Skip various cmp-mem-const tests on lp64 hppa*-*-*
[official-gcc.git] / gcc / value-range.cc
blobcb12fa3a30b54a2864934740d69999db02e9efa2
1 /* Support routines for value ranges.
2 Copyright (C) 2019-2024 Free Software Foundation, Inc.
3 Major hacks by Aldy Hernandez <aldyh@redhat.com> and
4 Andrew MacLeod <amacleod@redhat.com>.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
11 any later version.
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "backend.h"
26 #include "tree.h"
27 #include "gimple.h"
28 #include "ssa.h"
29 #include "tree-pretty-print.h"
30 #include "value-range-pretty-print.h"
31 #include "fold-const.h"
32 #include "gimple-range.h"
34 void
35 irange::accept (const vrange_visitor &v) const
37 v.visit (*this);
40 void
41 unsupported_range::accept (const vrange_visitor &v) const
43 v.visit (*this);
46 // Convenience function only available for integers and pointers.
48 wide_int
49 Value_Range::lower_bound () const
51 if (is_a <irange> (*m_vrange))
52 return as_a <irange> (*m_vrange).lower_bound ();
53 gcc_unreachable ();
56 // Convenience function only available for integers and pointers.
58 wide_int
59 Value_Range::upper_bound () const
61 if (is_a <irange> (*m_vrange))
62 return as_a <irange> (*m_vrange).upper_bound ();
63 gcc_unreachable ();
66 void
67 Value_Range::dump (FILE *out) const
69 if (m_vrange)
70 m_vrange->dump (out);
71 else
72 fprintf (out, "NULL");
75 DEBUG_FUNCTION void
76 debug (const Value_Range &r)
78 r.dump (stderr);
79 fprintf (stderr, "\n");
82 DEBUG_FUNCTION void
83 debug (const irange_bitmask &bm)
85 bm.dump (stderr);
86 fprintf (stderr, "\n");
89 // Default vrange definitions.
91 bool
92 vrange::contains_p (tree) const
94 return varying_p ();
97 bool
98 vrange::singleton_p (tree *) const
100 return false;
103 void
104 vrange::set (tree min, tree, value_range_kind)
106 set_varying (TREE_TYPE (min));
109 tree
110 vrange::type () const
112 return void_type_node;
115 bool
116 vrange::supports_type_p (const_tree) const
118 return false;
121 void
122 vrange::set_undefined ()
124 m_kind = VR_UNDEFINED;
127 void
128 vrange::set_varying (tree)
130 m_kind = VR_VARYING;
133 bool
134 vrange::union_ (const vrange &r)
136 if (r.undefined_p () || varying_p ())
137 return false;
138 if (undefined_p () || r.varying_p ())
140 operator= (r);
141 return true;
143 gcc_unreachable ();
144 return false;
147 bool
148 vrange::intersect (const vrange &r)
150 if (undefined_p () || r.varying_p ())
151 return false;
152 if (r.undefined_p ())
154 set_undefined ();
155 return true;
157 if (varying_p ())
159 operator= (r);
160 return true;
162 gcc_unreachable ();
163 return false;
166 bool
167 vrange::zero_p () const
169 return false;
172 bool
173 vrange::nonzero_p () const
175 return false;
178 void
179 vrange::set_nonzero (tree type)
181 set_varying (type);
184 void
185 vrange::set_zero (tree type)
187 set_varying (type);
190 void
191 vrange::set_nonnegative (tree type)
193 set_varying (type);
196 bool
197 vrange::fits_p (const vrange &) const
199 return true;
202 // Assignment operator for generic ranges. Copying incompatible types
203 // is not allowed.
205 vrange &
206 vrange::operator= (const vrange &src)
208 if (is_a <irange> (src))
209 as_a <irange> (*this) = as_a <irange> (src);
210 else if (is_a <frange> (src))
211 as_a <frange> (*this) = as_a <frange> (src);
212 else
214 gcc_checking_assert (is_a <unsupported_range> (src));
215 m_kind = src.m_kind;
217 return *this;
220 // Equality operator for generic ranges.
222 bool
223 vrange::operator== (const vrange &src) const
225 if (is_a <irange> (src))
226 return as_a <irange> (*this) == as_a <irange> (src);
227 if (is_a <frange> (src))
228 return as_a <frange> (*this) == as_a <frange> (src);
229 gcc_unreachable ();
232 // Wrapper for vrange_printer to dump a range to a file.
234 void
235 vrange::dump (FILE *file) const
237 pretty_printer buffer;
238 pp_needs_newline (&buffer) = true;
239 buffer.buffer->stream = file;
240 vrange_printer vrange_pp (&buffer);
241 this->accept (vrange_pp);
242 pp_flush (&buffer);
245 void
246 irange_bitmask::dump (FILE *file) const
248 char buf[WIDE_INT_PRINT_BUFFER_SIZE], *p;
249 pretty_printer buffer;
251 pp_needs_newline (&buffer) = true;
252 buffer.buffer->stream = file;
253 pp_string (&buffer, "MASK ");
254 unsigned len_mask, len_val;
255 if (print_hex_buf_size (m_mask, &len_mask)
256 | print_hex_buf_size (m_value, &len_val))
257 p = XALLOCAVEC (char, MAX (len_mask, len_val));
258 else
259 p = buf;
260 print_hex (m_mask, p);
261 pp_string (&buffer, p);
262 pp_string (&buffer, " VALUE ");
263 print_hex (m_value, p);
264 pp_string (&buffer, p);
265 pp_flush (&buffer);
268 namespace inchash
271 void
272 add_vrange (const vrange &v, inchash::hash &hstate,
273 unsigned int)
275 if (v.undefined_p ())
277 hstate.add_int (VR_UNDEFINED);
278 return;
280 // Types are ignored throughout to inhibit two ranges being equal
281 // but having different hash values. This can happen when two
282 // ranges are equal and their types are different (but
283 // types_compatible_p is true).
284 if (is_a <irange> (v))
286 const irange &r = as_a <irange> (v);
287 if (r.varying_p ())
288 hstate.add_int (VR_VARYING);
289 else
290 hstate.add_int (VR_RANGE);
291 for (unsigned i = 0; i < r.num_pairs (); ++i)
293 hstate.add_wide_int (r.lower_bound (i));
294 hstate.add_wide_int (r.upper_bound (i));
296 irange_bitmask bm = r.get_bitmask ();
297 hstate.add_wide_int (bm.value ());
298 hstate.add_wide_int (bm.mask ());
299 return;
301 if (is_a <frange> (v))
303 const frange &r = as_a <frange> (v);
304 if (r.known_isnan ())
305 hstate.add_int (VR_NAN);
306 else
308 hstate.add_int (r.varying_p () ? VR_VARYING : VR_RANGE);
309 hstate.add_real_value (r.lower_bound ());
310 hstate.add_real_value (r.upper_bound ());
312 nan_state nan = r.get_nan_state ();
313 hstate.add_int (nan.pos_p ());
314 hstate.add_int (nan.neg_p ());
315 return;
317 gcc_unreachable ();
320 } //namespace inchash
322 bool
323 irange::nonnegative_p () const
325 return wi::ge_p (lower_bound (), 0, TYPE_SIGN (type ()));
328 bool
329 irange::nonpositive_p () const
331 return wi::le_p (upper_bound (), 0, TYPE_SIGN (type ()));
334 bool
335 irange::supports_type_p (const_tree type) const
337 return supports_p (type);
340 // Return TRUE if R fits in THIS.
342 bool
343 irange::fits_p (const vrange &r) const
345 return m_max_ranges >= as_a <irange> (r).num_pairs ();
348 void
349 irange::set_nonnegative (tree type)
351 set (type,
352 wi::zero (TYPE_PRECISION (type)),
353 wi::to_wide (TYPE_MAX_VALUE (type)));
356 void
357 frange::accept (const vrange_visitor &v) const
359 v.visit (*this);
362 // Flush denormal endpoints to the appropriate 0.0.
364 void
365 frange::flush_denormals_to_zero ()
367 if (undefined_p () || known_isnan ())
368 return;
370 machine_mode mode = TYPE_MODE (type ());
371 // Flush [x, -DENORMAL] to [x, -0.0].
372 if (real_isdenormal (&m_max, mode) && real_isneg (&m_max))
374 if (HONOR_SIGNED_ZEROS (m_type))
375 m_max = dconstm0;
376 else
377 m_max = dconst0;
379 // Flush [+DENORMAL, x] to [+0.0, x].
380 if (real_isdenormal (&m_min, mode) && !real_isneg (&m_min))
381 m_min = dconst0;
384 // Setter for franges.
386 void
387 frange::set (tree type,
388 const REAL_VALUE_TYPE &min, const REAL_VALUE_TYPE &max,
389 const nan_state &nan, value_range_kind kind)
391 switch (kind)
393 case VR_UNDEFINED:
394 set_undefined ();
395 return;
396 case VR_VARYING:
397 case VR_ANTI_RANGE:
398 set_varying (type);
399 return;
400 case VR_RANGE:
401 break;
402 default:
403 gcc_unreachable ();
406 gcc_checking_assert (!real_isnan (&min) && !real_isnan (&max));
408 m_kind = kind;
409 m_type = type;
410 m_min = min;
411 m_max = max;
412 if (HONOR_NANS (m_type))
414 m_pos_nan = nan.pos_p ();
415 m_neg_nan = nan.neg_p ();
417 else
419 m_pos_nan = false;
420 m_neg_nan = false;
423 if (!MODE_HAS_SIGNED_ZEROS (TYPE_MODE (m_type)))
425 if (real_iszero (&m_min, 1))
426 m_min.sign = 0;
427 if (real_iszero (&m_max, 1))
428 m_max.sign = 0;
430 else if (!HONOR_SIGNED_ZEROS (m_type))
432 if (real_iszero (&m_max, 1))
433 m_max.sign = 0;
434 if (real_iszero (&m_min, 0))
435 m_min.sign = 1;
438 // For -ffinite-math-only we can drop ranges outside the
439 // representable numbers to min/max for the type.
440 if (!HONOR_INFINITIES (m_type))
442 REAL_VALUE_TYPE min_repr = frange_val_min (m_type);
443 REAL_VALUE_TYPE max_repr = frange_val_max (m_type);
444 if (real_less (&m_min, &min_repr))
445 m_min = min_repr;
446 else if (real_less (&max_repr, &m_min))
447 m_min = max_repr;
448 if (real_less (&max_repr, &m_max))
449 m_max = max_repr;
450 else if (real_less (&m_max, &min_repr))
451 m_max = min_repr;
454 // Check for swapped ranges.
455 gcc_checking_assert (real_compare (LE_EXPR, &min, &max));
457 normalize_kind ();
460 // Setter for an frange defaulting the NAN possibility to +-NAN when
461 // HONOR_NANS.
463 void
464 frange::set (tree type,
465 const REAL_VALUE_TYPE &min, const REAL_VALUE_TYPE &max,
466 value_range_kind kind)
468 set (type, min, max, nan_state (true), kind);
471 void
472 frange::set (tree min, tree max, value_range_kind kind)
474 set (TREE_TYPE (min),
475 *TREE_REAL_CST_PTR (min), *TREE_REAL_CST_PTR (max), kind);
478 // Normalize range to VARYING or UNDEFINED, or vice versa. Return
479 // TRUE if anything changed.
481 // A range with no known properties can be dropped to VARYING.
482 // Similarly, a VARYING with any properties should be dropped to a
483 // VR_RANGE. Normalizing ranges upon changing them ensures there is
484 // only one representation for a given range.
486 bool
487 frange::normalize_kind ()
489 if (m_kind == VR_RANGE
490 && frange_val_is_min (m_min, m_type)
491 && frange_val_is_max (m_max, m_type))
493 if (!HONOR_NANS (m_type) || (m_pos_nan && m_neg_nan))
495 set_varying (m_type);
496 return true;
499 else if (m_kind == VR_VARYING)
501 if (HONOR_NANS (m_type) && (!m_pos_nan || !m_neg_nan))
503 m_kind = VR_RANGE;
504 m_min = frange_val_min (m_type);
505 m_max = frange_val_max (m_type);
506 if (flag_checking)
507 verify_range ();
508 return true;
511 else if (m_kind == VR_NAN && !m_pos_nan && !m_neg_nan)
512 set_undefined ();
513 return false;
516 // Union or intersect the zero endpoints of two ranges. For example:
517 // [-0, x] U [+0, x] => [-0, x]
518 // [ x, -0] U [ x, +0] => [ x, +0]
519 // [-0, x] ^ [+0, x] => [+0, x]
520 // [ x, -0] ^ [ x, +0] => [ x, -0]
522 // UNION_P is true when performing a union, or false when intersecting.
