_binding))
2129 == TYPE_DECL))))
2130 /* We found a type-binding, even when looking for a non-type
2131 binding. This means that we already processed this binding
2132 above. */;
2133 else if (value_binding)
2135 if (TREE_CODE (value_binding) == TREE_LIST
2136 && TREE_TYPE (value_binding) == error_mark_node)
2137 /* NAME is ambiguous. */
2138 push_class_level_binding (name, value_binding);
2139 else
2141 if (BASELINK_P (value_binding))
2142 /* NAME is some overloaded functions. */
2143 value_binding = BASELINK_FUNCTIONS (value_binding);
2144 /* Two conversion operators that convert to the same type
2145 may have different names. (See
2146 mangle_conv_op_name_for_type.) To avoid recording the
2147 same conversion operator declaration more than once we
2148 must check to see that the same operator was not already
2149 found under another name. */
2150 if (IDENTIFIER_TYPENAME_P (name)
2151 && is_overloaded_fn (value_binding))
2153 tree fns;
2154 for (fns = value_binding; fns; fns = OVL_NEXT (fns))
2155 if (IDENTIFIER_CLASS_VALUE (DECL_NAME (OVL_CURRENT (fns))))
2156 return;
2158 pushdecl_class_level (value_binding);
2163 /* Push class-level declarations for any names appearing in BINFO that
2164 are TYPE_DECLS. */
2166 static tree
2167 dfs_push_type_decls (tree binfo, void *data ATTRIBUTE_UNUSED)
2169 tree type;
2170 tree fields;
2172 type = BINFO_TYPE (binfo);
2173 for (fields = TYPE_FIELDS (type); fields; fields = TREE_CHAIN (fields))
2174 if (DECL_NAME (fields) && TREE_CODE (fields) == TYPE_DECL
2175 && !(!same_type_p (type, current_class_type)
2176 && template_self_reference_p (type, fields)))
2177 setup_class_bindings (DECL_NAME (fields), /*type_binding_p=*/1);
2179 /* We can't just use BINFO_MARKED because envelope_add_decl uses
2180 DERIVED_FROM_P, which calls get_base_distance. */
2181 BINFO_PUSHDECLS_MARKED (binfo) = 1;
2183 return NULL_TREE;
2186 /* Push class-level declarations for any names appearing in BINFO that
2187 are not TYPE_DECLS. */
2189 static tree
2190 dfs_push_decls (tree binfo, void *data)
2192 tree type = BINFO_TYPE (binfo);
2193 tree method_vec;
2194 tree fields;
2196 for (fields = TYPE_FIELDS (type); fields; fields = TREE_CHAIN (fields))
2197 if (DECL_NAME (fields)
2198 && TREE_CODE (fields) != TYPE_DECL
2199 && TREE_CODE (fields) != USING_DECL
2200 && !DECL_ARTIFICIAL (fields))
2201 setup_class_bindings (DECL_NAME (fields), /*type_binding_p=*/0);
2202 else if (TREE_CODE (fields) == FIELD_DECL
2203 && ANON_AGGR_TYPE_P (TREE_TYPE (fields)))
2204 dfs_push_decls (TYPE_BINFO (TREE_TYPE (fields)), data);
2206 method_vec = (CLASS_TYPE_P (type)
2207 ? CLASSTYPE_METHOD_VEC (type) : NULL_TREE);
2209 if (method_vec && TREE_VEC_LENGTH (method_vec) >= 3)
2211 tree *methods;
2212 tree *end;
2214 /* Farm out constructors and destructors. */
2215 end = TREE_VEC_END (method_vec);
2217 for (methods = &TREE_VEC_ELT (method_vec, 2);
2218 methods < end && *methods;
2219 methods++)
2220 setup_class_bindings (DECL_NAME (OVL_CURRENT (*methods)),
2221 /*type_binding_p=*/0);
