PR target/82524
[official-gcc.git] / gcc / ada / sem_ch6.adb
bloba85ca60cd5f4cdf947abd5340a72e80901ff56fc
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ C H 6 --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2017, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
26 with Aspects; use Aspects;
27 with Atree; use Atree;
28 with Checks; use Checks;
29 with Contracts; use Contracts;
30 with Debug; use Debug;
31 with Einfo; use Einfo;
32 with Elists; use Elists;
33 with Errout; use Errout;
34 with Expander; use Expander;
35 with Exp_Ch6; use Exp_Ch6;
36 with Exp_Ch7; use Exp_Ch7;
37 with Exp_Ch9; use Exp_Ch9;
38 with Exp_Dbug; use Exp_Dbug;
39 with Exp_Disp; use Exp_Disp;
40 with Exp_Tss; use Exp_Tss;
41 with Exp_Util; use Exp_Util;
42 with Freeze; use Freeze;
43 with Ghost; use Ghost;
44 with Inline; use Inline;
45 with Itypes; use Itypes;
46 with Lib.Xref; use Lib.Xref;
47 with Layout; use Layout;
48 with Namet; use Namet;
49 with Lib; use Lib;
50 with Nlists; use Nlists;
51 with Nmake; use Nmake;
52 with Opt; use Opt;
53 with Output; use Output;
54 with Restrict; use Restrict;
55 with Rident; use Rident;
56 with Rtsfind; use Rtsfind;
57 with Sem; use Sem;
58 with Sem_Aux; use Sem_Aux;
59 with Sem_Cat; use Sem_Cat;
60 with Sem_Ch3; use Sem_Ch3;
61 with Sem_Ch4; use Sem_Ch4;
62 with Sem_Ch5; use Sem_Ch5;
63 with Sem_Ch8; use Sem_Ch8;
64 with Sem_Ch9; use Sem_Ch9;
65 with Sem_Ch10; use Sem_Ch10;
66 with Sem_Ch12; use Sem_Ch12;
67 with Sem_Ch13; use Sem_Ch13;
68 with Sem_Dim; use Sem_Dim;
69 with Sem_Disp; use Sem_Disp;
70 with Sem_Dist; use Sem_Dist;
71 with Sem_Elim; use Sem_Elim;
72 with Sem_Eval; use Sem_Eval;
73 with Sem_Mech; use Sem_Mech;
74 with Sem_Prag; use Sem_Prag;
75 with Sem_Res; use Sem_Res;
76 with Sem_Util; use Sem_Util;
77 with Sem_Type; use Sem_Type;
78 with Sem_Warn; use Sem_Warn;
79 with Sinput; use Sinput;
80 with Stand; use Stand;
81 with Sinfo; use Sinfo;
82 with Sinfo.CN; use Sinfo.CN;
83 with Snames; use Snames;
84 with Stringt; use Stringt;
85 with Style;
86 with Stylesw; use Stylesw;
87 with Tbuild; use Tbuild;
88 with Uintp; use Uintp;
89 with Urealp; use Urealp;
90 with Validsw; use Validsw;
92 package body Sem_Ch6 is
94 May_Hide_Profile : Boolean := False;
95 -- This flag is used to indicate that two formals in two subprograms being
96 -- checked for conformance differ only in that one is an access parameter
97 -- while the other is of a general access type with the same designated
98 -- type. In this case, if the rest of the signatures match, a call to
99 -- either subprogram may be ambiguous, which is worth a warning. The flag
100 -- is set in Compatible_Types, and the warning emitted in
101 -- New_Overloaded_Entity.
103 -----------------------
104 -- Local Subprograms --
105 -----------------------
107 procedure Analyze_Function_Return (N : Node_Id);
108 -- Subsidiary to Analyze_Return_Statement. Called when the return statement
109 -- applies to a [generic] function.
111 procedure Analyze_Generic_Subprogram_Body (N : Node_Id; Gen_Id : Entity_Id);
112 -- Analyze a generic subprogram body. N is the body to be analyzed, and
113 -- Gen_Id is the defining entity Id for the corresponding spec.
115 procedure Analyze_Null_Procedure
116 (N : Node_Id;
117 Is_Completion : out Boolean);
118 -- A null procedure can be a declaration or (Ada 2012) a completion
120 procedure Analyze_Return_Statement (N : Node_Id);
121 -- Common processing for simple and extended return statements
123 procedure Analyze_Return_Type (N : Node_Id);
124 -- Subsidiary to Process_Formals: analyze subtype mark in function
125 -- specification in a context where the formals are visible and hide
126 -- outer homographs.
128 procedure Analyze_Subprogram_Body_Helper (N : Node_Id);
129 -- Does all the real work of Analyze_Subprogram_Body. This is split out so
130 -- that we can use RETURN but not skip the debug output at the end.
132 function Can_Override_Operator (Subp : Entity_Id) return Boolean;
133 -- Returns true if Subp can override a predefined operator.
135 procedure Check_Conformance
136 (New_Id : Entity_Id;
137 Old_Id : Entity_Id;
138 Ctype : Conformance_Type;
139 Errmsg : Boolean;
140 Conforms : out Boolean;
141 Err_Loc : Node_Id := Empty;
142 Get_Inst : Boolean := False;
143 Skip_Controlling_Formals : Boolean := False);
144 -- Given two entities, this procedure checks that the profiles associated
145 -- with these entities meet the conformance criterion given by the third
146 -- parameter. If they conform, Conforms is set True and control returns
147 -- to the caller. If they do not conform, Conforms is set to False, and
148 -- in addition, if Errmsg is True on the call, proper messages are output
149 -- to complain about the conformance failure. If Err_Loc is non_Empty
150 -- the error messages are placed on Err_Loc, if Err_Loc is empty, then
151 -- error messages are placed on the appropriate part of the construct
152 -- denoted by New_Id. If Get_Inst is true, then this is a mode conformance
153 -- against a formal access-to-subprogram type so Get_Instance_Of must
154 -- be called.
156 procedure Check_Limited_Return
157 (N : Node_Id;
158 Expr : Node_Id;
159 R_Type : Entity_Id);
160 -- Check the appropriate (Ada 95 or Ada 2005) rules for returning limited
161 -- types. Used only for simple return statements. Expr is the expression
162 -- returned.
164 procedure Check_Subprogram_Order (N : Node_Id);
165 -- N is the N_Subprogram_Body node for a subprogram. This routine applies
166 -- the alpha ordering rule for N if this ordering requirement applicable.
168 procedure Check_Returns
169 (HSS : Node_Id;
170 Mode : Character;
171 Err : out Boolean;
172 Proc : Entity_Id := Empty);
173 -- Called to check for missing return statements in a function body, or for
174 -- returns present in a procedure body which has No_Return set. HSS is the
175 -- handled statement sequence for the subprogram body. This procedure
176 -- checks all flow paths to make sure they either have return (Mode = 'F',
177 -- used for functions) or do not have a return (Mode = 'P', used for
178 -- No_Return procedures). The flag Err is set if there are any control
179 -- paths not explicitly terminated by a return in the function case, and is
180 -- True otherwise. Proc is the entity for the procedure case and is used
181 -- in posting the warning message.
183 procedure Check_Untagged_Equality (Eq_Op : Entity_Id);
184 -- In Ada 2012, a primitive equality operator on an untagged record type
185 -- must appear before the type is frozen, and have the same visibility as
186 -- that of the type. This procedure checks that this rule is met, and
187 -- otherwise emits an error on the subprogram declaration and a warning
188 -- on the earlier freeze point if it is easy to locate. In Ada 2012 mode,
189 -- this routine outputs errors (or warnings if -gnatd.E is set). In earlier
190 -- versions of Ada, warnings are output if Warn_On_Ada_2012_Incompatibility
191 -- is set, otherwise the call has no effect.
193 procedure Enter_Overloaded_Entity (S : Entity_Id);
194 -- This procedure makes S, a new overloaded entity, into the first visible
195 -- entity with that name.
197 function Is_Non_Overriding_Operation
198 (Prev_E : Entity_Id;
199 New_E : Entity_Id) return Boolean;
200 -- Enforce the rule given in 12.3(18): a private operation in an instance
201 -- overrides an inherited operation only if the corresponding operation
202 -- was overriding in the generic. This needs to be checked for primitive
203 -- operations of types derived (in the generic unit) from formal private
204 -- or formal derived types.
206 procedure Make_Inequality_Operator (S : Entity_Id);
207 -- Create the declaration for an inequality operator that is implicitly
208 -- created by a user-defined equality operator that yields a boolean.
210 procedure Set_Formal_Validity (Formal_Id : Entity_Id);
211 -- Formal_Id is an formal parameter entity. This procedure deals with
212 -- setting the proper validity status for this entity, which depends on
213 -- the kind of parameter and the validity checking mode.
215 ---------------------------------------------
216 -- Analyze_Abstract_Subprogram_Declaration --
217 ---------------------------------------------
219 procedure Analyze_Abstract_Subprogram_Declaration (N : Node_Id) is
220 Scop : constant Entity_Id := Current_Scope;
221 Subp_Id : constant Entity_Id :=
222 Analyze_Subprogram_Specification (Specification (N));
224 begin
225 Check_SPARK_05_Restriction ("abstract subprogram is not allowed", N);
227 Generate_Definition (Subp_Id);
229 -- Set the SPARK mode from the current context (may be overwritten later
230 -- with explicit pragma).
232 Set_SPARK_Pragma (Subp_Id, SPARK_Mode_Pragma);
233 Set_SPARK_Pragma_Inherited (Subp_Id);
235 -- Preserve relevant elaboration-related attributes of the context which
236 -- are no longer available or very expensive to recompute once analysis,
237 -- resolution, and expansion are over.
239 Mark_Elaboration_Attributes
240 (N_Id => Subp_Id,
241 Checks => True);
243 Set_Is_Abstract_Subprogram (Subp_Id);
244 New_Overloaded_Entity (Subp_Id);
245 Check_Delayed_Subprogram (Subp_Id);
247 Set_Categorization_From_Scope (Subp_Id, Scop);
249 if Ekind (Scope (Subp_Id)) = E_Protected_Type then
250 Error_Msg_N ("abstract subprogram not allowed in protected type", N);
252 -- Issue a warning if the abstract subprogram is neither a dispatching
253 -- operation nor an operation that overrides an inherited subprogram or
254 -- predefined operator, since this most likely indicates a mistake.
256 elsif Warn_On_Redundant_Constructs
257 and then not Is_Dispatching_Operation (Subp_Id)
258 and then not Present (Overridden_Operation (Subp_Id))
259 and then (not Is_Operator_Symbol_Name (Chars (Subp_Id))
260 or else Scop /= Scope (Etype (First_Formal (Subp_Id))))
261 then
262 Error_Msg_N
263 ("abstract subprogram is not dispatching or overriding?r?", N);
264 end if;
266 Generate_Reference_To_Formals (Subp_Id);
267 Check_Eliminated (Subp_Id);
269 if Has_Aspects (N) then
270 Analyze_Aspect_Specifications (N, Subp_Id);
271 end if;
272 end Analyze_Abstract_Subprogram_Declaration;
274 ---------------------------------
275 -- Analyze_Expression_Function --
276 ---------------------------------
278 procedure Analyze_Expression_Function (N : Node_Id) is
279 Expr : constant Node_Id := Expression (N);
280 Loc : constant Source_Ptr := Sloc (N);
281 LocX : constant Source_Ptr := Sloc (Expr);
282 Spec : constant Node_Id := Specification (N);
284 procedure Freeze_Expr_Types (Def_Id : Entity_Id);
285 -- N is an expression function that is a completion and Def_Id its
286 -- defining entity. Freeze before N all the types referenced by the
287 -- expression of the function.
289 -----------------------
290 -- Freeze_Expr_Types --
291 -----------------------
293 procedure Freeze_Expr_Types (Def_Id : Entity_Id) is
294 function Cloned_Expression return Node_Id;
295 -- Build a duplicate of the expression of the return statement that
296 -- has no defining entities shared with the original expression.
298 function Freeze_Type_Refs (Node : Node_Id) return Traverse_Result;
299 -- Freeze all types referenced in the subtree rooted at Node
301 -----------------------
302 -- Cloned_Expression --
303 -----------------------
305 function Cloned_Expression return Node_Id is
306 function Clone_Id (Node : Node_Id) return Traverse_Result;
307 -- Tree traversal routine that clones the defining identifier of
308 -- iterator and loop parameter specification nodes.
310 ----------------
311 -- Check_Node --
312 ----------------
314 function Clone_Id (Node : Node_Id) return Traverse_Result is
315 begin
316 if Nkind_In (Node, N_Iterator_Specification,
317 N_Loop_Parameter_Specification)
318 then
319 Set_Defining_Identifier (Node,
320 New_Copy (Defining_Identifier (Node)));
321 end if;
323 return OK;
324 end Clone_Id;
326 procedure Clone_Def_Ids is new Traverse_Proc (Clone_Id);
328 -- Local variable
330 Dup_Expr : constant Node_Id := New_Copy_Tree (Expr);
332 -- Start of processing for Cloned_Expression
334 begin
335 -- We must duplicate the expression with semantic information to
336 -- inherit the decoration of global entities in generic instances.
337 -- Set the parent of the new node to be the parent of the original
338 -- to get the proper context, which is needed for complete error
339 -- reporting and for semantic analysis.
341 Set_Parent (Dup_Expr, Parent (Expr));
343 -- Replace the defining identifier of iterators and loop param
344 -- specifications by a clone to ensure that the cloned expression
345 -- and the original expression don't have shared identifiers;
346 -- otherwise, as part of the preanalysis of the expression, these
347 -- shared identifiers may be left decorated with itypes which
348 -- will not be available in the tree passed to the backend.
350 Clone_Def_Ids (Dup_Expr);
352 return Dup_Expr;
353 end Cloned_Expression;
355 ----------------------
356 -- Freeze_Type_Refs --
357 ----------------------
359 function Freeze_Type_Refs (Node : Node_Id) return Traverse_Result is
360 procedure Check_And_Freeze_Type (Typ : Entity_Id);
361 -- Check that Typ is fully declared and freeze it if so
363 ---------------------------
364 -- Check_And_Freeze_Type --
365 ---------------------------
367 procedure Check_And_Freeze_Type (Typ : Entity_Id) is
368 begin
369 -- Skip Itypes created by the preanalysis
371 if Is_Itype (Typ)
372 and then Scope_Within_Or_Same (Scope (Typ), Def_Id)
373 then
374 return;
375 end if;
377 -- This provides a better error message than generating
378 -- primitives whose compilation fails much later. Refine
379 -- the error message if possible.
381 Check_Fully_Declared (Typ, Node);
383 if Error_Posted (Node) then
384 if Has_Private_Component (Typ)
385 and then not Is_Private_Type (Typ)
386 then
387 Error_Msg_NE ("\type& has private component", Node, Typ);
388 end if;
390 else
391 Freeze_Before (N, Typ);
392 end if;
393 end Check_And_Freeze_Type;
395 -- Start of processing for Freeze_Type_Refs
397 begin
398 -- Check that a type referenced by an entity can be frozen
400 if Is_Entity_Name (Node) and then Present (Entity (Node)) then
401 Check_And_Freeze_Type (Etype (Entity (Node)));
403 -- Check that the enclosing record type can be frozen
405 if Ekind_In (Entity (Node), E_Component, E_Discriminant) then
406 Check_And_Freeze_Type (Scope (Entity (Node)));
407 end if;
409 -- Freezing an access type does not freeze the designated type,
410 -- but freezing conversions between access to interfaces requires
411 -- that the interface types themselves be frozen, so that dispatch
412 -- table entities are properly created.
414 -- Unclear whether a more general rule is needed ???
416 elsif Nkind (Node) = N_Type_Conversion
417 and then Is_Access_Type (Etype (Node))
418 and then Is_Interface (Designated_Type (Etype (Node)))
419 then
420 Check_And_Freeze_Type (Designated_Type (Etype (Node)));
421 end if;
423 -- No point in posting several errors on the same expression
425 if Serious_Errors_Detected > 0 then
426 return Abandon;
427 else
428 return OK;
429 end if;
430 end Freeze_Type_Refs;
432 procedure Freeze_References is new Traverse_Proc (Freeze_Type_Refs);
434 -- Local variables
436 Saved_First_Entity : constant Entity_Id := First_Entity (Def_Id);
437 Saved_Last_Entity : constant Entity_Id := Last_Entity (Def_Id);
438 Dup_Expr : constant Node_Id := Cloned_Expression;
440 -- Start of processing for Freeze_Expr_Types
442 begin
443 -- Preanalyze a duplicate of the expression to have available the
444 -- minimum decoration needed to locate referenced unfrozen types
445 -- without adding any decoration to the function expression. This
446 -- preanalysis is performed with errors disabled to avoid reporting
447 -- spurious errors on Ghost entities (since the expression is not
448 -- fully analyzed).
450 Push_Scope (Def_Id);
451 Install_Formals (Def_Id);
452 Ignore_Errors_Enable := Ignore_Errors_Enable + 1;
454 Preanalyze_Spec_Expression (Dup_Expr, Etype (Def_Id));
456 Ignore_Errors_Enable := Ignore_Errors_Enable - 1;
457 End_Scope;
459 -- Restore certain attributes of Def_Id since the preanalysis may
460 -- have introduced itypes to this scope, thus modifying attributes
461 -- First_Entity and Last_Entity.
463 Set_First_Entity (Def_Id, Saved_First_Entity);
464 Set_Last_Entity (Def_Id, Saved_Last_Entity);
466 if Present (Last_Entity (Def_Id)) then
467 Set_Next_Entity (Last_Entity (Def_Id), Empty);
468 end if;
470 -- Freeze all types referenced in the expression
472 Freeze_References (Dup_Expr);
473 end Freeze_Expr_Types;
475 -- Local variables
477 Asp : Node_Id;
478 New_Body : Node_Id;
479 New_Spec : Node_Id;
480 Orig_N : Node_Id;
481 Ret : Node_Id;
483 Def_Id : Entity_Id := Empty;
484 Prev : Entity_Id;
485 -- If the expression is a completion, Prev is the entity whose
486 -- declaration is completed. Def_Id is needed to analyze the spec.
488 -- Start of processing for Analyze_Expression_Function
490 begin
491 -- This is one of the occasions on which we transform the tree during
492 -- semantic analysis. If this is a completion, transform the expression
493 -- function into an equivalent subprogram body, and analyze it.
495 -- Expression functions are inlined unconditionally. The back-end will
496 -- determine whether this is possible.
498 Inline_Processing_Required := True;
500 -- Create a specification for the generated body. This must be done
501 -- prior to the analysis of the initial declaration.
503 New_Spec := Copy_Subprogram_Spec (Spec);
504 Prev := Current_Entity_In_Scope (Defining_Entity (Spec));
506 -- If there are previous overloadable entities with the same name,
507 -- check whether any of them is completed by the expression function.
508 -- In a generic context a formal subprogram has no completion.
510 if Present (Prev)
511 and then Is_Overloadable (Prev)
512 and then not Is_Formal_Subprogram (Prev)
513 then
514 Def_Id := Analyze_Subprogram_Specification (Spec);
515 Prev := Find_Corresponding_Spec (N);
517 -- The previous entity may be an expression function as well, in
518 -- which case the redeclaration is illegal.
520 if Present (Prev)
521 and then Nkind (Original_Node (Unit_Declaration_Node (Prev))) =
522 N_Expression_Function
523 then
524 Error_Msg_Sloc := Sloc (Prev);
525 Error_Msg_N ("& conflicts with declaration#", Def_Id);
526 return;
527 end if;
528 end if;
530 Ret := Make_Simple_Return_Statement (LocX, Expr);
532 New_Body :=
533 Make_Subprogram_Body (Loc,
534 Specification => New_Spec,
535 Declarations => Empty_List,
536 Handled_Statement_Sequence =>
537 Make_Handled_Sequence_Of_Statements (LocX,
538 Statements => New_List (Ret)));
539 Set_Was_Expression_Function (New_Body);
541 -- If the expression completes a generic subprogram, we must create a
542 -- separate node for the body, because at instantiation the original
543 -- node of the generic copy must be a generic subprogram body, and
544 -- cannot be a expression function. Otherwise we just rewrite the
545 -- expression with the non-generic body.
547 if Present (Prev) and then Ekind (Prev) = E_Generic_Function then
548 Insert_After (N, New_Body);
550 -- Propagate any aspects or pragmas that apply to the expression
551 -- function to the proper body when the expression function acts
552 -- as a completion.
554 if Has_Aspects (N) then
555 Move_Aspects (N, To => New_Body);
556 end if;
558 Relocate_Pragmas_To_Body (New_Body);
560 Rewrite (N, Make_Null_Statement (Loc));
561 Set_Has_Completion (Prev, False);
562 Analyze (N);
563 Analyze (New_Body);
564 Set_Is_Inlined (Prev);
566 -- If the expression function is a completion, the previous declaration
567 -- must come from source. We know already that it appears in the current
568 -- scope. The entity itself may be internally created if within a body
569 -- to be inlined.
571 elsif Present (Prev)
572 and then Is_Overloadable (Prev)
573 and then not Is_Formal_Subprogram (Prev)
574 and then Comes_From_Source (Parent (Prev))
575 then
576 Set_Has_Completion (Prev, False);
577 Set_Is_Inlined (Prev);
579 -- AI12-0103: Expression functions that are a completion freeze their
580 -- expression but don't freeze anything else (unlike regular bodies).
582 -- Note that we cannot defer this freezing to the analysis of the
583 -- expression itself, because a freeze node might appear in a nested
584 -- scope, leading to an elaboration order issue in gigi.
585 -- As elsewhere, we do not emit freeze nodes within a generic unit.
587 if not Inside_A_Generic then
588 Freeze_Expr_Types (Def_Id);
589 end if;
591 -- For navigation purposes, indicate that the function is a body
593 Generate_Reference (Prev, Defining_Entity (N), 'b', Force => True);
594 Rewrite (N, New_Body);
596 -- Remove any existing aspects from the original node because the act
597 -- of rewriting causes the list to be shared between the two nodes.
599 Orig_N := Original_Node (N);
600 Remove_Aspects (Orig_N);
602 -- Propagate any pragmas that apply to expression function to the
603 -- proper body when the expression function acts as a completion.
604 -- Aspects are automatically transfered because of node rewriting.
606 Relocate_Pragmas_To_Body (N);
607 Analyze (N);
609 -- Once the aspects of the generated body have been analyzed, create
610 -- a copy for ASIS purposes and associate it with the original node.
612 if Has_Aspects (N) then
613 Set_Aspect_Specifications (Orig_N,
614 New_Copy_List_Tree (Aspect_Specifications (N)));
615 end if;
617 -- Prev is the previous entity with the same name, but it is can
618 -- be an unrelated spec that is not completed by the expression
619 -- function. In that case the relevant entity is the one in the body.
620 -- Not clear that the backend can inline it in this case ???
622 if Has_Completion (Prev) then
624 -- The formals of the expression function are body formals,
625 -- and do not appear in the ali file, which will only contain
626 -- references to the formals of the original subprogram spec.
628 declare
629 F1 : Entity_Id;
630 F2 : Entity_Id;
632 begin
633 F1 := First_Formal (Def_Id);
634 F2 := First_Formal (Prev);
636 while Present (F1) loop
637 Set_Spec_Entity (F1, F2);
638 Next_Formal (F1);
639 Next_Formal (F2);
640 end loop;
641 end;
643 else
644 Set_Is_Inlined (Defining_Entity (New_Body));
645 end if;
647 -- If this is not a completion, create both a declaration and a body, so
648 -- that the expression can be inlined whenever possible.
650 else
651 -- An expression function that is not a completion is not a
652 -- subprogram declaration, and thus cannot appear in a protected
653 -- definition.
655 if Nkind (Parent (N)) = N_Protected_Definition then
656 Error_Msg_N
657 ("an expression function is not a legal protected operation", N);
658 end if;
660 Rewrite (N, Make_Subprogram_Declaration (Loc, Specification => Spec));
662 -- Remove any existing aspects from the original node because the act
663 -- of rewriting causes the list to be shared between the two nodes.
665 Orig_N := Original_Node (N);
666 Remove_Aspects (Orig_N);
668 Analyze (N);
670 -- Once the aspects of the generated spec have been analyzed, create
671 -- a copy for ASIS purposes and associate it with the original node.
673 if Has_Aspects (N) then
674 Set_Aspect_Specifications (Orig_N,
675 New_Copy_List_Tree (Aspect_Specifications (N)));
676 end if;
678 -- If aspect SPARK_Mode was specified on the body, it needs to be
679 -- repeated both on the generated spec and the body.
681 Asp := Find_Aspect (Defining_Unit_Name (Spec), Aspect_SPARK_Mode);
683 if Present (Asp) then
684 Asp := New_Copy_Tree (Asp);
685 Set_Analyzed (Asp, False);
686 Set_Aspect_Specifications (New_Body, New_List (Asp));
687 end if;
689 Def_Id := Defining_Entity (N);
690 Set_Is_Inlined (Def_Id);
692 -- Establish the linkages between the spec and the body. These are
693 -- used when the expression function acts as the prefix of attribute
694 -- 'Access in order to freeze the original expression which has been
695 -- moved to the generated body.
697 Set_Corresponding_Body (N, Defining_Entity (New_Body));
698 Set_Corresponding_Spec (New_Body, Def_Id);
700 -- Within a generic pre-analyze the original expression for name
701 -- capture. The body is also generated but plays no role in
702 -- this because it is not part of the original source.
704 if Inside_A_Generic then
705 Set_Has_Completion (Def_Id);
706 Push_Scope (Def_Id);
707 Install_Formals (Def_Id);
708 Preanalyze_Spec_Expression (Expr, Etype (Def_Id));
709 End_Scope;
710 end if;
712 -- To prevent premature freeze action, insert the new body at the end
713 -- of the current declarations, or at the end of the package spec.
714 -- However, resolve usage names now, to prevent spurious visibility
715 -- on later entities. Note that the function can now be called in
716 -- the current declarative part, which will appear to be prior to
717 -- the presence of the body in the code. There are nevertheless no
718 -- order of elaboration issues because all name resolution has taken
719 -- place at the point of declaration.
721 declare
722 Decls : List_Id := List_Containing (N);
723 Expr : constant Node_Id := Expression (Ret);
724 Par : constant Node_Id := Parent (Decls);
725 Typ : constant Entity_Id := Etype (Def_Id);
727 begin
728 -- If this is a wrapper created for in an instance for a formal
729 -- subprogram, insert body after declaration, to be analyzed when
730 -- the enclosing instance is analyzed.
732 if GNATprove_Mode
733 and then Is_Generic_Actual_Subprogram (Def_Id)
734 then
735 Insert_After (N, New_Body);
737 else
738 if Nkind (Par) = N_Package_Specification
739 and then Decls = Visible_Declarations (Par)
740 and then Present (Private_Declarations (Par))
741 and then not Is_Empty_List (Private_Declarations (Par))
742 then
743 Decls := Private_Declarations (Par);
744 end if;
746 Insert_After (Last (Decls), New_Body);
748 -- Preanalyze the expression if not already done above
750 if not Inside_A_Generic then
751 Push_Scope (Def_Id);
752 Install_Formals (Def_Id);
753 Preanalyze_Spec_Expression (Expr, Typ);
754 Check_Limited_Return (Original_Node (N), Expr, Typ);
755 End_Scope;
756 end if;
757 end if;
758 end;
759 end if;
761 -- Check incorrect use of dynamically tagged expression. This doesn't
762 -- fall out automatically when analyzing the generated function body,
763 -- because Check_Dynamically_Tagged_Expression deliberately ignores
764 -- nodes that don't come from source.
766 if Present (Def_Id)
767 and then Nkind (Def_Id) in N_Has_Etype
768 and then Is_Tagged_Type (Etype (Def_Id))
769 then
770 Check_Dynamically_Tagged_Expression
771 (Expr => Expr,
772 Typ => Etype (Def_Id),
773 Related_Nod => Original_Node (N));
774 end if;
776 -- If the return expression is a static constant, we suppress warning
777 -- messages on unused formals, which in most cases will be noise.
779 Set_Is_Trivial_Subprogram
780 (Defining_Entity (New_Body), Is_OK_Static_Expression (Expr));
781 end Analyze_Expression_Function;
783 ----------------------------------------
784 -- Analyze_Extended_Return_Statement --
785 ----------------------------------------
787 procedure Analyze_Extended_Return_Statement (N : Node_Id) is
788 begin
789 Check_Compiler_Unit ("extended return statement", N);
790 Analyze_Return_Statement (N);
791 end Analyze_Extended_Return_Statement;
793 ----------------------------
794 -- Analyze_Function_Call --
795 ----------------------------
797 procedure Analyze_Function_Call (N : Node_Id) is
798 Actuals : constant List_Id := Parameter_Associations (N);
799 Func_Nam : constant Node_Id := Name (N);
800 Actual : Node_Id;
802 begin
803 Analyze (Func_Nam);
805 -- A call of the form A.B (X) may be an Ada 2005 call, which is
806 -- rewritten as B (A, X). If the rewriting is successful, the call
807 -- has been analyzed and we just return.
809 if Nkind (Func_Nam) = N_Selected_Component
810 and then Name (N) /= Func_Nam
811 and then Is_Rewrite_Substitution (N)
812 and then Present (Etype (N))
813 then
814 return;
815 end if;
817 -- If error analyzing name, then set Any_Type as result type and return
819 if Etype (Func_Nam) = Any_Type then
820 Set_Etype (N, Any_Type);
821 return;
822 end if;
824 -- Otherwise analyze the parameters
826 if Present (Actuals) then
827 Actual := First (Actuals);
828 while Present (Actual) loop
829 Analyze (Actual);
830 Check_Parameterless_Call (Actual);
831 Next (Actual);
832 end loop;
833 end if;
835 Analyze_Call (N);
836 end Analyze_Function_Call;
838 -----------------------------
839 -- Analyze_Function_Return --
840 -----------------------------
842 procedure Analyze_Function_Return (N : Node_Id) is
843 Loc : constant Source_Ptr := Sloc (N);
844 Stm_Entity : constant Entity_Id := Return_Statement_Entity (N);
845 Scope_Id : constant Entity_Id := Return_Applies_To (Stm_Entity);
847 R_Type : constant Entity_Id := Etype (Scope_Id);
848 -- Function result subtype
850 procedure Check_Aggregate_Accessibility (Aggr : Node_Id);
851 -- Apply legality rule of 6.5 (5.8) to the access discriminants of an
852 -- aggregate in a return statement.
854 procedure Check_Return_Subtype_Indication (Obj_Decl : Node_Id);
855 -- Check that the return_subtype_indication properly matches the result
856 -- subtype of the function, as required by RM-6.5(5.1/2-5.3/2).
858 -----------------------------------
859 -- Check_Aggregate_Accessibility --
860 -----------------------------------
862 procedure Check_Aggregate_Accessibility (Aggr : Node_Id) is
863 Typ : constant Entity_Id := Etype (Aggr);
864 Assoc : Node_Id;
865 Discr : Entity_Id;
866 Expr : Node_Id;
867 Obj : Node_Id;
869 begin
870 if Is_Record_Type (Typ) and then Has_Discriminants (Typ) then
871 Discr := First_Discriminant (Typ);
872 Assoc := First (Component_Associations (Aggr));
873 while Present (Discr) loop
874 if Ekind (Etype (Discr)) = E_Anonymous_Access_Type then
875 Expr := Expression (Assoc);
877 if Nkind (Expr) = N_Attribute_Reference
878 and then Attribute_Name (Expr) /= Name_Unrestricted_Access
879 then
880 Obj := Prefix (Expr);
881 while Nkind_In (Obj, N_Indexed_Component,
882 N_Selected_Component)
883 loop
884 Obj := Prefix (Obj);
885 end loop;
887 -- Do not check aliased formals or function calls. A
888 -- run-time check may still be needed ???
890 if Is_Entity_Name (Obj)
891 and then Comes_From_Source (Obj)
892 then
893 if Is_Formal (Entity (Obj))
894 and then Is_Aliased (Entity (Obj))
895 then
896 null;
898 elsif Object_Access_Level (Obj) >
899 Scope_Depth (Scope (Scope_Id))
900 then
901 Error_Msg_N
902 ("access discriminant in return aggregate would "
903 & "be a dangling reference", Obj);
904 end if;
905 end if;
906 end if;
907 end if;
909 Next_Discriminant (Discr);
910 end loop;
911 end if;
912 end Check_Aggregate_Accessibility;
914 -------------------------------------
915 -- Check_Return_Subtype_Indication --
916 -------------------------------------
918 procedure Check_Return_Subtype_Indication (Obj_Decl : Node_Id) is
919 Return_Obj : constant Node_Id := Defining_Identifier (Obj_Decl);
921 R_Stm_Type : constant Entity_Id := Etype (Return_Obj);
922 -- Subtype given in the extended return statement (must match R_Type)
924 Subtype_Ind : constant Node_Id :=
925 Object_Definition (Original_Node (Obj_Decl));
927 procedure Error_No_Match (N : Node_Id);
928 -- Output error messages for case where types do not statically
929 -- match. N is the location for the messages.
931 --------------------
932 -- Error_No_Match --
933 --------------------
935 procedure Error_No_Match (N : Node_Id) is
936 begin
937 Error_Msg_N
938 ("subtype must statically match function result subtype", N);
940 if not Predicates_Match (R_Stm_Type, R_Type) then
941 Error_Msg_Node_2 := R_Type;
942 Error_Msg_NE
943 ("\predicate of& does not match predicate of&",
944 N, R_Stm_Type);
945 end if;
946 end Error_No_Match;
948 -- Start of processing for Check_Return_Subtype_Indication
950 begin
951 -- First, avoid cascaded errors
953 if Error_Posted (Obj_Decl) or else Error_Posted (Subtype_Ind) then
954 return;
955 end if;
957 -- "return access T" case; check that the return statement also has
958 -- "access T", and that the subtypes statically match:
959 -- if this is an access to subprogram the signatures must match.
961 if Is_Anonymous_Access_Type (R_Type) then
962 if Is_Anonymous_Access_Type (R_Stm_Type) then
963 if Ekind (Designated_Type (R_Stm_Type)) /= E_Subprogram_Type
964 then
965 if Base_Type (Designated_Type (R_Stm_Type)) /=
966 Base_Type (Designated_Type (R_Type))
967 or else not Subtypes_Statically_Match (R_Stm_Type, R_Type)
968 then
969 Error_No_Match (Subtype_Mark (Subtype_Ind));
970 end if;
972 else
973 -- For two anonymous access to subprogram types, the types
974 -- themselves must be type conformant.
976 if not Conforming_Types
977 (R_Stm_Type, R_Type, Fully_Conformant)
978 then
979 Error_No_Match (Subtype_Ind);
980 end if;
981 end if;
983 else
984 Error_Msg_N ("must use anonymous access type", Subtype_Ind);
985 end if;
987 -- If the return object is of an anonymous access type, then report
988 -- an error if the function's result type is not also anonymous.
990 elsif Is_Anonymous_Access_Type (R_Stm_Type) then
991 pragma Assert (not Is_Anonymous_Access_Type (R_Type));
992 Error_Msg_N
993 ("anonymous access not allowed for function with named access "
994 & "result", Subtype_Ind);
996 -- Subtype indication case: check that the return object's type is
997 -- covered by the result type, and that the subtypes statically match
998 -- when the result subtype is constrained. Also handle record types
999 -- with unknown discriminants for which we have built the underlying
1000 -- record view. Coverage is needed to allow specific-type return
1001 -- objects when the result type is class-wide (see AI05-32).
1003 elsif Covers (Base_Type (R_Type), Base_Type (R_Stm_Type))
1004 or else (Is_Underlying_Record_View (Base_Type (R_Stm_Type))
1005 and then
1006 Covers
1007 (Base_Type (R_Type),
1008 Underlying_Record_View (Base_Type (R_Stm_Type))))
1009 then
1010 -- A null exclusion may be present on the return type, on the
1011 -- function specification, on the object declaration or on the
1012 -- subtype itself.
1014 if Is_Access_Type (R_Type)
1015 and then
1016 (Can_Never_Be_Null (R_Type)
1017 or else Null_Exclusion_Present (Parent (Scope_Id))) /=
1018 Can_Never_Be_Null (R_Stm_Type)
1019 then
1020 Error_No_Match (Subtype_Ind);
1021 end if;
1023 -- AI05-103: for elementary types, subtypes must statically match
1025 if Is_Constrained (R_Type) or else Is_Access_Type (R_Type) then
1026 if not Subtypes_Statically_Match (R_Stm_Type, R_Type) then
1027 Error_No_Match (Subtype_Ind);
1028 end if;
1029 end if;
1031 -- All remaining cases are illegal
1033 -- Note: previous versions of this subprogram allowed the return
1034 -- value to be the ancestor of the return type if the return type
1035 -- was a null extension. This was plainly incorrect.
1037 else
1038 Error_Msg_N
1039 ("wrong type for return_subtype_indication", Subtype_Ind);
1040 end if;
1041 end Check_Return_Subtype_Indication;
1043 ---------------------
1044 -- Local Variables --
1045 ---------------------
1047 Expr : Node_Id;
1048 Obj_Decl : Node_Id;
1050 -- Start of processing for Analyze_Function_Return
1052 begin
1053 Set_Return_Present (Scope_Id);
1055 if Nkind (N) = N_Simple_Return_Statement then
1056 Expr := Expression (N);
1058 -- Guard against a malformed expression. The parser may have tried to
1059 -- recover but the node is not analyzable.
1061 if Nkind (Expr) = N_Error then
1062 Set_Etype (Expr, Any_Type);
1063 Expander_Mode_Save_And_Set (False);
1064 return;
1066 else
1067 -- The resolution of a controlled [extension] aggregate associated
1068 -- with a return statement creates a temporary which needs to be
1069 -- finalized on function exit. Wrap the return statement inside a
1070 -- block so that the finalization machinery can detect this case.
1071 -- This early expansion is done only when the return statement is
1072 -- not part of a handled sequence of statements.
1074 if Nkind_In (Expr, N_Aggregate,
1075 N_Extension_Aggregate)
1076 and then Needs_Finalization (R_Type)
1077 and then Nkind (Parent (N)) /= N_Handled_Sequence_Of_Statements
1078 then
1079 Rewrite (N,
1080 Make_Block_Statement (Loc,
1081 Handled_Statement_Sequence =>
1082 Make_Handled_Sequence_Of_Statements (Loc,
1083 Statements => New_List (Relocate_Node (N)))));
1085 Analyze (N);
1086 return;
1087 end if;
1089 Analyze (Expr);
1091 -- Ada 2005 (AI-251): If the type of the returned object is
1092 -- an access to an interface type then we add an implicit type
1093 -- conversion to force the displacement of the "this" pointer to
1094 -- reference the secondary dispatch table. We cannot delay the
1095 -- generation of this implicit conversion until the expansion
1096 -- because in this case the type resolution changes the decoration
1097 -- of the expression node to match R_Type; by contrast, if the
1098 -- returned object is a class-wide interface type then it is too
1099 -- early to generate here the implicit conversion since the return
1100 -- statement may be rewritten by the expander into an extended
1101 -- return statement whose expansion takes care of adding the
1102 -- implicit type conversion to displace the pointer to the object.
1104 if Expander_Active
1105 and then Serious_Errors_Detected = 0
1106 and then Is_Access_Type (R_Type)
1107 and then not Nkind_In (Expr, N_Null, N_Raise_Expression)
1108 and then Is_Interface (Designated_Type (R_Type))
1109 and then Is_Progenitor (Designated_Type (R_Type),
1110 Designated_Type (Etype (Expr)))
1111 then
1112 Rewrite (Expr, Convert_To (R_Type, Relocate_Node (Expr)));
1113 Analyze (Expr);
1114 end if;
1116 Resolve (Expr, R_Type);
1117 Check_Limited_Return (N, Expr, R_Type);
1119 if Present (Expr) and then Nkind (Expr) = N_Aggregate then
1120 Check_Aggregate_Accessibility (Expr);
1121 end if;
1122 end if;
1124 -- RETURN only allowed in SPARK as the last statement in function
1126 if Nkind (Parent (N)) /= N_Handled_Sequence_Of_Statements
1127 and then
1128 (Nkind (Parent (Parent (N))) /= N_Subprogram_Body
1129 or else Present (Next (N)))
1130 then
1131 Check_SPARK_05_Restriction
1132 ("RETURN should be the last statement in function", N);
1133 end if;
1135 else
1136 Check_SPARK_05_Restriction ("extended RETURN is not allowed", N);
1137 Obj_Decl := Last (Return_Object_Declarations (N));
1139 -- Analyze parts specific to extended_return_statement:
1141 declare
1142 Has_Aliased : constant Boolean := Aliased_Present (Obj_Decl);
1143 HSS : constant Node_Id := Handled_Statement_Sequence (N);
1145 begin
1146 Expr := Expression (Obj_Decl);
1148 -- Note: The check for OK_For_Limited_Init will happen in
1149 -- Analyze_Object_Declaration; we treat it as a normal
1150 -- object declaration.
1152 Set_Is_Return_Object (Defining_Identifier (Obj_Decl));
1153 Analyze (Obj_Decl);
1155 Check_Return_Subtype_Indication (Obj_Decl);
1157 if Present (HSS) then
1158 Analyze (HSS);
1160 if Present (Exception_Handlers (HSS)) then
1162 -- ???Has_Nested_Block_With_Handler needs to be set.
1163 -- Probably by creating an actual N_Block_Statement.
1164 -- Probably in Expand.
1166 null;
1167 end if;
1168 end if;
1170 -- Mark the return object as referenced, since the return is an
1171 -- implicit reference of the object.
1173 Set_Referenced (Defining_Identifier (Obj_Decl));
1175 Check_References (Stm_Entity);
1177 -- Check RM 6.5 (5.9/3)
1179 if Has_Aliased then
1180 if Ada_Version < Ada_2012 then
1182 -- Shouldn't this test Warn_On_Ada_2012_Compatibility ???
1183 -- Can it really happen (extended return???)
1185 Error_Msg_N
1186 ("aliased only allowed for limited return objects "
1187 & "in Ada 2012??", N);
1189 elsif not Is_Limited_View (R_Type) then
1190 Error_Msg_N
1191 ("aliased only allowed for limited return objects", N);
1192 end if;
1193 end if;
1194 end;
1195 end if;
1197 -- Case of Expr present
1199 if Present (Expr)
1201 -- Defend against previous errors
1203 and then Nkind (Expr) /= N_Empty
1204 and then Present (Etype (Expr))
1205 then
1206 -- Apply constraint check. Note that this is done before the implicit
1207 -- conversion of the expression done for anonymous access types to
1208 -- ensure correct generation of the null-excluding check associated
1209 -- with null-excluding expressions found in return statements.
1211 Apply_Constraint_Check (Expr, R_Type);
1213 -- Ada 2005 (AI-318-02): When the result type is an anonymous access
1214 -- type, apply an implicit conversion of the expression to that type
1215 -- to force appropriate static and run-time accessibility checks.
1217 if Ada_Version >= Ada_2005
1218 and then Ekind (R_Type) = E_Anonymous_Access_Type
1219 then
1220 Rewrite (Expr, Convert_To (R_Type, Relocate_Node (Expr)));
1221 Analyze_And_Resolve (Expr, R_Type);
1223 -- If this is a local anonymous access to subprogram, the
1224 -- accessibility check can be applied statically. The return is
1225 -- illegal if the access type of the return expression is declared
1226 -- inside of the subprogram (except if it is the subtype indication
1227 -- of an extended return statement).
1229 elsif Ekind (R_Type) = E_Anonymous_Access_Subprogram_Type then
1230 if not Comes_From_Source (Current_Scope)
1231 or else Ekind (Current_Scope) = E_Return_Statement
1232 then
1233 null;
1235 elsif
1236 Scope_Depth (Scope (Etype (Expr))) >= Scope_Depth (Scope_Id)
1237 then
1238 Error_Msg_N ("cannot return local access to subprogram", N);
1239 end if;
1241 -- The expression cannot be of a formal incomplete type
1243 elsif Ekind (Etype (Expr)) = E_Incomplete_Type
1244 and then Is_Generic_Type (Etype (Expr))
1245 then
1246 Error_Msg_N
1247 ("cannot return expression of a formal incomplete type", N);
1248 end if;
1250 -- If the result type is class-wide, then check that the return
1251 -- expression's type is not declared at a deeper level than the
1252 -- function (RM05-6.5(5.6/2)).
1254 if Ada_Version >= Ada_2005
1255 and then Is_Class_Wide_Type (R_Type)
1256 then
1257 if Type_Access_Level (Etype (Expr)) >
1258 Subprogram_Access_Level (Scope_Id)
1259 then
1260 Error_Msg_N
1261 ("level of return expression type is deeper than "
1262 & "class-wide function!", Expr);
1263 end if;
1264 end if;
1266 -- Check incorrect use of dynamically tagged expression
1268 if Is_Tagged_Type (R_Type) then
1269 Check_Dynamically_Tagged_Expression
1270 (Expr => Expr,
1271 Typ => R_Type,
1272 Related_Nod => N);
1273 end if;
1275 -- ??? A real run-time accessibility check is needed in cases
1276 -- involving dereferences of access parameters. For now we just
1277 -- check the static cases.
1279 if (Ada_Version < Ada_2005 or else Debug_Flag_Dot_L)
1280 and then Is_Limited_View (Etype (Scope_Id))
1281 and then Object_Access_Level (Expr) >
1282 Subprogram_Access_Level (Scope_Id)
1283 then
1284 -- Suppress the message in a generic, where the rewriting
1285 -- is irrelevant.
1287 if Inside_A_Generic then
1288 null;
1290 else
1291 Rewrite (N,
1292 Make_Raise_Program_Error (Loc,
1293 Reason => PE_Accessibility_Check_Failed));
1294 Analyze (N);
1296 Error_Msg_Warn := SPARK_Mode /= On;
1297 Error_Msg_N ("cannot return a local value by reference<<", N);
1298 Error_Msg_NE ("\& [<<", N, Standard_Program_Error);
1299 end if;
1300 end if;
1302 if Known_Null (Expr)
1303 and then Nkind (Parent (Scope_Id)) = N_Function_Specification
1304 and then Null_Exclusion_Present (Parent (Scope_Id))
1305 then
1306 Apply_Compile_Time_Constraint_Error
1307 (N => Expr,
1308 Msg => "(Ada 2005) null not allowed for "
1309 & "null-excluding return??",
1310 Reason => CE_Null_Not_Allowed);
1311 end if;
1313 -- RM 6.5 (5.4/3): accessibility checks also apply if the return object
1314 -- has no initializing expression.
1316 elsif Ada_Version > Ada_2005 and then Is_Class_Wide_Type (R_Type) then
1317 if Type_Access_Level (Etype (Defining_Identifier (Obj_Decl))) >
1318 Subprogram_Access_Level (Scope_Id)
1319 then
1320 Error_Msg_N
1321 ("level of return expression type is deeper than "
1322 & "class-wide function!", Obj_Decl);
1323 end if;
1324 end if;
1325 end Analyze_Function_Return;
1327 -------------------------------------
1328 -- Analyze_Generic_Subprogram_Body --
1329 -------------------------------------
1331 procedure Analyze_Generic_Subprogram_Body
1332 (N : Node_Id;
1333 Gen_Id : Entity_Id)
1335 Gen_Decl : constant Node_Id := Unit_Declaration_Node (Gen_Id);
1336 Kind : constant Entity_Kind := Ekind (Gen_Id);
1337 Body_Id : Entity_Id;
1338 New_N : Node_Id;
1339 Spec : Node_Id;
1341 begin
1342 -- Copy body and disable expansion while analyzing the generic For a
1343 -- stub, do not copy the stub (which would load the proper body), this
1344 -- will be done when the proper body is analyzed.
1346 if Nkind (N) /= N_Subprogram_Body_Stub then
1347 New_N := Copy_Generic_Node (N, Empty, Instantiating => False);
1348 Rewrite (N, New_N);
1350 -- Once the contents of the generic copy and the template are
1351 -- swapped, do the same for their respective aspect specifications.
1353 Exchange_Aspects (N, New_N);
1355 -- Collect all contract-related source pragmas found within the
1356 -- template and attach them to the contract of the subprogram body.
1357 -- This contract is used in the capture of global references within
1358 -- annotations.
1360 Create_Generic_Contract (N);
1362 Start_Generic;
1363 end if;
1365 Spec := Specification (N);
1367 -- Within the body of the generic, the subprogram is callable, and
1368 -- behaves like the corresponding non-generic unit.
1370 Body_Id := Defining_Entity (Spec);
1372 if Kind = E_Generic_Procedure
1373 and then Nkind (Spec) /= N_Procedure_Specification
1374 then
1375 Error_Msg_N ("invalid body for generic procedure ", Body_Id);
1376 return;
1378 elsif Kind = E_Generic_Function
1379 and then Nkind (Spec) /= N_Function_Specification
1380 then
1381 Error_Msg_N ("invalid body for generic function ", Body_Id);
1382 return;
1383 end if;
1385 Set_Corresponding_Body (Gen_Decl, Body_Id);
1387 if Has_Completion (Gen_Id)
1388 and then Nkind (Parent (N)) /= N_Subunit
1389 then
1390 Error_Msg_N ("duplicate generic body", N);
1391 return;
1392 else
1393 Set_Has_Completion (Gen_Id);
1394 end if;
1396 if Nkind (N) = N_Subprogram_Body_Stub then
1397 Set_Ekind (Defining_Entity (Specification (N)), Kind);
1398 else
1399 Set_Corresponding_Spec (N, Gen_Id);
1400 end if;
1402 if Nkind (Parent (N)) = N_Compilation_Unit then
1403 Set_Cunit_Entity (Current_Sem_Unit, Defining_Entity (N));
1404 end if;
1406 -- Make generic parameters immediately visible in the body. They are
1407 -- needed to process the formals declarations. Then make the formals
1408 -- visible in a separate step.
1410 Push_Scope (Gen_Id);
1412 declare
1413 E : Entity_Id;
1414 First_Ent : Entity_Id;
1416 begin
1417 First_Ent := First_Entity (Gen_Id);
1419 E := First_Ent;
1420 while Present (E) and then not Is_Formal (E) loop
1421 Install_Entity (E);
1422 Next_Entity (E);
1423 end loop;
1425 Set_Use (Generic_Formal_Declarations (Gen_Decl));
1427 -- Now generic formals are visible, and the specification can be
1428 -- analyzed, for subsequent conformance check.
1430 Body_Id := Analyze_Subprogram_Specification (Spec);
1432 -- Make formal parameters visible
1434 if Present (E) then
1436 -- E is the first formal parameter, we loop through the formals
1437 -- installing them so that they will be visible.
1439 Set_First_Entity (Gen_Id, E);
1440 while Present (E) loop
1441 Install_Entity (E);
1442 Next_Formal (E);
1443 end loop;
1444 end if;
1446 -- Visible generic entity is callable within its own body
1448 Set_Ekind (Gen_Id, Ekind (Body_Id));
1449 Set_Ekind (Body_Id, E_Subprogram_Body);
1450 Set_Convention (Body_Id, Convention (Gen_Id));
1451 Set_Is_Obsolescent (Body_Id, Is_Obsolescent (Gen_Id));
1452 Set_Scope (Body_Id, Scope (Gen_Id));
1454 Check_Fully_Conformant (Body_Id, Gen_Id, Body_Id);
1456 if Nkind (N) = N_Subprogram_Body_Stub then
1458 -- No body to analyze, so restore state of generic unit
1460 Set_Ekind (Gen_Id, Kind);
1461 Set_Ekind (Body_Id, Kind);
1463 if Present (First_Ent) then
1464 Set_First_Entity (Gen_Id, First_Ent);
1465 end if;
1467 End_Scope;
1468 return;
1469 end if;
1471 -- If this is a compilation unit, it must be made visible explicitly,
1472 -- because the compilation of the declaration, unlike other library
1473 -- unit declarations, does not. If it is not a unit, the following
1474 -- is redundant but harmless.
1476 Set_Is_Immediately_Visible (Gen_Id);
1477 Reference_Body_Formals (Gen_Id, Body_Id);
1479 if Is_Child_Unit (Gen_Id) then
1480 Generate_Reference (Gen_Id, Scope (Gen_Id), 'k', False);
1481 end if;
1483 Set_Actual_Subtypes (N, Current_Scope);
1485 Set_SPARK_Pragma (Body_Id, SPARK_Mode_Pragma);
1486 Set_SPARK_Pragma_Inherited (Body_Id);
1488 -- Analyze any aspect specifications that appear on the generic
1489 -- subprogram body.