524 bool
525 frange::combine_zeros (const frange &r, bool union_p)
527 gcc_checking_assert (!undefined_p () && !known_isnan ());
529 bool changed = false;
530 if (real_iszero (&m_min) && real_iszero (&r.m_min)
531 && real_isneg (&m_min) != real_isneg (&r.m_min))
533 m_min.sign = union_p;
534 changed = true;
536 if (real_iszero (&m_max) && real_iszero (&r.m_max)
537 && real_isneg (&m_max) != real_isneg (&r.m_max))
539 m_max.sign = !union_p;
540 changed = true;
542 // If the signs are swapped, the resulting range is empty.
543 if (m_min.sign == 0 && m_max.sign == 1)
545 if (maybe_isnan ())
546 m_kind = VR_NAN;
547 else
548 set_undefined ();
549 changed = true;
551 return changed;
554 // Union two ranges when one is known to be a NAN.
556 bool
557 frange::union_nans (const frange &r)
559 gcc_checking_assert (known_isnan () || r.known_isnan ());
561 bool changed = false;
562 if (known_isnan () && m_kind != r.m_kind)
564 m_kind = r.m_kind;
565 m_min = r.m_min;
566 m_max = r.m_max;
567 changed = true;
569 if (m_pos_nan != r.m_pos_nan || m_neg_nan != r.m_neg_nan)
571 m_pos_nan |= r.m_pos_nan;
572 m_neg_nan |= r.m_neg_nan;
573 changed = true;
575 if (changed)
577 normalize_kind ();
578 return true;
580 return false;
583 bool
584 frange::union_ (const vrange &v)
586 const frange &r = as_a <frange> (v);
588 if (r.undefined_p () || varying_p ())
589 return false;
590 if (undefined_p () || r.varying_p ())
592 *this = r;
593 return true;
596 // Combine NAN info.
597 if (known_isnan () || r.known_isnan ())
598 return union_nans (r);
599 bool changed = false;
600 if (m_pos_nan != r.m_pos_nan || m_neg_nan != r.m_neg_nan)
602 m_pos_nan |= r.m_pos_nan;
603 m_neg_nan |= r.m_neg_nan;
604 changed = true;
607 // Combine endpoints.
608 if (real_less (&r.m_min, &m_min))
610 m_min = r.m_min;
611 changed = true;
613 if (real_less (&m_max, &r.m_max))
615 m_max = r.m_max;
616 changed = true;
619 if (HONOR_SIGNED_ZEROS (m_type))
620 changed |= combine_zeros (r, true);
622 changed |= normalize_kind ();
623 return changed;
626 // Intersect two ranges when one is known to be a NAN.
628 bool
629 frange::intersect_nans (const frange &r)
631 gcc_checking_assert (known_isnan () || r.known_isnan ());
633 m_pos_nan &= r.m_pos_nan;
634 m_neg_nan &= r.m_neg_nan;
635 if (maybe_isnan ())
636 m_kind = VR_NAN;
637 else
638 set_undefined ();
639 if (flag_checking)
640 verify_range ();
641 return true;
644 bool
645 frange::intersect (const vrange &v)
647 const frange &r = as_a <frange> (v);
649 if (undefined_p () || r.varying_p ())
650 return false;
651 if (r.undefined_p ())
653 set_undefined ();
654 return true;
656 if (varying_p ())
658 *this = r;
659 return true;
662 // Combine NAN info.
663 if (known_isnan () || r.known_isnan ())
664 return intersect_nans (r);
665 bool changed = false;
666 if (m_pos_nan != r.m_pos_nan || m_neg_nan != r.m_neg_nan)
668 m_pos_nan &= r.m_pos_nan;
669 m_neg_nan &= r.m_neg_nan;
670 changed = true;
673 // Combine endpoints.
674 if (real_less (&m_min, &r.m_min))
676 m_min = r.m_min;
677 changed = true;
679 if (real_less (&r.m_max, &m_max))
681 m_max = r.m_max;
682 changed = true;
684 // If the endpoints are swapped, the resulting range is empty.
685 if (real_less (&m_max, &m_min))
687 if (maybe_isnan ())
688 m_kind = VR_NAN;
689 else
690 set_undefined ();
691 if (flag_checking)
692 verify_range ();
693 return true;
696 if (HONOR_SIGNED_ZEROS (m_type))
697 changed |= combine_zeros (r, false);
699 changed |= normalize_kind ();
700 return changed;
703 frange &
704 frange::operator= (const frange &src)
706 m_kind = src.m_kind;
707 m_type = src.m_type;
708 m_min = src.m_min;
709 m_max = src.m_max;
710 m_pos_nan = src.m_pos_nan;
711 m_neg_nan = src.m_neg_nan;
713 if (flag_checking)
714 verify_range ();
715 return *this;
718 bool
719 frange::operator== (const frange &src) const
721 if (m_kind == src.m_kind)
723 if (undefined_p ())
724 return true;
726 if (varying_p ())
727 return types_compatible_p (m_type, src.m_type);
729 bool nan1 = known_isnan ();
730 bool nan2 = src.known_isnan ();
731 if (nan1 || nan2)
733 if (nan1 && nan2)
734 return (m_pos_nan == src.m_pos_nan
735 && m_neg_nan == src.m_neg_nan);
736 return false;
739 return (real_identical (&m_min, &src.m_min)
740 && real_identical (&m_max, &src.m_max)
741 && m_pos_nan == src.m_pos_nan
742 && m_neg_nan == src.m_neg_nan
743 && types_compatible_p (m_type, src.m_type));
745 return false;
748 // Return TRUE if range contains R.
750 bool
751 frange::contains_p (const REAL_VALUE_TYPE &r) const
753 gcc_checking_assert (m_kind != VR_ANTI_RANGE);
755 if (undefined_p ())
756 return false;
758 if (varying_p ())
759 return true;
761 if (real_isnan (&r))
763 // No NAN in range.
764 if (!m_pos_nan && !m_neg_nan)
765 return false;
766 // Both +NAN and -NAN are present.
767 if (m_pos_nan && m_neg_nan)
768 return true;
769 return m_neg_nan == r.sign;
771 if (known_isnan ())
772 return false;
774 if (real_compare (GE_EXPR, &r, &m_min) && real_compare (LE_EXPR, &r, &m_max))
776 // Make sure the signs are equal for signed zeros.
777 if (HONOR_SIGNED_ZEROS (m_type) && real_iszero (&r))
778 return r.sign == m_min.sign || r.sign == m_max.sign;
779 return true;
781 return false;
784 // If range is a singleton, place it in RESULT and return TRUE. If
785 // RESULT is NULL, just return TRUE.
787 // A NAN can never be a singleton.
789 bool
790 frange::internal_singleton_p (REAL_VALUE_TYPE *result) const
792 if (m_kind == VR_RANGE && real_identical (&m_min, &m_max))
794 // Return false for any singleton that may be a NAN.
795 if (HONOR_NANS (m_type) && maybe_isnan ())
796 return false;
798 if (MODE_COMPOSITE_P (TYPE_MODE (m_type)))
800 // For IBM long doubles, if the value is +-Inf or is exactly
801 // representable in double, the other double could be +0.0
802 // or -0.0. Since this means there is more than one way to
803 // represent a value, return false to avoid propagating it.
804 // See libgcc/config/rs6000/ibm-ldouble-format for details.
805 if (real_isinf (&m_min))
806 return false;
807 REAL_VALUE_TYPE r;
808 real_convert (&r, DFmode, &m_min);
809 if (real_identical (&r, &m_min))
810 return false;
813 if (result)
814 *result = m_min;
815 return true;
817 return false;
820 bool
821 frange::singleton_p (tree *result) const
823 if (internal_singleton_p ())
825 if (result)
826 *result = build_real (m_type, m_min);
827 return true;
829 return false;
832 bool
833 frange::singleton_p (REAL_VALUE_TYPE &r) const
835 return internal_singleton_p (&r);
838 bool
839 frange::supports_type_p (const_tree type) const
841 return supports_p (type);
844 void
845 frange::verify_range ()
847 if (!undefined_p ())
848 gcc_checking_assert (HONOR_NANS (m_type) || !maybe_isnan ());
849 switch (m_kind)
851 case VR_UNDEFINED:
852 gcc_checking_assert (!m_type);
853 return;
854 case VR_VARYING:
855 gcc_checking_assert (m_type);
856 gcc_checking_assert (frange_val_is_min (m_min, m_type));
857 gcc_checking_assert (frange_val_is_max (m_max, m_type));
858 if (HONOR_NANS (m_type))
859 gcc_checking_assert (m_pos_nan && m_neg_nan);
860 else
861 gcc_checking_assert (!m_pos_nan && !m_neg_nan);
862 return;
863 case VR_RANGE:
864 gcc_checking_assert (m_type);
865 break;
866 case VR_NAN:
867 gcc_checking_assert (m_type);
868 gcc_checking_assert (m_pos_nan || m_neg_nan);
869 return;
870 default:
871 gcc_unreachable ();
874 // NANs cannot appear in the endpoints of a range.
875 gcc_checking_assert (!real_isnan (&m_min) && !real_isnan (&m_max));
877 // Make sure we don't have swapped ranges.
878 gcc_checking_assert (!real_less (&m_max, &m_min));
880 // [ +0.0, -0.0 ] is nonsensical.
881 gcc_checking_assert (!(real_iszero (&m_min, 0) && real_iszero (&m_max, 1)));
883 // If all the properties are clear, we better not span the entire
884 // domain, because that would make us varying.
885 if (m_pos_nan && m_neg_nan)
886 gcc_checking_assert (!frange_val_is_min (m_min, m_type)
887 || !frange_val_is_max (m_max, m_type));
890 // We can't do much with nonzeros yet.
891 void
892 frange::set_nonzero (tree type)
894 set_varying (type);
897 // We can't do much with nonzeros yet.
898 bool
899 frange::nonzero_p () const
901 return false;
904 // Set range to [+0.0, +0.0] if honoring signed zeros, or [0.0, 0.0]
905 // otherwise.
907 void
908 frange::set_zero (tree type)
910 if (HONOR_SIGNED_ZEROS (type))
912 set (type, dconstm0, dconst0);
913 clear_nan ();
915 else
916 set (type, dconst0, dconst0);
919 // Return TRUE for any zero regardless of sign.
921 bool
922 frange::zero_p () const
924 return (m_kind == VR_RANGE
925 && real_iszero (&m_min)
926 && real_iszero (&m_max));
929 // Set the range to non-negative numbers, that is [+0.0, +INF].
931 // The NAN in the resulting range (if HONOR_NANS) has a varying sign
932 // as there are no guarantees in IEEE 754 wrt to the sign of a NAN,
933 // except for copy, abs, and copysign. It is the responsibility of
934 // the caller to set the NAN's sign if desired.
936 void
937 frange::set_nonnegative (tree type)
939 set (type, dconst0, frange_val_max (type));
942 // Here we copy between any two irange's.
944 irange &
945 irange::operator= (const irange &src)
947 int needed = src.num_pairs ();
948 maybe_resize (needed);
950 unsigned x;
951 unsigned lim = src.m_num_ranges;
952 if (lim > m_max_ranges)
953 lim = m_max_ranges;
955 for (x = 0; x < lim * 2; ++x)
956 m_base[x] = src.m_base[x];
958 // If the range didn't fit, the last range should cover the rest.
959 if (lim != src.m_num_ranges)
960 m_base[x - 1] = src.m_base[src.m_num_ranges * 2 - 1];
962 m_num_ranges = lim;
963 m_type = src.m_type;
964 m_kind = src.m_kind;
965 m_bitmask = src.m_bitmask;
966 if (m_max_ranges == 1)
967 normalize_kind ();
968 if (flag_checking)
969 verify_range ();
970 return *this;
973 value_range_kind
974 get_legacy_range (const irange &r, tree &min, tree &max)
976 if (r.undefined_p ())
978 min = NULL_TREE;
979 max = NULL_TREE;
980 return VR_UNDEFINED;
983 tree type = r.type ();
984 if (r.varying_p ())
986 min = wide_int_to_tree (type, r.lower_bound ());
987 max = wide_int_to_tree (type, r.upper_bound ());
988 return VR_VARYING;
991 unsigned int precision = TYPE_PRECISION (type);
992 signop sign = TYPE_SIGN (type);
993 if (r.num_pairs () > 1
994 && precision > 1
995 && r.lower_bound () == wi::min_value (precision, sign)
996 && r.upper_bound () == wi::max_value (precision, sign))
998 int_range<3> inv (r);
999 inv.invert ();
1000 min = wide_int_to_tree (type, inv.lower_bound (0));
1001 max = wide_int_to_tree (type, inv.upper_bound (0));
1002 return VR_ANTI_RANGE;
1005 min = wide_int_to_tree (type, r.lower_bound ());
1006 max = wide_int_to_tree (type, r.upper_bound ());
1007 return VR_RANGE;
1010 /* Set value range to the canonical form of {VRTYPE, MIN, MAX, EQUIV}.
