* tree-ssa-phiopt.c (conditional_replacement): Construct proper SSA
[official-gcc.git] / gcc / tree-ssa-phiopt.c
blob277e733960999b2c6aea275204d81bfabc41180f
1 /* Optimization of PHI nodes by converting them into straightline code.
2 Copyright (C) 2004, 2005 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the
8 Free Software Foundation; either version 2, or (at your option) any
9 later version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING. If not, write to the Free
18 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
19 02110-1301, USA. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "ggc.h"
26 #include "tree.h"
27 #include "rtl.h"
28 #include "flags.h"
29 #include "tm_p.h"
30 #include "basic-block.h"
31 #include "timevar.h"
32 #include "diagnostic.h"
33 #include "tree-flow.h"
34 #include "tree-pass.h"
35 #include "tree-dump.h"
36 #include "langhooks.h"
38 static void tree_ssa_phiopt (void);
39 static bool conditional_replacement (basic_block, basic_block,
40 edge, edge, tree, tree, tree);
41 static bool value_replacement (basic_block, basic_block,
42 edge, edge, tree, tree, tree);
43 static bool minmax_replacement (basic_block, basic_block,
44 edge, edge, tree, tree, tree);
45 static bool abs_replacement (basic_block, basic_block,
46 edge, edge, tree, tree, tree);
47 static void replace_phi_edge_with_variable (basic_block, edge, tree, tree);
48 static basic_block *blocks_in_phiopt_order (void);
50 /* This pass tries to replaces an if-then-else block with an
51 assignment. We have four kinds of transformations. Some of these
52 transformations are also performed by the ifcvt RTL optimizer.
54 Conditional Replacement
55 -----------------------
57 This transformation, implemented in conditional_replacement,
58 replaces
60 bb0:
61 if (cond) goto bb2; else goto bb1;
62 bb1:
63 bb2:
64 x = PHI <0 (bb1), 1 (bb0), ...>;
66 with
68 bb0:
69 x' = cond;
70 goto bb2;
71 bb2:
72 x = PHI <x' (bb0), ...>;
74 We remove bb1 as it becomes unreachable. This occurs often due to
75 gimplification of conditionals.
77 Value Replacement
78 -----------------
80 This transformation, implemented in value_replacement, replaces
82 bb0:
83 if (a != b) goto bb2; else goto bb1;
84 bb1:
85 bb2:
86 x = PHI <a (bb1), b (bb0), ...>;
88 with
90 bb0:
91 bb2:
92 x = PHI <b (bb0), ...>;
94 This opportunity can sometimes occur as a result of other
95 optimizations.
97 ABS Replacement
98 ---------------
100 This transformation, implemented in abs_replacement, replaces
102 bb0:
103 if (a >= 0) goto bb2; else goto bb1;
104 bb1:
105 x = -a;
106 bb2:
107 x = PHI <x (bb1), a (bb0), ...>;
109 with
111 bb0:
112 x' = ABS_EXPR< a >;
113 bb2:
114 x = PHI <x' (bb0), ...>;
116 MIN/MAX Replacement
117 -------------------
119 This transformation, minmax_replacement replaces
121 bb0:
122 if (a <= b) goto bb2; else goto bb1;
123 bb1:
124 bb2:
125 x = PHI <b (bb1), a (bb0), ...>;
127 with
129 bb0:
130 x' = MIN_EXPR (a, b)
131 bb2:
132 x = PHI <x' (bb0), ...>;
134 A similar transformation is done for MAX_EXPR. */
136 static void
137 tree_ssa_phiopt (void)
139 basic_block bb;
140 basic_block *bb_order;
141 unsigned n, i;
143 /* Search every basic block for COND_EXPR we may be able to optimize.
145 We walk the blocks in order that guarantees that a block with
146 a single predecessor is processed before the predecessor.
