libgo: update to Go 1.11
[official-gcc.git] / libgo / go / runtime / sema.go
blobcb7d3cdf8e12a38636f3df7f6c1dd2f7777c46d6
1 // Copyright 2009 The Go Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style
3 // license that can be found in the LICENSE file.
5 // Semaphore implementation exposed to Go.
6 // Intended use is provide a sleep and wakeup
7 // primitive that can be used in the contended case
8 // of other synchronization primitives.
9 // Thus it targets the same goal as Linux's futex,
10 // but it has much simpler semantics.
12 // That is, don't think of these as semaphores.
13 // Think of them as a way to implement sleep and wakeup
14 // such that every sleep is paired with a single wakeup,
15 // even if, due to races, the wakeup happens before the sleep.
17 // See Mullender and Cox, ``Semaphores in Plan 9,''
18 // https://swtch.com/semaphore.pdf
20 package runtime
22 import (
23 "runtime/internal/atomic"
24 "runtime/internal/sys"
25 "unsafe"
28 // Asynchronous semaphore for sync.Mutex.
30 // A semaRoot holds a balanced tree of sudog with distinct addresses (s.elem).
31 // Each of those sudog may in turn point (through s.waitlink) to a list
32 // of other sudogs waiting on the same address.
33 // The operations on the inner lists of sudogs with the same address
34 // are all O(1). The scanning of the top-level semaRoot list is O(log n),
35 // where n is the number of distinct addresses with goroutines blocked
36 // on them that hash to the given semaRoot.
37 // See golang.org/issue/17953 for a program that worked badly
38 // before we introduced the second level of list, and test/locklinear.go
39 // for a test that exercises this.
40 type semaRoot struct {
41 lock mutex
42 treap *sudog // root of balanced tree of unique waiters.
43 nwait uint32 // Number of waiters. Read w/o the lock.
46 // Prime to not correlate with any user patterns.
47 const semTabSize = 251
49 var semtable [semTabSize]struct {
50 root semaRoot
51 pad [sys.CacheLineSize - unsafe.Sizeof(semaRoot{})]byte
54 //go:linkname sync_runtime_Semacquire sync.runtime_Semacquire
55 func sync_runtime_Semacquire(addr *uint32) {
56 semacquire1(addr, false, semaBlockProfile)
59 //go:linkname poll_runtime_Semacquire internal_poll.runtime_Semacquire
60 func poll_runtime_Semacquire(addr *uint32) {
61 semacquire1(addr, false, semaBlockProfile)
64 //go:linkname sync_runtime_Semrelease sync.runtime_Semrelease
65 func sync_runtime_Semrelease(addr *uint32, handoff bool) {
66 semrelease1(addr, handoff)
69 //go:linkname sync_runtime_SemacquireMutex sync.runtime_SemacquireMutex
70 func sync_runtime_SemacquireMutex(addr *uint32, lifo bool) {
71 semacquire1(addr, lifo, semaBlockProfile|semaMutexProfile)
74 //go:linkname poll_runtime_Semrelease internal_poll.runtime_Semrelease
75 func poll_runtime_Semrelease(addr *uint32) {
76 semrelease(addr)
79 func readyWithTime(s *sudog, traceskip int) {
80 if s.releasetime != 0 {
81 s.releasetime = cputicks()
83 goready(s.g, traceskip)
86 type semaProfileFlags int
88 const (
89 semaBlockProfile semaProfileFlags = 1 << iota
90 semaMutexProfile
93 // Called from runtime.
94 func semacquire(addr *uint32) {
95 semacquire1(addr, false, 0)
98 func semacquire1(addr *uint32, lifo bool, profile semaProfileFlags) {
99 gp := getg()
100 if gp != gp.m.curg {
101 throw("semacquire not on the G stack")
104 // Easy case.
105 if cansemacquire(addr) {
106 return
109 // Harder case:
110 // increment waiter count
111 // try cansemacquire one more time, return if succeeded
112 // enqueue itself as a waiter
113 // sleep
114 // (waiter descriptor is dequeued by signaler)
115 s := acquireSudog()
116 root := semroot(addr)
117 t0 := int64(0)
118 s.releasetime = 0
119 s.acquiretime = 0
120 s.ticket = 0
121 if profile&semaBlockProfile != 0 && blockprofilerate > 0 {
122 t0 = cputicks()
123 s.releasetime = -1
125 if profile&semaMutexProfile != 0 && mutexprofilerate > 0 {
126 if t0 == 0 {
127 t0 = cputicks()
129 s.acquiretime = t0
131 for {
132 lock(&root.lock)
133 // Add ourselves to nwait to disable "easy case" in semrelease.