1491 if Has_Aspects (N) then
1492 Analyze_Aspect_Specifications_On_Body_Or_Stub (N);
1493 end if;
1495 Analyze_Declarations (Declarations (N));
1496 Check_Completion;
1498 -- Process the contract of the subprogram body after all declarations
1499 -- have been analyzed. This ensures that any contract-related pragmas
1500 -- are available through the N_Contract node of the body.
1502 Analyze_Entry_Or_Subprogram_Body_Contract (Body_Id);
1504 Analyze (Handled_Statement_Sequence (N));
1505 Save_Global_References (Original_Node (N));
1507 -- Prior to exiting the scope, include generic formals again (if any
1508 -- are present) in the set of local entities.
1510 if Present (First_Ent) then
1511 Set_First_Entity (Gen_Id, First_Ent);
1512 end if;
1514 Check_References (Gen_Id);
1515 end;
1517 Process_End_Label (Handled_Statement_Sequence (N), 't', Current_Scope);
1518 Update_Use_Clause_Chain;
1519 End_Scope;
1520 Check_Subprogram_Order (N);
1522 -- Outside of its body, unit is generic again
1524 Set_Ekind (Gen_Id, Kind);
1525 Generate_Reference (Gen_Id, Body_Id, 'b', Set_Ref => False);
1527 if Style_Check then
1528 Style.Check_Identifier (Body_Id, Gen_Id);
1529 end if;
1531 End_Generic;
1532 end Analyze_Generic_Subprogram_Body;
1534 ----------------------------
1535 -- Analyze_Null_Procedure --
1536 ----------------------------
1538 procedure Analyze_Null_Procedure
1539 (N : Node_Id;
1540 Is_Completion : out Boolean)
1542 Loc : constant Source_Ptr := Sloc (N);
1543 Spec : constant Node_Id := Specification (N);
1544 Designator : Entity_Id;
1545 Form : Node_Id;
1546 Null_Body : Node_Id := Empty;
1547 Null_Stmt : Node_Id := Null_Statement (Spec);
1548 Prev : Entity_Id;
1550 begin
1551 -- Capture the profile of the null procedure before analysis, for
1552 -- expansion at the freeze point and at each point of call. The body is
1553 -- used if the procedure has preconditions, or if it is a completion. In
1554 -- the first case the body is analyzed at the freeze point, in the other
1555 -- it replaces the null procedure declaration.
1557 -- For a null procedure that comes from source, a NULL statement is
1558 -- provided by the parser, which carries the source location of the
1559 -- NULL keyword, and has Comes_From_Source set. For a null procedure
1560 -- from expansion, create one now.
1562 if No (Null_Stmt) then
1563 Null_Stmt := Make_Null_Statement (Loc);
1564 end if;
1566 Null_Body :=
1567 Make_Subprogram_Body (Loc,
1568 Specification => New_Copy_Tree (Spec),
1569 Declarations => New_List,
1570 Handled_Statement_Sequence =>
1571 Make_Handled_Sequence_Of_Statements (Loc,
1572 Statements => New_List (Null_Stmt)));
1574 -- Create new entities for body and formals
1576 Set_Defining_Unit_Name (Specification (Null_Body),
1577 Make_Defining_Identifier
1578 (Sloc (Defining_Entity (N)),
1579 Chars (Defining_Entity (N))));
1581 Form := First (Parameter_Specifications (Specification (Null_Body)));
1582 while Present (Form) loop
1583 Set_Defining_Identifier (Form,
1584 Make_Defining_Identifier
1585 (Sloc (Defining_Identifier (Form)),
1586 Chars (Defining_Identifier (Form))));
1587 Next (Form);
1588 end loop;
1590 -- Determine whether the null procedure may be a completion of a generic
1591 -- suprogram, in which case we use the new null body as the completion
1592 -- and set minimal semantic information on the original declaration,
1593 -- which is rewritten as a null statement.
1595 Prev := Current_Entity_In_Scope (Defining_Entity (Spec));
1597 if Present (Prev) and then Is_Generic_Subprogram (Prev) then
1598 Insert_Before (N, Null_Body);
1599 Set_Ekind (Defining_Entity (N), Ekind (Prev));
1601 Rewrite (N, Make_Null_Statement (Loc));
1602 Analyze_Generic_Subprogram_Body (Null_Body, Prev);
1603 Is_Completion := True;
1604 return;
1606 else
1607 -- Resolve the types of the formals now, because the freeze point may
1608 -- appear in a different context, e.g. an instantiation.
1610 Form := First (Parameter_Specifications (Specification (Null_Body)));
1611 while Present (Form) loop
1612 if Nkind (Parameter_Type (Form)) /= N_Access_Definition then
1613 Find_Type (Parameter_Type (Form));
1615 elsif No (Access_To_Subprogram_Definition
1616 (Parameter_Type (Form)))
1617 then
1618 Find_Type (Subtype_Mark (Parameter_Type (Form)));
1620 -- The case of a null procedure with a formal that is an
1621 -- access-to-subprogram type, and that is used as an actual
1622 -- in an instantiation is left to the enthusiastic reader.
1624 else
1625 null;
1626 end if;
1628 Next (Form);
1629 end loop;
1630 end if;
1632 -- If there are previous overloadable entities with the same name, check
1633 -- whether any of them is completed by the null procedure.
1635 if Present (Prev) and then Is_Overloadable (Prev) then
1636 Designator := Analyze_Subprogram_Specification (Spec);
1637 Prev := Find_Corresponding_Spec (N);
1638 end if;
1640 if No (Prev) or else not Comes_From_Source (Prev) then
1641 Designator := Analyze_Subprogram_Specification (Spec);
1642 Set_Has_Completion (Designator);
1644 -- Signal to caller that this is a procedure declaration
1646 Is_Completion := False;
1648 -- Null procedures are always inlined, but generic formal subprograms
1649 -- which appear as such in the internal instance of formal packages,
1650 -- need no completion and are not marked Inline.
1652 if Expander_Active
1653 and then Nkind (N) /= N_Formal_Concrete_Subprogram_Declaration
1654 then
1655 Set_Corresponding_Body (N, Defining_Entity (Null_Body));
1656 Set_Body_To_Inline (N, Null_Body);
1657 Set_Is_Inlined (Designator);
1658 end if;
1660 else
1661 -- The null procedure is a completion. We unconditionally rewrite
1662 -- this as a null body (even if expansion is not active), because
1663 -- there are various error checks that are applied on this body
1664 -- when it is analyzed (e.g. correct aspect placement).
1666 if Has_Completion (Prev) then
1667 Error_Msg_Sloc := Sloc (Prev);
1668 Error_Msg_NE ("duplicate body for & declared#", N, Prev);
1669 end if;
1671 Check_Previous_Null_Procedure (N, Prev);
1673 Is_Completion := True;
1674 Rewrite (N, Null_Body);
1675 Analyze (N);
1676 end if;
1677 end Analyze_Null_Procedure;
1679 -----------------------------
1680 -- Analyze_Operator_Symbol --
1681 -----------------------------
1683 -- An operator symbol such as "+" or "and" may appear in context where the
1684 -- literal denotes an entity name, such as "+"(x, y) or in context when it
1685 -- is just a string, as in (conjunction = "or"). In these cases the parser
1686 -- generates this node, and the semantics does the disambiguation. Other
1687 -- such case are actuals in an instantiation, the generic unit in an
1688 -- instantiation, and pragma arguments.
1690 procedure Analyze_Operator_Symbol (N : Node_Id) is
1691 Par : constant Node_Id := Parent (N);
1693 begin
1694 if (Nkind (Par) = N_Function_Call and then N = Name (Par))
1695 or else Nkind (Par) = N_Function_Instantiation
1696 or else (Nkind (Par) = N_Indexed_Component and then N = Prefix (Par))
1697 or else (Nkind (Par) = N_Pragma_Argument_Association
1698 and then not Is_Pragma_String_Literal (Par))
1699 or else Nkind (Par) = N_Subprogram_Renaming_Declaration
1700 or else (Nkind (Par) = N_Attribute_Reference
1701 and then Attribute_Name (Par) /= Name_Value)
1702 then
1703 Find_Direct_Name (N);
1705 else
1706 Change_Operator_Symbol_To_String_Literal (N);
1707 Analyze (N);
1708 end if;
1709 end Analyze_Operator_Symbol;
1711 -----------------------------------
1712 -- Analyze_Parameter_Association --
1713 -----------------------------------
1715 procedure Analyze_Parameter_Association (N : Node_Id) is
1716 begin
1717 Analyze (Explicit_Actual_Parameter (N));
1718 end Analyze_Parameter_Association;
1720 ----------------------------
1721 -- Analyze_Procedure_Call --
1722 ----------------------------
1724 -- WARNING: This routine manages Ghost regions. Return statements must be
1725 -- replaced by gotos which jump to the end of the routine and restore the
1726 -- Ghost mode.
1728 procedure Analyze_Procedure_Call (N : Node_Id) is
1729 procedure Analyze_Call_And_Resolve;
1730 -- Do Analyze and Resolve calls for procedure call. At the end, check
1731 -- for illegal order dependence.
1732 -- ??? where is the check for illegal order dependencies?
1734 ------------------------------
1735 -- Analyze_Call_And_Resolve --
1736 ------------------------------
1738 procedure Analyze_Call_And_Resolve is
1739 begin
1740 if Nkind (N) = N_Procedure_Call_Statement then
1741 Analyze_Call (N);
1742 Resolve (N, Standard_Void_Type);
1743 else
1744 Analyze (N);
1745 end if;
1746 end Analyze_Call_And_Resolve;
1748 -- Local variables
1750 Actuals : constant List_Id := Parameter_Associations (N);
1751 Loc : constant Source_Ptr := Sloc (N);
1752 P : constant Node_Id := Name (N);
1754 Saved_GM : constant Ghost_Mode_Type := Ghost_Mode;
1755 -- Save the Ghost mode to restore on exit
1757 Actual : Node_Id;
1758 New_N : Node_Id;
1760 -- Start of processing for Analyze_Procedure_Call
1762 begin
1763 -- The syntactic construct: PREFIX ACTUAL_PARAMETER_PART can denote
1764 -- a procedure call or an entry call. The prefix may denote an access
1765 -- to subprogram type, in which case an implicit dereference applies.
1766 -- If the prefix is an indexed component (without implicit dereference)
1767 -- then the construct denotes a call to a member of an entire family.
1768 -- If the prefix is a simple name, it may still denote a call to a
1769 -- parameterless member of an entry family. Resolution of these various
1770 -- interpretations is delicate.
1772 -- Do not analyze machine code statements to avoid rejecting them in
1773 -- CodePeer mode.
1775 if CodePeer_Mode and then Nkind (P) = N_Qualified_Expression then
1776 Set_Etype (P, Standard_Void_Type);
1777 else
1778 Analyze (P);
1779 end if;
1781 -- If this is a call of the form Obj.Op, the call may have been analyzed
1782 -- and possibly rewritten into a block, in which case we are done.
1784 if Analyzed (N) then
1785 return;
1787 -- If there is an error analyzing the name (which may have been
1788 -- rewritten if the original call was in prefix notation) then error
1789 -- has been emitted already, mark node and return.
1791 elsif Error_Posted (N) or else Etype (Name (N)) = Any_Type then
1792 Set_Etype (N, Any_Type);
1793 return;
1794 end if;
1796 -- A procedure call is Ghost when its name denotes a Ghost procedure.
1797 -- Set the mode now to ensure that any nodes generated during analysis
1798 -- and expansion are properly marked as Ghost.
1800 Mark_And_Set_Ghost_Procedure_Call (N);
1802 -- Otherwise analyze the parameters
1804 if Present (Actuals) then
1805 Actual := First (Actuals);
1807 while Present (Actual) loop
1808 Analyze (Actual);
1809 Check_Parameterless_Call (Actual);
1810 Next (Actual);
1811 end loop;
1812 end if;
1814 -- Special processing for Elab_Spec, Elab_Body and Elab_Subp_Body calls
1816 if Nkind (P) = N_Attribute_Reference
1817 and then Nam_In (Attribute_Name (P), Name_Elab_Spec,
1818 Name_Elab_Body,
1819 Name_Elab_Subp_Body)
1820 then
1821 if Present (Actuals) then
1822 Error_Msg_N
1823 ("no parameters allowed for this call", First (Actuals));
1824 goto Leave;
1825 end if;
1827 Set_Etype (N, Standard_Void_Type);
1828 Set_Analyzed (N);
1830 elsif Is_Entity_Name (P)
1831 and then Is_Record_Type (Etype (Entity (P)))
1832 and then Remote_AST_I_Dereference (P)
1833 then
1834 goto Leave;
1836 elsif Is_Entity_Name (P)
1837 and then Ekind (Entity (P)) /= E_Entry_Family
1838 then
1839 if Is_Access_Type (Etype (P))
1840 and then Ekind (Designated_Type (Etype (P))) = E_Subprogram_Type
1841 and then No (Actuals)
1842 and then Comes_From_Source (N)
1843 then
1844 Error_Msg_N ("missing explicit dereference in call", N);
1845 end if;
1847 Analyze_Call_And_Resolve;
1849 -- If the prefix is the simple name of an entry family, this is a
1850 -- parameterless call from within the task body itself.
1852 elsif Is_Entity_Name (P)
1853 and then Nkind (P) = N_Identifier
1854 and then Ekind (Entity (P)) = E_Entry_Family
1855 and then Present (Actuals)
1856 and then No (Next (First (Actuals)))
1857 then
1858 -- Can be call to parameterless entry family. What appears to be the
1859 -- sole argument is in fact the entry index. Rewrite prefix of node
1860 -- accordingly. Source representation is unchanged by this
1861 -- transformation.
1863 New_N :=
1864 Make_Indexed_Component (Loc,
1865 Prefix =>
1866 Make_Selected_Component (Loc,
1867 Prefix => New_Occurrence_Of (Scope (Entity (P)), Loc),
1868 Selector_Name => New_Occurrence_Of (Entity (P), Loc)),
1869 Expressions => Actuals);
1870 Set_Name (N, New_N);
1871 Set_Etype (New_N, Standard_Void_Type);
1872 Set_Parameter_Associations (N, No_List);
1873 Analyze_Call_And_Resolve;
1875 elsif Nkind (P) = N_Explicit_Dereference then
1876 if Ekind (Etype (P)) = E_Subprogram_Type then
1877 Analyze_Call_And_Resolve;
1878 else
1879 Error_Msg_N ("expect access to procedure in call", P);
1880 end if;
1882 -- The name can be a selected component or an indexed component that
1883 -- yields an access to subprogram. Such a prefix is legal if the call
1884 -- has parameter associations.
1886 elsif Is_Access_Type (Etype (P))
1887 and then Ekind (Designated_Type (Etype (P))) = E_Subprogram_Type
1888 then
1889 if Present (Actuals) then
1890 Analyze_Call_And_Resolve;
1891 else
1892 Error_Msg_N ("missing explicit dereference in call ", N);
1893 end if;
1895 -- If not an access to subprogram, then the prefix must resolve to the
1896 -- name of an entry, entry family, or protected operation.
1898 -- For the case of a simple entry call, P is a selected component where
1899 -- the prefix is the task and the selector name is the entry. A call to
1900 -- a protected procedure will have the same syntax. If the protected
1901 -- object contains overloaded operations, the entity may appear as a
1902 -- function, the context will select the operation whose type is Void.
1904 elsif Nkind (P) = N_Selected_Component
1905 and then Ekind_In (Entity (Selector_Name (P)), E_Entry,
1906 E_Function,
1907 E_Procedure)
1908 then
1909 -- When front-end inlining is enabled, as with SPARK_Mode, a call
1910 -- in prefix notation may still be missing its controlling argument,
1911 -- so perform the transformation now.
1913 if SPARK_Mode = On and then In_Inlined_Body then
1914 declare
1915 Subp : constant Entity_Id := Entity (Selector_Name (P));
1916 Typ : constant Entity_Id := Etype (Prefix (P));
1918 begin
1919 if Is_Tagged_Type (Typ)
1920 and then Present (First_Formal (Subp))
1921 and then Etype (First_Formal (Subp)) = Typ
1922 and then Try_Object_Operation (P)
1923 then
1924 return;
1926 else
1927 Analyze_Call_And_Resolve;
1928 end if;
1929 end;
1931 else
1932 Analyze_Call_And_Resolve;
1933 end if;
1935 elsif Nkind (P) = N_Selected_Component
1936 and then Ekind (Entity (Selector_Name (P))) = E_Entry_Family
1937 and then Present (Actuals)
1938 and then No (Next (First (Actuals)))
1939 then
1940 -- Can be call to parameterless entry family. What appears to be the
1941 -- sole argument is in fact the entry index. Rewrite prefix of node
1942 -- accordingly. Source representation is unchanged by this
1943 -- transformation.
1945 New_N :=
1946 Make_Indexed_Component (Loc,
1947 Prefix => New_Copy (P),
1948 Expressions => Actuals);
1949 Set_Name (N, New_N);
1950 Set_Etype (New_N, Standard_Void_Type);
1951 Set_Parameter_Associations (N, No_List);
1952 Analyze_Call_And_Resolve;
1954 -- For the case of a reference to an element of an entry family, P is
1955 -- an indexed component whose prefix is a selected component (task and
1956 -- entry family), and whose index is the entry family index.
1958 elsif Nkind (P) = N_Indexed_Component
1959 and then Nkind (Prefix (P)) = N_Selected_Component
1960 and then Ekind (Entity (Selector_Name (Prefix (P)))) = E_Entry_Family
1961 then
1962 Analyze_Call_And_Resolve;
1964 -- If the prefix is the name of an entry family, it is a call from
1965 -- within the task body itself.
1967 elsif Nkind (P) = N_Indexed_Component
1968 and then Nkind (Prefix (P)) = N_Identifier
1969 and then Ekind (Entity (Prefix (P))) = E_Entry_Family
1970 then
1971 New_N :=
1972 Make_Selected_Component (Loc,
1973 Prefix =>
1974 New_Occurrence_Of (Scope (Entity (Prefix (P))), Loc),
1975 Selector_Name => New_Occurrence_Of (Entity (Prefix (P)), Loc));
1976 Rewrite (Prefix (P), New_N);
1977 Analyze (P);
1978 Analyze_Call_And_Resolve;
1980 -- In Ada 2012. a qualified expression is a name, but it cannot be a
1981 -- procedure name, so the construct can only be a qualified expression.
1983 elsif Nkind (P) = N_Qualified_Expression
1984 and then Ada_Version >= Ada_2012
1985 then
1986 Rewrite (N, Make_Code_Statement (Loc, Expression => P));
1987 Analyze (N);
1989 -- Anything else is an error
1991 else
1992 Error_Msg_N ("invalid procedure or entry call", N);
1993 end if;
1995 <<Leave>>
1996 Restore_Ghost_Mode (Saved_GM);
1997 end Analyze_Procedure_Call;
1999 ------------------------------
2000 -- Analyze_Return_Statement --
2001 ------------------------------
2003 procedure Analyze_Return_Statement (N : Node_Id) is
2004 pragma Assert (Nkind_In (N, N_Extended_Return_Statement,
2005 N_Simple_Return_Statement));
2007 Returns_Object : constant Boolean :=
2008 Nkind (N) = N_Extended_Return_Statement
2009 or else
2010 (Nkind (N) = N_Simple_Return_Statement
2011 and then Present (Expression (N)));
2012 -- True if we're returning something; that is, "return <expression>;"
2013 -- or "return Result : T [:= ...]". False for "return;". Used for error
2014 -- checking: If Returns_Object is True, N should apply to a function
2015 -- body; otherwise N should apply to a procedure body, entry body,
2016 -- accept statement, or extended return statement.
2018 function Find_What_It_Applies_To return Entity_Id;
2019 -- Find the entity representing the innermost enclosing body, accept
2020 -- statement, or extended return statement. If the result is a callable
2021 -- construct or extended return statement, then this will be the value
2022 -- of the Return_Applies_To attribute. Otherwise, the program is
2023 -- illegal. See RM-6.5(4/2).
2025 -----------------------------
2026 -- Find_What_It_Applies_To --
2027 -----------------------------
2029 function Find_What_It_Applies_To return Entity_Id is
2030 Result : Entity_Id := Empty;
2032 begin
2033 -- Loop outward through the Scope_Stack, skipping blocks, loops,
2034 -- and postconditions.
2036 for J in reverse 0 .. Scope_Stack.Last loop
2037 Result := Scope_Stack.Table (J).Entity;
2038 exit when not Ekind_In (Result, E_Block, E_Loop)
2039 and then Chars (Result) /= Name_uPostconditions;
2040 end loop;
2042 pragma Assert (Present (Result));
2043 return Result;
2044 end Find_What_It_Applies_To;
2046 -- Local declarations
2048 Scope_Id : constant Entity_Id := Find_What_It_Applies_To;
2049 Kind : constant Entity_Kind := Ekind (Scope_Id);
2050 Loc : constant Source_Ptr := Sloc (N);
2051 Stm_Entity : constant Entity_Id :=
2052 New_Internal_Entity
2053 (E_Return_Statement, Current_Scope, Loc, 'R');
2055 -- Start of processing for Analyze_Return_Statement
2057 begin
2058 Set_Return_Statement_Entity (N, Stm_Entity);
2060 Set_Etype (Stm_Entity, Standard_Void_Type);
2061 Set_Return_Applies_To (Stm_Entity, Scope_Id);
2063 -- Place Return entity on scope stack, to simplify enforcement of 6.5
2064 -- (4/2): an inner return statement will apply to this extended return.
2066 if Nkind (N) = N_Extended_Return_Statement then
2067 Push_Scope (Stm_Entity);
2068 end if;
2070 -- Check that pragma No_Return is obeyed. Don't complain about the
2071 -- implicitly-generated return that is placed at the end.
2073 if No_Return (Scope_Id) and then Comes_From_Source (N) then
2074 Error_Msg_N ("RETURN statement not allowed (No_Return)", N);
2075 end if;
2077 -- Warn on any unassigned OUT parameters if in procedure
2079 if Ekind (Scope_Id) = E_Procedure then
2080 Warn_On_Unassigned_Out_Parameter (N, Scope_Id);
2081 end if;
2083 -- Check that functions return objects, and other things do not
2085 if Kind = E_Function or else Kind = E_Generic_Function then
2086 if not Returns_Object then
2087 Error_Msg_N ("missing expression in return from function", N);
2088 end if;
2090 elsif Kind = E_Procedure or else Kind = E_Generic_Procedure then
2091 if Returns_Object then
2092 Error_Msg_N ("procedure cannot return value (use function)", N);
2093 end if;
2095 elsif Kind = E_Entry or else Kind = E_Entry_Family then
2096 if Returns_Object then
2097 if Is_Protected_Type (Scope (Scope_Id)) then
2098 Error_Msg_N ("entry body cannot return value", N);
2099 else
2100 Error_Msg_N ("accept statement cannot return value", N);
2101 end if;
2102 end if;
2104 elsif Kind = E_Return_Statement then
2106 -- We are nested within another return statement, which must be an
2107 -- extended_return_statement.
2109 if Returns_Object then
2110 if Nkind (N) = N_Extended_Return_Statement then
2111 Error_Msg_N
2112 ("extended return statement cannot be nested (use `RETURN;`)",
2115 -- Case of a simple return statement with a value inside extended
2116 -- return statement.
2118 else
2119 Error_Msg_N
2120 ("return nested in extended return statement cannot return "
2121 & "value (use `RETURN;`)", N);
2122 end if;
2123 end if;
2125 else
2126 Error_Msg_N ("illegal context for return statement", N);
2127 end if;
2129 if Ekind_In (Kind, E_Function, E_Generic_Function) then
2130 Analyze_Function_Return (N);
2132 elsif Ekind_In (Kind, E_Procedure, E_Generic_Procedure) then
2133 Set_Return_Present (Scope_Id);
2134 end if;
2136 if Nkind (N) = N_Extended_Return_Statement then
2137 End_Scope;
2138 end if;
2140 Kill_Current_Values (Last_Assignment_Only => True);
2141 Check_Unreachable_Code (N);
2143 Analyze_Dimension (N);
2144 end Analyze_Return_Statement;
2146 -------------------------------------
2147 -- Analyze_Simple_Return_Statement --
2148 -------------------------------------
2150 procedure Analyze_Simple_Return_Statement (N : Node_Id) is
2151 begin
2152 if Present (Expression (N)) then
2153 Mark_Coextensions (N, Expression (N));
2154 end if;
2156 Analyze_Return_Statement (N);
2157 end Analyze_Simple_Return_Statement;
2159 -------------------------
2160 -- Analyze_Return_Type --
2161 -------------------------
2163 procedure Analyze_Return_Type (N : Node_Id) is
2164 Designator : constant Entity_Id := Defining_Entity (N);
2165 Typ : Entity_Id := Empty;
2167 begin
2168 -- Normal case where result definition does not indicate an error
2170 if Result_Definition (N) /= Error then
2171 if Nkind (Result_Definition (N)) = N_Access_Definition then
2172 Check_SPARK_05_Restriction
2173 ("access result is not allowed", Result_Definition (N));
2175 -- Ada 2005 (AI-254): Handle anonymous access to subprograms
2177 declare
2178 AD : constant Node_Id :=
2179 Access_To_Subprogram_Definition (Result_Definition (N));
2180 begin
2181 if Present (AD) and then Protected_Present (AD) then
2182 Typ := Replace_Anonymous_Access_To_Protected_Subprogram (N);
2183 else
2184 Typ := Access_Definition (N, Result_Definition (N));
2185 end if;
2186 end;
2188 Set_Parent (Typ, Result_Definition (N));
2189 Set_Is_Local_Anonymous_Access (Typ);
2190 Set_Etype (Designator, Typ);
2192 -- Ada 2005 (AI-231): Ensure proper usage of null exclusion
2194 Null_Exclusion_Static_Checks (N);
2196 -- Subtype_Mark case
2198 else
2199 Find_Type (Result_Definition (N));
2200 Typ := Entity (Result_Definition (N));
2201 Set_Etype (Designator, Typ);
2203 -- Unconstrained array as result is not allowed in SPARK
2205 if Is_Array_Type (Typ) and then not Is_Constrained (Typ) then
2206 Check_SPARK_05_Restriction
2207 ("returning an unconstrained array is not allowed",
2208 Result_Definition (N));
2209 end if;
2211 -- Ada 2005 (AI-231): Ensure proper usage of null exclusion
2213 Null_Exclusion_Static_Checks (N);
2215 -- If a null exclusion is imposed on the result type, then create
2216 -- a null-excluding itype (an access subtype) and use it as the
2217 -- function's Etype. Note that the null exclusion checks are done
2218 -- right before this, because they don't get applied to types that
2219 -- do not come from source.
2221 if Is_Access_Type (Typ) and then Null_Exclusion_Present (N) then
2222 Set_Etype (Designator,
2223 Create_Null_Excluding_Itype
2224 (T => Typ,
2225 Related_Nod => N,
2226 Scope_Id => Scope (Current_Scope)));
2228 -- The new subtype must be elaborated before use because
2229 -- it is visible outside of the function. However its base
2230 -- type may not be frozen yet, so the reference that will
2231 -- force elaboration must be attached to the freezing of
2232 -- the base type.
2234 -- If the return specification appears on a proper body,
2235 -- the subtype will have been created already on the spec.
2237 if Is_Frozen (Typ) then
2238 if Nkind (Parent (N)) = N_Subprogram_Body
2239 and then Nkind (Parent (Parent (N))) = N_Subunit
2240 then
2241 null;
2242 else
2243 Build_Itype_Reference (Etype (Designator), Parent (N));
2244 end if;
2246 else
2247 Ensure_Freeze_Node (Typ);
2249 declare
2250 IR : constant Node_Id := Make_Itype_Reference (Sloc (N));
2251 begin
2252 Set_Itype (IR, Etype (Designator));
2253 Append_Freeze_Actions (Typ, New_List (IR));
2254 end;
2255 end if;
2257 else
2258 Set_Etype (Designator, Typ);
2259 end if;
2261 if Ekind (Typ) = E_Incomplete_Type
2262 or else (Is_Class_Wide_Type (Typ)
2263 and then Ekind (Root_Type (Typ)) = E_Incomplete_Type)
2264 then
2265 -- AI05-0151: Tagged incomplete types are allowed in all formal
2266 -- parts. Untagged incomplete types are not allowed in bodies.
2267 -- As a consequence, limited views cannot appear in a basic
2268 -- declaration that is itself within a body, because there is
2269 -- no point at which the non-limited view will become visible.
2271 if Ada_Version >= Ada_2012 then
2272 if From_Limited_With (Typ) and then In_Package_Body then
2273 Error_Msg_NE
2274 ("invalid use of incomplete type&",
2275 Result_Definition (N), Typ);
2277 -- The return type of a subprogram body cannot be of a
2278 -- formal incomplete type.
2280 elsif Is_Generic_Type (Typ)
2281 and then Nkind (Parent (N)) = N_Subprogram_Body
2282 then
2283 Error_Msg_N
2284 ("return type cannot be a formal incomplete type",
2285 Result_Definition (N));
2287 elsif Is_Class_Wide_Type (Typ)
2288 and then Is_Generic_Type (Root_Type (Typ))
2289 and then Nkind (Parent (N)) = N_Subprogram_Body
2290 then
2291 Error_Msg_N
2292 ("return type cannot be a formal incomplete type",
2293 Result_Definition (N));
2295 elsif Is_Tagged_Type (Typ) then
2296 null;
2298 -- Use is legal in a thunk generated for an operation
2299 -- inherited from a progenitor.
2301 elsif Is_Thunk (Designator)
2302 and then Present (Non_Limited_View (Typ))
2303 then
2304 null;
2306 elsif Nkind (Parent (N)) = N_Subprogram_Body
2307 or else Nkind_In (Parent (Parent (N)), N_Accept_Statement,
2308 N_Entry_Body)
2309 then
2310 Error_Msg_NE
2311 ("invalid use of untagged incomplete type&",
2312 Designator, Typ);
2313 end if;
2315 -- The type must be completed in the current package. This
2316 -- is checked at the end of the package declaration when
2317 -- Taft-amendment types are identified. If the return type
2318 -- is class-wide, there is no required check, the type can
2319 -- be a bona fide TAT.
2321 if Ekind (Scope (Current_Scope)) = E_Package
2322 and then In_Private_Part (Scope (Current_Scope))
2323 and then not Is_Class_Wide_Type (Typ)
2324 then
2325 Append_Elmt (Designator, Private_Dependents (Typ));
2326 end if;
2328 else
2329 Error_Msg_NE
2330 ("invalid use of incomplete type&", Designator, Typ);
2331 end if;
2332 end if;
2333 end if;
2335 -- Case where result definition does indicate an error
2337 else
2338 Set_Etype (Designator, Any_Type);
2339 end if;
2340 end Analyze_Return_Type;
2342 -----------------------------
2343 -- Analyze_Subprogram_Body --
2344 -----------------------------
2346 procedure Analyze_Subprogram_Body (N : Node_Id) is
2347 Loc : constant Source_Ptr := Sloc (N);
2348 Body_Spec : constant Node_Id := Specification (N);
2349 Body_Id : constant Entity_Id := Defining_Entity (Body_Spec);
2351 begin
2352 if Debug_Flag_C then
2353 Write_Str ("==> subprogram body ");
2354 Write_Name (Chars (Body_Id));
2355 Write_Str (" from ");
2356 Write_Location (Loc);
2357 Write_Eol;
2358 Indent;
2359 end if;
2361 Trace_Scope (N, Body_Id, " Analyze subprogram: ");
2363 -- The real work is split out into the helper, so it can do "return;"
2364 -- without skipping the debug output:
2366 Analyze_Subprogram_Body_Helper (N);
2368 if Debug_Flag_C then
2369 Outdent;
2370 Write_Str ("<== subprogram body ");
2371 Write_Name (Chars (Body_Id));
2372 Write_Str (" from ");
2373 Write_Location (Loc);
2374 Write_Eol;
2375 end if;
2376 end Analyze_Subprogram_Body;
2378 ------------------------------------
2379 -- Analyze_Subprogram_Body_Helper --
2380 ------------------------------------
2382 -- This procedure is called for regular subprogram bodies, generic bodies,
2383 -- and for subprogram stubs of both kinds. In the case of stubs, only the
2384 -- specification matters, and is used to create a proper declaration for
2385 -- the subprogram, or to perform conformance checks.
2387 -- WARNING: This routine manages Ghost regions. Return statements must be
2388 -- replaced by gotos which jump to the end of the routine and restore the
2389 -- Ghost mode.
2391 procedure Analyze_Subprogram_Body_Helper (N : Node_Id) is
2392 Body_Spec : Node_Id := Specification (N);
2393 Body_Id : Entity_Id := Defining_Entity (Body_Spec);
2394 Loc : constant Source_Ptr := Sloc (N);
2395 Prev_Id : constant Entity_Id := Current_Entity_In_Scope (Body_Id);
2397 Conformant : Boolean;
2398 Desig_View : Entity_Id := Empty;
2399 Exch_Views : Elist_Id := No_Elist;
2400 HSS : Node_Id;
2401 Mask_Types : Elist_Id := No_Elist;
2402 Prot_Typ : Entity_Id := Empty;
2403 Spec_Decl : Node_Id := Empty;
2404 Spec_Id : Entity_Id;
2406 Last_Real_Spec_Entity : Entity_Id := Empty;
2407 -- When we analyze a separate spec, the entity chain ends up containing
2408 -- the formals, as well as any itypes generated during analysis of the
2409 -- default expressions for parameters, or the arguments of associated
2410 -- precondition/postcondition pragmas (which are analyzed in the context
2411 -- of the spec since they have visibility on formals).
2413 -- These entities belong with the spec and not the body. However we do
2414 -- the analysis of the body in the context of the spec (again to obtain
2415 -- visibility to the formals), and all the entities generated during
2416 -- this analysis end up also chained to the entity chain of the spec.
2417 -- But they really belong to the body, and there is circuitry to move
2418 -- them from the spec to the body.
2420 -- However, when we do this move, we don't want to move the real spec
2421 -- entities (first para above) to the body. The Last_Real_Spec_Entity
2422 -- variable points to the last real spec entity, so we only move those
2423 -- chained beyond that point. It is initialized to Empty to deal with
2424 -- the case where there is no separate spec.
2426 function Body_Has_Contract return Boolean;
2427 -- Check whether unanalyzed body has an aspect or pragma that may
2428 -- generate a SPARK contract.
2430 function Body_Has_SPARK_Mode_On return Boolean;
2431 -- Check whether SPARK_Mode On applies to the subprogram body, either
2432 -- because it is specified directly on the body, or because it is
2433 -- inherited from the enclosing subprogram or package.
2435 procedure Build_Subprogram_Declaration;
2436 -- Create a matching subprogram declaration for subprogram body N
2438 procedure Check_Anonymous_Return;
2439 -- Ada 2005: if a function returns an access type that denotes a task,
2440 -- or a type that contains tasks, we must create a master entity for
2441 -- the anonymous type, which typically will be used in an allocator
2442 -- in the body of the function.
2444 procedure Check_Inline_Pragma (Spec : in out Node_Id);
2445 -- Look ahead to recognize a pragma that may appear after the body.
2446 -- If there is a previous spec, check that it appears in the same
2447 -- declarative part. If the pragma is Inline_Always, perform inlining
2448 -- unconditionally, otherwise only if Front_End_Inlining is requested.
2449 -- If the body acts as a spec, and inlining is required, we create a
2450 -- subprogram declaration for it, in order to attach the body to inline.
2451 -- If pragma does not appear after the body, check whether there is
2452 -- an inline pragma before any local declarations.
2454 procedure Check_Missing_Return;
2455 -- Checks for a function with a no return statements, and also performs
2456 -- the warning checks implemented by Check_Returns. In formal mode, also
2457 -- verify that a function ends with a RETURN and that a procedure does
2458 -- not contain any RETURN.
2460 function Disambiguate_Spec return Entity_Id;
2461 -- When a primitive is declared between the private view and the full
2462 -- view of a concurrent type which implements an interface, a special
2463 -- mechanism is used to find the corresponding spec of the primitive
2464 -- body.
2466 function Exchange_Limited_Views (Subp_Id : Entity_Id) return Elist_Id;
2467 -- Ada 2012 (AI05-0151): Detect whether the profile of Subp_Id contains
2468 -- incomplete types coming from a limited context and replace their
2469 -- limited views with the non-limited ones. Return the list of changes
2470 -- to be used to undo the transformation.
2472 function Is_Private_Concurrent_Primitive
2473 (Subp_Id : Entity_Id) return Boolean;
2474 -- Determine whether subprogram Subp_Id is a primitive of a concurrent
2475 -- type that implements an interface and has a private view.
2477 function Mask_Unfrozen_Types (Spec_Id : Entity_Id) return Elist_Id;
2478 -- N is the body generated for an expression function that is not a
2479 -- completion and Spec_Id the defining entity of its spec. Mark all
2480 -- the not-yet-frozen types referenced by the simple return statement
2481 -- of the function as formally frozen.
2483 procedure Restore_Limited_Views (Restore_List : Elist_Id);
2484 -- Undo the transformation done by Exchange_Limited_Views.
2486 procedure Set_Trivial_Subprogram (N : Node_Id);
2487 -- Sets the Is_Trivial_Subprogram flag in both spec and body of the
2488 -- subprogram whose body is being analyzed. N is the statement node
2489 -- causing the flag to be set, if the following statement is a return
2490 -- of an entity, we mark the entity as set in source to suppress any
2491 -- warning on the stylized use of function stubs with a dummy return.
2493 procedure Unmask_Unfrozen_Types (Unmask_List : Elist_Id);
2494 -- Undo the transformation done by Mask_Unfrozen_Types
2496 procedure Verify_Overriding_Indicator;
2497 -- If there was a previous spec, the entity has been entered in the
2498 -- current scope previously. If the body itself carries an overriding
2499 -- indicator, check that it is consistent with the known status of the
2500 -- entity.
2502 -----------------------
2503 -- Body_Has_Contract --
2504 -----------------------
2506 function Body_Has_Contract return Boolean is
2507 Decls : constant List_Id := Declarations (N);
2508 Item : Node_Id;
2510 begin
2511 -- Check for aspects that may generate a contract
2513 if Present (Aspect_Specifications (N)) then
2514 Item := First (Aspect_Specifications (N));
2515 while Present (Item) loop
2516 if Is_Subprogram_Contract_Annotation (Item) then
2517 return True;
2518 end if;
2520 Next (Item);
2521 end loop;
2522 end if;
2524 -- Check for pragmas that may generate a contract
2526 if Present (Decls) then
2527 Item := First (Decls);
2528 while Present (Item) loop
2529 if Nkind (Item) = N_Pragma
2530 and then Is_Subprogram_Contract_Annotation (Item)
2531 then
2532 return True;
2533 end if;
2535 Next (Item);
2536 end loop;
2537 end if;
2539 return False;
2540 end Body_Has_Contract;
2542 ----------------------------
2543 -- Body_Has_SPARK_Mode_On --
2544 ----------------------------
2546 function Body_Has_SPARK_Mode_On return Boolean is
2547 Decls : constant List_Id := Declarations (N);
2548 Item : Node_Id;
2550 begin
2551 -- Check for SPARK_Mode aspect
2553 if Present (Aspect_Specifications (N)) then
2554 Item := First (Aspect_Specifications (N));
2555 while Present (Item) loop
2556 if Get_Aspect_Id (Item) = Aspect_SPARK_Mode then
2557 return Get_SPARK_Mode_From_Annotation (Item) = On;
2558 end if;
2560 Next (Item);
2561 end loop;
2562 end if;
2564 -- Check for SPARK_Mode pragma
2566 if Present (Decls) then
2567 Item := First (Decls);
2568 while Present (Item) loop
2570 -- Pragmas that apply to a subprogram body are usually grouped
2571 -- together. Look for a potential pragma SPARK_Mode among them.
2573 if Nkind (Item) = N_Pragma then
2574 if Get_Pragma_Id (Item) = Pragma_SPARK_Mode then
2575 return Get_SPARK_Mode_From_Annotation (Item) = On;
2576 end if;
2578 -- Otherwise the first non-pragma declarative item terminates
2579 -- the region where pragma SPARK_Mode may appear.
2581 else
2582 exit;
2583 end if;
2585 Next (Item);
2586 end loop;
2587 end if;
2589 -- Otherwise, the applicable SPARK_Mode is inherited from the
2590 -- enclosing subprogram or package.
2592 return SPARK_Mode = On;
2593 end Body_Has_SPARK_Mode_On;
2595 ----------------------------------
2596 -- Build_Subprogram_Declaration --
2597 ----------------------------------
2599 procedure Build_Subprogram_Declaration is
2600 procedure Move_Pragmas (From : Node_Id; To : Node_Id);
2601 -- Relocate certain categorization pragmas from the declarative list
2602 -- of subprogram body From and insert them after node To. The pragmas
2603 -- in question are:
2604 -- Ghost
2605 -- Volatile_Function
2606 -- Also copy pragma SPARK_Mode if present in the declarative list
2607 -- of subprogram body From and insert it after node To. This pragma
2608 -- should not be moved, as it applies to the body too.
2610 ------------------
2611 -- Move_Pragmas --
2612 ------------------
2614 procedure Move_Pragmas (From : Node_Id; To : Node_Id) is
2615 Decl : Node_Id;
2616 Next_Decl : Node_Id;
2618 begin
2619 pragma Assert (Nkind (From) = N_Subprogram_Body);
2621 -- The destination node must be part of a list, as the pragmas are
2622 -- inserted after it.
2624 pragma Assert (Is_List_Member (To));
2626 -- Inspect the declarations of the subprogram body looking for
2627 -- specific pragmas.
2629 Decl := First (Declarations (N));
2630 while Present (Decl) loop
2631 Next_Decl := Next (Decl);
2633 if Nkind (Decl) = N_Pragma then
2634 if Pragma_Name_Unmapped (Decl) = Name_SPARK_Mode then
2635 Insert_After (To, New_Copy_Tree (Decl));
2637 elsif Nam_In (Pragma_Name_Unmapped (Decl),
2638 Name_Ghost,
2639 Name_Volatile_Function)
2640 then
2641 Remove (Decl);
2642 Insert_After (To, Decl);
2643 end if;
2644 end if;
2646 Decl := Next_Decl;
2647 end loop;
2648 end Move_Pragmas;
2650 -- Local variables
2652 Decl : Node_Id;
2653 Subp_Decl : Node_Id;
2655 -- Start of processing for Build_Subprogram_Declaration
2657 begin
2658 -- Create a matching subprogram spec using the profile of the body.
2659 -- The structure of the tree is identical, but has new entities for
2660 -- the defining unit name and formal parameters.
2662 Subp_Decl :=
2663 Make_Subprogram_Declaration (Loc,
2664 Specification => Copy_Subprogram_Spec (Body_Spec));
2665 Set_Comes_From_Source (Subp_Decl, True);
2667 -- Relocate the aspects and relevant pragmas from the subprogram body
2668 -- to the generated spec because it acts as the initial declaration.
2670 Insert_Before (N, Subp_Decl);
2671 Move_Aspects (N, To => Subp_Decl);
2672 Move_Pragmas (N, To => Subp_Decl);
2674 -- Ensure that the generated corresponding spec and original body
2675 -- share the same SPARK_Mode pragma or aspect. As a result, both have
2676 -- the same SPARK_Mode attributes, and the global SPARK_Mode value is
2677 -- correctly set for local subprograms.
2679 Copy_SPARK_Mode_Aspect (Subp_Decl, To => N);
2681 Analyze (Subp_Decl);
2683 -- Propagate the attributes Rewritten_For_C and Corresponding_Proc to
2684 -- the body since the expander may generate calls using that entity.
2685 -- Required to ensure that Expand_Call rewrites calls to this
2686 -- function by calls to the built procedure.
2688 if Modify_Tree_For_C
2689 and then Nkind (Body_Spec) = N_Function_Specification
2690 and then
2691 Rewritten_For_C (Defining_Entity (Specification (Subp_Decl)))
2692 then
2693 Set_Rewritten_For_C (Defining_Entity (Body_Spec));
2694 Set_Corresponding_Procedure (Defining_Entity (Body_Spec),
2695 Corresponding_Procedure
2696 (Defining_Entity (Specification (Subp_Decl))));
2697 end if;
2699 -- Analyze any relocated source pragmas or pragmas created for aspect
2700 -- specifications.
2702 Decl := Next (Subp_Decl);
2703 while Present (Decl) loop
2705 -- Stop the search for pragmas once the body has been reached as
2706 -- this terminates the region where pragmas may appear.
2708 if Decl = N then
2709 exit;
2711 elsif Nkind (Decl) = N_Pragma then
2712 Analyze (Decl);
2713 end if;
2715 Next (Decl);
2716 end loop;
2718 Spec_Id := Defining_Entity (Subp_Decl);
2719 Set_Corresponding_Spec (N, Spec_Id);
2721 -- Mark the generated spec as a source construct to ensure that all
2722 -- calls to it are properly registered in ALI files for GNATprove.
2724 Set_Comes_From_Source (Spec_Id, True);
2726 -- Ensure that the specs of the subprogram declaration and its body
2727 -- are identical, otherwise they will appear non-conformant due to
2728 -- rewritings in the default values of formal parameters.
2730 Body_Spec := Copy_Subprogram_Spec (Body_Spec);
2731 Set_Specification (N, Body_Spec);
2732 Body_Id := Analyze_Subprogram_Specification (Body_Spec);
2733 end Build_Subprogram_Declaration;
2735 ----------------------------
2736 -- Check_Anonymous_Return --
2737 ----------------------------
2739 procedure Check_Anonymous_Return is
2740 Decl : Node_Id;
2741 Par : Node_Id;
2742 Scop : Entity_Id;
2744 begin
2745 if Present (Spec_Id) then
2746 Scop := Spec_Id;
2747 else
2748 Scop := Body_Id;
2749 end if;
2751 if Ekind (Scop) = E_Function
2752 and then Ekind (Etype (Scop)) = E_Anonymous_Access_Type
2753 and then not Is_Thunk (Scop)
2755 -- Skip internally built functions which handle the case of
2756 -- a null access (see Expand_Interface_Conversion)
2758 and then not (Is_Interface (Designated_Type (Etype (Scop)))
2759 and then not Comes_From_Source (Parent (Scop)))
2761 and then (Has_Task (Designated_Type (Etype (Scop)))
2762 or else
2763 (Is_Class_Wide_Type (Designated_Type (Etype (Scop)))
2764 and then
2765 Is_Limited_Record (Designated_Type (Etype (Scop)))))
2766 and then Expander_Active
2768 -- Avoid cases with no tasking support
2770 and then RTE_Available (RE_Current_Master)
2771 and then not Restriction_Active (No_Task_Hierarchy)
2772 then
2773 Decl :=
2774 Make_Object_Declaration (Loc,
2775 Defining_Identifier =>
2776 Make_Defining_Identifier (Loc, Name_uMaster),
2777 Constant_Present => True,
2778 Object_Definition =>
2779 New_Occurrence_Of (RTE (RE_Master_Id), Loc),
2780 Expression =>
2781 Make_Explicit_Dereference (Loc,
2782 New_Occurrence_Of (RTE (RE_Current_Master), Loc)));
2784 if Present (Declarations (N)) then
2785 Prepend (Decl, Declarations (N));
2786 else
2787 Set_Declarations (N, New_List (Decl));
2788 end if;
2790 Set_Master_Id (Etype (Scop), Defining_Identifier (Decl));
2791 Set_Has_Master_Entity (Scop);
2793 -- Now mark the containing scope as a task master
2795 Par := N;
2796 while Nkind (Par) /= N_Compilation_Unit loop
2797 Par := Parent (Par);
2798 pragma Assert (Present (Par));
2800 -- If we fall off the top, we are at the outer level, and
2801 -- the environment task is our effective master, so nothing
2802 -- to mark.
2804 if Nkind_In
2805 (Par, N_Task_Body, N_Block_Statement, N_Subprogram_Body)
2806 then
2807 Set_Is_Task_Master (Par, True);
2808 exit;
2809 end if;
2810 end loop;
2811 end if;
2812 end Check_Anonymous_Return;
2814 -------------------------
2815 -- Check_Inline_Pragma --
2816 -------------------------
2818 procedure Check_Inline_Pragma (Spec : in out Node_Id) is
2819 Prag : Node_Id;
2820 Plist : List_Id;
2822 function Is_Inline_Pragma (N : Node_Id) return Boolean;
2823 -- True when N is a pragma Inline or Inline_Always that applies
2824 -- to this subprogram.
2826 -----------------------
2827 -- Is_Inline_Pragma --
2828 -----------------------
2830 function Is_Inline_Pragma (N : Node_Id) return Boolean is
2831 begin
2832 if Nkind (N) = N_Pragma
2833 and then
2834 (Pragma_Name_Unmapped (N) = Name_Inline_Always
2835 or else (Pragma_Name_Unmapped (N) = Name_Inline
2836 and then
2837 (Front_End_Inlining or else Optimization_Level > 0)))
2838 and then Present (Pragma_Argument_Associations (N))
2839 then
2840 declare
2841 Pragma_Arg : Node_Id :=
2842 Expression (First (Pragma_Argument_Associations (N)));
2843 begin
2844 if Nkind (Pragma_Arg) = N_Selected_Component then
2845 Pragma_Arg := Selector_Name (Pragma_Arg);
2846 end if;
2848 return Chars (Pragma_Arg) = Chars (Body_Id);
2849 end;
2851 else
2852 return False;
2853 end if;
2854 end Is_Inline_Pragma;
2856 -- Start of processing for Check_Inline_Pragma
2858 begin
2859 if not Expander_Active then
2860 return;
2861 end if;
2863 if Is_List_Member (N)
2864 and then Present (Next (N))
2865 and then Is_Inline_Pragma (Next (N))
2866 then
2867 Prag := Next (N);
2869 elsif Nkind (N) /= N_Subprogram_Body_Stub
2870 and then Present (Declarations (N))
2871 and then Is_Inline_Pragma (First (Declarations (N)))
2872 then
2873 Prag := First (Declarations (N));
2875 else
2876 Prag := Empty;
2877 end if;
2879 if Present (Prag) then
2880 if Present (Spec_Id) then
2881 if Is_List_Member (N)
2882 and then Is_List_Member (Unit_Declaration_Node (Spec_Id))
2883 and then In_Same_List (N, Unit_Declaration_Node (Spec_Id))
2884 then
2885 Analyze (Prag);
2886 end if;
2888 else
2889 -- Create a subprogram declaration, to make treatment uniform.
2890 -- Make the sloc of the subprogram name that of the entity in
2891 -- the body, so that style checks find identical strings.
2893 declare
2894 Subp : constant Entity_Id :=
2895 Make_Defining_Identifier
2896 (Sloc (Body_Id), Chars (Body_Id));
2897 Decl : constant Node_Id :=
2898 Make_Subprogram_Declaration (Loc,
2899 Specification =>
2900 New_Copy_Tree (Specification (N)));
2902 begin
2903 -- Link the body and the generated spec
2905 Set_Corresponding_Body (Decl, Body_Id);
2906 Set_Corresponding_Spec (N, Subp);
2908 Set_Defining_Unit_Name (Specification (Decl), Subp);
2910 -- To ensure proper coverage when body is inlined, indicate
2911 -- whether the subprogram comes from source.
2913 Set_Comes_From_Source (Subp, Comes_From_Source (N));
2915 if Present (First_Formal (Body_Id)) then
2916 Plist := Copy_Parameter_List (Body_Id);
2917 Set_Parameter_Specifications
2918 (Specification (Decl), Plist);
2919 end if;
2921 -- Move aspects to the new spec
2923 if Has_Aspects (N) then
2924 Move_Aspects (N, To => Decl);
2925 end if;
2927 Insert_Before (N, Decl);
2928 Analyze (Decl);
2929 Analyze (Prag);
2930 Set_Has_Pragma_Inline (Subp);
2932 if Pragma_Name (Prag) = Name_Inline_Always then
2933 Set_Is_Inlined (Subp);
2934 Set_Has_Pragma_Inline_Always (Subp);
2935 end if;
2937 -- Prior to copying the subprogram body to create a template
2938 -- for it for subsequent inlining, remove the pragma from
2939 -- the current body so that the copy that will produce the
2940 -- new body will start from a completely unanalyzed tree.
