PR target/82524
[official-gcc.git] / gcc / gimple-ssa-store-merging.c
blobbc50bab3bae76165a9d4e4b886b17a3e1b9bcf53
1 /* GIMPLE store merging pass.
2 Copyright (C) 2016-2017 Free Software Foundation, Inc.
3 Contributed by ARM Ltd.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
12 GCC is distributed in the hope that it will be useful, but
13 WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 /* The purpose of this pass is to combine multiple memory stores of
22 constant values to consecutive memory locations into fewer wider stores.
23 For example, if we have a sequence peforming four byte stores to
24 consecutive memory locations:
25 [p ] := imm1;
26 [p + 1B] := imm2;
27 [p + 2B] := imm3;
28 [p + 3B] := imm4;
29 we can transform this into a single 4-byte store if the target supports it:
30 [p] := imm1:imm2:imm3:imm4 //concatenated immediates according to endianness.
32 The algorithm is applied to each basic block in three phases:
34 1) Scan through the basic block recording constant assignments to
35 destinations that can be expressed as a store to memory of a certain size
36 at a certain bit offset. Record store chains to different bases in a
37 hash_map (m_stores) and make sure to terminate such chains when appropriate
38 (for example when when the stored values get used subsequently).
39 These stores can be a result of structure element initializers, array stores
40 etc. A store_immediate_info object is recorded for every such store.
41 Record as many such assignments to a single base as possible until a
42 statement that interferes with the store sequence is encountered.
44 2) Analyze the chain of stores recorded in phase 1) (i.e. the vector of
45 store_immediate_info objects) and coalesce contiguous stores into
46 merged_store_group objects.
48 For example, given the stores:
49 [p ] := 0;
50 [p + 1B] := 1;
51 [p + 3B] := 0;
52 [p + 4B] := 1;
53 [p + 5B] := 0;
54 [p + 6B] := 0;
55 This phase would produce two merged_store_group objects, one recording the
56 two bytes stored in the memory region [p : p + 1] and another
57 recording the four bytes stored in the memory region [p + 3 : p + 6].
59 3) The merged_store_group objects produced in phase 2) are processed
60 to generate the sequence of wider stores that set the contiguous memory
61 regions to the sequence of bytes that correspond to it. This may emit
62 multiple stores per store group to handle contiguous stores that are not
63 of a size that is a power of 2. For example it can try to emit a 40-bit
64 store as a 32-bit store followed by an 8-bit store.
65 We try to emit as wide stores as we can while respecting STRICT_ALIGNMENT or
66 TARGET_SLOW_UNALIGNED_ACCESS rules.
68 Note on endianness and example:
69 Consider 2 contiguous 16-bit stores followed by 2 contiguous 8-bit stores:
70 [p ] := 0x1234;
71 [p + 2B] := 0x5678;
72 [p + 4B] := 0xab;
73 [p + 5B] := 0xcd;
75 The memory layout for little-endian (LE) and big-endian (BE) must be:
76 p |LE|BE|
77 ---------
78 0 |34|12|
79 1 |12|34|
80 2 |78|56|
81 3 |56|78|
82 4 |ab|ab|
83 5 |cd|cd|
85 To merge these into a single 48-bit merged value 'val' in phase 2)
86 on little-endian we insert stores to higher (consecutive) bitpositions
87 into the most significant bits of the merged value.
88 The final merged value would be: 0xcdab56781234
90 For big-endian we insert stores to higher bitpositions into the least
91 significant bits of the merged value.
92 The final merged value would be: 0x12345678abcd
94 Then, in phase 3), we want to emit this 48-bit value as a 32-bit store
95 followed by a 16-bit store. Again, we must consider endianness when
96 breaking down the 48-bit value 'val' computed above.
97 For little endian we emit:
98 [p] (32-bit) := 0x56781234; // val & 0x0000ffffffff;
99 [p + 4B] (16-bit) := 0xcdab; // (val & 0xffff00000000) >> 32;
101 Whereas for big-endian we emit:
102 [p] (32-bit) := 0x12345678; // (val & 0xffffffff0000) >> 16;
103 [p + 4B] (16-bit) := 0xabcd; // val & 0x00000000ffff; */
105 #include "config.h"
106 #include "system.h"
107 #include "coretypes.h"
108 #include "backend.h"
109 #include "tree.h"
110 #include "gimple.h"
111 #include "builtins.h"
112 #include "fold-const.h"
113 #include "tree-pass.h"
114 #include "ssa.h"
115 #include "gimple-pretty-print.h"
116 #include "alias.h"
117 #include "fold-const.h"
118 #include "params.h"
119 #include "print-tree.h"
120 #include "tree-hash-traits.h"
121 #include "gimple-iterator.h"
122 #include "gimplify.h"
123 #include "stor-layout.h"
124 #include "timevar.h"
125 #include "tree-cfg.h"
126 #include "tree-eh.h"
127 #include "target.h"
128 #include "gimplify-me.h"
129 #include "selftest.h"
131 /* The maximum size (in bits) of the stores this pass should generate. */
132 #define MAX_STORE_BITSIZE (BITS_PER_WORD)
133 #define MAX_STORE_BYTES (MAX_STORE_BITSIZE / BITS_PER_UNIT)
135 namespace {
137 /* Struct recording the information about a single store of an immediate
138 to memory. These are created in the first phase and coalesced into
139 merged_store_group objects in the second phase. */
141 struct store_immediate_info
143 unsigned HOST_WIDE_INT bitsize;
144 unsigned HOST_WIDE_INT bitpos;
145 gimple *stmt;
146 unsigned int order;
147 store_immediate_info (unsigned HOST_WIDE_INT, unsigned HOST_WIDE_INT,
148 gimple *, unsigned int);
151 store_immediate_info::store_immediate_info (unsigned HOST_WIDE_INT bs,
152 unsigned HOST_WIDE_INT bp,
153 gimple *st,
154 unsigned int ord)
155 : bitsize (bs), bitpos (bp), stmt (st), order (ord)
159 /* Struct representing a group of stores to contiguous memory locations.
160 These are produced by the second phase (coalescing) and consumed in the
161 third phase that outputs the widened stores. */
163 struct merged_store_group
165 unsigned HOST_WIDE_INT start;
166 unsigned HOST_WIDE_INT width;
167 /* The size of the allocated memory for val. */
168 unsigned HOST_WIDE_INT buf_size;
170 unsigned int align;
171 unsigned int first_order;
172 unsigned int last_order;
174 auto_vec<struct store_immediate_info *> stores;
175 /* We record the first and last original statements in the sequence because
176 we'll need their vuse/vdef and replacement position. It's easier to keep
177 track of them separately as 'stores' is reordered by apply_stores. */
178 gimple *last_stmt;
179 gimple *first_stmt;
180 unsigned char *val;
182 merged_store_group (store_immediate_info *);
183 ~merged_store_group ();
184 void merge_into (store_immediate_info *);
185 void merge_overlapping (store_immediate_info *);
186 bool apply_stores ();
189 /* Debug helper. Dump LEN elements of byte array PTR to FD in hex. */
191 static void
192 dump_char_array (FILE *fd, unsigned char *ptr, unsigned int len)
194 if (!fd)
195 return;
197 for (unsigned int i = 0; i < len; i++)
198 fprintf (fd, "%x ", ptr[i]);
199 fprintf (fd, "\n");
202 /* Shift left the bytes in PTR of SZ elements by AMNT bits, carrying over the
203 bits between adjacent elements. AMNT should be within
204 [0, BITS_PER_UNIT).
