libgo: update to Go 1.11
[official-gcc.git] / libgo / go / crypto / elliptic / p224.go
blob2ea63f3f0c0577677464a6194670a3fc8df91791
1 // Copyright 2012 The Go Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style
3 // license that can be found in the LICENSE file.
5 package elliptic
7 // This is a constant-time, 32-bit implementation of P224. See FIPS 186-3,
8 // section D.2.2.
9 //
10 // See https://www.imperialviolet.org/2010/12/04/ecc.html ([1]) for background.
12 import (
13 "math/big"
16 var p224 p224Curve
18 type p224Curve struct {
19 *CurveParams
20 gx, gy, b p224FieldElement
23 func initP224() {
24 // See FIPS 186-3, section D.2.2
25 p224.CurveParams = &CurveParams{Name: "P-224"}
26 p224.P, _ = new(big.Int).SetString("26959946667150639794667015087019630673557916260026308143510066298881", 10)
27 p224.N, _ = new(big.Int).SetString("26959946667150639794667015087019625940457807714424391721682722368061", 10)
28 p224.B, _ = new(big.Int).SetString("b4050a850c04b3abf54132565044b0b7d7bfd8ba270b39432355ffb4", 16)
29 p224.Gx, _ = new(big.Int).SetString("b70e0cbd6bb4bf7f321390b94a03c1d356c21122343280d6115c1d21", 16)
30 p224.Gy, _ = new(big.Int).SetString("bd376388b5f723fb4c22dfe6cd4375a05a07476444d5819985007e34", 16)
31 p224.BitSize = 224
33 p224FromBig(&p224.gx, p224.Gx)
34 p224FromBig(&p224.gy, p224.Gy)
35 p224FromBig(&p224.b, p224.B)
38 // P224 returns a Curve which implements P-224 (see FIPS 186-3, section D.2.2).
40 // The cryptographic operations are implemented using constant-time algorithms.
41 func P224() Curve {
42 initonce.Do(initAll)
43 return p224
46 func (curve p224Curve) Params() *CurveParams {
47 return curve.CurveParams
50 func (curve p224Curve) IsOnCurve(bigX, bigY *big.Int) bool {
51 var x, y p224FieldElement
52 p224FromBig(&x, bigX)
53 p224FromBig(&y, bigY)
55 // y² = x³ - 3x + b
56 var tmp p224LargeFieldElement
57 var x3 p224FieldElement
58 p224Square(&x3, &x, &tmp)
59 p224Mul(&x3, &x3, &x, &tmp)
61 for i := 0; i < 8; i++ {
62 x[i] *= 3
64 p224Sub(&x3, &x3, &x)
65 p224Reduce(&x3)
66 p224Add(&x3, &x3, &curve.b)
67 p224Contract(&x3, &x3)
69 p224Square(&y, &y, &tmp)
70 p224Contract(&y, &y)
72 for i := 0; i < 8; i++ {
73 if y[i] != x3[i] {
74 return false
77 return true
80 func (p224Curve) Add(bigX1, bigY1, bigX2, bigY2 *big.Int) (x, y *big.Int) {
81 var x1, y1, z1, x2, y2, z2, x3, y3, z3 p224FieldElement
83 p224FromBig(&x1, bigX1)
84 p224FromBig(&y1, bigY1)
85 if bigX1.Sign() != 0 || bigY1.Sign() != 0 {
86 z1[0] = 1
88 p224FromBig(&x2, bigX2)
89 p224FromBig(&y2, bigY2)
90 if bigX2.Sign() != 0 || bigY2.Sign() != 0 {
91 z2[0] = 1
94 p224AddJacobian(&x3, &y3, &z3, &x1, &y1, &z1, &x2, &y2, &z2)
95 return p224ToAffine(&x3, &y3, &z3)
98 func (p224Curve) Double(bigX1, bigY1 *big.Int) (x, y *big.Int) {
99 var x1, y1, z1, x2, y2, z2 p224FieldElement
101 p224FromBig(&x1, bigX1)
102 p224FromBig(&y1, bigY1)
103 z1[0] = 1
105 p224DoubleJacobian(&x2, &y2, &z2, &x1, &y1, &z1)
106 return p224ToAffine(&x2, &y2, &z2)
109 func (p224Curve) ScalarMult(bigX1, bigY1 *big.Int, scalar []byte) (x, y *big.Int) {
110 var x1, y1, z1, x2, y2, z2 p224FieldElement
112 p224FromBig(&x1, bigX1)
113 p224FromBig(&y1, bigY1)
114 z1[0] = 1
116 p224ScalarMult(&x2, &y2, &z2, &x1, &y1, &z1, scalar)
117 return p224ToAffine(&x2, &y2, &z2)
120 func (curve p224Curve) ScalarBaseMult(scalar []byte) (x, y *big.Int) {
121 var z1, x2, y2, z2 p224FieldElement
123 z1[0] = 1
124 p224ScalarMult(&x2, &y2, &z2, &curve.gx, &curve.gy, &z1, scalar)
125 return p224ToAffine(&x2, &y2, &z2)
128 // Field element functions.