2224 BINFO_PUSHDECLS_MARKED (binfo) = 0;
2226 return NULL_TREE;
2229 /* When entering the scope of a class, we cache all of the
2230 fields that that class provides within its inheritance
2231 lattice. Where ambiguities result, we mark them
2232 with `error_mark_node' so that if they are encountered
2233 without explicit qualification, we can emit an error
2234 message. */
2236 void
2237 push_class_decls (tree type)
2239 search_stack = push_search_level (search_stack, &search_obstack);
2241 /* Enter type declarations and mark. */
2242 dfs_walk (TYPE_BINFO (type), dfs_push_type_decls, unmarked_pushdecls_p, 0);
2244 /* Enter non-type declarations and unmark. */
2245 dfs_walk (TYPE_BINFO (type), dfs_push_decls, marked_pushdecls_p, 0);
2248 /* Here's a subroutine we need because C lacks lambdas. */
2250 static tree
2251 dfs_unuse_fields (tree binfo, void *data ATTRIBUTE_UNUSED)
2253 tree type = TREE_TYPE (binfo);
2254 tree fields;
2256 for (fields = TYPE_FIELDS (type); fields; fields = TREE_CHAIN (fields))
2258 if (TREE_CODE (fields) != FIELD_DECL || DECL_ARTIFICIAL (fields))
2259 continue;
2261 TREE_USED (fields) = 0;
2262 if (DECL_NAME (fields) == NULL_TREE
2263 && ANON_AGGR_TYPE_P (TREE_TYPE (fields)))
2264 unuse_fields (TREE_TYPE (fields));
2267 return NULL_TREE;
2270 void
2271 unuse_fields (tree type)
2273 dfs_walk (TYPE_BINFO (type), dfs_unuse_fields, unmarkedp, 0);
2276 void
2277 pop_class_decls (void)
2279 /* We haven't pushed a search level when dealing with cached classes,
2280 so we'd better not try to pop it. */
2281 if (search_stack)
2282 search_stack = pop_search_level (search_stack);
2285 void
2286 print_search_statistics (void)
2288 #ifdef GATHER_STATISTICS
2289 fprintf (stderr, "%d fields searched in %d[%d] calls to lookup_field[_1]\n",
2290 n_fields_searched, n_calls_lookup_field, n_calls_lookup_field_1);
2291 fprintf (stderr, "%d fnfields searched in %d calls to lookup_fnfields\n",
2292 n_outer_fields_searched, n_calls_lookup_fnfields);
2293 fprintf (stderr, "%d calls to get_base_type\n", n_calls_get_base_type);
2294 #else /* GATHER_STATISTICS */
2295 fprintf (stderr, "no search statistics\n");
2296 #endif /* GATHER_STATISTICS */
2299 void
2300 init_search_processing (void)
2302 gcc_obstack_init (&search_obstack);
2305 void
2306 reinit_search_statistics (void)
2308 #ifdef GATHER_STATISTICS
2309 n_fields_searched = 0;
2310 n_calls_lookup_field = 0, n_calls_lookup_field_1 = 0;
2311 n_calls_lookup_fnfields = 0, n_calls_lookup_fnfields_1 = 0;
2312 n_calls_get_base_type = 0;
2313 n_outer_fields_searched = 0;
2314 n_contexts_saved = 0;
2315 #endif /* GATHER_STATISTICS */
2318 static tree
2319 add_conversions (tree binfo, void *data)
2321 int i;
2322 tree method_vec = CLASSTYPE_METHOD_VEC (BINFO_TYPE (binfo));
2323 tree *conversions = (tree *) data;
2325 /* Some builtin types have no method vector, not even an empty one. */
2326 if (!method_vec)
2327 return NULL_TREE;
2329 for (i = 2; i < TREE_VEC_LENGTH (method_vec); ++i)
2331 tree tmp = TREE_VEC_ELT (method_vec, i);
2332 tree name;
