Fix GNU coding style for G_.
[official-gcc.git] / libsanitizer / sanitizer_common / sanitizer_allocator_secondary.h
blob9a9b83a884f0a616bb26bc37523f50fe647790bf
1 //===-- sanitizer_allocator_secondary.h -------------------------*- C++ -*-===//
2 //
3 // This file is distributed under the University of Illinois Open Source
4 // License. See LICENSE.TXT for details.
5 //
6 //===----------------------------------------------------------------------===//
7 //
8 // Part of the Sanitizer Allocator.
9 //
10 //===----------------------------------------------------------------------===//
11 #ifndef SANITIZER_ALLOCATOR_H
12 #error This file must be included inside sanitizer_allocator.h
13 #endif
15 // This class can (de)allocate only large chunks of memory using mmap/unmap.
16 // The main purpose of this allocator is to cover large and rare allocation
17 // sizes not covered by more efficient allocators (e.g. SizeClassAllocator64).
18 template <class MapUnmapCallback = NoOpMapUnmapCallback,
19 class FailureHandlerT = ReturnNullOrDieOnFailure>
20 class LargeMmapAllocator {
21 public:
22 typedef FailureHandlerT FailureHandler;
24 void InitLinkerInitialized() {
25 page_size_ = GetPageSizeCached();
28 void Init() {
29 internal_memset(this, 0, sizeof(*this));
30 InitLinkerInitialized();
33 void *Allocate(AllocatorStats *stat, uptr size, uptr alignment) {
34 CHECK(IsPowerOfTwo(alignment));
35 uptr map_size = RoundUpMapSize(size);
36 if (alignment > page_size_)
37 map_size += alignment;
38 // Overflow.
39 if (map_size < size)
40 return FailureHandler::OnBadRequest();
41 uptr map_beg = reinterpret_cast<uptr>(
42 MmapOrDieOnFatalError(map_size, "LargeMmapAllocator"));
43 if (!map_beg)
44 return FailureHandler::OnOOM();
45 CHECK(IsAligned(map_beg, page_size_));
46 MapUnmapCallback().OnMap(map_beg, map_size);
47 uptr map_end = map_beg + map_size;
48 uptr res = map_beg + page_size_;
49 if (res & (alignment - 1)) // Align.
50 res += alignment - (res & (alignment - 1));
51 CHECK(IsAligned(res, alignment));
52 CHECK(IsAligned(res, page_size_));
53 CHECK_GE(res + size, map_beg);
54 CHECK_LE(res + size, map_end);
55 Header *h = GetHeader(res);
56 h->size = size;
57 h->map_beg = map_beg;
58 h->map_size = map_size;
59 uptr size_log = MostSignificantSetBitIndex(map_size);
60 CHECK_LT(size_log, ARRAY_SIZE(stats.by_size_log));
62 SpinMutexLock l(&mutex_);
63 uptr idx = n_chunks_++;
64 chunks_sorted_ = false;
65 CHECK_LT(idx, kMaxNumChunks);
66 h->chunk_idx = idx;
67 chunks_[idx] = h;
68 stats.n_allocs++;
69 stats.currently_allocated += map_size;
70 stats.max_allocated = Max(stats.max_allocated, stats.currently_allocated);
71 stats.by_size_log[size_log]++;
72 stat->Add(AllocatorStatAllocated, map_size);
73 stat->Add(AllocatorStatMapped, map_size);
75 return reinterpret_cast<void*>(res);
78 void Deallocate(AllocatorStats *stat, void *p) {
79 Header *h = GetHeader(p);
81 SpinMutexLock l(&mutex_);
82 uptr idx = h->chunk_idx;
83 CHECK_EQ(chunks_[idx], h);
84 CHECK_LT(idx, n_chunks_);
85 chunks_[idx] = chunks_[n_chunks_ - 1];
86 chunks_[idx]->chunk_idx = idx;
87 n_chunks_--;
88 chunks_sorted_ = false;
89 stats.n_frees++;
90 stats.currently_allocated -= h->map_size;
91 stat->Sub(AllocatorStatAllocated, h->map_size);
92 stat->Sub(AllocatorStatMapped, h->map_size);
94 MapUnmapCallback().OnUnmap(h->map_beg, h->map_size);
95 UnmapOrDie(reinterpret_cast<void*>(h->map_beg), h->map_size);
98 uptr TotalMemoryUsed() {
99 SpinMutexLock l(&mutex_);
100 uptr res = 0;
101 for (uptr i = 0; i < n_chunks_; i++) {
102 Header *h = chunks_[i];
103 CHECK_EQ(h->chunk_idx, i);
104 res += RoundUpMapSize(h->size);
106 return res;
109 bool PointerIsMine(const void *p) {
110 return GetBlockBegin(p) != nullptr;
113 uptr GetActuallyAllocatedSize(void *p) {
114 return RoundUpTo(GetHeader(p)->size, page_size_);
117 // At least page_size_/2 metadata bytes is available.
118 void *GetMetaData(const void *p) {
119 // Too slow: CHECK_EQ(p, GetBlockBegin(p));
120 if (!IsAligned(reinterpret_cast<uptr>(p), page_size_)) {
121 Printf("%s: bad pointer %p\n", SanitizerToolName, p);
122 CHECK(IsAligned(reinterpret_cast<uptr>(p), page_size_));
124 return GetHeader(p) + 1;
127 void *GetBlockBegin(const void *ptr) {
128 uptr p = reinterpret_cast<uptr>(ptr);
129 SpinMutexLock l(&mutex_);
130 uptr nearest_chunk = 0;
131 // Cache-friendly linear search.