130 // The field that we're dealing with is ℤ/pℤ where p = 2**224 - 2**96 + 1.
132 // Field elements are represented by a FieldElement, which is a typedef to an
133 // array of 8 uint32's. The value of a FieldElement, a, is:
134 // a[0] + 2**28·a[1] + 2**56·a[1] + ... + 2**196·a[7]
136 // Using 28-bit limbs means that there's only 4 bits of headroom, which is less
137 // than we would really like. But it has the useful feature that we hit 2**224
138 // exactly, making the reflections during a reduce much nicer.
139 type p224FieldElement [8]uint32
141 // p224P is the order of the field, represented as a p224FieldElement.
142 var p224P = [8]uint32{1, 0, 0, 0xffff000, 0xfffffff, 0xfffffff, 0xfffffff, 0xfffffff}
144 // p224IsZero returns 1 if a == 0 mod p and 0 otherwise.
146 // a[i] < 2**29
147 func p224IsZero(a *p224FieldElement) uint32 {
148 // Since a p224FieldElement contains 224 bits there are two possible
149 // representations of 0: 0 and p.
150 var minimal p224FieldElement
151 p224Contract(&minimal, a)
153 var isZero, isP uint32
154 for i, v := range minimal {
155 isZero |= v
156 isP |= v - p224P[i]
159 // If either isZero or isP is 0, then we should return 1.
160 isZero |= isZero >> 16
161 isZero |= isZero >> 8
162 isZero |= isZero >> 4
163 isZero |= isZero >> 2
164 isZero |= isZero >> 1
166 isP |= isP >> 16
167 isP |= isP >> 8
168 isP |= isP >> 4
169 isP |= isP >> 2
170 isP |= isP >> 1
172 // For isZero and isP, the LSB is 0 iff all the bits are zero.
173 result := isZero & isP
174 result = (^result) & 1
176 return result
179 // p224Add computes *out = a+b
181 // a[i] + b[i] < 2**32
182 func p224Add(out, a, b *p224FieldElement) {
183 for i := 0; i < 8; i++ {
184 out[i] = a[i] + b[i]
188 const two31p3 = 1<<31 + 1<<3
189 const two31m3 = 1<<31 - 1<<3
190 const two31m15m3 = 1<<31 - 1<<15 - 1<<3
192 // p224ZeroModP31 is 0 mod p where bit 31 is set in all limbs so that we can
193 // subtract smaller amounts without underflow. See the section "Subtraction" in
194 // [1] for reasoning.
195 var p224ZeroModP31 = []uint32{two31p3, two31m3, two31m3, two31m15m3, two31m3, two31m3, two31m3, two31m3}
197 // p224Sub computes *out = a-b
199 // a[i], b[i] < 2**30
200 // out[i] < 2**32
201 func p224Sub(out, a, b *p224FieldElement) {
202 for i := 0; i < 8; i++ {
203 out[i] = a[i] + p224ZeroModP31[i] - b[i]
207 // LargeFieldElement also represents an element of the field. The limbs are
208 // still spaced 28-bits apart and in little-endian order. So the limbs are at
209 // 0, 28, 56, ..., 392 bits, each 64-bits wide.
210 type p224LargeFieldElement [15]uint64
212 const two63p35 = 1<<63 + 1<<35
213 const two63m35 = 1<<63 - 1<<35
214 const two63m35m19 = 1<<63 - 1<<35 - 1<<19
216 // p224ZeroModP63 is 0 mod p where bit 63 is set in all limbs. See the section
217 // "Subtraction" in [1] for why.