2942 if Nkind (Parent (Prag)) = N_Subprogram_Body then
2943 Rewrite (Prag, Make_Null_Statement (Sloc (Prag)));
2944 end if;
2946 Spec := Subp;
2947 end;
2948 end if;
2949 end if;
2950 end Check_Inline_Pragma;
2952 --------------------------
2953 -- Check_Missing_Return --
2954 --------------------------
2956 procedure Check_Missing_Return is
2957 Id : Entity_Id;
2958 Missing_Ret : Boolean;
2960 begin
2961 if Nkind (Body_Spec) = N_Function_Specification then
2962 if Present (Spec_Id) then
2963 Id := Spec_Id;
2964 else
2965 Id := Body_Id;
2966 end if;
2968 if Return_Present (Id) then
2969 Check_Returns (HSS, 'F', Missing_Ret);
2971 if Missing_Ret then
2972 Set_Has_Missing_Return (Id);
2973 end if;
2975 -- Within a premature instantiation of a package with no body, we
2976 -- build completions of the functions therein, with a Raise
2977 -- statement. No point in complaining about a missing return in
2978 -- this case.
2980 elsif Ekind (Id) = E_Function
2981 and then In_Instance
2982 and then Present (Statements (HSS))
2983 and then Nkind (First (Statements (HSS))) = N_Raise_Program_Error
2984 then
2985 null;
2987 elsif Is_Generic_Subprogram (Id)
2988 or else not Is_Machine_Code_Subprogram (Id)
2989 then
2990 Error_Msg_N ("missing RETURN statement in function body", N);
2991 end if;
2993 -- If procedure with No_Return, check returns
2995 elsif Nkind (Body_Spec) = N_Procedure_Specification
2996 and then Present (Spec_Id)
2997 and then No_Return (Spec_Id)
2998 then
2999 Check_Returns (HSS, 'P', Missing_Ret, Spec_Id);
3000 end if;
3002 -- Special checks in SPARK mode
3004 if Nkind (Body_Spec) = N_Function_Specification then
3006 -- In SPARK mode, last statement of a function should be a return
3008 declare
3009 Stat : constant Node_Id := Last_Source_Statement (HSS);
3010 begin
3011 if Present (Stat)
3012 and then not Nkind_In (Stat, N_Simple_Return_Statement,
3013 N_Extended_Return_Statement)
3014 then
3015 Check_SPARK_05_Restriction
3016 ("last statement in function should be RETURN", Stat);
3017 end if;
3018 end;
3020 -- In SPARK mode, verify that a procedure has no return
3022 elsif Nkind (Body_Spec) = N_Procedure_Specification then
3023 if Present (Spec_Id) then
3024 Id := Spec_Id;
3025 else
3026 Id := Body_Id;
3027 end if;
3029 -- Would be nice to point to return statement here, can we
3030 -- borrow the Check_Returns procedure here ???
3032 if Return_Present (Id) then
3033 Check_SPARK_05_Restriction
3034 ("procedure should not have RETURN", N);
3035 end if;
3036 end if;
3037 end Check_Missing_Return;
3039 -----------------------
3040 -- Disambiguate_Spec --
3041 -----------------------
3043 function Disambiguate_Spec return Entity_Id is
3044 Priv_Spec : Entity_Id;
3045 Spec_N : Entity_Id;
3047 procedure Replace_Types (To_Corresponding : Boolean);
3048 -- Depending on the flag, replace the type of formal parameters of
3049 -- Body_Id if it is a concurrent type implementing interfaces with
3050 -- the corresponding record type or the other way around.
3052 procedure Replace_Types (To_Corresponding : Boolean) is
3053 Formal : Entity_Id;
3054 Formal_Typ : Entity_Id;
3056 begin
3057 Formal := First_Formal (Body_Id);
3058 while Present (Formal) loop
3059 Formal_Typ := Etype (Formal);
3061 if Is_Class_Wide_Type (Formal_Typ) then
3062 Formal_Typ := Root_Type (Formal_Typ);
3063 end if;
3065 -- From concurrent type to corresponding record
3067 if To_Corresponding then
3068 if Is_Concurrent_Type (Formal_Typ)
3069 and then Present (Corresponding_Record_Type (Formal_Typ))
3070 and then
3071 Present (Interfaces
3072 (Corresponding_Record_Type (Formal_Typ)))
3073 then
3074 Set_Etype (Formal,
3075 Corresponding_Record_Type (Formal_Typ));
3076 end if;
3078 -- From corresponding record to concurrent type
3080 else
3081 if Is_Concurrent_Record_Type (Formal_Typ)
3082 and then Present (Interfaces (Formal_Typ))
3083 then
3084 Set_Etype (Formal,
3085 Corresponding_Concurrent_Type (Formal_Typ));
3086 end if;
3087 end if;
3089 Next_Formal (Formal);
3090 end loop;
3091 end Replace_Types;
3093 -- Start of processing for Disambiguate_Spec
3095 begin
3096 -- Try to retrieve the specification of the body as is. All error
3097 -- messages are suppressed because the body may not have a spec in
3098 -- its current state.
3100 Spec_N := Find_Corresponding_Spec (N, False);
3102 -- It is possible that this is the body of a primitive declared
3103 -- between a private and a full view of a concurrent type. The
3104 -- controlling parameter of the spec carries the concurrent type,
3105 -- not the corresponding record type as transformed by Analyze_
3106 -- Subprogram_Specification. In such cases, we undo the change
3107 -- made by the analysis of the specification and try to find the
3108 -- spec again.
3110 -- Note that wrappers already have their corresponding specs and
3111 -- bodies set during their creation, so if the candidate spec is
3112 -- a wrapper, then we definitely need to swap all types to their
3113 -- original concurrent status.
3115 if No (Spec_N)
3116 or else Is_Primitive_Wrapper (Spec_N)
3117 then
3118 -- Restore all references of corresponding record types to the
3119 -- original concurrent types.
3121 Replace_Types (To_Corresponding => False);
3122 Priv_Spec := Find_Corresponding_Spec (N, False);
3124 -- The current body truly belongs to a primitive declared between
3125 -- a private and a full view. We leave the modified body as is,
3126 -- and return the true spec.
3128 if Present (Priv_Spec)
3129 and then Is_Private_Primitive (Priv_Spec)
3130 then
3131 return Priv_Spec;
3132 end if;
3134 -- In case that this is some sort of error, restore the original
3135 -- state of the body.
3137 Replace_Types (To_Corresponding => True);
3138 end if;
3140 return Spec_N;
3141 end Disambiguate_Spec;
3143 ----------------------------
3144 -- Exchange_Limited_Views --
3145 ----------------------------
3147 function Exchange_Limited_Views (Subp_Id : Entity_Id) return Elist_Id is
3148 Result : Elist_Id := No_Elist;
3150 procedure Detect_And_Exchange (Id : Entity_Id);
3151 -- Determine whether Id's type denotes an incomplete type associated
3152 -- with a limited with clause and exchange the limited view with the
3153 -- non-limited one when available. Note that the non-limited view
3154 -- may exist because of a with_clause in another unit in the context,
3155 -- but cannot be used because the current view of the enclosing unit
3156 -- is still a limited view.
3158 -------------------------
3159 -- Detect_And_Exchange --
3160 -------------------------
3162 procedure Detect_And_Exchange (Id : Entity_Id) is
3163 Typ : constant Entity_Id := Etype (Id);
3164 begin
3165 if From_Limited_With (Typ)
3166 and then Has_Non_Limited_View (Typ)
3167 and then not From_Limited_With (Scope (Typ))
3168 then
3169 if No (Result) then
3170 Result := New_Elmt_List;
3171 end if;
3173 Prepend_Elmt (Typ, Result);
3174 Prepend_Elmt (Id, Result);
3175 Set_Etype (Id, Non_Limited_View (Typ));
3176 end if;
3177 end Detect_And_Exchange;
3179 -- Local variables
3181 Formal : Entity_Id;
3183 -- Start of processing for Exchange_Limited_Views
3185 begin
3186 -- Do not process subprogram bodies as they already use the non-
3187 -- limited view of types.
3189 if not Ekind_In (Subp_Id, E_Function, E_Procedure) then
3190 return No_Elist;
3191 end if;
3193 -- Examine all formals and swap views when applicable
3195 Formal := First_Formal (Subp_Id);
3196 while Present (Formal) loop
3197 Detect_And_Exchange (Formal);
3199 Next_Formal (Formal);
3200 end loop;
3202 -- Process the return type of a function
3204 if Ekind (Subp_Id) = E_Function then
3205 Detect_And_Exchange (Subp_Id);
3206 end if;
3208 return Result;
3209 end Exchange_Limited_Views;
3211 -------------------------------------
3212 -- Is_Private_Concurrent_Primitive --
3213 -------------------------------------
3215 function Is_Private_Concurrent_Primitive
3216 (Subp_Id : Entity_Id) return Boolean
3218 Formal_Typ : Entity_Id;
3220 begin
3221 if Present (First_Formal (Subp_Id)) then
3222 Formal_Typ := Etype (First_Formal (Subp_Id));
3224 if Is_Concurrent_Record_Type (Formal_Typ) then
3225 if Is_Class_Wide_Type (Formal_Typ) then
3226 Formal_Typ := Root_Type (Formal_Typ);
3227 end if;
3229 Formal_Typ := Corresponding_Concurrent_Type (Formal_Typ);
3230 end if;
3232 -- The type of the first formal is a concurrent tagged type with
3233 -- a private view.
3235 return
3236 Is_Concurrent_Type (Formal_Typ)
3237 and then Is_Tagged_Type (Formal_Typ)
3238 and then Has_Private_Declaration (Formal_Typ);
3239 end if;
3241 return False;
3242 end Is_Private_Concurrent_Primitive;
3244 -------------------------
3245 -- Mask_Unfrozen_Types --
3246 -------------------------
3248 function Mask_Unfrozen_Types (Spec_Id : Entity_Id) return Elist_Id is
3249 Result : Elist_Id := No_Elist;
3251 function Mask_Type_Refs (Node : Node_Id) return Traverse_Result;
3252 -- Mask all types referenced in the subtree rooted at Node
3254 --------------------
3255 -- Mask_Type_Refs --
3256 --------------------
3258 function Mask_Type_Refs (Node : Node_Id) return Traverse_Result is
3259 procedure Mask_Type (Typ : Entity_Id);
3260 -- ??? what does this do?
3262 ---------------
3263 -- Mask_Type --
3264 ---------------
3266 procedure Mask_Type (Typ : Entity_Id) is
3267 begin
3268 -- Skip Itypes created by the preanalysis
3270 if Is_Itype (Typ)
3271 and then Scope_Within_Or_Same (Scope (Typ), Spec_Id)
3272 then
3273 return;
3274 end if;
3276 if not Is_Frozen (Typ) then
3277 Set_Is_Frozen (Typ);
3278 Append_New_Elmt (Typ, Result);
3279 end if;
3280 end Mask_Type;
3282 -- Start of processing for Mask_Type_Refs
3284 begin
3285 if Is_Entity_Name (Node) and then Present (Entity (Node)) then
3286 Mask_Type (Etype (Entity (Node)));
3288 if Ekind_In (Entity (Node), E_Component, E_Discriminant) then
3289 Mask_Type (Scope (Entity (Node)));
3290 end if;
3292 elsif Nkind_In (Node, N_Aggregate, N_Null, N_Type_Conversion)
3293 and then Present (Etype (Node))
3294 then
3295 Mask_Type (Etype (Node));
3296 end if;
3298 return OK;
3299 end Mask_Type_Refs;
3301 procedure Mask_References is new Traverse_Proc (Mask_Type_Refs);
3303 -- Local variables
3305 Return_Stmt : constant Node_Id :=
3306 First (Statements (Handled_Statement_Sequence (N)));
3308 -- Start of processing for Mask_Unfrozen_Types
3310 begin
3311 pragma Assert (Nkind (Return_Stmt) = N_Simple_Return_Statement);
3313 Mask_References (Expression (Return_Stmt));
3315 return Result;
3316 end Mask_Unfrozen_Types;
3318 ---------------------------
3319 -- Restore_Limited_Views --
3320 ---------------------------
3322 procedure Restore_Limited_Views (Restore_List : Elist_Id) is
3323 Elmt : Elmt_Id := First_Elmt (Restore_List);
3324 Id : Entity_Id;
3326 begin
3327 while Present (Elmt) loop
3328 Id := Node (Elmt);
3329 Next_Elmt (Elmt);
3330 Set_Etype (Id, Node (Elmt));
3331 Next_Elmt (Elmt);
3332 end loop;
3333 end Restore_Limited_Views;
3335 ----------------------------
3336 -- Set_Trivial_Subprogram --
3337 ----------------------------
3339 procedure Set_Trivial_Subprogram (N : Node_Id) is
3340 Nxt : constant Node_Id := Next (N);
3342 begin
3343 Set_Is_Trivial_Subprogram (Body_Id);
3345 if Present (Spec_Id) then
3346 Set_Is_Trivial_Subprogram (Spec_Id);
3347 end if;
3349 if Present (Nxt)
3350 and then Nkind (Nxt) = N_Simple_Return_Statement
3351 and then No (Next (Nxt))
3352 and then Present (Expression (Nxt))
3353 and then Is_Entity_Name (Expression (Nxt))
3354 then
3355 Set_Never_Set_In_Source (Entity (Expression (Nxt)), False);
3356 end if;
3357 end Set_Trivial_Subprogram;
3359 ---------------------------
3360 -- Unmask_Unfrozen_Types --
3361 ---------------------------
3363 procedure Unmask_Unfrozen_Types (Unmask_List : Elist_Id) is
3364 Elmt : Elmt_Id := First_Elmt (Unmask_List);
3366 begin
3367 while Present (Elmt) loop
3368 Set_Is_Frozen (Node (Elmt), False);
3369 Next_Elmt (Elmt);
3370 end loop;
3371 end Unmask_Unfrozen_Types;
3373 ---------------------------------
3374 -- Verify_Overriding_Indicator --
3375 ---------------------------------
3377 procedure Verify_Overriding_Indicator is
3378 begin
3379 if Must_Override (Body_Spec) then
3380 if Nkind (Spec_Id) = N_Defining_Operator_Symbol
3381 and then Operator_Matches_Spec (Spec_Id, Spec_Id)
3382 then
3383 null;
3385 elsif not Present (Overridden_Operation (Spec_Id)) then
3386 Error_Msg_NE
3387 ("subprogram& is not overriding", Body_Spec, Spec_Id);
3389 -- Overriding indicators aren't allowed for protected subprogram
3390 -- bodies (see the Confirmation in Ada Comment AC95-00213). Change
3391 -- this to a warning if -gnatd.E is enabled.
3393 elsif Ekind (Scope (Spec_Id)) = E_Protected_Type then
3394 Error_Msg_Warn := Error_To_Warning;
3395 Error_Msg_N
3396 ("<<overriding indicator not allowed for protected "
3397 & "subprogram body", Body_Spec);
3398 end if;
3400 elsif Must_Not_Override (Body_Spec) then
3401 if Present (Overridden_Operation (Spec_Id)) then
3402 Error_Msg_NE
3403 ("subprogram& overrides inherited operation",
3404 Body_Spec, Spec_Id);
3406 elsif Nkind (Spec_Id) = N_Defining_Operator_Symbol
3407 and then Operator_Matches_Spec (Spec_Id, Spec_Id)
3408 then
3409 Error_Msg_NE
3410 ("subprogram& overrides predefined operator ",
3411 Body_Spec, Spec_Id);
3413 -- Overriding indicators aren't allowed for protected subprogram
3414 -- bodies (see the Confirmation in Ada Comment AC95-00213). Change
3415 -- this to a warning if -gnatd.E is enabled.
3417 elsif Ekind (Scope (Spec_Id)) = E_Protected_Type then
3418 Error_Msg_Warn := Error_To_Warning;
3420 Error_Msg_N
3421 ("<<overriding indicator not allowed "
3422 & "for protected subprogram body", Body_Spec);
3424 -- If this is not a primitive operation, then the overriding
3425 -- indicator is altogether illegal.
3427 elsif not Is_Primitive (Spec_Id) then
3428 Error_Msg_N
3429 ("overriding indicator only allowed "
3430 & "if subprogram is primitive", Body_Spec);
3431 end if;
3433 -- If checking the style rule and the operation overrides, then
3434 -- issue a warning about a missing overriding_indicator. Protected
3435 -- subprogram bodies are excluded from this style checking, since
3436 -- they aren't primitives (even though their declarations can
3437 -- override) and aren't allowed to have an overriding_indicator.
3439 elsif Style_Check
3440 and then Present (Overridden_Operation (Spec_Id))
3441 and then Ekind (Scope (Spec_Id)) /= E_Protected_Type
3442 then
3443 pragma Assert (Unit_Declaration_Node (Body_Id) = N);
3444 Style.Missing_Overriding (N, Body_Id);
3446 elsif Style_Check
3447 and then Can_Override_Operator (Spec_Id)
3448 and then not In_Predefined_Unit (Spec_Id)
3449 then
3450 pragma Assert (Unit_Declaration_Node (Body_Id) = N);
3451 Style.Missing_Overriding (N, Body_Id);
3452 end if;
3453 end Verify_Overriding_Indicator;
3455 -- Local variables
3457 Saved_GM : constant Ghost_Mode_Type := Ghost_Mode;
3458 Saved_ISMP : constant Boolean :=
3459 Ignore_SPARK_Mode_Pragmas_In_Instance;
3460 -- Save the Ghost and SPARK mode-related data to restore on exit
3462 -- Start of processing for Analyze_Subprogram_Body_Helper
3464 begin
3465 -- A [generic] subprogram body "freezes" the contract of the nearest
3466 -- enclosing package body and all other contracts encountered in the
3467 -- same declarative part up to and excluding the subprogram body:
3469 -- package body Nearest_Enclosing_Package
3470 -- with Refined_State => (State => Constit)
3471 -- is
3472 -- Constit : ...;
3474 -- procedure Freezes_Enclosing_Package_Body
3475 -- with Refined_Depends => (Input => Constit) ...
3477 -- This ensures that any annotations referenced by the contract of the
3478 -- [generic] subprogram body are available. This form of "freezing" is
3479 -- decoupled from the usual Freeze_xxx mechanism because it must also
3480 -- work in the context of generics where normal freezing is disabled.
3482 -- Only bodies coming from source should cause this type of "freezing".
3483 -- Expression functions that act as bodies and complete an initial
3484 -- declaration must be included in this category, hence the use of
3485 -- Original_Node.
3487 if Comes_From_Source (Original_Node (N)) then
3488 Analyze_Previous_Contracts (N);
3489 end if;
3491 -- Generic subprograms are handled separately. They always have a
3492 -- generic specification. Determine whether current scope has a
3493 -- previous declaration.
3495 -- If the subprogram body is defined within an instance of the same
3496 -- name, the instance appears as a package renaming, and will be hidden
3497 -- within the subprogram.
3499 if Present (Prev_Id)
3500 and then not Is_Overloadable (Prev_Id)
3501 and then (Nkind (Parent (Prev_Id)) /= N_Package_Renaming_Declaration
3502 or else Comes_From_Source (Prev_Id))
3503 then
3504 if Is_Generic_Subprogram (Prev_Id) then
3505 Spec_Id := Prev_Id;
3507 -- A subprogram body is Ghost when it is stand alone and subject
3508 -- to pragma Ghost or when the corresponding spec is Ghost. Set
3509 -- the mode now to ensure that any nodes generated during analysis
3510 -- and expansion are properly marked as Ghost.
3512 Mark_And_Set_Ghost_Body (N, Spec_Id);
3514 Set_Is_Compilation_Unit (Body_Id, Is_Compilation_Unit (Spec_Id));
3515 Set_Is_Child_Unit (Body_Id, Is_Child_Unit (Spec_Id));
3517 Analyze_Generic_Subprogram_Body (N, Spec_Id);
3519 if Nkind (N) = N_Subprogram_Body then
3520 HSS := Handled_Statement_Sequence (N);
3521 Check_Missing_Return;
3522 end if;
3524 goto Leave;
3526 -- Otherwise a previous entity conflicts with the subprogram name.
3527 -- Attempting to enter name will post error.
3529 else
3530 Enter_Name (Body_Id);
3531 goto Leave;
3532 end if;
3534 -- Non-generic case, find the subprogram declaration, if one was seen,
3535 -- or enter new overloaded entity in the current scope. If the
3536 -- Current_Entity is the Body_Id itself, the unit is being analyzed as
3537 -- part of the context of one of its subunits. No need to redo the
3538 -- analysis.
3540 elsif Prev_Id = Body_Id and then Has_Completion (Body_Id) then
3541 goto Leave;
3543 else
3544 Body_Id := Analyze_Subprogram_Specification (Body_Spec);
3546 if Nkind (N) = N_Subprogram_Body_Stub
3547 or else No (Corresponding_Spec (N))
3548 then
3549 if Is_Private_Concurrent_Primitive (Body_Id) then
3550 Spec_Id := Disambiguate_Spec;
3552 -- A subprogram body is Ghost when it is stand alone and
3553 -- subject to pragma Ghost or when the corresponding spec is
3554 -- Ghost. Set the mode now to ensure that any nodes generated
3555 -- during analysis and expansion are properly marked as Ghost.
3557 Mark_And_Set_Ghost_Body (N, Spec_Id);
3559 else
3560 Spec_Id := Find_Corresponding_Spec (N);
3562 -- A subprogram body is Ghost when it is stand alone and
3563 -- subject to pragma Ghost or when the corresponding spec is
3564 -- Ghost. Set the mode now to ensure that any nodes generated
3565 -- during analysis and expansion are properly marked as Ghost.
3567 Mark_And_Set_Ghost_Body (N, Spec_Id);
3569 -- In GNATprove mode, if the body has no previous spec, create
3570 -- one so that the inlining machinery can operate properly.
3571 -- Transfer aspects, if any, to the new spec, so that they
3572 -- are legal and can be processed ahead of the body.
3573 -- We make two copies of the given spec, one for the new
3574 -- declaration, and one for the body.
3576 if No (Spec_Id) and then GNATprove_Mode
3578 -- Inlining does not apply during pre-analysis of code
3580 and then Full_Analysis
3582 -- Inlining only applies to full bodies, not stubs
3584 and then Nkind (N) /= N_Subprogram_Body_Stub
3586 -- Inlining only applies to bodies in the source code, not to
3587 -- those generated by the compiler. In particular, expression
3588 -- functions, whose body is generated by the compiler, are
3589 -- treated specially by GNATprove.
3591 and then Comes_From_Source (Body_Id)
3593 -- This cannot be done for a compilation unit, which is not
3594 -- in a context where we can insert a new spec.
3596 and then Is_List_Member (N)
3598 -- Inlining only applies to subprograms without contracts,
3599 -- as a contract is a sign that GNATprove should perform a
3600 -- modular analysis of the subprogram instead of a contextual
3601 -- analysis at each call site. The same test is performed in
3602 -- Inline.Can_Be_Inlined_In_GNATprove_Mode. It is repeated
3603 -- here in another form (because the contract has not been
3604 -- attached to the body) to avoid front-end errors in case
3605 -- pragmas are used instead of aspects, because the
3606 -- corresponding pragmas in the body would not be transferred
3607 -- to the spec, leading to legality errors.
3609 and then not Body_Has_Contract
3610 and then not Inside_A_Generic
3611 then
3612 Build_Subprogram_Declaration;
3614 -- If this is a function that returns a constrained array, and
3615 -- we are generating SPARK_For_C, create subprogram declaration
3616 -- to simplify subsequent C generation.
3618 elsif No (Spec_Id)
3619 and then Modify_Tree_For_C
3620 and then Nkind (Body_Spec) = N_Function_Specification
3621 and then Is_Array_Type (Etype (Body_Id))
3622 and then Is_Constrained (Etype (Body_Id))
3623 then
3624 Build_Subprogram_Declaration;
3625 end if;
3626 end if;
3628 -- If this is a duplicate body, no point in analyzing it
3630 if Error_Posted (N) then
3631 goto Leave;
3632 end if;
3634 -- A subprogram body should cause freezing of its own declaration,
3635 -- but if there was no previous explicit declaration, then the
3636 -- subprogram will get frozen too late (there may be code within
3637 -- the body that depends on the subprogram having been frozen,
3638 -- such as uses of extra formals), so we force it to be frozen
3639 -- here. Same holds if the body and spec are compilation units.
3640 -- Finally, if the return type is an anonymous access to protected
3641 -- subprogram, it must be frozen before the body because its
3642 -- expansion has generated an equivalent type that is used when
3643 -- elaborating the body.
3645 -- An exception in the case of Ada 2012, AI05-177: The bodies
3646 -- created for expression functions do not freeze.
3648 if No (Spec_Id)
3649 and then Nkind (Original_Node (N)) /= N_Expression_Function
3650 then
3651 Freeze_Before (N, Body_Id);
3653 elsif Nkind (Parent (N)) = N_Compilation_Unit then
3654 Freeze_Before (N, Spec_Id);
3656 elsif Is_Access_Subprogram_Type (Etype (Body_Id)) then
3657 Freeze_Before (N, Etype (Body_Id));
3658 end if;
3660 else
3661 Spec_Id := Corresponding_Spec (N);
3663 -- A subprogram body is Ghost when it is stand alone and subject
3664 -- to pragma Ghost or when the corresponding spec is Ghost. Set
3665 -- the mode now to ensure that any nodes generated during analysis
3666 -- and expansion are properly marked as Ghost.
3668 Mark_And_Set_Ghost_Body (N, Spec_Id);
3669 end if;
3670 end if;
3672 -- Previously we scanned the body to look for nested subprograms, and
3673 -- rejected an inline directive if nested subprograms were present,
3674 -- because the back-end would generate conflicting symbols for the
3675 -- nested bodies. This is now unnecessary.
3677 -- Look ahead to recognize a pragma Inline that appears after the body
3679 Check_Inline_Pragma (Spec_Id);
3681 -- Deal with special case of a fully private operation in the body of
3682 -- the protected type. We must create a declaration for the subprogram,
3683 -- in order to attach the protected subprogram that will be used in
3684 -- internal calls. We exclude compiler generated bodies from the
3685 -- expander since the issue does not arise for those cases.
3687 if No (Spec_Id)
3688 and then Comes_From_Source (N)
3689 and then Is_Protected_Type (Current_Scope)
3690 then
3691 Spec_Id := Build_Private_Protected_Declaration (N);
3692 end if;
3694 -- If we are generating C and this is a function returning a constrained
3695 -- array type for which we must create a procedure with an extra out
3696 -- parameter, build and analyze the body now. The procedure declaration
3697 -- has already been created. We reuse the source body of the function,
3698 -- because in an instance it may contain global references that cannot
3699 -- be reanalyzed. The source function itself is not used any further,
3700 -- so we mark it as having a completion. If the subprogram is a stub the
3701 -- transformation is done later, when the proper body is analyzed.
3703 if Expander_Active
3704 and then Modify_Tree_For_C
3705 and then Present (Spec_Id)
3706 and then Ekind (Spec_Id) = E_Function
3707 and then Nkind (N) /= N_Subprogram_Body_Stub
3708 and then Rewritten_For_C (Spec_Id)
3709 then
3710 Set_Has_Completion (Spec_Id);
3712 Rewrite (N, Build_Procedure_Body_Form (Spec_Id, N));
3713 Analyze (N);
3715 -- The entity for the created procedure must remain invisible, so it
3716 -- does not participate in resolution of subsequent references to the
3717 -- function.
3719 Set_Is_Immediately_Visible (Corresponding_Spec (N), False);
3720 goto Leave;
3721 end if;
3723 -- If a separate spec is present, then deal with freezing issues
3725 if Present (Spec_Id) then
3726 Spec_Decl := Unit_Declaration_Node (Spec_Id);
3727 Verify_Overriding_Indicator;
3729 -- In general, the spec will be frozen when we start analyzing the
3730 -- body. However, for internally generated operations, such as
3731 -- wrapper functions for inherited operations with controlling
3732 -- results, the spec may not have been frozen by the time we expand
3733 -- the freeze actions that include the bodies. In particular, extra
3734 -- formals for accessibility or for return-in-place may need to be
3735 -- generated. Freeze nodes, if any, are inserted before the current
3736 -- body. These freeze actions are also needed in ASIS mode and in
3737 -- Compile_Only mode to enable the proper back-end type annotations.
3738 -- They are necessary in any case to insure order of elaboration
3739 -- in gigi.
3741 if not Is_Frozen (Spec_Id)
3742 and then (Expander_Active
3743 or else ASIS_Mode
3744 or else (Operating_Mode = Check_Semantics
3745 and then Serious_Errors_Detected = 0))
3746 then
3747 -- The body generated for an expression function that is not a
3748 -- completion is a freeze point neither for the profile nor for
3749 -- anything else. That's why, in order to prevent any freezing
3750 -- during analysis, we need to mask types declared outside the
3751 -- expression that are not yet frozen.
3753 if Nkind (N) = N_Subprogram_Body
3754 and then Was_Expression_Function (N)
3755 and then not Has_Completion (Spec_Id)
3756 then
3757 Set_Is_Frozen (Spec_Id);
3758 Mask_Types := Mask_Unfrozen_Types (Spec_Id);
3759 else
3760 Set_Has_Delayed_Freeze (Spec_Id);
3761 Freeze_Before (N, Spec_Id);
3762 end if;
3763 end if;
3764 end if;
3766 -- If the subprogram has a class-wide clone, build its body as a copy
3767 -- of the original body, and rewrite body of original subprogram as a
3768 -- wrapper that calls the clone.
3770 if Present (Spec_Id)
3771 and then Present (Class_Wide_Clone (Spec_Id))
3772 and then (Comes_From_Source (N) or else Was_Expression_Function (N))
3773 then
3774 Build_Class_Wide_Clone_Body (Spec_Id, N);
3776 -- This is the new body for the existing primitive operation
3778 Rewrite (N, Build_Class_Wide_Clone_Call
3779 (Sloc (N), New_List, Spec_Id, Parent (Spec_Id)));
3780 Set_Has_Completion (Spec_Id, False);
3781 Analyze (N);
3782 return;
3783 end if;
3785 -- Place subprogram on scope stack, and make formals visible. If there
3786 -- is a spec, the visible entity remains that of the spec.
3788 if Present (Spec_Id) then
3789 Generate_Reference (Spec_Id, Body_Id, 'b', Set_Ref => False);
3791 if Is_Child_Unit (Spec_Id) then
3792 Generate_Reference (Spec_Id, Scope (Spec_Id), 'k', False);
3793 end if;
3795 if Style_Check then
3796 Style.Check_Identifier (Body_Id, Spec_Id);
3797 end if;
3799 Set_Is_Compilation_Unit (Body_Id, Is_Compilation_Unit (Spec_Id));
3800 Set_Is_Child_Unit (Body_Id, Is_Child_Unit (Spec_Id));
3802 if Is_Abstract_Subprogram (Spec_Id) then
3803 Error_Msg_N ("an abstract subprogram cannot have a body", N);
3804 goto Leave;
3806 else
3807 Set_Convention (Body_Id, Convention (Spec_Id));
3808 Set_Has_Completion (Spec_Id);
3810 if Is_Protected_Type (Scope (Spec_Id)) then
3811 Prot_Typ := Scope (Spec_Id);
3812 end if;
3814 -- If this is a body generated for a renaming, do not check for
3815 -- full conformance. The check is redundant, because the spec of
3816 -- the body is a copy of the spec in the renaming declaration,
3817 -- and the test can lead to spurious errors on nested defaults.
3819 if Present (Spec_Decl)
3820 and then not Comes_From_Source (N)
3821 and then
3822 (Nkind (Original_Node (Spec_Decl)) =
3823 N_Subprogram_Renaming_Declaration
3824 or else (Present (Corresponding_Body (Spec_Decl))
3825 and then
3826 Nkind (Unit_Declaration_Node
3827 (Corresponding_Body (Spec_Decl))) =
3828 N_Subprogram_Renaming_Declaration))
3829 then
3830 Conformant := True;
3832 -- Conversely, the spec may have been generated for specless body
3833 -- with an inline pragma. The entity comes from source, which is
3834 -- both semantically correct and necessary for proper inlining.
3835 -- The subprogram declaration itself is not in the source.
3837 elsif Comes_From_Source (N)
3838 and then Present (Spec_Decl)
3839 and then not Comes_From_Source (Spec_Decl)
3840 and then Has_Pragma_Inline (Spec_Id)
3841 then
3842 Conformant := True;
3844 else
3845 Check_Conformance
3846 (Body_Id, Spec_Id,
3847 Fully_Conformant, True, Conformant, Body_Id);
3848 end if;
3850 -- If the body is not fully conformant, we have to decide if we
3851 -- should analyze it or not. If it has a really messed up profile
3852 -- then we probably should not analyze it, since we will get too
3853 -- many bogus messages.
3855 -- Our decision is to go ahead in the non-fully conformant case
3856 -- only if it is at least mode conformant with the spec. Note
3857 -- that the call to Check_Fully_Conformant has issued the proper
3858 -- error messages to complain about the lack of conformance.
3860 if not Conformant
3861 and then not Mode_Conformant (Body_Id, Spec_Id)
3862 then
3863 goto Leave;
3864 end if;
3865 end if;
3867 if Spec_Id /= Body_Id then
3868 Reference_Body_Formals (Spec_Id, Body_Id);
3869 end if;
3871 Set_Ekind (Body_Id, E_Subprogram_Body);
3873 if Nkind (N) = N_Subprogram_Body_Stub then
3874 Set_Corresponding_Spec_Of_Stub (N, Spec_Id);
3876 -- Regular body
3878 else
3879 Set_Corresponding_Spec (N, Spec_Id);
3881 -- Ada 2005 (AI-345): If the operation is a primitive operation
3882 -- of a concurrent type, the type of the first parameter has been
3883 -- replaced with the corresponding record, which is the proper
3884 -- run-time structure to use. However, within the body there may
3885 -- be uses of the formals that depend on primitive operations
3886 -- of the type (in particular calls in prefixed form) for which
3887 -- we need the original concurrent type. The operation may have
3888 -- several controlling formals, so the replacement must be done
3889 -- for all of them.
3891 if Comes_From_Source (Spec_Id)
3892 and then Present (First_Entity (Spec_Id))
3893 and then Ekind (Etype (First_Entity (Spec_Id))) = E_Record_Type
3894 and then Is_Tagged_Type (Etype (First_Entity (Spec_Id)))
3895 and then Present (Interfaces (Etype (First_Entity (Spec_Id))))
3896 and then Present (Corresponding_Concurrent_Type
3897 (Etype (First_Entity (Spec_Id))))
3898 then
3899 declare
3900 Typ : constant Entity_Id := Etype (First_Entity (Spec_Id));
3901 Form : Entity_Id;
3903 begin
3904 Form := First_Formal (Spec_Id);
3905 while Present (Form) loop
3906 if Etype (Form) = Typ then
3907 Set_Etype (Form, Corresponding_Concurrent_Type (Typ));
3908 end if;
3910 Next_Formal (Form);
3911 end loop;
3912 end;
3913 end if;
3915 -- Make the formals visible, and place subprogram on scope stack.
3916 -- This is also the point at which we set Last_Real_Spec_Entity
3917 -- to mark the entities which will not be moved to the body.
3919 Install_Formals (Spec_Id);
3920 Last_Real_Spec_Entity := Last_Entity (Spec_Id);
3922 -- Within an instance, add local renaming declarations so that
3923 -- gdb can retrieve the values of actuals more easily. This is
3924 -- only relevant if generating code (and indeed we definitely
3925 -- do not want these definitions -gnatc mode, because that would
3926 -- confuse ASIS).
3928 if Is_Generic_Instance (Spec_Id)
3929 and then Is_Wrapper_Package (Current_Scope)
3930 and then Expander_Active
3931 then
3932 Build_Subprogram_Instance_Renamings (N, Current_Scope);
3933 end if;
3935 Push_Scope (Spec_Id);
3937 -- Make sure that the subprogram is immediately visible. For
3938 -- child units that have no separate spec this is indispensable.
3939 -- Otherwise it is safe albeit redundant.
3941 Set_Is_Immediately_Visible (Spec_Id);
3942 end if;
3944 Set_Corresponding_Body (Unit_Declaration_Node (Spec_Id), Body_Id);
3945 Set_Is_Obsolescent (Body_Id, Is_Obsolescent (Spec_Id));
3946 Set_Scope (Body_Id, Scope (Spec_Id));
3948 -- Case of subprogram body with no previous spec
3950 else
3951 -- Check for style warning required
3953 if Style_Check
3955 -- Only apply check for source level subprograms for which checks
3956 -- have not been suppressed.
3958 and then Comes_From_Source (Body_Id)
3959 and then not Suppress_Style_Checks (Body_Id)
3961 -- No warnings within an instance
3963 and then not In_Instance
3965 -- No warnings for expression functions
3967 and then Nkind (Original_Node (N)) /= N_Expression_Function
3968 then
3969 Style.Body_With_No_Spec (N);
3970 end if;
3972 New_Overloaded_Entity (Body_Id);
3974 if Nkind (N) /= N_Subprogram_Body_Stub then
3975 Set_Acts_As_Spec (N);
3976 Generate_Definition (Body_Id);
3977 Generate_Reference
3978 (Body_Id, Body_Id, 'b', Set_Ref => False, Force => True);
3980 -- If the body is an entry wrapper created for an entry with
3981 -- preconditions, it must be compiled in the context of the
3982 -- enclosing synchronized object, because it may mention other
3983 -- operations of the type.
3985 if Is_Entry_Wrapper (Body_Id) then
3986 declare
3987 Prot : constant Entity_Id := Etype (First_Entity (Body_Id));
3988 begin
3989 Push_Scope (Prot);
3990 Install_Declarations (Prot);
3991 end;
3992 end if;
3994 Install_Formals (Body_Id);
3996 Push_Scope (Body_Id);
3997 end if;
3999 -- For stubs and bodies with no previous spec, generate references to
4000 -- formals.
4002 Generate_Reference_To_Formals (Body_Id);
4003 end if;
4005 -- Entry barrier functions are generated outside the protected type and
4006 -- should not carry the SPARK_Mode of the enclosing context.
4008 if Nkind (N) = N_Subprogram_Body
4009 and then Is_Entry_Barrier_Function (N)
4010 then
4011 null;
4013 -- The body is generated as part of expression function expansion. When
4014 -- the expression function appears in the visible declarations of a
4015 -- package, the body is added to the private declarations. Since both
4016 -- declarative lists may be subject to a different SPARK_Mode, inherit
4017 -- the mode of the spec.
4019 -- package P with SPARK_Mode is
4020 -- function Expr_Func ... is (...); -- original
4021 -- [function Expr_Func ...;] -- generated spec
4022 -- -- mode is ON
4023 -- private
4024 -- pragma SPARK_Mode (Off);
4025 -- [function Expr_Func ... is return ...;] -- generated body
4026 -- end P; -- mode is ON
4028 elsif not Comes_From_Source (N)
4029 and then Present (Spec_Id)
4030 and then Is_Expression_Function (Spec_Id)
4031 then
4032 Set_SPARK_Pragma (Body_Id, SPARK_Pragma (Spec_Id));
4033 Set_SPARK_Pragma_Inherited
4034 (Body_Id, SPARK_Pragma_Inherited (Spec_Id));
4036 -- Set the SPARK_Mode from the current context (may be overwritten later
4037 -- with explicit pragma). Exclude the case where the SPARK_Mode appears
4038 -- initially on a stand-alone subprogram body, but is then relocated to
4039 -- a generated corresponding spec. In this scenario the mode is shared
4040 -- between the spec and body.
4042 elsif No (SPARK_Pragma (Body_Id)) then
4043 Set_SPARK_Pragma (Body_Id, SPARK_Mode_Pragma);
4044 Set_SPARK_Pragma_Inherited (Body_Id);
4045 end if;
4047 -- A subprogram body may be instantiated or inlined at a later pass.
4048 -- Restore the state of Ignore_SPARK_Mode_Pragmas_In_Instance when it
4049 -- applied to the initial declaration of the body.
4051 if Present (Spec_Id) then
4052 if Ignore_SPARK_Mode_Pragmas (Spec_Id) then
4053 Ignore_SPARK_Mode_Pragmas_In_Instance := True;
4054 end if;
4056 else
4057 -- Save the state of flag Ignore_SPARK_Mode_Pragmas_In_Instance in
4058 -- case the body is instantiated or inlined later and out of context.
4059 -- The body uses this attribute to restore the value of the global
4060 -- flag.
4062 if Ignore_SPARK_Mode_Pragmas_In_Instance then
4063 Set_Ignore_SPARK_Mode_Pragmas (Body_Id);
4065 elsif Ignore_SPARK_Mode_Pragmas (Body_Id) then
4066 Ignore_SPARK_Mode_Pragmas_In_Instance := True;
4067 end if;
4068 end if;
4070 -- If this is the proper body of a stub, we must verify that the stub
4071 -- conforms to the body, and to the previous spec if one was present.
4072 -- We know already that the body conforms to that spec. This test is
4073 -- only required for subprograms that come from source.
4075 if Nkind (Parent (N)) = N_Subunit
4076 and then Comes_From_Source (N)
4077 and then not Error_Posted (Body_Id)
4078 and then Nkind (Corresponding_Stub (Parent (N))) =
4079 N_Subprogram_Body_Stub
4080 then
4081 declare
4082 Old_Id : constant Entity_Id :=
4083 Defining_Entity
4084 (Specification (Corresponding_Stub (Parent (N))));
4086 Conformant : Boolean := False;
4088 begin
4089 if No (Spec_Id) then
4090 Check_Fully_Conformant (Body_Id, Old_Id);
4092 else
4093 Check_Conformance
4094 (Body_Id, Old_Id, Fully_Conformant, False, Conformant);
4096 if not Conformant then
4098 -- The stub was taken to be a new declaration. Indicate that
4099 -- it lacks a body.
4101 Set_Has_Completion (Old_Id, False);
4102 end if;
4103 end if;
4104 end;
4105 end if;
4107 Set_Has_Completion (Body_Id);
4108 Check_Eliminated (Body_Id);
4110 -- Analyze any aspect specifications that appear on the subprogram body
4111 -- stub. Stop the analysis now as the stub does not have a declarative
4112 -- or a statement part, and it cannot be inlined.
4114 if Nkind (N) = N_Subprogram_Body_Stub then
4115 if Has_Aspects (N) then
4116 Analyze_Aspect_Specifications_On_Body_Or_Stub (N);
4117 end if;
4119 goto Leave;
4120 end if;
4122 -- Handle inlining
4124 -- Note: Normally we don't do any inlining if expansion is off, since
4125 -- we won't generate code in any case. An exception arises in GNATprove
4126 -- mode where we want to expand some calls in place, even with expansion
4127 -- disabled, since the inlining eases formal verification.
4129 if not GNATprove_Mode
4130 and then Expander_Active
4131 and then Serious_Errors_Detected = 0
4132 and then Present (Spec_Id)
4133 and then Has_Pragma_Inline (Spec_Id)
4134 then
4135 -- Legacy implementation (relying on front-end inlining)
4137 if not Back_End_Inlining then
4138 if (Has_Pragma_Inline_Always (Spec_Id)
4139 and then not Opt.Disable_FE_Inline_Always)
4140 or else (Front_End_Inlining
4141 and then not Opt.Disable_FE_Inline)
4142 then
4143 Build_Body_To_Inline (N, Spec_Id);
4144 end if;
4146 -- New implementation (relying on back-end inlining)
4148 else
4149 if Has_Pragma_Inline_Always (Spec_Id)
4150 or else Optimization_Level > 0
4151 then
4152 -- Handle function returning an unconstrained type
4154 if Comes_From_Source (Body_Id)
4155 and then Ekind (Spec_Id) = E_Function
4156 and then Returns_Unconstrained_Type (Spec_Id)
4158 -- If function builds in place, i.e. returns a limited type,
4159 -- inlining cannot be done.
4161 and then not Is_Limited_Type (Etype (Spec_Id))
4162 then
4163 Check_And_Split_Unconstrained_Function (N, Spec_Id, Body_Id);
4165 else
4166 declare
4167 Subp_Body : constant Node_Id :=
4168 Unit_Declaration_Node (Body_Id);
4169 Subp_Decl : constant List_Id := Declarations (Subp_Body);
4171 begin
4172 -- Do not pass inlining to the backend if the subprogram
4173 -- has declarations or statements which cannot be inlined
4174 -- by the backend. This check is done here to emit an
4175 -- error instead of the generic warning message reported
4176 -- by the GCC backend (ie. "function might not be
4177 -- inlinable").
4179 if Present (Subp_Decl)
4180 and then Has_Excluded_Declaration (Spec_Id, Subp_Decl)
4181 then
4182 null;
4184 elsif Has_Excluded_Statement
4185 (Spec_Id,
4186 Statements
4187 (Handled_Statement_Sequence (Subp_Body)))
4188 then
4189 null;
4191 -- If the backend inlining is available then at this
4192 -- stage we only have to mark the subprogram as inlined.
4193 -- The expander will take care of registering it in the
4194 -- table of subprograms inlined by the backend a part of
4195 -- processing calls to it (cf. Expand_Call)
4197 else
4198 Set_Is_Inlined (Spec_Id);
4199 end if;
4200 end;
4201 end if;
4202 end if;
4203 end if;
4205 -- In GNATprove mode, inline only when there is a separate subprogram
4206 -- declaration for now, as inlining of subprogram bodies acting as
4207 -- declarations, or subprogram stubs, are not supported by front-end
4208 -- inlining. This inlining should occur after analysis of the body, so
4209 -- that it is known whether the value of SPARK_Mode, which can be
4210 -- defined by a pragma inside the body, is applicable to the body.
4211 -- Inlining can be disabled with switch -gnatdm
4213 elsif GNATprove_Mode
4214 and then Full_Analysis
4215 and then not Inside_A_Generic
4216 and then Present (Spec_Id)
4217 and then
4218 Nkind (Unit_Declaration_Node (Spec_Id)) = N_Subprogram_Declaration
4219 and then Body_Has_SPARK_Mode_On
4220 and then Can_Be_Inlined_In_GNATprove_Mode (Spec_Id, Body_Id)
4221 and then not Body_Has_Contract
4222 and then not Debug_Flag_M
4223 then
4224 Build_Body_To_Inline (N, Spec_Id);
4225 end if;
4227 -- When generating code, inherited pre/postconditions are handled when
4228 -- expanding the corresponding contract.
4230 -- Ada 2005 (AI-262): In library subprogram bodies, after the analysis
4231 -- of the specification we have to install the private withed units.
4232 -- This holds for child units as well.
4234 if Is_Compilation_Unit (Body_Id)
4235 or else Nkind (Parent (N)) = N_Compilation_Unit
4236 then
4237 Install_Private_With_Clauses (Body_Id);
4238 end if;
4240 Check_Anonymous_Return;
4242 -- Set the Protected_Formal field of each extra formal of the protected
4243 -- subprogram to reference the corresponding extra formal of the
4244 -- subprogram that implements it. For regular formals this occurs when
4245 -- the protected subprogram's declaration is expanded, but the extra
4246 -- formals don't get created until the subprogram is frozen. We need to
4247 -- do this before analyzing the protected subprogram's body so that any
4248 -- references to the original subprogram's extra formals will be changed
4249 -- refer to the implementing subprogram's formals (see Expand_Formal).
4251 if Present (Spec_Id)
4252 and then Is_Protected_Type (Scope (Spec_Id))
4253 and then Present (Protected_Body_Subprogram (Spec_Id))
4254 then
4255 declare
4256 Impl_Subp : constant Entity_Id :=
4257 Protected_Body_Subprogram (Spec_Id);
4258 Prot_Ext_Formal : Entity_Id := Extra_Formals (Spec_Id);
4259 Impl_Ext_Formal : Entity_Id := Extra_Formals (Impl_Subp);
4261 begin
4262 while Present (Prot_Ext_Formal) loop
4263 pragma Assert (Present (Impl_Ext_Formal));
4264 Set_Protected_Formal (Prot_Ext_Formal, Impl_Ext_Formal);
4265 Next_Formal_With_Extras (Prot_Ext_Formal);
4266 Next_Formal_With_Extras (Impl_Ext_Formal);
4267 end loop;
4268 end;
4269 end if;
4271 -- Now we can go on to analyze the body
4273 HSS := Handled_Statement_Sequence (N);
4274 Set_Actual_Subtypes (N, Current_Scope);
4276 -- Add a declaration for the Protection object, renaming declarations
4277 -- for discriminals and privals and finally a declaration for the entry
4278 -- family index (if applicable). This form of early expansion is done
4279 -- when the Expander is active because Install_Private_Data_Declarations
4280 -- references entities which were created during regular expansion. The
4281 -- subprogram entity must come from source, and not be an internally
4282 -- generated subprogram.
4284 if Expander_Active
4285 and then Present (Prot_Typ)
4286 and then Present (Spec_Id)
4287 and then Comes_From_Source (Spec_Id)
4288 and then not Is_Eliminated (Spec_Id)
4289 then
4290 Install_Private_Data_Declarations
4291 (Sloc (N), Spec_Id, Prot_Typ, N, Declarations (N));
4292 end if;
4294 -- Ada 2012 (AI05-0151): Incomplete types coming from a limited context
4295 -- may now appear in parameter and result profiles. Since the analysis
4296 -- of a subprogram body may use the parameter and result profile of the
4297 -- spec, swap any limited views with their non-limited counterpart.
4299 if Ada_Version >= Ada_2012 and then Present (Spec_Id) then
4300 Exch_Views := Exchange_Limited_Views (Spec_Id);
4301 end if;
4303 -- If the return type is an anonymous access type whose designated type
4304 -- is the limited view of a class-wide type and the non-limited view is
4305 -- available, update the return type accordingly.
4307 if Ada_Version >= Ada_2005 and then Present (Spec_Id) then
4308 declare
4309 Etyp : Entity_Id;
4310 Rtyp : Entity_Id;
4312 begin
4313 Rtyp := Etype (Spec_Id);
4315 if Ekind (Rtyp) = E_Anonymous_Access_Type then
4316 Etyp := Directly_Designated_Type (Rtyp);
4318 if Is_Class_Wide_Type (Etyp)
4319 and then From_Limited_With (Etyp)
4320 then
4321 Desig_View := Etyp;
4322 Set_Directly_Designated_Type (Rtyp, Available_View (Etyp));
4323 end if;
4324 end if;
4325 end;
4326 end if;
4328 -- Analyze any aspect specifications that appear on the subprogram body
4330 if Has_Aspects (N) then
4331 Analyze_Aspect_Specifications_On_Body_Or_Stub (N);
4332 end if;
4334 Analyze_Declarations (Declarations (N));
4336 -- Verify that the SPARK_Mode of the body agrees with that of its spec
4338 if Present (Spec_Id) and then Present (SPARK_Pragma (Body_Id)) then
4339 if Present (SPARK_Pragma (Spec_Id)) then
4340 if Get_SPARK_Mode_From_Annotation (SPARK_Pragma (Spec_Id)) = Off
4341 and then
4342 Get_SPARK_Mode_From_Annotation (SPARK_Pragma (Body_Id)) = On
4343 then
4344 Error_Msg_Sloc := Sloc (SPARK_Pragma (Body_Id));
4345 Error_Msg_N ("incorrect application of SPARK_Mode#", N);
4346 Error_Msg_Sloc := Sloc (SPARK_Pragma (Spec_Id));
4347 Error_Msg_NE
4348 ("\value Off was set for SPARK_Mode on & #", N, Spec_Id);
4349 end if;
4351 elsif Nkind (Parent (Parent (Spec_Id))) = N_Subprogram_Body_Stub then
4352 null;
4354 else
4355 Error_Msg_Sloc := Sloc (SPARK_Pragma (Body_Id));
4356 Error_Msg_N ("incorrect application of SPARK_Mode #", N);
4357 Error_Msg_Sloc := Sloc (Spec_Id);
4358 Error_Msg_NE
4359 ("\no value was set for SPARK_Mode on & #", N, Spec_Id);
4360 end if;
4361 end if;
4363 -- A subprogram body "freezes" its own contract. Analyze the contract
4364 -- after the declarations of the body have been processed as pragmas
4365 -- are now chained on the contract of the subprogram body.
4367 Analyze_Entry_Or_Subprogram_Body_Contract (Body_Id);
4369 -- Check completion, and analyze the statements
4371 Check_Completion;
4372 Inspect_Deferred_Constant_Completion (Declarations (N));
4373 Analyze (HSS);
4375 -- Deal with end of scope processing for the body
4377 Process_End_Label (HSS, 't', Current_Scope);
4378 Update_Use_Clause_Chain;
4379 End_Scope;
4381 -- If we are compiling an entry wrapper, remove the enclosing
4382 -- synchronized object from the stack.
4384 if Is_Entry_Wrapper (Body_Id) then
4385 End_Scope;
4386 end if;
4388 Check_Subprogram_Order (N);
4389 Set_Analyzed (Body_Id);
4391 -- If we have a separate spec, then the analysis of the declarations
4392 -- caused the entities in the body to be chained to the spec id, but
4393 -- we want them chained to the body id. Only the formal parameters
4394 -- end up chained to the spec id in this case.