1011 This means adjusting VRTYPE, MIN and MAX representing the case of a
1012 wrapping range with MAX < MIN covering [MIN, type_max] U [type_min, MAX]
1013 as anti-rage ~[MAX+1, MIN-1]. Likewise for wrapping anti-ranges.
1014 In corner cases where MAX+1 or MIN-1 wraps this will fall back
1015 to varying.
1016 This routine exists to ease canonicalization in the case where we
1017 extract ranges from var + CST op limit. */
1019 void
1020 irange::set (tree type, const wide_int &min, const wide_int &max,
1021 value_range_kind kind)
1023 unsigned prec = TYPE_PRECISION (type);
1024 signop sign = TYPE_SIGN (type);
1025 wide_int min_value = wi::min_value (prec, sign);
1026 wide_int max_value = wi::max_value (prec, sign);
1028 m_type = type;
1029 m_bitmask.set_unknown (prec);
1031 if (kind == VR_RANGE)
1033 m_base[0] = min;
1034 m_base[1] = max;
1035 m_num_ranges = 1;
1036 if (min == min_value && max == max_value)
1037 m_kind = VR_VARYING;
1038 else
1039 m_kind = VR_RANGE;
1041 else
1043 gcc_checking_assert (kind == VR_ANTI_RANGE);
1044 gcc_checking_assert (m_max_ranges > 1);
1046 m_kind = VR_UNDEFINED;
1047 m_num_ranges = 0;
1048 wi::overflow_type ovf;
1049 wide_int lim;
1050 if (sign == SIGNED)
1051 lim = wi::add (min, -1, sign, &ovf);
1052 else
1053 lim = wi::sub (min, 1, sign, &ovf);
1055 if (!ovf)
1057 m_kind = VR_RANGE;
1058 m_base[0] = min_value;
1059 m_base[1] = lim;
1060 ++m_num_ranges;
1062 if (sign == SIGNED)
1063 lim = wi::sub (max, -1, sign, &ovf);
1064 else
1065 lim = wi::add (max, 1, sign, &ovf);
1066 if (!ovf)
1068 m_kind = VR_RANGE;
1069 m_base[m_num_ranges * 2] = lim;
1070 m_base[m_num_ranges * 2 + 1] = max_value;
1071 ++m_num_ranges;
1075 if (flag_checking)
1076 verify_range ();
1079 void
1080 irange::set (tree min, tree max, value_range_kind kind)
1082 if (POLY_INT_CST_P (min) || POLY_INT_CST_P (max))
1084 set_varying (TREE_TYPE (min));
1085 return;
1088 gcc_checking_assert (TREE_CODE (min) == INTEGER_CST);
1089 gcc_checking_assert (TREE_CODE (max) == INTEGER_CST);
1091 return set (TREE_TYPE (min), wi::to_wide (min), wi::to_wide (max), kind);
1094 // Check the validity of the range.
1096 void
1097 irange::verify_range ()
1099 gcc_checking_assert (m_discriminator == VR_IRANGE);
1100 if (m_kind == VR_UNDEFINED)
1102 gcc_checking_assert (m_num_ranges == 0);
1103 return;
1105 gcc_checking_assert (m_num_ranges <= m_max_ranges);
1107 // Legacy allowed these to represent VARYING for unknown types.
1108 // Leave this in for now, until all users are converted. Eventually
1109 // we should abort in set_varying.
1110 if (m_kind == VR_VARYING && m_type == error_mark_node)
1111 return;
1113 unsigned prec = TYPE_PRECISION (m_type);
1114 if (m_kind == VR_VARYING)
1116 gcc_checking_assert (m_bitmask.unknown_p ());
1117 gcc_checking_assert (m_num_ranges == 1);
1118 gcc_checking_assert (varying_compatible_p ());
1119 gcc_checking_assert (lower_bound ().get_precision () == prec);
1120 gcc_checking_assert (upper_bound ().get_precision () == prec);
1121 return;
1123 gcc_checking_assert (m_num_ranges != 0);
1124 gcc_checking_assert (!varying_compatible_p ());
1125 for (unsigned i = 0; i < m_num_ranges; ++i)
1127 wide_int lb = lower_bound (i);
1128 wide_int ub = upper_bound (i);
1129 gcc_checking_assert (lb.get_precision () == prec);
1130 gcc_checking_assert (ub.get_precision () == prec);
1131 int c = wi::cmp (lb, ub, TYPE_SIGN (m_type));
1132 gcc_checking_assert (c == 0 || c == -1);
1134 m_bitmask.verify_mask ();
1137 bool
1138 irange::operator== (const irange &other) const
1140 if (m_num_ranges != other.m_num_ranges)
1141 return false;
1143 if (m_num_ranges == 0)
1144 return true;
1146 signop sign1 = TYPE_SIGN (type ());
1147 signop sign2 = TYPE_SIGN (other.type ());
1149 for (unsigned i = 0; i < m_num_ranges; ++i)
1151 widest_int lb = widest_int::from (lower_bound (i), sign1);
1152 widest_int ub = widest_int::from (upper_bound (i), sign1);
1153 widest_int lb_other = widest_int::from (other.lower_bound (i), sign2);
1154 widest_int ub_other = widest_int::from (other.upper_bound (i), sign2);
1155 if (lb != lb_other || ub != ub_other)
1156 return false;
1159 irange_bitmask bm1 = get_bitmask ();
1160 irange_bitmask bm2 = other.get_bitmask ();
1161 widest_int tmp1 = widest_int::from (bm1.mask (), sign1);
1162 widest_int tmp2 = widest_int::from (bm2.mask (), sign2);
1163 if (tmp1 != tmp2)
1164 return false;
1165 if (bm1.unknown_p ())
1166 return true;
1167 tmp1 = widest_int::from (bm1.value (), sign1);
1168 tmp2 = widest_int::from (bm2.value (), sign2);
1169 return tmp1 == tmp2;
1172 /* If range is a singleton, place it in RESULT and return TRUE. */
1174 bool
1175 irange::singleton_p (tree *result) const
1177 if (num_pairs () == 1 && lower_bound () == upper_bound ())
1179 if (result)
1180 *result = wide_int_to_tree (type (), lower_bound ());
1181 return true;
1183 return false;
1186 bool
1187 irange::singleton_p (wide_int &w) const
1189 if (num_pairs () == 1 && lower_bound () == upper_bound ())
1191 w = lower_bound ();
1192 return true;
1194 return false;
1197 /* Return 1 if CST is inside value range.
1198 0 if CST is not inside value range.
1200 Benchmark compile/20001226-1.c compilation time after changing this
1201 function. */
1203 bool
1204 irange::contains_p (const wide_int &cst) const
1206 if (undefined_p ())
1207 return false;
1209 // See if we can exclude CST based on the known 0 bits.
1210 if (!m_bitmask.unknown_p ()
1211 && cst != 0
1212 && wi::bit_and (m_bitmask.get_nonzero_bits (), cst) == 0)
1213 return false;
1215 signop sign = TYPE_SIGN (type ());
1216 for (unsigned r = 0; r < m_num_ranges; ++r)
1218 if (wi::lt_p (cst, lower_bound (r), sign))
1219 return false;
1220 if (wi::le_p (cst, upper_bound (r), sign))
1221 return true;
1224 return false;
1227 // Perform an efficient union with R when both ranges have only a single pair.
1228 // Excluded are VARYING and UNDEFINED ranges.
1230 bool
1231 irange::irange_single_pair_union (const irange &r)
1233 gcc_checking_assert (!undefined_p () && !varying_p ());
1234 gcc_checking_assert (!r.undefined_p () && !varying_p ());
1236 signop sign = TYPE_SIGN (m_type);
1237 // Check if current lower bound is also the new lower bound.
1238 if (wi::le_p (m_base[0], r.m_base[0], sign))
1240 // If current upper bound is new upper bound, we're done.
1241 if (wi::le_p (r.m_base[1], m_base[1], sign))
1242 return union_bitmask (r);
1243 // Otherwise R has the new upper bound.
1244 // Check for overlap/touching ranges, or single target range.
1245 if (m_max_ranges == 1
1246 || (widest_int::from (m_base[1], sign) + 1
1247 >= widest_int::from (r.m_base[0], TYPE_SIGN (r.m_type))))
1248 m_base[1] = r.m_base[1];
1249 else
1251 // This is a dual range result.
1252 m_base[2] = r.m_base[0];
1253 m_base[3] = r.m_base[1];
1254 m_num_ranges = 2;
1256 // The range has been altered, so normalize it even if nothing
1257 // changed in the mask.
1258 if (!union_bitmask (r))
1259 normalize_kind ();
1260 if (flag_checking)
1261 verify_range ();
1262 return true;
1265 // Set the new lower bound to R's lower bound.
1266 wide_int lb = m_base[0];
1267 m_base[0] = r.m_base[0];
1269 // If R fully contains THIS range, just set the upper bound.
1270 if (wi::ge_p (r.m_base[1], m_base[1], sign))
1271 m_base[1] = r.m_base[1];
1272 // Check for overlapping ranges, or target limited to a single range.
1273 else if (m_max_ranges == 1
1274 || (widest_int::from (r.m_base[1], TYPE_SIGN (r.m_type)) + 1
1275 >= widest_int::from (lb, sign)))
1277 else
1279 // Left with 2 pairs.
1280 m_num_ranges = 2;
1281 m_base[2] = lb;
1282 m_base[3] = m_base[1];
1283 m_base[1] = r.m_base[1];
1285 // The range has been altered, so normalize it even if nothing
1286 // changed in the mask.
1287 if (!union_bitmask (r))
1288 normalize_kind ();
1289 if (flag_checking)
1290 verify_range ();
1291 return true;
1294 // Append R to this range, knowing that R occurs after all of these subranges.
1295 // Return TRUE as something must have changed.
1297 bool
1298 irange::union_append (const irange &r)
1300 // Check if the first range in R is an immmediate successor to the last
1301 // range, ths requiring a merge.
1302 signop sign = TYPE_SIGN (m_type);
1303 wide_int lb = r.lower_bound ();
1304 wide_int ub = upper_bound ();
1305 unsigned start = 0;
1306 if (widest_int::from (ub, sign) + 1
1307 == widest_int::from (lb, sign))
1309 m_base[m_num_ranges * 2 - 1] = r.m_base[1];
1310 start = 1;
1312 maybe_resize (m_num_ranges + r.m_num_ranges - start);
1313 for ( ; start < r.m_num_ranges; start++)
1315 // Merge the last ranges if it exceeds the maximum size.
1316 if (m_num_ranges + 1 > m_max_ranges)
1318 m_base[m_max_ranges * 2 - 1] = r.m_base[r.m_num_ranges * 2 - 1];
1319 break;
1321 m_base[m_num_ranges * 2] = r.m_base[start * 2];
1322 m_base[m_num_ranges * 2 + 1] = r.m_base[start * 2 + 1];
1323 m_num_ranges++;
1326 if (!union_bitmask (r))
1327 normalize_kind ();
1328 if (flag_checking)
1329 verify_range ();
1330 return true;
1333 // Return TRUE if anything changes.
1335 bool
1336 irange::union_ (const vrange &v)
1338 const irange &r = as_a <irange> (v);
1340 if (r.undefined_p ())
1341 return false;
1343 if (undefined_p ())
1345 operator= (r);
1346 if (flag_checking)
1347 verify_range ();
1348 return true;
1351 if (varying_p ())
1352 return false;
1354 if (r.varying_p ())
1356 set_varying (type ());
1357 return true;
1360 // Special case one range union one range.
1361 if (m_num_ranges == 1 && r.m_num_ranges == 1)
1362 return irange_single_pair_union (r);
1364 signop sign = TYPE_SIGN (m_type);
1365 // Check for an append to the end.
1366 if (m_kind == VR_RANGE && wi::gt_p (r.lower_bound (), upper_bound (), sign))
1367 return union_append (r);
1369 // If this ranges fully contains R, then we need do nothing.
1370 if (irange_contains_p (r))
1371 return union_bitmask (r);
1373 // Do not worry about merging and such by reserving twice as many
1374 // pairs as needed, and then simply sort the 2 ranges into this
1375 // intermediate form.