218 var p224ZeroModP63 = [8]uint64{two63p35, two63m35, two63m35, two63m35, two63m35m19, two63m35, two63m35, two63m35}
220 const bottom12Bits = 0xfff
221 const bottom28Bits = 0xfffffff
223 // p224Mul computes *out = a*b
225 // a[i] < 2**29, b[i] < 2**30 (or vice versa)
226 // out[i] < 2**29
227 func p224Mul(out, a, b *p224FieldElement, tmp *p224LargeFieldElement) {
228 for i := 0; i < 15; i++ {
229 tmp[i] = 0
232 for i := 0; i < 8; i++ {
233 for j := 0; j < 8; j++ {
234 tmp[i+j] += uint64(a[i]) * uint64(b[j])
238 p224ReduceLarge(out, tmp)
241 // Square computes *out = a*a
243 // a[i] < 2**29
244 // out[i] < 2**29
245 func p224Square(out, a *p224FieldElement, tmp *p224LargeFieldElement) {
246 for i := 0; i < 15; i++ {
247 tmp[i] = 0
250 for i := 0; i < 8; i++ {
251 for j := 0; j <= i; j++ {
252 r := uint64(a[i]) * uint64(a[j])
253 if i == j {
254 tmp[i+j] += r
255 } else {
256 tmp[i+j] += r << 1
261 p224ReduceLarge(out, tmp)
264 // ReduceLarge converts a p224LargeFieldElement to a p224FieldElement.
266 // in[i] < 2**62
267 func p224ReduceLarge(out *p224FieldElement, in *p224LargeFieldElement) {
268 for i := 0; i < 8; i++ {
269 in[i] += p224ZeroModP63[i]
272 // Eliminate the coefficients at 2**224 and greater.
273 for i := 14; i >= 8; i-- {
274 in[i-8] -= in[i]
275 in[i-5] += (in[i] & 0xffff) << 12
276 in[i-4] += in[i] >> 16
278 in[8] = 0
279 // in[0..8] < 2**64
281 // As the values become small enough, we start to store them in |out|
282 // and use 32-bit operations.
283 for i := 1; i < 8; i++ {
284 in[i+1] += in[i] >> 28
285 out[i] = uint32(in[i] & bottom28Bits)
287 in[0] -= in[8]
288 out[3] += uint32(in[8]&0xffff) << 12
289 out[4] += uint32(in[8] >> 16)
290 // in[0] < 2**64
291 // out[3] < 2**29
292 // out[4] < 2**29
293 // out[1,2,5..7] < 2**28
295 out[0] = uint32(in[0] & bottom28Bits)
296 out[1] += uint32((in[0] >> 28) & bottom28Bits)
297 out[2] += uint32(in[0] >> 56)
298 // out[0] < 2**28
299 // out[1..4] < 2**29
300 // out[5..7] < 2**28
303 // Reduce reduces the coefficients of a to smaller bounds.
305 // On entry: a[i] < 2**31 + 2**30
306 // On exit: a[i] < 2**29
307 func p224Reduce(a *p224FieldElement) {
308 for i := 0; i < 7; i++ {
309 a[i+1] += a[i] >> 28
310 a[i] &= bottom28Bits
312 top := a[7] >> 28
313 a[7] &= bottom28Bits
315 // top < 2**4
316 mask := top
317 mask |= mask >> 2
318 mask |= mask >> 1
319 mask <<= 31
320 mask = uint32(int32(mask) >> 31)
321 // Mask is all ones if top != 0, all zero otherwise
323 a[0] -= top
324 a[3] += top << 12
326 // We may have just made a[0] negative but, if we did, then we must
327 // have added something to a[3], this it's > 2**12. Therefore we can
328 // carry down to a[0].
329 a[3] -= 1 & mask
330 a[2] += mask & (1<<28 - 1)
331 a[1] += mask & (1<<28 - 1)
332 a[0] += mask & (1 << 28)
335 // p224Invert calculates *out = in**-1 by computing in**(2**224 - 2**96 - 1),
336 // i.e. Fermat's little theorem.