4396 if Present (Spec_Id) then
4398 -- We must conform to the categorization of our spec
4400 Validate_Categorization_Dependency (N, Spec_Id);
4402 -- And if this is a child unit, the parent units must conform
4404 if Is_Child_Unit (Spec_Id) then
4405 Validate_Categorization_Dependency
4406 (Unit_Declaration_Node (Spec_Id), Spec_Id);
4407 end if;
4409 -- Here is where we move entities from the spec to the body
4411 -- Case where there are entities that stay with the spec
4413 if Present (Last_Real_Spec_Entity) then
4415 -- No body entities (happens when the only real spec entities come
4416 -- from precondition and postcondition pragmas).
4418 if No (Last_Entity (Body_Id)) then
4419 Set_First_Entity (Body_Id, Next_Entity (Last_Real_Spec_Entity));
4421 -- Body entities present (formals), so chain stuff past them
4423 else
4424 Set_Next_Entity
4425 (Last_Entity (Body_Id), Next_Entity (Last_Real_Spec_Entity));
4426 end if;
4428 Set_Next_Entity (Last_Real_Spec_Entity, Empty);
4429 Set_Last_Entity (Body_Id, Last_Entity (Spec_Id));
4430 Set_Last_Entity (Spec_Id, Last_Real_Spec_Entity);
4432 -- Case where there are no spec entities, in this case there can be
4433 -- no body entities either, so just move everything.
4435 -- If the body is generated for an expression function, it may have
4436 -- been preanalyzed already, if 'access was applied to it.
4438 else
4439 if Nkind (Original_Node (Unit_Declaration_Node (Spec_Id))) /=
4440 N_Expression_Function
4441 then
4442 pragma Assert (No (Last_Entity (Body_Id)));
4443 null;
4444 end if;
4446 Set_First_Entity (Body_Id, First_Entity (Spec_Id));
4447 Set_Last_Entity (Body_Id, Last_Entity (Spec_Id));
4448 Set_First_Entity (Spec_Id, Empty);
4449 Set_Last_Entity (Spec_Id, Empty);
4450 end if;
4451 end if;
4453 Check_Missing_Return;
4455 -- Now we are going to check for variables that are never modified in
4456 -- the body of the procedure. But first we deal with a special case
4457 -- where we want to modify this check. If the body of the subprogram
4458 -- starts with a raise statement or its equivalent, or if the body
4459 -- consists entirely of a null statement, then it is pretty obvious that
4460 -- it is OK to not reference the parameters. For example, this might be
4461 -- the following common idiom for a stubbed function: statement of the
4462 -- procedure raises an exception. In particular this deals with the
4463 -- common idiom of a stubbed function, which appears something like:
4465 -- function F (A : Integer) return Some_Type;
4466 -- X : Some_Type;
4467 -- begin
4468 -- raise Program_Error;
4469 -- return X;
4470 -- end F;
4472 -- Here the purpose of X is simply to satisfy the annoying requirement
4473 -- in Ada that there be at least one return, and we certainly do not
4474 -- want to go posting warnings on X that it is not initialized. On
4475 -- the other hand, if X is entirely unreferenced that should still
4476 -- get a warning.
4478 -- What we do is to detect these cases, and if we find them, flag the
4479 -- subprogram as being Is_Trivial_Subprogram and then use that flag to
4480 -- suppress unwanted warnings. For the case of the function stub above
4481 -- we have a special test to set X as apparently assigned to suppress
4482 -- the warning.
4484 declare
4485 Stm : Node_Id;
4487 begin
4488 -- Skip call markers installed by the ABE mechanism, labels, and
4489 -- Push_xxx_Error_Label to find the first real statement.
4491 Stm := First (Statements (HSS));
4492 while Nkind_In (Stm, N_Call_Marker, N_Label)
4493 or else Nkind (Stm) in N_Push_xxx_Label
4494 loop
4495 Next (Stm);
4496 end loop;
4498 -- Do the test on the original statement before expansion
4500 declare
4501 Ostm : constant Node_Id := Original_Node (Stm);
4503 begin
4504 -- If explicit raise statement, turn on flag
4506 if Nkind (Ostm) = N_Raise_Statement then
4507 Set_Trivial_Subprogram (Stm);
4509 -- If null statement, and no following statements, turn on flag
4511 elsif Nkind (Stm) = N_Null_Statement
4512 and then Comes_From_Source (Stm)
4513 and then No (Next (Stm))
4514 then
4515 Set_Trivial_Subprogram (Stm);
4517 -- Check for explicit call cases which likely raise an exception
4519 elsif Nkind (Ostm) = N_Procedure_Call_Statement then
4520 if Is_Entity_Name (Name (Ostm)) then
4521 declare
4522 Ent : constant Entity_Id := Entity (Name (Ostm));
4524 begin
4525 -- If the procedure is marked No_Return, then likely it
4526 -- raises an exception, but in any case it is not coming
4527 -- back here, so turn on the flag.
4529 if Present (Ent)
4530 and then Ekind (Ent) = E_Procedure
4531 and then No_Return (Ent)
4532 then
4533 Set_Trivial_Subprogram (Stm);
4534 end if;
4535 end;
4536 end if;
4537 end if;
4538 end;
4539 end;
4541 -- Check for variables that are never modified
4543 declare
4544 E1 : Entity_Id;
4545 E2 : Entity_Id;
4547 begin
4548 -- If there is a separate spec, then transfer Never_Set_In_Source
4549 -- flags from out parameters to the corresponding entities in the
4550 -- body. The reason we do that is we want to post error flags on
4551 -- the body entities, not the spec entities.
4553 if Present (Spec_Id) then
4554 E1 := First_Entity (Spec_Id);
4555 while Present (E1) loop
4556 if Ekind (E1) = E_Out_Parameter then
4557 E2 := First_Entity (Body_Id);
4558 while Present (E2) loop
4559 exit when Chars (E1) = Chars (E2);
4560 Next_Entity (E2);
4561 end loop;
4563 if Present (E2) then
4564 Set_Never_Set_In_Source (E2, Never_Set_In_Source (E1));
4565 end if;
4566 end if;
4568 Next_Entity (E1);
4569 end loop;
4570 end if;
4572 -- Check references in body
4574 Check_References (Body_Id);
4575 end;
4577 -- Check for nested subprogram, and mark outer level subprogram if so
4579 declare
4580 Ent : Entity_Id;
4582 begin
4583 if Present (Spec_Id) then
4584 Ent := Spec_Id;
4585 else
4586 Ent := Body_Id;
4587 end if;
4589 loop
4590 Ent := Enclosing_Subprogram (Ent);
4591 exit when No (Ent) or else Is_Subprogram (Ent);
4592 end loop;
4594 if Present (Ent) then
4595 Set_Has_Nested_Subprogram (Ent);
4596 end if;
4597 end;
4599 -- Restore the limited views in the spec, if any, to let the back end
4600 -- process it without running into circularities.
4602 if Exch_Views /= No_Elist then
4603 Restore_Limited_Views (Exch_Views);
4604 end if;
4606 if Mask_Types /= No_Elist then
4607 Unmask_Unfrozen_Types (Mask_Types);
4608 end if;
4610 if Present (Desig_View) then
4611 Set_Directly_Designated_Type (Etype (Spec_Id), Desig_View);
4612 end if;
4614 <<Leave>>
4615 Ignore_SPARK_Mode_Pragmas_In_Instance := Saved_ISMP;
4616 Restore_Ghost_Mode (Saved_GM);
4617 end Analyze_Subprogram_Body_Helper;
4619 ------------------------------------
4620 -- Analyze_Subprogram_Declaration --
4621 ------------------------------------
4623 procedure Analyze_Subprogram_Declaration (N : Node_Id) is
4624 Scop : constant Entity_Id := Current_Scope;
4625 Designator : Entity_Id;
4627 Is_Completion : Boolean;
4628 -- Indicates whether a null procedure declaration is a completion
4630 begin
4631 -- Null procedures are not allowed in SPARK
4633 if Nkind (Specification (N)) = N_Procedure_Specification
4634 and then Null_Present (Specification (N))
4635 then
4636 Check_SPARK_05_Restriction ("null procedure is not allowed", N);
4638 -- Null procedures are allowed in protected types, following the
4639 -- recent AI12-0147.
4641 if Is_Protected_Type (Current_Scope)
4642 and then Ada_Version < Ada_2012
4643 then
4644 Error_Msg_N ("protected operation cannot be a null procedure", N);
4645 end if;
4647 Analyze_Null_Procedure (N, Is_Completion);
4649 -- The null procedure acts as a body, nothing further is needed
4651 if Is_Completion then
4652 return;
4653 end if;
4654 end if;
4656 Designator := Analyze_Subprogram_Specification (Specification (N));
4658 -- A reference may already have been generated for the unit name, in
4659 -- which case the following call is redundant. However it is needed for
4660 -- declarations that are the rewriting of an expression function.
4662 Generate_Definition (Designator);
4664 -- Set the SPARK mode from the current context (may be overwritten later
4665 -- with explicit pragma). This is not done for entry barrier functions
4666 -- because they are generated outside the protected type and should not
4667 -- carry the mode of the enclosing context.
4669 if Nkind (N) = N_Subprogram_Declaration
4670 and then Is_Entry_Barrier_Function (N)
4671 then
4672 null;
4674 else
4675 Set_SPARK_Pragma (Designator, SPARK_Mode_Pragma);
4676 Set_SPARK_Pragma_Inherited (Designator);
4677 end if;
4679 -- Save the state of flag Ignore_SPARK_Mode_Pragmas_In_Instance in case
4680 -- the body of this subprogram is instantiated or inlined later and out
4681 -- of context. The body uses this attribute to restore the value of the
4682 -- global flag.
4684 if Ignore_SPARK_Mode_Pragmas_In_Instance then
4685 Set_Ignore_SPARK_Mode_Pragmas (Designator);
4686 end if;
4688 -- Preserve relevant elaboration-related attributes of the context which
4689 -- are no longer available or very expensive to recompute once analysis,
4690 -- resolution, and expansion are over.
4692 Mark_Elaboration_Attributes
4693 (N_Id => Designator,
4694 Checks => True);
4696 if Debug_Flag_C then
4697 Write_Str ("==> subprogram spec ");
4698 Write_Name (Chars (Designator));
4699 Write_Str (" from ");
4700 Write_Location (Sloc (N));
4701 Write_Eol;
4702 Indent;
4703 end if;
4705 Validate_RCI_Subprogram_Declaration (N);
4706 New_Overloaded_Entity (Designator);
4707 Check_Delayed_Subprogram (Designator);
4709 -- If the type of the first formal of the current subprogram is a non-
4710 -- generic tagged private type, mark the subprogram as being a private
4711 -- primitive. Ditto if this is a function with controlling result, and
4712 -- the return type is currently private. In both cases, the type of the
4713 -- controlling argument or result must be in the current scope for the
4714 -- operation to be primitive.
4716 if Has_Controlling_Result (Designator)
4717 and then Is_Private_Type (Etype (Designator))
4718 and then Scope (Etype (Designator)) = Current_Scope
4719 and then not Is_Generic_Actual_Type (Etype (Designator))
4720 then
4721 Set_Is_Private_Primitive (Designator);
4723 elsif Present (First_Formal (Designator)) then
4724 declare
4725 Formal_Typ : constant Entity_Id :=
4726 Etype (First_Formal (Designator));
4727 begin
4728 Set_Is_Private_Primitive (Designator,
4729 Is_Tagged_Type (Formal_Typ)
4730 and then Scope (Formal_Typ) = Current_Scope
4731 and then Is_Private_Type (Formal_Typ)
4732 and then not Is_Generic_Actual_Type (Formal_Typ));
4733 end;
4734 end if;
4736 -- Ada 2005 (AI-251): Abstract interface primitives must be abstract
4737 -- or null.
4739 if Ada_Version >= Ada_2005
4740 and then Comes_From_Source (N)
4741 and then Is_Dispatching_Operation (Designator)
4742 then
4743 declare
4744 E : Entity_Id;
4745 Etyp : Entity_Id;
4747 begin
4748 if Has_Controlling_Result (Designator) then
4749 Etyp := Etype (Designator);
4751 else
4752 E := First_Entity (Designator);
4753 while Present (E)
4754 and then Is_Formal (E)
4755 and then not Is_Controlling_Formal (E)
4756 loop
4757 Next_Entity (E);
4758 end loop;
4760 Etyp := Etype (E);
4761 end if;
4763 if Is_Access_Type (Etyp) then
4764 Etyp := Directly_Designated_Type (Etyp);
4765 end if;
4767 if Is_Interface (Etyp)
4768 and then not Is_Abstract_Subprogram (Designator)
4769 and then not (Ekind (Designator) = E_Procedure
4770 and then Null_Present (Specification (N)))
4771 then
4772 Error_Msg_Name_1 := Chars (Defining_Entity (N));
4774 -- Specialize error message based on procedures vs. functions,
4775 -- since functions can't be null subprograms.
4777 if Ekind (Designator) = E_Procedure then
4778 Error_Msg_N
4779 ("interface procedure % must be abstract or null", N);
4780 else
4781 Error_Msg_N
4782 ("interface function % must be abstract", N);
4783 end if;
4784 end if;
4785 end;
4786 end if;
4788 -- What is the following code for, it used to be
4790 -- ??? Set_Suppress_Elaboration_Checks
4791 -- ??? (Designator, Elaboration_Checks_Suppressed (Designator));
4793 -- The following seems equivalent, but a bit dubious
4795 if Elaboration_Checks_Suppressed (Designator) then
4796 Set_Kill_Elaboration_Checks (Designator);
4797 end if;
4799 if Scop /= Standard_Standard and then not Is_Child_Unit (Designator) then
4800 Set_Categorization_From_Scope (Designator, Scop);
4802 else
4803 -- For a compilation unit, check for library-unit pragmas
4805 Push_Scope (Designator);
4806 Set_Categorization_From_Pragmas (N);
4807 Validate_Categorization_Dependency (N, Designator);
4808 Pop_Scope;
4809 end if;
4811 -- For a compilation unit, set body required. This flag will only be
4812 -- reset if a valid Import or Interface pragma is processed later on.
4814 if Nkind (Parent (N)) = N_Compilation_Unit then
4815 Set_Body_Required (Parent (N), True);
4817 if Ada_Version >= Ada_2005
4818 and then Nkind (Specification (N)) = N_Procedure_Specification
4819 and then Null_Present (Specification (N))
4820 then
4821 Error_Msg_N
4822 ("null procedure cannot be declared at library level", N);
4823 end if;
4824 end if;
4826 Generate_Reference_To_Formals (Designator);
4827 Check_Eliminated (Designator);
4829 if Debug_Flag_C then
4830 Outdent;
4831 Write_Str ("<== subprogram spec ");
4832 Write_Name (Chars (Designator));
4833 Write_Str (" from ");
4834 Write_Location (Sloc (N));
4835 Write_Eol;
4836 end if;
4838 if Is_Protected_Type (Current_Scope) then
4840 -- Indicate that this is a protected operation, because it may be
4841 -- used in subsequent declarations within the protected type.
4843 Set_Convention (Designator, Convention_Protected);
4844 end if;
4846 List_Inherited_Pre_Post_Aspects (Designator);
4848 if Has_Aspects (N) then
4849 Analyze_Aspect_Specifications (N, Designator);
4850 end if;
4851 end Analyze_Subprogram_Declaration;
4853 --------------------------------------
4854 -- Analyze_Subprogram_Specification --
4855 --------------------------------------
4857 -- Reminder: N here really is a subprogram specification (not a subprogram
4858 -- declaration). This procedure is called to analyze the specification in
4859 -- both subprogram bodies and subprogram declarations (specs).
4861 function Analyze_Subprogram_Specification (N : Node_Id) return Entity_Id is
4862 function Is_Invariant_Procedure_Or_Body (E : Entity_Id) return Boolean;
4863 -- Determine whether entity E denotes the spec or body of an invariant
4864 -- procedure.
4866 ------------------------------------
4867 -- Is_Invariant_Procedure_Or_Body --
4868 ------------------------------------
4870 function Is_Invariant_Procedure_Or_Body (E : Entity_Id) return Boolean is
4871 Decl : constant Node_Id := Unit_Declaration_Node (E);
4872 Spec : Entity_Id;
4874 begin
4875 if Nkind (Decl) = N_Subprogram_Body then
4876 Spec := Corresponding_Spec (Decl);
4877 else
4878 Spec := E;
4879 end if;
4881 return
4882 Present (Spec)
4883 and then Ekind (Spec) = E_Procedure
4884 and then (Is_Partial_Invariant_Procedure (Spec)
4885 or else Is_Invariant_Procedure (Spec));
4886 end Is_Invariant_Procedure_Or_Body;
4888 -- Local variables
4890 Designator : constant Entity_Id := Defining_Entity (N);
4891 Formals : constant List_Id := Parameter_Specifications (N);
4893 -- Start of processing for Analyze_Subprogram_Specification
4895 begin
4896 -- User-defined operator is not allowed in SPARK, except as a renaming
4898 if Nkind (Defining_Unit_Name (N)) = N_Defining_Operator_Symbol
4899 and then Nkind (Parent (N)) /= N_Subprogram_Renaming_Declaration
4900 then
4901 Check_SPARK_05_Restriction
4902 ("user-defined operator is not allowed", N);
4903 end if;
4905 -- Proceed with analysis. Do not emit a cross-reference entry if the
4906 -- specification comes from an expression function, because it may be
4907 -- the completion of a previous declaration. It is not, the cross-
4908 -- reference entry will be emitted for the new subprogram declaration.
4910 if Nkind (Parent (N)) /= N_Expression_Function then
4911 Generate_Definition (Designator);
4912 end if;
4914 if Nkind (N) = N_Function_Specification then
4915 Set_Ekind (Designator, E_Function);
4916 Set_Mechanism (Designator, Default_Mechanism);
4917 else
4918 Set_Ekind (Designator, E_Procedure);
4919 Set_Etype (Designator, Standard_Void_Type);
4920 end if;
4922 -- Flag Is_Inlined_Always is True by default, and reversed to False for
4923 -- those subprograms which could be inlined in GNATprove mode (because
4924 -- Body_To_Inline is non-Empty) but should not be inlined.
4926 if GNATprove_Mode then
4927 Set_Is_Inlined_Always (Designator);
4928 end if;
4930 -- Introduce new scope for analysis of the formals and the return type
4932 Set_Scope (Designator, Current_Scope);
4934 if Present (Formals) then
4935 Push_Scope (Designator);
4936 Process_Formals (Formals, N);
4938 -- Check dimensions in N for formals with default expression
4940 Analyze_Dimension_Formals (N, Formals);
4942 -- Ada 2005 (AI-345): If this is an overriding operation of an
4943 -- inherited interface operation, and the controlling type is
4944 -- a synchronized type, replace the type with its corresponding
4945 -- record, to match the proper signature of an overriding operation.
4946 -- Same processing for an access parameter whose designated type is
4947 -- derived from a synchronized interface.
4949 -- This modification is not done for invariant procedures because
4950 -- the corresponding record may not necessarely be visible when the
4951 -- concurrent type acts as the full view of a private type.
4953 -- package Pack is
4954 -- type Prot is private with Type_Invariant => ...;
4955 -- procedure ConcInvariant (Obj : Prot);
4956 -- private
4957 -- protected type Prot is ...;
4958 -- type Concurrent_Record_Prot is record ...;
4959 -- procedure ConcInvariant (Obj : Prot) is
4960 -- ...
4961 -- end ConcInvariant;
4962 -- end Pack;
4964 -- In the example above, both the spec and body of the invariant
4965 -- procedure must utilize the private type as the controlling type.
4967 if Ada_Version >= Ada_2005
4968 and then not Is_Invariant_Procedure_Or_Body (Designator)
4969 then
4970 declare
4971 Formal : Entity_Id;
4972 Formal_Typ : Entity_Id;
4973 Rec_Typ : Entity_Id;
4974 Desig_Typ : Entity_Id;
4976 begin
4977 Formal := First_Formal (Designator);
4978 while Present (Formal) loop
4979 Formal_Typ := Etype (Formal);
4981 if Is_Concurrent_Type (Formal_Typ)
4982 and then Present (Corresponding_Record_Type (Formal_Typ))
4983 then
4984 Rec_Typ := Corresponding_Record_Type (Formal_Typ);
4986 if Present (Interfaces (Rec_Typ)) then
4987 Set_Etype (Formal, Rec_Typ);
4988 end if;
4990 elsif Ekind (Formal_Typ) = E_Anonymous_Access_Type then
4991 Desig_Typ := Designated_Type (Formal_Typ);
4993 if Is_Concurrent_Type (Desig_Typ)
4994 and then Present (Corresponding_Record_Type (Desig_Typ))
4995 then
4996 Rec_Typ := Corresponding_Record_Type (Desig_Typ);
4998 if Present (Interfaces (Rec_Typ)) then
4999 Set_Directly_Designated_Type (Formal_Typ, Rec_Typ);
5000 end if;
5001 end if;
5002 end if;
5004 Next_Formal (Formal);
5005 end loop;
5006 end;
5007 end if;
5009 End_Scope;
5011 -- The subprogram scope is pushed and popped around the processing of
5012 -- the return type for consistency with call above to Process_Formals
5013 -- (which itself can call Analyze_Return_Type), and to ensure that any
5014 -- itype created for the return type will be associated with the proper
5015 -- scope.
5017 elsif Nkind (N) = N_Function_Specification then
5018 Push_Scope (Designator);
5019 Analyze_Return_Type (N);
5020 End_Scope;
5021 end if;
5023 -- Function case
5025 if Nkind (N) = N_Function_Specification then
5027 -- Deal with operator symbol case
5029 if Nkind (Designator) = N_Defining_Operator_Symbol then
5030 Valid_Operator_Definition (Designator);
5031 end if;
5033 May_Need_Actuals (Designator);
5035 -- Ada 2005 (AI-251): If the return type is abstract, verify that
5036 -- the subprogram is abstract also. This does not apply to renaming
5037 -- declarations, where abstractness is inherited, and to subprogram
5038 -- bodies generated for stream operations, which become renamings as
5039 -- bodies.
5041 -- In case of primitives associated with abstract interface types
5042 -- the check is applied later (see Analyze_Subprogram_Declaration).
5044 if not Nkind_In (Original_Node (Parent (N)),
5045 N_Abstract_Subprogram_Declaration,
5046 N_Formal_Abstract_Subprogram_Declaration,
5047 N_Subprogram_Renaming_Declaration)
5048 then
5049 if Is_Abstract_Type (Etype (Designator))
5050 and then not Is_Interface (Etype (Designator))
5051 then
5052 Error_Msg_N
5053 ("function that returns abstract type must be abstract", N);
5055 -- Ada 2012 (AI-0073): Extend this test to subprograms with an
5056 -- access result whose designated type is abstract.
5058 elsif Ada_Version >= Ada_2012
5059 and then Nkind (Result_Definition (N)) = N_Access_Definition
5060 and then
5061 not Is_Class_Wide_Type (Designated_Type (Etype (Designator)))
5062 and then Is_Abstract_Type (Designated_Type (Etype (Designator)))
5063 then
5064 Error_Msg_N
5065 ("function whose access result designates abstract type "
5066 & "must be abstract", N);
5067 end if;
5068 end if;
5069 end if;
5071 return Designator;
5072 end Analyze_Subprogram_Specification;
5074 -----------------------
5075 -- Check_Conformance --
5076 -----------------------
5078 procedure Check_Conformance
5079 (New_Id : Entity_Id;
5080 Old_Id : Entity_Id;
5081 Ctype : Conformance_Type;
5082 Errmsg : Boolean;
5083 Conforms : out Boolean;
5084 Err_Loc : Node_Id := Empty;
5085 Get_Inst : Boolean := False;
5086 Skip_Controlling_Formals : Boolean := False)
5088 procedure Conformance_Error (Msg : String; N : Node_Id := New_Id);
5089 -- Sets Conforms to False. If Errmsg is False, then that's all it does.
5090 -- If Errmsg is True, then processing continues to post an error message
5091 -- for conformance error on given node. Two messages are output. The
5092 -- first message points to the previous declaration with a general "no
5093 -- conformance" message. The second is the detailed reason, supplied as
5094 -- Msg. The parameter N provide information for a possible & insertion
5095 -- in the message, and also provides the location for posting the
5096 -- message in the absence of a specified Err_Loc location.
5098 function Conventions_Match
5099 (Id1 : Entity_Id;
5100 Id2 : Entity_Id) return Boolean;
5101 -- Determine whether the conventions of arbitrary entities Id1 and Id2
5102 -- match.
5104 -----------------------
5105 -- Conformance_Error --
5106 -----------------------
5108 procedure Conformance_Error (Msg : String; N : Node_Id := New_Id) is
5109 Enode : Node_Id;
5111 begin
5112 Conforms := False;
5114 if Errmsg then
5115 if No (Err_Loc) then
5116 Enode := N;
5117 else
5118 Enode := Err_Loc;
5119 end if;
5121 Error_Msg_Sloc := Sloc (Old_Id);
5123 case Ctype is
5124 when Type_Conformant =>
5125 Error_Msg_N -- CODEFIX
5126 ("not type conformant with declaration#!", Enode);
5128 when Mode_Conformant =>
5129 if Nkind (Parent (Old_Id)) = N_Full_Type_Declaration then
5130 Error_Msg_N
5131 ("not mode conformant with operation inherited#!",
5132 Enode);
5133 else
5134 Error_Msg_N
5135 ("not mode conformant with declaration#!", Enode);
5136 end if;
5138 when Subtype_Conformant =>
5139 if Nkind (Parent (Old_Id)) = N_Full_Type_Declaration then
5140 Error_Msg_N
5141 ("not subtype conformant with operation inherited#!",
5142 Enode);
5143 else
5144 Error_Msg_N
5145 ("not subtype conformant with declaration#!", Enode);
5146 end if;
5148 when Fully_Conformant =>
5149 if Nkind (Parent (Old_Id)) = N_Full_Type_Declaration then
5150 Error_Msg_N -- CODEFIX
5151 ("not fully conformant with operation inherited#!",
5152 Enode);
5153 else
5154 Error_Msg_N -- CODEFIX
5155 ("not fully conformant with declaration#!", Enode);
5156 end if;
5157 end case;
5159 Error_Msg_NE (Msg, Enode, N);
5160 end if;
5161 end Conformance_Error;
5163 -----------------------
5164 -- Conventions_Match --
5165 -----------------------
5167 function Conventions_Match
5168 (Id1 : Entity_Id;
5169 Id2 : Entity_Id) return Boolean
5171 begin
5172 -- Ignore the conventions of anonymous access-to-subprogram types
5173 -- and subprogram types because these are internally generated and
5174 -- the only way these may receive a convention is if they inherit
5175 -- the convention of a related subprogram.
5177 if Ekind_In (Id1, E_Anonymous_Access_Subprogram_Type,
5178 E_Subprogram_Type)
5179 or else
5180 Ekind_In (Id2, E_Anonymous_Access_Subprogram_Type,
5181 E_Subprogram_Type)
5182 then
5183 return True;
5185 -- Otherwise compare the conventions directly
5187 else
5188 return Convention (Id1) = Convention (Id2);
5189 end if;
5190 end Conventions_Match;
5192 -- Local Variables
5194 Old_Type : constant Entity_Id := Etype (Old_Id);
5195 New_Type : constant Entity_Id := Etype (New_Id);
5196 Old_Formal : Entity_Id;
5197 New_Formal : Entity_Id;
5198 Access_Types_Match : Boolean;
5199 Old_Formal_Base : Entity_Id;
5200 New_Formal_Base : Entity_Id;
5202 -- Start of processing for Check_Conformance
5204 begin
5205 Conforms := True;
5207 -- We need a special case for operators, since they don't appear
5208 -- explicitly.
5210 if Ctype = Type_Conformant then
5211 if Ekind (New_Id) = E_Operator
5212 and then Operator_Matches_Spec (New_Id, Old_Id)
5213 then
5214 return;
5215 end if;
5216 end if;
5218 -- If both are functions/operators, check return types conform
5220 if Old_Type /= Standard_Void_Type
5221 and then
5222 New_Type /= Standard_Void_Type
5223 then
5224 -- If we are checking interface conformance we omit controlling
5225 -- arguments and result, because we are only checking the conformance
5226 -- of the remaining parameters.
5228 if Has_Controlling_Result (Old_Id)
5229 and then Has_Controlling_Result (New_Id)
5230 and then Skip_Controlling_Formals
5231 then
5232 null;
5234 elsif not Conforming_Types (Old_Type, New_Type, Ctype, Get_Inst) then
5235 if Ctype >= Subtype_Conformant
5236 and then not Predicates_Match (Old_Type, New_Type)
5237 then
5238 Conformance_Error
5239 ("\predicate of return type does not match!", New_Id);
5240 else
5241 Conformance_Error
5242 ("\return type does not match!", New_Id);
5243 end if;
5245 return;
5246 end if;
5248 -- Ada 2005 (AI-231): In case of anonymous access types check the
5249 -- null-exclusion and access-to-constant attributes match.
5251 if Ada_Version >= Ada_2005
5252 and then Ekind (Etype (Old_Type)) = E_Anonymous_Access_Type
5253 and then
5254 (Can_Never_Be_Null (Old_Type) /= Can_Never_Be_Null (New_Type)
5255 or else Is_Access_Constant (Etype (Old_Type)) /=
5256 Is_Access_Constant (Etype (New_Type)))
5257 then
5258 Conformance_Error ("\return type does not match!", New_Id);
5259 return;
5260 end if;
5262 -- If either is a function/operator and the other isn't, error
5264 elsif Old_Type /= Standard_Void_Type
5265 or else New_Type /= Standard_Void_Type
5266 then
5267 Conformance_Error ("\functions can only match functions!", New_Id);
5268 return;
5269 end if;
5271 -- In subtype conformant case, conventions must match (RM 6.3.1(16)).
5272 -- If this is a renaming as body, refine error message to indicate that
5273 -- the conflict is with the original declaration. If the entity is not
5274 -- frozen, the conventions don't have to match, the one of the renamed
5275 -- entity is inherited.
5277 if Ctype >= Subtype_Conformant then
5278 if not Conventions_Match (Old_Id, New_Id) then
5279 if not Is_Frozen (New_Id) then
5280 null;
5282 elsif Present (Err_Loc)
5283 and then Nkind (Err_Loc) = N_Subprogram_Renaming_Declaration
5284 and then Present (Corresponding_Spec (Err_Loc))
5285 then
5286 Error_Msg_Name_1 := Chars (New_Id);
5287 Error_Msg_Name_2 :=
5288 Name_Ada + Convention_Id'Pos (Convention (New_Id));
5289 Conformance_Error ("\prior declaration for% has convention %!");
5291 else
5292 Conformance_Error ("\calling conventions do not match!");
5293 end if;
5295 return;
5297 elsif Is_Formal_Subprogram (Old_Id)
5298 or else Is_Formal_Subprogram (New_Id)
5299 then
5300 Conformance_Error ("\formal subprograms not allowed!");
5301 return;
5302 end if;
5303 end if;
5305 -- Deal with parameters
5307 -- Note: we use the entity information, rather than going directly
5308 -- to the specification in the tree. This is not only simpler, but
5309 -- absolutely necessary for some cases of conformance tests between
5310 -- operators, where the declaration tree simply does not exist.
5312 Old_Formal := First_Formal (Old_Id);
5313 New_Formal := First_Formal (New_Id);
5314 while Present (Old_Formal) and then Present (New_Formal) loop
5315 if Is_Controlling_Formal (Old_Formal)
5316 and then Is_Controlling_Formal (New_Formal)
5317 and then Skip_Controlling_Formals
5318 then
5319 -- The controlling formals will have different types when
5320 -- comparing an interface operation with its match, but both
5321 -- or neither must be access parameters.
5323 if Is_Access_Type (Etype (Old_Formal))
5325 Is_Access_Type (Etype (New_Formal))
5326 then
5327 goto Skip_Controlling_Formal;
5328 else
5329 Conformance_Error
5330 ("\access parameter does not match!", New_Formal);
5331 end if;
5332 end if;
5334 -- Ada 2012: Mode conformance also requires that formal parameters
5335 -- be both aliased, or neither.
5337 if Ctype >= Mode_Conformant and then Ada_Version >= Ada_2012 then
5338 if Is_Aliased (Old_Formal) /= Is_Aliased (New_Formal) then
5339 Conformance_Error
5340 ("\aliased parameter mismatch!", New_Formal);
5341 end if;
5342 end if;
5344 if Ctype = Fully_Conformant then
5346 -- Names must match. Error message is more accurate if we do
5347 -- this before checking that the types of the formals match.
5349 if Chars (Old_Formal) /= Chars (New_Formal) then
5350 Conformance_Error ("\name& does not match!", New_Formal);
5352 -- Set error posted flag on new formal as well to stop
5353 -- junk cascaded messages in some cases.
5355 Set_Error_Posted (New_Formal);
5356 return;
5357 end if;
5359 -- Null exclusion must match
5361 if Null_Exclusion_Present (Parent (Old_Formal))
5363 Null_Exclusion_Present (Parent (New_Formal))
5364 then
5365 -- Only give error if both come from source. This should be
5366 -- investigated some time, since it should not be needed ???
5368 if Comes_From_Source (Old_Formal)
5369 and then
5370 Comes_From_Source (New_Formal)
5371 then
5372 Conformance_Error
5373 ("\null exclusion for& does not match", New_Formal);
5375 -- Mark error posted on the new formal to avoid duplicated
5376 -- complaint about types not matching.
5378 Set_Error_Posted (New_Formal);
5379 end if;
5380 end if;
5381 end if;
5383 -- Ada 2005 (AI-423): Possible access [sub]type and itype match. This
5384 -- case occurs whenever a subprogram is being renamed and one of its
5385 -- parameters imposes a null exclusion. For example:
5387 -- type T is null record;
5388 -- type Acc_T is access T;
5389 -- subtype Acc_T_Sub is Acc_T;
5391 -- procedure P (Obj : not null Acc_T_Sub); -- itype
5392 -- procedure Ren_P (Obj : Acc_T_Sub) -- subtype
5393 -- renames P;
5395 Old_Formal_Base := Etype (Old_Formal);
5396 New_Formal_Base := Etype (New_Formal);
5398 if Get_Inst then
5399 Old_Formal_Base := Get_Instance_Of (Old_Formal_Base);
5400 New_Formal_Base := Get_Instance_Of (New_Formal_Base);
5401 end if;
5403 Access_Types_Match := Ada_Version >= Ada_2005
5405 -- Ensure that this rule is only applied when New_Id is a
5406 -- renaming of Old_Id.
5408 and then Nkind (Parent (Parent (New_Id))) =
5409 N_Subprogram_Renaming_Declaration
5410 and then Nkind (Name (Parent (Parent (New_Id)))) in N_Has_Entity
5411 and then Present (Entity (Name (Parent (Parent (New_Id)))))
5412 and then Entity (Name (Parent (Parent (New_Id)))) = Old_Id
5414 -- Now handle the allowed access-type case
5416 and then Is_Access_Type (Old_Formal_Base)
5417 and then Is_Access_Type (New_Formal_Base)
5419 -- The type kinds must match. The only exception occurs with
5420 -- multiple generics of the form:
5422 -- generic generic
5423 -- type F is private; type A is private;
5424 -- type F_Ptr is access F; type A_Ptr is access A;
5425 -- with proc F_P (X : F_Ptr); with proc A_P (X : A_Ptr);
5426 -- package F_Pack is ... package A_Pack is
5427 -- package F_Inst is
5428 -- new F_Pack (A, A_Ptr, A_P);
5430 -- When checking for conformance between the parameters of A_P
5431 -- and F_P, the type kinds of F_Ptr and A_Ptr will not match
5432 -- because the compiler has transformed A_Ptr into a subtype of
5433 -- F_Ptr. We catch this case in the code below.
5435 and then (Ekind (Old_Formal_Base) = Ekind (New_Formal_Base)
5436 or else
5437 (Is_Generic_Type (Old_Formal_Base)
5438 and then Is_Generic_Type (New_Formal_Base)
5439 and then Is_Internal (New_Formal_Base)
5440 and then Etype (Etype (New_Formal_Base)) =
5441 Old_Formal_Base))
5442 and then Directly_Designated_Type (Old_Formal_Base) =
5443 Directly_Designated_Type (New_Formal_Base)
5444 and then ((Is_Itype (Old_Formal_Base)
5445 and then Can_Never_Be_Null (Old_Formal_Base))
5446 or else
5447 (Is_Itype (New_Formal_Base)
5448 and then Can_Never_Be_Null (New_Formal_Base)));
5450 -- Types must always match. In the visible part of an instance,
5451 -- usual overloading rules for dispatching operations apply, and
5452 -- we check base types (not the actual subtypes).
5454 if In_Instance_Visible_Part
5455 and then Is_Dispatching_Operation (New_Id)
5456 then
5457 if not Conforming_Types
5458 (T1 => Base_Type (Etype (Old_Formal)),
5459 T2 => Base_Type (Etype (New_Formal)),
5460 Ctype => Ctype,
5461 Get_Inst => Get_Inst)
5462 and then not Access_Types_Match
5463 then
5464 Conformance_Error ("\type of & does not match!", New_Formal);
5465 return;
5466 end if;
5468 elsif not Conforming_Types
5469 (T1 => Old_Formal_Base,
5470 T2 => New_Formal_Base,
5471 Ctype => Ctype,
5472 Get_Inst => Get_Inst)
5473 and then not Access_Types_Match
5474 then
5475 -- Don't give error message if old type is Any_Type. This test
5476 -- avoids some cascaded errors, e.g. in case of a bad spec.
5478 if Errmsg and then Old_Formal_Base = Any_Type then
5479 Conforms := False;
5480 else
5481 if Ctype >= Subtype_Conformant
5482 and then
5483 not Predicates_Match (Old_Formal_Base, New_Formal_Base)
5484 then
5485 Conformance_Error
5486 ("\predicate of & does not match!", New_Formal);
5487 else
5488 Conformance_Error
5489 ("\type of & does not match!", New_Formal);
5491 if not Dimensions_Match (Old_Formal_Base, New_Formal_Base)
5492 then
5493 Error_Msg_N ("\dimensions mismatch!", New_Formal);
5494 end if;
5495 end if;
5496 end if;
5498 return;
5499 end if;
5501 -- For mode conformance, mode must match
5503 if Ctype >= Mode_Conformant then
5504 if Parameter_Mode (Old_Formal) /= Parameter_Mode (New_Formal) then
5505 if not Ekind_In (New_Id, E_Function, E_Procedure)
5506 or else not Is_Primitive_Wrapper (New_Id)
5507 then
5508 Conformance_Error ("\mode of & does not match!", New_Formal);
5510 else
5511 declare
5512 T : constant Entity_Id := Find_Dispatching_Type (New_Id);
5513 begin
5514 if Is_Protected_Type (Corresponding_Concurrent_Type (T))
5515 then
5516 Error_Msg_PT (New_Id, Ultimate_Alias (Old_Id));
5517 else
5518 Conformance_Error
5519 ("\mode of & does not match!", New_Formal);
5520 end if;
5521 end;
5522 end if;
5524 return;
5526 -- Part of mode conformance for access types is having the same
5527 -- constant modifier.
5529 elsif Access_Types_Match
5530 and then Is_Access_Constant (Old_Formal_Base) /=
5531 Is_Access_Constant (New_Formal_Base)
5532 then
5533 Conformance_Error
5534 ("\constant modifier does not match!", New_Formal);
5535 return;
5536 end if;
5537 end if;
5539 if Ctype >= Subtype_Conformant then
5541 -- Ada 2005 (AI-231): In case of anonymous access types check
5542 -- the null-exclusion and access-to-constant attributes must
5543 -- match. For null exclusion, we test the types rather than the
5544 -- formals themselves, since the attribute is only set reliably
5545 -- on the formals in the Ada 95 case, and we exclude the case
5546 -- where Old_Formal is marked as controlling, to avoid errors
5547 -- when matching completing bodies with dispatching declarations
5548 -- (access formals in the bodies aren't marked Can_Never_Be_Null).
5550 if Ada_Version >= Ada_2005
5551 and then Ekind (Etype (Old_Formal)) = E_Anonymous_Access_Type
5552 and then Ekind (Etype (New_Formal)) = E_Anonymous_Access_Type
5553 and then
5554 ((Can_Never_Be_Null (Etype (Old_Formal)) /=
5555 Can_Never_Be_Null (Etype (New_Formal))
5556 and then
5557 not Is_Controlling_Formal (Old_Formal))
5558 or else
5559 Is_Access_Constant (Etype (Old_Formal)) /=
5560 Is_Access_Constant (Etype (New_Formal)))
5562 -- Do not complain if error already posted on New_Formal. This
5563 -- avoids some redundant error messages.
5565 and then not Error_Posted (New_Formal)
5566 then
5567 -- It is allowed to omit the null-exclusion in case of stream
5568 -- attribute subprograms. We recognize stream subprograms
5569 -- through their TSS-generated suffix.
5571 declare
5572 TSS_Name : constant TSS_Name_Type := Get_TSS_Name (New_Id);
5574 begin
5575 if TSS_Name /= TSS_Stream_Read
5576 and then TSS_Name /= TSS_Stream_Write
5577 and then TSS_Name /= TSS_Stream_Input
5578 and then TSS_Name /= TSS_Stream_Output
5579 then
5580 -- Here we have a definite conformance error. It is worth
5581 -- special casing the error message for the case of a
5582 -- controlling formal (which excludes null).
5584 if Is_Controlling_Formal (New_Formal) then
5585 Error_Msg_Node_2 := Scope (New_Formal);
5586 Conformance_Error
5587 ("\controlling formal & of & excludes null, "
5588 & "declaration must exclude null as well",
5589 New_Formal);
5591 -- Normal case (couldn't we give more detail here???)
5593 else
5594 Conformance_Error
5595 ("\type of & does not match!", New_Formal);
5596 end if;
5598 return;
5599 end if;
5600 end;
5601 end if;
5602 end if;
5604 -- Full conformance checks
5606 if Ctype = Fully_Conformant then
5608 -- We have checked already that names match
5610 if Parameter_Mode (Old_Formal) = E_In_Parameter then
5612 -- Check default expressions for in parameters
5614 declare
5615 NewD : constant Boolean :=
5616 Present (Default_Value (New_Formal));
5617 OldD : constant Boolean :=
5618 Present (Default_Value (Old_Formal));
5619 begin
5620 if NewD or OldD then
5622 -- The old default value has been analyzed because the
5623 -- current full declaration will have frozen everything
5624 -- before. The new default value has not been analyzed,
5625 -- so analyze it now before we check for conformance.
5627 if NewD then
5628 Push_Scope (New_Id);
5629 Preanalyze_Spec_Expression
5630 (Default_Value (New_Formal), Etype (New_Formal));
5631 End_Scope;
5632 end if;
5634 if not (NewD and OldD)
5635 or else not Fully_Conformant_Expressions
5636 (Default_Value (Old_Formal),
5637 Default_Value (New_Formal))
5638 then
5639 Conformance_Error
5640 ("\default expression for & does not match!",
5641 New_Formal);
5642 return;
5643 end if;
5644 end if;
5645 end;
5646 end if;
5647 end if;
5649 -- A couple of special checks for Ada 83 mode. These checks are
5650 -- skipped if either entity is an operator in package Standard,
5651 -- or if either old or new instance is not from the source program.
5653 if Ada_Version = Ada_83
5654 and then Sloc (Old_Id) > Standard_Location
5655 and then Sloc (New_Id) > Standard_Location
5656 and then Comes_From_Source (Old_Id)
5657 and then Comes_From_Source (New_Id)
5658 then
5659 declare
5660 Old_Param : constant Node_Id := Declaration_Node (Old_Formal);
5661 New_Param : constant Node_Id := Declaration_Node (New_Formal);
5663 begin
5664 -- Explicit IN must be present or absent in both cases. This
5665 -- test is required only in the full conformance case.
5667 if In_Present (Old_Param) /= In_Present (New_Param)
5668 and then Ctype = Fully_Conformant
5669 then
5670 Conformance_Error
5671 ("\(Ada 83) IN must appear in both declarations",
5672 New_Formal);
5673 return;
5674 end if;
5676 -- Grouping (use of comma in param lists) must be the same
5677 -- This is where we catch a misconformance like:
5679 -- A, B : Integer
5680 -- A : Integer; B : Integer
5682 -- which are represented identically in the tree except
5683 -- for the setting of the flags More_Ids and Prev_Ids.
5685 if More_Ids (Old_Param) /= More_Ids (New_Param)
5686 or else Prev_Ids (Old_Param) /= Prev_Ids (New_Param)
5687 then
5688 Conformance_Error
5689 ("\grouping of & does not match!", New_Formal);
5690 return;
5691 end if;
5692 end;
5693 end if;
5695 -- This label is required when skipping controlling formals
5697 <<Skip_Controlling_Formal>>
5699 Next_Formal (Old_Formal);
5700 Next_Formal (New_Formal);
5701 end loop;
5703 if Present (Old_Formal) then
5704 Conformance_Error ("\too few parameters!");
5705 return;
5707 elsif Present (New_Formal) then
5708 Conformance_Error ("\too many parameters!", New_Formal);
5709 return;
5710 end if;
5711 end Check_Conformance;
5713 -----------------------
5714 -- Check_Conventions --
5715 -----------------------
5717 procedure Check_Conventions (Typ : Entity_Id) is
5718 Ifaces_List : Elist_Id;
5720 procedure Check_Convention (Op : Entity_Id);
5721 -- Verify that the convention of inherited dispatching operation Op is
5722 -- consistent among all subprograms it overrides. In order to minimize
5723 -- the search, Search_From is utilized to designate a specific point in
5724 -- the list rather than iterating over the whole list once more.
5726 ----------------------
5727 -- Check_Convention --
5728 ----------------------
5730 procedure Check_Convention (Op : Entity_Id) is
5731 Op_Conv : constant Convention_Id := Convention (Op);
5732 Iface_Conv : Convention_Id;
5733 Iface_Elmt : Elmt_Id;
5734 Iface_Prim_Elmt : Elmt_Id;
5735 Iface_Prim : Entity_Id;
5737 begin
5738 Iface_Elmt := First_Elmt (Ifaces_List);
5739 while Present (Iface_Elmt) loop
5740 Iface_Prim_Elmt :=
5741 First_Elmt (Primitive_Operations (Node (Iface_Elmt)));
5742 while Present (Iface_Prim_Elmt) loop
5743 Iface_Prim := Node (Iface_Prim_Elmt);
5744 Iface_Conv := Convention (Iface_Prim);
5746 if Is_Interface_Conformant (Typ, Iface_Prim, Op)
5747 and then Iface_Conv /= Op_Conv
5748 then
5749 Error_Msg_N
5750 ("inconsistent conventions in primitive operations", Typ);
5752 Error_Msg_Name_1 := Chars (Op);
5753 Error_Msg_Name_2 := Get_Convention_Name (Op_Conv);
5754 Error_Msg_Sloc := Sloc (Op);
5756 if Comes_From_Source (Op) or else No (Alias (Op)) then
5757 if not Present (Overridden_Operation (Op)) then
5758 Error_Msg_N ("\\primitive % defined #", Typ);
5759 else
5760 Error_Msg_N
5761 ("\\overriding operation % with "
5762 & "convention % defined #", Typ);
5763 end if;
5765 else pragma Assert (Present (Alias (Op)));
5766 Error_Msg_Sloc := Sloc (Alias (Op));
5767 Error_Msg_N ("\\inherited operation % with "
5768 & "convention % defined #", Typ);
5769 end if;
5771 Error_Msg_Name_1 := Chars (Op);
5772 Error_Msg_Name_2 := Get_Convention_Name (Iface_Conv);
5773 Error_Msg_Sloc := Sloc (Iface_Prim);
5774 Error_Msg_N ("\\overridden operation % with "
5775 & "convention % defined #", Typ);
5777 -- Avoid cascading errors
5779 return;
5780 end if;
5782 Next_Elmt (Iface_Prim_Elmt);
5783 end loop;
5785 Next_Elmt (Iface_Elmt);
5786 end loop;
5787 end Check_Convention;
5789 -- Local variables
5791 Prim_Op : Entity_Id;
5792 Prim_Op_Elmt : Elmt_Id;
5794 -- Start of processing for Check_Conventions
5796 begin
5797 if not Has_Interfaces (Typ) then
5798 return;
5799 end if;
5801 Collect_Interfaces (Typ, Ifaces_List);
5803 -- The algorithm checks every overriding dispatching operation against
5804 -- all the corresponding overridden dispatching operations, detecting
5805 -- differences in conventions.
5807 Prim_Op_Elmt := First_Elmt (Primitive_Operations (Typ));
5808 while Present (Prim_Op_Elmt) loop
5809 Prim_Op := Node (Prim_Op_Elmt);
5811 -- A small optimization: skip the predefined dispatching operations
5812 -- since they always have the same convention.
5814 if not Is_Predefined_Dispatching_Operation (Prim_Op) then
5815 Check_Convention (Prim_Op);
5816 end if;
5818 Next_Elmt (Prim_Op_Elmt);
5819 end loop;
5820 end Check_Conventions;
5822 ------------------------------
5823 -- Check_Delayed_Subprogram --
5824 ------------------------------
5826 procedure Check_Delayed_Subprogram (Designator : Entity_Id) is
5827 F : Entity_Id;
5829 procedure Possible_Freeze (T : Entity_Id);
5830 -- T is the type of either a formal parameter or of the return type.
5831 -- If T is not yet frozen and needs a delayed freeze, then the
5832 -- subprogram itself must be delayed.
5834 ---------------------
5835 -- Possible_Freeze --
5836 ---------------------
5838 procedure Possible_Freeze (T : Entity_Id) is
5839 begin
5840 if Has_Delayed_Freeze (T) and then not Is_Frozen (T) then
5841 Set_Has_Delayed_Freeze (Designator);
5843 elsif Is_Access_Type (T)
5844 and then Has_Delayed_Freeze (Designated_Type (T))
5845 and then not Is_Frozen (Designated_Type (T))
5846 then
5847 Set_Has_Delayed_Freeze (Designator);
5848 end if;
5850 end Possible_Freeze;
5852 -- Start of processing for Check_Delayed_Subprogram
5854 begin
5855 -- All subprograms, including abstract subprograms, may need a freeze
5856 -- node if some formal type or the return type needs one.
5858 Possible_Freeze (Etype (Designator));
5859 Possible_Freeze (Base_Type (Etype (Designator))); -- needed ???
5861 -- Need delayed freeze if any of the formal types themselves need
5862 -- a delayed freeze and are not yet frozen.
5864 F := First_Formal (Designator);
5865 while Present (F) loop
5866 Possible_Freeze (Etype (F));
5867 Possible_Freeze (Base_Type (Etype (F))); -- needed ???
5868 Next_Formal (F);
5869 end loop;
5871 -- Mark functions that return by reference. Note that it cannot be
5872 -- done for delayed_freeze subprograms because the underlying
5873 -- returned type may not be known yet (for private types)
5875 if not Has_Delayed_Freeze (Designator) and then Expander_Active then
5876 declare
5877 Typ : constant Entity_Id := Etype (Designator);
5878 Utyp : constant Entity_Id := Underlying_Type (Typ);
5879 begin
5880 if Is_Limited_View (Typ) then
5881 Set_Returns_By_Ref (Designator);
5882 elsif Present (Utyp) and then CW_Or_Has_Controlled_Part (Utyp) then
5883 Set_Returns_By_Ref (Designator);
5884 end if;
5885 end;
5886 end if;
5887 end Check_Delayed_Subprogram;
5889 ------------------------------------
5890 -- Check_Discriminant_Conformance --
5891 ------------------------------------
5893 procedure Check_Discriminant_Conformance
5894 (N : Node_Id;
5895 Prev : Entity_Id;
5896 Prev_Loc : Node_Id)
5898 Old_Discr : Entity_Id := First_Discriminant (Prev);
5899 New_Discr : Node_Id := First (Discriminant_Specifications (N));
5900 New_Discr_Id : Entity_Id;
5901 New_Discr_Type : Entity_Id;
5903 procedure Conformance_Error (Msg : String; N : Node_Id);
5904 -- Post error message for conformance error on given node. Two messages
5905 -- are output. The first points to the previous declaration with a
5906 -- general "no conformance" message. The second is the detailed reason,
5907 -- supplied as Msg. The parameter N provide information for a possible
5908 -- & insertion in the message.