134 atomic.Xadd(&root.nwait, 1)
135 // Check cansemacquire to avoid missed wakeup.
136 if cansemacquire(addr) {
137 atomic.Xadd(&root.nwait, -1)
138 unlock(&root.lock)
139 break
141 // Any semrelease after the cansemacquire knows we're waiting
142 // (we set nwait above), so go to sleep.
143 root.queue(addr, s, lifo)
144 goparkunlock(&root.lock, waitReasonSemacquire, traceEvGoBlockSync, 4)
145 if s.ticket != 0 || cansemacquire(addr) {
146 break
149 if s.releasetime > 0 {
150 blockevent(s.releasetime-t0, 3)
152 releaseSudog(s)
155 func semrelease(addr *uint32) {
156 semrelease1(addr, false)
159 func semrelease1(addr *uint32, handoff bool) {
160 root := semroot(addr)
161 atomic.Xadd(addr, 1)
163 // Easy case: no waiters?
164 // This check must happen after the xadd, to avoid a missed wakeup
165 // (see loop in semacquire).
166 if atomic.Load(&root.nwait) == 0 {
167 return
170 // Harder case: search for a waiter and wake it.
171 lock(&root.lock)
172 if atomic.Load(&root.nwait) == 0 {
173 // The count is already consumed by another goroutine,
174 // so no need to wake up another goroutine.
175 unlock(&root.lock)
176 return
178 s, t0 := root.dequeue(addr)
179 if s != nil {
180 atomic.Xadd(&root.nwait, -1)
182 unlock(&root.lock)
183 if s != nil { // May be slow, so unlock first
184 acquiretime := s.acquiretime
185 if acquiretime != 0 {
186 mutexevent(t0-acquiretime, 3)
188 if s.ticket != 0 {
189 throw("corrupted semaphore ticket")
191 if handoff && cansemacquire(addr) {
192 s.ticket = 1
194 readyWithTime(s, 5)
198 func semroot(addr *uint32) *semaRoot {
199 return &semtable[(uintptr(unsafe.Pointer(addr))>>3)%semTabSize].root
202 func cansemacquire(addr *uint32) bool {
203 for {
204 v := atomic.Load(addr)
205 if v == 0 {
206 return false
208 if atomic.Cas(addr, v, v-1) {
209 return true
214 // queue adds s to the blocked goroutines in semaRoot.
215 func (root *semaRoot) queue(addr *uint32, s *sudog, lifo bool) {
216 s.g = getg()
217 s.elem = unsafe.Pointer(addr)
218 s.next = nil
219 s.prev = nil
221 var last *sudog
222 pt := &root.treap
223 for t := *pt; t != nil; t = *pt {
224 if t.elem == unsafe.Pointer(addr) {
225 // Already have addr in list.
226 if lifo {
227 // Substitute s in t's place in treap.
228 *pt = s
229 s.ticket = t.ticket
230 s.acquiretime = t.acquiretime
231 s.parent = t.parent
232 s.prev = t.prev
233 s.next = t.next
234 if s.prev != nil {
235 s.prev.parent = s
237 if s.next != nil {
238 s.next.parent = s
240 // Add t first in s's wait list.
241 s.waitlink = t
242 s.waittail = t.waittail
243 if s.waittail == nil {
244 s.waittail = t
246 t.parent = nil
247 t.prev = nil
248 t.next = nil
249 t.waittail = nil
250 } else {
251 // Add s to end of t's wait list.
252 if t.waittail == nil {
253 t.waitlink = s
254 } else {
255 t.waittail.waitlink = s
257 t.waittail = s
258 s.waitlink = nil
260 return
262 last = t
263 if uintptr(unsafe.Pointer(addr)) < uintptr(t.elem) {
264 pt = &t.prev
265 } else {
266 pt = &t.next
270 // Add s as new leaf in tree of unique addrs.
271 // The balanced tree is a treap using ticket as the random heap priority.
272 // That is, it is a binary tree ordered according to the elem addresses,
273 // but then among the space of possible binary trees respecting those
274 // addresses, it is kept balanced on average by maintaining a heap ordering
275 // on the ticket: s.ticket <= both s.prev.ticket and s.next.ticket.
276 // https://en.wikipedia.org/wiki/Treap
277 // https://faculty.washington.edu/aragon/pubs/rst89.pdf
279 // s.ticket compared with zero in couple of places, therefore set lowest bit.
280 // It will not affect treap's quality noticeably.
281 s.ticket = fastrand() | 1
282 s.parent = last
283 *pt = s
285 // Rotate up into tree according to ticket (priority).
286 for s.parent != nil && s.parent.ticket > s.ticket {
287 if s.parent.prev == s {
288 root.rotateRight(s.parent)
289 } else {
290 if s.parent.next != s {
291 panic("semaRoot queue")
293 root.rotateLeft(s.parent)
298 // dequeue searches for and finds the first goroutine
299 // in semaRoot blocked on addr.