337 func p224Invert(out, in *p224FieldElement) {
338 var f1, f2, f3, f4 p224FieldElement
339 var c p224LargeFieldElement
341 p224Square(&f1, in, &c) // 2
342 p224Mul(&f1, &f1, in, &c) // 2**2 - 1
343 p224Square(&f1, &f1, &c) // 2**3 - 2
344 p224Mul(&f1, &f1, in, &c) // 2**3 - 1
345 p224Square(&f2, &f1, &c) // 2**4 - 2
346 p224Square(&f2, &f2, &c) // 2**5 - 4
347 p224Square(&f2, &f2, &c) // 2**6 - 8
348 p224Mul(&f1, &f1, &f2, &c) // 2**6 - 1
349 p224Square(&f2, &f1, &c) // 2**7 - 2
350 for i := 0; i < 5; i++ { // 2**12 - 2**6
351 p224Square(&f2, &f2, &c)
353 p224Mul(&f2, &f2, &f1, &c) // 2**12 - 1
354 p224Square(&f3, &f2, &c) // 2**13 - 2
355 for i := 0; i < 11; i++ { // 2**24 - 2**12
356 p224Square(&f3, &f3, &c)
358 p224Mul(&f2, &f3, &f2, &c) // 2**24 - 1
359 p224Square(&f3, &f2, &c) // 2**25 - 2
360 for i := 0; i < 23; i++ { // 2**48 - 2**24
361 p224Square(&f3, &f3, &c)
363 p224Mul(&f3, &f3, &f2, &c) // 2**48 - 1
364 p224Square(&f4, &f3, &c) // 2**49 - 2
365 for i := 0; i < 47; i++ { // 2**96 - 2**48
366 p224Square(&f4, &f4, &c)
368 p224Mul(&f3, &f3, &f4, &c) // 2**96 - 1
369 p224Square(&f4, &f3, &c) // 2**97 - 2
370 for i := 0; i < 23; i++ { // 2**120 - 2**24
371 p224Square(&f4, &f4, &c)
373 p224Mul(&f2, &f4, &f2, &c) // 2**120 - 1
374 for i := 0; i < 6; i++ { // 2**126 - 2**6
375 p224Square(&f2, &f2, &c)
377 p224Mul(&f1, &f1, &f2, &c) // 2**126 - 1
378 p224Square(&f1, &f1, &c) // 2**127 - 2
379 p224Mul(&f1, &f1, in, &c) // 2**127 - 1
380 for i := 0; i < 97; i++ { // 2**224 - 2**97
381 p224Square(&f1, &f1, &c)
383 p224Mul(out, &f1, &f3, &c) // 2**224 - 2**96 - 1
386 // p224Contract converts a FieldElement to its unique, minimal form.
388 // On entry, in[i] < 2**29
389 // On exit, in[i] < 2**28
390 func p224Contract(out, in *p224FieldElement) {
391 copy(out[:], in[:])
393 for i := 0; i < 7; i++ {
394 out[i+1] += out[i] >> 28
395 out[i] &= bottom28Bits
397 top := out[7] >> 28
398 out[7] &= bottom28Bits
400 out[0] -= top
401 out[3] += top << 12
403 // We may just have made out[i] negative. So we carry down. If we made
404 // out[0] negative then we know that out[3] is sufficiently positive
405 // because we just added to it.
406 for i := 0; i < 3; i++ {
407 mask := uint32(int32(out[i]) >> 31)
408 out[i] += (1 << 28) & mask
409 out[i+1] -= 1 & mask
412 // We might have pushed out[3] over 2**28 so we perform another, partial,
413 // carry chain.
414 for i := 3; i < 7; i++ {
415 out[i+1] += out[i] >> 28
416 out[i] &= bottom28Bits
418 top = out[7] >> 28
419 out[7] &= bottom28Bits
421 // Eliminate top while maintaining the same value mod p.
422 out[0] -= top
423 out[3] += top << 12
425 // There are two cases to consider for out[3]:
426 // 1) The first time that we eliminated top, we didn't push out[3] over
427 // 2**28. In this case, the partial carry chain didn't change any values
428 // and top is zero.
429 // 2) We did push out[3] over 2**28 the first time that we eliminated top.
430 // The first value of top was in [0..16), therefore, prior to eliminating
431 // the first top, 0xfff1000 <= out[3] <= 0xfffffff. Therefore, after
432 // overflowing and being reduced by the second carry chain, out[3] <=
433 // 0xf000. Thus it cannot have overflowed when we eliminated top for the
434 // second time.