2334 if (!tmp || ! DECL_CONV_FN_P (OVL_CURRENT (tmp)))
2335 break;
2337 name = DECL_NAME (OVL_CURRENT (tmp));
2339 /* Make sure we don't already have this conversion. */
2340 if (! IDENTIFIER_MARKED (name))
2342 tree t;
2344 /* Make sure that we do not already have a conversion
2345 operator for this type. Merely checking the NAME is not
2346 enough because two conversion operators to the same type
2347 may not have the same NAME. */
2348 for (t = *conversions; t; t = TREE_CHAIN (t))
2350 tree fn;
2351 for (fn = TREE_VALUE (t); fn; fn = OVL_NEXT (fn))
2352 if (same_type_p (TREE_TYPE (name),
2353 DECL_CONV_FN_TYPE (OVL_CURRENT (fn))))
2354 break;
2355 if (fn)
2356 break;
2358 if (!t)
2360 *conversions = tree_cons (binfo, tmp, *conversions);
2361 IDENTIFIER_MARKED (name) = 1;
2365 return NULL_TREE;
2368 /* Return a TREE_LIST containing all the non-hidden user-defined
2369 conversion functions for TYPE (and its base-classes). The
2370 TREE_VALUE of each node is a FUNCTION_DECL or an OVERLOAD
2371 containing the conversion functions. The TREE_PURPOSE is the BINFO
2372 from which the conversion functions in this node were selected. */
2374 tree
2375 lookup_conversions (tree type)
2377 tree t;
2378 tree conversions = NULL_TREE;
2380 complete_type (type);
2381 bfs_walk (TYPE_BINFO (type), add_conversions, 0, &conversions);
2383 for (t = conversions; t; t = TREE_CHAIN (t))
2384 IDENTIFIER_MARKED (DECL_NAME (OVL_CURRENT (TREE_VALUE (t)))) = 0;
2386 return conversions;
2389 struct overlap_info
2391 tree compare_type;
2392 int found_overlap;
2395 /* Check whether the empty class indicated by EMPTY_BINFO is also present
2396 at offset 0 in COMPARE_TYPE, and set found_overlap if so. */
2398 static tree
2399 dfs_check_overlap (tree empty_binfo, void *data)
2401 struct overlap_info *oi = (struct overlap_info *) data;
2402 tree binfo;
2403 for (binfo = TYPE_BINFO (oi->compare_type);
2405 binfo = BINFO_BASETYPE (binfo, 0))
2407 if (BINFO_TYPE (binfo) == BINFO_TYPE (empty_binfo))
2409 oi->found_overlap = 1;
2410 break;
2412 else if (BINFO_BASETYPES (binfo) == NULL_TREE)
2413 break;
2416 return NULL_TREE;
2419 /* Trivial function to stop base traversal when we find something. */
2421 static tree
2422 dfs_no_overlap_yet (tree derived, int ix, void *data)
2424 tree binfo = BINFO_BASETYPE (derived, ix);
2425 struct overlap_info *oi = (struct overlap_info *) data;
2427 return !oi->found_overlap ? binfo : NULL_TREE;
2430 /* Returns nonzero if EMPTY_TYPE or any of its bases can also be found at
2431 offset 0 in NEXT_TYPE. Used in laying out empty base class subobjects. */
2434 types_overlap_p (tree empty_type, tree next_type)
2436 struct overlap_info oi;
2438 if (! IS_AGGR_TYPE (next_type))
2439 return 0;
2440 oi.compare_type = next_type;
2441 oi.found_overlap = 0;
2442 dfs_walk (TYPE_BINFO (empty_type), dfs_check_overlap,
2443 dfs_no_overlap_yet, &oi);
2444 return oi.found_overlap;
2447 /* Given a vtable VAR, determine which of the inherited classes the vtable
2448 inherits (in a loose sense) functions from.