205 Example, AMNT = 2:
206 00011111|11100000 << 2 = 01111111|10000000
207 PTR[1] | PTR[0] PTR[1] | PTR[0]. */
209 static void
210 shift_bytes_in_array (unsigned char *ptr, unsigned int sz, unsigned int amnt)
212 if (amnt == 0)
213 return;
215 unsigned char carry_over = 0U;
216 unsigned char carry_mask = (~0U) << (unsigned char) (BITS_PER_UNIT - amnt);
217 unsigned char clear_mask = (~0U) << amnt;
219 for (unsigned int i = 0; i < sz; i++)
221 unsigned prev_carry_over = carry_over;
222 carry_over = (ptr[i] & carry_mask) >> (BITS_PER_UNIT - amnt);
224 ptr[i] <<= amnt;
225 if (i != 0)
227 ptr[i] &= clear_mask;
228 ptr[i] |= prev_carry_over;
233 /* Like shift_bytes_in_array but for big-endian.
234 Shift right the bytes in PTR of SZ elements by AMNT bits, carrying over the
235 bits between adjacent elements. AMNT should be within
236 [0, BITS_PER_UNIT).
237 Example, AMNT = 2:
238 00011111|11100000 >> 2 = 00000111|11111000
239 PTR[0] | PTR[1] PTR[0] | PTR[1]. */
241 static void
242 shift_bytes_in_array_right (unsigned char *ptr, unsigned int sz,
243 unsigned int amnt)
245 if (amnt == 0)
246 return;
248 unsigned char carry_over = 0U;
249 unsigned char carry_mask = ~(~0U << amnt);
251 for (unsigned int i = 0; i < sz; i++)
253 unsigned prev_carry_over = carry_over;
254 carry_over = ptr[i] & carry_mask;
256 carry_over <<= (unsigned char) BITS_PER_UNIT - amnt;
257 ptr[i] >>= amnt;
258 ptr[i] |= prev_carry_over;
262 /* Clear out LEN bits starting from bit START in the byte array
263 PTR. This clears the bits to the *right* from START.
264 START must be within [0, BITS_PER_UNIT) and counts starting from
265 the least significant bit. */
267 static void
268 clear_bit_region_be (unsigned char *ptr, unsigned int start,
269 unsigned int len)
271 if (len == 0)
272 return;
273 /* Clear len bits to the right of start. */
274 else if (len <= start + 1)
276 unsigned char mask = (~(~0U << len));
277 mask = mask << (start + 1U - len);
278 ptr[0] &= ~mask;
280 else if (start != BITS_PER_UNIT - 1)
282 clear_bit_region_be (ptr, start, (start % BITS_PER_UNIT) + 1);
283 clear_bit_region_be (ptr + 1, BITS_PER_UNIT - 1,
284 len - (start % BITS_PER_UNIT) - 1);
286 else if (start == BITS_PER_UNIT - 1
287 && len > BITS_PER_UNIT)
289 unsigned int nbytes = len / BITS_PER_UNIT;
290 for (unsigned int i = 0; i < nbytes; i++)
291 ptr[i] = 0U;
292 if (len % BITS_PER_UNIT != 0)
293 clear_bit_region_be (ptr + nbytes, BITS_PER_UNIT - 1,
294 len % BITS_PER_UNIT);
296 else
297 gcc_unreachable ();
300 /* In the byte array PTR clear the bit region starting at bit
301 START and is LEN bits wide.
302 For regions spanning multiple bytes do this recursively until we reach
303 zero LEN or a region contained within a single byte. */
305 static void
306 clear_bit_region (unsigned char *ptr, unsigned int start,
307 unsigned int len)
309 /* Degenerate base case. */
310 if (len == 0)
311 return;
312 else if (start >= BITS_PER_UNIT)
313 clear_bit_region (ptr + 1, start - BITS_PER_UNIT, len);
314 /* Second base case. */
315 else if ((start + len) <= BITS_PER_UNIT)
317 unsigned char mask = (~0U) << (unsigned char) (BITS_PER_UNIT - len);
318 mask >>= BITS_PER_UNIT - (start + len);
320 ptr[0] &= ~mask;
322 return;
324 /* Clear most significant bits in a byte and proceed with the next byte. */
325 else if (start != 0)
327 clear_bit_region (ptr, start, BITS_PER_UNIT - start);
328 clear_bit_region (ptr + 1, 0, len - (BITS_PER_UNIT - start));
330 /* Whole bytes need to be cleared. */
331 else if (start == 0 && len > BITS_PER_UNIT)
333 unsigned int nbytes = len / BITS_PER_UNIT;
334 /* We could recurse on each byte but we clear whole bytes, so a simple
335 memset will do. */
336 memset (ptr, '\0', nbytes);
337 /* Clear the remaining sub-byte region if there is one. */
338 if (len % BITS_PER_UNIT != 0)
339 clear_bit_region (ptr + nbytes, 0, len % BITS_PER_UNIT);
341 else
342 gcc_unreachable ();
345 /* Write BITLEN bits of EXPR to the byte array PTR at
346 bit position BITPOS. PTR should contain TOTAL_BYTES elements.
347 Return true if the operation succeeded. */
349 static bool
350 encode_tree_to_bitpos (tree expr, unsigned char *ptr, int bitlen, int bitpos,
351 unsigned int total_bytes)
353 unsigned int first_byte = bitpos / BITS_PER_UNIT;
354 tree tmp_int = expr;
355 bool sub_byte_op_p = ((bitlen % BITS_PER_UNIT)
356 || (bitpos % BITS_PER_UNIT)
357 || !int_mode_for_size (bitlen, 0).exists ());
359 if (!sub_byte_op_p)
360 return native_encode_expr (tmp_int, ptr + first_byte, total_bytes) != 0;
362 /* LITTLE-ENDIAN
363 We are writing a non byte-sized quantity or at a position that is not
364 at a byte boundary.
365 |--------|--------|--------| ptr + first_byte
367 xxx xxxxxxxx xxx< bp>
368 |______EXPR____|
370 First native_encode_expr EXPR into a temporary buffer and shift each
371 byte in the buffer by 'bp' (carrying the bits over as necessary).
372 |00000000|00xxxxxx|xxxxxxxx| << bp = |000xxxxx|xxxxxxxx|xxx00000|
373 <------bitlen---->< bp>
374 Then we clear the destination bits:
375 |---00000|00000000|000-----| ptr + first_byte
376 <-------bitlen--->< bp>
378 Finally we ORR the bytes of the shifted EXPR into the cleared region:
379 |---xxxxx||xxxxxxxx||xxx-----| ptr + first_byte.
381 BIG-ENDIAN
382 We are writing a non byte-sized quantity or at a position that is not
383 at a byte boundary.
384 ptr + first_byte |--------|--------|--------|
386 <bp >xxx xxxxxxxx xxx
387 |_____EXPR_____|
389 First native_encode_expr EXPR into a temporary buffer and shift each
390 byte in the buffer to the right by (carrying the bits over as necessary).