147 This ensures that we collapse inner ifs before visiting the
148 outer ones, and also that we do not try to visit a removed
149 block. */
150 bb_order = blocks_in_phiopt_order ();
151 n = n_basic_blocks;
153 for (i = 0; i < n; i++)
155 tree cond_expr;
156 tree phi;
157 basic_block bb1, bb2;
158 edge e1, e2;
159 tree arg0, arg1;
161 bb = bb_order[i];
163 cond_expr = last_stmt (bb);
164 /* Check to see if the last statement is a COND_EXPR. */
165 if (!cond_expr
166 || TREE_CODE (cond_expr) != COND_EXPR)
167 continue;
169 e1 = EDGE_SUCC (bb, 0);
170 bb1 = e1->dest;
171 e2 = EDGE_SUCC (bb, 1);
172 bb2 = e2->dest;
174 /* We cannot do the optimization on abnormal edges. */
175 if ((e1->flags & EDGE_ABNORMAL) != 0
176 || (e2->flags & EDGE_ABNORMAL) != 0)
177 continue;
179 /* If either bb1's succ or bb2 or bb2's succ is non NULL. */
180 if (EDGE_COUNT (bb1->succs) == 0
181 || bb2 == NULL
182 || EDGE_COUNT (bb2->succs) == 0)
183 continue;
185 /* Find the bb which is the fall through to the other. */
186 if (EDGE_SUCC (bb1, 0)->dest == bb2)
188 else if (EDGE_SUCC (bb2, 0)->dest == bb1)
190 basic_block bb_tmp = bb1;
191 edge e_tmp = e1;
192 bb1 = bb2;
193 bb2 = bb_tmp;
194 e1 = e2;
195 e2 = e_tmp;
197 else
198 continue;
200 e1 = EDGE_SUCC (bb1, 0);
202 /* Make sure that bb1 is just a fall through. */
203 if (!single_succ_p (bb1)
204 || (e1->flags & EDGE_FALLTHRU) == 0)
205 continue;
207 /* Also make sure that bb1 only have one predecessor and that it
208 is bb. */
209 if (!single_pred_p (bb1)
210 || single_pred (bb1) != bb)
211 continue;
213 phi = phi_nodes (bb2);
215 /* Check to make sure that there is only one PHI node.
216 TODO: we could do it with more than one iff the other PHI nodes
217 have the same elements for these two edges. */
218 if (!phi || PHI_CHAIN (phi) != NULL)
219 continue;
221 arg0 = PHI_ARG_DEF_TREE (phi, e1->dest_idx);
222 arg1 = PHI_ARG_DEF_TREE (phi, e2->dest_idx);
224 /* Something is wrong if we cannot find the arguments in the PHI
225 node. */
226 gcc_assert (arg0 != NULL && arg1 != NULL);
228 /* Do the replacement of conditional if it can be done. */
229 if (conditional_replacement (bb, bb1, e1, e2, phi, arg0, arg1))
231 else if (value_replacement (bb, bb1, e1, e2, phi, arg0, arg1))
233 else if (abs_replacement (bb, bb1, e1, e2, phi, arg0, arg1))
235 else
236 minmax_replacement (bb, bb1, e1, e2, phi, arg0, arg1);
239 free (bb_order);
242 /* Returns the list of basic blocks in the function in an order that guarantees
243 that if a block X has just a single predecessor Y, then Y is after X in the
244 ordering. */
246 static basic_block *
247 blocks_in_phiopt_order (void)
249 basic_block x, y;
250 basic_block *order = xmalloc (sizeof (basic_block) * n_basic_blocks);
251 unsigned n = n_basic_blocks, np, i;
252 sbitmap visited = sbitmap_alloc (last_basic_block + 2);
254 #define MARK_VISITED(BB) (SET_BIT (visited, (BB)->index + 2))
255 #define VISITED_P(BB) (TEST_BIT (visited, (BB)->index + 2))
257 sbitmap_zero (visited);
259 MARK_VISITED (ENTRY_BLOCK_PTR);
260 FOR_EACH_BB (x)
262 if (VISITED_P (x))
263 continue;
265 /* Walk the predecessors of x as long as they have precisely one
266 predecessor and add them to the list, so that they get stored
267 after x. */
268 for (y = x, np = 1;
269 single_pred_p (y) && !VISITED_P (single_pred (y));
270 y = single_pred (y))
271 np++;
272 for (y = x, i = n - np;
273 single_pred_p (y) && !VISITED_P (single_pred (y));
274 y = single_pred (y), i++)
276 order[i] = y;
277 MARK_VISITED (y);
279 order[i] = y;
280 MARK_VISITED (y);
282 gcc_assert (i == n - 1);
283 n -= np;
286 sbitmap_free (visited);
287 gcc_assert (n == 0);
288 return order;
290 #undef MARK_VISITED
291 #undef VISITED_P
294 /* Return TRUE if block BB has no executable statements, otherwise return
295 FALSE. */
296 bool
297 empty_block_p (basic_block bb)
299 block_stmt_iterator bsi;
301 /* BB must have no executable statements. */
302 bsi = bsi_start (bb);
303 while (!bsi_end_p (bsi)
304 && (TREE_CODE (bsi_stmt (bsi)) == LABEL_EXPR
305 || IS_EMPTY_STMT (bsi_stmt (bsi))))
306 bsi_next (&bsi);
308 if (!bsi_end_p (bsi))
309 return false;
311 return true;
314 /* Replace PHI node element whose edge is E in block BB with variable NEW.