5910 -----------------------
5911 -- Conformance_Error --
5912 -----------------------
5914 procedure Conformance_Error (Msg : String; N : Node_Id) is
5915 begin
5916 Error_Msg_Sloc := Sloc (Prev_Loc);
5917 Error_Msg_N -- CODEFIX
5918 ("not fully conformant with declaration#!", N);
5919 Error_Msg_NE (Msg, N, N);
5920 end Conformance_Error;
5922 -- Start of processing for Check_Discriminant_Conformance
5924 begin
5925 while Present (Old_Discr) and then Present (New_Discr) loop
5926 New_Discr_Id := Defining_Identifier (New_Discr);
5928 -- The subtype mark of the discriminant on the full type has not
5929 -- been analyzed so we do it here. For an access discriminant a new
5930 -- type is created.
5932 if Nkind (Discriminant_Type (New_Discr)) = N_Access_Definition then
5933 New_Discr_Type :=
5934 Access_Definition (N, Discriminant_Type (New_Discr));
5936 else
5937 Analyze (Discriminant_Type (New_Discr));
5938 New_Discr_Type := Etype (Discriminant_Type (New_Discr));
5940 -- Ada 2005: if the discriminant definition carries a null
5941 -- exclusion, create an itype to check properly for consistency
5942 -- with partial declaration.
5944 if Is_Access_Type (New_Discr_Type)
5945 and then Null_Exclusion_Present (New_Discr)
5946 then
5947 New_Discr_Type :=
5948 Create_Null_Excluding_Itype
5949 (T => New_Discr_Type,
5950 Related_Nod => New_Discr,
5951 Scope_Id => Current_Scope);
5952 end if;
5953 end if;
5955 if not Conforming_Types
5956 (Etype (Old_Discr), New_Discr_Type, Fully_Conformant)
5957 then
5958 Conformance_Error ("type of & does not match!", New_Discr_Id);
5959 return;
5960 else
5961 -- Treat the new discriminant as an occurrence of the old one,
5962 -- for navigation purposes, and fill in some semantic
5963 -- information, for completeness.
5965 Generate_Reference (Old_Discr, New_Discr_Id, 'r');
5966 Set_Etype (New_Discr_Id, Etype (Old_Discr));
5967 Set_Scope (New_Discr_Id, Scope (Old_Discr));
5968 end if;
5970 -- Names must match
5972 if Chars (Old_Discr) /= Chars (Defining_Identifier (New_Discr)) then
5973 Conformance_Error ("name & does not match!", New_Discr_Id);
5974 return;
5975 end if;
5977 -- Default expressions must match
5979 declare
5980 NewD : constant Boolean :=
5981 Present (Expression (New_Discr));
5982 OldD : constant Boolean :=
5983 Present (Expression (Parent (Old_Discr)));
5985 begin
5986 if NewD or OldD then
5988 -- The old default value has been analyzed and expanded,
5989 -- because the current full declaration will have frozen
5990 -- everything before. The new default values have not been
5991 -- expanded, so expand now to check conformance.
5993 if NewD then
5994 Preanalyze_Spec_Expression
5995 (Expression (New_Discr), New_Discr_Type);
5996 end if;
5998 if not (NewD and OldD)
5999 or else not Fully_Conformant_Expressions
6000 (Expression (Parent (Old_Discr)),
6001 Expression (New_Discr))
6003 then
6004 Conformance_Error
6005 ("default expression for & does not match!",
6006 New_Discr_Id);
6007 return;
6008 end if;
6009 end if;
6010 end;
6012 -- In Ada 83 case, grouping must match: (A,B : X) /= (A : X; B : X)
6014 if Ada_Version = Ada_83 then
6015 declare
6016 Old_Disc : constant Node_Id := Declaration_Node (Old_Discr);
6018 begin
6019 -- Grouping (use of comma in param lists) must be the same
6020 -- This is where we catch a misconformance like:
6022 -- A, B : Integer
6023 -- A : Integer; B : Integer
6025 -- which are represented identically in the tree except
6026 -- for the setting of the flags More_Ids and Prev_Ids.
6028 if More_Ids (Old_Disc) /= More_Ids (New_Discr)
6029 or else Prev_Ids (Old_Disc) /= Prev_Ids (New_Discr)
6030 then
6031 Conformance_Error
6032 ("grouping of & does not match!", New_Discr_Id);
6033 return;
6034 end if;
6035 end;
6036 end if;
6038 Next_Discriminant (Old_Discr);
6039 Next (New_Discr);
6040 end loop;
6042 if Present (Old_Discr) then
6043 Conformance_Error ("too few discriminants!", Defining_Identifier (N));
6044 return;
6046 elsif Present (New_Discr) then
6047 Conformance_Error
6048 ("too many discriminants!", Defining_Identifier (New_Discr));
6049 return;
6050 end if;
6051 end Check_Discriminant_Conformance;
6053 ----------------------------
6054 -- Check_Fully_Conformant --
6055 ----------------------------
6057 procedure Check_Fully_Conformant
6058 (New_Id : Entity_Id;
6059 Old_Id : Entity_Id;
6060 Err_Loc : Node_Id := Empty)
6062 Result : Boolean;
6063 pragma Warnings (Off, Result);
6064 begin
6065 Check_Conformance
6066 (New_Id, Old_Id, Fully_Conformant, True, Result, Err_Loc);
6067 end Check_Fully_Conformant;
6069 --------------------------
6070 -- Check_Limited_Return --
6071 --------------------------
6073 procedure Check_Limited_Return
6074 (N : Node_Id;
6075 Expr : Node_Id;
6076 R_Type : Entity_Id)
6078 begin
6079 -- Ada 2005 (AI-318-02): Return-by-reference types have been removed and
6080 -- replaced by anonymous access results. This is an incompatibility with
6081 -- Ada 95. Not clear whether this should be enforced yet or perhaps
6082 -- controllable with special switch. ???
6084 -- A limited interface that is not immutably limited is OK
6086 if Is_Limited_Interface (R_Type)
6087 and then
6088 not (Is_Task_Interface (R_Type)
6089 or else Is_Protected_Interface (R_Type)
6090 or else Is_Synchronized_Interface (R_Type))
6091 then
6092 null;
6094 elsif Is_Limited_Type (R_Type)
6095 and then not Is_Interface (R_Type)
6096 and then Comes_From_Source (N)
6097 and then not In_Instance_Body
6098 and then not OK_For_Limited_Init_In_05 (R_Type, Expr)
6099 then
6100 -- Error in Ada 2005
6102 if Ada_Version >= Ada_2005
6103 and then not Debug_Flag_Dot_L
6104 and then not GNAT_Mode
6105 then
6106 Error_Msg_N
6107 ("(Ada 2005) cannot copy object of a limited type "
6108 & "(RM-2005 6.5(5.5/2))", Expr);
6110 if Is_Limited_View (R_Type) then
6111 Error_Msg_N
6112 ("\return by reference not permitted in Ada 2005", Expr);
6113 end if;
6115 -- Warn in Ada 95 mode, to give folks a heads up about this
6116 -- incompatibility.
6118 -- In GNAT mode, this is just a warning, to allow it to be evilly
6119 -- turned off. Otherwise it is a real error.
6121 -- In a generic context, simplify the warning because it makes no
6122 -- sense to discuss pass-by-reference or copy.
6124 elsif Warn_On_Ada_2005_Compatibility or GNAT_Mode then
6125 if Inside_A_Generic then
6126 Error_Msg_N
6127 ("return of limited object not permitted in Ada 2005 "
6128 & "(RM-2005 6.5(5.5/2))?y?", Expr);
6130 elsif Is_Limited_View (R_Type) then
6131 Error_Msg_N
6132 ("return by reference not permitted in Ada 2005 "
6133 & "(RM-2005 6.5(5.5/2))?y?", Expr);
6134 else
6135 Error_Msg_N
6136 ("cannot copy object of a limited type in Ada 2005 "
6137 & "(RM-2005 6.5(5.5/2))?y?", Expr);
6138 end if;
6140 -- Ada 95 mode, and compatibility warnings disabled
6142 else
6143 pragma Assert (Ada_Version <= Ada_95);
6144 pragma Assert (not (Warn_On_Ada_2005_Compatibility or GNAT_Mode));
6145 return; -- skip continuation messages below
6146 end if;
6148 if not Inside_A_Generic then
6149 Error_Msg_N
6150 ("\consider switching to return of access type", Expr);
6151 Explain_Limited_Type (R_Type, Expr);
6152 end if;
6153 end if;
6154 end Check_Limited_Return;
6156 ---------------------------
6157 -- Check_Mode_Conformant --
6158 ---------------------------
6160 procedure Check_Mode_Conformant
6161 (New_Id : Entity_Id;
6162 Old_Id : Entity_Id;
6163 Err_Loc : Node_Id := Empty;
6164 Get_Inst : Boolean := False)
6166 Result : Boolean;
6167 pragma Warnings (Off, Result);
6168 begin
6169 Check_Conformance
6170 (New_Id, Old_Id, Mode_Conformant, True, Result, Err_Loc, Get_Inst);
6171 end Check_Mode_Conformant;
6173 --------------------------------
6174 -- Check_Overriding_Indicator --
6175 --------------------------------
6177 procedure Check_Overriding_Indicator
6178 (Subp : Entity_Id;
6179 Overridden_Subp : Entity_Id;
6180 Is_Primitive : Boolean)
6182 Decl : Node_Id;
6183 Spec : Node_Id;
6185 begin
6186 -- No overriding indicator for literals
6188 if Ekind (Subp) = E_Enumeration_Literal then
6189 return;
6191 elsif Ekind (Subp) = E_Entry then
6192 Decl := Parent (Subp);
6194 -- No point in analyzing a malformed operator
6196 elsif Nkind (Subp) = N_Defining_Operator_Symbol
6197 and then Error_Posted (Subp)
6198 then
6199 return;
6201 else
6202 Decl := Unit_Declaration_Node (Subp);
6203 end if;
6205 if Nkind_In (Decl, N_Subprogram_Body,
6206 N_Subprogram_Body_Stub,
6207 N_Subprogram_Declaration,
6208 N_Abstract_Subprogram_Declaration,
6209 N_Subprogram_Renaming_Declaration)
6210 then
6211 Spec := Specification (Decl);
6213 elsif Nkind (Decl) = N_Entry_Declaration then
6214 Spec := Decl;
6216 else
6217 return;
6218 end if;
6220 -- The overriding operation is type conformant with the overridden one,
6221 -- but the names of the formals are not required to match. If the names
6222 -- appear permuted in the overriding operation, this is a possible
6223 -- source of confusion that is worth diagnosing. Controlling formals
6224 -- often carry names that reflect the type, and it is not worthwhile
6225 -- requiring that their names match.
6227 if Present (Overridden_Subp)
6228 and then Nkind (Subp) /= N_Defining_Operator_Symbol
6229 then
6230 declare
6231 Form1 : Entity_Id;
6232 Form2 : Entity_Id;
6234 begin
6235 Form1 := First_Formal (Subp);
6236 Form2 := First_Formal (Overridden_Subp);
6238 -- If the overriding operation is a synchronized operation, skip
6239 -- the first parameter of the overridden operation, which is
6240 -- implicit in the new one. If the operation is declared in the
6241 -- body it is not primitive and all formals must match.
6243 if Is_Concurrent_Type (Scope (Subp))
6244 and then Is_Tagged_Type (Scope (Subp))
6245 and then not Has_Completion (Scope (Subp))
6246 then
6247 Form2 := Next_Formal (Form2);
6248 end if;
6250 if Present (Form1) then
6251 Form1 := Next_Formal (Form1);
6252 Form2 := Next_Formal (Form2);
6253 end if;
6255 while Present (Form1) loop
6256 if not Is_Controlling_Formal (Form1)
6257 and then Present (Next_Formal (Form2))
6258 and then Chars (Form1) = Chars (Next_Formal (Form2))
6259 then
6260 Error_Msg_Node_2 := Alias (Overridden_Subp);
6261 Error_Msg_Sloc := Sloc (Error_Msg_Node_2);
6262 Error_Msg_NE
6263 ("& does not match corresponding formal of&#",
6264 Form1, Form1);
6265 exit;
6266 end if;
6268 Next_Formal (Form1);
6269 Next_Formal (Form2);
6270 end loop;
6271 end;
6272 end if;
6274 -- If there is an overridden subprogram, then check that there is no
6275 -- "not overriding" indicator, and mark the subprogram as overriding.
6276 -- This is not done if the overridden subprogram is marked as hidden,
6277 -- which can occur for the case of inherited controlled operations
6278 -- (see Derive_Subprogram), unless the inherited subprogram's parent
6279 -- subprogram is not itself hidden. (Note: This condition could probably
6280 -- be simplified, leaving out the testing for the specific controlled
6281 -- cases, but it seems safer and clearer this way, and echoes similar
6282 -- special-case tests of this kind in other places.)
6284 if Present (Overridden_Subp)
6285 and then (not Is_Hidden (Overridden_Subp)
6286 or else
6287 (Nam_In (Chars (Overridden_Subp), Name_Initialize,
6288 Name_Adjust,
6289 Name_Finalize)
6290 and then Present (Alias (Overridden_Subp))
6291 and then not Is_Hidden (Alias (Overridden_Subp))))
6292 then
6293 if Must_Not_Override (Spec) then
6294 Error_Msg_Sloc := Sloc (Overridden_Subp);
6296 if Ekind (Subp) = E_Entry then
6297 Error_Msg_NE
6298 ("entry & overrides inherited operation #", Spec, Subp);
6299 else
6300 Error_Msg_NE
6301 ("subprogram & overrides inherited operation #", Spec, Subp);
6302 end if;
6304 -- Special-case to fix a GNAT oddity: Limited_Controlled is declared
6305 -- as an extension of Root_Controlled, and thus has a useless Adjust
6306 -- operation. This operation should not be inherited by other limited
6307 -- controlled types. An explicit Adjust for them is not overriding.
6309 elsif Must_Override (Spec)
6310 and then Chars (Overridden_Subp) = Name_Adjust
6311 and then Is_Limited_Type (Etype (First_Formal (Subp)))
6312 and then Present (Alias (Overridden_Subp))
6313 and then In_Predefined_Unit (Alias (Overridden_Subp))
6314 then
6315 Get_Name_String
6316 (Unit_File_Name (Get_Source_Unit (Alias (Overridden_Subp))));
6317 Error_Msg_NE ("subprogram & is not overriding", Spec, Subp);
6319 elsif Is_Subprogram (Subp) then
6320 if Is_Init_Proc (Subp) then
6321 null;
6323 elsif No (Overridden_Operation (Subp)) then
6325 -- For entities generated by Derive_Subprograms the overridden
6326 -- operation is the inherited primitive (which is available
6327 -- through the attribute alias)
6329 if (Is_Dispatching_Operation (Subp)
6330 or else Is_Dispatching_Operation (Overridden_Subp))
6331 and then not Comes_From_Source (Overridden_Subp)
6332 and then Find_Dispatching_Type (Overridden_Subp) =
6333 Find_Dispatching_Type (Subp)
6334 and then Present (Alias (Overridden_Subp))
6335 and then Comes_From_Source (Alias (Overridden_Subp))
6336 then
6337 Set_Overridden_Operation (Subp, Alias (Overridden_Subp));
6338 Inherit_Subprogram_Contract (Subp, Alias (Overridden_Subp));
6340 else
6341 Set_Overridden_Operation (Subp, Overridden_Subp);
6342 Inherit_Subprogram_Contract (Subp, Overridden_Subp);
6343 end if;
6344 end if;
6345 end if;
6347 -- If primitive flag is set or this is a protected operation, then
6348 -- the operation is overriding at the point of its declaration, so
6349 -- warn if necessary. Otherwise it may have been declared before the
6350 -- operation it overrides and no check is required.
6352 if Style_Check
6353 and then not Must_Override (Spec)
6354 and then (Is_Primitive
6355 or else Ekind (Scope (Subp)) = E_Protected_Type)
6356 then
6357 Style.Missing_Overriding (Decl, Subp);
6358 end if;
6360 -- If Subp is an operator, it may override a predefined operation, if
6361 -- it is defined in the same scope as the type to which it applies.
6362 -- In that case Overridden_Subp is empty because of our implicit
6363 -- representation for predefined operators. We have to check whether the
6364 -- signature of Subp matches that of a predefined operator. Note that
6365 -- first argument provides the name of the operator, and the second
6366 -- argument the signature that may match that of a standard operation.
6367 -- If the indicator is overriding, then the operator must match a
6368 -- predefined signature, because we know already that there is no
6369 -- explicit overridden operation.
6371 elsif Nkind (Subp) = N_Defining_Operator_Symbol then
6372 if Must_Not_Override (Spec) then
6374 -- If this is not a primitive or a protected subprogram, then
6375 -- "not overriding" is illegal.
6377 if not Is_Primitive
6378 and then Ekind (Scope (Subp)) /= E_Protected_Type
6379 then
6380 Error_Msg_N ("overriding indicator only allowed "
6381 & "if subprogram is primitive", Subp);
6383 elsif Can_Override_Operator (Subp) then
6384 Error_Msg_NE
6385 ("subprogram& overrides predefined operator ", Spec, Subp);
6386 end if;
6388 elsif Must_Override (Spec) then
6389 if No (Overridden_Operation (Subp))
6390 and then not Can_Override_Operator (Subp)
6391 then
6392 Error_Msg_NE ("subprogram & is not overriding", Spec, Subp);
6393 end if;
6395 elsif not Error_Posted (Subp)
6396 and then Style_Check
6397 and then Can_Override_Operator (Subp)
6398 and then not In_Predefined_Unit (Subp)
6399 then
6400 -- If style checks are enabled, indicate that the indicator is
6401 -- missing. However, at the point of declaration, the type of
6402 -- which this is a primitive operation may be private, in which
6403 -- case the indicator would be premature.
6405 if Has_Private_Declaration (Etype (Subp))
6406 or else Has_Private_Declaration (Etype (First_Formal (Subp)))
6407 then
6408 null;
6409 else
6410 Style.Missing_Overriding (Decl, Subp);
6411 end if;
6412 end if;
6414 elsif Must_Override (Spec) then
6415 if Ekind (Subp) = E_Entry then
6416 Error_Msg_NE ("entry & is not overriding", Spec, Subp);
6417 else
6418 Error_Msg_NE ("subprogram & is not overriding", Spec, Subp);
6419 end if;
6421 -- If the operation is marked "not overriding" and it's not primitive
6422 -- then an error is issued, unless this is an operation of a task or
6423 -- protected type (RM05-8.3.1(3/2-4/2)). Error cases where "overriding"
6424 -- has been specified have already been checked above.
6426 elsif Must_Not_Override (Spec)
6427 and then not Is_Primitive
6428 and then Ekind (Subp) /= E_Entry
6429 and then Ekind (Scope (Subp)) /= E_Protected_Type
6430 then
6431 Error_Msg_N
6432 ("overriding indicator only allowed if subprogram is primitive",
6433 Subp);
6434 return;
6435 end if;
6436 end Check_Overriding_Indicator;
6438 -------------------
6439 -- Check_Returns --
6440 -------------------
6442 -- Note: this procedure needs to know far too much about how the expander
6443 -- messes with exceptions. The use of the flag Exception_Junk and the
6444 -- incorporation of knowledge of Exp_Ch11.Expand_Local_Exception_Handlers
6445 -- works, but is not very clean. It would be better if the expansion
6446 -- routines would leave Original_Node working nicely, and we could use
6447 -- Original_Node here to ignore all the peculiar expander messing ???
6449 procedure Check_Returns
6450 (HSS : Node_Id;
6451 Mode : Character;
6452 Err : out Boolean;
6453 Proc : Entity_Id := Empty)
6455 Handler : Node_Id;
6457 procedure Check_Statement_Sequence (L : List_Id);
6458 -- Internal recursive procedure to check a list of statements for proper
6459 -- termination by a return statement (or a transfer of control or a
6460 -- compound statement that is itself internally properly terminated).
6462 ------------------------------
6463 -- Check_Statement_Sequence --
6464 ------------------------------
6466 procedure Check_Statement_Sequence (L : List_Id) is
6467 Last_Stm : Node_Id;
6468 Stm : Node_Id;
6469 Kind : Node_Kind;
6471 function Assert_False return Boolean;
6472 -- Returns True if Last_Stm is a pragma Assert (False) that has been
6473 -- rewritten as a null statement when assertions are off. The assert
6474 -- is not active, but it is still enough to kill the warning.
6476 ------------------
6477 -- Assert_False --
6478 ------------------
6480 function Assert_False return Boolean is
6481 Orig : constant Node_Id := Original_Node (Last_Stm);
6483 begin
6484 if Nkind (Orig) = N_Pragma
6485 and then Pragma_Name (Orig) = Name_Assert
6486 and then not Error_Posted (Orig)
6487 then
6488 declare
6489 Arg : constant Node_Id :=
6490 First (Pragma_Argument_Associations (Orig));
6491 Exp : constant Node_Id := Expression (Arg);
6492 begin
6493 return Nkind (Exp) = N_Identifier
6494 and then Chars (Exp) = Name_False;
6495 end;
6497 else
6498 return False;
6499 end if;
6500 end Assert_False;
6502 -- Local variables
6504 Raise_Exception_Call : Boolean;
6505 -- Set True if statement sequence terminated by Raise_Exception call
6506 -- or a Reraise_Occurrence call.
6508 -- Start of processing for Check_Statement_Sequence
6510 begin
6511 Raise_Exception_Call := False;
6513 -- Get last real statement
6515 Last_Stm := Last (L);
6517 -- Deal with digging out exception handler statement sequences that
6518 -- have been transformed by the local raise to goto optimization.
6519 -- See Exp_Ch11.Expand_Local_Exception_Handlers for details. If this
6520 -- optimization has occurred, we are looking at something like:
6522 -- begin
6523 -- original stmts in block
6525 -- exception \
6526 -- when excep1 => |
6527 -- goto L1; | omitted if No_Exception_Propagation
6528 -- when excep2 => |
6529 -- goto L2; /
6530 -- end;
6532 -- goto L3; -- skip handler when exception not raised
6534 -- <<L1>> -- target label for local exception
6535 -- begin
6536 -- estmts1
6537 -- end;
6539 -- goto L3;
6541 -- <<L2>>
6542 -- begin
6543 -- estmts2
6544 -- end;
6546 -- <<L3>>
6548 -- and what we have to do is to dig out the estmts1 and estmts2
6549 -- sequences (which were the original sequences of statements in
6550 -- the exception handlers) and check them.
6552 if Nkind (Last_Stm) = N_Label and then Exception_Junk (Last_Stm) then
6553 Stm := Last_Stm;
6554 loop
6555 Prev (Stm);
6556 exit when No (Stm);
6557 exit when Nkind (Stm) /= N_Block_Statement;
6558 exit when not Exception_Junk (Stm);
6559 Prev (Stm);
6560 exit when No (Stm);
6561 exit when Nkind (Stm) /= N_Label;
6562 exit when not Exception_Junk (Stm);
6563 Check_Statement_Sequence
6564 (Statements (Handled_Statement_Sequence (Next (Stm))));
6566 Prev (Stm);
6567 Last_Stm := Stm;
6568 exit when No (Stm);
6569 exit when Nkind (Stm) /= N_Goto_Statement;
6570 exit when not Exception_Junk (Stm);
6571 end loop;
6572 end if;
6574 -- Don't count pragmas
6576 while Nkind (Last_Stm) = N_Pragma
6578 -- Don't count call to SS_Release (can happen after Raise_Exception)
6580 or else
6581 (Nkind (Last_Stm) = N_Procedure_Call_Statement
6582 and then
6583 Nkind (Name (Last_Stm)) = N_Identifier
6584 and then
6585 Is_RTE (Entity (Name (Last_Stm)), RE_SS_Release))
6587 -- Don't count exception junk
6589 or else
6590 (Nkind_In (Last_Stm, N_Goto_Statement,
6591 N_Label,
6592 N_Object_Declaration)
6593 and then Exception_Junk (Last_Stm))
6594 or else Nkind (Last_Stm) in N_Push_xxx_Label
6595 or else Nkind (Last_Stm) in N_Pop_xxx_Label
6597 -- Inserted code, such as finalization calls, is irrelevant: we only
6598 -- need to check original source.
6600 or else Is_Rewrite_Insertion (Last_Stm)
6601 loop
6602 Prev (Last_Stm);
6603 end loop;
6605 -- Here we have the "real" last statement
6607 Kind := Nkind (Last_Stm);
6609 -- Transfer of control, OK. Note that in the No_Return procedure
6610 -- case, we already diagnosed any explicit return statements, so
6611 -- we can treat them as OK in this context.
6613 if Is_Transfer (Last_Stm) then
6614 return;
6616 -- Check cases of explicit non-indirect procedure calls
6618 elsif Kind = N_Procedure_Call_Statement
6619 and then Is_Entity_Name (Name (Last_Stm))
6620 then
6621 -- Check call to Raise_Exception procedure which is treated
6622 -- specially, as is a call to Reraise_Occurrence.
6624 -- We suppress the warning in these cases since it is likely that
6625 -- the programmer really does not expect to deal with the case
6626 -- of Null_Occurrence, and thus would find a warning about a
6627 -- missing return curious, and raising Program_Error does not
6628 -- seem such a bad behavior if this does occur.
6630 -- Note that in the Ada 2005 case for Raise_Exception, the actual
6631 -- behavior will be to raise Constraint_Error (see AI-329).
6633 if Is_RTE (Entity (Name (Last_Stm)), RE_Raise_Exception)
6634 or else
6635 Is_RTE (Entity (Name (Last_Stm)), RE_Reraise_Occurrence)
6636 then
6637 Raise_Exception_Call := True;
6639 -- For Raise_Exception call, test first argument, if it is
6640 -- an attribute reference for a 'Identity call, then we know
6641 -- that the call cannot possibly return.
6643 declare
6644 Arg : constant Node_Id :=
6645 Original_Node (First_Actual (Last_Stm));
6646 begin
6647 if Nkind (Arg) = N_Attribute_Reference
6648 and then Attribute_Name (Arg) = Name_Identity
6649 then
6650 return;
6651 end if;
6652 end;
6653 end if;
6655 -- If statement, need to look inside if there is an else and check
6656 -- each constituent statement sequence for proper termination.
6658 elsif Kind = N_If_Statement
6659 and then Present (Else_Statements (Last_Stm))
6660 then
6661 Check_Statement_Sequence (Then_Statements (Last_Stm));
6662 Check_Statement_Sequence (Else_Statements (Last_Stm));
6664 if Present (Elsif_Parts (Last_Stm)) then
6665 declare
6666 Elsif_Part : Node_Id := First (Elsif_Parts (Last_Stm));
6668 begin
6669 while Present (Elsif_Part) loop
6670 Check_Statement_Sequence (Then_Statements (Elsif_Part));
6671 Next (Elsif_Part);
6672 end loop;
6673 end;
6674 end if;
6676 return;
6678 -- Case statement, check each case for proper termination
6680 elsif Kind = N_Case_Statement then
6681 declare
6682 Case_Alt : Node_Id;
6683 begin
6684 Case_Alt := First_Non_Pragma (Alternatives (Last_Stm));
6685 while Present (Case_Alt) loop
6686 Check_Statement_Sequence (Statements (Case_Alt));
6687 Next_Non_Pragma (Case_Alt);
6688 end loop;
6689 end;
6691 return;
6693 -- Block statement, check its handled sequence of statements
6695 elsif Kind = N_Block_Statement then
6696 declare
6697 Err1 : Boolean;
6699 begin
6700 Check_Returns
6701 (Handled_Statement_Sequence (Last_Stm), Mode, Err1);
6703 if Err1 then
6704 Err := True;
6705 end if;
6707 return;
6708 end;
6710 -- Loop statement. If there is an iteration scheme, we can definitely
6711 -- fall out of the loop. Similarly if there is an exit statement, we
6712 -- can fall out. In either case we need a following return.
6714 elsif Kind = N_Loop_Statement then
6715 if Present (Iteration_Scheme (Last_Stm))
6716 or else Has_Exit (Entity (Identifier (Last_Stm)))
6717 then
6718 null;
6720 -- A loop with no exit statement or iteration scheme is either
6721 -- an infinite loop, or it has some other exit (raise/return).
6722 -- In either case, no warning is required.
6724 else
6725 return;
6726 end if;
6728 -- Timed entry call, check entry call and delay alternatives
6730 -- Note: in expanded code, the timed entry call has been converted
6731 -- to a set of expanded statements on which the check will work
6732 -- correctly in any case.
6734 elsif Kind = N_Timed_Entry_Call then
6735 declare
6736 ECA : constant Node_Id := Entry_Call_Alternative (Last_Stm);
6737 DCA : constant Node_Id := Delay_Alternative (Last_Stm);
6739 begin
6740 -- If statement sequence of entry call alternative is missing,
6741 -- then we can definitely fall through, and we post the error
6742 -- message on the entry call alternative itself.
6744 if No (Statements (ECA)) then
6745 Last_Stm := ECA;
6747 -- If statement sequence of delay alternative is missing, then
6748 -- we can definitely fall through, and we post the error
6749 -- message on the delay alternative itself.
6751 -- Note: if both ECA and DCA are missing the return, then we
6752 -- post only one message, should be enough to fix the bugs.
6753 -- If not we will get a message next time on the DCA when the
6754 -- ECA is fixed.
6756 elsif No (Statements (DCA)) then
6757 Last_Stm := DCA;
6759 -- Else check both statement sequences
6761 else
6762 Check_Statement_Sequence (Statements (ECA));
6763 Check_Statement_Sequence (Statements (DCA));
6764 return;
6765 end if;
6766 end;
6768 -- Conditional entry call, check entry call and else part
6770 -- Note: in expanded code, the conditional entry call has been
6771 -- converted to a set of expanded statements on which the check
6772 -- will work correctly in any case.
6774 elsif Kind = N_Conditional_Entry_Call then
6775 declare
6776 ECA : constant Node_Id := Entry_Call_Alternative (Last_Stm);
6778 begin
6779 -- If statement sequence of entry call alternative is missing,
6780 -- then we can definitely fall through, and we post the error
6781 -- message on the entry call alternative itself.
6783 if No (Statements (ECA)) then
6784 Last_Stm := ECA;
6786 -- Else check statement sequence and else part
6788 else
6789 Check_Statement_Sequence (Statements (ECA));
6790 Check_Statement_Sequence (Else_Statements (Last_Stm));
6791 return;
6792 end if;
6793 end;
6794 end if;
6796 -- If we fall through, issue appropriate message
6798 if Mode = 'F' then
6800 -- Kill warning if last statement is a raise exception call,
6801 -- or a pragma Assert (False). Note that with assertions enabled,
6802 -- such a pragma has been converted into a raise exception call
6803 -- already, so the Assert_False is for the assertions off case.
6805 if not Raise_Exception_Call and then not Assert_False then
6807 -- In GNATprove mode, it is an error to have a missing return
6809 Error_Msg_Warn := SPARK_Mode /= On;
6811 -- Issue error message or warning
6813 Error_Msg_N
6814 ("RETURN statement missing following this statement<<!",
6815 Last_Stm);
6816 Error_Msg_N
6817 ("\Program_Error ]<<!", Last_Stm);
6818 end if;
6820 -- Note: we set Err even though we have not issued a warning
6821 -- because we still have a case of a missing return. This is
6822 -- an extremely marginal case, probably will never be noticed
6823 -- but we might as well get it right.
6825 Err := True;
6827 -- Otherwise we have the case of a procedure marked No_Return
6829 else
6830 if not Raise_Exception_Call then
6831 if GNATprove_Mode then
6832 Error_Msg_N
6833 ("implied return after this statement would have raised "
6834 & "Program_Error", Last_Stm);
6836 -- In normal compilation mode, do not warn on a generated call
6837 -- (e.g. in the body of a renaming as completion).
6839 elsif Comes_From_Source (Last_Stm) then
6840 Error_Msg_N
6841 ("implied return after this statement will raise "
6842 & "Program_Error??", Last_Stm);
6843 end if;
6845 Error_Msg_Warn := SPARK_Mode /= On;
6846 Error_Msg_NE
6847 ("\procedure & is marked as No_Return<<!", Last_Stm, Proc);
6848 end if;
6850 declare
6851 RE : constant Node_Id :=
6852 Make_Raise_Program_Error (Sloc (Last_Stm),
6853 Reason => PE_Implicit_Return);
6854 begin
6855 Insert_After (Last_Stm, RE);
6856 Analyze (RE);
6857 end;
6858 end if;
6859 end Check_Statement_Sequence;
6861 -- Start of processing for Check_Returns
6863 begin
6864 Err := False;
6865 Check_Statement_Sequence (Statements (HSS));
6867 if Present (Exception_Handlers (HSS)) then
6868 Handler := First_Non_Pragma (Exception_Handlers (HSS));
6869 while Present (Handler) loop
6870 Check_Statement_Sequence (Statements (Handler));
6871 Next_Non_Pragma (Handler);
6872 end loop;
6873 end if;
6874 end Check_Returns;
6876 ----------------------------
6877 -- Check_Subprogram_Order --
6878 ----------------------------
6880 procedure Check_Subprogram_Order (N : Node_Id) is
6882 function Subprogram_Name_Greater (S1, S2 : String) return Boolean;
6883 -- This is used to check if S1 > S2 in the sense required by this test,
6884 -- for example nameab < namec, but name2 < name10.
6886 -----------------------------
6887 -- Subprogram_Name_Greater --
6888 -----------------------------
6890 function Subprogram_Name_Greater (S1, S2 : String) return Boolean is
6891 L1, L2 : Positive;
6892 N1, N2 : Natural;
6894 begin
6895 -- Deal with special case where names are identical except for a
6896 -- numerical suffix. These are handled specially, taking the numeric
6897 -- ordering from the suffix into account.
6899 L1 := S1'Last;
6900 while S1 (L1) in '0' .. '9' loop
6901 L1 := L1 - 1;
6902 end loop;
6904 L2 := S2'Last;
6905 while S2 (L2) in '0' .. '9' loop
6906 L2 := L2 - 1;
6907 end loop;
6909 -- If non-numeric parts non-equal, do straight compare
6911 if S1 (S1'First .. L1) /= S2 (S2'First .. L2) then
6912 return S1 > S2;
6914 -- If non-numeric parts equal, compare suffixed numeric parts. Note
6915 -- that a missing suffix is treated as numeric zero in this test.
6917 else
6918 N1 := 0;
6919 while L1 < S1'Last loop
6920 L1 := L1 + 1;
6921 N1 := N1 * 10 + Character'Pos (S1 (L1)) - Character'Pos ('0');
6922 end loop;
6924 N2 := 0;
6925 while L2 < S2'Last loop
6926 L2 := L2 + 1;
6927 N2 := N2 * 10 + Character'Pos (S2 (L2)) - Character'Pos ('0');
6928 end loop;
6930 return N1 > N2;
6931 end if;
6932 end Subprogram_Name_Greater;
6934 -- Start of processing for Check_Subprogram_Order
6936 begin
6937 -- Check body in alpha order if this is option
6939 if Style_Check
6940 and then Style_Check_Order_Subprograms
6941 and then Nkind (N) = N_Subprogram_Body
6942 and then Comes_From_Source (N)
6943 and then In_Extended_Main_Source_Unit (N)
6944 then
6945 declare
6946 LSN : String_Ptr
6947 renames Scope_Stack.Table
6948 (Scope_Stack.Last).Last_Subprogram_Name;
6950 Body_Id : constant Entity_Id :=
6951 Defining_Entity (Specification (N));
6953 begin
6954 Get_Decoded_Name_String (Chars (Body_Id));
6956 if LSN /= null then
6957 if Subprogram_Name_Greater
6958 (LSN.all, Name_Buffer (1 .. Name_Len))
6959 then
6960 Style.Subprogram_Not_In_Alpha_Order (Body_Id);
6961 end if;
6963 Free (LSN);
6964 end if;
6966 LSN := new String'(Name_Buffer (1 .. Name_Len));
6967 end;
6968 end if;
6969 end Check_Subprogram_Order;
6971 ------------------------------
6972 -- Check_Subtype_Conformant --
6973 ------------------------------
6975 procedure Check_Subtype_Conformant
6976 (New_Id : Entity_Id;
6977 Old_Id : Entity_Id;
6978 Err_Loc : Node_Id := Empty;
6979 Skip_Controlling_Formals : Boolean := False;
6980 Get_Inst : Boolean := False)
6982 Result : Boolean;
6983 pragma Warnings (Off, Result);
6984 begin
6985 Check_Conformance
6986 (New_Id, Old_Id, Subtype_Conformant, True, Result, Err_Loc,
6987 Skip_Controlling_Formals => Skip_Controlling_Formals,
6988 Get_Inst => Get_Inst);
6989 end Check_Subtype_Conformant;
6991 -----------------------------------
6992 -- Check_Synchronized_Overriding --
6993 -----------------------------------
6995 procedure Check_Synchronized_Overriding
6996 (Def_Id : Entity_Id;
6997 Overridden_Subp : out Entity_Id)
6999 Ifaces_List : Elist_Id;
7000 In_Scope : Boolean;
7001 Typ : Entity_Id;
7003 function Matches_Prefixed_View_Profile
7004 (Prim_Params : List_Id;
7005 Iface_Params : List_Id) return Boolean;
7006 -- Determine whether a subprogram's parameter profile Prim_Params
7007 -- matches that of a potentially overridden interface subprogram
7008 -- Iface_Params. Also determine if the type of first parameter of
7009 -- Iface_Params is an implemented interface.
7011 -----------------------------------
7012 -- Matches_Prefixed_View_Profile --
7013 -----------------------------------
7015 function Matches_Prefixed_View_Profile
7016 (Prim_Params : List_Id;
7017 Iface_Params : List_Id) return Boolean
7019 function Is_Implemented
7020 (Ifaces_List : Elist_Id;
7021 Iface : Entity_Id) return Boolean;
7022 -- Determine if Iface is implemented by the current task or
7023 -- protected type.
7025 --------------------
7026 -- Is_Implemented --
7027 --------------------
7029 function Is_Implemented
7030 (Ifaces_List : Elist_Id;
7031 Iface : Entity_Id) return Boolean
7033 Iface_Elmt : Elmt_Id;
7035 begin
7036 Iface_Elmt := First_Elmt (Ifaces_List);
7037 while Present (Iface_Elmt) loop
7038 if Node (Iface_Elmt) = Iface then
7039 return True;
7040 end if;
7042 Next_Elmt (Iface_Elmt);
7043 end loop;
7045 return False;
7046 end Is_Implemented;
7048 -- Local variables
7050 Iface_Id : Entity_Id;
7051 Iface_Param : Node_Id;
7052 Iface_Typ : Entity_Id;
7053 Prim_Id : Entity_Id;
7054 Prim_Param : Node_Id;
7055 Prim_Typ : Entity_Id;
7057 -- Start of processing for Matches_Prefixed_View_Profile
7059 begin
7060 Iface_Param := First (Iface_Params);
7061 Iface_Typ := Etype (Defining_Identifier (Iface_Param));
7063 if Is_Access_Type (Iface_Typ) then
7064 Iface_Typ := Designated_Type (Iface_Typ);
7065 end if;
7067 Prim_Param := First (Prim_Params);
7069 -- The first parameter of the potentially overridden subprogram must
7070 -- be an interface implemented by Prim.
7072 if not Is_Interface (Iface_Typ)
7073 or else not Is_Implemented (Ifaces_List, Iface_Typ)
7074 then
7075 return False;
7076 end if;
7078 -- The checks on the object parameters are done, so move on to the
7079 -- rest of the parameters.
7081 if not In_Scope then
7082 Prim_Param := Next (Prim_Param);
7083 end if;
7085 Iface_Param := Next (Iface_Param);
7086 while Present (Iface_Param) and then Present (Prim_Param) loop
7087 Iface_Id := Defining_Identifier (Iface_Param);
7088 Iface_Typ := Find_Parameter_Type (Iface_Param);
7090 Prim_Id := Defining_Identifier (Prim_Param);
7091 Prim_Typ := Find_Parameter_Type (Prim_Param);
7093 if Ekind (Iface_Typ) = E_Anonymous_Access_Type
7094 and then Ekind (Prim_Typ) = E_Anonymous_Access_Type
7095 and then Is_Concurrent_Type (Designated_Type (Prim_Typ))
7096 then
7097 Iface_Typ := Designated_Type (Iface_Typ);
7098 Prim_Typ := Designated_Type (Prim_Typ);
7099 end if;
7101 -- Case of multiple interface types inside a parameter profile
7103 -- (Obj_Param : in out Iface; ...; Param : Iface)
7105 -- If the interface type is implemented, then the matching type in
7106 -- the primitive should be the implementing record type.
7108 if Ekind (Iface_Typ) = E_Record_Type
7109 and then Is_Interface (Iface_Typ)
7110 and then Is_Implemented (Ifaces_List, Iface_Typ)
7111 then
7112 if Prim_Typ /= Typ then
7113 return False;
7114 end if;
7116 -- The two parameters must be both mode and subtype conformant
7118 elsif Ekind (Iface_Id) /= Ekind (Prim_Id)
7119 or else not
7120 Conforming_Types (Iface_Typ, Prim_Typ, Subtype_Conformant)
7121 then
7122 return False;
7123 end if;
7125 Next (Iface_Param);
7126 Next (Prim_Param);
7127 end loop;
7129 -- One of the two lists contains more parameters than the other
7131 if Present (Iface_Param) or else Present (Prim_Param) then
7132 return False;
7133 end if;
7135 return True;
7136 end Matches_Prefixed_View_Profile;
7138 -- Start of processing for Check_Synchronized_Overriding
7140 begin
7141 Overridden_Subp := Empty;
7143 -- Def_Id must be an entry or a subprogram. We should skip predefined
7144 -- primitives internally generated by the front end; however at this
7145 -- stage predefined primitives are still not fully decorated. As a
7146 -- minor optimization we skip here internally generated subprograms.
7148 if (Ekind (Def_Id) /= E_Entry
7149 and then Ekind (Def_Id) /= E_Function
7150 and then Ekind (Def_Id) /= E_Procedure)
7151 or else not Comes_From_Source (Def_Id)
7152 then
7153 return;
7154 end if;
7156 -- Search for the concurrent declaration since it contains the list of
7157 -- all implemented interfaces. In this case, the subprogram is declared
7158 -- within the scope of a protected or a task type.
7160 if Present (Scope (Def_Id))
7161 and then Is_Concurrent_Type (Scope (Def_Id))
7162 and then not Is_Generic_Actual_Type (Scope (Def_Id))
7163 then
7164 Typ := Scope (Def_Id);
7165 In_Scope := True;
7167 -- The enclosing scope is not a synchronized type and the subprogram
7168 -- has no formals.
7170 elsif No (First_Formal (Def_Id)) then
7171 return;
7173 -- The subprogram has formals and hence it may be a primitive of a
7174 -- concurrent type.
7176 else
7177 Typ := Etype (First_Formal (Def_Id));
7179 if Is_Access_Type (Typ) then
7180 Typ := Directly_Designated_Type (Typ);
7181 end if;
7183 if Is_Concurrent_Type (Typ)
7184 and then not Is_Generic_Actual_Type (Typ)
7185 then
7186 In_Scope := False;
7188 -- This case occurs when the concurrent type is declared within a
7189 -- generic unit. As a result the corresponding record has been built
7190 -- and used as the type of the first formal, we just have to retrieve
7191 -- the corresponding concurrent type.
7193 elsif Is_Concurrent_Record_Type (Typ)
7194 and then not Is_Class_Wide_Type (Typ)
7195 and then Present (Corresponding_Concurrent_Type (Typ))
7196 then
7197 Typ := Corresponding_Concurrent_Type (Typ);
7198 In_Scope := False;
7200 else
7201 return;
7202 end if;
7203 end if;
7205 -- There is no overriding to check if this is an inherited operation in
7206 -- a type derivation for a generic actual.
7208 Collect_Interfaces (Typ, Ifaces_List);
7210 if Is_Empty_Elmt_List (Ifaces_List) then
7211 return;
7212 end if;
7214 -- Determine whether entry or subprogram Def_Id overrides a primitive
7215 -- operation that belongs to one of the interfaces in Ifaces_List.
7217 declare
7218 Candidate : Entity_Id := Empty;
7219 Hom : Entity_Id := Empty;
7220 Subp : Entity_Id := Empty;
7222 begin
7223 -- Traverse the homonym chain, looking for a potentially overridden
7224 -- subprogram that belongs to an implemented interface.
7226 Hom := Current_Entity_In_Scope (Def_Id);
7227 while Present (Hom) loop
7228 Subp := Hom;
7230 if Subp = Def_Id
7231 or else not Is_Overloadable (Subp)
7232 or else not Is_Primitive (Subp)
7233 or else not Is_Dispatching_Operation (Subp)
7234 or else not Present (Find_Dispatching_Type (Subp))
7235 or else not Is_Interface (Find_Dispatching_Type (Subp))
7236 then
7237 null;
7239 -- Entries and procedures can override abstract or null interface
7240 -- procedures.
7242 elsif Ekind_In (Def_Id, E_Entry, E_Procedure)
7243 and then Ekind (Subp) = E_Procedure
7244 and then Matches_Prefixed_View_Profile
7245 (Parameter_Specifications (Parent (Def_Id)),
7246 Parameter_Specifications (Parent (Subp)))
7247 then
7248 Candidate := Subp;
7250 -- For an overridden subprogram Subp, check whether the mode
7251 -- of its first parameter is correct depending on the kind of
7252 -- synchronized type.
7254 declare
7255 Formal : constant Node_Id := First_Formal (Candidate);
7257 begin
7258 -- In order for an entry or a protected procedure to
7259 -- override, the first parameter of the overridden routine
7260 -- must be of mode "out", "in out", or access-to-variable.
7262 if Ekind_In (Candidate, E_Entry, E_Procedure)
7263 and then Is_Protected_Type (Typ)
7264 and then Ekind (Formal) /= E_In_Out_Parameter
7265 and then Ekind (Formal) /= E_Out_Parameter
7266 and then Nkind (Parameter_Type (Parent (Formal))) /=
7267 N_Access_Definition
7268 then
7269 null;
7271 -- All other cases are OK since a task entry or routine does
7272 -- not have a restriction on the mode of the first parameter
7273 -- of the overridden interface routine.
7275 else
7276 Overridden_Subp := Candidate;
7277 return;
7278 end if;
7279 end;
7281 -- Functions can override abstract interface functions
7283 elsif Ekind (Def_Id) = E_Function
7284 and then Ekind (Subp) = E_Function
7285 and then Matches_Prefixed_View_Profile
7286 (Parameter_Specifications (Parent (Def_Id)),
7287 Parameter_Specifications (Parent (Subp)))
7288 and then Etype (Def_Id) = Etype (Subp)
7289 then
7290 Candidate := Subp;
7292 -- If an inherited subprogram is implemented by a protected
7293 -- function, then the first parameter of the inherited
7294 -- subprogram shall be of mode in, but not an access-to-
7295 -- variable parameter (RM 9.4(11/9)).
7297 if Present (First_Formal (Subp))
7298 and then Ekind (First_Formal (Subp)) = E_In_Parameter
7299 and then
7300 (not Is_Access_Type (Etype (First_Formal (Subp)))
7301 or else
7302 Is_Access_Constant (Etype (First_Formal (Subp))))
7303 then
7304 Overridden_Subp := Subp;
7305 return;
7306 end if;
7307 end if;
7309 Hom := Homonym (Hom);
7310 end loop;
7312 -- After examining all candidates for overriding, we are left with
7313 -- the best match, which is a mode-incompatible interface routine.
7315 if In_Scope and then Present (Candidate) then
7316 Error_Msg_PT (Def_Id, Candidate);
7317 end if;
7319 Overridden_Subp := Candidate;
7320 return;
7321 end;
7322 end Check_Synchronized_Overriding;
7324 ---------------------------
7325 -- Check_Type_Conformant --
7326 ---------------------------
7328 procedure Check_Type_Conformant
7329 (New_Id : Entity_Id;
7330 Old_Id : Entity_Id;
7331 Err_Loc : Node_Id := Empty)
7333 Result : Boolean;
7334 pragma Warnings (Off, Result);
7335 begin
7336 Check_Conformance
7337 (New_Id, Old_Id, Type_Conformant, True, Result, Err_Loc);
7338 end Check_Type_Conformant;
7340 ---------------------------
7341 -- Can_Override_Operator --
7342 ---------------------------
7344 function Can_Override_Operator (Subp : Entity_Id) return Boolean is
7345 Typ : Entity_Id;
7347 begin
7348 if Nkind (Subp) /= N_Defining_Operator_Symbol then
7349 return False;
7351 else
7352 Typ := Base_Type (Etype (First_Formal (Subp)));
7354 -- Check explicitly that the operation is a primitive of the type
7356 return Operator_Matches_Spec (Subp, Subp)
7357 and then not Is_Generic_Type (Typ)
7358 and then Scope (Subp) = Scope (Typ)
7359 and then not Is_Class_Wide_Type (Typ);
7360 end if;
7361 end Can_Override_Operator;
7363 ----------------------
7364 -- Conforming_Types --
7365 ----------------------
7367 function Conforming_Types
7368 (T1 : Entity_Id;
7369 T2 : Entity_Id;
7370 Ctype : Conformance_Type;
7371 Get_Inst : Boolean := False) return Boolean
7373 function Base_Types_Match
7374 (Typ_1 : Entity_Id;
7375 Typ_2 : Entity_Id) return Boolean;
7376 -- If neither Typ_1 nor Typ_2 are generic actual types, or if they are
7377 -- in different scopes (e.g. parent and child instances), then verify
7378 -- that the base types are equal. Otherwise Typ_1 and Typ_2 must be on
7379 -- the same subtype chain. The whole purpose of this procedure is to
7380 -- prevent spurious ambiguities in an instantiation that may arise if
7381 -- two distinct generic types are instantiated with the same actual.
7383 function Find_Designated_Type (Typ : Entity_Id) return Entity_Id;
7384 -- An access parameter can designate an incomplete type. If the
7385 -- incomplete type is the limited view of a type from a limited_
7386 -- with_clause, check whether the non-limited view is available.
7387 -- If it is a (non-limited) incomplete type, get the full view.
7389 function Matches_Limited_With_View
7390 (Typ_1 : Entity_Id;
7391 Typ_2 : Entity_Id) return Boolean;
7392 -- Returns True if and only if either Typ_1 denotes a limited view of
7393 -- Typ_2 or Typ_2 denotes a limited view of Typ_1. This can arise when
7394 -- the limited with view of a type is used in a subprogram declaration
7395 -- and the subprogram body is in the scope of a regular with clause for
7396 -- the same unit. In such a case, the two type entities are considered
7397 -- identical for purposes of conformance checking.
7399 ----------------------
7400 -- Base_Types_Match --
7401 ----------------------
7403 function Base_Types_Match
7404 (Typ_1 : Entity_Id;
7405 Typ_2 : Entity_Id) return Boolean
7407 Base_1 : constant Entity_Id := Base_Type (Typ_1);
7408 Base_2 : constant Entity_Id := Base_Type (Typ_2);
7410 begin
7411 if Typ_1 = Typ_2 then
7412 return True;
7414 elsif Base_1 = Base_2 then
7416 -- The following is too permissive. A more precise test should
7417 -- check that the generic actual is an ancestor subtype of the
7418 -- other ???.
7420 -- See code in Find_Corresponding_Spec that applies an additional
7421 -- filter to handle accidental amiguities in instances.
7423 return
7424 not Is_Generic_Actual_Type (Typ_1)
7425 or else not Is_Generic_Actual_Type (Typ_2)
7426 or else Scope (Typ_1) /= Scope (Typ_2);
7428 -- If Typ_2 is a generic actual type it is declared as the subtype of
7429 -- the actual. If that actual is itself a subtype we need to use its
7430 -- own base type to check for compatibility.
7432 elsif Ekind (Base_2) = Ekind (Typ_2)
7433 and then Base_1 = Base_Type (Base_2)
7434 then
7435 return True;
7437 elsif Ekind (Base_1) = Ekind (Typ_1)
7438 and then Base_2 = Base_Type (Base_1)
7439 then
7440 return True;
7442 else
7443 return False;
7444 end if;
7445 end Base_Types_Match;
7447 --------------------------
7448 -- Find_Designated_Type --
7449 --------------------------
7451 function Find_Designated_Type (Typ : Entity_Id) return Entity_Id is
7452 Desig : Entity_Id;
7454 begin
7455 Desig := Directly_Designated_Type (Typ);
7457 if Ekind (Desig) = E_Incomplete_Type then
7459 -- If regular incomplete type, get full view if available
7461 if Present (Full_View (Desig)) then
7462 Desig := Full_View (Desig);
7464 -- If limited view of a type, get non-limited view if available,
7465 -- and check again for a regular incomplete type.