391 We shift by as much as needed to align the most significant bit of EXPR
392 with bitpos:
393 |00xxxxxx|xxxxxxxx| >> 3 = |00000xxx|xxxxxxxx|xxxxx000|
394 <---bitlen----> <bp ><-----bitlen----->
395 Then we clear the destination bits:
396 ptr + first_byte |-----000||00000000||00000---|
397 <bp ><-------bitlen----->
399 Finally we ORR the bytes of the shifted EXPR into the cleared region:
400 ptr + first_byte |---xxxxx||xxxxxxxx||xxx-----|.
401 The awkwardness comes from the fact that bitpos is counted from the
402 most significant bit of a byte. */
404 /* Allocate an extra byte so that we have space to shift into. */
405 unsigned int byte_size = GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (expr))) + 1;
406 unsigned char *tmpbuf = XALLOCAVEC (unsigned char, byte_size);
407 memset (tmpbuf, '\0', byte_size);
408 /* The store detection code should only have allowed constants that are
409 accepted by native_encode_expr. */
410 if (native_encode_expr (expr, tmpbuf, byte_size - 1) == 0)
411 gcc_unreachable ();
413 /* The native_encode_expr machinery uses TYPE_MODE to determine how many
414 bytes to write. This means it can write more than
415 ROUND_UP (bitlen, BITS_PER_UNIT) / BITS_PER_UNIT bytes (for example
416 write 8 bytes for a bitlen of 40). Skip the bytes that are not within
417 bitlen and zero out the bits that are not relevant as well (that may
418 contain a sign bit due to sign-extension). */
419 unsigned int padding
420 = byte_size - ROUND_UP (bitlen, BITS_PER_UNIT) / BITS_PER_UNIT - 1;
421 /* On big-endian the padding is at the 'front' so just skip the initial
422 bytes. */
423 if (BYTES_BIG_ENDIAN)
424 tmpbuf += padding;
426 byte_size -= padding;
428 if (bitlen % BITS_PER_UNIT != 0)
430 if (BYTES_BIG_ENDIAN)
431 clear_bit_region_be (tmpbuf, BITS_PER_UNIT - 1,
432 BITS_PER_UNIT - (bitlen % BITS_PER_UNIT));
433 else
434 clear_bit_region (tmpbuf, bitlen,
435 byte_size * BITS_PER_UNIT - bitlen);
437 /* Left shifting relies on the last byte being clear if bitlen is
438 a multiple of BITS_PER_UNIT, which might not be clear if
439 there are padding bytes. */
440 else if (!BYTES_BIG_ENDIAN)
441 tmpbuf[byte_size - 1] = '\0';
443 /* Clear the bit region in PTR where the bits from TMPBUF will be
444 inserted into. */
445 if (BYTES_BIG_ENDIAN)
446 clear_bit_region_be (ptr + first_byte,
447 BITS_PER_UNIT - 1 - (bitpos % BITS_PER_UNIT), bitlen);
448 else
449 clear_bit_region (ptr + first_byte, bitpos % BITS_PER_UNIT, bitlen);
451 int shift_amnt;
452 int bitlen_mod = bitlen % BITS_PER_UNIT;
453 int bitpos_mod = bitpos % BITS_PER_UNIT;
455 bool skip_byte = false;
456 if (BYTES_BIG_ENDIAN)
458 /* BITPOS and BITLEN are exactly aligned and no shifting
459 is necessary. */
460 if (bitpos_mod + bitlen_mod == BITS_PER_UNIT
461 || (bitpos_mod == 0 && bitlen_mod == 0))
462 shift_amnt = 0;
463 /* |. . . . . . . .|
464 <bp > <blen >.
465 We always shift right for BYTES_BIG_ENDIAN so shift the beginning
466 of the value until it aligns with 'bp' in the next byte over. */
467 else if (bitpos_mod + bitlen_mod < BITS_PER_UNIT)
469 shift_amnt = bitlen_mod + bitpos_mod;
470 skip_byte = bitlen_mod != 0;
472 /* |. . . . . . . .|
473 <----bp--->
474 <---blen---->.
475 Shift the value right within the same byte so it aligns with 'bp'. */
476 else
477 shift_amnt = bitlen_mod + bitpos_mod - BITS_PER_UNIT;
479 else
480 shift_amnt = bitpos % BITS_PER_UNIT;
482 /* Create the shifted version of EXPR. */
483 if (!BYTES_BIG_ENDIAN)
485 shift_bytes_in_array (tmpbuf, byte_size, shift_amnt);
486 if (shift_amnt == 0)
487 byte_size--;
489 else
491 gcc_assert (BYTES_BIG_ENDIAN);
492 shift_bytes_in_array_right (tmpbuf, byte_size, shift_amnt);
493 /* If shifting right forced us to move into the next byte skip the now
494 empty byte. */
495 if (skip_byte)
497 tmpbuf++;
498 byte_size--;
502 /* Insert the bits from TMPBUF. */
503 for (unsigned int i = 0; i < byte_size; i++)
504 ptr[first_byte + i] |= tmpbuf[i];
506 return true;
509 /* Sorting function for store_immediate_info objects.
510 Sorts them by bitposition. */
512 static int
513 sort_by_bitpos (const void *x, const void *y)
515 store_immediate_info *const *tmp = (store_immediate_info * const *) x;
516 store_immediate_info *const *tmp2 = (store_immediate_info * const *) y;
518 if ((*tmp)->bitpos < (*tmp2)->bitpos)
519 return -1;
520 else if ((*tmp)->bitpos > (*tmp2)->bitpos)
521 return 1;
522 else
523 /* If they are the same let's use the order which is guaranteed to
524 be different. */
525 return (*tmp)->order - (*tmp2)->order;
528 /* Sorting function for store_immediate_info objects.
529 Sorts them by the order field. */
531 static int
532 sort_by_order (const void *x, const void *y)
534 store_immediate_info *const *tmp = (store_immediate_info * const *) x;
535 store_immediate_info *const *tmp2 = (store_immediate_info * const *) y;
537 if ((*tmp)->order < (*tmp2)->order)
538 return -1;
539 else if ((*tmp)->order > (*tmp2)->order)
540 return 1;
542 gcc_unreachable ();
545 /* Initialize a merged_store_group object from a store_immediate_info
546 object. */
548 merged_store_group::merged_store_group (store_immediate_info *info)
550 start = info->bitpos;
551 width = info->bitsize;
552 /* VAL has memory allocated for it in apply_stores once the group
553 width has been finalized. */
554 val = NULL;
555 align = get_object_alignment (gimple_assign_lhs (info->stmt));
556 stores.create (1);
557 stores.safe_push (info);
558 last_stmt = info->stmt;
559 last_order = info->order;
560 first_stmt = last_stmt;
561 first_order = last_order;
562 buf_size = 0;
565 merged_store_group::~merged_store_group ()
567 if (val)
568 XDELETEVEC (val);
571 /* Merge a store recorded by INFO into this merged store.
572 The store is not overlapping with the existing recorded
573 stores. */
575 void
576 merged_store_group::merge_into (store_immediate_info *info)
578 unsigned HOST_WIDE_INT wid = info->bitsize;
579 /* Make sure we're inserting in the position we think we're inserting. */
580 gcc_assert (info->bitpos == start + width);
582 width += wid;
583 gimple *stmt = info->stmt;
584 stores.safe_push (info);
585 if (info->order > last_order)
587 last_order = info->order;
588 last_stmt = stmt;
590 else if (info->order < first_order)
592 first_order = info->order;
593 first_stmt = stmt;
597 /* Merge a store described by INFO into this merged store.