315 Remove the edge from COND_BLOCK which does not lead to BB (COND_BLOCK
316 is known to have two edges, one of which must reach BB). */
318 static void
319 replace_phi_edge_with_variable (basic_block cond_block,
320 edge e, tree phi, tree new)
322 basic_block bb = bb_for_stmt (phi);
323 basic_block block_to_remove;
324 block_stmt_iterator bsi;
326 /* Change the PHI argument to new. */
327 SET_USE (PHI_ARG_DEF_PTR (phi, e->dest_idx), new);
329 /* Remove the empty basic block. */
330 if (EDGE_SUCC (cond_block, 0)->dest == bb)
332 EDGE_SUCC (cond_block, 0)->flags |= EDGE_FALLTHRU;
333 EDGE_SUCC (cond_block, 0)->flags &= ~(EDGE_TRUE_VALUE | EDGE_FALSE_VALUE);
334 EDGE_SUCC (cond_block, 0)->probability = REG_BR_PROB_BASE;
335 EDGE_SUCC (cond_block, 0)->count += EDGE_SUCC (cond_block, 1)->count;
337 block_to_remove = EDGE_SUCC (cond_block, 1)->dest;
339 else
341 EDGE_SUCC (cond_block, 1)->flags |= EDGE_FALLTHRU;
342 EDGE_SUCC (cond_block, 1)->flags
343 &= ~(EDGE_TRUE_VALUE | EDGE_FALSE_VALUE);
344 EDGE_SUCC (cond_block, 1)->probability = REG_BR_PROB_BASE;
345 EDGE_SUCC (cond_block, 1)->count += EDGE_SUCC (cond_block, 0)->count;
347 block_to_remove = EDGE_SUCC (cond_block, 0)->dest;
349 delete_basic_block (block_to_remove);
351 /* Eliminate the COND_EXPR at the end of COND_BLOCK. */
352 bsi = bsi_last (cond_block);
353 bsi_remove (&bsi);
355 if (dump_file && (dump_flags & TDF_DETAILS))
356 fprintf (dump_file,
357 "COND_EXPR in block %d and PHI in block %d converted to straightline code.\n",
358 cond_block->index,
359 bb->index);
362 /* The function conditional_replacement does the main work of doing the
363 conditional replacement. Return true if the replacement is done.
364 Otherwise return false.
365 BB is the basic block where the replacement is going to be done on. ARG0
366 is argument 0 from PHI. Likewise for ARG1. */
368 static bool
369 conditional_replacement (basic_block cond_bb, basic_block middle_bb,
370 edge e0, edge e1, tree phi,
371 tree arg0, tree arg1)
373 tree result;
374 tree old_result = NULL;
375 tree new, cond;
376 block_stmt_iterator bsi;
377 edge true_edge, false_edge;
378 tree new_var = NULL;
379 tree new_var1;
381 /* The PHI arguments have the constants 0 and 1, then convert
382 it to the conditional. */
383 if ((integer_zerop (arg0) && integer_onep (arg1))
384 || (integer_zerop (arg1) && integer_onep (arg0)))
386 else
387 return false;
389 if (!empty_block_p (middle_bb))
390 return false;
392 /* If the condition is not a naked SSA_NAME and its type does not
393 match the type of the result, then we have to create a new
394 variable to optimize this case as it would likely create
395 non-gimple code when the condition was converted to the
396 result's type. */
397 cond = COND_EXPR_COND (last_stmt (cond_bb));
398 result = PHI_RESULT (phi);
399 if (TREE_CODE (cond) != SSA_NAME
400 && !lang_hooks.types_compatible_p (TREE_TYPE (cond), TREE_TYPE (result)))
402 tree tmp;
404 if (!COMPARISON_CLASS_P (cond))
405 return false;
407 tmp = create_tmp_var (TREE_TYPE (cond), NULL);
408 add_referenced_tmp_var (tmp);
409 new_var = make_ssa_name (tmp, NULL);
410 old_result = cond;
411 cond = new_var;
414 /* If the condition was a naked SSA_NAME and the type is not the
415 same as the type of the result, then convert the type of the
416 condition. */
417 if (!lang_hooks.types_compatible_p (TREE_TYPE (cond), TREE_TYPE (result)))
418 cond = fold_convert (TREE_TYPE (result), cond);
420 /* We need to know which is the true edge and which is the false
421 edge so that we know when to invert the condition below. */