1377 // The intermediate result will have the property that the beginning
1378 // of each range is <= the beginning of the next range. There may
1379 // be overlapping ranges at this point. I.e. this would be valid
1380 // [-20, 10], [-10, 0], [0, 20], [40, 90] as it satisfies this
1381 // constraint : -20 < -10 < 0 < 40. When the range is rebuilt into r,
1382 // the merge is performed.
1384 // [Xi,Yi]..[Xn,Yn] U [Xj,Yj]..[Xm,Ym] --> [Xk,Yk]..[Xp,Yp]
1385 auto_vec<wide_int, 20> res (m_num_ranges * 2 + r.m_num_ranges * 2);
1386 unsigned i = 0, j = 0, k = 0;
1388 while (i < m_num_ranges * 2 && j < r.m_num_ranges * 2)
1390 // lower of Xi and Xj is the lowest point.
1391 if (widest_int::from (m_base[i], sign)
1392 <= widest_int::from (r.m_base[j], sign))
1394 res.quick_push (m_base[i]);
1395 res.quick_push (m_base[i + 1]);
1396 k += 2;
1397 i += 2;
1399 else
1401 res.quick_push (r.m_base[j]);
1402 res.quick_push (r.m_base[j + 1]);
1403 k += 2;
1404 j += 2;
1407 for ( ; i < m_num_ranges * 2; i += 2)
1409 res.quick_push (m_base[i]);
1410 res.quick_push (m_base[i + 1]);
1411 k += 2;
1413 for ( ; j < r.m_num_ranges * 2; j += 2)
1415 res.quick_push (r.m_base[j]);
1416 res.quick_push (r.m_base[j + 1]);
1417 k += 2;
1420 // Now normalize the vector removing any overlaps.
1421 i = 2;
1422 for (j = 2; j < k ; j += 2)
1424 // Current upper+1 is >= lower bound next pair, then we merge ranges.
1425 if (widest_int::from (res[i - 1], sign) + 1
1426 >= widest_int::from (res[j], sign))
1428 // New upper bounds is greater of current or the next one.
1429 if (widest_int::from (res[j + 1], sign)
1430 > widest_int::from (res[i - 1], sign))
1431 res[i - 1] = res[j + 1];
1433 else
1435 // This is a new distinct range, but no point in copying it
1436 // if it is already in the right place.
1437 if (i != j)
1439 res[i++] = res[j];
1440 res[i++] = res[j + 1];
1442 else
1443 i += 2;
1447 // At this point, the vector should have i ranges, none overlapping.
1448 // Now it simply needs to be copied, and if there are too many
1449 // ranges, merge some. We wont do any analysis as to what the
1450 // "best" merges are, simply combine the final ranges into one.
1451 maybe_resize (i / 2);
1452 if (i > m_max_ranges * 2)
1454 res[m_max_ranges * 2 - 1] = res[i - 1];
1455 i = m_max_ranges * 2;
1458 for (j = 0; j < i ; j++)
1459 m_base[j] = res [j];
1460 m_num_ranges = i / 2;
1462 m_kind = VR_RANGE;
1463 // The range has been altered, so normalize it even if nothing
1464 // changed in the mask.
1465 if (!union_bitmask (r))
1466 normalize_kind ();
1467 if (flag_checking)
1468 verify_range ();
1469 return true;
1472 // Return TRUE if THIS fully contains R. No undefined or varying cases.
1474 bool
1475 irange::irange_contains_p (const irange &r) const
1477 gcc_checking_assert (!undefined_p () && !varying_p ());
1478 gcc_checking_assert (!r.undefined_p () && !varying_p ());
1480 // In order for THIS to fully contain R, all of the pairs within R must
1481 // be fully contained by the pairs in this object.
1482 signop sign = TYPE_SIGN (m_type);
1483 unsigned ri = 0;
1484 unsigned i = 0;
1485 wide_int rl = r.m_base[0];
1486 wide_int ru = r.m_base[1];
1487 wide_int l = m_base[0];
1488 wide_int u = m_base[1];
1489 while (1)
1491 // If r is contained within this range, move to the next R
1492 if (wi::ge_p (rl, l, sign)
1493 && wi::le_p (ru, u, sign))
1495 // This pair is OK, Either done, or bump to the next.
1496 if (++ri >= r.num_pairs ())
1497 return true;
1498 rl = r.m_base[ri * 2];
1499 ru = r.m_base[ri * 2 + 1];
1500 continue;
1502 // Otherwise, check if this's pair occurs before R's.
1503 if (wi::lt_p (u, rl, sign))
1505 // There's still at least one pair of R left.
1506 if (++i >= num_pairs ())
1507 return false;
1508 l = m_base[i * 2];
1509 u = m_base[i * 2 + 1];
1510 continue;
1512 return false;
1514 return false;
1518 // Return TRUE if anything changes.
1520 bool
1521 irange::intersect (const vrange &v)
1523 const irange &r = as_a <irange> (v);
1524 gcc_checking_assert (undefined_p () || r.undefined_p ()
1525 || range_compatible_p (type (), r.type ()));
1527 if (undefined_p ())
1528 return false;
1529 if (r.undefined_p ())
1531 set_undefined ();
1532 return true;
1534 if (r.varying_p ())
1535 return false;
1536 if (varying_p ())
1538 operator= (r);
1539 return true;
1542 if (r.num_pairs () == 1)
1544 bool res = intersect (r.lower_bound (), r.upper_bound ());
1545 if (undefined_p ())
1546 return true;
1548 res |= intersect_bitmask (r);
1549 if (res)
1550 normalize_kind ();
1551 return res;
1554 // If R fully contains this, then intersection will change nothing.
1555 if (r.irange_contains_p (*this))
1556 return intersect_bitmask (r);
1558 // ?? We could probably come up with something smarter than the
1559 // worst case scenario here.
1560 int needed = num_pairs () + r.num_pairs ();
1561 maybe_resize (needed);
1563 signop sign = TYPE_SIGN (m_type);
1564 unsigned bld_pair = 0;
1565 unsigned bld_lim = m_max_ranges;
1566 int_range_max r2 (*this);
1567 unsigned r2_lim = r2.num_pairs ();
1568 unsigned i2 = 0;
1569 for (unsigned i = 0; i < r.num_pairs (); )
1571 // If r1's upper is < r2's lower, we can skip r1's pair.
1572 wide_int ru = r.m_base[i * 2 + 1];
1573 wide_int r2l = r2.m_base[i2 * 2];
1574 if (wi::lt_p (ru, r2l, sign))
1576 i++;
1577 continue;
1579 // Likewise, skip r2's pair if its excluded.
1580 wide_int r2u = r2.m_base[i2 * 2 + 1];
1581 wide_int rl = r.m_base[i * 2];
1582 if (wi::lt_p (r2u, rl, sign))
1584 i2++;
1585 if (i2 < r2_lim)
1586 continue;
1587 // No more r2, break.
1588 break;
1591 // Must be some overlap. Find the highest of the lower bounds,
1592 // and set it, unless the build limits lower bounds is already
1593 // set.
1594 if (bld_pair < bld_lim)
1596 if (wi::ge_p (rl, r2l, sign))
1597 m_base[bld_pair * 2] = rl;
1598 else
1599 m_base[bld_pair * 2] = r2l;
1601 else
1602 // Decrease and set a new upper.
1603 bld_pair--;
1605 // ...and choose the lower of the upper bounds.
1606 if (wi::le_p (ru, r2u, sign))
1608 m_base[bld_pair * 2 + 1] = ru;
1609 bld_pair++;
1610 // Move past the r1 pair and keep trying.
1611 i++;
1612 continue;
1614 else
1616 m_base[bld_pair * 2 + 1] = r2u;
1617 bld_pair++;
1618 i2++;
1619 if (i2 < r2_lim)
1620 continue;
1621 // No more r2, break.
1622 break;
1624 // r2 has the higher lower bound.
1627 // At the exit of this loop, it is one of 2 things:
1628 // ran out of r1, or r2, but either means we are done.
1629 m_num_ranges = bld_pair;
1630 if (m_num_ranges == 0)
1632 set_undefined ();
1633 return true;
1636 m_kind = VR_RANGE;
1637 // The range has been altered, so normalize it even if nothing
1638 // changed in the mask.
1639 if (!intersect_bitmask (r))
1640 normalize_kind ();
1641 if (flag_checking)
1642 verify_range ();
1643 return true;
1647 // Multirange intersect for a specified wide_int [lb, ub] range.
1648 // Return TRUE if intersect changed anything.
1650 // NOTE: It is the caller's responsibility to intersect the mask.
1652 bool
1653 irange::intersect (const wide_int& lb, const wide_int& ub)
1655 // Undefined remains undefined.
1656 if (undefined_p ())
1657 return false;
1659 tree range_type = type();
1660 signop sign = TYPE_SIGN (range_type);
1662 gcc_checking_assert (TYPE_PRECISION (range_type) == wi::get_precision (lb));
1663 gcc_checking_assert (TYPE_PRECISION (range_type) == wi::get_precision (ub));
1665 // If this range is fully contained, then intersection will do nothing.
1666 if (wi::ge_p (lower_bound (), lb, sign)
1667 && wi::le_p (upper_bound (), ub, sign))
1668 return false;
1670 unsigned bld_index = 0;
1671 unsigned pair_lim = num_pairs ();
1672 for (unsigned i = 0; i < pair_lim; i++)
1674 wide_int pairl = m_base[i * 2];
1675 wide_int pairu = m_base[i * 2 + 1];
1676 // Once UB is less than a pairs lower bound, we're done.
1677 if (wi::lt_p (ub, pairl, sign))
1678 break;
1679 // if LB is greater than this pairs upper, this pair is excluded.
1680 if (wi::lt_p (pairu, lb, sign))
1681 continue;
1683 // Must be some overlap. Find the highest of the lower bounds,
1684 // and set it
1685 if (wi::gt_p (lb, pairl, sign))
1686 m_base[bld_index * 2] = lb;
1687 else
1688 m_base[bld_index * 2] = pairl;
1690 // ...and choose the lower of the upper bounds and if the base pair
1691 // has the lower upper bound, need to check next pair too.
1692 if (wi::lt_p (ub, pairu, sign))
1694 m_base[bld_index++ * 2 + 1] = ub;
1695 break;
1697 else
1698 m_base[bld_index++ * 2 + 1] = pairu;
1701 m_num_ranges = bld_index;
1702 if (m_num_ranges == 0)
1704 set_undefined ();
1705 return true;
1708 m_kind = VR_RANGE;
1709 // The caller must normalize and verify the range, as the bitmask
1710 // still needs to be handled.
1711 return true;
1715 // Signed 1-bits are strange. You can't subtract 1, because you can't
1716 // represent the number 1. This works around that for the invert routine.
1718 static wide_int inline
1719 subtract_one (const wide_int &x, tree type, wi::overflow_type &overflow)
1721 if (TYPE_SIGN (type) == SIGNED)
1722 return wi::add (x, -1, SIGNED, &overflow);
1723 else
1724 return wi::sub (x, 1, UNSIGNED, &overflow);
1727 // The analogous function for adding 1.
1729 static wide_int inline
1730 add_one (const wide_int &x, tree type, wi::overflow_type &overflow)
1732 if (TYPE_SIGN (type) == SIGNED)
1733 return wi::sub (x, -1, SIGNED, &overflow);
1734 else
1735 return wi::add (x, 1, UNSIGNED, &overflow);
1738 // Return the inverse of a range.
1740 void
1741 irange::invert ()
1743 gcc_checking_assert (!undefined_p () && !varying_p ());
1745 // We always need one more set of bounds to represent an inverse, so
1746 // if we're at the limit, we can't properly represent things.
1748 // For instance, to represent the inverse of a 2 sub-range set
1749 // [5, 10][20, 30], we would need a 3 sub-range set
1750 // [-MIN, 4][11, 19][31, MAX].
1752 // In this case, return the most conservative thing.
1754 // However, if any of the extremes of the range are -MIN/+MAX, we
1755 // know we will not need an extra bound. For example:
1757 // INVERT([-MIN,20][30,40]) => [21,29][41,+MAX]
1758 // INVERT([-MIN,20][30,MAX]) => [21,29]
1759 tree ttype = type ();
1760 unsigned prec = TYPE_PRECISION (ttype);
1761 signop sign = TYPE_SIGN (ttype);
1762 wide_int type_min = wi::min_value (prec, sign);
1763 wide_int type_max = wi::max_value (prec, sign);
1764 m_bitmask.set_unknown (prec);
1766 // At this point, we need one extra sub-range to represent the
1767 // inverse.