598 INFO overlaps in some way with the current store (i.e. it's not contiguous
599 which is handled by merged_store_group::merge_into). */
601 void
602 merged_store_group::merge_overlapping (store_immediate_info *info)
604 gimple *stmt = info->stmt;
605 stores.safe_push (info);
607 /* If the store extends the size of the group, extend the width. */
608 if ((info->bitpos + info->bitsize) > (start + width))
609 width += info->bitpos + info->bitsize - (start + width);
611 if (info->order > last_order)
613 last_order = info->order;
614 last_stmt = stmt;
616 else if (info->order < first_order)
618 first_order = info->order;
619 first_stmt = stmt;
623 /* Go through all the recorded stores in this group in program order and
624 apply their values to the VAL byte array to create the final merged
625 value. Return true if the operation succeeded. */
627 bool
628 merged_store_group::apply_stores ()
630 /* The total width of the stores must add up to a whole number of bytes
631 and start at a byte boundary. We don't support emitting bitfield
632 references for now. Also, make sure we have more than one store
633 in the group, otherwise we cannot merge anything. */
634 if (width % BITS_PER_UNIT != 0
635 || start % BITS_PER_UNIT != 0
636 || stores.length () == 1)
637 return false;
639 stores.qsort (sort_by_order);
640 struct store_immediate_info *info;
641 unsigned int i;
642 /* Create a buffer of a size that is 2 times the number of bytes we're
643 storing. That way native_encode_expr can write power-of-2-sized
644 chunks without overrunning. */
645 buf_size = 2 * (ROUND_UP (width, BITS_PER_UNIT) / BITS_PER_UNIT);
646 val = XCNEWVEC (unsigned char, buf_size);
648 FOR_EACH_VEC_ELT (stores, i, info)
650 unsigned int pos_in_buffer = info->bitpos - start;
651 bool ret = encode_tree_to_bitpos (gimple_assign_rhs1 (info->stmt),
652 val, info->bitsize,
653 pos_in_buffer, buf_size);
654 if (dump_file && (dump_flags & TDF_DETAILS))
656 if (ret)
658 fprintf (dump_file, "After writing ");
659 print_generic_expr (dump_file,
660 gimple_assign_rhs1 (info->stmt), 0);
661 fprintf (dump_file, " of size " HOST_WIDE_INT_PRINT_DEC
662 " at position %d the merged region contains:\n",
663 info->bitsize, pos_in_buffer);
664 dump_char_array (dump_file, val, buf_size);
666 else
667 fprintf (dump_file, "Failed to merge stores\n");
669 if (!ret)
670 return false;
672 return true;
675 /* Structure describing the store chain. */
677 struct imm_store_chain_info
679 /* Doubly-linked list that imposes an order on chain processing.
680 PNXP (prev's next pointer) points to the head of a list, or to
681 the next field in the previous chain in the list.
682 See pass_store_merging::m_stores_head for more rationale. */
683 imm_store_chain_info *next, **pnxp;
684 tree base_addr;
685 auto_vec<struct store_immediate_info *> m_store_info;
686 auto_vec<merged_store_group *> m_merged_store_groups;
688 imm_store_chain_info (imm_store_chain_info *&inspt, tree b_a)
689 : next (inspt), pnxp (&inspt), base_addr (b_a)
691 inspt = this;
692 if (next)
694 gcc_checking_assert (pnxp == next->pnxp);
695 next->pnxp = &next;
698 ~imm_store_chain_info ()
700 *pnxp = next;
701 if (next)
703 gcc_checking_assert (&next == next->pnxp);
704 next->pnxp = pnxp;
707 bool terminate_and_process_chain ();
708 bool coalesce_immediate_stores ();
709 bool output_merged_store (merged_store_group *);
710 bool output_merged_stores ();
713 const pass_data pass_data_tree_store_merging = {
714 GIMPLE_PASS, /* type */
715 "store-merging", /* name */
716 OPTGROUP_NONE, /* optinfo_flags */
717 TV_GIMPLE_STORE_MERGING, /* tv_id */
718 PROP_ssa, /* properties_required */
719 0, /* properties_provided */
720 0, /* properties_destroyed */
721 0, /* todo_flags_start */
722 TODO_update_ssa, /* todo_flags_finish */
725 class pass_store_merging : public gimple_opt_pass
727 public:
728 pass_store_merging (gcc::context *ctxt)
729 : gimple_opt_pass (pass_data_tree_store_merging, ctxt), m_stores_head ()
733 /* Pass not supported for PDP-endianness. */
734 virtual bool
735 gate (function *)
737 return flag_store_merging && (WORDS_BIG_ENDIAN == BYTES_BIG_ENDIAN);
740 virtual unsigned int execute (function *);
742 private:
743 hash_map<tree_operand_hash, struct imm_store_chain_info *> m_stores;
745 /* Form a doubly-linked stack of the elements of m_stores, so that
746 we can iterate over them in a predictable way. Using this order
747 avoids extraneous differences in the compiler output just because
748 of tree pointer variations (e.g. different chains end up in
749 different positions of m_stores, so they are handled in different
750 orders, so they allocate or release SSA names in different
751 orders, and when they get reused, subsequent passes end up
752 getting different SSA names, which may ultimately change
753 decisions when going out of SSA). */
754 imm_store_chain_info *m_stores_head;
756 bool terminate_and_process_all_chains ();
757 bool terminate_all_aliasing_chains (imm_store_chain_info **,
758 bool, gimple *);
759 bool terminate_and_release_chain (imm_store_chain_info *);
760 }; // class pass_store_merging
762 /* Terminate and process all recorded chains. Return true if any changes
763 were made. */
765 bool
766 pass_store_merging::terminate_and_process_all_chains ()
768 bool ret = false;
769 while (m_stores_head)
770 ret |= terminate_and_release_chain (m_stores_head);
771 gcc_assert (m_stores.elements () == 0);
772 gcc_assert (m_stores_head == NULL);
774 return ret;
777 /* Terminate all chains that are affected by the assignment to DEST, appearing
778 in statement STMT and ultimately points to the object BASE. Return true if
779 at least one aliasing chain was terminated. BASE and DEST are allowed to
780 be NULL_TREE. In that case the aliasing checks are performed on the whole
781 statement rather than a particular operand in it. VAR_OFFSET_P signifies
782 whether STMT represents a store to BASE offset by a variable amount.
783 If that is the case we have to terminate any chain anchored at BASE. */
785 bool
786 pass_store_merging::terminate_all_aliasing_chains (imm_store_chain_info
787 **chain_info,
788 bool var_offset_p,
789 gimple *stmt)
791 bool ret = false;
793 /* If the statement doesn't touch memory it can't alias. */
794 if (!gimple_vuse (stmt))
795 return false;
797 /* Check if the assignment destination (BASE) is part of a store chain.
798 This is to catch non-constant stores to destinations that may be part
799 of a chain. */
800 if (chain_info)
802 /* We have a chain at BASE and we're writing to [BASE + <variable>].