2450 FIXME: This does not work with the new ABI. */
2452 tree
2453 binfo_for_vtable (tree var)
2455 tree main_binfo = TYPE_BINFO (DECL_CONTEXT (var));
2456 tree binfos = TYPE_BINFO_BASETYPES (BINFO_TYPE (main_binfo));
2457 int n_baseclasses = CLASSTYPE_N_BASECLASSES (BINFO_TYPE (main_binfo));
2458 int i;
2460 for (i = 0; i < n_baseclasses; i++)
2462 tree base_binfo = TREE_VEC_ELT (binfos, i);
2463 if (base_binfo != NULL_TREE && BINFO_VTABLE (base_binfo) == var)
2464 return base_binfo;
2467 /* If no secondary base classes matched, return the primary base, if
2468 there is one. */
2469 if (CLASSTYPE_HAS_PRIMARY_BASE_P (BINFO_TYPE (main_binfo)))
2470 return get_primary_binfo (main_binfo);
2472 return main_binfo;
2475 /* Returns the binfo of the first direct or indirect virtual base derived
2476 from BINFO, or NULL if binfo is not via virtual. */
2478 tree
2479 binfo_from_vbase (tree binfo)
2481 for (; binfo; binfo = BINFO_INHERITANCE_CHAIN (binfo))
2483 if (TREE_VIA_VIRTUAL (binfo))
2484 return binfo;
2486 return NULL_TREE;
2489 /* Returns the binfo of the first direct or indirect virtual base derived
2490 from BINFO up to the TREE_TYPE, LIMIT, or NULL if binfo is not
2491 via virtual. */
2493 tree
2494 binfo_via_virtual (tree binfo, tree limit)
2496 for (; binfo && (!limit || !same_type_p (BINFO_TYPE (binfo), limit));
2497 binfo = BINFO_INHERITANCE_CHAIN (binfo))
2499 if (TREE_VIA_VIRTUAL (binfo))
2500 return binfo;
2502 return NULL_TREE;
2505 /* BINFO is a base binfo in the complete type BINFO_TYPE (HERE).
2506 Find the equivalent binfo within whatever graph HERE is located.
2507 This is the inverse of original_binfo. */
2509 tree
2510 copied_binfo (tree binfo, tree here)
2512 tree result = NULL_TREE;
2514 if (TREE_VIA_VIRTUAL (binfo))
2516 tree t;
2518 for (t = here; BINFO_INHERITANCE_CHAIN (t);
2519 t = BINFO_INHERITANCE_CHAIN (t))
2520 continue;
2522 result = purpose_member (BINFO_TYPE (binfo),
2523 CLASSTYPE_VBASECLASSES (BINFO_TYPE (t)));
2524 result = TREE_VALUE (result);
2526 else if (BINFO_INHERITANCE_CHAIN (binfo))
2528 tree base_binfos;
2529 int ix, n;
2531 base_binfos = copied_binfo (BINFO_INHERITANCE_CHAIN (binfo), here);
2532 base_binfos = BINFO_BASETYPES (base_binfos);
2533 n = TREE_VEC_LENGTH (base_binfos);
2534 for (ix = 0; ix != n; ix++)
2536 tree base = TREE_VEC_ELT (base_binfos, ix);
2538 if (BINFO_TYPE (base) == BINFO_TYPE (binfo))
2540 result = base;
2541 break;
2545 else
2547 my_friendly_assert (BINFO_TYPE (here) == BINFO_TYPE (binfo), 20030202);
2548 result = here;
2551 my_friendly_assert (result, 20030202);
2552 return result;
2555 /* BINFO is some base binfo of HERE, within some other
2556 hierarchy. Return the equivalent binfo, but in the hierarchy
2557 dominated by HERE. This is the inverse of copied_binfo. If BINFO
2558 is not a base binfo of HERE, returns NULL_TREE. */
2560 tree
2561 original_binfo (tree binfo, tree here)
2563 tree result = NULL;
2565 if (BINFO_TYPE (binfo) == BINFO_TYPE (here))
2566 result = here;
2567 else if (TREE_VIA_VIRTUAL (binfo))
2569 result = purpose_member (BINFO_TYPE (binfo),
2570 CLASSTYPE_VBASECLASSES (BINFO_TYPE (here)));
2571 if (result)
2572 result = TREE_VALUE (result);
2574 else if (BINFO_INHERITANCE_CHAIN (binfo))
2576 tree base_binfos;
2578 base_binfos = original_binfo (BINFO_INHERITANCE_CHAIN (binfo), here);
2579 if (base_binfos)
2581 int ix, n;
2583 base_binfos = BINFO_BASETYPES (base_binfos);
2584 n = TREE_VEC_LENGTH (base_binfos);
2585 for (ix = 0; ix != n; ix++)
2587 tree base = TREE_VEC_ELT (base_binfos, ix);
2589 if (BINFO_TYPE (base) == BINFO_TYPE (binfo))
2591 result = base;
2592 break;
2598 return result;