1768 maybe_resize (m_num_ranges + 1);
1770 // The algorithm is as follows. To calculate INVERT ([a,b][c,d]), we
1771 // generate [-MIN, a-1][b+1, c-1][d+1, MAX].
1773 // If there is an over/underflow in the calculation for any
1774 // sub-range, we eliminate that subrange. This allows us to easily
1775 // calculate INVERT([-MIN, 5]) with: [-MIN, -MIN-1][6, MAX]. And since
1776 // we eliminate the underflow, only [6, MAX] remains.
1777 unsigned i = 0;
1778 wi::overflow_type ovf;
1779 // Construct leftmost range.
1780 int_range_max orig_range (*this);
1781 unsigned nitems = 0;
1782 wide_int tmp;
1783 // If this is going to underflow on the MINUS 1, don't even bother
1784 // checking. This also handles subtracting one from an unsigned 0,
1785 // which doesn't set the underflow bit.
1786 if (type_min != orig_range.lower_bound ())
1788 m_base[nitems++] = type_min;
1789 tmp = subtract_one (orig_range.lower_bound (), ttype, ovf);
1790 m_base[nitems++] = tmp;
1791 if (ovf)
1792 nitems = 0;
1794 i++;
1795 // Construct middle ranges if applicable.
1796 if (orig_range.num_pairs () > 1)
1798 unsigned j = i;
1799 for (; j < (orig_range.num_pairs () * 2) - 1; j += 2)
1801 // The middle ranges cannot have MAX/MIN, so there's no need
1802 // to check for unsigned overflow on the +1 and -1 here.
1803 tmp = wi::add (orig_range.m_base[j], 1, sign, &ovf);
1804 m_base[nitems++] = tmp;
1805 tmp = subtract_one (orig_range.m_base[j + 1], ttype, ovf);
1806 m_base[nitems++] = tmp;
1807 if (ovf)
1808 nitems -= 2;
1810 i = j;
1812 // Construct rightmost range.
1814 // However, if this will overflow on the PLUS 1, don't even bother.
1815 // This also handles adding one to an unsigned MAX, which doesn't
1816 // set the overflow bit.
1817 if (type_max != orig_range.m_base[i])
1819 tmp = add_one (orig_range.m_base[i], ttype, ovf);
1820 m_base[nitems++] = tmp;
1821 m_base[nitems++] = type_max;
1822 if (ovf)
1823 nitems -= 2;
1825 m_num_ranges = nitems / 2;
1827 // We disallow undefined or varying coming in, so the result can
1828 // only be a VR_RANGE.
1829 gcc_checking_assert (m_kind == VR_RANGE);
1831 if (flag_checking)
1832 verify_range ();
1835 // Return the bitmask inherent in the range.
1837 irange_bitmask
1838 irange::get_bitmask_from_range () const
1840 unsigned prec = TYPE_PRECISION (type ());
1841 wide_int min = lower_bound ();
1842 wide_int max = upper_bound ();
1844 // All the bits of a singleton are known.
1845 if (min == max)
1847 wide_int mask = wi::zero (prec);
1848 wide_int value = lower_bound ();
1849 return irange_bitmask (value, mask);
1852 wide_int xorv = min ^ max;
1854 if (xorv != 0)
1855 xorv = wi::mask (prec - wi::clz (xorv), false, prec);
1857 return irange_bitmask (wi::zero (prec), min | xorv);
1860 // Remove trailing ranges that this bitmask indicates can't exist.
1862 void
1863 irange_bitmask::adjust_range (irange &r) const
1865 if (unknown_p () || r.undefined_p ())
1866 return;
1868 int_range_max range;
1869 tree type = r.type ();
1870 int prec = TYPE_PRECISION (type);
1871 // If there are trailing zeros, create a range representing those bits.
1872 gcc_checking_assert (m_mask != 0);
1873 int z = wi::ctz (m_mask);
1874 if (z)
1876 wide_int ub = (wi::one (prec) << z) - 1;
1877 range = int_range<5> (type, wi::zero (prec), ub);
1878 // Then remove the specific value these bits contain from the range.
1879 wide_int value = m_value & ub;
1880 range.intersect (int_range<2> (type, value, value, VR_ANTI_RANGE));
1881 // Inverting produces a list of ranges which can be valid.
1882 range.invert ();
1883 // And finally select R from only those valid values.
1884 r.intersect (range);
1885 return;
1889 // If the the mask can be trivially converted to a range, do so and
1890 // return TRUE.
1892 bool
1893 irange::set_range_from_bitmask ()
1895 gcc_checking_assert (!undefined_p ());
1896 if (m_bitmask.unknown_p ())
1897 return false;
1899 // If all the bits are known, this is a singleton.
1900 if (m_bitmask.mask () == 0)
1902 set (m_type, m_bitmask.value (), m_bitmask.value ());
1903 return true;
1906 unsigned popcount = wi::popcount (m_bitmask.get_nonzero_bits ());
1908 // If we have only one bit set in the mask, we can figure out the
1909 // range immediately.
1910 if (popcount == 1)
1912 // Make sure we don't pessimize the range.
1913 if (!contains_p (m_bitmask.get_nonzero_bits ()))
1914 return false;
1916 bool has_zero = contains_zero_p (*this);
1917 wide_int nz = m_bitmask.get_nonzero_bits ();
1918 set (m_type, nz, nz);
1919 m_bitmask.set_nonzero_bits (nz);
1920 if (has_zero)
1922 int_range<2> zero;
1923 zero.set_zero (type ());
1924 union_ (zero);
1926 if (flag_checking)
1927 verify_range ();
1928 return true;
1930 else if (popcount == 0)
1932 set_zero (type ());
1933 return true;
1935 return false;
1938 void
1939 irange::update_bitmask (const irange_bitmask &bm)
1941 gcc_checking_assert (!undefined_p ());
1943 // Drop VARYINGs with known bits to a plain range.
1944 if (m_kind == VR_VARYING && !bm.unknown_p ())
1945 m_kind = VR_RANGE;
1947 m_bitmask = bm;
1948 if (!set_range_from_bitmask ())
1949 normalize_kind ();
1950 if (flag_checking)
1951 verify_range ();
1954 // Return the bitmask of known bits that includes the bitmask inherent
1955 // in the range.
1957 irange_bitmask
1958 irange::get_bitmask () const
1960 gcc_checking_assert (!undefined_p ());
1962 // The mask inherent in the range is calculated on-demand. For
1963 // example, [0,255] does not have known bits set by default. This
1964 // saves us considerable time, because setting it at creation incurs
1965 // a large penalty for irange::set. At the time of writing there
1966 // was a 5% slowdown in VRP if we kept the mask precisely up to date
1967 // at all times. Instead, we default to -1 and set it when
1968 // explicitly requested. However, this function will always return
1969 // the correct mask.
1971 // This also means that the mask may have a finer granularity than
1972 // the range and thus contradict it. Think of the mask as an
1973 // enhancement to the range. For example:
1975 // [3, 1000] MASK 0xfffffffe VALUE 0x0
1977 // 3 is in the range endpoints, but is excluded per the known 0 bits
1978 // in the mask.
1980 // See also the note in irange_bitmask::intersect.
1981 irange_bitmask bm = get_bitmask_from_range ();
1982 if (!m_bitmask.unknown_p ())
1983 bm.intersect (m_bitmask);
1984 return bm;
1987 // Set the nonzero bits in R into THIS. Return TRUE and
1988 // normalize the range if anything changed.
1990 void
1991 irange::set_nonzero_bits (const wide_int &bits)
1993 gcc_checking_assert (!undefined_p ());
1994 irange_bitmask bm (wi::zero (TYPE_PRECISION (type ())), bits);
1995 update_bitmask (bm);
1998 // Return the nonzero bits in R.
2000 wide_int
2001 irange::get_nonzero_bits () const
2003 gcc_checking_assert (!undefined_p ());
2004 irange_bitmask bm = get_bitmask ();
2005 return bm.value () | bm.mask ();
2008 // Intersect the bitmask in R into THIS and normalize the range.
2009 // Return TRUE if the intersection changed anything.
2011 bool
2012 irange::intersect_bitmask (const irange &r)
2014 gcc_checking_assert (!undefined_p () && !r.undefined_p ());
2016 if (m_bitmask == r.m_bitmask)
2017 return false;
2019 irange_bitmask bm = get_bitmask ();
2020 irange_bitmask save = bm;
2021 if (!bm.intersect (r.get_bitmask ()))
2022 return false;
2024 m_bitmask = bm;
2026 // Updating m_bitmask may still yield a semantic bitmask (as
2027 // returned by get_bitmask) which is functionally equivalent to what
2028 // we originally had. In which case, there's still no change.
2029 if (save == get_bitmask ())
2030 return false;
2032 if (!set_range_from_bitmask ())
2033 normalize_kind ();
2034 m_bitmask.adjust_range (*this);
2035 if (flag_checking)
2036 verify_range ();
2037 return true;
2040 // Union the bitmask in R into THIS. Return TRUE and normalize the
2041 // range if anything changed.
2043 bool
2044 irange::union_bitmask (const irange &r)
2046 gcc_checking_assert (!undefined_p () && !r.undefined_p ());
2048 if (m_bitmask == r.m_bitmask)
2049 return false;
2051 irange_bitmask bm = get_bitmask ();
2052 irange_bitmask save = bm;
2053 if (!bm.union_ (r.get_bitmask ()))
2054 return false;
2056 m_bitmask = bm;
2058 // Updating m_bitmask may still yield a semantic bitmask (as
2059 // returned by get_bitmask) which is functionally equivalent to what
2060 // we originally had. In which case, there's still no change.
2061 if (save == get_bitmask ())
2062 return false;
2064 // No need to call set_range_from_mask, because we'll never
2065 // narrow the range. Besides, it would cause endless recursion
2066 // because of the union_ in set_range_from_mask.