803 This can interfere with any of the stores so terminate
804 the chain. */
805 if (var_offset_p)
807 terminate_and_release_chain (*chain_info);
808 ret = true;
810 /* Otherwise go through every store in the chain to see if it
811 aliases with any of them. */
812 else
814 struct store_immediate_info *info;
815 unsigned int i;
816 FOR_EACH_VEC_ELT ((*chain_info)->m_store_info, i, info)
818 if (ref_maybe_used_by_stmt_p (stmt,
819 gimple_assign_lhs (info->stmt))
820 || stmt_may_clobber_ref_p (stmt,
821 gimple_assign_lhs (info->stmt)))
823 if (dump_file && (dump_flags & TDF_DETAILS))
825 fprintf (dump_file,
826 "stmt causes chain termination:\n");
827 print_gimple_stmt (dump_file, stmt, 0);
829 terminate_and_release_chain (*chain_info);
830 ret = true;
831 break;
837 /* Check for aliasing with all other store chains. */
838 for (imm_store_chain_info *next = m_stores_head, *cur = next; cur; cur = next)
840 next = cur->next;
842 /* We already checked all the stores in chain_info and terminated the
843 chain if necessary. Skip it here. */
844 if (chain_info && (*chain_info) == cur)
845 continue;
847 /* We can't use the base object here as that does not reliably exist.
848 Build a ao_ref from the base object address (if we know the
849 minimum and maximum offset and the maximum size we could improve
850 things here). */
851 ao_ref chain_ref;
852 ao_ref_init_from_ptr_and_size (&chain_ref, cur->base_addr, NULL_TREE);
853 if (ref_maybe_used_by_stmt_p (stmt, &chain_ref)
854 || stmt_may_clobber_ref_p_1 (stmt, &chain_ref))
856 terminate_and_release_chain (cur);
857 ret = true;
861 return ret;
864 /* Helper function. Terminate the recorded chain storing to base object
865 BASE. Return true if the merging and output was successful. The m_stores
866 entry is removed after the processing in any case. */
868 bool
869 pass_store_merging::terminate_and_release_chain (imm_store_chain_info *chain_info)
871 bool ret = chain_info->terminate_and_process_chain ();
872 m_stores.remove (chain_info->base_addr);
873 delete chain_info;
874 return ret;
877 /* Go through the candidate stores recorded in m_store_info and merge them
878 into merged_store_group objects recorded into m_merged_store_groups
879 representing the widened stores. Return true if coalescing was successful
880 and the number of widened stores is fewer than the original number
881 of stores. */
883 bool
884 imm_store_chain_info::coalesce_immediate_stores ()
886 /* Anything less can't be processed. */
887 if (m_store_info.length () < 2)
888 return false;
890 if (dump_file && (dump_flags & TDF_DETAILS))
891 fprintf (dump_file, "Attempting to coalesce %u stores in chain.\n",
892 m_store_info.length ());
894 store_immediate_info *info;
895 unsigned int i;
897 /* Order the stores by the bitposition they write to. */
898 m_store_info.qsort (sort_by_bitpos);
900 info = m_store_info[0];
901 merged_store_group *merged_store = new merged_store_group (info);
903 FOR_EACH_VEC_ELT (m_store_info, i, info)
905 if (dump_file && (dump_flags & TDF_DETAILS))
907 fprintf (dump_file, "Store %u:\nbitsize:" HOST_WIDE_INT_PRINT_DEC
908 " bitpos:" HOST_WIDE_INT_PRINT_DEC " val:\n",
909 i, info->bitsize, info->bitpos);
910 print_generic_expr (dump_file, gimple_assign_rhs1 (info->stmt));
911 fprintf (dump_file, "\n------------\n");
914 if (i == 0)
915 continue;
917 /* |---store 1---|
918 |---store 2---|
919 Overlapping stores. */
920 unsigned HOST_WIDE_INT start = info->bitpos;
921 if (IN_RANGE (start, merged_store->start,
922 merged_store->start + merged_store->width - 1))
924 merged_store->merge_overlapping (info);
925 continue;
928 /* |---store 1---| <gap> |---store 2---|.
929 Gap between stores. Start a new group. */
930 if (start != merged_store->start + merged_store->width)
932 /* Try to apply all the stores recorded for the group to determine
933 the bitpattern they write and discard it if that fails.
934 This will also reject single-store groups. */
935 if (!merged_store->apply_stores ())
936 delete merged_store;
937 else
938 m_merged_store_groups.safe_push (merged_store);
940 merged_store = new merged_store_group (info);
942 continue;
945 /* |---store 1---||---store 2---|
946 This store is consecutive to the previous one.
947 Merge it into the current store group. */
948 merged_store->merge_into (info);
951 /* Record or discard the last store group. */
952 if (!merged_store->apply_stores ())
953 delete merged_store;
954 else
955 m_merged_store_groups.safe_push (merged_store);
957 gcc_assert (m_merged_store_groups.length () <= m_store_info.length ());
958 bool success
959 = !m_merged_store_groups.is_empty ()
960 && m_merged_store_groups.length () < m_store_info.length ();
962 if (success && dump_file)
963 fprintf (dump_file, "Coalescing successful!\n"
964 "Merged into %u stores\n",
965 m_merged_store_groups.length ());
967 return success;
970 /* Return the type to use for the merged stores described by STMTS.
971 This is needed to get the alias sets right. */
973 static tree
974 get_alias_type_for_stmts (auto_vec<gimple *> &stmts)
976 gimple *stmt;
977 unsigned int i;
978 tree lhs = gimple_assign_lhs (stmts[0]);
979 tree type = reference_alias_ptr_type (lhs);
981 FOR_EACH_VEC_ELT (stmts, i, stmt)
983 if (i == 0)
984 continue;
986 lhs = gimple_assign_lhs (stmt);
987 tree type1 = reference_alias_ptr_type (lhs);
988 if (!alias_ptr_types_compatible_p (type, type1))
989 return ptr_type_node;
991 return type;
994 /* Return the location_t information we can find among the statements
995 in STMTS. */
997 static location_t
998 get_location_for_stmts (auto_vec<gimple *> &stmts)
1000 gimple *stmt;
1001 unsigned int i;
1003 FOR_EACH_VEC_ELT (stmts, i, stmt)
1004 if (gimple_has_location (stmt))
1005 return gimple_location (stmt);
1007 return UNKNOWN_LOCATION;
1010 /* Used to decribe a store resulting from splitting a wide store in smaller
1011 regularly-sized stores in split_group. */
1013 struct split_store
1015 unsigned HOST_WIDE_INT bytepos;
1016 unsigned HOST_WIDE_INT size;
1017 unsigned HOST_WIDE_INT align;
1018 auto_vec<gimple *> orig_stmts;
1019 split_store (unsigned HOST_WIDE_INT, unsigned HOST_WIDE_INT,
1020 unsigned HOST_WIDE_INT);
1023 /* Simple constructor. */
1025 split_store::split_store (unsigned HOST_WIDE_INT bp,
1026 unsigned HOST_WIDE_INT sz,
1027 unsigned HOST_WIDE_INT al)
1028 : bytepos (bp), size (sz), align (al)
1030 orig_stmts.create (0);
1033 /* Record all statements corresponding to stores in GROUP that write to
1034 the region starting at BITPOS and is of size BITSIZE. Record such
1035 statements in STMTS. The stores in GROUP must be sorted by
1036 bitposition. */
1038 static void
1039 find_constituent_stmts (struct merged_store_group *group,
1040 auto_vec<gimple *> &stmts,
1041 unsigned HOST_WIDE_INT bitpos,
1042 unsigned HOST_WIDE_INT bitsize)
1044 struct store_immediate_info *info;
1045 unsigned int i;
1046 unsigned HOST_WIDE_INT end = bitpos + bitsize;
1047 FOR_EACH_VEC_ELT (group->stores, i, info)
1049 unsigned HOST_WIDE_INT stmt_start = info->bitpos;
1050 unsigned HOST_WIDE_INT stmt_end = stmt_start + info->bitsize;
1051 if (stmt_end < bitpos)
1052 continue;
1053 /* The stores in GROUP are ordered by bitposition so if we're past
1054 the region for this group return early. */
1055 if (stmt_start > end)
1056 return;
1058 if (IN_RANGE (stmt_start, bitpos, bitpos + bitsize)
1059 || IN_RANGE (stmt_end, bitpos, end)
1060 /* The statement writes a region that completely encloses the region
1061 that this group writes. Unlikely to occur but let's
1062 handle it. */
1063 || IN_RANGE (bitpos, stmt_start, stmt_end))
1064 stmts.safe_push (info->stmt);
1068 /* Split a merged store described by GROUP by populating the SPLIT_STORES
1069 vector with split_store structs describing the byte offset (from the base),
1070 the bit size and alignment of each store as well as the original statements
1071 involved in each such split group.