422 extract_true_false_edges_from_block (cond_bb, &true_edge, &false_edge);
424 /* Insert our new statement at the end of conditional block before the
425 COND_EXPR. */
426 bsi = bsi_last (cond_bb);
427 bsi_insert_before (&bsi, build_empty_stmt (), BSI_NEW_STMT);
429 if (old_result)
431 tree new1;
433 new1 = build2 (TREE_CODE (old_result), TREE_TYPE (old_result),
434 TREE_OPERAND (old_result, 0),
435 TREE_OPERAND (old_result, 1));
437 new1 = build2 (MODIFY_EXPR, TREE_TYPE (old_result), new_var, new1);
438 SSA_NAME_DEF_STMT (new_var) = new1;
440 bsi_insert_after (&bsi, new1, BSI_NEW_STMT);
443 new_var1 = duplicate_ssa_name (PHI_RESULT (phi), NULL);
446 /* At this point we know we have a COND_EXPR with two successors.
447 One successor is BB, the other successor is an empty block which
448 falls through into BB.
450 There is a single PHI node at the join point (BB) and its arguments
451 are constants (0, 1).
453 So, given the condition COND, and the two PHI arguments, we can
454 rewrite this PHI into non-branching code:
456 dest = (COND) or dest = COND'
458 We use the condition as-is if the argument associated with the
459 true edge has the value one or the argument associated with the
460 false edge as the value zero. Note that those conditions are not
461 the same since only one of the outgoing edges from the COND_EXPR
462 will directly reach BB and thus be associated with an argument. */
463 if ((e0 == true_edge && integer_onep (arg0))
464 || (e0 == false_edge && integer_zerop (arg0))
465 || (e1 == true_edge && integer_onep (arg1))
466 || (e1 == false_edge && integer_zerop (arg1)))
468 new = build2 (MODIFY_EXPR, TREE_TYPE (new_var1), new_var1, cond);
470 else
472 tree cond1 = invert_truthvalue (cond);
474 cond = cond1;
476 /* If what we get back is a conditional expression, there is no
477 way that it can be gimple. */
478 if (TREE_CODE (cond) == COND_EXPR)
480 release_ssa_name (new_var1);
481 return false;
484 /* If COND is not something we can expect to be reducible to a GIMPLE
485 condition, return early. */
486 if (is_gimple_cast (cond))
487 cond1 = TREE_OPERAND (cond, 0);
488 if (TREE_CODE (cond1) == TRUTH_NOT_EXPR
489 && !is_gimple_val (TREE_OPERAND (cond1, 0)))
491 release_ssa_name (new_var1);
492 return false;
495 /* If what we get back is not gimple try to create it as gimple by
496 using a temporary variable. */
497 if (is_gimple_cast (cond)
498 && !is_gimple_val (TREE_OPERAND (cond, 0)))
500 tree op0, tmp, cond_tmp;
502 /* Only "real" casts are OK here, not everything that is
503 acceptable to is_gimple_cast. Make sure we don't do
504 anything stupid here. */
505 gcc_assert (TREE_CODE (cond) == NOP_EXPR
506 || TREE_CODE (cond) == CONVERT_EXPR);
508 op0 = TREE_OPERAND (cond, 0);
509 tmp = create_tmp_var (TREE_TYPE (op0), NULL);
510 add_referenced_tmp_var (tmp);
511 cond_tmp = make_ssa_name (tmp, NULL);
512 new = build2 (MODIFY_EXPR, TREE_TYPE (cond_tmp), cond_tmp, op0);
513 SSA_NAME_DEF_STMT (cond_tmp) = new;
515 bsi_insert_after (&bsi, new, BSI_NEW_STMT);
516 cond = fold_convert (TREE_TYPE (result), cond_tmp);
519 new = build2 (MODIFY_EXPR, TREE_TYPE (new_var1), new_var1, cond);
522 bsi_insert_after (&bsi, new, BSI_NEW_STMT);
524 SSA_NAME_DEF_STMT (new_var1) = new;
526 replace_phi_edge_with_variable (cond_bb, e1, phi, new_var1);
528 /* Note that we optimized this PHI. */
529 return true;
532 /* The function value_replacement does the main work of doing the value
533 replacement. Return true if the replacement is done. Otherwise return
534 false.