2067 normalize_kind ();
2068 return true;
2071 void
2072 irange_bitmask::verify_mask () const
2074 gcc_assert (m_value.get_precision () == m_mask.get_precision ());
2077 void
2078 dump_value_range (FILE *file, const vrange *vr)
2080 vr->dump (file);
2083 DEBUG_FUNCTION void
2084 debug (const vrange *vr)
2086 dump_value_range (stderr, vr);
2087 fprintf (stderr, "\n");
2090 DEBUG_FUNCTION void
2091 debug (const vrange &vr)
2093 debug (&vr);
2096 DEBUG_FUNCTION void
2097 debug (const value_range *vr)
2099 dump_value_range (stderr, vr);
2100 fprintf (stderr, "\n");
2103 DEBUG_FUNCTION void
2104 debug (const value_range &vr)
2106 dump_value_range (stderr, &vr);
2107 fprintf (stderr, "\n");
2110 /* Return true, if VAL1 and VAL2 are equal values for VRP purposes. */
2112 bool
2113 vrp_operand_equal_p (const_tree val1, const_tree val2)
2115 if (val1 == val2)
2116 return true;
2117 if (!val1 || !val2 || !operand_equal_p (val1, val2, 0))
2118 return false;
2119 return true;
2122 void
2123 gt_ggc_mx (irange *x)
2125 if (!x->undefined_p ())
2126 gt_ggc_mx (x->m_type);
2129 void
2130 gt_pch_nx (irange *x)
2132 if (!x->undefined_p ())
2133 gt_pch_nx (x->m_type);
2136 void
2137 gt_pch_nx (irange *x, gt_pointer_operator op, void *cookie)
2139 for (unsigned i = 0; i < x->m_num_ranges; ++i)
2141 op (&x->m_base[i * 2], NULL, cookie);
2142 op (&x->m_base[i * 2 + 1], NULL, cookie);
2146 void
2147 gt_ggc_mx (frange *x)
2149 gt_ggc_mx (x->m_type);
2152 void
2153 gt_pch_nx (frange *x)
2155 gt_pch_nx (x->m_type);
2158 void
2159 gt_pch_nx (frange *x, gt_pointer_operator op, void *cookie)
2161 op (&x->m_type, NULL, cookie);
2164 void
2165 gt_ggc_mx (vrange *x)
2167 if (is_a <irange> (*x))
2168 return gt_ggc_mx ((irange *) x);
2169 if (is_a <frange> (*x))
2170 return gt_ggc_mx ((frange *) x);
2171 gcc_unreachable ();
2174 void
2175 gt_pch_nx (vrange *x)
2177 if (is_a <irange> (*x))
2178 return gt_pch_nx ((irange *) x);
2179 if (is_a <frange> (*x))
2180 return gt_pch_nx ((frange *) x);
2181 gcc_unreachable ();
2184 void
2185 gt_pch_nx (vrange *x, gt_pointer_operator op, void *cookie)
2187 if (is_a <irange> (*x))
2188 gt_pch_nx ((irange *) x, op, cookie);
2189 else if (is_a <frange> (*x))
2190 gt_pch_nx ((frange *) x, op, cookie);
2191 else
2192 gcc_unreachable ();
2195 #define DEFINE_INT_RANGE_INSTANCE(N) \
2196 template int_range<N>::int_range(tree_node *, \
2197 const wide_int &, \
2198 const wide_int &, \
2199 value_range_kind); \
2200 template int_range<N>::int_range(tree); \
2201 template int_range<N>::int_range(const irange &); \
2202 template int_range<N>::int_range(const int_range &); \
2203 template int_range<N>& int_range<N>::operator= (const int_range &);
2205 DEFINE_INT_RANGE_INSTANCE(1)
2206 DEFINE_INT_RANGE_INSTANCE(2)
2207 DEFINE_INT_RANGE_INSTANCE(3)
2208 DEFINE_INT_RANGE_INSTANCE(255)
2210 #if CHECKING_P
2211 #include "selftest.h"
2213 #define INT(x) wi::shwi ((x), TYPE_PRECISION (integer_type_node))
2214 #define UINT(x) wi::uhwi ((x), TYPE_PRECISION (unsigned_type_node))
2215 #define SCHAR(x) wi::shwi ((x), TYPE_PRECISION (signed_char_type_node))
2217 namespace selftest
2220 static int_range<2>
2221 range (tree type, int a, int b, value_range_kind kind = VR_RANGE)
2223 wide_int w1, w2;
2224 if (TYPE_UNSIGNED (type))
2226 w1 = wi::uhwi (a, TYPE_PRECISION (type));
2227 w2 = wi::uhwi (b, TYPE_PRECISION (type));
2229 else
2231 w1 = wi::shwi (a, TYPE_PRECISION (type));
2232 w2 = wi::shwi (b, TYPE_PRECISION (type));
2234 return int_range<2> (type, w1, w2, kind);
2237 static int_range<2>
2238 range_int (int a, int b, value_range_kind kind = VR_RANGE)
2240 return range (integer_type_node, a, b, kind);
2243 static int_range<2>
2244 range_uint (int a, int b, value_range_kind kind = VR_RANGE)
2246 return range (unsigned_type_node, a, b, kind);
2249 static int_range<2>
2250 range_uint128 (int a, int b, value_range_kind kind = VR_RANGE)
2252 tree u128_type_node = build_nonstandard_integer_type (128, 1);
2253 return range (u128_type_node, a, b, kind);
2256 static int_range<2>
2257 range_uchar (int a, int b, value_range_kind kind = VR_RANGE)
2259 return range (unsigned_char_type_node, a, b, kind);
2262 static int_range<2>
2263 range_char (int a, int b, value_range_kind kind = VR_RANGE)
2265 return range (signed_char_type_node, a, b, kind);
2268 static int_range<3>
2269 build_range3 (int a, int b, int c, int d, int e, int f)
2271 int_range<3> i1 = range_int (a, b);
2272 int_range<3> i2 = range_int (c, d);
2273 int_range<3> i3 = range_int (e, f);
2274 i1.union_ (i2);
2275 i1.union_ (i3);
2276 return i1;
2279 static void
2280 range_tests_irange3 ()
2282 int_range<3> r0, r1, r2;
2283 int_range<3> i1, i2, i3;
2285 // ([10,20] U [5,8]) U [1,3] ==> [1,3][5,8][10,20].
2286 r0 = range_int (10, 20);
2287 r1 = range_int (5, 8);
2288 r0.union_ (r1);
2289 r1 = range_int (1, 3);
2290 r0.union_ (r1);
2291 ASSERT_TRUE (r0 == build_range3 (1, 3, 5, 8, 10, 20));
2293 // [1,3][5,8][10,20] U [-5,0] => [-5,3][5,8][10,20].
2294 r1 = range_int (-5, 0);
2295 r0.union_ (r1);
2296 ASSERT_TRUE (r0 == build_range3 (-5, 3, 5, 8, 10, 20));
2298 // [10,20][30,40] U [50,60] ==> [10,20][30,40][50,60].
2299 r1 = range_int (50, 60);
2300 r0 = range_int (10, 20);
2301 r0.union_ (range_int (30, 40));
2302 r0.union_ (r1);
2303 ASSERT_TRUE (r0 == build_range3 (10, 20, 30, 40, 50, 60));
2304 // [10,20][30,40][50,60] U [70, 80] ==> [10,20][30,40][50,60][70,80].
2305 r1 = range_int (70, 80);
2306 r0.union_ (r1);
2308 r2 = build_range3 (10, 20, 30, 40, 50, 60);
2309 r2.union_ (range_int (70, 80));
2310 ASSERT_TRUE (r0 == r2);
2312 // [10,20][30,40][50,60] U [6,35] => [6,40][50,60].
2313 r0 = build_range3 (10, 20, 30, 40, 50, 60);
2314 r1 = range_int (6, 35);
2315 r0.union_ (r1);
2316 r1 = range_int (6, 40);
2317 r1.union_ (range_int (50, 60));
2318 ASSERT_TRUE (r0 == r1);
2320 // [10,20][30,40][50,60] U [6,60] => [6,60].
2321 r0 = build_range3 (10, 20, 30, 40, 50, 60);
2322 r1 = range_int (6, 60);
2323 r0.union_ (r1);
2324 ASSERT_TRUE (r0 == range_int (6, 60));
2326 // [10,20][30,40][50,60] U [6,70] => [6,70].
2327 r0 = build_range3 (10, 20, 30, 40, 50, 60);
2328 r1 = range_int (6, 70);
2329 r0.union_ (r1);
2330 ASSERT_TRUE (r0 == range_int (6, 70));
2332 // [10,20][30,40][50,60] U [35,70] => [10,20][30,70].
2333 r0 = build_range3 (10, 20, 30, 40, 50, 60);
2334 r1 = range_int (35, 70);
2335 r0.union_ (r1);
2336 r1 = range_int (10, 20);
2337 r1.union_ (range_int (30, 70));
2338 ASSERT_TRUE (r0 == r1);
2340 // [10,20][30,40][50,60] U [15,35] => [10,40][50,60].
2341 r0 = build_range3 (10, 20, 30, 40, 50, 60);
2342 r1 = range_int (15, 35);
2343 r0.union_ (r1);
2344 r1 = range_int (10, 40);
2345 r1.union_ (range_int (50, 60));
2346 ASSERT_TRUE (r0 == r1);
2348 // [10,20][30,40][50,60] U [35,35] => [10,20][30,40][50,60].
2349 r0 = build_range3 (10, 20, 30, 40, 50, 60);
2350 r1 = range_int (35, 35);
2351 r0.union_ (r1);
2352 ASSERT_TRUE (r0 == build_range3 (10, 20, 30, 40, 50, 60));
2355 static void
2356 range_tests_int_range_max ()
2358 int_range_max big;
2359 unsigned int nrange;
2361 // Build a huge multi-range range.
2362 for (nrange = 0; nrange < 50; ++nrange)
2364 int_range<1> tmp = range_int (nrange*10, nrange *10 + 5);
2365 big.union_ (tmp);
2367 ASSERT_TRUE (big.num_pairs () == nrange);
2369 // Verify that we can copy it without loosing precision.
2370 int_range_max copy (big);
2371 ASSERT_TRUE (copy.num_pairs () == nrange);
2373 // Inverting it should produce one more sub-range.
2374 big.invert ();
2375 ASSERT_TRUE (big.num_pairs () == nrange + 1);
2377 int_range<1> tmp = range_int (5, 37);
2378 big.intersect (tmp);
2379 ASSERT_TRUE (big.num_pairs () == 4);
2381 // Test that [10,10][20,20] does NOT contain 15.
2383 int_range_max i1 = range_int (10, 10);
2384 int_range_max i2 = range_int (20, 20);
2385 i1.union_ (i2);
2386 ASSERT_FALSE (i1.contains_p (INT (15)));
2390 // Simulate -fstrict-enums where the domain of a type is less than the
2391 // underlying type.
2393 static void
2394 range_tests_strict_enum ()
2396 // The enum can only hold [0, 3].
2397 tree rtype = copy_node (unsigned_type_node);
2398 TYPE_MIN_VALUE (rtype) = build_int_cstu (rtype, 0);
2399 TYPE_MAX_VALUE (rtype) = build_int_cstu (rtype, 3);
2401 // Test that even though vr1 covers the strict enum domain ([0, 3]),
2402 // it does not cover the domain of the underlying type.
2403 int_range<1> vr1 = range (rtype, 0, 1);
2404 int_range<1> vr2 = range (rtype, 2, 3);
2405 vr1.union_ (vr2);
2406 ASSERT_TRUE (vr1 == range (rtype, 0, 3));
2407 ASSERT_FALSE (vr1.varying_p ());
2409 // Test that copying to a multi-range does not change things.
2410 int_range<2> ir1 (vr1);
2411 ASSERT_TRUE (ir1 == vr1);
2412 ASSERT_FALSE (ir1.varying_p ());
2414 // The same test as above, but using TYPE_{MIN,MAX}_VALUE instead of [0,3].
2415 vr1 = int_range<2> (rtype,
2416 wi::to_wide (TYPE_MIN_VALUE (rtype)),
2417 wi::to_wide (TYPE_MAX_VALUE (rtype)));
2418 ir1 = vr1;
2419 ASSERT_TRUE (ir1 == vr1);
2420 ASSERT_FALSE (ir1.varying_p ());
2423 static void
2424 range_tests_misc ()
2426 tree u128_type = build_nonstandard_integer_type (128, /*unsigned=*/1);
2427 int_range<2> i1, i2, i3;
2428 int_range<2> r0, r1, rold;
2430 // Test 1-bit signed integer union.
2431 // [-1,-1] U [0,0] = VARYING.
2432 tree one_bit_type = build_nonstandard_integer_type (1, 0);
2433 wide_int one_bit_min = irange_val_min (one_bit_type);
2434 wide_int one_bit_max = irange_val_max (one_bit_type);
2436 int_range<2> min = int_range<2> (one_bit_type, one_bit_min, one_bit_min);
2437 int_range<2> max = int_range<2> (one_bit_type, one_bit_max, one_bit_max);
2438 max.union_ (min);
2439 ASSERT_TRUE (max.varying_p ());
2441 // Test that we can set a range of true+false for a 1-bit signed int.
2442 r0 = range_true_and_false (one_bit_type);
2444 // Test inversion of 1-bit signed integers.
2446 int_range<2> min = int_range<2> (one_bit_type, one_bit_min, one_bit_min);
2447 int_range<2> max = int_range<2> (one_bit_type, one_bit_max, one_bit_max);
2448 int_range<2> t;
2449 t = min;
2450 t.invert ();
2451 ASSERT_TRUE (t == max);
2452 t = max;
2453 t.invert ();
2454 ASSERT_TRUE (t == min);
2457 // Test that NOT(255) is [0..254] in 8-bit land.
2458 int_range<1> not_255 = range_uchar (255, 255, VR_ANTI_RANGE);
2459 ASSERT_TRUE (not_255 == range_uchar (0, 254));
2461 // Test that NOT(0) is [1..255] in 8-bit land.
2462 int_range<2> not_zero = range_nonzero (unsigned_char_type_node);
2463 ASSERT_TRUE (not_zero == range_uchar (1, 255));
2465 // Check that [0,127][0x..ffffff80,0x..ffffff]
2466 // => ~[128, 0x..ffffff7f].
2467 r0 = range_uint128 (0, 127);
2468 wide_int high = wi::minus_one (128);
2469 // low = -1 - 127 => 0x..ffffff80.
2470 wide_int low = wi::sub (high, wi::uhwi (127, 128));
2471 r1 = int_range<1> (u128_type, low, high); // [0x..ffffff80, 0x..ffffffff]
2472 // r0 = [0,127][0x..ffffff80,0x..fffffff].
2473 r0.union_ (r1);
2474 // r1 = [128, 0x..ffffff7f].
2475 r1 = int_range<1> (u128_type,
2476 wi::uhwi (128, 128),
2477 wi::sub (wi::minus_one (128), wi::uhwi (128, 128)));
2478 r0.invert ();
2479 ASSERT_TRUE (r0 == r1);
2481 r0.set_varying (integer_type_node);
2482 wide_int minint = r0.lower_bound ();
2483 wide_int maxint = r0.upper_bound ();
2485 r0.set_varying (short_integer_type_node);
2487 r0.set_varying (unsigned_type_node);
2488 wide_int maxuint = r0.upper_bound ();
2490 // Check that ~[0,5] => [6,MAX] for unsigned int.