1072 This is to separate the splitting strategy from the statement
1073 building/emission/linking done in output_merged_store.
1074 At the moment just start with the widest possible size and keep emitting
1075 the widest we can until we have emitted all the bytes, halving the size
1076 when appropriate. */
1078 static bool
1079 split_group (merged_store_group *group,
1080 auto_vec<struct split_store *> &split_stores)
1082 unsigned HOST_WIDE_INT pos = group->start;
1083 unsigned HOST_WIDE_INT size = group->width;
1084 unsigned HOST_WIDE_INT bytepos = pos / BITS_PER_UNIT;
1085 unsigned HOST_WIDE_INT align = group->align;
1087 /* We don't handle partial bitfields for now. We shouldn't have
1088 reached this far. */
1089 gcc_assert ((size % BITS_PER_UNIT == 0) && (pos % BITS_PER_UNIT == 0));
1091 bool allow_unaligned
1092 = !STRICT_ALIGNMENT && PARAM_VALUE (PARAM_STORE_MERGING_ALLOW_UNALIGNED);
1094 unsigned int try_size = MAX_STORE_BITSIZE;
1095 while (try_size > size
1096 || (!allow_unaligned
1097 && try_size > align))
1099 try_size /= 2;
1100 if (try_size < BITS_PER_UNIT)
1101 return false;
1104 unsigned HOST_WIDE_INT try_pos = bytepos;
1105 group->stores.qsort (sort_by_bitpos);
1107 while (size > 0)
1109 struct split_store *store = new split_store (try_pos, try_size, align);
1110 unsigned HOST_WIDE_INT try_bitpos = try_pos * BITS_PER_UNIT;
1111 find_constituent_stmts (group, store->orig_stmts, try_bitpos, try_size);
1112 split_stores.safe_push (store);
1114 try_pos += try_size / BITS_PER_UNIT;
1116 size -= try_size;
1117 align = try_size;
1118 while (size < try_size)
1119 try_size /= 2;
1121 return true;
1124 /* Given a merged store group GROUP output the widened version of it.
1125 The store chain is against the base object BASE.
1126 Try store sizes of at most MAX_STORE_BITSIZE bits wide and don't output
1127 unaligned stores for STRICT_ALIGNMENT targets or if it's too expensive.
1128 Make sure that the number of statements output is less than the number of
1129 original statements. If a better sequence is possible emit it and
1130 return true. */
1132 bool
1133 imm_store_chain_info::output_merged_store (merged_store_group *group)
1135 unsigned HOST_WIDE_INT start_byte_pos = group->start / BITS_PER_UNIT;
1137 unsigned int orig_num_stmts = group->stores.length ();
1138 if (orig_num_stmts < 2)
1139 return false;
1141 auto_vec<struct split_store *> split_stores;
1142 split_stores.create (0);
1143 if (!split_group (group, split_stores))
1144 return false;
1146 gimple_stmt_iterator last_gsi = gsi_for_stmt (group->last_stmt);
1147 gimple_seq seq = NULL;
1148 unsigned int num_stmts = 0;
1149 tree last_vdef, new_vuse;
1150 last_vdef = gimple_vdef (group->last_stmt);
1151 new_vuse = gimple_vuse (group->last_stmt);
1153 gimple *stmt = NULL;
1154 /* The new SSA names created. Keep track of them so that we can free them
1155 if we decide to not use the new sequence. */
1156 auto_vec<tree> new_ssa_names;
1157 split_store *split_store;
1158 unsigned int i;
1159 bool fail = false;
1161 tree addr = force_gimple_operand_1 (unshare_expr (base_addr), &seq,
1162 is_gimple_mem_ref_addr, NULL_TREE);
1163 FOR_EACH_VEC_ELT (split_stores, i, split_store)
1165 unsigned HOST_WIDE_INT try_size = split_store->size;
1166 unsigned HOST_WIDE_INT try_pos = split_store->bytepos;
1167 unsigned HOST_WIDE_INT align = split_store->align;
1168 tree offset_type = get_alias_type_for_stmts (split_store->orig_stmts);
1169 location_t loc = get_location_for_stmts (split_store->orig_stmts);
1171 tree int_type = build_nonstandard_integer_type (try_size, UNSIGNED);
1172 int_type = build_aligned_type (int_type, align);
1173 tree dest = fold_build2 (MEM_REF, int_type, addr,
1174 build_int_cst (offset_type, try_pos));
1176 tree src = native_interpret_expr (int_type,
1177 group->val + try_pos - start_byte_pos,
1178 group->buf_size);
1180 stmt = gimple_build_assign (dest, src);
1181 gimple_set_location (stmt, loc);
1182 gimple_set_vuse (stmt, new_vuse);
1183 gimple_seq_add_stmt_without_update (&seq, stmt);
1185 /* We didn't manage to reduce the number of statements. Bail out. */
1186 if (++num_stmts == orig_num_stmts)
1188 if (dump_file && (dump_flags & TDF_DETAILS))
1190 fprintf (dump_file, "Exceeded original number of stmts (%u)."
1191 " Not profitable to emit new sequence.\n",
1192 orig_num_stmts);
1194 unsigned int ssa_count;
1195 tree ssa_name;
1196 /* Don't forget to cleanup the temporary SSA names. */
1197 FOR_EACH_VEC_ELT (new_ssa_names, ssa_count, ssa_name)
1198 release_ssa_name (ssa_name);
1200 fail = true;
1201 break;
1204 tree new_vdef;
1205 if (i < split_stores.length () - 1)
1207 new_vdef = make_ssa_name (gimple_vop (cfun), stmt);
1208 new_ssa_names.safe_push (new_vdef);
1210 else
1211 new_vdef = last_vdef;
1213 gimple_set_vdef (stmt, new_vdef);
1214 SSA_NAME_DEF_STMT (new_vdef) = stmt;
1215 new_vuse = new_vdef;
1218 FOR_EACH_VEC_ELT (split_stores, i, split_store)
1219 delete split_store;
1221 if (fail)
1222 return false;
1224 gcc_assert (seq);
1225 if (dump_file)
1227 fprintf (dump_file,
1228 "New sequence of %u stmts to replace old one of %u stmts\n",
1229 num_stmts, orig_num_stmts);
1230 if (dump_flags & TDF_DETAILS)
1231 print_gimple_seq (dump_file, seq, 0, TDF_VOPS | TDF_MEMSYMS);
1233 gsi_insert_seq_after (&last_gsi, seq, GSI_SAME_STMT);
1235 return true;
1238 /* Process the merged_store_group objects created in the coalescing phase.