535 BB is the basic block where the replacement is going to be done on. ARG0
536 is argument 0 from the PHI. Likewise for ARG1. */
538 static bool
539 value_replacement (basic_block cond_bb, basic_block middle_bb,
540 edge e0, edge e1, tree phi,
541 tree arg0, tree arg1)
543 tree cond;
544 edge true_edge, false_edge;
546 /* If the type says honor signed zeros we cannot do this
547 optimization. */
548 if (HONOR_SIGNED_ZEROS (TYPE_MODE (TREE_TYPE (arg1))))
549 return false;
551 if (!empty_block_p (middle_bb))
552 return false;
554 cond = COND_EXPR_COND (last_stmt (cond_bb));
556 /* This transformation is only valid for equality comparisons. */
557 if (TREE_CODE (cond) != NE_EXPR && TREE_CODE (cond) != EQ_EXPR)
558 return false;
560 /* We need to know which is the true edge and which is the false
561 edge so that we know if have abs or negative abs. */
562 extract_true_false_edges_from_block (cond_bb, &true_edge, &false_edge);
564 /* At this point we know we have a COND_EXPR with two successors.
565 One successor is BB, the other successor is an empty block which
566 falls through into BB.
568 The condition for the COND_EXPR is known to be NE_EXPR or EQ_EXPR.
570 There is a single PHI node at the join point (BB) with two arguments.
572 We now need to verify that the two arguments in the PHI node match
573 the two arguments to the equality comparison. */
575 if ((operand_equal_for_phi_arg_p (arg0, TREE_OPERAND (cond, 0))
576 && operand_equal_for_phi_arg_p (arg1, TREE_OPERAND (cond, 1)))
577 || (operand_equal_for_phi_arg_p (arg1, TREE_OPERAND (cond, 0))
578 && operand_equal_for_phi_arg_p (arg0, TREE_OPERAND (cond, 1))))
580 edge e;
581 tree arg;
583 /* For NE_EXPR, we want to build an assignment result = arg where
584 arg is the PHI argument associated with the true edge. For
585 EQ_EXPR we want the PHI argument associated with the false edge. */
586 e = (TREE_CODE (cond) == NE_EXPR ? true_edge : false_edge);
588 /* Unfortunately, E may not reach BB (it may instead have gone to
589 OTHER_BLOCK). If that is the case, then we want the single outgoing
590 edge from OTHER_BLOCK which reaches BB and represents the desired
591 path from COND_BLOCK. */
592 if (e->dest == middle_bb)
593 e = single_succ_edge (e->dest);
595 /* Now we know the incoming edge to BB that has the argument for the
596 RHS of our new assignment statement. */
597 if (e0 == e)
598 arg = arg0;
599 else
600 arg = arg1;
602 replace_phi_edge_with_variable (cond_bb, e1, phi, arg);
604 /* Note that we optimized this PHI. */
605 return true;
607 return false;
610 /* The function minmax_replacement does the main work of doing the minmax
611 replacement. Return true if the replacement is done. Otherwise return
612 false.
