libgo: update to Go 1.11
[official-gcc.git] / libgo / go / strconv / ftoa.go
bloba7ccbe6727fdb20991ff1c055af2068e1539da20
1 // Copyright 2009 The Go Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style
3 // license that can be found in the LICENSE file.
5 // Binary to decimal floating point conversion.
6 // Algorithm:
7 // 1) store mantissa in multiprecision decimal
8 // 2) shift decimal by exponent
9 // 3) read digits out & format
11 package strconv
13 import "math"
15 // TODO: move elsewhere?
16 type floatInfo struct {
17 mantbits uint
18 expbits uint
19 bias int
22 var float32info = floatInfo{23, 8, -127}
23 var float64info = floatInfo{52, 11, -1023}
25 // FormatFloat converts the floating-point number f to a string,
26 // according to the format fmt and precision prec. It rounds the
27 // result assuming that the original was obtained from a floating-point
28 // value of bitSize bits (32 for float32, 64 for float64).
30 // The format fmt is one of
31 // 'b' (-ddddp±ddd, a binary exponent),
32 // 'e' (-d.dddde±dd, a decimal exponent),
33 // 'E' (-d.ddddE±dd, a decimal exponent),
34 // 'f' (-ddd.dddd, no exponent),
35 // 'g' ('e' for large exponents, 'f' otherwise), or
36 // 'G' ('E' for large exponents, 'f' otherwise).
38 // The precision prec controls the number of digits (excluding the exponent)
39 // printed by the 'e', 'E', 'f', 'g', and 'G' formats.
40 // For 'e', 'E', and 'f' it is the number of digits after the decimal point.
41 // For 'g' and 'G' it is the maximum number of significant digits (trailing
42 // zeros are removed).
43 // The special precision -1 uses the smallest number of digits
44 // necessary such that ParseFloat will return f exactly.
45 func FormatFloat(f float64, fmt byte, prec, bitSize int) string {
46 return string(genericFtoa(make([]byte, 0, max(prec+4, 24)), f, fmt, prec, bitSize))
49 // AppendFloat appends the string form of the floating-point number f,
50 // as generated by FormatFloat, to dst and returns the extended buffer.
51 func AppendFloat(dst []byte, f float64, fmt byte, prec, bitSize int) []byte {
52 return genericFtoa(dst, f, fmt, prec, bitSize)
55 func genericFtoa(dst []byte, val float64, fmt byte, prec, bitSize int) []byte {
56 var bits uint64
57 var flt *floatInfo
58 switch bitSize {
59 case 32:
60 bits = uint64(math.Float32bits(float32(val)))
61 flt = &float32info
62 case 64:
63 bits = math.Float64bits(val)
64 flt = &float64info
65 default:
66 panic("strconv: illegal AppendFloat/FormatFloat bitSize")
69 neg := bits>>(flt.expbits+flt.mantbits) != 0
70 exp := int(bits>>flt.mantbits) & (1<<flt.expbits - 1)
71 mant := bits & (uint64(1)<<flt.mantbits - 1)
73 switch exp {
74 case 1<<flt.expbits - 1:
75 // Inf, NaN
76 var s string
77 switch {
78 case mant != 0:
79 s = "NaN"
80 case neg:
81 s = "-Inf"
82 default:
83 s = "+Inf"
85 return append(dst, s...)
87 case 0:
88 // denormalized
89 exp++
91 default:
92 // add implicit top bit
93 mant |= uint64(1) << flt.mantbits
95 exp += flt.bias
97 // Pick off easy binary format.
98 if fmt == 'b' {
99 return fmtB(dst, neg, mant, exp, flt)
102 if !optimize {
103 return bigFtoa(dst, prec, fmt, neg, mant, exp, flt)
106 var digs decimalSlice
107 ok := false
108 // Negative precision means "only as much as needed to be exact."
109 shortest := prec < 0
110 if shortest {
111 // Try Grisu3 algorithm.
112 f := new(extFloat)
113 lower, upper := f.AssignComputeBounds(mant, exp, neg, flt)
114 var buf [32]byte
115 digs.d = buf[:]
116 ok = f.ShortestDecimal(&digs, &lower, &upper)
117 if !ok {
118 return bigFtoa(dst, prec, fmt, neg, mant, exp, flt)
120 // Precision for shortest representation mode.
121 switch fmt {
122 case 'e', 'E':
123 prec = max(digs.nd-1, 0)
124 case 'f':
125 prec = max(digs.nd-digs.dp, 0)
126 case 'g', 'G':
127 prec = digs.nd
129 } else if fmt != 'f' {
130 // Fixed number of digits.
131 digits := prec
132 switch fmt {
133 case 'e', 'E':
134 digits++
135 case 'g', 'G':
136 if prec == 0 {
137 prec = 1
139 digits = prec
141 if digits <= 15 {
142 // try fast algorithm when the number of digits is reasonable.