300 // If the sudog was being profiled, dequeue returns the time
301 // at which it was woken up as now. Otherwise now is 0.
302 func (root *semaRoot) dequeue(addr *uint32) (found *sudog, now int64) {
303 ps := &root.treap
304 s := *ps
305 for ; s != nil; s = *ps {
306 if s.elem == unsafe.Pointer(addr) {
307 goto Found
309 if uintptr(unsafe.Pointer(addr)) < uintptr(s.elem) {
310 ps = &s.prev
311 } else {
312 ps = &s.next
315 return nil, 0
317 Found:
318 now = int64(0)
319 if s.acquiretime != 0 {
320 now = cputicks()
322 if t := s.waitlink; t != nil {
323 // Substitute t, also waiting on addr, for s in root tree of unique addrs.
324 *ps = t
325 t.ticket = s.ticket
326 t.parent = s.parent
327 t.prev = s.prev
328 if t.prev != nil {
329 t.prev.parent = t
331 t.next = s.next
332 if t.next != nil {
333 t.next.parent = t
335 if t.waitlink != nil {
336 t.waittail = s.waittail
337 } else {
338 t.waittail = nil
340 t.acquiretime = now
341 s.waitlink = nil
342 s.waittail = nil
343 } else {
344 // Rotate s down to be leaf of tree for removal, respecting priorities.
345 for s.next != nil || s.prev != nil {
346 if s.next == nil || s.prev != nil && s.prev.ticket < s.next.ticket {
347 root.rotateRight(s)
348 } else {
349 root.rotateLeft(s)
352 // Remove s, now a leaf.
353 if s.parent != nil {
354 if s.parent.prev == s {
355 s.parent.prev = nil
356 } else {
357 s.parent.next = nil
359 } else {
360 root.treap = nil
363 s.parent = nil
364 s.elem = nil
365 s.next = nil
366 s.prev = nil
367 s.ticket = 0
368 return s, now
371 // rotateLeft rotates the tree rooted at node x.
372 // turning (x a (y b c)) into (y (x a b) c).
373 func (root *semaRoot) rotateLeft(x *sudog) {
374 // p -> (x a (y b c))
375 p := x.parent
376 a, y := x.prev, x.next
377 b, c := y.prev, y.next
379 y.prev = x
380 x.parent = y
381 y.next = c
382 if c != nil {
383 c.parent = y
385 x.prev = a
386 if a != nil {
387 a.parent = x
389 x.next = b
390 if b != nil {
391 b.parent = x
394 y.parent = p
395 if p == nil {
396 root.treap = y
397 } else if p.prev == x {
398 p.prev = y
399 } else {
400 if p.next != x {
401 throw("semaRoot rotateLeft")
403 p.next = y
407 // rotateRight rotates the tree rooted at node y.
408 // turning (y (x a b) c) into (x a (y b c)).
409 func (root *semaRoot) rotateRight(y *sudog) {
410 // p -> (y (x a b) c)
411 p := y.parent
412 x, c := y.prev, y.next
413 a, b := x.prev, x.next
415 x.prev = a
416 if a != nil {
417 a.parent = x
419 x.next = y
420 y.parent = x
421 y.prev = b
422 if b != nil {
423 b.parent = y
425 y.next = c
426 if c != nil {
427 c.parent = y
430 x.parent = p
431 if p == nil {
432 root.treap = x
433 } else if p.prev == y {
434 p.prev = x
435 } else {
436 if p.next != y {
437 throw("semaRoot rotateRight")
439 p.next = x
443 // notifyList is a ticket-based notification list used to implement sync.Cond.
445 // It must be kept in sync with the sync package.
446 type notifyList struct {
447 // wait is the ticket number of the next waiter. It is atomically
448 // incremented outside the lock.
449 wait uint32
451 // notify is the ticket number of the next waiter to be notified. It can
452 // be read outside the lock, but is only written to with lock held.
454 // Both wait & notify can wrap around, and such cases will be correctly
455 // handled as long as their "unwrapped" difference is bounded by 2^31.
456 // For this not to be the case, we'd need to have 2^31+ goroutines
457 // blocked on the same condvar, which is currently not possible.
458 notify uint32
460 // List of parked waiters.
461 lock mutex
462 head *sudog
463 tail *sudog
466 // less checks if a < b, considering a & b running counts that may overflow the
467 // 32-bit range, and that their "unwrapped" difference is always less than 2^31.