613 BB is the basic block where the replacement is going to be done on. ARG0
614 is argument 0 from the PHI. Likewise for ARG1. */
616 static bool
617 minmax_replacement (basic_block cond_bb, basic_block middle_bb,
618 edge e0, edge e1, tree phi,
619 tree arg0, tree arg1)
621 tree result, type;
622 tree cond, new;
623 edge true_edge, false_edge;
624 enum tree_code cmp, minmax, ass_code;
625 tree smaller, larger, arg_true, arg_false;
626 block_stmt_iterator bsi, bsi_from;
628 type = TREE_TYPE (PHI_RESULT (phi));
630 /* The optimization may be unsafe due to NaNs. */
631 if (HONOR_NANS (TYPE_MODE (type)))
632 return false;
634 cond = COND_EXPR_COND (last_stmt (cond_bb));
635 cmp = TREE_CODE (cond);
636 result = PHI_RESULT (phi);
638 /* This transformation is only valid for order comparisons. Record which
639 operand is smaller/larger if the result of the comparison is true. */
640 if (cmp == LT_EXPR || cmp == LE_EXPR)
642 smaller = TREE_OPERAND (cond, 0);
643 larger = TREE_OPERAND (cond, 1);
645 else if (cmp == GT_EXPR || cmp == GE_EXPR)
647 smaller = TREE_OPERAND (cond, 1);
648 larger = TREE_OPERAND (cond, 0);
650 else
651 return false;
653 /* We need to know which is the true edge and which is the false
654 edge so that we know if have abs or negative abs. */
655 extract_true_false_edges_from_block (cond_bb, &true_edge, &false_edge);
657 /* Forward the edges over the middle basic block. */
658 if (true_edge->dest == middle_bb)
659 true_edge = EDGE_SUCC (true_edge->dest, 0);
660 if (false_edge->dest == middle_bb)
661 false_edge = EDGE_SUCC (false_edge->dest, 0);
663 if (true_edge == e0)
665 gcc_assert (false_edge == e1);
666 arg_true = arg0;
667 arg_false = arg1;
669 else
671 gcc_assert (false_edge == e0);
672 gcc_assert (true_edge == e1);
673 arg_true = arg1;
674 arg_false = arg0;
677 if (empty_block_p (middle_bb))
679 if (operand_equal_for_phi_arg_p (arg_true, smaller)
680 && operand_equal_for_phi_arg_p (arg_false, larger))
682 /* Case
684 if (smaller < larger)
685 rslt = smaller;
686 else
687 rslt = larger; */
688 minmax = MIN_EXPR;
690 else if (operand_equal_for_phi_arg_p (arg_false, smaller)
691 && operand_equal_for_phi_arg_p (arg_true, larger))
692 minmax = MAX_EXPR;
693 else
694 return false;
696 else
698 /* Recognize the following case, assuming d <= u:
700 if (a <= u)
701 b = MAX (a, d);
702 x = PHI <b, u>
704 This is equivalent to
706 b = MAX (a, d);
707 x = MIN (b, u); */
709 tree assign = last_and_only_stmt (middle_bb);
710 tree lhs, rhs, op0, op1, bound;
712 if (!assign
713 || TREE_CODE (assign) != MODIFY_EXPR)
714 return false;
716 lhs = TREE_OPERAND (assign, 0);
717 rhs = TREE_OPERAND (assign, 1);
718 ass_code = TREE_CODE (rhs);
719 if (ass_code != MAX_EXPR && ass_code != MIN_EXPR)
720 return false;
721 op0 = TREE_OPERAND (rhs, 0);
722 op1 = TREE_OPERAND (rhs, 1);
724 if (true_edge->src == middle_bb)
726 /* We got here if the condition is true, i.e., SMALLER < LARGER. */
727 if (!operand_equal_for_phi_arg_p (lhs, arg_true))
728 return false;
730 if (operand_equal_for_phi_arg_p (arg_false, larger))
732 /* Case
734 if (smaller < larger)