143 var buf [24]byte
144 digs.d = buf[:]
145 f := extFloat{mant, exp - int(flt.mantbits), neg}
146 ok = f.FixedDecimal(&digs, digits)
149 if !ok {
150 return bigFtoa(dst, prec, fmt, neg, mant, exp, flt)
152 return formatDigits(dst, shortest, neg, digs, prec, fmt)
155 // bigFtoa uses multiprecision computations to format a float.
156 func bigFtoa(dst []byte, prec int, fmt byte, neg bool, mant uint64, exp int, flt *floatInfo) []byte {
157 d := new(decimal)
158 d.Assign(mant)
159 d.Shift(exp - int(flt.mantbits))
160 var digs decimalSlice
161 shortest := prec < 0
162 if shortest {
163 roundShortest(d, mant, exp, flt)
164 digs = decimalSlice{d: d.d[:], nd: d.nd, dp: d.dp}
165 // Precision for shortest representation mode.
166 switch fmt {
167 case 'e', 'E':
168 prec = digs.nd - 1
169 case 'f':
170 prec = max(digs.nd-digs.dp, 0)
171 case 'g', 'G':
172 prec = digs.nd
174 } else {
175 // Round appropriately.
176 switch fmt {
177 case 'e', 'E':
178 d.Round(prec + 1)
179 case 'f':
180 d.Round(d.dp + prec)
181 case 'g', 'G':
182 if prec == 0 {
183 prec = 1
185 d.Round(prec)
187 digs = decimalSlice{d: d.d[:], nd: d.nd, dp: d.dp}
189 return formatDigits(dst, shortest, neg, digs, prec, fmt)
192 func formatDigits(dst []byte, shortest bool, neg bool, digs decimalSlice, prec int, fmt byte) []byte {
193 switch fmt {
194 case 'e', 'E':
195 return fmtE(dst, neg, digs, prec, fmt)
196 case 'f':
197 return fmtF(dst, neg, digs, prec)
198 case 'g', 'G':
199 // trailing fractional zeros in 'e' form will be trimmed.
200 eprec := prec
201 if eprec > digs.nd && digs.nd >= digs.dp {
202 eprec = digs.nd
204 // %e is used if the exponent from the conversion
205 // is less than -4 or greater than or equal to the precision.
206 // if precision was the shortest possible, use precision 6 for this decision.
207 if shortest {
208 eprec = 6
210 exp := digs.dp - 1
211 if exp < -4 || exp >= eprec {
212 if prec > digs.nd {
213 prec = digs.nd
215 return fmtE(dst, neg, digs, prec-1, fmt+'e'-'g')
217 if prec > digs.dp {
218 prec = digs.nd
220 return fmtF(dst, neg, digs, max(prec-digs.dp, 0))
223 // unknown format
224 return append(dst, '%', fmt)
227 // roundShortest rounds d (= mant * 2^exp) to the shortest number of digits
228 // that will let the original floating point value be precisely reconstructed.
229 func roundShortest(d *decimal, mant uint64, exp int, flt *floatInfo) {
230 // If mantissa is zero, the number is zero; stop now.
231 if mant == 0 {
232 d.nd = 0
233 return
236 // Compute upper and lower such that any decimal number
237 // between upper and lower (possibly inclusive)
238 // will round to the original floating point number.
240 // We may see at once that the number is already shortest.
242 // Suppose d is not denormal, so that 2^exp <= d < 10^dp.
243 // The closest shorter number is at least 10^(dp-nd) away.
244 // The lower/upper bounds computed below are at distance
245 // at most 2^(exp-mantbits).
247 // So the number is already shortest if 10^(dp-nd) > 2^(exp-mantbits),
248 // or equivalently log2(10)*(dp-nd) > exp-mantbits.
249 // It is true if 332/100*(dp-nd) >= exp-mantbits (log2(10) > 3.32).
250 minexp := flt.bias + 1 // minimum possible exponent
251 if exp > minexp && 332*(d.dp-d.nd) >= 100*(exp-int(flt.mantbits)) {
252 // The number is already shortest.
253 return
256 // d = mant << (exp - mantbits)
257 // Next highest floating point number is mant+1 << exp-mantbits.
258 // Our upper bound is halfway between, mant*2+1 << exp-mantbits-1.
259 upper := new(decimal)
260 upper.Assign(mant*2 + 1)
261 upper.Shift(exp - int(flt.mantbits) - 1)
263 // d = mant << (exp - mantbits)
264 // Next lowest floating point number is mant-1 << exp-mantbits,
265 // unless mant-1 drops the significant bit and exp is not the minimum exp,
266 // in which case the next lowest is mant*2-1 << exp-mantbits-1.
267 // Either way, call it mantlo << explo-mantbits.