7467 elsif Present (Non_Limited_View (Desig)) then
7468 Desig := Get_Full_View (Non_Limited_View (Desig));
7469 end if;
7470 end if;
7472 return Desig;
7473 end Find_Designated_Type;
7475 -------------------------------
7476 -- Matches_Limited_With_View --
7477 -------------------------------
7479 function Matches_Limited_With_View
7480 (Typ_1 : Entity_Id;
7481 Typ_2 : Entity_Id) return Boolean
7483 function Is_Matching_Limited_View
7484 (Typ : Entity_Id;
7485 View : Entity_Id) return Boolean;
7486 -- Determine whether non-limited view View denotes type Typ in some
7487 -- conformant fashion.
7489 ------------------------------
7490 -- Is_Matching_Limited_View --
7491 ------------------------------
7493 function Is_Matching_Limited_View
7494 (Typ : Entity_Id;
7495 View : Entity_Id) return Boolean
7497 Root_Typ : Entity_Id;
7498 Root_View : Entity_Id;
7500 begin
7501 -- The non-limited view directly denotes the type
7503 if Typ = View then
7504 return True;
7506 -- The type is a subtype of the non-limited view
7508 elsif Is_Subtype_Of (Typ, View) then
7509 return True;
7511 -- Both the non-limited view and the type denote class-wide types
7513 elsif Is_Class_Wide_Type (Typ)
7514 and then Is_Class_Wide_Type (View)
7515 then
7516 Root_Typ := Root_Type (Typ);
7517 Root_View := Root_Type (View);
7519 if Root_Typ = Root_View then
7520 return True;
7522 -- An incomplete tagged type and its full view may receive two
7523 -- distinct class-wide types when the related package has not
7524 -- been analyzed yet.
7526 -- package Pack is
7527 -- type T is tagged; -- CW_1
7528 -- type T is tagged null record; -- CW_2
7529 -- end Pack;
7531 -- This is because the package lacks any semantic information
7532 -- that may eventually link both views of T. As a consequence,
7533 -- a client of the limited view of Pack will see CW_2 while a
7534 -- client of the non-limited view of Pack will see CW_1.
7536 elsif Is_Incomplete_Type (Root_Typ)
7537 and then Present (Full_View (Root_Typ))
7538 and then Full_View (Root_Typ) = Root_View
7539 then
7540 return True;
7542 elsif Is_Incomplete_Type (Root_View)
7543 and then Present (Full_View (Root_View))
7544 and then Full_View (Root_View) = Root_Typ
7545 then
7546 return True;
7547 end if;
7548 end if;
7550 return False;
7551 end Is_Matching_Limited_View;
7553 -- Start of processing for Matches_Limited_With_View
7555 begin
7556 -- In some cases a type imported through a limited_with clause, and
7557 -- its non-limited view are both visible, for example in an anonymous
7558 -- access-to-class-wide type in a formal, or when building the body
7559 -- for a subprogram renaming after the subprogram has been frozen.
7560 -- In these cases both entities designate the same type. In addition,
7561 -- if one of them is an actual in an instance, it may be a subtype of
7562 -- the non-limited view of the other.
7564 if From_Limited_With (Typ_1)
7565 and then From_Limited_With (Typ_2)
7566 and then Available_View (Typ_1) = Available_View (Typ_2)
7567 then
7568 return True;
7570 elsif From_Limited_With (Typ_1) then
7571 return Is_Matching_Limited_View (Typ_2, Available_View (Typ_1));
7573 elsif From_Limited_With (Typ_2) then
7574 return Is_Matching_Limited_View (Typ_1, Available_View (Typ_2));
7576 else
7577 return False;
7578 end if;
7579 end Matches_Limited_With_View;
7581 -- Local variables
7583 Are_Anonymous_Access_To_Subprogram_Types : Boolean := False;
7585 Type_1 : Entity_Id := T1;
7586 Type_2 : Entity_Id := T2;
7588 -- Start of processing for Conforming_Types
7590 begin
7591 -- The context is an instance association for a formal access-to-
7592 -- subprogram type; the formal parameter types require mapping because
7593 -- they may denote other formal parameters of the generic unit.
7595 if Get_Inst then
7596 Type_1 := Get_Instance_Of (T1);
7597 Type_2 := Get_Instance_Of (T2);
7598 end if;
7600 -- If one of the types is a view of the other introduced by a limited
7601 -- with clause, treat these as conforming for all purposes.
7603 if Matches_Limited_With_View (T1, T2) then
7604 return True;
7606 elsif Base_Types_Match (Type_1, Type_2) then
7607 if Ctype <= Mode_Conformant then
7608 return True;
7610 else
7611 return
7612 Subtypes_Statically_Match (Type_1, Type_2)
7613 and then Dimensions_Match (Type_1, Type_2);
7614 end if;
7616 elsif Is_Incomplete_Or_Private_Type (Type_1)
7617 and then Present (Full_View (Type_1))
7618 and then Base_Types_Match (Full_View (Type_1), Type_2)
7619 then
7620 return
7621 Ctype <= Mode_Conformant
7622 or else Subtypes_Statically_Match (Full_View (Type_1), Type_2);
7624 elsif Ekind (Type_2) = E_Incomplete_Type
7625 and then Present (Full_View (Type_2))
7626 and then Base_Types_Match (Type_1, Full_View (Type_2))
7627 then
7628 return
7629 Ctype <= Mode_Conformant
7630 or else Subtypes_Statically_Match (Type_1, Full_View (Type_2));
7632 elsif Is_Private_Type (Type_2)
7633 and then In_Instance
7634 and then Present (Full_View (Type_2))
7635 and then Base_Types_Match (Type_1, Full_View (Type_2))
7636 then
7637 return
7638 Ctype <= Mode_Conformant
7639 or else Subtypes_Statically_Match (Type_1, Full_View (Type_2));
7641 -- Another confusion between views in a nested instance with an
7642 -- actual private type whose full view is not in scope.
7644 elsif Ekind (Type_2) = E_Private_Subtype
7645 and then In_Instance
7646 and then Etype (Type_2) = Type_1
7647 then
7648 return True;
7650 -- In Ada 2012, incomplete types (including limited views) can appear
7651 -- as actuals in instantiations.
7653 elsif Is_Incomplete_Type (Type_1)
7654 and then Is_Incomplete_Type (Type_2)
7655 and then (Used_As_Generic_Actual (Type_1)
7656 or else Used_As_Generic_Actual (Type_2))
7657 then
7658 return True;
7659 end if;
7661 -- Ada 2005 (AI-254): Anonymous access-to-subprogram types must be
7662 -- treated recursively because they carry a signature. As far as
7663 -- conformance is concerned, convention plays no role, and either
7664 -- or both could be access to protected subprograms.
7666 Are_Anonymous_Access_To_Subprogram_Types :=
7667 Ekind_In (Type_1, E_Anonymous_Access_Subprogram_Type,
7668 E_Anonymous_Access_Protected_Subprogram_Type)
7669 and then
7670 Ekind_In (Type_2, E_Anonymous_Access_Subprogram_Type,
7671 E_Anonymous_Access_Protected_Subprogram_Type);
7673 -- Test anonymous access type case. For this case, static subtype
7674 -- matching is required for mode conformance (RM 6.3.1(15)). We check
7675 -- the base types because we may have built internal subtype entities
7676 -- to handle null-excluding types (see Process_Formals).
7678 if (Ekind (Base_Type (Type_1)) = E_Anonymous_Access_Type
7679 and then
7680 Ekind (Base_Type (Type_2)) = E_Anonymous_Access_Type)
7682 -- Ada 2005 (AI-254)
7684 or else Are_Anonymous_Access_To_Subprogram_Types
7685 then
7686 declare
7687 Desig_1 : Entity_Id;
7688 Desig_2 : Entity_Id;
7690 begin
7691 -- In Ada 2005, access constant indicators must match for
7692 -- subtype conformance.
7694 if Ada_Version >= Ada_2005
7695 and then Ctype >= Subtype_Conformant
7696 and then
7697 Is_Access_Constant (Type_1) /= Is_Access_Constant (Type_2)
7698 then
7699 return False;
7700 end if;
7702 Desig_1 := Find_Designated_Type (Type_1);
7703 Desig_2 := Find_Designated_Type (Type_2);
7705 -- If the context is an instance association for a formal
7706 -- access-to-subprogram type; formal access parameter designated
7707 -- types require mapping because they may denote other formal
7708 -- parameters of the generic unit.
7710 if Get_Inst then
7711 Desig_1 := Get_Instance_Of (Desig_1);
7712 Desig_2 := Get_Instance_Of (Desig_2);
7713 end if;
7715 -- It is possible for a Class_Wide_Type to be introduced for an
7716 -- incomplete type, in which case there is a separate class_ wide
7717 -- type for the full view. The types conform if their Etypes
7718 -- conform, i.e. one may be the full view of the other. This can
7719 -- only happen in the context of an access parameter, other uses
7720 -- of an incomplete Class_Wide_Type are illegal.
7722 if Is_Class_Wide_Type (Desig_1)
7723 and then
7724 Is_Class_Wide_Type (Desig_2)
7725 then
7726 return
7727 Conforming_Types
7728 (Etype (Base_Type (Desig_1)),
7729 Etype (Base_Type (Desig_2)), Ctype);
7731 elsif Are_Anonymous_Access_To_Subprogram_Types then
7732 if Ada_Version < Ada_2005 then
7733 return
7734 Ctype = Type_Conformant
7735 or else Subtypes_Statically_Match (Desig_1, Desig_2);
7737 -- We must check the conformance of the signatures themselves
7739 else
7740 declare
7741 Conformant : Boolean;
7742 begin
7743 Check_Conformance
7744 (Desig_1, Desig_2, Ctype, False, Conformant);
7745 return Conformant;
7746 end;
7747 end if;
7749 -- A limited view of an actual matches the corresponding
7750 -- incomplete formal.
7752 elsif Ekind (Desig_2) = E_Incomplete_Subtype
7753 and then From_Limited_With (Desig_2)
7754 and then Used_As_Generic_Actual (Etype (Desig_2))
7755 then
7756 return True;
7758 else
7759 return Base_Type (Desig_1) = Base_Type (Desig_2)
7760 and then (Ctype = Type_Conformant
7761 or else
7762 Subtypes_Statically_Match (Desig_1, Desig_2));
7763 end if;
7764 end;
7766 -- Otherwise definitely no match
7768 else
7769 if ((Ekind (Type_1) = E_Anonymous_Access_Type
7770 and then Is_Access_Type (Type_2))
7771 or else (Ekind (Type_2) = E_Anonymous_Access_Type
7772 and then Is_Access_Type (Type_1)))
7773 and then
7774 Conforming_Types
7775 (Designated_Type (Type_1), Designated_Type (Type_2), Ctype)
7776 then
7777 May_Hide_Profile := True;
7778 end if;
7780 return False;
7781 end if;
7782 end Conforming_Types;
7784 --------------------------
7785 -- Create_Extra_Formals --
7786 --------------------------
7788 procedure Create_Extra_Formals (E : Entity_Id) is
7789 First_Extra : Entity_Id := Empty;
7790 Formal : Entity_Id;
7791 Last_Extra : Entity_Id := Empty;
7793 function Add_Extra_Formal
7794 (Assoc_Entity : Entity_Id;
7795 Typ : Entity_Id;
7796 Scope : Entity_Id;
7797 Suffix : String) return Entity_Id;
7798 -- Add an extra formal to the current list of formals and extra formals.
7799 -- The extra formal is added to the end of the list of extra formals,
7800 -- and also returned as the result. These formals are always of mode IN.
7801 -- The new formal has the type Typ, is declared in Scope, and its name
7802 -- is given by a concatenation of the name of Assoc_Entity and Suffix.
7803 -- The following suffixes are currently used. They should not be changed
7804 -- without coordinating with CodePeer, which makes use of these to
7805 -- provide better messages.
7807 -- O denotes the Constrained bit.
7808 -- L denotes the accessibility level.
7809 -- BIP_xxx denotes an extra formal for a build-in-place function. See
7810 -- the full list in exp_ch6.BIP_Formal_Kind.
7812 ----------------------
7813 -- Add_Extra_Formal --
7814 ----------------------
7816 function Add_Extra_Formal
7817 (Assoc_Entity : Entity_Id;
7818 Typ : Entity_Id;
7819 Scope : Entity_Id;
7820 Suffix : String) return Entity_Id
7822 EF : constant Entity_Id :=
7823 Make_Defining_Identifier (Sloc (Assoc_Entity),
7824 Chars => New_External_Name (Chars (Assoc_Entity),
7825 Suffix => Suffix));
7827 begin
7828 -- A little optimization. Never generate an extra formal for the
7829 -- _init operand of an initialization procedure, since it could
7830 -- never be used.
7832 if Chars (Formal) = Name_uInit then
7833 return Empty;
7834 end if;
7836 Set_Ekind (EF, E_In_Parameter);
7837 Set_Actual_Subtype (EF, Typ);
7838 Set_Etype (EF, Typ);
7839 Set_Scope (EF, Scope);
7840 Set_Mechanism (EF, Default_Mechanism);
7841 Set_Formal_Validity (EF);
7843 if No (First_Extra) then
7844 First_Extra := EF;
7845 Set_Extra_Formals (Scope, First_Extra);
7846 end if;
7848 if Present (Last_Extra) then
7849 Set_Extra_Formal (Last_Extra, EF);
7850 end if;
7852 Last_Extra := EF;
7854 return EF;
7855 end Add_Extra_Formal;
7857 -- Local variables
7859 Formal_Type : Entity_Id;
7860 P_Formal : Entity_Id := Empty;
7862 -- Start of processing for Create_Extra_Formals
7864 begin
7865 -- We never generate extra formals if expansion is not active because we
7866 -- don't need them unless we are generating code.
7868 if not Expander_Active then
7869 return;
7870 end if;
7872 -- No need to generate extra formals in interface thunks whose target
7873 -- primitive has no extra formals.
7875 if Is_Thunk (E) and then No (Extra_Formals (Thunk_Entity (E))) then
7876 return;
7877 end if;
7879 -- If this is a derived subprogram then the subtypes of the parent
7880 -- subprogram's formal parameters will be used to determine the need
7881 -- for extra formals.
7883 if Is_Overloadable (E) and then Present (Alias (E)) then
7884 P_Formal := First_Formal (Alias (E));
7885 end if;
7887 Formal := First_Formal (E);
7888 while Present (Formal) loop
7889 Last_Extra := Formal;
7890 Next_Formal (Formal);
7891 end loop;
7893 -- If Extra_Formals were already created, don't do it again. This
7894 -- situation may arise for subprogram types created as part of
7895 -- dispatching calls (see Expand_Dispatching_Call)
7897 if Present (Last_Extra) and then Present (Extra_Formal (Last_Extra)) then
7898 return;
7899 end if;
7901 -- If the subprogram is a predefined dispatching subprogram then don't
7902 -- generate any extra constrained or accessibility level formals. In
7903 -- general we suppress these for internal subprograms (by not calling
7904 -- Freeze_Subprogram and Create_Extra_Formals at all), but internally
7905 -- generated stream attributes do get passed through because extra
7906 -- build-in-place formals are needed in some cases (limited 'Input).
7908 if Is_Predefined_Internal_Operation (E) then
7909 goto Test_For_Func_Result_Extras;
7910 end if;
7912 Formal := First_Formal (E);
7913 while Present (Formal) loop
7915 -- Create extra formal for supporting the attribute 'Constrained.
7916 -- The case of a private type view without discriminants also
7917 -- requires the extra formal if the underlying type has defaulted
7918 -- discriminants.
7920 if Ekind (Formal) /= E_In_Parameter then
7921 if Present (P_Formal) then
7922 Formal_Type := Etype (P_Formal);
7923 else
7924 Formal_Type := Etype (Formal);
7925 end if;
7927 -- Do not produce extra formals for Unchecked_Union parameters.
7928 -- Jump directly to the end of the loop.
7930 if Is_Unchecked_Union (Base_Type (Formal_Type)) then
7931 goto Skip_Extra_Formal_Generation;
7932 end if;
7934 if not Has_Discriminants (Formal_Type)
7935 and then Ekind (Formal_Type) in Private_Kind
7936 and then Present (Underlying_Type (Formal_Type))
7937 then
7938 Formal_Type := Underlying_Type (Formal_Type);
7939 end if;
7941 -- Suppress the extra formal if formal's subtype is constrained or
7942 -- indefinite, or we're compiling for Ada 2012 and the underlying
7943 -- type is tagged and limited. In Ada 2012, a limited tagged type
7944 -- can have defaulted discriminants, but 'Constrained is required
7945 -- to return True, so the formal is never needed (see AI05-0214).
7946 -- Note that this ensures consistency of calling sequences for
7947 -- dispatching operations when some types in a class have defaults
7948 -- on discriminants and others do not (and requiring the extra
7949 -- formal would introduce distributed overhead).
7951 -- If the type does not have a completion yet, treat as prior to
7952 -- Ada 2012 for consistency.
7954 if Has_Discriminants (Formal_Type)
7955 and then not Is_Constrained (Formal_Type)
7956 and then Is_Definite_Subtype (Formal_Type)
7957 and then (Ada_Version < Ada_2012
7958 or else No (Underlying_Type (Formal_Type))
7959 or else not
7960 (Is_Limited_Type (Formal_Type)
7961 and then
7962 (Is_Tagged_Type
7963 (Underlying_Type (Formal_Type)))))
7964 then
7965 Set_Extra_Constrained
7966 (Formal, Add_Extra_Formal (Formal, Standard_Boolean, E, "O"));
7967 end if;
7968 end if;
7970 -- Create extra formal for supporting accessibility checking. This
7971 -- is done for both anonymous access formals and formals of named
7972 -- access types that are marked as controlling formals. The latter
7973 -- case can occur when Expand_Dispatching_Call creates a subprogram
7974 -- type and substitutes the types of access-to-class-wide actuals
7975 -- for the anonymous access-to-specific-type of controlling formals.
7976 -- Base_Type is applied because in cases where there is a null
7977 -- exclusion the formal may have an access subtype.
7979 -- This is suppressed if we specifically suppress accessibility
7980 -- checks at the package level for either the subprogram, or the
7981 -- package in which it resides. However, we do not suppress it
7982 -- simply if the scope has accessibility checks suppressed, since
7983 -- this could cause trouble when clients are compiled with a
7984 -- different suppression setting. The explicit checks at the
7985 -- package level are safe from this point of view.
7987 if (Ekind (Base_Type (Etype (Formal))) = E_Anonymous_Access_Type
7988 or else (Is_Controlling_Formal (Formal)
7989 and then Is_Access_Type (Base_Type (Etype (Formal)))))
7990 and then not
7991 (Explicit_Suppress (E, Accessibility_Check)
7992 or else
7993 Explicit_Suppress (Scope (E), Accessibility_Check))
7994 and then
7995 (No (P_Formal)
7996 or else Present (Extra_Accessibility (P_Formal)))
7997 then
7998 Set_Extra_Accessibility
7999 (Formal, Add_Extra_Formal (Formal, Standard_Natural, E, "L"));
8000 end if;
8002 -- This label is required when skipping extra formal generation for
8003 -- Unchecked_Union parameters.
8005 <<Skip_Extra_Formal_Generation>>
8007 if Present (P_Formal) then
8008 Next_Formal (P_Formal);
8009 end if;
8011 Next_Formal (Formal);
8012 end loop;
8014 <<Test_For_Func_Result_Extras>>
8016 -- Ada 2012 (AI05-234): "the accessibility level of the result of a
8017 -- function call is ... determined by the point of call ...".
8019 if Needs_Result_Accessibility_Level (E) then
8020 Set_Extra_Accessibility_Of_Result
8021 (E, Add_Extra_Formal (E, Standard_Natural, E, "L"));
8022 end if;
8024 -- Ada 2005 (AI-318-02): In the case of build-in-place functions, add
8025 -- appropriate extra formals. See type Exp_Ch6.BIP_Formal_Kind.
8027 if Is_Build_In_Place_Function (E) then
8028 declare
8029 Result_Subt : constant Entity_Id := Etype (E);
8030 Full_Subt : constant Entity_Id := Available_View (Result_Subt);
8031 Formal_Typ : Entity_Id;
8032 Subp_Decl : Node_Id;
8034 Discard : Entity_Id;
8035 pragma Warnings (Off, Discard);
8037 begin
8038 -- In the case of functions with unconstrained result subtypes,
8039 -- add a 4-state formal indicating whether the return object is
8040 -- allocated by the caller (1), or should be allocated by the
8041 -- callee on the secondary stack (2), in the global heap (3), or
8042 -- in a user-defined storage pool (4). For the moment we just use
8043 -- Natural for the type of this formal. Note that this formal
8044 -- isn't usually needed in the case where the result subtype is
8045 -- constrained, but it is needed when the function has a tagged
8046 -- result, because generally such functions can be called in a
8047 -- dispatching context and such calls must be handled like calls
8048 -- to a class-wide function.
8050 if Needs_BIP_Alloc_Form (E) then
8051 Discard :=
8052 Add_Extra_Formal
8053 (E, Standard_Natural,
8054 E, BIP_Formal_Suffix (BIP_Alloc_Form));
8056 -- Add BIP_Storage_Pool, in case BIP_Alloc_Form indicates to
8057 -- use a user-defined pool. This formal is not added on
8058 -- ZFP as those targets do not support pools.
8060 if RTE_Available (RE_Root_Storage_Pool_Ptr) then
8061 Discard :=
8062 Add_Extra_Formal
8063 (E, RTE (RE_Root_Storage_Pool_Ptr),
8064 E, BIP_Formal_Suffix (BIP_Storage_Pool));
8065 end if;
8066 end if;
8068 -- In the case of functions whose result type needs finalization,
8069 -- add an extra formal which represents the finalization master.
8071 if Needs_BIP_Finalization_Master (E) then
8072 Discard :=
8073 Add_Extra_Formal
8074 (E, RTE (RE_Finalization_Master_Ptr),
8075 E, BIP_Formal_Suffix (BIP_Finalization_Master));
8076 end if;
8078 -- When the result type contains tasks, add two extra formals: the
8079 -- master of the tasks to be created, and the caller's activation
8080 -- chain.
8082 if Has_Task (Full_Subt) then
8083 Discard :=
8084 Add_Extra_Formal
8085 (E, RTE (RE_Master_Id),
8086 E, BIP_Formal_Suffix (BIP_Task_Master));
8087 Discard :=
8088 Add_Extra_Formal
8089 (E, RTE (RE_Activation_Chain_Access),
8090 E, BIP_Formal_Suffix (BIP_Activation_Chain));
8091 end if;
8093 -- All build-in-place functions get an extra formal that will be
8094 -- passed the address of the return object within the caller.
8096 Formal_Typ :=
8097 Create_Itype (E_Anonymous_Access_Type, E, Scope_Id => Scope (E));
8099 Set_Directly_Designated_Type (Formal_Typ, Result_Subt);
8100 Set_Etype (Formal_Typ, Formal_Typ);
8101 Set_Depends_On_Private
8102 (Formal_Typ, Has_Private_Component (Formal_Typ));
8103 Set_Is_Public (Formal_Typ, Is_Public (Scope (Formal_Typ)));
8104 Set_Is_Access_Constant (Formal_Typ, False);
8106 -- Ada 2005 (AI-50217): Propagate the attribute that indicates
8107 -- the designated type comes from the limited view (for back-end
8108 -- purposes).
8110 Set_From_Limited_With
8111 (Formal_Typ, From_Limited_With (Result_Subt));
8113 Layout_Type (Formal_Typ);
8115 -- Force the definition of the Itype in case of internal function
8116 -- calls within the same or nested scope.
8118 if Is_Subprogram_Or_Generic_Subprogram (E) then
8119 Subp_Decl := Parent (E);
8121 -- The insertion point for an Itype reference should be after
8122 -- the unit declaration node of the subprogram. An exception
8123 -- to this are inherited operations from a parent type in which
8124 -- case the derived type acts as their parent.
8126 if Nkind_In (Subp_Decl, N_Function_Specification,
8127 N_Procedure_Specification)
8128 then
8129 Subp_Decl := Parent (Subp_Decl);
8130 end if;
8132 Build_Itype_Reference (Formal_Typ, Subp_Decl);
8133 end if;
8135 Discard :=
8136 Add_Extra_Formal
8137 (E, Formal_Typ, E, BIP_Formal_Suffix (BIP_Object_Access));
8138 end;
8139 end if;
8140 end Create_Extra_Formals;
8142 -----------------------------
8143 -- Enter_Overloaded_Entity --
8144 -----------------------------
8146 procedure Enter_Overloaded_Entity (S : Entity_Id) is
8147 function Matches_Predefined_Op return Boolean;
8148 -- This returns an approximation of whether S matches a predefined
8149 -- operator, based on the operator symbol, and the parameter and result
8150 -- types. The rules are scattered throughout chapter 4 of the Ada RM.
8152 ---------------------------
8153 -- Matches_Predefined_Op --
8154 ---------------------------
8156 function Matches_Predefined_Op return Boolean is
8157 Formal_1 : constant Entity_Id := First_Formal (S);
8158 Formal_2 : constant Entity_Id := Next_Formal (Formal_1);
8159 Op : constant Name_Id := Chars (S);
8160 Result_Type : constant Entity_Id := Base_Type (Etype (S));
8161 Type_1 : constant Entity_Id := Base_Type (Etype (Formal_1));
8163 begin
8164 -- Binary operator
8166 if Present (Formal_2) then
8167 declare
8168 Type_2 : constant Entity_Id := Base_Type (Etype (Formal_2));
8170 begin
8171 -- All but "&" and "**" have same-types parameters
8173 case Op is
8174 when Name_Op_Concat
8175 | Name_Op_Expon
8177 null;
8179 when others =>
8180 if Type_1 /= Type_2 then
8181 return False;
8182 end if;
8183 end case;
8185 -- Check parameter and result types
8187 case Op is
8188 when Name_Op_And
8189 | Name_Op_Or
8190 | Name_Op_Xor
8192 return
8193 Is_Boolean_Type (Result_Type)
8194 and then Result_Type = Type_1;
8196 when Name_Op_Mod
8197 | Name_Op_Rem
8199 return
8200 Is_Integer_Type (Result_Type)
8201 and then Result_Type = Type_1;
8203 when Name_Op_Add
8204 | Name_Op_Divide
8205 | Name_Op_Multiply
8206 | Name_Op_Subtract
8208 return
8209 Is_Numeric_Type (Result_Type)
8210 and then Result_Type = Type_1;
8212 when Name_Op_Eq
8213 | Name_Op_Ne
8215 return
8216 Is_Boolean_Type (Result_Type)
8217 and then not Is_Limited_Type (Type_1);
8219 when Name_Op_Ge
8220 | Name_Op_Gt
8221 | Name_Op_Le
8222 | Name_Op_Lt
8224 return
8225 Is_Boolean_Type (Result_Type)
8226 and then (Is_Array_Type (Type_1)
8227 or else Is_Scalar_Type (Type_1));
8229 when Name_Op_Concat =>
8230 return Is_Array_Type (Result_Type);
8232 when Name_Op_Expon =>
8233 return
8234 (Is_Integer_Type (Result_Type)
8235 or else Is_Floating_Point_Type (Result_Type))
8236 and then Result_Type = Type_1
8237 and then Type_2 = Standard_Integer;
8239 when others =>
8240 raise Program_Error;
8241 end case;
8242 end;
8244 -- Unary operator
8246 else
8247 case Op is
8248 when Name_Op_Abs
8249 | Name_Op_Add
8250 | Name_Op_Subtract
8252 return
8253 Is_Numeric_Type (Result_Type)
8254 and then Result_Type = Type_1;
8256 when Name_Op_Not =>
8257 return
8258 Is_Boolean_Type (Result_Type)
8259 and then Result_Type = Type_1;
8261 when others =>
8262 raise Program_Error;
8263 end case;
8264 end if;
8265 end Matches_Predefined_Op;
8267 -- Local variables
8269 E : Entity_Id := Current_Entity_In_Scope (S);
8270 C_E : Entity_Id := Current_Entity (S);
8272 -- Start of processing for Enter_Overloaded_Entity
8274 begin
8275 if Present (E) then
8276 Set_Has_Homonym (E);
8277 Set_Has_Homonym (S);
8278 end if;
8280 Set_Is_Immediately_Visible (S);
8281 Set_Scope (S, Current_Scope);
8283 -- Chain new entity if front of homonym in current scope, so that
8284 -- homonyms are contiguous.
8286 if Present (E) and then E /= C_E then
8287 while Homonym (C_E) /= E loop
8288 C_E := Homonym (C_E);
8289 end loop;
8291 Set_Homonym (C_E, S);
8293 else
8294 E := C_E;
8295 Set_Current_Entity (S);
8296 end if;
8298 Set_Homonym (S, E);
8300 if Is_Inherited_Operation (S) then
8301 Append_Inherited_Subprogram (S);
8302 else
8303 Append_Entity (S, Current_Scope);
8304 end if;
8306 Set_Public_Status (S);
8308 if Debug_Flag_E then
8309 Write_Str ("New overloaded entity chain: ");
8310 Write_Name (Chars (S));
8312 E := S;
8313 while Present (E) loop
8314 Write_Str (" "); Write_Int (Int (E));
8315 E := Homonym (E);
8316 end loop;
8318 Write_Eol;
8319 end if;
8321 -- Generate warning for hiding
8323 if Warn_On_Hiding
8324 and then Comes_From_Source (S)
8325 and then In_Extended_Main_Source_Unit (S)
8326 then
8327 E := S;
8328 loop
8329 E := Homonym (E);
8330 exit when No (E);
8332 -- Warn unless genuine overloading. Do not emit warning on
8333 -- hiding predefined operators in Standard (these are either an
8334 -- (artifact of our implicit declarations, or simple noise) but
8335 -- keep warning on a operator defined on a local subtype, because
8336 -- of the real danger that different operators may be applied in
8337 -- various parts of the program.
8339 -- Note that if E and S have the same scope, there is never any
8340 -- hiding. Either the two conflict, and the program is illegal,
8341 -- or S is overriding an implicit inherited subprogram.
8343 if Scope (E) /= Scope (S)
8344 and then (not Is_Overloadable (E)
8345 or else Subtype_Conformant (E, S))
8346 and then (Is_Immediately_Visible (E)
8347 or else Is_Potentially_Use_Visible (S))
8348 then
8349 if Scope (E) = Standard_Standard then
8350 if Nkind (S) = N_Defining_Operator_Symbol
8351 and then Scope (Base_Type (Etype (First_Formal (S)))) /=
8352 Scope (S)
8353 and then Matches_Predefined_Op
8354 then
8355 Error_Msg_N
8356 ("declaration of & hides predefined operator?h?", S);
8357 end if;
8359 -- E not immediately within Standard
8361 else
8362 Error_Msg_Sloc := Sloc (E);
8363 Error_Msg_N ("declaration of & hides one #?h?", S);
8364 end if;
8365 end if;
8366 end loop;
8367 end if;
8368 end Enter_Overloaded_Entity;
8370 -----------------------------
8371 -- Check_Untagged_Equality --
8372 -----------------------------
8374 procedure Check_Untagged_Equality (Eq_Op : Entity_Id) is
8375 Typ : constant Entity_Id := Etype (First_Formal (Eq_Op));
8376 Decl : constant Node_Id := Unit_Declaration_Node (Eq_Op);
8377 Obj_Decl : Node_Id;
8379 begin
8380 -- This check applies only if we have a subprogram declaration with an
8381 -- untagged record type.
8383 if Nkind (Decl) /= N_Subprogram_Declaration
8384 or else not Is_Record_Type (Typ)
8385 or else Is_Tagged_Type (Typ)
8386 then
8387 return;
8388 end if;
8390 -- In Ada 2012 case, we will output errors or warnings depending on
8391 -- the setting of debug flag -gnatd.E.
8393 if Ada_Version >= Ada_2012 then
8394 Error_Msg_Warn := Debug_Flag_Dot_EE;
8396 -- In earlier versions of Ada, nothing to do unless we are warning on
8397 -- Ada 2012 incompatibilities (Warn_On_Ada_2012_Incompatibility set).
8399 else
8400 if not Warn_On_Ada_2012_Compatibility then
8401 return;
8402 end if;
8403 end if;
8405 -- Cases where the type has already been frozen
8407 if Is_Frozen (Typ) then
8409 -- If the type is not declared in a package, or if we are in the body
8410 -- of the package or in some other scope, the new operation is not
8411 -- primitive, and therefore legal, though suspicious. Should we
8412 -- generate a warning in this case ???
8414 if Ekind (Scope (Typ)) /= E_Package
8415 or else Scope (Typ) /= Current_Scope
8416 then
8417 return;
8419 -- If the type is a generic actual (sub)type, the operation is not
8420 -- primitive either because the base type is declared elsewhere.
8422 elsif Is_Generic_Actual_Type (Typ) then
8423 return;
8425 -- Here we have a definite error of declaration after freezing
8427 else
8428 if Ada_Version >= Ada_2012 then
8429 Error_Msg_NE
8430 ("equality operator must be declared before type & is "
8431 & "frozen (RM 4.5.2 (9.8)) (Ada 2012)<<", Eq_Op, Typ);
8433 -- In Ada 2012 mode with error turned to warning, output one
8434 -- more warning to warn that the equality operation may not
8435 -- compose. This is the consequence of ignoring the error.
8437 if Error_Msg_Warn then
8438 Error_Msg_N ("\equality operation may not compose??", Eq_Op);
8439 end if;
8441 else
8442 Error_Msg_NE
8443 ("equality operator must be declared before type& is "
8444 & "frozen (RM 4.5.2 (9.8)) (Ada 2012)?y?", Eq_Op, Typ);
8445 end if;
8447 -- If we are in the package body, we could just move the
8448 -- declaration to the package spec, so add a message saying that.
8450 if In_Package_Body (Scope (Typ)) then
8451 if Ada_Version >= Ada_2012 then
8452 Error_Msg_N
8453 ("\move declaration to package spec<<", Eq_Op);
8454 else
8455 Error_Msg_N
8456 ("\move declaration to package spec (Ada 2012)?y?", Eq_Op);
8457 end if;
8459 -- Otherwise try to find the freezing point
8461 else
8462 Obj_Decl := Next (Parent (Typ));
8463 while Present (Obj_Decl) and then Obj_Decl /= Decl loop
8464 if Nkind (Obj_Decl) = N_Object_Declaration
8465 and then Etype (Defining_Identifier (Obj_Decl)) = Typ
8466 then
8467 -- Freezing point, output warnings
8469 if Ada_Version >= Ada_2012 then
8470 Error_Msg_NE
8471 ("type& is frozen by declaration??", Obj_Decl, Typ);
8472 Error_Msg_N
8473 ("\an equality operator cannot be declared after "
8474 & "this point??",
8475 Obj_Decl);
8476 else
8477 Error_Msg_NE
8478 ("type& is frozen by declaration (Ada 2012)?y?",
8479 Obj_Decl, Typ);
8480 Error_Msg_N
8481 ("\an equality operator cannot be declared after "
8482 & "this point (Ada 2012)?y?",
8483 Obj_Decl);
8484 end if;
8486 exit;
8487 end if;
8489 Next (Obj_Decl);
8490 end loop;
8491 end if;
8492 end if;
8494 -- Here if type is not frozen yet. It is illegal to have a primitive
8495 -- equality declared in the private part if the type is visible.
8497 elsif not In_Same_List (Parent (Typ), Decl)
8498 and then not Is_Limited_Type (Typ)
8499 then
8500 -- Shouldn't we give an RM reference here???
8502 if Ada_Version >= Ada_2012 then
8503 Error_Msg_N
8504 ("equality operator appears too late<<", Eq_Op);
8505 else
8506 Error_Msg_N
8507 ("equality operator appears too late (Ada 2012)?y?", Eq_Op);
8508 end if;
8510 -- No error detected
8512 else
8513 return;
8514 end if;
8515 end Check_Untagged_Equality;
8517 -----------------------------
8518 -- Find_Corresponding_Spec --
8519 -----------------------------
8521 function Find_Corresponding_Spec
8522 (N : Node_Id;
8523 Post_Error : Boolean := True) return Entity_Id
8525 Spec : constant Node_Id := Specification (N);
8526 Designator : constant Entity_Id := Defining_Entity (Spec);
8528 E : Entity_Id;
8530 function Different_Generic_Profile (E : Entity_Id) return Boolean;
8531 -- Even if fully conformant, a body may depend on a generic actual when
8532 -- the spec does not, or vice versa, in which case they were distinct
8533 -- entities in the generic.
8535 -------------------------------
8536 -- Different_Generic_Profile --
8537 -------------------------------
8539 function Different_Generic_Profile (E : Entity_Id) return Boolean is
8540 F1, F2 : Entity_Id;
8542 function Same_Generic_Actual (T1, T2 : Entity_Id) return Boolean;
8543 -- Check that the types of corresponding formals have the same
8544 -- generic actual if any. We have to account for subtypes of a
8545 -- generic formal, declared between a spec and a body, which may
8546 -- appear distinct in an instance but matched in the generic, and
8547 -- the subtype may be used either in the spec or the body of the
8548 -- subprogram being checked.
8550 -------------------------
8551 -- Same_Generic_Actual --
8552 -------------------------
8554 function Same_Generic_Actual (T1, T2 : Entity_Id) return Boolean is
8556 function Is_Declared_Subtype (S1, S2 : Entity_Id) return Boolean;
8557 -- Predicate to check whether S1 is a subtype of S2 in the source
8558 -- of the instance.
8560 -------------------------
8561 -- Is_Declared_Subtype --
8562 -------------------------
8564 function Is_Declared_Subtype (S1, S2 : Entity_Id) return Boolean is
8565 begin
8566 return Comes_From_Source (Parent (S1))
8567 and then Nkind (Parent (S1)) = N_Subtype_Declaration
8568 and then Is_Entity_Name (Subtype_Indication (Parent (S1)))
8569 and then Entity (Subtype_Indication (Parent (S1))) = S2;
8570 end Is_Declared_Subtype;
8572 -- Start of processing for Same_Generic_Actual
8574 begin
8575 return Is_Generic_Actual_Type (T1) = Is_Generic_Actual_Type (T2)
8576 or else Is_Declared_Subtype (T1, T2)
8577 or else Is_Declared_Subtype (T2, T1);
8578 end Same_Generic_Actual;
8580 -- Start of processing for Different_Generic_Profile
8582 begin
8583 if not In_Instance then
8584 return False;
8586 elsif Ekind (E) = E_Function
8587 and then not Same_Generic_Actual (Etype (E), Etype (Designator))
8588 then
8589 return True;
8590 end if;
8592 F1 := First_Formal (Designator);
8593 F2 := First_Formal (E);
8594 while Present (F1) loop
8595 if not Same_Generic_Actual (Etype (F1), Etype (F2)) then
8596 return True;
8597 end if;
8599 Next_Formal (F1);
8600 Next_Formal (F2);
8601 end loop;
8603 return False;
8604 end Different_Generic_Profile;
8606 -- Start of processing for Find_Corresponding_Spec
8608 begin
8609 E := Current_Entity (Designator);
8610 while Present (E) loop
8612 -- We are looking for a matching spec. It must have the same scope,
8613 -- and the same name, and either be type conformant, or be the case
8614 -- of a library procedure spec and its body (which belong to one
8615 -- another regardless of whether they are type conformant or not).
8617 if Scope (E) = Current_Scope then
8618 if Current_Scope = Standard_Standard
8619 or else (Ekind (E) = Ekind (Designator)
8620 and then Type_Conformant (E, Designator))
8621 then
8622 -- Within an instantiation, we know that spec and body are
8623 -- subtype conformant, because they were subtype conformant in
8624 -- the generic. We choose the subtype-conformant entity here as
8625 -- well, to resolve spurious ambiguities in the instance that
8626 -- were not present in the generic (i.e. when two different
8627 -- types are given the same actual). If we are looking for a
8628 -- spec to match a body, full conformance is expected.
8630 if In_Instance then
8632 -- Inherit the convention and "ghostness" of the matching
8633 -- spec to ensure proper full and subtype conformance.
8635 Set_Convention (Designator, Convention (E));
8637 -- Skip past subprogram bodies and subprogram renamings that
8638 -- may appear to have a matching spec, but that aren't fully
8639 -- conformant with it. That can occur in cases where an
8640 -- actual type causes unrelated homographs in the instance.
8642 if Nkind_In (N, N_Subprogram_Body,
8643 N_Subprogram_Renaming_Declaration)
8644 and then Present (Homonym (E))
8645 and then not Fully_Conformant (Designator, E)
8646 then
8647 goto Next_Entity;
8649 elsif not Subtype_Conformant (Designator, E) then
8650 goto Next_Entity;
8652 elsif Different_Generic_Profile (E) then
8653 goto Next_Entity;
8654 end if;
8655 end if;
8657 -- Ada 2012 (AI05-0165): For internally generated bodies of
8658 -- null procedures locate the internally generated spec. We
8659 -- enforce mode conformance since a tagged type may inherit
8660 -- from interfaces several null primitives which differ only
8661 -- in the mode of the formals.
8663 if not (Comes_From_Source (E))
8664 and then Is_Null_Procedure (E)
8665 and then not Mode_Conformant (Designator, E)
8666 then
8667 null;
8669 -- For null procedures coming from source that are completions,
8670 -- analysis of the generated body will establish the link.
8672 elsif Comes_From_Source (E)
8673 and then Nkind (Spec) = N_Procedure_Specification
8674 and then Null_Present (Spec)
8675 then
8676 return E;
8678 -- Expression functions can be completions, but cannot be
8679 -- completed by an explicit body.
8681 elsif Comes_From_Source (E)
8682 and then Comes_From_Source (N)
8683 and then Nkind (N) = N_Subprogram_Body
8684 and then Nkind (Original_Node (Unit_Declaration_Node (E))) =
8685 N_Expression_Function
8686 then
8687 Error_Msg_Sloc := Sloc (E);
8688 Error_Msg_N ("body conflicts with expression function#", N);
8689 return Empty;
8691 elsif not Has_Completion (E) then
8692 if Nkind (N) /= N_Subprogram_Body_Stub then
8693 Set_Corresponding_Spec (N, E);
8694 end if;
8696 Set_Has_Completion (E);
8697 return E;
8699 elsif Nkind (Parent (N)) = N_Subunit then
8701 -- If this is the proper body of a subunit, the completion
8702 -- flag is set when analyzing the stub.
8704 return E;
8706 -- If E is an internal function with a controlling result that
8707 -- was created for an operation inherited by a null extension,
8708 -- it may be overridden by a body without a previous spec (one
8709 -- more reason why these should be shunned). In that case we
8710 -- remove the generated body if present, because the current
8711 -- one is the explicit overriding.
8713 elsif Ekind (E) = E_Function
8714 and then Ada_Version >= Ada_2005
8715 and then not Comes_From_Source (E)
8716 and then Has_Controlling_Result (E)
8717 and then Is_Null_Extension (Etype (E))
8718 and then Comes_From_Source (Spec)
8719 then
8720 Set_Has_Completion (E, False);
8722 if Expander_Active
8723 and then Nkind (Parent (E)) = N_Function_Specification
8724 then
8725 Remove
8726 (Unit_Declaration_Node
8727 (Corresponding_Body (Unit_Declaration_Node (E))));
8729 return E;
8731 -- If expansion is disabled, or if the wrapper function has
8732 -- not been generated yet, this a late body overriding an
8733 -- inherited operation, or it is an overriding by some other
8734 -- declaration before the controlling result is frozen. In
8735 -- either case this is a declaration of a new entity.
8737 else
8738 return Empty;
8739 end if;
8741 -- If the body already exists, then this is an error unless
8742 -- the previous declaration is the implicit declaration of a
8743 -- derived subprogram. It is also legal for an instance to
8744 -- contain type conformant overloadable declarations (but the
8745 -- generic declaration may not), per 8.3(26/2).
8747 elsif No (Alias (E))
8748 and then not Is_Intrinsic_Subprogram (E)
8749 and then not In_Instance
8750 and then Post_Error
8751 then
8752 Error_Msg_Sloc := Sloc (E);
8754 if Is_Imported (E) then
8755 Error_Msg_NE
8756 ("body not allowed for imported subprogram & declared#",
8757 N, E);
8758 else
8759 Error_Msg_NE ("duplicate body for & declared#", N, E);
8760 end if;
8761 end if;
8763 -- Child units cannot be overloaded, so a conformance mismatch
8764 -- between body and a previous spec is an error.
8766 elsif Is_Child_Unit (E)
8767 and then
8768 Nkind (Unit_Declaration_Node (Designator)) = N_Subprogram_Body
8769 and then
8770 Nkind (Parent (Unit_Declaration_Node (Designator))) =
8771 N_Compilation_Unit
8772 and then Post_Error
8773 then
8774 Error_Msg_N
8775 ("body of child unit does not match previous declaration", N);
8776 end if;
8777 end if;
8779 <<Next_Entity>>
8780 E := Homonym (E);
8781 end loop;
8783 -- On exit, we know that no previous declaration of subprogram exists
8785 return Empty;
8786 end Find_Corresponding_Spec;
8788 ----------------------
8789 -- Fully_Conformant --
8790 ----------------------
8792 function Fully_Conformant (New_Id, Old_Id : Entity_Id) return Boolean is
8793 Result : Boolean;
8794 begin
8795 Check_Conformance (New_Id, Old_Id, Fully_Conformant, False, Result);
8796 return Result;
8797 end Fully_Conformant;
8799 ----------------------------------
8800 -- Fully_Conformant_Expressions --
8801 ----------------------------------
8803 function Fully_Conformant_Expressions
8804 (Given_E1 : Node_Id;
8805 Given_E2 : Node_Id) return Boolean
8807 E1 : constant Node_Id := Original_Node (Given_E1);
8808 E2 : constant Node_Id := Original_Node (Given_E2);
8809 -- We always test conformance on original nodes, since it is possible
8810 -- for analysis and/or expansion to make things look as though they
8811 -- conform when they do not, e.g. by converting 1+2 into 3.
8813 function FCE (Given_E1, Given_E2 : Node_Id) return Boolean
8814 renames Fully_Conformant_Expressions;
8816 function FCL (L1, L2 : List_Id) return Boolean;
8817 -- Compare elements of two lists for conformance. Elements have to be
8818 -- conformant, and actuals inserted as default parameters do not match
8819 -- explicit actuals with the same value.
8821 function FCO (Op_Node, Call_Node : Node_Id) return Boolean;
8822 -- Compare an operator node with a function call
8824 ---------
8825 -- FCL --
8826 ---------
8828 function FCL (L1, L2 : List_Id) return Boolean is
8829 N1, N2 : Node_Id;
8831 begin
8832 if L1 = No_List then
8833 N1 := Empty;
8834 else
8835 N1 := First (L1);
8836 end if;
8838 if L2 = No_List then
8839 N2 := Empty;
8840 else
8841 N2 := First (L2);
8842 end if;
8844 -- Compare two lists, skipping rewrite insertions (we want to compare
8845 -- the original trees, not the expanded versions).
8847 loop
8848 if Is_Rewrite_Insertion (N1) then
8849 Next (N1);
8850 elsif Is_Rewrite_Insertion (N2) then
8851 Next (N2);
8852 elsif No (N1) then
8853 return No (N2);
8854 elsif No (N2) then
8855 return False;
8856 elsif not FCE (N1, N2) then
8857 return False;
8858 else
8859 Next (N1);
8860 Next (N2);
8861 end if;
8862 end loop;
8863 end FCL;
8865 ---------
8866 -- FCO --
8867 ---------
8869 function FCO (Op_Node, Call_Node : Node_Id) return Boolean is
8870 Actuals : constant List_Id := Parameter_Associations (Call_Node);
8871 Act : Node_Id;
8873 begin
8874 if No (Actuals)
8875 or else Entity (Op_Node) /= Entity (Name (Call_Node))
8876 then
8877 return False;
8879 else
8880 Act := First (Actuals);
8882 if Nkind (Op_Node) in N_Binary_Op then
8883 if not FCE (Left_Opnd (Op_Node), Act) then
8884 return False;
8885 end if;
8887 Next (Act);
8888 end if;
8890 return Present (Act)
8891 and then FCE (Right_Opnd (Op_Node), Act)
8892 and then No (Next (Act));
8893 end if;
8894 end FCO;
8896 -- Start of processing for Fully_Conformant_Expressions
8898 begin
8899 -- Nonconformant if paren count does not match. Note: if some idiot
8900 -- complains that we don't do this right for more than 3 levels of
8901 -- parentheses, they will be treated with the respect they deserve.
8903 if Paren_Count (E1) /= Paren_Count (E2) then
8904 return False;
8906 -- If same entities are referenced, then they are conformant even if
8907 -- they have different forms (RM 8.3.1(19-20)).
8909 elsif Is_Entity_Name (E1) and then Is_Entity_Name (E2) then
8910 if Present (Entity (E1)) then
8911 return Entity (E1) = Entity (E2)
8913 -- One may be a discriminant that has been replaced by the
8914 -- corresponding discriminal.
8916 or else
8917 (Chars (Entity (E1)) = Chars (Entity (E2))
8918 and then Ekind (Entity (E1)) = E_Discriminant
8919 and then Ekind (Entity (E2)) = E_In_Parameter)
8921 -- The discriminant of a protected type is transformed into
8922 -- a local constant and then into a parameter of a protected
8923 -- operation.
8925 or else
8926 (Ekind (Entity (E1)) = E_Constant
8927 and then Ekind (Entity (E2)) = E_In_Parameter
8928 and then Present (Discriminal_Link (Entity (E1)))
8929 and then Discriminal_Link (Entity (E1)) =
8930 Discriminal_Link (Entity (E2)))
8932 -- AI12-050: The loop variables of quantified expressions
8933 -- match if they have the same identifier, even though they
8934 -- are different entities.
8936 or else
8937 (Chars (Entity (E1)) = Chars (Entity (E2))
8938 and then Ekind (Entity (E1)) = E_Loop_Parameter
8939 and then Ekind (Entity (E2)) = E_Loop_Parameter);
8941 elsif Nkind (E1) = N_Expanded_Name
8942 and then Nkind (E2) = N_Expanded_Name
8943 and then Nkind (Selector_Name (E1)) = N_Character_Literal
8944 and then Nkind (Selector_Name (E2)) = N_Character_Literal
8945 then
8946 return Chars (Selector_Name (E1)) = Chars (Selector_Name (E2));
8948 else
8949 -- Identifiers in component associations don't always have
8950 -- entities, but their names must conform.