736 r' = MAX_EXPR (smaller, bound)
738 r = PHI <r', larger> --> to be turned to MIN_EXPR. */
739 if (ass_code != MAX_EXPR)
740 return false;
742 minmax = MIN_EXPR;
743 if (operand_equal_for_phi_arg_p (op0, smaller))
744 bound = op1;
745 else if (operand_equal_for_phi_arg_p (op1, smaller))
746 bound = op0;
747 else
748 return false;
750 /* We need BOUND <= LARGER. */
751 if (!integer_nonzerop (fold_build2 (LE_EXPR, boolean_type_node,
752 bound, larger)))
753 return false;
755 else if (operand_equal_for_phi_arg_p (arg_false, smaller))
757 /* Case
759 if (smaller < larger)
761 r' = MIN_EXPR (larger, bound)
763 r = PHI <r', smaller> --> to be turned to MAX_EXPR. */
764 if (ass_code != MIN_EXPR)
765 return false;
767 minmax = MAX_EXPR;
768 if (operand_equal_for_phi_arg_p (op0, larger))
769 bound = op1;
770 else if (operand_equal_for_phi_arg_p (op1, larger))
771 bound = op0;
772 else
773 return false;
775 /* We need BOUND >= SMALLER. */
776 if (!integer_nonzerop (fold_build2 (GE_EXPR, boolean_type_node,
777 bound, smaller)))
778 return false;
780 else
781 return false;
783 else
785 /* We got here if the condition is false, i.e., SMALLER > LARGER. */
786 if (!operand_equal_for_phi_arg_p (lhs, arg_false))
787 return false;
789 if (operand_equal_for_phi_arg_p (arg_true, larger))
791 /* Case
793 if (smaller > larger)
795 r' = MIN_EXPR (smaller, bound)
797 r = PHI <r', larger> --> to be turned to MAX_EXPR. */
798 if (ass_code != MIN_EXPR)
799 return false;
801 minmax = MAX_EXPR;
802 if (operand_equal_for_phi_arg_p (op0, smaller))
803 bound = op1;
804 else if (operand_equal_for_phi_arg_p (op1, smaller))
805 bound = op0;
806 else
807 return false;
809 /* We need BOUND >= LARGER. */
810 if (!integer_nonzerop (fold_build2 (GE_EXPR, boolean_type_node,
811 bound, larger)))
812 return false;
814 else if (operand_equal_for_phi_arg_p (arg_true, smaller))
816 /* Case
818 if (smaller > larger)
820 r' = MAX_EXPR (larger, bound)
822 r = PHI <r', smaller> --> to be turned to MIN_EXPR. */
823 if (ass_code != MAX_EXPR)
824 return false;
826 minmax = MIN_EXPR;
827 if (operand_equal_for_phi_arg_p (op0, larger))
828 bound = op1;
829 else if (operand_equal_for_phi_arg_p (op1, larger))
830 bound = op0;
831 else
832 return false;
834 /* We need BOUND <= SMALLER. */
835 if (!integer_nonzerop (fold_build2 (LE_EXPR, boolean_type_node,
836 bound, smaller)))
837 return false;
839 else
840 return false;
843 /* Move the statement from the middle block. */
844 bsi = bsi_last (cond_bb);
845 bsi_from = bsi_last (middle_bb);
846 bsi_move_before (&bsi_from, &bsi);
849 /* Emit the statement to compute min/max. */
850 result = duplicate_ssa_name (PHI_RESULT (phi), NULL);
851 new = build2 (MODIFY_EXPR, type, result,
852 build2 (minmax, type, arg0, arg1));
853 SSA_NAME_DEF_STMT (result) = new;
854 bsi = bsi_last (cond_bb);
855 bsi_insert_before (&bsi, new, BSI_NEW_STMT);
857 replace_phi_edge_with_variable (cond_bb, e1, phi, result);
858 return true;
861 /* The function absolute_replacement does the main work of doing the absolute
862 replacement. Return true if the replacement is done. Otherwise return
863 false.