1239 The stores are all against the base object BASE.
1240 Try to output the widened stores and delete the original statements if
1241 successful. Return true iff any changes were made. */
1243 bool
1244 imm_store_chain_info::output_merged_stores ()
1246 unsigned int i;
1247 merged_store_group *merged_store;
1248 bool ret = false;
1249 FOR_EACH_VEC_ELT (m_merged_store_groups, i, merged_store)
1251 if (output_merged_store (merged_store))
1253 unsigned int j;
1254 store_immediate_info *store;
1255 FOR_EACH_VEC_ELT (merged_store->stores, j, store)
1257 gimple *stmt = store->stmt;
1258 gimple_stmt_iterator gsi = gsi_for_stmt (stmt);
1259 gsi_remove (&gsi, true);
1260 if (stmt != merged_store->last_stmt)
1262 unlink_stmt_vdef (stmt);
1263 release_defs (stmt);
1266 ret = true;
1269 if (ret && dump_file)
1270 fprintf (dump_file, "Merging successful!\n");
1272 return ret;
1275 /* Coalesce the store_immediate_info objects recorded against the base object
1276 BASE in the first phase and output them.
1277 Delete the allocated structures.
1278 Return true if any changes were made. */
1280 bool
1281 imm_store_chain_info::terminate_and_process_chain ()
1283 /* Process store chain. */
1284 bool ret = false;
1285 if (m_store_info.length () > 1)
1287 ret = coalesce_immediate_stores ();
1288 if (ret)
1289 ret = output_merged_stores ();
1292 /* Delete all the entries we allocated ourselves. */
1293 store_immediate_info *info;
1294 unsigned int i;
1295 FOR_EACH_VEC_ELT (m_store_info, i, info)
1296 delete info;
1298 merged_store_group *merged_info;
1299 FOR_EACH_VEC_ELT (m_merged_store_groups, i, merged_info)
1300 delete merged_info;
1302 return ret;
1305 /* Return true iff LHS is a destination potentially interesting for
1306 store merging. In practice these are the codes that get_inner_reference
1307 can process. */
1309 static bool
1310 lhs_valid_for_store_merging_p (tree lhs)
1312 tree_code code = TREE_CODE (lhs);
1314 if (code == ARRAY_REF || code == ARRAY_RANGE_REF || code == MEM_REF
1315 || code == COMPONENT_REF || code == BIT_FIELD_REF)
1316 return true;
1318 return false;
1321 /* Return true if the tree RHS is a constant we want to consider
1322 during store merging. In practice accept all codes that
1323 native_encode_expr accepts. */
1325 static bool
1326 rhs_valid_for_store_merging_p (tree rhs)
1328 return native_encode_expr (rhs, NULL,
1329 GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (rhs)))) != 0;
1332 /* Entry point for the pass. Go over each basic block recording chains of
1333 immediate stores. Upon encountering a terminating statement (as defined
1334 by stmt_terminates_chain_p) process the recorded stores and emit the widened
1335 variants. */
1337 unsigned int
1338 pass_store_merging::execute (function *fun)
1340 basic_block bb;
1341 hash_set<gimple *> orig_stmts;
1343 FOR_EACH_BB_FN (bb, fun)
1345 gimple_stmt_iterator gsi;
1346 unsigned HOST_WIDE_INT num_statements = 0;
1347 /* Record the original statements so that we can keep track of
1348 statements emitted in this pass and not re-process new
1349 statements. */
1350 for (gsi = gsi_after_labels (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1352 if (is_gimple_debug (gsi_stmt (gsi)))
1353 continue;
1355 if (++num_statements >= 2)
1356 break;
1359 if (num_statements < 2)
1360 continue;
1362 if (dump_file && (dump_flags & TDF_DETAILS))
1363 fprintf (dump_file, "Processing basic block <%d>:\n", bb->index);
1365 for (gsi = gsi_after_labels (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1367 gimple *stmt = gsi_stmt (gsi);
1369 if (is_gimple_debug (stmt))
1370 continue;
1372 if (gimple_has_volatile_ops (stmt))
1374 /* Terminate all chains. */
1375 if (dump_file && (dump_flags & TDF_DETAILS))
1376 fprintf (dump_file, "Volatile access terminates "
1377 "all chains\n");
1378 terminate_and_process_all_chains ();
1379 continue;
1382 if (gimple_assign_single_p (stmt) && gimple_vdef (stmt)
1383 && !stmt_can_throw_internal (stmt)
1384 && lhs_valid_for_store_merging_p (gimple_assign_lhs (stmt)))
1386 tree lhs = gimple_assign_lhs (stmt);
1387 tree rhs = gimple_assign_rhs1 (stmt);
1389 HOST_WIDE_INT bitsize, bitpos;
1390 machine_mode mode;
1391 int unsignedp = 0, reversep = 0, volatilep = 0;
1392 tree offset, base_addr;
1393 base_addr
1394 = get_inner_reference (lhs, &bitsize, &bitpos, &offset, &mode,
1395 &unsignedp, &reversep, &volatilep);
1396 /* As a future enhancement we could handle stores with the same
1397 base and offset. */
1398 bool invalid = reversep
1399 || ((bitsize > MAX_BITSIZE_MODE_ANY_INT)
1400 && (TREE_CODE (rhs) != INTEGER_CST))
1401 || !rhs_valid_for_store_merging_p (rhs);
1403 /* We do not want to rewrite TARGET_MEM_REFs. */
1404 if (TREE_CODE (base_addr) == TARGET_MEM_REF)
1405 invalid = true;
1406 /* In some cases get_inner_reference may return a
1407 MEM_REF [ptr + byteoffset]. For the purposes of this pass
1408 canonicalize the base_addr to MEM_REF [ptr] and take
1409 byteoffset into account in the bitpos. This occurs in
1410 PR 23684 and this way we can catch more chains. */
1411 else if (TREE_CODE (base_addr) == MEM_REF)
1413 offset_int bit_off, byte_off = mem_ref_offset (base_addr);
1414 bit_off = byte_off << LOG2_BITS_PER_UNIT;
1415 bit_off += bitpos;
1416 if (!wi::neg_p (bit_off) && wi::fits_shwi_p (bit_off))
1417 bitpos = bit_off.to_shwi ();
1418 else
1419 invalid = true;
1420 base_addr = TREE_OPERAND (base_addr, 0);
1422 /* get_inner_reference returns the base object, get at its
1423 address now. */
1424 else
1426 if (bitpos < 0)
1427 invalid = true;
1428 base_addr = build_fold_addr_expr (base_addr);
1431 if (! invalid
1432 && offset != NULL_TREE)
1434 /* If the access is variable offset then a base
1435 decl has to be address-taken to be able to
1436 emit pointer-based stores to it.