8952 return Nkind (E1) = N_Identifier
8953 and then Nkind (E2) = N_Identifier
8954 and then Chars (E1) = Chars (E2);
8955 end if;
8957 elsif Nkind (E1) = N_Character_Literal
8958 and then Nkind (E2) = N_Expanded_Name
8959 then
8960 return Nkind (Selector_Name (E2)) = N_Character_Literal
8961 and then Chars (E1) = Chars (Selector_Name (E2));
8963 elsif Nkind (E2) = N_Character_Literal
8964 and then Nkind (E1) = N_Expanded_Name
8965 then
8966 return Nkind (Selector_Name (E1)) = N_Character_Literal
8967 and then Chars (E2) = Chars (Selector_Name (E1));
8969 elsif Nkind (E1) in N_Op and then Nkind (E2) = N_Function_Call then
8970 return FCO (E1, E2);
8972 elsif Nkind (E2) in N_Op and then Nkind (E1) = N_Function_Call then
8973 return FCO (E2, E1);
8975 -- Otherwise we must have the same syntactic entity
8977 elsif Nkind (E1) /= Nkind (E2) then
8978 return False;
8980 -- At this point, we specialize by node type
8982 else
8983 case Nkind (E1) is
8984 when N_Aggregate =>
8985 return
8986 FCL (Expressions (E1), Expressions (E2))
8987 and then
8988 FCL (Component_Associations (E1),
8989 Component_Associations (E2));
8991 when N_Allocator =>
8992 if Nkind (Expression (E1)) = N_Qualified_Expression
8993 or else
8994 Nkind (Expression (E2)) = N_Qualified_Expression
8995 then
8996 return FCE (Expression (E1), Expression (E2));
8998 -- Check that the subtype marks and any constraints
8999 -- are conformant
9001 else
9002 declare
9003 Indic1 : constant Node_Id := Expression (E1);
9004 Indic2 : constant Node_Id := Expression (E2);
9005 Elt1 : Node_Id;
9006 Elt2 : Node_Id;
9008 begin
9009 if Nkind (Indic1) /= N_Subtype_Indication then
9010 return
9011 Nkind (Indic2) /= N_Subtype_Indication
9012 and then Entity (Indic1) = Entity (Indic2);
9014 elsif Nkind (Indic2) /= N_Subtype_Indication then
9015 return
9016 Nkind (Indic1) /= N_Subtype_Indication
9017 and then Entity (Indic1) = Entity (Indic2);
9019 else
9020 if Entity (Subtype_Mark (Indic1)) /=
9021 Entity (Subtype_Mark (Indic2))
9022 then
9023 return False;
9024 end if;
9026 Elt1 := First (Constraints (Constraint (Indic1)));
9027 Elt2 := First (Constraints (Constraint (Indic2)));
9028 while Present (Elt1) and then Present (Elt2) loop
9029 if not FCE (Elt1, Elt2) then
9030 return False;
9031 end if;
9033 Next (Elt1);
9034 Next (Elt2);
9035 end loop;
9037 return True;
9038 end if;
9039 end;
9040 end if;
9042 when N_Attribute_Reference =>
9043 return
9044 Attribute_Name (E1) = Attribute_Name (E2)
9045 and then FCL (Expressions (E1), Expressions (E2));
9047 when N_Binary_Op =>
9048 return
9049 Entity (E1) = Entity (E2)
9050 and then FCE (Left_Opnd (E1), Left_Opnd (E2))
9051 and then FCE (Right_Opnd (E1), Right_Opnd (E2));
9053 when N_Membership_Test
9054 | N_Short_Circuit
9056 return
9057 FCE (Left_Opnd (E1), Left_Opnd (E2))
9058 and then
9059 FCE (Right_Opnd (E1), Right_Opnd (E2));
9061 when N_Case_Expression =>
9062 declare
9063 Alt1 : Node_Id;
9064 Alt2 : Node_Id;
9066 begin
9067 if not FCE (Expression (E1), Expression (E2)) then
9068 return False;
9070 else
9071 Alt1 := First (Alternatives (E1));
9072 Alt2 := First (Alternatives (E2));
9073 loop
9074 if Present (Alt1) /= Present (Alt2) then
9075 return False;
9076 elsif No (Alt1) then
9077 return True;
9078 end if;
9080 if not FCE (Expression (Alt1), Expression (Alt2))
9081 or else not FCL (Discrete_Choices (Alt1),
9082 Discrete_Choices (Alt2))
9083 then
9084 return False;
9085 end if;
9087 Next (Alt1);
9088 Next (Alt2);
9089 end loop;
9090 end if;
9091 end;
9093 when N_Character_Literal =>
9094 return
9095 Char_Literal_Value (E1) = Char_Literal_Value (E2);
9097 when N_Component_Association =>
9098 return
9099 FCL (Choices (E1), Choices (E2))
9100 and then
9101 FCE (Expression (E1), Expression (E2));
9103 when N_Explicit_Dereference =>
9104 return
9105 FCE (Prefix (E1), Prefix (E2));
9107 when N_Extension_Aggregate =>
9108 return
9109 FCL (Expressions (E1), Expressions (E2))
9110 and then Null_Record_Present (E1) =
9111 Null_Record_Present (E2)
9112 and then FCL (Component_Associations (E1),
9113 Component_Associations (E2));
9115 when N_Function_Call =>
9116 return
9117 FCE (Name (E1), Name (E2))
9118 and then
9119 FCL (Parameter_Associations (E1),
9120 Parameter_Associations (E2));
9122 when N_If_Expression =>
9123 return
9124 FCL (Expressions (E1), Expressions (E2));
9126 when N_Indexed_Component =>
9127 return
9128 FCE (Prefix (E1), Prefix (E2))
9129 and then
9130 FCL (Expressions (E1), Expressions (E2));
9132 when N_Integer_Literal =>
9133 return (Intval (E1) = Intval (E2));
9135 when N_Null =>
9136 return True;
9138 when N_Operator_Symbol =>
9139 return
9140 Chars (E1) = Chars (E2);
9142 when N_Others_Choice =>
9143 return True;
9145 when N_Parameter_Association =>
9146 return
9147 Chars (Selector_Name (E1)) = Chars (Selector_Name (E2))
9148 and then FCE (Explicit_Actual_Parameter (E1),
9149 Explicit_Actual_Parameter (E2));
9151 when N_Qualified_Expression
9152 | N_Type_Conversion
9153 | N_Unchecked_Type_Conversion
9155 return
9156 FCE (Subtype_Mark (E1), Subtype_Mark (E2))
9157 and then
9158 FCE (Expression (E1), Expression (E2));
9160 when N_Quantified_Expression =>
9161 if not FCE (Condition (E1), Condition (E2)) then
9162 return False;
9163 end if;
9165 if Present (Loop_Parameter_Specification (E1))
9166 and then Present (Loop_Parameter_Specification (E2))
9167 then
9168 declare
9169 L1 : constant Node_Id :=
9170 Loop_Parameter_Specification (E1);
9171 L2 : constant Node_Id :=
9172 Loop_Parameter_Specification (E2);
9174 begin
9175 return
9176 Reverse_Present (L1) = Reverse_Present (L2)
9177 and then
9178 FCE (Defining_Identifier (L1),
9179 Defining_Identifier (L2))
9180 and then
9181 FCE (Discrete_Subtype_Definition (L1),
9182 Discrete_Subtype_Definition (L2));
9183 end;
9185 elsif Present (Iterator_Specification (E1))
9186 and then Present (Iterator_Specification (E2))
9187 then
9188 declare
9189 I1 : constant Node_Id := Iterator_Specification (E1);
9190 I2 : constant Node_Id := Iterator_Specification (E2);
9192 begin
9193 return
9194 FCE (Defining_Identifier (I1),
9195 Defining_Identifier (I2))
9196 and then
9197 Of_Present (I1) = Of_Present (I2)
9198 and then
9199 Reverse_Present (I1) = Reverse_Present (I2)
9200 and then FCE (Name (I1), Name (I2))
9201 and then FCE (Subtype_Indication (I1),
9202 Subtype_Indication (I2));
9203 end;
9205 -- The quantified expressions used different specifications to
9206 -- walk their respective ranges.
9208 else
9209 return False;
9210 end if;
9212 when N_Range =>
9213 return
9214 FCE (Low_Bound (E1), Low_Bound (E2))
9215 and then
9216 FCE (High_Bound (E1), High_Bound (E2));
9218 when N_Real_Literal =>
9219 return (Realval (E1) = Realval (E2));
9221 when N_Selected_Component =>
9222 return
9223 FCE (Prefix (E1), Prefix (E2))
9224 and then
9225 FCE (Selector_Name (E1), Selector_Name (E2));
9227 when N_Slice =>
9228 return
9229 FCE (Prefix (E1), Prefix (E2))
9230 and then
9231 FCE (Discrete_Range (E1), Discrete_Range (E2));
9233 when N_String_Literal =>
9234 declare
9235 S1 : constant String_Id := Strval (E1);
9236 S2 : constant String_Id := Strval (E2);
9237 L1 : constant Nat := String_Length (S1);
9238 L2 : constant Nat := String_Length (S2);
9240 begin
9241 if L1 /= L2 then
9242 return False;
9244 else
9245 for J in 1 .. L1 loop
9246 if Get_String_Char (S1, J) /=
9247 Get_String_Char (S2, J)
9248 then
9249 return False;
9250 end if;
9251 end loop;
9253 return True;
9254 end if;
9255 end;
9257 when N_Unary_Op =>
9258 return
9259 Entity (E1) = Entity (E2)
9260 and then
9261 FCE (Right_Opnd (E1), Right_Opnd (E2));
9263 -- All other node types cannot appear in this context. Strictly
9264 -- we should raise a fatal internal error. Instead we just ignore
9265 -- the nodes. This means that if anyone makes a mistake in the
9266 -- expander and mucks an expression tree irretrievably, the result
9267 -- will be a failure to detect a (probably very obscure) case
9268 -- of non-conformance, which is better than bombing on some
9269 -- case where two expressions do in fact conform.
9271 when others =>
9272 return True;
9273 end case;
9274 end if;
9275 end Fully_Conformant_Expressions;
9277 ----------------------------------------
9278 -- Fully_Conformant_Discrete_Subtypes --
9279 ----------------------------------------
9281 function Fully_Conformant_Discrete_Subtypes
9282 (Given_S1 : Node_Id;
9283 Given_S2 : Node_Id) return Boolean
9285 S1 : constant Node_Id := Original_Node (Given_S1);
9286 S2 : constant Node_Id := Original_Node (Given_S2);
9288 function Conforming_Bounds (B1, B2 : Node_Id) return Boolean;
9289 -- Special-case for a bound given by a discriminant, which in the body
9290 -- is replaced with the discriminal of the enclosing type.
9292 function Conforming_Ranges (R1, R2 : Node_Id) return Boolean;
9293 -- Check both bounds
9295 -----------------------
9296 -- Conforming_Bounds --
9297 -----------------------
9299 function Conforming_Bounds (B1, B2 : Node_Id) return Boolean is
9300 begin
9301 if Is_Entity_Name (B1)
9302 and then Is_Entity_Name (B2)
9303 and then Ekind (Entity (B1)) = E_Discriminant
9304 then
9305 return Chars (B1) = Chars (B2);
9307 else
9308 return Fully_Conformant_Expressions (B1, B2);
9309 end if;
9310 end Conforming_Bounds;
9312 -----------------------
9313 -- Conforming_Ranges --
9314 -----------------------
9316 function Conforming_Ranges (R1, R2 : Node_Id) return Boolean is
9317 begin
9318 return
9319 Conforming_Bounds (Low_Bound (R1), Low_Bound (R2))
9320 and then
9321 Conforming_Bounds (High_Bound (R1), High_Bound (R2));
9322 end Conforming_Ranges;
9324 -- Start of processing for Fully_Conformant_Discrete_Subtypes
9326 begin
9327 if Nkind (S1) /= Nkind (S2) then
9328 return False;
9330 elsif Is_Entity_Name (S1) then
9331 return Entity (S1) = Entity (S2);
9333 elsif Nkind (S1) = N_Range then
9334 return Conforming_Ranges (S1, S2);
9336 elsif Nkind (S1) = N_Subtype_Indication then
9337 return
9338 Entity (Subtype_Mark (S1)) = Entity (Subtype_Mark (S2))
9339 and then
9340 Conforming_Ranges
9341 (Range_Expression (Constraint (S1)),
9342 Range_Expression (Constraint (S2)));
9343 else
9344 return True;
9345 end if;
9346 end Fully_Conformant_Discrete_Subtypes;
9348 --------------------
9349 -- Install_Entity --
9350 --------------------
9352 procedure Install_Entity (E : Entity_Id) is
9353 Prev : constant Entity_Id := Current_Entity (E);
9354 begin
9355 Set_Is_Immediately_Visible (E);
9356 Set_Current_Entity (E);
9357 Set_Homonym (E, Prev);
9358 end Install_Entity;
9360 ---------------------
9361 -- Install_Formals --
9362 ---------------------
9364 procedure Install_Formals (Id : Entity_Id) is
9365 F : Entity_Id;
9366 begin
9367 F := First_Formal (Id);
9368 while Present (F) loop
9369 Install_Entity (F);
9370 Next_Formal (F);
9371 end loop;
9372 end Install_Formals;
9374 -----------------------------
9375 -- Is_Interface_Conformant --
9376 -----------------------------
9378 function Is_Interface_Conformant
9379 (Tagged_Type : Entity_Id;
9380 Iface_Prim : Entity_Id;
9381 Prim : Entity_Id) return Boolean
9383 -- The operation may in fact be an inherited (implicit) operation
9384 -- rather than the original interface primitive, so retrieve the
9385 -- ultimate ancestor.
9387 Iface : constant Entity_Id :=
9388 Find_Dispatching_Type (Ultimate_Alias (Iface_Prim));
9389 Typ : constant Entity_Id := Find_Dispatching_Type (Prim);
9391 function Controlling_Formal (Prim : Entity_Id) return Entity_Id;
9392 -- Return the controlling formal of Prim
9394 ------------------------
9395 -- Controlling_Formal --
9396 ------------------------
9398 function Controlling_Formal (Prim : Entity_Id) return Entity_Id is
9399 E : Entity_Id;
9401 begin
9402 E := First_Entity (Prim);
9403 while Present (E) loop
9404 if Is_Formal (E) and then Is_Controlling_Formal (E) then
9405 return E;
9406 end if;
9408 Next_Entity (E);
9409 end loop;
9411 return Empty;
9412 end Controlling_Formal;
9414 -- Local variables
9416 Iface_Ctrl_F : constant Entity_Id := Controlling_Formal (Iface_Prim);
9417 Prim_Ctrl_F : constant Entity_Id := Controlling_Formal (Prim);
9419 -- Start of processing for Is_Interface_Conformant
9421 begin
9422 pragma Assert (Is_Subprogram (Iface_Prim)
9423 and then Is_Subprogram (Prim)
9424 and then Is_Dispatching_Operation (Iface_Prim)
9425 and then Is_Dispatching_Operation (Prim));
9427 pragma Assert (Is_Interface (Iface)
9428 or else (Present (Alias (Iface_Prim))
9429 and then
9430 Is_Interface
9431 (Find_Dispatching_Type (Ultimate_Alias (Iface_Prim)))));
9433 if Prim = Iface_Prim
9434 or else not Is_Subprogram (Prim)
9435 or else Ekind (Prim) /= Ekind (Iface_Prim)
9436 or else not Is_Dispatching_Operation (Prim)
9437 or else Scope (Prim) /= Scope (Tagged_Type)
9438 or else No (Typ)
9439 or else Base_Type (Typ) /= Base_Type (Tagged_Type)
9440 or else not Primitive_Names_Match (Iface_Prim, Prim)
9441 then
9442 return False;
9444 -- The mode of the controlling formals must match
9446 elsif Present (Iface_Ctrl_F)
9447 and then Present (Prim_Ctrl_F)
9448 and then Ekind (Iface_Ctrl_F) /= Ekind (Prim_Ctrl_F)
9449 then
9450 return False;
9452 -- Case of a procedure, or a function whose result type matches the
9453 -- result type of the interface primitive, or a function that has no
9454 -- controlling result (I or access I).
9456 elsif Ekind (Iface_Prim) = E_Procedure
9457 or else Etype (Prim) = Etype (Iface_Prim)
9458 or else not Has_Controlling_Result (Prim)
9459 then
9460 return Type_Conformant
9461 (Iface_Prim, Prim, Skip_Controlling_Formals => True);
9463 -- Case of a function returning an interface, or an access to one. Check
9464 -- that the return types correspond.
9466 elsif Implements_Interface (Typ, Iface) then
9467 if (Ekind (Etype (Prim)) = E_Anonymous_Access_Type)
9469 (Ekind (Etype (Iface_Prim)) = E_Anonymous_Access_Type)
9470 then
9471 return False;
9472 else
9473 return
9474 Type_Conformant (Prim, Ultimate_Alias (Iface_Prim),
9475 Skip_Controlling_Formals => True);
9476 end if;
9478 else
9479 return False;
9480 end if;
9481 end Is_Interface_Conformant;
9483 ---------------------------------
9484 -- Is_Non_Overriding_Operation --
9485 ---------------------------------
9487 function Is_Non_Overriding_Operation
9488 (Prev_E : Entity_Id;
9489 New_E : Entity_Id) return Boolean
9491 Formal : Entity_Id;
9492 F_Typ : Entity_Id;
9493 G_Typ : Entity_Id := Empty;
9495 function Get_Generic_Parent_Type (F_Typ : Entity_Id) return Entity_Id;
9496 -- If F_Type is a derived type associated with a generic actual subtype,
9497 -- then return its Generic_Parent_Type attribute, else return Empty.
9499 function Types_Correspond
9500 (P_Type : Entity_Id;
9501 N_Type : Entity_Id) return Boolean;
9502 -- Returns true if and only if the types (or designated types in the
9503 -- case of anonymous access types) are the same or N_Type is derived
9504 -- directly or indirectly from P_Type.
9506 -----------------------------
9507 -- Get_Generic_Parent_Type --
9508 -----------------------------
9510 function Get_Generic_Parent_Type (F_Typ : Entity_Id) return Entity_Id is
9511 G_Typ : Entity_Id;
9512 Defn : Node_Id;
9513 Indic : Node_Id;
9515 begin
9516 if Is_Derived_Type (F_Typ)
9517 and then Nkind (Parent (F_Typ)) = N_Full_Type_Declaration
9518 then
9519 -- The tree must be traversed to determine the parent subtype in
9520 -- the generic unit, which unfortunately isn't always available
9521 -- via semantic attributes. ??? (Note: The use of Original_Node
9522 -- is needed for cases where a full derived type has been
9523 -- rewritten.)
9525 -- If the parent type is a scalar type, the derivation creates
9526 -- an anonymous base type for it, and the source type is its
9527 -- first subtype.
9529 if Is_Scalar_Type (F_Typ)
9530 and then not Comes_From_Source (F_Typ)
9531 then
9532 Defn :=
9533 Type_Definition
9534 (Original_Node (Parent (First_Subtype (F_Typ))));
9535 else
9536 Defn := Type_Definition (Original_Node (Parent (F_Typ)));
9537 end if;
9538 if Nkind (Defn) = N_Derived_Type_Definition then
9539 Indic := Subtype_Indication (Defn);
9541 if Nkind (Indic) = N_Subtype_Indication then
9542 G_Typ := Entity (Subtype_Mark (Indic));
9543 else
9544 G_Typ := Entity (Indic);
9545 end if;
9547 if Nkind (Parent (G_Typ)) = N_Subtype_Declaration
9548 and then Present (Generic_Parent_Type (Parent (G_Typ)))
9549 then
9550 return Generic_Parent_Type (Parent (G_Typ));
9551 end if;
9552 end if;
9553 end if;
9555 return Empty;
9556 end Get_Generic_Parent_Type;
9558 ----------------------
9559 -- Types_Correspond --
9560 ----------------------
9562 function Types_Correspond
9563 (P_Type : Entity_Id;
9564 N_Type : Entity_Id) return Boolean
9566 Prev_Type : Entity_Id := Base_Type (P_Type);
9567 New_Type : Entity_Id := Base_Type (N_Type);
9569 begin
9570 if Ekind (Prev_Type) = E_Anonymous_Access_Type then
9571 Prev_Type := Designated_Type (Prev_Type);
9572 end if;
9574 if Ekind (New_Type) = E_Anonymous_Access_Type then
9575 New_Type := Designated_Type (New_Type);
9576 end if;
9578 if Prev_Type = New_Type then
9579 return True;
9581 elsif not Is_Class_Wide_Type (New_Type) then
9582 while Etype (New_Type) /= New_Type loop
9583 New_Type := Etype (New_Type);
9585 if New_Type = Prev_Type then
9586 return True;
9587 end if;
9588 end loop;
9589 end if;
9590 return False;
9591 end Types_Correspond;
9593 -- Start of processing for Is_Non_Overriding_Operation
9595 begin
9596 -- In the case where both operations are implicit derived subprograms
9597 -- then neither overrides the other. This can only occur in certain
9598 -- obscure cases (e.g., derivation from homographs created in a generic
9599 -- instantiation).
9601 if Present (Alias (Prev_E)) and then Present (Alias (New_E)) then
9602 return True;
9604 elsif Ekind (Current_Scope) = E_Package
9605 and then Is_Generic_Instance (Current_Scope)
9606 and then In_Private_Part (Current_Scope)
9607 and then Comes_From_Source (New_E)
9608 then
9609 -- We examine the formals and result type of the inherited operation,
9610 -- to determine whether their type is derived from (the instance of)
9611 -- a generic type. The first such formal or result type is the one
9612 -- tested.
9614 Formal := First_Formal (Prev_E);
9615 F_Typ := Empty;
9616 while Present (Formal) loop
9617 F_Typ := Base_Type (Etype (Formal));
9619 if Ekind (F_Typ) = E_Anonymous_Access_Type then
9620 F_Typ := Designated_Type (F_Typ);
9621 end if;
9623 G_Typ := Get_Generic_Parent_Type (F_Typ);
9624 exit when Present (G_Typ);
9626 Next_Formal (Formal);
9627 end loop;
9629 -- If the function dispatches on result check the result type
9631 if No (G_Typ) and then Ekind (Prev_E) = E_Function then
9632 G_Typ := Get_Generic_Parent_Type (Base_Type (Etype (Prev_E)));
9633 end if;
9635 if No (G_Typ) then
9636 return False;
9637 end if;
9639 -- If the generic type is a private type, then the original operation
9640 -- was not overriding in the generic, because there was no primitive
9641 -- operation to override.
9643 if Nkind (Parent (G_Typ)) = N_Formal_Type_Declaration
9644 and then Nkind (Formal_Type_Definition (Parent (G_Typ))) =
9645 N_Formal_Private_Type_Definition
9646 then
9647 return True;
9649 -- The generic parent type is the ancestor of a formal derived
9650 -- type declaration. We need to check whether it has a primitive
9651 -- operation that should be overridden by New_E in the generic.
9653 else
9654 declare
9655 P_Formal : Entity_Id;
9656 N_Formal : Entity_Id;
9657 P_Typ : Entity_Id;
9658 N_Typ : Entity_Id;
9659 P_Prim : Entity_Id;
9660 Prim_Elt : Elmt_Id := First_Elmt (Primitive_Operations (G_Typ));
9662 begin
9663 while Present (Prim_Elt) loop
9664 P_Prim := Node (Prim_Elt);
9666 if Chars (P_Prim) = Chars (New_E)
9667 and then Ekind (P_Prim) = Ekind (New_E)
9668 then
9669 P_Formal := First_Formal (P_Prim);
9670 N_Formal := First_Formal (New_E);
9671 while Present (P_Formal) and then Present (N_Formal) loop
9672 P_Typ := Etype (P_Formal);
9673 N_Typ := Etype (N_Formal);
9675 if not Types_Correspond (P_Typ, N_Typ) then
9676 exit;
9677 end if;
9679 Next_Entity (P_Formal);
9680 Next_Entity (N_Formal);
9681 end loop;
9683 -- Found a matching primitive operation belonging to the
9684 -- formal ancestor type, so the new subprogram is
9685 -- overriding.
9687 if No (P_Formal)
9688 and then No (N_Formal)
9689 and then (Ekind (New_E) /= E_Function
9690 or else
9691 Types_Correspond
9692 (Etype (P_Prim), Etype (New_E)))
9693 then
9694 return False;
9695 end if;
9696 end if;
9698 Next_Elmt (Prim_Elt);
9699 end loop;
9701 -- If no match found, then the new subprogram does not override
9702 -- in the generic (nor in the instance).
9704 -- If the type in question is not abstract, and the subprogram
9705 -- is, this will be an error if the new operation is in the
9706 -- private part of the instance. Emit a warning now, which will
9707 -- make the subsequent error message easier to understand.
9709 if Present (F_Typ) and then not Is_Abstract_Type (F_Typ)
9710 and then Is_Abstract_Subprogram (Prev_E)
9711 and then In_Private_Part (Current_Scope)
9712 then
9713 Error_Msg_Node_2 := F_Typ;
9714 Error_Msg_NE
9715 ("private operation& in generic unit does not override "
9716 & "any primitive operation of& (RM 12.3 (18))??",
9717 New_E, New_E);
9718 end if;
9720 return True;
9721 end;
9722 end if;
9723 else
9724 return False;
9725 end if;
9726 end Is_Non_Overriding_Operation;
9728 -------------------------------------
9729 -- List_Inherited_Pre_Post_Aspects --
9730 -------------------------------------
9732 procedure List_Inherited_Pre_Post_Aspects (E : Entity_Id) is
9733 begin
9734 if Opt.List_Inherited_Aspects
9735 and then Is_Subprogram_Or_Generic_Subprogram (E)
9736 then
9737 declare
9738 Subps : constant Subprogram_List := Inherited_Subprograms (E);
9739 Items : Node_Id;
9740 Prag : Node_Id;
9742 begin
9743 for Index in Subps'Range loop
9744 Items := Contract (Subps (Index));
9746 if Present (Items) then
9747 Prag := Pre_Post_Conditions (Items);
9748 while Present (Prag) loop
9749 Error_Msg_Sloc := Sloc (Prag);
9751 if Class_Present (Prag)
9752 and then not Split_PPC (Prag)
9753 then
9754 if Pragma_Name (Prag) = Name_Precondition then
9755 Error_Msg_N
9756 ("info: & inherits `Pre''Class` aspect from "
9757 & "#?L?", E);
9758 else
9759 Error_Msg_N
9760 ("info: & inherits `Post''Class` aspect from "
9761 & "#?L?", E);
9762 end if;
9763 end if;
9765 Prag := Next_Pragma (Prag);
9766 end loop;
9767 end if;
9768 end loop;
9769 end;
9770 end if;
9771 end List_Inherited_Pre_Post_Aspects;
9773 ------------------------------
9774 -- Make_Inequality_Operator --
9775 ------------------------------
9777 -- S is the defining identifier of an equality operator. We build a
9778 -- subprogram declaration with the right signature. This operation is
9779 -- intrinsic, because it is always expanded as the negation of the
9780 -- call to the equality function.
9782 procedure Make_Inequality_Operator (S : Entity_Id) is
9783 Loc : constant Source_Ptr := Sloc (S);
9784 Decl : Node_Id;
9785 Formals : List_Id;
9786 Op_Name : Entity_Id;
9788 FF : constant Entity_Id := First_Formal (S);
9789 NF : constant Entity_Id := Next_Formal (FF);
9791 begin
9792 -- Check that equality was properly defined, ignore call if not
9794 if No (NF) then
9795 return;
9796 end if;
9798 declare
9799 A : constant Entity_Id :=
9800 Make_Defining_Identifier (Sloc (FF),
9801 Chars => Chars (FF));
9803 B : constant Entity_Id :=
9804 Make_Defining_Identifier (Sloc (NF),
9805 Chars => Chars (NF));
9807 begin
9808 Op_Name := Make_Defining_Operator_Symbol (Loc, Name_Op_Ne);
9810 Formals := New_List (
9811 Make_Parameter_Specification (Loc,
9812 Defining_Identifier => A,
9813 Parameter_Type =>
9814 New_Occurrence_Of (Etype (First_Formal (S)),
9815 Sloc (Etype (First_Formal (S))))),
9817 Make_Parameter_Specification (Loc,
9818 Defining_Identifier => B,
9819 Parameter_Type =>
9820 New_Occurrence_Of (Etype (Next_Formal (First_Formal (S))),
9821 Sloc (Etype (Next_Formal (First_Formal (S)))))));
9823 Decl :=
9824 Make_Subprogram_Declaration (Loc,
9825 Specification =>
9826 Make_Function_Specification (Loc,
9827 Defining_Unit_Name => Op_Name,
9828 Parameter_Specifications => Formals,
9829 Result_Definition =>
9830 New_Occurrence_Of (Standard_Boolean, Loc)));
9832 -- Insert inequality right after equality if it is explicit or after
9833 -- the derived type when implicit. These entities are created only
9834 -- for visibility purposes, and eventually replaced in the course
9835 -- of expansion, so they do not need to be attached to the tree and
9836 -- seen by the back-end. Keeping them internal also avoids spurious
9837 -- freezing problems. The declaration is inserted in the tree for
9838 -- analysis, and removed afterwards. If the equality operator comes
9839 -- from an explicit declaration, attach the inequality immediately
9840 -- after. Else the equality is inherited from a derived type
9841 -- declaration, so insert inequality after that declaration.
9843 if No (Alias (S)) then
9844 Insert_After (Unit_Declaration_Node (S), Decl);
9845 elsif Is_List_Member (Parent (S)) then
9846 Insert_After (Parent (S), Decl);
9847 else
9848 Insert_After (Parent (Etype (First_Formal (S))), Decl);
9849 end if;
9851 Mark_Rewrite_Insertion (Decl);
9852 Set_Is_Intrinsic_Subprogram (Op_Name);
9853 Analyze (Decl);
9854 Remove (Decl);
9855 Set_Has_Completion (Op_Name);
9856 Set_Corresponding_Equality (Op_Name, S);
9857 Set_Is_Abstract_Subprogram (Op_Name, Is_Abstract_Subprogram (S));
9858 end;
9859 end Make_Inequality_Operator;
9861 ----------------------
9862 -- May_Need_Actuals --
9863 ----------------------
9865 procedure May_Need_Actuals (Fun : Entity_Id) is
9866 F : Entity_Id;
9867 B : Boolean;
9869 begin
9870 F := First_Formal (Fun);
9871 B := True;
9872 while Present (F) loop
9873 if No (Default_Value (F)) then
9874 B := False;
9875 exit;
9876 end if;
9878 Next_Formal (F);
9879 end loop;
9881 Set_Needs_No_Actuals (Fun, B);
9882 end May_Need_Actuals;
9884 ---------------------
9885 -- Mode_Conformant --
9886 ---------------------
9888 function Mode_Conformant (New_Id, Old_Id : Entity_Id) return Boolean is
9889 Result : Boolean;
9890 begin
9891 Check_Conformance (New_Id, Old_Id, Mode_Conformant, False, Result);
9892 return Result;
9893 end Mode_Conformant;
9895 ---------------------------
9896 -- New_Overloaded_Entity --
9897 ---------------------------
9899 procedure New_Overloaded_Entity
9900 (S : Entity_Id;
9901 Derived_Type : Entity_Id := Empty)
9903 Overridden_Subp : Entity_Id := Empty;
9904 -- Set if the current scope has an operation that is type-conformant
9905 -- with S, and becomes hidden by S.
9907 Is_Primitive_Subp : Boolean;
9908 -- Set to True if the new subprogram is primitive
9910 E : Entity_Id;
9911 -- Entity that S overrides
9913 Prev_Vis : Entity_Id := Empty;
9914 -- Predecessor of E in Homonym chain
9916 procedure Check_For_Primitive_Subprogram
9917 (Is_Primitive : out Boolean;
9918 Is_Overriding : Boolean := False);
9919 -- If the subprogram being analyzed is a primitive operation of the type
9920 -- of a formal or result, set the Has_Primitive_Operations flag on the
9921 -- type, and set Is_Primitive to True (otherwise set to False). Set the
9922 -- corresponding flag on the entity itself for later use.
9924 function Has_Matching_Entry_Or_Subprogram (E : Entity_Id) return Boolean;
9925 -- True if a) E is a subprogram whose first formal is a concurrent type
9926 -- defined in the scope of E that has some entry or subprogram whose
9927 -- profile matches E, or b) E is an internally built dispatching
9928 -- subprogram of a protected type and there is a matching subprogram
9929 -- defined in the enclosing scope of the protected type, or c) E is
9930 -- an entry of a synchronized type and a matching procedure has been
9931 -- previously defined in the enclosing scope of the synchronized type.
9933 function Is_Private_Declaration (E : Entity_Id) return Boolean;
9934 -- Check that E is declared in the private part of the current package,
9935 -- or in the package body, where it may hide a previous declaration.
9936 -- We can't use In_Private_Part by itself because this flag is also
9937 -- set when freezing entities, so we must examine the place of the
9938 -- declaration in the tree, and recognize wrapper packages as well.
9940 function Is_Overriding_Alias
9941 (Old_E : Entity_Id;
9942 New_E : Entity_Id) return Boolean;
9943 -- Check whether new subprogram and old subprogram are both inherited
9944 -- from subprograms that have distinct dispatch table entries. This can
9945 -- occur with derivations from instances with accidental homonyms. The
9946 -- function is conservative given that the converse is only true within
9947 -- instances that contain accidental overloadings.
9949 procedure Report_Conflict (S : Entity_Id; E : Entity_Id);
9950 -- Report conflict between entities S and E
9952 ------------------------------------
9953 -- Check_For_Primitive_Subprogram --
9954 ------------------------------------
9956 procedure Check_For_Primitive_Subprogram
9957 (Is_Primitive : out Boolean;
9958 Is_Overriding : Boolean := False)
9960 Formal : Entity_Id;
9961 F_Typ : Entity_Id;
9962 B_Typ : Entity_Id;
9964 function Visible_Part_Type (T : Entity_Id) return Boolean;
9965 -- Returns true if T is declared in the visible part of the current
9966 -- package scope; otherwise returns false. Assumes that T is declared
9967 -- in a package.
9969 procedure Check_Private_Overriding (T : Entity_Id);
9970 -- Checks that if a primitive abstract subprogram of a visible
9971 -- abstract type is declared in a private part, then it must override
9972 -- an abstract subprogram declared in the visible part. Also checks
9973 -- that if a primitive function with a controlling result is declared
9974 -- in a private part, then it must override a function declared in
9975 -- the visible part.
9977 ------------------------------
9978 -- Check_Private_Overriding --
9979 ------------------------------
9981 procedure Check_Private_Overriding (T : Entity_Id) is
9982 function Overrides_Private_Part_Op return Boolean;
9983 -- This detects the special case where the overriding subprogram
9984 -- is overriding a subprogram that was declared in the same
9985 -- private part. That case is illegal by 3.9.3(10).
9987 function Overrides_Visible_Function
9988 (Partial_View : Entity_Id) return Boolean;
9989 -- True if S overrides a function in the visible part. The
9990 -- overridden function could be explicitly or implicitly declared.
9992 -------------------------------
9993 -- Overrides_Private_Part_Op --
9994 -------------------------------
9996 function Overrides_Private_Part_Op return Boolean is
9997 Over_Decl : constant Node_Id :=
9998 Unit_Declaration_Node (Overridden_Operation (S));
9999 Subp_Decl : constant Node_Id := Unit_Declaration_Node (S);
10001 begin
10002 pragma Assert (Is_Overriding);
10003 pragma Assert
10004 (Nkind (Over_Decl) = N_Abstract_Subprogram_Declaration);
10005 pragma Assert
10006 (Nkind (Subp_Decl) = N_Abstract_Subprogram_Declaration);
10008 return In_Same_List (Over_Decl, Subp_Decl);
10009 end Overrides_Private_Part_Op;
10011 --------------------------------
10012 -- Overrides_Visible_Function --
10013 --------------------------------
10015 function Overrides_Visible_Function
10016 (Partial_View : Entity_Id) return Boolean
10018 begin
10019 if not Is_Overriding or else not Has_Homonym (S) then
10020 return False;
10021 end if;
10023 if not Present (Partial_View) then
10024 return True;
10025 end if;
10027 -- Search through all the homonyms H of S in the current
10028 -- package spec, and return True if we find one that matches.
10029 -- Note that Parent (H) will be the declaration of the
10030 -- partial view of T for a match.
10032 declare
10033 H : Entity_Id := S;
10034 begin
10035 loop
10036 H := Homonym (H);
10037 exit when not Present (H) or else Scope (H) /= Scope (S);
10039 if Nkind_In
10040 (Parent (H),
10041 N_Private_Extension_Declaration,
10042 N_Private_Type_Declaration)
10043 and then Defining_Identifier (Parent (H)) = Partial_View
10044 then
10045 return True;
10046 end if;
10047 end loop;
10048 end;
10050 return False;
10051 end Overrides_Visible_Function;
10053 -- Start of processing for Check_Private_Overriding
10055 begin
10056 if Is_Package_Or_Generic_Package (Current_Scope)
10057 and then In_Private_Part (Current_Scope)
10058 and then Visible_Part_Type (T)
10059 and then not In_Instance
10060 then
10061 if Is_Abstract_Type (T)
10062 and then Is_Abstract_Subprogram (S)
10063 and then (not Is_Overriding
10064 or else not Is_Abstract_Subprogram (E)
10065 or else Overrides_Private_Part_Op)
10066 then
10067 Error_Msg_N
10068 ("abstract subprograms must be visible (RM 3.9.3(10))!",
10071 elsif Ekind (S) = E_Function then
10072 declare
10073 Partial_View : constant Entity_Id :=
10074 Incomplete_Or_Partial_View (T);
10076 begin
10077 if not Overrides_Visible_Function (Partial_View) then
10079 -- Here, S is "function ... return T;" declared in
10080 -- the private part, not overriding some visible
10081 -- operation. That's illegal in the tagged case
10082 -- (but not if the private type is untagged).
10084 if ((Present (Partial_View)
10085 and then Is_Tagged_Type (Partial_View))
10086 or else (not Present (Partial_View)
10087 and then Is_Tagged_Type (T)))
10088 and then T = Base_Type (Etype (S))
10089 then
10090 Error_Msg_N
10091 ("private function with tagged result must"
10092 & " override visible-part function", S);
10093 Error_Msg_N
10094 ("\move subprogram to the visible part"
10095 & " (RM 3.9.3(10))", S);
10097 -- AI05-0073: extend this test to the case of a
10098 -- function with a controlling access result.
10100 elsif Ekind (Etype (S)) = E_Anonymous_Access_Type
10101 and then Is_Tagged_Type (Designated_Type (Etype (S)))
10102 and then
10103 not Is_Class_Wide_Type
10104 (Designated_Type (Etype (S)))
10105 and then Ada_Version >= Ada_2012
10106 then
10107 Error_Msg_N
10108 ("private function with controlling access "
10109 & "result must override visible-part function",
10111 Error_Msg_N
10112 ("\move subprogram to the visible part"
10113 & " (RM 3.9.3(10))", S);
10114 end if;
10115 end if;
10116 end;
10117 end if;
10118 end if;
10119 end Check_Private_Overriding;
10121 -----------------------
10122 -- Visible_Part_Type --
10123 -----------------------
10125 function Visible_Part_Type (T : Entity_Id) return Boolean is
10126 P : constant Node_Id := Unit_Declaration_Node (Scope (T));
10127 N : Node_Id;
10129 begin
10130 -- If the entity is a private type, then it must be declared in a
10131 -- visible part.
10133 if Ekind (T) in Private_Kind then
10134 return True;
10135 end if;
10137 -- Otherwise, we traverse the visible part looking for its
10138 -- corresponding declaration. We cannot use the declaration
10139 -- node directly because in the private part the entity of a
10140 -- private type is the one in the full view, which does not
10141 -- indicate that it is the completion of something visible.
10143 N := First (Visible_Declarations (Specification (P)));
10144 while Present (N) loop
10145 if Nkind (N) = N_Full_Type_Declaration
10146 and then Present (Defining_Identifier (N))
10147 and then T = Defining_Identifier (N)
10148 then
10149 return True;
10151 elsif Nkind_In (N, N_Private_Type_Declaration,
10152 N_Private_Extension_Declaration)
10153 and then Present (Defining_Identifier (N))
10154 and then T = Full_View (Defining_Identifier (N))
10155 then
10156 return True;
10157 end if;
10159 Next (N);
10160 end loop;
10162 return False;
10163 end Visible_Part_Type;
10165 -- Start of processing for Check_For_Primitive_Subprogram
10167 begin
10168 Is_Primitive := False;
10170 if not Comes_From_Source (S) then
10171 null;
10173 -- If subprogram is at library level, it is not primitive operation
10175 elsif Current_Scope = Standard_Standard then
10176 null;
10178 elsif (Is_Package_Or_Generic_Package (Current_Scope)
10179 and then not In_Package_Body (Current_Scope))
10180 or else Is_Overriding
10181 then
10182 -- For function, check return type
10184 if Ekind (S) = E_Function then
10185 if Ekind (Etype (S)) = E_Anonymous_Access_Type then
10186 F_Typ := Designated_Type (Etype (S));
10187 else
10188 F_Typ := Etype (S);
10189 end if;
10191 B_Typ := Base_Type (F_Typ);
10193 if Scope (B_Typ) = Current_Scope
10194 and then not Is_Class_Wide_Type (B_Typ)
10195 and then not Is_Generic_Type (B_Typ)
10196 then
10197 Is_Primitive := True;
10198 Set_Has_Primitive_Operations (B_Typ);
10199 Set_Is_Primitive (S);
10200 Check_Private_Overriding (B_Typ);
10202 -- The Ghost policy in effect at the point of declaration
10203 -- or a tagged type and a primitive operation must match
10204 -- (SPARK RM 6.9(16)).
10206 Check_Ghost_Primitive (S, B_Typ);
10207 end if;
10208 end if;
10210 -- For all subprograms, check formals
10212 Formal := First_Formal (S);
10213 while Present (Formal) loop
10214 if Ekind (Etype (Formal)) = E_Anonymous_Access_Type then
10215 F_Typ := Designated_Type (Etype (Formal));
10216 else
10217 F_Typ := Etype (Formal);
10218 end if;
10220 B_Typ := Base_Type (F_Typ);
10222 if Ekind (B_Typ) = E_Access_Subtype then
10223 B_Typ := Base_Type (B_Typ);
10224 end if;
10226 if Scope (B_Typ) = Current_Scope
10227 and then not Is_Class_Wide_Type (B_Typ)
10228 and then not Is_Generic_Type (B_Typ)
10229 then
10230 Is_Primitive := True;
10231 Set_Is_Primitive (S);
10232 Set_Has_Primitive_Operations (B_Typ);
10233 Check_Private_Overriding (B_Typ);
10235 -- The Ghost policy in effect at the point of declaration
10236 -- of a tagged type and a primitive operation must match
10237 -- (SPARK RM 6.9(16)).
10239 Check_Ghost_Primitive (S, B_Typ);
10240 end if;
10242 Next_Formal (Formal);
10243 end loop;
10245 -- Special case: An equality function can be redefined for a type
10246 -- occurring in a declarative part, and won't otherwise be treated as
10247 -- a primitive because it doesn't occur in a package spec and doesn't
10248 -- override an inherited subprogram. It's important that we mark it
10249 -- primitive so it can be returned by Collect_Primitive_Operations
10250 -- and be used in composing the equality operation of later types
10251 -- that have a component of the type.
10253 elsif Chars (S) = Name_Op_Eq
10254 and then Etype (S) = Standard_Boolean
10255 then
10256 B_Typ := Base_Type (Etype (First_Formal (S)));
10258 if Scope (B_Typ) = Current_Scope
10259 and then
10260 Base_Type (Etype (Next_Formal (First_Formal (S)))) = B_Typ
10261 and then not Is_Limited_Type (B_Typ)
10262 then
10263 Is_Primitive := True;
10264 Set_Is_Primitive (S);
10265 Set_Has_Primitive_Operations (B_Typ);
10266 Check_Private_Overriding (B_Typ);
10268 -- The Ghost policy in effect at the point of declaration of a
10269 -- tagged type and a primitive operation must match
10270 -- (SPARK RM 6.9(16)).
10272 Check_Ghost_Primitive (S, B_Typ);
10273 end if;
10274 end if;
10275 end Check_For_Primitive_Subprogram;
10277 --------------------------------------
10278 -- Has_Matching_Entry_Or_Subprogram --
10279 --------------------------------------
10281 function Has_Matching_Entry_Or_Subprogram
10282 (E : Entity_Id) return Boolean
10284 function Check_Conforming_Parameters
10285 (E1_Param : Node_Id;
10286 E2_Param : Node_Id) return Boolean;
10287 -- Starting from the given parameters, check that all the parameters
10288 -- of two entries or subprograms are subtype conformant. Used to skip
10289 -- the check on the controlling argument.
10291 function Matching_Entry_Or_Subprogram
10292 (Conc_Typ : Entity_Id;
10293 Subp : Entity_Id) return Entity_Id;
10294 -- Return the first entry or subprogram of the given concurrent type
10295 -- whose name matches the name of Subp and has a profile conformant
10296 -- with Subp; return Empty if not found.
10298 function Matching_Dispatching_Subprogram
10299 (Conc_Typ : Entity_Id;
10300 Ent : Entity_Id) return Entity_Id;
10301 -- Return the first dispatching primitive of Conc_Type defined in the
10302 -- enclosing scope of Conc_Type (i.e. before the full definition of
10303 -- this concurrent type) whose name matches the entry Ent and has a
10304 -- profile conformant with the profile of the corresponding (not yet
10305 -- built) dispatching primitive of Ent; return Empty if not found.
10307 function Matching_Original_Protected_Subprogram
10308 (Prot_Typ : Entity_Id;
10309 Subp : Entity_Id) return Entity_Id;
10310 -- Return the first subprogram defined in the enclosing scope of
10311 -- Prot_Typ (before the full definition of this protected type)
10312 -- whose name matches the original name of Subp and has a profile
10313 -- conformant with the profile of Subp; return Empty if not found.
10315 ---------------------------------
10316 -- Check_Confirming_Parameters --
10317 ---------------------------------
10319 function Check_Conforming_Parameters
10320 (E1_Param : Node_Id;
10321 E2_Param : Node_Id) return Boolean
10323 Param_E1 : Node_Id := E1_Param;
10324 Param_E2 : Node_Id := E2_Param;
10326 begin
10327 while Present (Param_E1) and then Present (Param_E2) loop
10328 if Ekind (Defining_Identifier (Param_E1)) /=
10329 Ekind (Defining_Identifier (Param_E2))
10330 or else not
10331 Conforming_Types
10332 (Find_Parameter_Type (Param_E1),
10333 Find_Parameter_Type (Param_E2),
10334 Subtype_Conformant)
10335 then
10336 return False;
10337 end if;
10339 Next (Param_E1);
10340 Next (Param_E2);
10341 end loop;
10343 -- The candidate is not valid if one of the two lists contains
10344 -- more parameters than the other
10346 return No (Param_E1) and then No (Param_E2);
10347 end Check_Conforming_Parameters;
10349 ----------------------------------
10350 -- Matching_Entry_Or_Subprogram --
10351 ----------------------------------
10353 function Matching_Entry_Or_Subprogram
10354 (Conc_Typ : Entity_Id;
10355 Subp : Entity_Id) return Entity_Id
10357 E : Entity_Id;
10359 begin
10360 E := First_Entity (Conc_Typ);
10361 while Present (E) loop
10362 if Chars (Subp) = Chars (E)
10363 and then (Ekind (E) = E_Entry or else Is_Subprogram (E))
10364 and then
10365 Check_Conforming_Parameters
10366 (First (Parameter_Specifications (Parent (E))),
10367 Next (First (Parameter_Specifications (Parent (Subp)))))
10368 then
10369 return E;
10370 end if;
10372 Next_Entity (E);
10373 end loop;
10375 return Empty;
10376 end Matching_Entry_Or_Subprogram;
10378 -------------------------------------
10379 -- Matching_Dispatching_Subprogram --
10380 -------------------------------------
10382 function Matching_Dispatching_Subprogram
10383 (Conc_Typ : Entity_Id;
10384 Ent : Entity_Id) return Entity_Id
10386 E : Entity_Id;
10388 begin
10389 -- Search for entities in the enclosing scope of this synchonized
10390 -- type.
10392 pragma Assert (Is_Concurrent_Type (Conc_Typ));
10393 Push_Scope (Scope (Conc_Typ));
10394 E := Current_Entity_In_Scope (Ent);
10395 Pop_Scope;
10397 while Present (E) loop
10398 if Scope (E) = Scope (Conc_Typ)
10399 and then Comes_From_Source (E)
10400 and then Ekind (E) = E_Procedure
10401 and then Present (First_Entity (E))
10402 and then Is_Controlling_Formal (First_Entity (E))
10403 and then Etype (First_Entity (E)) = Conc_Typ
10404 and then
10405 Check_Conforming_Parameters
10406 (First (Parameter_Specifications (Parent (Ent))),
10407 Next (First (Parameter_Specifications (Parent (E)))))
10408 then
10409 return E;
10410 end if;
10412 E := Homonym (E);
10413 end loop;
10415 return Empty;
10416 end Matching_Dispatching_Subprogram;
10418 --------------------------------------------
10419 -- Matching_Original_Protected_Subprogram --
10420 --------------------------------------------
10422 function Matching_Original_Protected_Subprogram
10423 (Prot_Typ : Entity_Id;
10424 Subp : Entity_Id) return Entity_Id
10426 ICF : constant Boolean :=
10427 Is_Controlling_Formal (First_Entity (Subp));
10428 E : Entity_Id;
10430 begin
10431 -- Temporarily decorate the first parameter of Subp as controlling
10432 -- formal, required to invoke Subtype_Conformant.
10434 Set_Is_Controlling_Formal (First_Entity (Subp));
10436 E :=
10437 Current_Entity_In_Scope (Original_Protected_Subprogram (Subp));
10439 while Present (E) loop
10440 if Scope (E) = Scope (Prot_Typ)
10441 and then Comes_From_Source (E)
10442 and then Ekind (Subp) = Ekind (E)
10443 and then Present (First_Entity (E))
10444 and then Is_Controlling_Formal (First_Entity (E))
10445 and then Etype (First_Entity (E)) = Prot_Typ
10446 and then Subtype_Conformant (Subp, E,
10447 Skip_Controlling_Formals => True)
10448 then
10449 Set_Is_Controlling_Formal (First_Entity (Subp), ICF);
10450 return E;
10451 end if;
10453 E := Homonym (E);
10454 end loop;
10456 Set_Is_Controlling_Formal (First_Entity (Subp), ICF);
10458 return Empty;
10459 end Matching_Original_Protected_Subprogram;
10461 -- Start of processing for Has_Matching_Entry_Or_Subprogram
10463 begin
10464 -- Case 1: E is a subprogram whose first formal is a concurrent type
10465 -- defined in the scope of E that has an entry or subprogram whose
10466 -- profile matches E.
10468 if Comes_From_Source (E)
10469 and then Is_Subprogram (E)
10470 and then Present (First_Entity (E))
10471 and then Is_Concurrent_Record_Type (Etype (First_Entity (E)))
10472 then
10473 if Scope (E) =
10474 Scope (Corresponding_Concurrent_Type
10475 (Etype (First_Entity (E))))
10476 and then
10477 Present
10478 (Matching_Entry_Or_Subprogram
10479 (Corresponding_Concurrent_Type (Etype (First_Entity (E))),
10480 Subp => E))
10481 then
10482 Report_Conflict (E,
10483 Matching_Entry_Or_Subprogram
10484 (Corresponding_Concurrent_Type (Etype (First_Entity (E))),
10485 Subp => E));
10486 return True;
10487 end if;
10489 -- Case 2: E is an internally built dispatching subprogram of a
10490 -- protected type and there is a subprogram defined in the enclosing
10491 -- scope of the protected type that has the original name of E and
10492 -- its profile is conformant with the profile of E. We check the
10493 -- name of the original protected subprogram associated with E since
10494 -- the expander builds dispatching primitives of protected functions
10495 -- and procedures with other names (see Exp_Ch9.Build_Selected_Name).
10497 elsif not Comes_From_Source (E)
10498 and then Is_Subprogram (E)
10499 and then Present (First_Entity (E))
10500 and then Is_Concurrent_Record_Type (Etype (First_Entity (E)))
10501 and then Present (Original_Protected_Subprogram (E))
10502 and then
10503 Present
10504 (Matching_Original_Protected_Subprogram
10505 (Corresponding_Concurrent_Type (Etype (First_Entity (E))),
10506 Subp => E))
10507 then
10508 Report_Conflict (E,
10509 Matching_Original_Protected_Subprogram
10510 (Corresponding_Concurrent_Type (Etype (First_Entity (E))),
10511 Subp => E));
10512 return True;
10514 -- Case 3: E is an entry of a synchronized type and a matching
10515 -- procedure has been previously defined in the enclosing scope
10516 -- of the synchronized type.
10518 elsif Comes_From_Source (E)
10519 and then Ekind (E) = E_Entry
10520 and then
10521 Present (Matching_Dispatching_Subprogram (Current_Scope, E))
10522 then
10523 Report_Conflict (E,
10524 Matching_Dispatching_Subprogram (Current_Scope, E));
10525 return True;
10526 end if;
10528 return False;
10529 end Has_Matching_Entry_Or_Subprogram;
10531 ----------------------------
10532 -- Is_Private_Declaration --
10533 ----------------------------
10535 function Is_Private_Declaration (E : Entity_Id) return Boolean is
10536 Decl : constant Node_Id := Unit_Declaration_Node (E);
10537 Priv_Decls : List_Id;
10539 begin
10540 if Is_Package_Or_Generic_Package (Current_Scope)
10541 and then In_Private_Part (Current_Scope)
10542 then
10543 Priv_Decls :=
10544 Private_Declarations (Package_Specification (Current_Scope));
10546 return In_Package_Body (Current_Scope)
10547 or else
10548 (Is_List_Member (Decl)
10549 and then List_Containing (Decl) = Priv_Decls)
10550 or else (Nkind (Parent (Decl)) = N_Package_Specification
10551 and then not
10552 Is_Compilation_Unit
10553 (Defining_Entity (Parent (Decl)))
10554 and then List_Containing (Parent (Parent (Decl))) =
10555 Priv_Decls);
10556 else
10557 return False;
10558 end if;
10559 end Is_Private_Declaration;
10561 --------------------------
10562 -- Is_Overriding_Alias --
10563 --------------------------
10565 function Is_Overriding_Alias
10566 (Old_E : Entity_Id;
10567 New_E : Entity_Id) return Boolean
10569 AO : constant Entity_Id := Alias (Old_E);
10570 AN : constant Entity_Id := Alias (New_E);
10572 begin
10573 return Scope (AO) /= Scope (AN)
10574 or else No (DTC_Entity (AO))
10575 or else No (DTC_Entity (AN))
10576 or else DT_Position (AO) = DT_Position (AN);
10577 end Is_Overriding_Alias;
10579 ---------------------
10580 -- Report_Conflict --
10581 ---------------------
10583 procedure Report_Conflict (S : Entity_Id; E : Entity_Id) is
10584 begin
10585 Error_Msg_Sloc := Sloc (E);
10587 -- Generate message, with useful additional warning if in generic
10589 if Is_Generic_Unit (E) then
10590 Error_Msg_N ("previous generic unit cannot be overloaded", S);
10591 Error_Msg_N ("\& conflicts with declaration#", S);
10592 else
10593 Error_Msg_N ("& conflicts with declaration#", S);
10594 end if;
10595 end Report_Conflict;
10597 -- Start of processing for New_Overloaded_Entity
10599 begin
10600 -- We need to look for an entity that S may override. This must be a
10601 -- homonym in the current scope, so we look for the first homonym of
10602 -- S in the current scope as the starting point for the search.