864 bb is the basic block where the replacement is going to be done on. arg0
865 is argument 0 from the phi. Likewise for arg1. */
867 static bool
868 abs_replacement (basic_block cond_bb, basic_block middle_bb,
869 edge e0 ATTRIBUTE_UNUSED, edge e1,
870 tree phi, tree arg0, tree arg1)
872 tree result;
873 tree new, cond;
874 block_stmt_iterator bsi;
875 edge true_edge, false_edge;
876 tree assign;
877 edge e;
878 tree rhs, lhs;
879 bool negate;
880 enum tree_code cond_code;
882 /* If the type says honor signed zeros we cannot do this
883 optimization. */
884 if (HONOR_SIGNED_ZEROS (TYPE_MODE (TREE_TYPE (arg1))))
885 return false;
887 /* OTHER_BLOCK must have only one executable statement which must have the
888 form arg0 = -arg1 or arg1 = -arg0. */
890 assign = last_and_only_stmt (middle_bb);
891 /* If we did not find the proper negation assignment, then we can not
892 optimize. */
893 if (assign == NULL)
894 return false;
896 /* If we got here, then we have found the only executable statement
897 in OTHER_BLOCK. If it is anything other than arg = -arg1 or
898 arg1 = -arg0, then we can not optimize. */
899 if (TREE_CODE (assign) != MODIFY_EXPR)
900 return false;
902 lhs = TREE_OPERAND (assign, 0);
903 rhs = TREE_OPERAND (assign, 1);
905 if (TREE_CODE (rhs) != NEGATE_EXPR)
906 return false;
908 rhs = TREE_OPERAND (rhs, 0);
910 /* The assignment has to be arg0 = -arg1 or arg1 = -arg0. */
911 if (!(lhs == arg0 && rhs == arg1)
912 && !(lhs == arg1 && rhs == arg0))
913 return false;
915 cond = COND_EXPR_COND (last_stmt (cond_bb));
916 result = PHI_RESULT (phi);
918 /* Only relationals comparing arg[01] against zero are interesting. */
919 cond_code = TREE_CODE (cond);
920 if (cond_code != GT_EXPR && cond_code != GE_EXPR
921 && cond_code != LT_EXPR && cond_code != LE_EXPR)
922 return false;
924 /* Make sure the conditional is arg[01] OP y. */
925 if (TREE_OPERAND (cond, 0) != rhs)
926 return false;
928 if (FLOAT_TYPE_P (TREE_TYPE (TREE_OPERAND (cond, 1)))
929 ? real_zerop (TREE_OPERAND (cond, 1))
930 : integer_zerop (TREE_OPERAND (cond, 1)))
932 else
933 return false;
935 /* We need to know which is the true edge and which is the false
936 edge so that we know if have abs or negative abs. */
937 extract_true_false_edges_from_block (cond_bb, &true_edge, &false_edge);
939 /* For GT_EXPR/GE_EXPR, if the true edge goes to OTHER_BLOCK, then we
940 will need to negate the result. Similarly for LT_EXPR/LE_EXPR if
941 the false edge goes to OTHER_BLOCK. */
942 if (cond_code == GT_EXPR || cond_code == GE_EXPR)
943 e = true_edge;
944 else
945 e = false_edge;
947 if (e->dest == middle_bb)
948 negate = true;
949 else
950 negate = false;
952 result = duplicate_ssa_name (result, NULL);
954 if (negate)
956 tree tmp = create_tmp_var (TREE_TYPE (result), NULL);
957 add_referenced_tmp_var (tmp);
958 lhs = make_ssa_name (tmp, NULL);
960 else
961 lhs = result;
963 /* Build the modify expression with abs expression. */
964 new = build2 (MODIFY_EXPR, TREE_TYPE (lhs),
965 lhs, build1 (ABS_EXPR, TREE_TYPE (lhs), rhs));
966 SSA_NAME_DEF_STMT (lhs) = new;
968 bsi = bsi_last (cond_bb);
969 bsi_insert_before (&bsi, new, BSI_NEW_STMT);
971 if (negate)
973 /* Get the right BSI. We want to insert after the recently
974 added ABS_EXPR statement (which we know is the first statement
975 in the block. */
976 new = build2 (MODIFY_EXPR, TREE_TYPE (result),
977 result, build1 (NEGATE_EXPR, TREE_TYPE (lhs), lhs));
978 SSA_NAME_DEF_STMT (result) = new;
980 bsi_insert_after (&bsi, new, BSI_NEW_STMT);
983 replace_phi_edge_with_variable (cond_bb, e1, phi, result);
985 /* Note that we optimized this PHI. */
986 return true;
990 /* Always do these optimizations if we have SSA
991 trees to work on. */
992 static bool
993 gate_phiopt (void)
995 return 1;
998 struct tree_opt_pass pass_phiopt =
1000 "phiopt", /* name */
1001 gate_phiopt, /* gate */
1002 tree_ssa_phiopt, /* execute */
1003 NULL, /* sub */
1004 NULL, /* next */
1005 0, /* static_pass_number */
1006 TV_TREE_PHIOPT, /* tv_id */
1007 PROP_cfg | PROP_ssa | PROP_alias, /* properties_required */
1008 0, /* properties_provided */
1009 0, /* properties_destroyed */
1010 0, /* todo_flags_start */
1011 TODO_cleanup_cfg
1012 | TODO_dump_func
1013 | TODO_ggc_collect
1014 | TODO_verify_ssa
1015 | TODO_verify_flow
1016 | TODO_verify_stmts, /* todo_flags_finish */
1017 0 /* letter */