268 // Our lower bound is halfway between, mantlo*2+1 << explo-mantbits-1.
269 var mantlo uint64
270 var explo int
271 if mant > 1<<flt.mantbits || exp == minexp {
272 mantlo = mant - 1
273 explo = exp
274 } else {
275 mantlo = mant*2 - 1
276 explo = exp - 1
278 lower := new(decimal)
279 lower.Assign(mantlo*2 + 1)
280 lower.Shift(explo - int(flt.mantbits) - 1)
282 // The upper and lower bounds are possible outputs only if
283 // the original mantissa is even, so that IEEE round-to-even
284 // would round to the original mantissa and not the neighbors.
285 inclusive := mant%2 == 0
287 // Now we can figure out the minimum number of digits required.
288 // Walk along until d has distinguished itself from upper and lower.
289 for i := 0; i < d.nd; i++ {
290 l := byte('0') // lower digit
291 if i < lower.nd {
292 l = lower.d[i]
294 m := d.d[i] // middle digit
295 u := byte('0') // upper digit
296 if i < upper.nd {
297 u = upper.d[i]
300 // Okay to round down (truncate) if lower has a different digit
301 // or if lower is inclusive and is exactly the result of rounding
302 // down (i.e., and we have reached the final digit of lower).
303 okdown := l != m || inclusive && i+1 == lower.nd
305 // Okay to round up if upper has a different digit and either upper
306 // is inclusive or upper is bigger than the result of rounding up.
307 okup := m != u && (inclusive || m+1 < u || i+1 < upper.nd)
309 // If it's okay to do either, then round to the nearest one.
310 // If it's okay to do only one, do it.
311 switch {
312 case okdown && okup:
313 d.Round(i + 1)
314 return
315 case okdown:
316 d.RoundDown(i + 1)
317 return
318 case okup:
319 d.RoundUp(i + 1)
320 return
325 type decimalSlice struct {
326 d []byte
327 nd, dp int
328 neg bool
331 // %e: -d.ddddde±dd
332 func fmtE(dst []byte, neg bool, d decimalSlice, prec int, fmt byte) []byte {
333 // sign
334 if neg {
335 dst = append(dst, '-')
338 // first digit
339 ch := byte('0')
340 if d.nd != 0 {
341 ch = d.d[0]
343 dst = append(dst, ch)
345 // .moredigits
346 if prec > 0 {
347 dst = append(dst, '.')
348 i := 1
349 m := min(d.nd, prec+1)
350 if i < m {
351 dst = append(dst, d.d[i:m]...)
352 i = m
354 for ; i <= prec; i++ {
355 dst = append(dst, '0')
359 // e±
360 dst = append(dst, fmt)
361 exp := d.dp - 1
362 if d.nd == 0 { // special case: 0 has exponent 0
363 exp = 0
365 if exp < 0 {
366 ch = '-'
367 exp = -exp
368 } else {
369 ch = '+'
371 dst = append(dst, ch)
373 // dd or ddd
374 switch {
375 case exp < 10:
376 dst = append(dst, '0', byte(exp)+'0')
377 case exp < 100:
378 dst = append(dst, byte(exp/10)+'0', byte(exp%10)+'0')
379 default:
380 dst = append(dst, byte(exp/100)+'0', byte(exp/10)%10+'0', byte(exp%10)+'0')
383 return dst
386 // %f: -ddddddd.ddddd
387 func fmtF(dst []byte, neg bool, d decimalSlice, prec int) []byte {
388 // sign
389 if neg {
390 dst = append(dst, '-')
393 // integer, padded with zeros as needed.
394 if d.dp > 0 {
395 m := min(d.nd, d.dp)
396 dst = append(dst, d.d[:m]...)
397 for ; m < d.dp; m++ {
398 dst = append(dst, '0')
400 } else {
401 dst = append(dst, '0')
404 // fraction
405 if prec > 0 {
406 dst = append(dst, '.')
407 for i := 0; i < prec; i++ {
408 ch := byte('0')
409 if j := d.dp + i; 0 <= j && j < d.nd {
410 ch = d.d[j]
412 dst = append(dst, ch)
416 return dst
419 // %b: -ddddddddp±ddd
420 func fmtB(dst []byte, neg bool, mant uint64, exp int, flt *floatInfo) []byte {
421 // sign
422 if neg {
423 dst = append(dst, '-')
426 // mantissa
427 dst, _ = formatBits(dst, mant, 10, false, true)
429 // p
430 dst = append(dst, 'p')
432 // ±exponent
433 exp -= int(flt.mantbits)
434 if exp >= 0 {
435 dst = append(dst, '+')
437 dst, _ = formatBits(dst, uint64(exp), 10, exp < 0, true)
439 return dst
442 func min(a, b int) int {
443 if a < b {
444 return a
446 return b
449 func max(a, b int) int {
450 if a > b {
451 return a
453 return b