2491 r0 = range_uint (0, 5);
2492 r0.invert ();
2493 ASSERT_TRUE (r0 == int_range<1> (unsigned_type_node,
2494 wi::uhwi (6, TYPE_PRECISION (unsigned_type_node)),
2495 maxuint));
2497 // Check that ~[10,MAX] => [0,9] for unsigned int.
2498 r0 = int_range<1> (unsigned_type_node,
2499 wi::uhwi (10, TYPE_PRECISION (unsigned_type_node)),
2500 maxuint);
2501 r0.invert ();
2502 ASSERT_TRUE (r0 == range_uint (0, 9));
2504 // Check that ~[0,5] => [6,MAX] for unsigned 128-bit numbers.
2505 r0 = range_uint128 (0, 5, VR_ANTI_RANGE);
2506 r1 = int_range<1> (u128_type, wi::uhwi (6, 128), wi::minus_one (128));
2507 ASSERT_TRUE (r0 == r1);
2509 // Check that [~5] is really [-MIN,4][6,MAX].
2510 r0 = range_int (5, 5, VR_ANTI_RANGE);
2511 r1 = int_range<1> (integer_type_node, minint, INT (4));
2512 r1.union_ (int_range<1> (integer_type_node, INT (6), maxint));
2513 ASSERT_FALSE (r1.undefined_p ());
2514 ASSERT_TRUE (r0 == r1);
2516 r1 = range_int (5, 5);
2517 int_range<2> r2 (r1);
2518 ASSERT_TRUE (r1 == r2);
2520 r1 = range_int (5, 10);
2522 r1 = range_int (5, 10);
2523 ASSERT_TRUE (r1.contains_p (INT (7)));
2525 r1 = range_char (0, 20);
2526 ASSERT_TRUE (r1.contains_p (SCHAR(15)));
2527 ASSERT_FALSE (r1.contains_p (SCHAR(300)));
2529 // NOT([10,20]) ==> [-MIN,9][21,MAX].
2530 r0 = r1 = range_int (10, 20);
2531 r2 = int_range<1> (integer_type_node, minint, INT(9));
2532 r2.union_ (int_range<1> (integer_type_node, INT(21), maxint));
2533 ASSERT_FALSE (r2.undefined_p ());
2534 r1.invert ();
2535 ASSERT_TRUE (r1 == r2);
2536 // Test that NOT(NOT(x)) == x.
2537 r2.invert ();
2538 ASSERT_TRUE (r0 == r2);
2540 // Test that booleans and their inverse work as expected.
2541 r0 = range_zero (boolean_type_node);
2542 ASSERT_TRUE (r0 == range_false ());
2543 r0.invert ();
2544 ASSERT_TRUE (r0 == range_true ());
2546 // Make sure NULL and non-NULL of pointer types work, and that
2547 // inverses of them are consistent.
2548 tree voidp = build_pointer_type (void_type_node);
2549 r0 = range_zero (voidp);
2550 r1 = r0;
2551 r0.invert ();
2552 r0.invert ();
2553 ASSERT_TRUE (r0 == r1);
2555 // [10,20] U [15, 30] => [10, 30].
2556 r0 = range_int (10, 20);
2557 r1 = range_int (15, 30);
2558 r0.union_ (r1);
2559 ASSERT_TRUE (r0 == range_int (10, 30));
2561 // [15,40] U [] => [15,40].
2562 r0 = range_int (15, 40);
2563 r1.set_undefined ();
2564 r0.union_ (r1);
2565 ASSERT_TRUE (r0 == range_int (15, 40));
2567 // [10,20] U [10,10] => [10,20].
2568 r0 = range_int (10, 20);
2569 r1 = range_int (10, 10);
2570 r0.union_ (r1);
2571 ASSERT_TRUE (r0 == range_int (10, 20));
2573 // [10,20] U [9,9] => [9,20].
2574 r0 = range_int (10, 20);
2575 r1 = range_int (9, 9);
2576 r0.union_ (r1);
2577 ASSERT_TRUE (r0 == range_int (9, 20));
2579 // [10,20] ^ [15,30] => [15,20].
2580 r0 = range_int (10, 20);
2581 r1 = range_int (15, 30);
2582 r0.intersect (r1);
2583 ASSERT_TRUE (r0 == range_int (15, 20));
2585 // Test the internal sanity of wide_int's wrt HWIs.
2586 ASSERT_TRUE (wi::max_value (TYPE_PRECISION (boolean_type_node),
2587 TYPE_SIGN (boolean_type_node))
2588 == wi::uhwi (1, TYPE_PRECISION (boolean_type_node)));
2590 // Test zero_p().
2591 r0 = range_int (0, 0);
2592 ASSERT_TRUE (r0.zero_p ());
2594 // Test nonzero_p().
2595 r0 = range_int (0, 0);
2596 r0.invert ();
2597 ASSERT_TRUE (r0.nonzero_p ());
2599 // r0 = ~[1,1]
2600 r0 = range_int (1, 1, VR_ANTI_RANGE);
2601 // r1 = ~[3,3]
2602 r1 = range_int (3, 3, VR_ANTI_RANGE);
2604 // vv = [0,0][2,2][4, MAX]
2605 int_range<3> vv = r0;
2606 vv.intersect (r1);
2608 ASSERT_TRUE (vv.contains_p (UINT (2)));
2609 ASSERT_TRUE (vv.num_pairs () == 3);
2611 r0 = range_int (1, 1);
2612 // And union it with [0,0][2,2][4,MAX] multi range
2613 r0.union_ (vv);
2614 // The result should be [0,2][4,MAX], or ~[3,3] but it must contain 2
2615 ASSERT_TRUE (r0.contains_p (INT (2)));
2618 static void
2619 range_tests_nonzero_bits ()
2621 int_range<2> r0, r1;
2623 // Adding nonzero bits to a varying drops the varying.
2624 r0.set_varying (integer_type_node);
2625 r0.set_nonzero_bits (INT (255));
2626 ASSERT_TRUE (!r0.varying_p ());
2627 // Dropping the nonzero bits brings us back to varying.
2628 r0.set_nonzero_bits (INT (-1));
2629 ASSERT_TRUE (r0.varying_p ());
2631 // Test contains_p with nonzero bits.
2632 r0.set_zero (integer_type_node);
2633 ASSERT_TRUE (r0.contains_p (INT (0)));
2634 ASSERT_FALSE (r0.contains_p (INT (1)));
2635 r0.set_nonzero_bits (INT (0xfe));
2636 ASSERT_FALSE (r0.contains_p (INT (0x100)));
2637 ASSERT_FALSE (r0.contains_p (INT (0x3)));
2639 // Union of nonzero bits.
2640 r0.set_varying (integer_type_node);
2641 r0.set_nonzero_bits (INT (0xf0));
2642 r1.set_varying (integer_type_node);
2643 r1.set_nonzero_bits (INT (0xf));
2644 r0.union_ (r1);
2645 ASSERT_TRUE (r0.get_nonzero_bits () == 0xff);
2647 // Intersect of nonzero bits.
2648 r0 = range_int (0, 255);
2649 r0.set_nonzero_bits (INT (0xfe));
2650 r1.set_varying (integer_type_node);
2651 r1.set_nonzero_bits (INT (0xf0));
2652 r0.intersect (r1);
2653 ASSERT_TRUE (r0.get_nonzero_bits () == 0xf0);
2655 // Intersect where the mask of nonzero bits is implicit from the range.
2656 r0.set_varying (integer_type_node);
2657 r1 = range_int (0, 255);
2658 r0.intersect (r1);
2659 ASSERT_TRUE (r0.get_nonzero_bits () == 0xff);
2661 // The union of a mask of 0xff..ffff00 with a mask of 0xff spans the
2662 // entire domain, and makes the range a varying.
2663 r0.set_varying (integer_type_node);
2664 wide_int x = wi::shwi (0xff, TYPE_PRECISION (integer_type_node));
2665 x = wi::bit_not (x);
2666 r0.set_nonzero_bits (x); // 0xff..ff00
2667 r1.set_varying (integer_type_node);
2668 r1.set_nonzero_bits (INT (0xff));
2669 r0.union_ (r1);
2670 ASSERT_TRUE (r0.varying_p ());
2672 // Test that setting a nonzero bit of 1 does not pessimize the range.
2673 r0.set_zero (integer_type_node);
2674 r0.set_nonzero_bits (INT (1));
2675 ASSERT_TRUE (r0.zero_p ());
2678 // Build an frange from string endpoints.
2680 static inline frange
2681 frange_float (const char *lb, const char *ub, tree type = float_type_node)
2683 REAL_VALUE_TYPE min, max;
2684 gcc_assert (real_from_string (&min, lb) == 0);
2685 gcc_assert (real_from_string (&max, ub) == 0);
2686 return frange (type, min, max);
2689 static void
2690 range_tests_nan ()
2692 frange r0, r1;
2693 REAL_VALUE_TYPE q, r;
2694 bool signbit;
2696 // Equal ranges but with differing NAN bits are not equal.
2697 if (HONOR_NANS (float_type_node))
2699 r1 = frange_float ("10", "12");
2700 r0 = r1;
2701 ASSERT_EQ (r0, r1);
2702 r0.clear_nan ();
2703 ASSERT_NE (r0, r1);
2704 r0.update_nan ();
2705 ASSERT_EQ (r0, r1);
2707 // [10, 20] NAN ^ [30, 40] NAN = NAN.
2708 r0 = frange_float ("10", "20");
2709 r1 = frange_float ("30", "40");
2710 r0.intersect (r1);
2711 ASSERT_TRUE (r0.known_isnan ());
2713 // [3,5] U [5,10] NAN = ... NAN
2714 r0 = frange_float ("3", "5");
2715 r0.clear_nan ();
2716 r1 = frange_float ("5", "10");
2717 r0.union_ (r1);
2718 ASSERT_TRUE (r0.maybe_isnan ());
2721 // [5,6] U NAN = [5,6] NAN.
2722 r0 = frange_float ("5", "6");
2723 r0.clear_nan ();
2724 r1.set_nan (float_type_node);
2725 r0.union_ (r1);
2726 real_from_string (&q, "5");
2727 real_from_string (&r, "6");
2728 ASSERT_TRUE (real_identical (&q, &r0.lower_bound ()));
2729 ASSERT_TRUE (real_identical (&r, &r0.upper_bound ()));
2730 ASSERT_TRUE (r0.maybe_isnan ());
2732 // NAN U NAN = NAN
2733 r0.set_nan (float_type_node);
2734 r1.set_nan (float_type_node);
2735 r0.union_ (r1);
2736 ASSERT_TRUE (r0.known_isnan ());
2738 // [INF, INF] NAN ^ NAN = NAN
2739 r0.set_nan (float_type_node);
2740 r1 = frange_float ("+Inf", "+Inf");
2741 if (!HONOR_NANS (float_type_node))
2742 r1.update_nan ();
2743 r0.intersect (r1);
2744 ASSERT_TRUE (r0.known_isnan ());
2746 // NAN ^ NAN = NAN
2747 r0.set_nan (float_type_node);
2748 r1.set_nan (float_type_node);
2749 r0.intersect (r1);
2750 ASSERT_TRUE (r0.known_isnan ());
2752 // +NAN ^ -NAN = UNDEFINED
2753 r0.set_nan (float_type_node, false);
2754 r1.set_nan (float_type_node, true);
2755 r0.intersect (r1);
2756 ASSERT_TRUE (r0.undefined_p ());
2758 // VARYING ^ NAN = NAN.
2759 r0.set_nan (float_type_node);
2760 r1.set_varying (float_type_node);
2761 r0.intersect (r1);
2762 ASSERT_TRUE (r0.known_isnan ());
2764 // [3,4] ^ NAN = UNDEFINED.
2765 r0 = frange_float ("3", "4");
2766 r0.clear_nan ();
2767 r1.set_nan (float_type_node);
2768 r0.intersect (r1);
2769 ASSERT_TRUE (r0.undefined_p ());
2771 // [-3, 5] ^ NAN = UNDEFINED
2772 r0 = frange_float ("-3", "5");
2773 r0.clear_nan ();
2774 r1.set_nan (float_type_node);
2775 r0.intersect (r1);
2776 ASSERT_TRUE (r0.undefined_p ());
2778 // Setting the NAN bit to yes does not make us a known NAN.
2779 r0.set_varying (float_type_node);
2780 r0.update_nan ();
2781 ASSERT_FALSE (r0.known_isnan ());
2783 // NAN is in a VARYING.