468 func less(a, b uint32) bool {
469 return int32(a-b) < 0
472 // notifyListAdd adds the caller to a notify list such that it can receive
473 // notifications. The caller must eventually call notifyListWait to wait for
474 // such a notification, passing the returned ticket number.
475 //go:linkname notifyListAdd sync.runtime_notifyListAdd
476 func notifyListAdd(l *notifyList) uint32 {
477 // This may be called concurrently, for example, when called from
478 // sync.Cond.Wait while holding a RWMutex in read mode.
479 return atomic.Xadd(&l.wait, 1) - 1
482 // notifyListWait waits for a notification. If one has been sent since
483 // notifyListAdd was called, it returns immediately. Otherwise, it blocks.
484 //go:linkname notifyListWait sync.runtime_notifyListWait
485 func notifyListWait(l *notifyList, t uint32) {
486 lock(&l.lock)
488 // Return right away if this ticket has already been notified.
489 if less(t, l.notify) {
490 unlock(&l.lock)
491 return
494 // Enqueue itself.
495 s := acquireSudog()
496 s.g = getg()
497 s.ticket = t
498 s.releasetime = 0
499 t0 := int64(0)
500 if blockprofilerate > 0 {
501 t0 = cputicks()
502 s.releasetime = -1
504 if l.tail == nil {
505 l.head = s
506 } else {
507 l.tail.next = s
509 l.tail = s
510 goparkunlock(&l.lock, waitReasonSyncCondWait, traceEvGoBlockCond, 3)
511 if t0 != 0 {
512 blockevent(s.releasetime-t0, 2)
514 releaseSudog(s)
517 // notifyListNotifyAll notifies all entries in the list.
518 //go:linkname notifyListNotifyAll sync.runtime_notifyListNotifyAll
519 func notifyListNotifyAll(l *notifyList) {
520 // Fast-path: if there are no new waiters since the last notification
521 // we don't need to acquire the lock.
522 if atomic.Load(&l.wait) == atomic.Load(&l.notify) {
523 return
526 // Pull the list out into a local variable, waiters will be readied
527 // outside the lock.
528 lock(&l.lock)
529 s := l.head
530 l.head = nil
531 l.tail = nil
533 // Update the next ticket to be notified. We can set it to the current
534 // value of wait because any previous waiters are already in the list
535 // or will notice that they have already been notified when trying to
536 // add themselves to the list.
537 atomic.Store(&l.notify, atomic.Load(&l.wait))
538 unlock(&l.lock)
540 // Go through the local list and ready all waiters.
541 for s != nil {
542 next := s.next
543 s.next = nil
544 readyWithTime(s, 4)
545 s = next
549 // notifyListNotifyOne notifies one entry in the list.
550 //go:linkname notifyListNotifyOne sync.runtime_notifyListNotifyOne
551 func notifyListNotifyOne(l *notifyList) {
552 // Fast-path: if there are no new waiters since the last notification
553 // we don't need to acquire the lock at all.
554 if atomic.Load(&l.wait) == atomic.Load(&l.notify) {
555 return
558 lock(&l.lock)
560 // Re-check under the lock if we need to do anything.
561 t := l.notify
562 if t == atomic.Load(&l.wait) {
563 unlock(&l.lock)
564 return
567 // Update the next notify ticket number.
568 atomic.Store(&l.notify, t+1)
570 // Try to find the g that needs to be notified.
571 // If it hasn't made it to the list yet we won't find it,
572 // but it won't park itself once it sees the new notify number.
574 // This scan looks linear but essentially always stops quickly.
575 // Because g's queue separately from taking numbers,
576 // there may be minor reorderings in the list, but we
577 // expect the g we're looking for to be near the front.
578 // The g has others in front of it on the list only to the
579 // extent that it lost the race, so the iteration will not
580 // be too long. This applies even when the g is missing:
581 // it hasn't yet gotten to sleep and has lost the race to
582 // the (few) other g's that we find on the list.
583 for p, s := (*sudog)(nil), l.head; s != nil; p, s = s, s.next {
584 if s.ticket == t {
585 n := s.next
586 if p != nil {
587 p.next = n
588 } else {
589 l.head = n
591 if n == nil {
592 l.tail = p
594 unlock(&l.lock)
595 s.next = nil
596 readyWithTime(s, 4)
597 return
600 unlock(&l.lock)
603 //go:linkname notifyListCheck sync.runtime_notifyListCheck
604 func notifyListCheck(sz uintptr) {
605 if sz != unsafe.Sizeof(notifyList{}) {
606 print("runtime: bad notifyList size - sync=", sz, " runtime=", unsafe.Sizeof(notifyList{}), "\n")
607 throw("bad notifyList size")
611 //go:linkname sync_nanotime sync.runtime_nanotime
612 func sync_nanotime() int64 {
613 return nanotime()