10604 E := Current_Entity_In_Scope (S);
10606 -- Ada 2005 (AI-251): Derivation of abstract interface primitives.
10607 -- They are directly added to the list of primitive operations of
10608 -- Derived_Type, unless this is a rederivation in the private part
10609 -- of an operation that was already derived in the visible part of
10610 -- the current package.
10612 if Ada_Version >= Ada_2005
10613 and then Present (Derived_Type)
10614 and then Present (Alias (S))
10615 and then Is_Dispatching_Operation (Alias (S))
10616 and then Present (Find_Dispatching_Type (Alias (S)))
10617 and then Is_Interface (Find_Dispatching_Type (Alias (S)))
10618 then
10619 -- For private types, when the full-view is processed we propagate to
10620 -- the full view the non-overridden entities whose attribute "alias"
10621 -- references an interface primitive. These entities were added by
10622 -- Derive_Subprograms to ensure that interface primitives are
10623 -- covered.
10625 -- Inside_Freeze_Actions is non zero when S corresponds with an
10626 -- internal entity that links an interface primitive with its
10627 -- covering primitive through attribute Interface_Alias (see
10628 -- Add_Internal_Interface_Entities).
10630 if Inside_Freezing_Actions = 0
10631 and then Is_Package_Or_Generic_Package (Current_Scope)
10632 and then In_Private_Part (Current_Scope)
10633 and then Nkind (Parent (E)) = N_Private_Extension_Declaration
10634 and then Nkind (Parent (S)) = N_Full_Type_Declaration
10635 and then Full_View (Defining_Identifier (Parent (E)))
10636 = Defining_Identifier (Parent (S))
10637 and then Alias (E) = Alias (S)
10638 then
10639 Check_Operation_From_Private_View (S, E);
10640 Set_Is_Dispatching_Operation (S);
10642 -- Common case
10644 else
10645 Enter_Overloaded_Entity (S);
10646 Check_Dispatching_Operation (S, Empty);
10647 Check_For_Primitive_Subprogram (Is_Primitive_Subp);
10648 end if;
10650 return;
10651 end if;
10653 -- For synchronized types check conflicts of this entity with previously
10654 -- defined entities.
10656 if Ada_Version >= Ada_2005
10657 and then Has_Matching_Entry_Or_Subprogram (S)
10658 then
10659 return;
10660 end if;
10662 -- If there is no homonym then this is definitely not overriding
10664 if No (E) then
10665 Enter_Overloaded_Entity (S);
10666 Check_Dispatching_Operation (S, Empty);
10667 Check_For_Primitive_Subprogram (Is_Primitive_Subp);
10669 -- If subprogram has an explicit declaration, check whether it has an
10670 -- overriding indicator.
10672 if Comes_From_Source (S) then
10673 Check_Synchronized_Overriding (S, Overridden_Subp);
10675 -- (Ada 2012: AI05-0125-1): If S is a dispatching operation then
10676 -- it may have overridden some hidden inherited primitive. Update
10677 -- Overridden_Subp to avoid spurious errors when checking the
10678 -- overriding indicator.
10680 if Ada_Version >= Ada_2012
10681 and then No (Overridden_Subp)
10682 and then Is_Dispatching_Operation (S)
10683 and then Present (Overridden_Operation (S))
10684 then
10685 Overridden_Subp := Overridden_Operation (S);
10686 end if;
10688 Check_Overriding_Indicator
10689 (S, Overridden_Subp, Is_Primitive => Is_Primitive_Subp);
10691 -- The Ghost policy in effect at the point of declaration of a
10692 -- parent subprogram and an overriding subprogram must match
10693 -- (SPARK RM 6.9(17)).
10695 Check_Ghost_Overriding (S, Overridden_Subp);
10696 end if;
10698 -- If there is a homonym that is not overloadable, then we have an
10699 -- error, except for the special cases checked explicitly below.
10701 elsif not Is_Overloadable (E) then
10703 -- Check for spurious conflict produced by a subprogram that has the
10704 -- same name as that of the enclosing generic package. The conflict
10705 -- occurs within an instance, between the subprogram and the renaming
10706 -- declaration for the package. After the subprogram, the package
10707 -- renaming declaration becomes hidden.
10709 if Ekind (E) = E_Package
10710 and then Present (Renamed_Object (E))
10711 and then Renamed_Object (E) = Current_Scope
10712 and then Nkind (Parent (Renamed_Object (E))) =
10713 N_Package_Specification
10714 and then Present (Generic_Parent (Parent (Renamed_Object (E))))
10715 then
10716 Set_Is_Hidden (E);
10717 Set_Is_Immediately_Visible (E, False);
10718 Enter_Overloaded_Entity (S);
10719 Set_Homonym (S, Homonym (E));
10720 Check_Dispatching_Operation (S, Empty);
10721 Check_Overriding_Indicator (S, Empty, Is_Primitive => False);
10723 -- If the subprogram is implicit it is hidden by the previous
10724 -- declaration. However if it is dispatching, it must appear in the
10725 -- dispatch table anyway, because it can be dispatched to even if it
10726 -- cannot be called directly.
10728 elsif Present (Alias (S)) and then not Comes_From_Source (S) then
10729 Set_Scope (S, Current_Scope);
10731 if Is_Dispatching_Operation (Alias (S)) then
10732 Check_Dispatching_Operation (S, Empty);
10733 end if;
10735 return;
10737 else
10738 Report_Conflict (S, E);
10739 return;
10740 end if;
10742 -- E exists and is overloadable
10744 else
10745 Check_Synchronized_Overriding (S, Overridden_Subp);
10747 -- Loop through E and its homonyms to determine if any of them is
10748 -- the candidate for overriding by S.
10750 while Present (E) loop
10752 -- Definitely not interesting if not in the current scope
10754 if Scope (E) /= Current_Scope then
10755 null;
10757 -- A function can overload the name of an abstract state. The
10758 -- state can be viewed as a function with a profile that cannot
10759 -- be matched by anything.
10761 elsif Ekind (S) = E_Function
10762 and then Ekind (E) = E_Abstract_State
10763 then
10764 Enter_Overloaded_Entity (S);
10765 return;
10767 -- Ada 2012 (AI05-0165): For internally generated bodies of null
10768 -- procedures locate the internally generated spec. We enforce
10769 -- mode conformance since a tagged type may inherit from
10770 -- interfaces several null primitives which differ only in
10771 -- the mode of the formals.
10773 elsif not Comes_From_Source (S)
10774 and then Is_Null_Procedure (S)
10775 and then not Mode_Conformant (E, S)
10776 then
10777 null;
10779 -- Check if we have type conformance
10781 elsif Type_Conformant (E, S) then
10783 -- If the old and new entities have the same profile and one
10784 -- is not the body of the other, then this is an error, unless
10785 -- one of them is implicitly declared.
10787 -- There are some cases when both can be implicit, for example
10788 -- when both a literal and a function that overrides it are
10789 -- inherited in a derivation, or when an inherited operation
10790 -- of a tagged full type overrides the inherited operation of
10791 -- a private extension. Ada 83 had a special rule for the
10792 -- literal case. In Ada 95, the later implicit operation hides
10793 -- the former, and the literal is always the former. In the
10794 -- odd case where both are derived operations declared at the
10795 -- same point, both operations should be declared, and in that
10796 -- case we bypass the following test and proceed to the next
10797 -- part. This can only occur for certain obscure cases in
10798 -- instances, when an operation on a type derived from a formal
10799 -- private type does not override a homograph inherited from
10800 -- the actual. In subsequent derivations of such a type, the
10801 -- DT positions of these operations remain distinct, if they
10802 -- have been set.
10804 if Present (Alias (S))
10805 and then (No (Alias (E))
10806 or else Comes_From_Source (E)
10807 or else Is_Abstract_Subprogram (S)
10808 or else
10809 (Is_Dispatching_Operation (E)
10810 and then Is_Overriding_Alias (E, S)))
10811 and then Ekind (E) /= E_Enumeration_Literal
10812 then
10813 -- When an derived operation is overloaded it may be due to
10814 -- the fact that the full view of a private extension
10815 -- re-inherits. It has to be dealt with.
10817 if Is_Package_Or_Generic_Package (Current_Scope)
10818 and then In_Private_Part (Current_Scope)
10819 then
10820 Check_Operation_From_Private_View (S, E);
10821 end if;
10823 -- In any case the implicit operation remains hidden by the
10824 -- existing declaration, which is overriding. Indicate that
10825 -- E overrides the operation from which S is inherited.
10827 if Present (Alias (S)) then
10828 Set_Overridden_Operation (E, Alias (S));
10829 Inherit_Subprogram_Contract (E, Alias (S));
10831 else
10832 Set_Overridden_Operation (E, S);
10833 Inherit_Subprogram_Contract (E, S);
10834 end if;
10836 if Comes_From_Source (E) then
10837 Check_Overriding_Indicator (E, S, Is_Primitive => False);
10839 -- The Ghost policy in effect at the point of declaration
10840 -- of a parent subprogram and an overriding subprogram
10841 -- must match (SPARK RM 6.9(17)).
10843 Check_Ghost_Overriding (E, S);
10844 end if;
10846 return;
10848 -- Within an instance, the renaming declarations for actual
10849 -- subprograms may become ambiguous, but they do not hide each
10850 -- other.
10852 elsif Ekind (E) /= E_Entry
10853 and then not Comes_From_Source (E)
10854 and then not Is_Generic_Instance (E)
10855 and then (Present (Alias (E))
10856 or else Is_Intrinsic_Subprogram (E))
10857 and then (not In_Instance
10858 or else No (Parent (E))
10859 or else Nkind (Unit_Declaration_Node (E)) /=
10860 N_Subprogram_Renaming_Declaration)
10861 then
10862 -- A subprogram child unit is not allowed to override an
10863 -- inherited subprogram (10.1.1(20)).
10865 if Is_Child_Unit (S) then
10866 Error_Msg_N
10867 ("child unit overrides inherited subprogram in parent",
10869 return;
10870 end if;
10872 if Is_Non_Overriding_Operation (E, S) then
10873 Enter_Overloaded_Entity (S);
10875 if No (Derived_Type)
10876 or else Is_Tagged_Type (Derived_Type)
10877 then
10878 Check_Dispatching_Operation (S, Empty);
10879 end if;
10881 return;
10882 end if;
10884 -- E is a derived operation or an internal operator which
10885 -- is being overridden. Remove E from further visibility.
10886 -- Furthermore, if E is a dispatching operation, it must be
10887 -- replaced in the list of primitive operations of its type
10888 -- (see Override_Dispatching_Operation).
10890 Overridden_Subp := E;
10892 declare
10893 Prev : Entity_Id;
10895 begin
10896 Prev := First_Entity (Current_Scope);
10897 while Present (Prev) and then Next_Entity (Prev) /= E loop
10898 Next_Entity (Prev);
10899 end loop;
10901 -- It is possible for E to be in the current scope and
10902 -- yet not in the entity chain. This can only occur in a
10903 -- generic context where E is an implicit concatenation
10904 -- in the formal part, because in a generic body the
10905 -- entity chain starts with the formals.
10907 -- In GNATprove mode, a wrapper for an operation with
10908 -- axiomatization may be a homonym of another declaration
10909 -- for an actual subprogram (needs refinement ???).
10911 if No (Prev) then
10912 if In_Instance
10913 and then GNATprove_Mode
10914 and then
10915 Nkind (Original_Node (Unit_Declaration_Node (S))) =
10916 N_Subprogram_Renaming_Declaration
10917 then
10918 return;
10919 else
10920 pragma Assert (Chars (E) = Name_Op_Concat);
10921 null;
10922 end if;
10923 end if;
10925 -- E must be removed both from the entity_list of the
10926 -- current scope, and from the visibility chain.
10928 if Debug_Flag_E then
10929 Write_Str ("Override implicit operation ");
10930 Write_Int (Int (E));
10931 Write_Eol;
10932 end if;
10934 -- If E is a predefined concatenation, it stands for four
10935 -- different operations. As a result, a single explicit
10936 -- declaration does not hide it. In a possible ambiguous
10937 -- situation, Disambiguate chooses the user-defined op,
10938 -- so it is correct to retain the previous internal one.
10940 if Chars (E) /= Name_Op_Concat
10941 or else Ekind (E) /= E_Operator
10942 then
10943 -- For nondispatching derived operations that are
10944 -- overridden by a subprogram declared in the private
10945 -- part of a package, we retain the derived subprogram
10946 -- but mark it as not immediately visible. If the
10947 -- derived operation was declared in the visible part
10948 -- then this ensures that it will still be visible
10949 -- outside the package with the proper signature
10950 -- (calls from outside must also be directed to this
10951 -- version rather than the overriding one, unlike the
10952 -- dispatching case). Calls from inside the package
10953 -- will still resolve to the overriding subprogram
10954 -- since the derived one is marked as not visible
10955 -- within the package.
10957 -- If the private operation is dispatching, we achieve
10958 -- the overriding by keeping the implicit operation
10959 -- but setting its alias to be the overriding one. In
10960 -- this fashion the proper body is executed in all
10961 -- cases, but the original signature is used outside
10962 -- of the package.
10964 -- If the overriding is not in the private part, we
10965 -- remove the implicit operation altogether.
10967 if Is_Private_Declaration (S) then
10968 if not Is_Dispatching_Operation (E) then
10969 Set_Is_Immediately_Visible (E, False);
10970 else
10971 -- Work done in Override_Dispatching_Operation,
10972 -- so nothing else needs to be done here.
10974 null;
10975 end if;
10977 else
10978 -- Find predecessor of E in Homonym chain
10980 if E = Current_Entity (E) then
10981 Prev_Vis := Empty;
10982 else
10983 Prev_Vis := Current_Entity (E);
10984 while Homonym (Prev_Vis) /= E loop
10985 Prev_Vis := Homonym (Prev_Vis);
10986 end loop;
10987 end if;
10989 if Prev_Vis /= Empty then
10991 -- Skip E in the visibility chain
10993 Set_Homonym (Prev_Vis, Homonym (E));
10995 else
10996 Set_Name_Entity_Id (Chars (E), Homonym (E));
10997 end if;
10999 Set_Next_Entity (Prev, Next_Entity (E));
11001 if No (Next_Entity (Prev)) then
11002 Set_Last_Entity (Current_Scope, Prev);
11003 end if;
11004 end if;
11005 end if;
11007 Enter_Overloaded_Entity (S);
11009 -- For entities generated by Derive_Subprograms the
11010 -- overridden operation is the inherited primitive
11011 -- (which is available through the attribute alias).
11013 if not (Comes_From_Source (E))
11014 and then Is_Dispatching_Operation (E)
11015 and then Find_Dispatching_Type (E) =
11016 Find_Dispatching_Type (S)
11017 and then Present (Alias (E))
11018 and then Comes_From_Source (Alias (E))
11019 then
11020 Set_Overridden_Operation (S, Alias (E));
11021 Inherit_Subprogram_Contract (S, Alias (E));
11023 -- Normal case of setting entity as overridden
11025 -- Note: Static_Initialization and Overridden_Operation
11026 -- attributes use the same field in subprogram entities.
11027 -- Static_Initialization is only defined for internal
11028 -- initialization procedures, where Overridden_Operation
11029 -- is irrelevant. Therefore the setting of this attribute
11030 -- must check whether the target is an init_proc.
11032 elsif not Is_Init_Proc (S) then
11033 Set_Overridden_Operation (S, E);
11034 Inherit_Subprogram_Contract (S, E);
11035 end if;
11037 Check_Overriding_Indicator (S, E, Is_Primitive => True);
11039 -- The Ghost policy in effect at the point of declaration
11040 -- of a parent subprogram and an overriding subprogram
11041 -- must match (SPARK RM 6.9(17)).
11043 Check_Ghost_Overriding (S, E);
11045 -- If S is a user-defined subprogram or a null procedure
11046 -- expanded to override an inherited null procedure, or a
11047 -- predefined dispatching primitive then indicate that E
11048 -- overrides the operation from which S is inherited.
11050 if Comes_From_Source (S)
11051 or else
11052 (Present (Parent (S))
11053 and then
11054 Nkind (Parent (S)) = N_Procedure_Specification
11055 and then
11056 Null_Present (Parent (S)))
11057 or else
11058 (Present (Alias (E))
11059 and then
11060 Is_Predefined_Dispatching_Operation (Alias (E)))
11061 then
11062 if Present (Alias (E)) then
11063 Set_Overridden_Operation (S, Alias (E));
11064 Inherit_Subprogram_Contract (S, Alias (E));
11065 end if;
11066 end if;
11068 if Is_Dispatching_Operation (E) then
11070 -- An overriding dispatching subprogram inherits the
11071 -- convention of the overridden subprogram (AI-117).
11073 Set_Convention (S, Convention (E));
11074 Check_Dispatching_Operation (S, E);
11076 else
11077 Check_Dispatching_Operation (S, Empty);
11078 end if;
11080 Check_For_Primitive_Subprogram
11081 (Is_Primitive_Subp, Is_Overriding => True);
11082 goto Check_Inequality;
11083 end;
11085 -- Apparent redeclarations in instances can occur when two
11086 -- formal types get the same actual type. The subprograms in
11087 -- in the instance are legal, even if not callable from the
11088 -- outside. Calls from within are disambiguated elsewhere.
11089 -- For dispatching operations in the visible part, the usual
11090 -- rules apply, and operations with the same profile are not
11091 -- legal (B830001).
11093 elsif (In_Instance_Visible_Part
11094 and then not Is_Dispatching_Operation (E))
11095 or else In_Instance_Not_Visible
11096 then
11097 null;
11099 -- Here we have a real error (identical profile)
11101 else
11102 Error_Msg_Sloc := Sloc (E);
11104 -- Avoid cascaded errors if the entity appears in
11105 -- subsequent calls.
11107 Set_Scope (S, Current_Scope);
11109 -- Generate error, with extra useful warning for the case
11110 -- of a generic instance with no completion.
11112 if Is_Generic_Instance (S)
11113 and then not Has_Completion (E)
11114 then
11115 Error_Msg_N
11116 ("instantiation cannot provide body for&", S);
11117 Error_Msg_N ("\& conflicts with declaration#", S);
11118 else
11119 Error_Msg_N ("& conflicts with declaration#", S);
11120 end if;
11122 return;
11123 end if;
11125 else
11126 -- If one subprogram has an access parameter and the other
11127 -- a parameter of an access type, calls to either might be
11128 -- ambiguous. Verify that parameters match except for the
11129 -- access parameter.
11131 if May_Hide_Profile then
11132 declare
11133 F1 : Entity_Id;
11134 F2 : Entity_Id;
11136 begin
11137 F1 := First_Formal (S);
11138 F2 := First_Formal (E);
11139 while Present (F1) and then Present (F2) loop
11140 if Is_Access_Type (Etype (F1)) then
11141 if not Is_Access_Type (Etype (F2))
11142 or else not Conforming_Types
11143 (Designated_Type (Etype (F1)),
11144 Designated_Type (Etype (F2)),
11145 Type_Conformant)
11146 then
11147 May_Hide_Profile := False;
11148 end if;
11150 elsif
11151 not Conforming_Types
11152 (Etype (F1), Etype (F2), Type_Conformant)
11153 then
11154 May_Hide_Profile := False;
11155 end if;
11157 Next_Formal (F1);
11158 Next_Formal (F2);
11159 end loop;
11161 if May_Hide_Profile
11162 and then No (F1)
11163 and then No (F2)
11164 then
11165 Error_Msg_NE ("calls to& may be ambiguous??", S, S);
11166 end if;
11167 end;
11168 end if;
11169 end if;
11171 E := Homonym (E);
11172 end loop;
11174 -- On exit, we know that S is a new entity
11176 Enter_Overloaded_Entity (S);
11177 Check_For_Primitive_Subprogram (Is_Primitive_Subp);
11178 Check_Overriding_Indicator
11179 (S, Overridden_Subp, Is_Primitive => Is_Primitive_Subp);
11181 -- The Ghost policy in effect at the point of declaration of a parent
11182 -- subprogram and an overriding subprogram must match
11183 -- (SPARK RM 6.9(17)).
11185 Check_Ghost_Overriding (S, Overridden_Subp);
11187 -- Overloading is not allowed in SPARK, except for operators
11189 if Nkind (S) /= N_Defining_Operator_Symbol then
11190 Error_Msg_Sloc := Sloc (Homonym (S));
11191 Check_SPARK_05_Restriction
11192 ("overloading not allowed with entity#", S);
11193 end if;
11195 -- If S is a derived operation for an untagged type then by
11196 -- definition it's not a dispatching operation (even if the parent
11197 -- operation was dispatching), so Check_Dispatching_Operation is not
11198 -- called in that case.
11200 if No (Derived_Type)
11201 or else Is_Tagged_Type (Derived_Type)
11202 then
11203 Check_Dispatching_Operation (S, Empty);
11204 end if;
11205 end if;
11207 -- If this is a user-defined equality operator that is not a derived
11208 -- subprogram, create the corresponding inequality. If the operation is
11209 -- dispatching, the expansion is done elsewhere, and we do not create
11210 -- an explicit inequality operation.
11212 <<Check_Inequality>>
11213 if Chars (S) = Name_Op_Eq
11214 and then Etype (S) = Standard_Boolean
11215 and then Present (Parent (S))
11216 and then not Is_Dispatching_Operation (S)
11217 then
11218 Make_Inequality_Operator (S);
11219 Check_Untagged_Equality (S);
11220 end if;
11221 end New_Overloaded_Entity;
11223 ---------------------
11224 -- Process_Formals --
11225 ---------------------
11227 procedure Process_Formals
11228 (T : List_Id;
11229 Related_Nod : Node_Id)
11231 function Designates_From_Limited_With (Typ : Entity_Id) return Boolean;
11232 -- Determine whether an access type designates a type coming from a
11233 -- limited view.
11235 function Is_Class_Wide_Default (D : Node_Id) return Boolean;
11236 -- Check whether the default has a class-wide type. After analysis the
11237 -- default has the type of the formal, so we must also check explicitly
11238 -- for an access attribute.
11240 ----------------------------------
11241 -- Designates_From_Limited_With --
11242 ----------------------------------
11244 function Designates_From_Limited_With (Typ : Entity_Id) return Boolean is
11245 Desig : Entity_Id := Typ;
11247 begin
11248 if Is_Access_Type (Desig) then
11249 Desig := Directly_Designated_Type (Desig);
11250 end if;
11252 if Is_Class_Wide_Type (Desig) then
11253 Desig := Root_Type (Desig);
11254 end if;
11256 return
11257 Ekind (Desig) = E_Incomplete_Type
11258 and then From_Limited_With (Desig);
11259 end Designates_From_Limited_With;
11261 ---------------------------
11262 -- Is_Class_Wide_Default --
11263 ---------------------------
11265 function Is_Class_Wide_Default (D : Node_Id) return Boolean is
11266 begin
11267 return Is_Class_Wide_Type (Designated_Type (Etype (D)))
11268 or else (Nkind (D) = N_Attribute_Reference
11269 and then Attribute_Name (D) = Name_Access
11270 and then Is_Class_Wide_Type (Etype (Prefix (D))));
11271 end Is_Class_Wide_Default;
11273 -- Local variables
11275 Context : constant Node_Id := Parent (Parent (T));
11276 Default : Node_Id;
11277 Formal : Entity_Id;
11278 Formal_Type : Entity_Id;
11279 Param_Spec : Node_Id;
11280 Ptype : Entity_Id;
11282 Num_Out_Params : Nat := 0;
11283 First_Out_Param : Entity_Id := Empty;
11284 -- Used for setting Is_Only_Out_Parameter
11286 -- Start of processing for Process_Formals
11288 begin
11289 -- In order to prevent premature use of the formals in the same formal
11290 -- part, the Ekind is left undefined until all default expressions are
11291 -- analyzed. The Ekind is established in a separate loop at the end.
11293 Param_Spec := First (T);
11294 while Present (Param_Spec) loop
11295 Formal := Defining_Identifier (Param_Spec);
11296 Set_Never_Set_In_Source (Formal, True);
11297 Enter_Name (Formal);
11299 -- Case of ordinary parameters
11301 if Nkind (Parameter_Type (Param_Spec)) /= N_Access_Definition then
11302 Find_Type (Parameter_Type (Param_Spec));
11303 Ptype := Parameter_Type (Param_Spec);
11305 if Ptype = Error then
11306 goto Continue;
11307 end if;
11309 Formal_Type := Entity (Ptype);
11311 if Is_Incomplete_Type (Formal_Type)
11312 or else
11313 (Is_Class_Wide_Type (Formal_Type)
11314 and then Is_Incomplete_Type (Root_Type (Formal_Type)))
11315 then
11316 -- Ada 2005 (AI-326): Tagged incomplete types allowed in
11317 -- primitive operations, as long as their completion is
11318 -- in the same declarative part. If in the private part
11319 -- this means that the type cannot be a Taft-amendment type.
11320 -- Check is done on package exit. For access to subprograms,
11321 -- the use is legal for Taft-amendment types.
11323 -- Ada 2012: tagged incomplete types are allowed as generic
11324 -- formal types. They do not introduce dependencies and the
11325 -- corresponding generic subprogram does not have a delayed
11326 -- freeze, because it does not need a freeze node. However,
11327 -- it is still the case that untagged incomplete types cannot
11328 -- be Taft-amendment types and must be completed in private
11329 -- part, so the subprogram must appear in the list of private
11330 -- dependents of the type.
11332 if Is_Tagged_Type (Formal_Type)
11333 or else (Ada_Version >= Ada_2012
11334 and then not From_Limited_With (Formal_Type)
11335 and then not Is_Generic_Type (Formal_Type))
11336 then
11337 if Ekind (Scope (Current_Scope)) = E_Package
11338 and then not Is_Generic_Type (Formal_Type)
11339 and then not Is_Class_Wide_Type (Formal_Type)
11340 then
11341 if not Nkind_In
11342 (Parent (T), N_Access_Function_Definition,
11343 N_Access_Procedure_Definition)
11344 then
11345 Append_Elmt (Current_Scope,
11346 Private_Dependents (Base_Type (Formal_Type)));
11348 -- Freezing is delayed to ensure that Register_Prim
11349 -- will get called for this operation, which is needed
11350 -- in cases where static dispatch tables aren't built.
11351 -- (Note that the same is done for controlling access
11352 -- parameter cases in function Access_Definition.)
11354 if not Is_Thunk (Current_Scope) then
11355 Set_Has_Delayed_Freeze (Current_Scope);
11356 end if;
11357 end if;
11358 end if;
11360 elsif not Nkind_In (Parent (T), N_Access_Function_Definition,
11361 N_Access_Procedure_Definition)
11362 then
11363 -- AI05-0151: Tagged incomplete types are allowed in all
11364 -- formal parts. Untagged incomplete types are not allowed
11365 -- in bodies. Limited views of either kind are not allowed
11366 -- if there is no place at which the non-limited view can
11367 -- become available.
11369 -- Incomplete formal untagged types are not allowed in
11370 -- subprogram bodies (but are legal in their declarations).
11371 -- This excludes bodies created for null procedures, which
11372 -- are basic declarations.
11374 if Is_Generic_Type (Formal_Type)
11375 and then not Is_Tagged_Type (Formal_Type)
11376 and then Nkind (Parent (Related_Nod)) = N_Subprogram_Body
11377 then
11378 Error_Msg_N
11379 ("invalid use of formal incomplete type", Param_Spec);
11381 elsif Ada_Version >= Ada_2012 then
11382 if Is_Tagged_Type (Formal_Type)
11383 and then (not From_Limited_With (Formal_Type)
11384 or else not In_Package_Body)
11385 then
11386 null;
11388 elsif Nkind_In (Context, N_Accept_Statement,
11389 N_Accept_Alternative,
11390 N_Entry_Body)
11391 or else (Nkind (Context) = N_Subprogram_Body
11392 and then Comes_From_Source (Context))
11393 then
11394 Error_Msg_NE
11395 ("invalid use of untagged incomplete type &",
11396 Ptype, Formal_Type);
11397 end if;
11399 else
11400 Error_Msg_NE
11401 ("invalid use of incomplete type&",
11402 Param_Spec, Formal_Type);
11404 -- Further checks on the legality of incomplete types
11405 -- in formal parts are delayed until the freeze point
11406 -- of the enclosing subprogram or access to subprogram.
11407 end if;
11408 end if;
11410 elsif Ekind (Formal_Type) = E_Void then
11411 Error_Msg_NE
11412 ("premature use of&",
11413 Parameter_Type (Param_Spec), Formal_Type);
11414 end if;
11416 -- Ada 2012 (AI-142): Handle aliased parameters
11418 if Ada_Version >= Ada_2012
11419 and then Aliased_Present (Param_Spec)
11420 then
11421 Set_Is_Aliased (Formal);
11422 end if;
11424 -- Ada 2005 (AI-231): Create and decorate an internal subtype
11425 -- declaration corresponding to the null-excluding type of the
11426 -- formal in the enclosing scope. Finally, replace the parameter
11427 -- type of the formal with the internal subtype.
11429 if Ada_Version >= Ada_2005
11430 and then Null_Exclusion_Present (Param_Spec)
11431 then
11432 if not Is_Access_Type (Formal_Type) then
11433 Error_Msg_N
11434 ("`NOT NULL` allowed only for an access type", Param_Spec);
11436 else
11437 if Can_Never_Be_Null (Formal_Type)
11438 and then Comes_From_Source (Related_Nod)
11439 then
11440 Error_Msg_NE
11441 ("`NOT NULL` not allowed (& already excludes null)",
11442 Param_Spec, Formal_Type);
11443 end if;
11445 Formal_Type :=
11446 Create_Null_Excluding_Itype
11447 (T => Formal_Type,
11448 Related_Nod => Related_Nod,
11449 Scope_Id => Scope (Current_Scope));
11451 -- If the designated type of the itype is an itype that is
11452 -- not frozen yet, we set the Has_Delayed_Freeze attribute
11453 -- on the access subtype, to prevent order-of-elaboration
11454 -- issues in the backend.
11456 -- Example:
11457 -- type T is access procedure;
11458 -- procedure Op (O : not null T);
11460 if Is_Itype (Directly_Designated_Type (Formal_Type))
11461 and then
11462 not Is_Frozen (Directly_Designated_Type (Formal_Type))
11463 then
11464 Set_Has_Delayed_Freeze (Formal_Type);
11465 end if;
11466 end if;
11467 end if;
11469 -- An access formal type
11471 else
11472 Formal_Type :=
11473 Access_Definition (Related_Nod, Parameter_Type (Param_Spec));
11475 -- No need to continue if we already notified errors
11477 if not Present (Formal_Type) then
11478 return;
11479 end if;
11481 -- Ada 2005 (AI-254)
11483 declare
11484 AD : constant Node_Id :=
11485 Access_To_Subprogram_Definition
11486 (Parameter_Type (Param_Spec));
11487 begin
11488 if Present (AD) and then Protected_Present (AD) then
11489 Formal_Type :=
11490 Replace_Anonymous_Access_To_Protected_Subprogram
11491 (Param_Spec);
11492 end if;
11493 end;
11494 end if;
11496 Set_Etype (Formal, Formal_Type);
11498 -- Deal with default expression if present
11500 Default := Expression (Param_Spec);
11502 if Present (Default) then
11503 Check_SPARK_05_Restriction
11504 ("default expression is not allowed", Default);
11506 if Out_Present (Param_Spec) then
11507 Error_Msg_N
11508 ("default initialization only allowed for IN parameters",
11509 Param_Spec);
11510 end if;
11512 -- Do the special preanalysis of the expression (see section on
11513 -- "Handling of Default Expressions" in the spec of package Sem).
11515 Preanalyze_Spec_Expression (Default, Formal_Type);
11517 -- An access to constant cannot be the default for
11518 -- an access parameter that is an access to variable.
11520 if Ekind (Formal_Type) = E_Anonymous_Access_Type
11521 and then not Is_Access_Constant (Formal_Type)
11522 and then Is_Access_Type (Etype (Default))
11523 and then Is_Access_Constant (Etype (Default))
11524 then
11525 Error_Msg_N
11526 ("formal that is access to variable cannot be initialized "
11527 & "with an access-to-constant expression", Default);
11528 end if;
11530 -- Check that the designated type of an access parameter's default
11531 -- is not a class-wide type unless the parameter's designated type
11532 -- is also class-wide.
11534 if Ekind (Formal_Type) = E_Anonymous_Access_Type
11535 and then not Designates_From_Limited_With (Formal_Type)
11536 and then Is_Class_Wide_Default (Default)
11537 and then not Is_Class_Wide_Type (Designated_Type (Formal_Type))
11538 then
11539 Error_Msg_N
11540 ("access to class-wide expression not allowed here", Default);
11541 end if;
11543 -- Check incorrect use of dynamically tagged expressions
11545 if Is_Tagged_Type (Formal_Type) then
11546 Check_Dynamically_Tagged_Expression
11547 (Expr => Default,
11548 Typ => Formal_Type,
11549 Related_Nod => Default);
11550 end if;
11551 end if;
11553 -- Ada 2005 (AI-231): Static checks
11555 if Ada_Version >= Ada_2005
11556 and then Is_Access_Type (Etype (Formal))
11557 and then Can_Never_Be_Null (Etype (Formal))
11558 then
11559 Null_Exclusion_Static_Checks (Param_Spec);
11560 end if;
11562 -- The following checks are relevant only when SPARK_Mode is on as
11563 -- these are not standard Ada legality rules.
11565 if SPARK_Mode = On then
11566 if Ekind_In (Scope (Formal), E_Function, E_Generic_Function) then
11568 -- A function cannot have a parameter of mode IN OUT or OUT
11569 -- (SPARK RM 6.1).
11571 if Ekind_In (Formal, E_In_Out_Parameter, E_Out_Parameter) then
11572 Error_Msg_N
11573 ("function cannot have parameter of mode `OUT` or "
11574 & "`IN OUT`", Formal);
11575 end if;
11577 -- A procedure cannot have an effectively volatile formal
11578 -- parameter of mode IN because it behaves as a constant
11579 -- (SPARK RM 7.1.3(6)). -- ??? maybe 7.1.3(4)
11581 elsif Ekind (Scope (Formal)) = E_Procedure
11582 and then Ekind (Formal) = E_In_Parameter
11583 and then Is_Effectively_Volatile (Formal)
11584 then
11585 Error_Msg_N
11586 ("formal parameter of mode `IN` cannot be volatile", Formal);
11587 end if;
11588 end if;
11590 <<Continue>>
11591 Next (Param_Spec);
11592 end loop;
11594 -- If this is the formal part of a function specification, analyze the
11595 -- subtype mark in the context where the formals are visible but not
11596 -- yet usable, and may hide outer homographs.
11598 if Nkind (Related_Nod) = N_Function_Specification then
11599 Analyze_Return_Type (Related_Nod);
11600 end if;
11602 -- Now set the kind (mode) of each formal
11604 Param_Spec := First (T);
11605 while Present (Param_Spec) loop
11606 Formal := Defining_Identifier (Param_Spec);
11607 Set_Formal_Mode (Formal);
11609 if Ekind (Formal) = E_In_Parameter then
11610 Set_Default_Value (Formal, Expression (Param_Spec));
11612 if Present (Expression (Param_Spec)) then
11613 Default := Expression (Param_Spec);
11615 if Is_Scalar_Type (Etype (Default)) then
11616 if Nkind (Parameter_Type (Param_Spec)) /=
11617 N_Access_Definition
11618 then
11619 Formal_Type := Entity (Parameter_Type (Param_Spec));
11620 else
11621 Formal_Type :=
11622 Access_Definition
11623 (Related_Nod, Parameter_Type (Param_Spec));
11624 end if;
11626 Apply_Scalar_Range_Check (Default, Formal_Type);
11627 end if;
11628 end if;
11630 elsif Ekind (Formal) = E_Out_Parameter then
11631 Num_Out_Params := Num_Out_Params + 1;
11633 if Num_Out_Params = 1 then
11634 First_Out_Param := Formal;
11635 end if;
11637 elsif Ekind (Formal) = E_In_Out_Parameter then
11638 Num_Out_Params := Num_Out_Params + 1;
11639 end if;
11641 -- Skip remaining processing if formal type was in error
11643 if Etype (Formal) = Any_Type or else Error_Posted (Formal) then
11644 goto Next_Parameter;
11645 end if;
11647 -- Force call by reference if aliased
11649 declare
11650 Conv : constant Convention_Id := Convention (Etype (Formal));
11651 begin
11652 if Is_Aliased (Formal) then
11653 Set_Mechanism (Formal, By_Reference);
11655 -- Warn if user asked this to be passed by copy
11657 if Conv = Convention_Ada_Pass_By_Copy then
11658 Error_Msg_N
11659 ("cannot pass aliased parameter & by copy??", Formal);
11660 end if;
11662 -- Force mechanism if type has Convention Ada_Pass_By_Ref/Copy
11664 elsif Conv = Convention_Ada_Pass_By_Copy then
11665 Set_Mechanism (Formal, By_Copy);
11667 elsif Conv = Convention_Ada_Pass_By_Reference then
11668 Set_Mechanism (Formal, By_Reference);
11669 end if;
11670 end;
11672 <<Next_Parameter>>
11673 Next (Param_Spec);
11674 end loop;
11676 if Present (First_Out_Param) and then Num_Out_Params = 1 then
11677 Set_Is_Only_Out_Parameter (First_Out_Param);
11678 end if;
11679 end Process_Formals;
11681 ----------------------------
11682 -- Reference_Body_Formals --
11683 ----------------------------
11685 procedure Reference_Body_Formals (Spec : Entity_Id; Bod : Entity_Id) is
11686 Fs : Entity_Id;
11687 Fb : Entity_Id;
11689 begin
11690 if Error_Posted (Spec) then
11691 return;
11692 end if;
11694 -- Iterate over both lists. They may be of different lengths if the two
11695 -- specs are not conformant.
11697 Fs := First_Formal (Spec);
11698 Fb := First_Formal (Bod);
11699 while Present (Fs) and then Present (Fb) loop
11700 Generate_Reference (Fs, Fb, 'b');
11702 if Style_Check then
11703 Style.Check_Identifier (Fb, Fs);
11704 end if;
11706 Set_Spec_Entity (Fb, Fs);
11707 Set_Referenced (Fs, False);
11708 Next_Formal (Fs);
11709 Next_Formal (Fb);
11710 end loop;
11711 end Reference_Body_Formals;
11713 -------------------------
11714 -- Set_Actual_Subtypes --
11715 -------------------------
11717 procedure Set_Actual_Subtypes (N : Node_Id; Subp : Entity_Id) is
11718 Decl : Node_Id;
11719 Formal : Entity_Id;
11720 T : Entity_Id;
11721 First_Stmt : Node_Id := Empty;
11722 AS_Needed : Boolean;
11724 begin
11725 -- If this is an empty initialization procedure, no need to create
11726 -- actual subtypes (small optimization).
11728 if Ekind (Subp) = E_Procedure and then Is_Null_Init_Proc (Subp) then
11729 return;
11731 -- Within a predicate function we do not want to generate local
11732 -- subtypes that may generate nested predicate functions.
11734 elsif Is_Subprogram (Subp) and then Is_Predicate_Function (Subp) then
11735 return;
11736 end if;
11738 -- The subtype declarations may freeze the formals. The body generated
11739 -- for an expression function is not a freeze point, so do not emit
11740 -- these declarations (small loss of efficiency in rare cases).
11742 if Nkind (N) = N_Subprogram_Body
11743 and then Was_Expression_Function (N)
11744 then
11745 return;
11746 end if;
11748 Formal := First_Formal (Subp);
11749 while Present (Formal) loop
11750 T := Etype (Formal);
11752 -- We never need an actual subtype for a constrained formal
11754 if Is_Constrained (T) then
11755 AS_Needed := False;
11757 -- If we have unknown discriminants, then we do not need an actual
11758 -- subtype, or more accurately we cannot figure it out. Note that
11759 -- all class-wide types have unknown discriminants.
11761 elsif Has_Unknown_Discriminants (T) then
11762 AS_Needed := False;
11764 -- At this stage we have an unconstrained type that may need an
11765 -- actual subtype. For sure the actual subtype is needed if we have
11766 -- an unconstrained array type. However, in an instance, the type
11767 -- may appear as a subtype of the full view, while the actual is
11768 -- in fact private (in which case no actual subtype is needed) so
11769 -- check the kind of the base type.
11771 elsif Is_Array_Type (Base_Type (T)) then
11772 AS_Needed := True;
11774 -- The only other case needing an actual subtype is an unconstrained
11775 -- record type which is an IN parameter (we cannot generate actual
11776 -- subtypes for the OUT or IN OUT case, since an assignment can
11777 -- change the discriminant values. However we exclude the case of
11778 -- initialization procedures, since discriminants are handled very
11779 -- specially in this context, see the section entitled "Handling of
11780 -- Discriminants" in Einfo.
11782 -- We also exclude the case of Discrim_SO_Functions (functions used
11783 -- in front-end layout mode for size/offset values), since in such
11784 -- functions only discriminants are referenced, and not only are such
11785 -- subtypes not needed, but they cannot always be generated, because
11786 -- of order of elaboration issues.
11788 elsif Is_Record_Type (T)
11789 and then Ekind (Formal) = E_In_Parameter
11790 and then Chars (Formal) /= Name_uInit
11791 and then not Is_Unchecked_Union (T)
11792 and then not Is_Discrim_SO_Function (Subp)
11793 then
11794 AS_Needed := True;
11796 -- All other cases do not need an actual subtype
11798 else
11799 AS_Needed := False;
11800 end if;
11802 -- Generate actual subtypes for unconstrained arrays and
11803 -- unconstrained discriminated records.
11805 if AS_Needed then
11806 if Nkind (N) = N_Accept_Statement then
11808 -- If expansion is active, the formal is replaced by a local
11809 -- variable that renames the corresponding entry of the
11810 -- parameter block, and it is this local variable that may
11811 -- require an actual subtype.
11813 if Expander_Active then
11814 Decl := Build_Actual_Subtype (T, Renamed_Object (Formal));
11815 else
11816 Decl := Build_Actual_Subtype (T, Formal);
11817 end if;
11819 if Present (Handled_Statement_Sequence (N)) then
11820 First_Stmt :=
11821 First (Statements (Handled_Statement_Sequence (N)));
11822 Prepend (Decl, Statements (Handled_Statement_Sequence (N)));
11823 Mark_Rewrite_Insertion (Decl);
11824 else
11825 -- If the accept statement has no body, there will be no
11826 -- reference to the actuals, so no need to compute actual
11827 -- subtypes.
11829 return;
11830 end if;
11832 else
11833 Decl := Build_Actual_Subtype (T, Formal);
11834 Prepend (Decl, Declarations (N));
11835 Mark_Rewrite_Insertion (Decl);
11836 end if;
11838 -- The declaration uses the bounds of an existing object, and
11839 -- therefore needs no constraint checks.
11841 Analyze (Decl, Suppress => All_Checks);
11842 Set_Is_Actual_Subtype (Defining_Identifier (Decl));
11844 -- We need to freeze manually the generated type when it is
11845 -- inserted anywhere else than in a declarative part.
11847 if Present (First_Stmt) then
11848 Insert_List_Before_And_Analyze (First_Stmt,
11849 Freeze_Entity (Defining_Identifier (Decl), N));
11851 -- Ditto if the type has a dynamic predicate, because the
11852 -- generated function will mention the actual subtype. The
11853 -- predicate may come from an explicit aspect of be inherited.
11855 elsif Has_Predicates (T) then
11856 Insert_List_Before_And_Analyze (Decl,
11857 Freeze_Entity (Defining_Identifier (Decl), N));
11858 end if;
11860 if Nkind (N) = N_Accept_Statement
11861 and then Expander_Active
11862 then
11863 Set_Actual_Subtype (Renamed_Object (Formal),
11864 Defining_Identifier (Decl));
11865 else
11866 Set_Actual_Subtype (Formal, Defining_Identifier (Decl));
11867 end if;
11868 end if;
11870 Next_Formal (Formal);
11871 end loop;
11872 end Set_Actual_Subtypes;
11874 ---------------------
11875 -- Set_Formal_Mode --
11876 ---------------------
11878 procedure Set_Formal_Mode (Formal_Id : Entity_Id) is
11879 Spec : constant Node_Id := Parent (Formal_Id);
11880 Id : constant Entity_Id := Scope (Formal_Id);
11882 begin
11883 -- Note: we set Is_Known_Valid for IN parameters and IN OUT parameters
11884 -- since we ensure that corresponding actuals are always valid at the
11885 -- point of the call.
11887 if Out_Present (Spec) then
11888 if Ekind_In (Id, E_Entry, E_Entry_Family)
11889 or else Is_Subprogram_Or_Generic_Subprogram (Id)
11890 then
11891 Set_Has_Out_Or_In_Out_Parameter (Id, True);
11892 end if;
11894 if Ekind_In (Id, E_Function, E_Generic_Function) then
11896 -- [IN] OUT parameters allowed for functions in Ada 2012
11898 if Ada_Version >= Ada_2012 then
11900 -- Even in Ada 2012 operators can only have IN parameters
11902 if Is_Operator_Symbol_Name (Chars (Scope (Formal_Id))) then
11903 Error_Msg_N ("operators can only have IN parameters", Spec);
11904 end if;
11906 if In_Present (Spec) then
11907 Set_Ekind (Formal_Id, E_In_Out_Parameter);
11908 else
11909 Set_Ekind (Formal_Id, E_Out_Parameter);
11910 end if;
11912 -- But not in earlier versions of Ada
11914 else
11915 Error_Msg_N ("functions can only have IN parameters", Spec);
11916 Set_Ekind (Formal_Id, E_In_Parameter);
11917 end if;
11919 elsif In_Present (Spec) then
11920 Set_Ekind (Formal_Id, E_In_Out_Parameter);
11922 else
11923 Set_Ekind (Formal_Id, E_Out_Parameter);
11924 Set_Never_Set_In_Source (Formal_Id, True);
11925 Set_Is_True_Constant (Formal_Id, False);
11926 Set_Current_Value (Formal_Id, Empty);
11927 end if;
11929 else
11930 Set_Ekind (Formal_Id, E_In_Parameter);
11931 end if;
11933 -- Set Is_Known_Non_Null for access parameters since the language
11934 -- guarantees that access parameters are always non-null. We also set
11935 -- Can_Never_Be_Null, since there is no way to change the value.
11937 if Nkind (Parameter_Type (Spec)) = N_Access_Definition then
11939 -- Ada 2005 (AI-231): In Ada 95, access parameters are always non-
11940 -- null; In Ada 2005, only if then null_exclusion is explicit.
11942 if Ada_Version < Ada_2005
11943 or else Can_Never_Be_Null (Etype (Formal_Id))
11944 then
11945 Set_Is_Known_Non_Null (Formal_Id);
11946 Set_Can_Never_Be_Null (Formal_Id);
11947 end if;
11949 -- Ada 2005 (AI-231): Null-exclusion access subtype
11951 elsif Is_Access_Type (Etype (Formal_Id))
11952 and then Can_Never_Be_Null (Etype (Formal_Id))
11953 then
11954 Set_Is_Known_Non_Null (Formal_Id);
11956 -- We can also set Can_Never_Be_Null (thus preventing some junk
11957 -- access checks) for the case of an IN parameter, which cannot
11958 -- be changed, or for an IN OUT parameter, which can be changed but
11959 -- not to a null value. But for an OUT parameter, the initial value
11960 -- passed in can be null, so we can't set this flag in that case.
11962 if Ekind (Formal_Id) /= E_Out_Parameter then
11963 Set_Can_Never_Be_Null (Formal_Id);
11964 end if;
11965 end if;
11967 Set_Mechanism (Formal_Id, Default_Mechanism);
11968 Set_Formal_Validity (Formal_Id);
11969 end Set_Formal_Mode;
11971 -------------------------
11972 -- Set_Formal_Validity --
11973 -------------------------
11975 procedure Set_Formal_Validity (Formal_Id : Entity_Id) is
11976 begin
11977 -- If no validity checking, then we cannot assume anything about the
11978 -- validity of parameters, since we do not know there is any checking
11979 -- of the validity on the call side.
11981 if not Validity_Checks_On then
11982 return;
11984 -- If validity checking for parameters is enabled, this means we are
11985 -- not supposed to make any assumptions about argument values.
11987 elsif Validity_Check_Parameters then
11988 return;
11990 -- If we are checking in parameters, we will assume that the caller is
11991 -- also checking parameters, so we can assume the parameter is valid.
11993 elsif Ekind (Formal_Id) = E_In_Parameter
11994 and then Validity_Check_In_Params
11995 then
11996 Set_Is_Known_Valid (Formal_Id, True);
11998 -- Similar treatment for IN OUT parameters
12000 elsif Ekind (Formal_Id) = E_In_Out_Parameter
12001 and then Validity_Check_In_Out_Params
12002 then
12003 Set_Is_Known_Valid (Formal_Id, True);
12004 end if;
12005 end Set_Formal_Validity;
12007 ------------------------
12008 -- Subtype_Conformant --
12009 ------------------------
12011 function Subtype_Conformant
12012 (New_Id : Entity_Id;
12013 Old_Id : Entity_Id;
12014 Skip_Controlling_Formals : Boolean := False) return Boolean
12016 Result : Boolean;
12017 begin
12018 Check_Conformance (New_Id, Old_Id, Subtype_Conformant, False, Result,
12019 Skip_Controlling_Formals => Skip_Controlling_Formals);
12020 return Result;
12021 end Subtype_Conformant;
12023 ---------------------
12024 -- Type_Conformant --
12025 ---------------------
12027 function Type_Conformant
12028 (New_Id : Entity_Id;
12029 Old_Id : Entity_Id;
12030 Skip_Controlling_Formals : Boolean := False) return Boolean
12032 Result : Boolean;
12033 begin
12034 May_Hide_Profile := False;
12035 Check_Conformance
12036 (New_Id, Old_Id, Type_Conformant, False, Result,
12037 Skip_Controlling_Formals => Skip_Controlling_Formals);
12038 return Result;
12039 end Type_Conformant;
12041 -------------------------------
12042 -- Valid_Operator_Definition --
12043 -------------------------------
12045 procedure Valid_Operator_Definition (Designator : Entity_Id) is
12046 N : Integer := 0;
12047 F : Entity_Id;
12048 Id : constant Name_Id := Chars (Designator);
12049 N_OK : Boolean;
12051 begin
12052 F := First_Formal (Designator);
12053 while Present (F) loop
12054 N := N + 1;
12056 if Present (Default_Value (F)) then
12057 Error_Msg_N
12058 ("default values not allowed for operator parameters",
12059 Parent (F));
12061 -- For function instantiations that are operators, we must check
12062 -- separately that the corresponding generic only has in-parameters.
12063 -- For subprogram declarations this is done in Set_Formal_Mode. Such
12064 -- an error could not arise in earlier versions of the language.
12066 elsif Ekind (F) /= E_In_Parameter then
12067 Error_Msg_N ("operators can only have IN parameters", F);
12068 end if;
12070 Next_Formal (F);
12071 end loop;
12073 -- Verify that user-defined operators have proper number of arguments
12074 -- First case of operators which can only be unary
12076 if Nam_In (Id, Name_Op_Not, Name_Op_Abs) then
12077 N_OK := (N = 1);
12079 -- Case of operators which can be unary or binary
12081 elsif Nam_In (Id, Name_Op_Add, Name_Op_Subtract) then
12082 N_OK := (N in 1 .. 2);
12084 -- All other operators can only be binary
12086 else
12087 N_OK := (N = 2);
12088 end if;
12090 if not N_OK then
12091 Error_Msg_N
12092 ("incorrect number of arguments for operator", Designator);
12093 end if;
12095 if Id = Name_Op_Ne
12096 and then Base_Type (Etype (Designator)) = Standard_Boolean
12097 and then not Is_Intrinsic_Subprogram (Designator)
12098 then
12099 Error_Msg_N
12100 ("explicit definition of inequality not allowed", Designator);
12101 end if;
12102 end Valid_Operator_Definition;
12104 end Sem_Ch6;