132 for (uptr i = 0; i < n_chunks_; i++) {
133 uptr ch = reinterpret_cast<uptr>(chunks_[i]);
134 if (p < ch) continue; // p is at left to this chunk, skip it.
135 if (p - ch < p - nearest_chunk)
136 nearest_chunk = ch;
138 if (!nearest_chunk)
139 return nullptr;
140 Header *h = reinterpret_cast<Header *>(nearest_chunk);
141 CHECK_GE(nearest_chunk, h->map_beg);
142 CHECK_LT(nearest_chunk, h->map_beg + h->map_size);
143 CHECK_LE(nearest_chunk, p);
144 if (h->map_beg + h->map_size <= p)
145 return nullptr;
146 return GetUser(h);
149 void EnsureSortedChunks() {
150 if (chunks_sorted_) return;
151 SortArray(reinterpret_cast<uptr*>(chunks_), n_chunks_);
152 for (uptr i = 0; i < n_chunks_; i++)
153 chunks_[i]->chunk_idx = i;
154 chunks_sorted_ = true;
157 // This function does the same as GetBlockBegin, but is much faster.
158 // Must be called with the allocator locked.
159 void *GetBlockBeginFastLocked(void *ptr) {
160 mutex_.CheckLocked();
161 uptr p = reinterpret_cast<uptr>(ptr);
162 uptr n = n_chunks_;
163 if (!n) return nullptr;
164 EnsureSortedChunks();
165 auto min_mmap_ = reinterpret_cast<uptr>(chunks_[0]);
166 auto max_mmap_ =
167 reinterpret_cast<uptr>(chunks_[n - 1]) + chunks_[n - 1]->map_size;
168 if (p < min_mmap_ || p >= max_mmap_)
169 return nullptr;
170 uptr beg = 0, end = n - 1;
171 // This loop is a log(n) lower_bound. It does not check for the exact match
172 // to avoid expensive cache-thrashing loads.
173 while (end - beg >= 2) {
174 uptr mid = (beg + end) / 2; // Invariant: mid >= beg + 1
175 if (p < reinterpret_cast<uptr>(chunks_[mid]))
176 end = mid - 1; // We are not interested in chunks_[mid].
177 else
178 beg = mid; // chunks_[mid] may still be what we want.
181 if (beg < end) {
182 CHECK_EQ(beg + 1, end);
183 // There are 2 chunks left, choose one.
184 if (p >= reinterpret_cast<uptr>(chunks_[end]))
185 beg = end;
188 Header *h = chunks_[beg];
189 if (h->map_beg + h->map_size <= p || p < h->map_beg)
190 return nullptr;
191 return GetUser(h);
194 void PrintStats() {
195 Printf("Stats: LargeMmapAllocator: allocated %zd times, "
196 "remains %zd (%zd K) max %zd M; by size logs: ",
197 stats.n_allocs, stats.n_allocs - stats.n_frees,
198 stats.currently_allocated >> 10, stats.max_allocated >> 20);
199 for (uptr i = 0; i < ARRAY_SIZE(stats.by_size_log); i++) {
200 uptr c = stats.by_size_log[i];
201 if (!c) continue;
202 Printf("%zd:%zd; ", i, c);
204 Printf("\n");
207 // ForceLock() and ForceUnlock() are needed to implement Darwin malloc zone
208 // introspection API.
209 void ForceLock() {
210 mutex_.Lock();
213 void ForceUnlock() {
214 mutex_.Unlock();
217 // Iterate over all existing chunks.
218 // The allocator must be locked when calling this function.
219 void ForEachChunk(ForEachChunkCallback callback, void *arg) {
220 EnsureSortedChunks(); // Avoid doing the sort while iterating.
221 for (uptr i = 0; i < n_chunks_; i++) {
222 auto t = chunks_[i];
223 callback(reinterpret_cast<uptr>(GetUser(chunks_[i])), arg);
224 // Consistency check: verify that the array did not change.
225 CHECK_EQ(chunks_[i], t);
226 CHECK_EQ(chunks_[i]->chunk_idx, i);
230 private:
231 static const int kMaxNumChunks = 1 << FIRST_32_SECOND_64(15, 18);
232 struct Header {
233 uptr map_beg;
234 uptr map_size;
235 uptr size;
236 uptr chunk_idx;
239 Header *GetHeader(uptr p) {
240 CHECK(IsAligned(p, page_size_));
241 return reinterpret_cast<Header*>(p - page_size_);
243 Header *GetHeader(const void *p) {
244 return GetHeader(reinterpret_cast<uptr>(p));
247 void *GetUser(Header *h) {
248 CHECK(IsAligned((uptr)h, page_size_));
249 return reinterpret_cast<void*>(reinterpret_cast<uptr>(h) + page_size_);
252 uptr RoundUpMapSize(uptr size) {
253 return RoundUpTo(size, page_size_) + page_size_;
256 uptr page_size_;
257 Header *chunks_[kMaxNumChunks];
258 uptr n_chunks_;
259 bool chunks_sorted_;
260 struct Stats {
261 uptr n_allocs, n_frees, currently_allocated, max_allocated, by_size_log[64];
262 } stats;
263 SpinMutex mutex_;