436 // Again, we may just have made out[0] negative, so do the same carry down.
437 // As before, if we made out[0] negative then we know that out[3] is
438 // sufficiently positive.
439 for i := 0; i < 3; i++ {
440 mask := uint32(int32(out[i]) >> 31)
441 out[i] += (1 << 28) & mask
442 out[i+1] -= 1 & mask
445 // Now we see if the value is >= p and, if so, subtract p.
447 // First we build a mask from the top four limbs, which must all be
448 // equal to bottom28Bits if the whole value is >= p. If top4AllOnes
449 // ends up with any zero bits in the bottom 28 bits, then this wasn't
450 // true.
451 top4AllOnes := uint32(0xffffffff)
452 for i := 4; i < 8; i++ {
453 top4AllOnes &= out[i]
455 top4AllOnes |= 0xf0000000
456 // Now we replicate any zero bits to all the bits in top4AllOnes.
457 top4AllOnes &= top4AllOnes >> 16
458 top4AllOnes &= top4AllOnes >> 8
459 top4AllOnes &= top4AllOnes >> 4
460 top4AllOnes &= top4AllOnes >> 2
461 top4AllOnes &= top4AllOnes >> 1
462 top4AllOnes = uint32(int32(top4AllOnes<<31) >> 31)
464 // Now we test whether the bottom three limbs are non-zero.
465 bottom3NonZero := out[0] | out[1] | out[2]
466 bottom3NonZero |= bottom3NonZero >> 16
467 bottom3NonZero |= bottom3NonZero >> 8
468 bottom3NonZero |= bottom3NonZero >> 4
469 bottom3NonZero |= bottom3NonZero >> 2
470 bottom3NonZero |= bottom3NonZero >> 1
471 bottom3NonZero = uint32(int32(bottom3NonZero<<31) >> 31)
473 // Everything depends on the value of out[3].
474 // If it's > 0xffff000 and top4AllOnes != 0 then the whole value is >= p
475 // If it's = 0xffff000 and top4AllOnes != 0 and bottom3NonZero != 0,
476 // then the whole value is >= p
477 // If it's < 0xffff000, then the whole value is < p
478 n := out[3] - 0xffff000
479 out3Equal := n
480 out3Equal |= out3Equal >> 16
481 out3Equal |= out3Equal >> 8
482 out3Equal |= out3Equal >> 4
483 out3Equal |= out3Equal >> 2
484 out3Equal |= out3Equal >> 1
485 out3Equal = ^uint32(int32(out3Equal<<31) >> 31)
487 // If out[3] > 0xffff000 then n's MSB will be zero.
488 out3GT := ^uint32(int32(n) >> 31)
490 mask := top4AllOnes & ((out3Equal & bottom3NonZero) | out3GT)
491 out[0] -= 1 & mask
492 out[3] -= 0xffff000 & mask
493 out[4] -= 0xfffffff & mask
494 out[5] -= 0xfffffff & mask
495 out[6] -= 0xfffffff & mask
496 out[7] -= 0xfffffff & mask
499 // Group element functions.
501 // These functions deal with group elements. The group is an elliptic curve
502 // group with a = -3 defined in FIPS 186-3, section D.2.2.
504 // p224AddJacobian computes *out = a+b where a != b.