2784 r0.set_varying (float_type_node);
2785 real_nan (&r, "", 1, TYPE_MODE (float_type_node));
2786 REAL_VALUE_TYPE nan = r;
2787 ASSERT_TRUE (r0.contains_p (nan));
2789 // -NAN is in a VARYING.
2790 r0.set_varying (float_type_node);
2791 q = real_value_negate (&r);
2792 REAL_VALUE_TYPE neg_nan = q;
2793 ASSERT_TRUE (r0.contains_p (neg_nan));
2795 // Clearing the NAN on a [] NAN is the empty set.
2796 r0.set_nan (float_type_node);
2797 r0.clear_nan ();
2798 ASSERT_TRUE (r0.undefined_p ());
2800 // [10,20] NAN ^ [21,25] NAN = [NAN]
2801 r0 = frange_float ("10", "20");
2802 r0.update_nan ();
2803 r1 = frange_float ("21", "25");
2804 r1.update_nan ();
2805 r0.intersect (r1);
2806 ASSERT_TRUE (r0.known_isnan ());
2808 // NAN U [5,6] should be [5,6] +-NAN.
2809 r0.set_nan (float_type_node);
2810 r1 = frange_float ("5", "6");
2811 r1.clear_nan ();
2812 r0.union_ (r1);
2813 real_from_string (&q, "5");
2814 real_from_string (&r, "6");
2815 ASSERT_TRUE (real_identical (&q, &r0.lower_bound ()));
2816 ASSERT_TRUE (real_identical (&r, &r0.upper_bound ()));
2817 ASSERT_TRUE (!r0.signbit_p (signbit));
2818 ASSERT_TRUE (r0.maybe_isnan ());
2820 // NAN U NAN shouldn't change anything.
2821 r0.set_nan (float_type_node);
2822 r1.set_nan (float_type_node);
2823 ASSERT_FALSE (r0.union_ (r1));
2825 // [3,5] NAN U NAN shouldn't change anything.
2826 r0 = frange_float ("3", "5");
2827 r1.set_nan (float_type_node);
2828 ASSERT_FALSE (r0.union_ (r1));
2830 // [3,5] U NAN *does* trigger a change.
2831 r0 = frange_float ("3", "5");
2832 r0.clear_nan ();
2833 r1.set_nan (float_type_node);
2834 ASSERT_TRUE (r0.union_ (r1));
2837 static void
2838 range_tests_signed_zeros ()
2840 REAL_VALUE_TYPE zero = dconst0;
2841 REAL_VALUE_TYPE neg_zero = zero;
2842 neg_zero.sign = 1;
2843 frange r0, r1;
2844 bool signbit;
2846 // [0,0] contains [0,0] but not [-0,-0] and vice versa.
2847 r0 = frange_float ("0.0", "0.0");
2848 r1 = frange_float ("-0.0", "-0.0");
2849 ASSERT_TRUE (r0.contains_p (zero));
2850 ASSERT_TRUE (!r0.contains_p (neg_zero));
2851 ASSERT_TRUE (r1.contains_p (neg_zero));
2852 ASSERT_TRUE (!r1.contains_p (zero));
2854 // Test contains_p() when we know the sign of the zero.
2855 r0 = frange_float ("0.0", "0.0");
2856 ASSERT_TRUE (r0.contains_p (zero));
2857 ASSERT_FALSE (r0.contains_p (neg_zero));
2858 r0 = frange_float ("-0.0", "-0.0");
2859 ASSERT_TRUE (r0.contains_p (neg_zero));
2860 ASSERT_FALSE (r0.contains_p (zero));
2862 r0 = frange_float ("-0.0", "0.0");
2863 ASSERT_TRUE (r0.contains_p (neg_zero));
2864 ASSERT_TRUE (r0.contains_p (zero));
2866 r0 = frange_float ("-3", "5");
2867 ASSERT_TRUE (r0.contains_p (neg_zero));
2868 ASSERT_TRUE (r0.contains_p (zero));
2870 // The intersection of zeros that differ in sign is a NAN (or
2871 // undefined if not honoring NANs).
2872 r0 = frange_float ("-0.0", "-0.0");
2873 r1 = frange_float ("0.0", "0.0");
2874 r0.intersect (r1);
2875 if (HONOR_NANS (float_type_node))
2876 ASSERT_TRUE (r0.known_isnan ());
2877 else
2878 ASSERT_TRUE (r0.undefined_p ());
2880 // The union of zeros that differ in sign is a zero with unknown sign.
2881 r0 = frange_float ("0.0", "0.0");
2882 r1 = frange_float ("-0.0", "-0.0");
2883 r0.union_ (r1);
2884 ASSERT_TRUE (r0.zero_p () && !r0.signbit_p (signbit));
2886 // [-0, +0] has an unknown sign.
2887 r0 = frange_float ("-0.0", "0.0");
2888 ASSERT_TRUE (r0.zero_p () && !r0.signbit_p (signbit));
2890 // [-0, +0] ^ [0, 0] is [0, 0]
2891 r0 = frange_float ("-0.0", "0.0");
2892 r1 = frange_float ("0.0", "0.0");
2893 r0.intersect (r1);
2894 ASSERT_TRUE (r0.zero_p ());
2896 r0 = frange_float ("+0", "5");
2897 r0.clear_nan ();
2898 ASSERT_TRUE (r0.signbit_p (signbit) && !signbit);
2900 r0 = frange_float ("-0", "5");
2901 r0.clear_nan ();
2902 ASSERT_TRUE (!r0.signbit_p (signbit));
2904 r0 = frange_float ("-0", "10");
2905 r1 = frange_float ("0", "5");
2906 r0.intersect (r1);
2907 ASSERT_TRUE (real_iszero (&r0.lower_bound (), false));
2909 r0 = frange_float ("-0", "5");
2910 r1 = frange_float ("0", "5");
2911 r0.union_ (r1);
2912 ASSERT_TRUE (real_iszero (&r0.lower_bound (), true));
2914 r0 = frange_float ("-5", "-0");
2915 r0.update_nan ();
2916 r1 = frange_float ("0", "0");
2917 r1.update_nan ();
2918 r0.intersect (r1);
2919 if (HONOR_NANS (float_type_node))
2920 ASSERT_TRUE (r0.known_isnan ());
2921 else
2922 ASSERT_TRUE (r0.undefined_p ());
2924 r0.set_nonnegative (float_type_node);
2925 if (HONOR_NANS (float_type_node))
2926 ASSERT_TRUE (r0.maybe_isnan ());
2928 // Numbers containing zero should have an unknown SIGNBIT.
2929 r0 = frange_float ("0", "10");
2930 r0.clear_nan ();
2931 ASSERT_TRUE (r0.signbit_p (signbit) && !signbit);
2934 static void
2935 range_tests_signbit ()
2937 frange r0, r1;
2938 bool signbit;
2940 // Negative numbers should have the SIGNBIT set.
2941 r0 = frange_float ("-5", "-1");
2942 r0.clear_nan ();
2943 ASSERT_TRUE (r0.signbit_p (signbit) && signbit);
2944 // Positive numbers should have the SIGNBIT clear.
2945 r0 = frange_float ("1", "10");
2946 r0.clear_nan ();
2947 ASSERT_TRUE (r0.signbit_p (signbit) && !signbit);
2948 // Numbers spanning both positive and negative should have an
2949 // unknown SIGNBIT.
2950 r0 = frange_float ("-10", "10");
2951 r0.clear_nan ();
2952 ASSERT_TRUE (!r0.signbit_p (signbit));
2953 r0.set_varying (float_type_node);
2954 ASSERT_TRUE (!r0.signbit_p (signbit));
2957 static void
2958 range_tests_floats ()
2960 frange r0, r1;
2962 if (HONOR_NANS (float_type_node))
2963 range_tests_nan ();
2964 range_tests_signbit ();
2966 if (HONOR_SIGNED_ZEROS (float_type_node))
2967 range_tests_signed_zeros ();
2969 // A range of [-INF,+INF] is actually VARYING if no other properties
2970 // are set.
2971 r0 = frange_float ("-Inf", "+Inf");
2972 ASSERT_TRUE (r0.varying_p ());
2973 // ...unless it has some special property...
2974 if (HONOR_NANS (r0.type ()))
2976 r0.clear_nan ();
2977 ASSERT_FALSE (r0.varying_p ());
2980 // For most architectures, where float and double are different
2981 // sizes, having the same endpoints does not necessarily mean the
2982 // ranges are equal.
2983 if (!types_compatible_p (float_type_node, double_type_node))
2985 r0 = frange_float ("3.0", "3.0", float_type_node);
2986 r1 = frange_float ("3.0", "3.0", double_type_node);
2987 ASSERT_NE (r0, r1);
2990 // [3,5] U [10,12] = [3,12].
2991 r0 = frange_float ("3", "5");
2992 r1 = frange_float ("10", "12");
2993 r0.union_ (r1);
2994 ASSERT_EQ (r0, frange_float ("3", "12"));
2996 // [5,10] U [4,8] = [4,10]
2997 r0 = frange_float ("5", "10");
2998 r1 = frange_float ("4", "8");
2999 r0.union_ (r1);
3000 ASSERT_EQ (r0, frange_float ("4", "10"));
3002 // [3,5] U [4,10] = [3,10]
3003 r0 = frange_float ("3", "5");
3004 r1 = frange_float ("4", "10");
3005 r0.union_ (r1);
3006 ASSERT_EQ (r0, frange_float ("3", "10"));
3008 // [4,10] U [5,11] = [4,11]
3009 r0 = frange_float ("4", "10");
3010 r1 = frange_float ("5", "11");
3011 r0.union_ (r1);
3012 ASSERT_EQ (r0, frange_float ("4", "11"));
3014 // [3,12] ^ [10,12] = [10,12].
3015 r0 = frange_float ("3", "12");
3016 r1 = frange_float ("10", "12");
3017 r0.intersect (r1);
3018 ASSERT_EQ (r0, frange_float ("10", "12"));
3020 // [10,12] ^ [11,11] = [11,11]
3021 r0 = frange_float ("10", "12");
3022 r1 = frange_float ("11", "11");
3023 r0.intersect (r1);
3024 ASSERT_EQ (r0, frange_float ("11", "11"));
3026 // [10,20] ^ [5,15] = [10,15]
3027 r0 = frange_float ("10", "20");
3028 r1 = frange_float ("5", "15");
3029 r0.intersect (r1);
3030 ASSERT_EQ (r0, frange_float ("10", "15"));
3032 // [10,20] ^ [15,25] = [15,20]
3033 r0 = frange_float ("10", "20");
3034 r1 = frange_float ("15", "25");
3035 r0.intersect (r1);
3036 ASSERT_EQ (r0, frange_float ("15", "20"));
3038 // [10,20] ^ [21,25] = []
3039 r0 = frange_float ("10", "20");
3040 r0.clear_nan ();
3041 r1 = frange_float ("21", "25");
3042 r1.clear_nan ();
3043 r0.intersect (r1);
3044 ASSERT_TRUE (r0.undefined_p ());
3046 if (HONOR_INFINITIES (float_type_node))
3048 // Make sure [-Inf, -Inf] doesn't get normalized.
3049 r0 = frange_float ("-Inf", "-Inf");
3050 ASSERT_TRUE (real_isinf (&r0.lower_bound (), true));
3051 ASSERT_TRUE (real_isinf (&r0.upper_bound (), true));
3054 // Test that reading back a global range yields the same result as
3055 // what we wrote into it.
3056 tree ssa = make_temp_ssa_name (float_type_node, NULL, "blah");
3057 r0.set_varying (float_type_node);
3058 r0.clear_nan ();
3059 set_range_info (ssa, r0);
3060 get_global_range_query ()->range_of_expr (r1, ssa);
3061 ASSERT_EQ (r0, r1);
3064 // Run floating range tests for various combinations of NAN and INF
3065 // support.
3067 static void
3068 range_tests_floats_various ()
3070 int save_finite_math_only = flag_finite_math_only;
3072 // Test -ffinite-math-only.
3073 flag_finite_math_only = 1;
3074 range_tests_floats ();
3075 // Test -fno-finite-math-only.
3076 flag_finite_math_only = 0;
3077 range_tests_floats ();
3079 flag_finite_math_only = save_finite_math_only;
3082 void
3083 range_tests ()
3085 range_tests_irange3 ();
3086 range_tests_int_range_max ();
3087 range_tests_strict_enum ();
3088 range_tests_nonzero_bits ();
3089 range_tests_floats_various ();
3090 range_tests_misc ();
3093 } // namespace selftest
3095 #endif // CHECKING_P