1437 ??? We might be able to get away with
1438 re-using the original base up to the first
1439 variable part and then wrapping that inside
1440 a BIT_FIELD_REF. */
1441 tree base = get_base_address (base_addr);
1442 if (! base
1443 || (DECL_P (base)
1444 && ! TREE_ADDRESSABLE (base)))
1445 invalid = true;
1446 else
1447 base_addr = build2 (POINTER_PLUS_EXPR,
1448 TREE_TYPE (base_addr),
1449 base_addr, offset);
1452 struct imm_store_chain_info **chain_info
1453 = m_stores.get (base_addr);
1455 if (!invalid)
1457 store_immediate_info *info;
1458 if (chain_info)
1460 info = new store_immediate_info (
1461 bitsize, bitpos, stmt,
1462 (*chain_info)->m_store_info.length ());
1463 if (dump_file && (dump_flags & TDF_DETAILS))
1465 fprintf (dump_file,
1466 "Recording immediate store from stmt:\n");
1467 print_gimple_stmt (dump_file, stmt, 0);
1469 (*chain_info)->m_store_info.safe_push (info);
1470 /* If we reach the limit of stores to merge in a chain
1471 terminate and process the chain now. */
1472 if ((*chain_info)->m_store_info.length ()
1473 == (unsigned int)
1474 PARAM_VALUE (PARAM_MAX_STORES_TO_MERGE))
1476 if (dump_file && (dump_flags & TDF_DETAILS))
1477 fprintf (dump_file,
1478 "Reached maximum number of statements"
1479 " to merge:\n");
1480 terminate_and_release_chain (*chain_info);
1482 continue;
1485 /* Store aliases any existing chain? */
1486 terminate_all_aliasing_chains (chain_info, false, stmt);
1487 /* Start a new chain. */
1488 struct imm_store_chain_info *new_chain
1489 = new imm_store_chain_info (m_stores_head, base_addr);
1490 info = new store_immediate_info (bitsize, bitpos,
1491 stmt, 0);
1492 new_chain->m_store_info.safe_push (info);
1493 m_stores.put (base_addr, new_chain);
1494 if (dump_file && (dump_flags & TDF_DETAILS))
1496 fprintf (dump_file,
1497 "Starting new chain with statement:\n");
1498 print_gimple_stmt (dump_file, stmt, 0);
1499 fprintf (dump_file, "The base object is:\n");
1500 print_generic_expr (dump_file, base_addr);
1501 fprintf (dump_file, "\n");
1504 else
1505 terminate_all_aliasing_chains (chain_info,
1506 offset != NULL_TREE, stmt);
1508 continue;
1511 terminate_all_aliasing_chains (NULL, false, stmt);
1513 terminate_and_process_all_chains ();
1515 return 0;
1518 } // anon namespace
1520 /* Construct and return a store merging pass object. */
1522 gimple_opt_pass *
1523 make_pass_store_merging (gcc::context *ctxt)
1525 return new pass_store_merging (ctxt);
1528 #if CHECKING_P
1530 namespace selftest {
1532 /* Selftests for store merging helpers. */
1534 /* Assert that all elements of the byte arrays X and Y, both of length N
1535 are equal. */
1537 static void
1538 verify_array_eq (unsigned char *x, unsigned char *y, unsigned int n)
1540 for (unsigned int i = 0; i < n; i++)
1542 if (x[i] != y[i])
1544 fprintf (stderr, "Arrays do not match. X:\n");
1545 dump_char_array (stderr, x, n);
1546 fprintf (stderr, "Y:\n");
1547 dump_char_array (stderr, y, n);
1549 ASSERT_EQ (x[i], y[i]);
1553 /* Test shift_bytes_in_array and that it carries bits across between
1554 bytes correctly. */
1556 static void
1557 verify_shift_bytes_in_array (void)
1559 /* byte 1 | byte 0
1560 00011111 | 11100000. */
1561 unsigned char orig[2] = { 0xe0, 0x1f };
1562 unsigned char in[2];
1563 memcpy (in, orig, sizeof orig);
1565 unsigned char expected[2] = { 0x80, 0x7f };
1566 shift_bytes_in_array (in, sizeof (in), 2);
1567 verify_array_eq (in, expected, sizeof (in));
1569 memcpy (in, orig, sizeof orig);
1570 memcpy (expected, orig, sizeof orig);
1571 /* Check that shifting by zero doesn't change anything. */
1572 shift_bytes_in_array (in, sizeof (in), 0);
1573 verify_array_eq (in, expected, sizeof (in));
1577 /* Test shift_bytes_in_array_right and that it carries bits across between
1578 bytes correctly. */
1580 static void
1581 verify_shift_bytes_in_array_right (void)
1583 /* byte 1 | byte 0
1584 00011111 | 11100000. */
1585 unsigned char orig[2] = { 0x1f, 0xe0};
1586 unsigned char in[2];
1587 memcpy (in, orig, sizeof orig);
1588 unsigned char expected[2] = { 0x07, 0xf8};
1589 shift_bytes_in_array_right (in, sizeof (in), 2);
1590 verify_array_eq (in, expected, sizeof (in));
1592 memcpy (in, orig, sizeof orig);
1593 memcpy (expected, orig, sizeof orig);
1594 /* Check that shifting by zero doesn't change anything. */
1595 shift_bytes_in_array_right (in, sizeof (in), 0);
1596 verify_array_eq (in, expected, sizeof (in));
1599 /* Test clear_bit_region that it clears exactly the bits asked and
1600 nothing more. */
1602 static void
1603 verify_clear_bit_region (void)
1605 /* Start with all bits set and test clearing various patterns in them. */
1606 unsigned char orig[3] = { 0xff, 0xff, 0xff};
1607 unsigned char in[3];
1608 unsigned char expected[3];
1609 memcpy (in, orig, sizeof in);
1611 /* Check zeroing out all the bits. */
1612 clear_bit_region (in, 0, 3 * BITS_PER_UNIT);
1613 expected[0] = expected[1] = expected[2] = 0;
1614 verify_array_eq (in, expected, sizeof in);
1616 memcpy (in, orig, sizeof in);
1617 /* Leave the first and last bits intact. */
1618 clear_bit_region (in, 1, 3 * BITS_PER_UNIT - 2);
1619 expected[0] = 0x1;
1620 expected[1] = 0;
1621 expected[2] = 0x80;
1622 verify_array_eq (in, expected, sizeof in);
1625 /* Test verify_clear_bit_region_be that it clears exactly the bits asked and
1626 nothing more. */
1628 static void
1629 verify_clear_bit_region_be (void)
1631 /* Start with all bits set and test clearing various patterns in them. */
1632 unsigned char orig[3] = { 0xff, 0xff, 0xff};
1633 unsigned char in[3];
1634 unsigned char expected[3];
1635 memcpy (in, orig, sizeof in);
1637 /* Check zeroing out all the bits. */
1638 clear_bit_region_be (in, BITS_PER_UNIT - 1, 3 * BITS_PER_UNIT);
1639 expected[0] = expected[1] = expected[2] = 0;
1640 verify_array_eq (in, expected, sizeof in);
1642 memcpy (in, orig, sizeof in);
1643 /* Leave the first and last bits intact. */
1644 clear_bit_region_be (in, BITS_PER_UNIT - 2, 3 * BITS_PER_UNIT - 2);
1645 expected[0] = 0x80;
1646 expected[1] = 0;
1647 expected[2] = 0x1;
1648 verify_array_eq (in, expected, sizeof in);
1652 /* Run all of the selftests within this file. */
1654 void
1655 store_merging_c_tests (void)
1657 verify_shift_bytes_in_array ();
1658 verify_shift_bytes_in_array_right ();
1659 verify_clear_bit_region ();
1660 verify_clear_bit_region_be ();
1663 } // namespace selftest
1664 #endif /* CHECKING_P. */