505 func p224AddJacobian(x3, y3, z3, x1, y1, z1, x2, y2, z2 *p224FieldElement) {
506 // See https://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#addition-p224Add-2007-bl
507 var z1z1, z2z2, u1, u2, s1, s2, h, i, j, r, v p224FieldElement
508 var c p224LargeFieldElement
510 z1IsZero := p224IsZero(z1)
511 z2IsZero := p224IsZero(z2)
513 // Z1Z1 = Z1²
514 p224Square(&z1z1, z1, &c)
515 // Z2Z2 = Z2²
516 p224Square(&z2z2, z2, &c)
517 // U1 = X1*Z2Z2
518 p224Mul(&u1, x1, &z2z2, &c)
519 // U2 = X2*Z1Z1
520 p224Mul(&u2, x2, &z1z1, &c)
521 // S1 = Y1*Z2*Z2Z2
522 p224Mul(&s1, z2, &z2z2, &c)
523 p224Mul(&s1, y1, &s1, &c)
524 // S2 = Y2*Z1*Z1Z1
525 p224Mul(&s2, z1, &z1z1, &c)
526 p224Mul(&s2, y2, &s2, &c)
527 // H = U2-U1
528 p224Sub(&h, &u2, &u1)
529 p224Reduce(&h)
530 xEqual := p224IsZero(&h)
531 // I = (2*H)²
532 for j := 0; j < 8; j++ {
533 i[j] = h[j] << 1
535 p224Reduce(&i)
536 p224Square(&i, &i, &c)
537 // J = H*I
538 p224Mul(&j, &h, &i, &c)
539 // r = 2*(S2-S1)
540 p224Sub(&r, &s2, &s1)
541 p224Reduce(&r)
542 yEqual := p224IsZero(&r)
543 if xEqual == 1 && yEqual == 1 && z1IsZero == 0 && z2IsZero == 0 {
544 p224DoubleJacobian(x3, y3, z3, x1, y1, z1)
545 return
547 for i := 0; i < 8; i++ {
548 r[i] <<= 1
550 p224Reduce(&r)
551 // V = U1*I
552 p224Mul(&v, &u1, &i, &c)
553 // Z3 = ((Z1+Z2)²-Z1Z1-Z2Z2)*H
554 p224Add(&z1z1, &z1z1, &z2z2)
555 p224Add(&z2z2, z1, z2)
556 p224Reduce(&z2z2)
557 p224Square(&z2z2, &z2z2, &c)
558 p224Sub(z3, &z2z2, &z1z1)
559 p224Reduce(z3)
560 p224Mul(z3, z3, &h, &c)
561 // X3 = r²-J-2*V
562 for i := 0; i < 8; i++ {
563 z1z1[i] = v[i] << 1
565 p224Add(&z1z1, &j, &z1z1)
566 p224Reduce(&z1z1)
567 p224Square(x3, &r, &c)
568 p224Sub(x3, x3, &z1z1)
569 p224Reduce(x3)
570 // Y3 = r*(V-X3)-2*S1*J
571 for i := 0; i < 8; i++ {
572 s1[i] <<= 1
574 p224Mul(&s1, &s1, &j, &c)
575 p224Sub(&z1z1, &v, x3)
576 p224Reduce(&z1z1)
577 p224Mul(&z1z1, &z1z1, &r, &c)
578 p224Sub(y3, &z1z1, &s1)
579 p224Reduce(y3)
581 p224CopyConditional(x3, x2, z1IsZero)
582 p224CopyConditional(x3, x1, z2IsZero)
583 p224CopyConditional(y3, y2, z1IsZero)
584 p224CopyConditional(y3, y1, z2IsZero)
585 p224CopyConditional(z3, z2, z1IsZero)
586 p224CopyConditional(z3, z1, z2IsZero)
589 // p224DoubleJacobian computes *out = a+a.
590 func p224DoubleJacobian(x3, y3, z3, x1, y1, z1 *p224FieldElement) {
591 var delta, gamma, beta, alpha, t p224FieldElement
592 var c p224LargeFieldElement
594 p224Square(&delta, z1, &c)
595 p224Square(&gamma, y1, &c)
596 p224Mul(&beta, x1, &gamma, &c)
598 // alpha = 3*(X1-delta)*(X1+delta)
599 p224Add(&t, x1, &delta)
600 for i := 0; i < 8; i++ {
601 t[i] += t[i] << 1
603 p224Reduce(&t)
604 p224Sub(&alpha, x1, &delta)
605 p224Reduce(&alpha)
606 p224Mul(&alpha, &alpha, &t, &c)
608 // Z3 = (Y1+Z1)²-gamma-delta
609 p224Add(z3, y1, z1)
610 p224Reduce(z3)
611 p224Square(z3, z3, &c)
612 p224Sub(z3, z3, &gamma)
613 p224Reduce(z3)
614 p224Sub(z3, z3, &delta)
615 p224Reduce(z3)
617 // X3 = alpha²-8*beta
618 for i := 0; i < 8; i++ {
619 delta[i] = beta[i] << 3
621 p224Reduce(&delta)
622 p224Square(x3, &alpha, &c)
623 p224Sub(x3, x3, &delta)
624 p224Reduce(x3)
626 // Y3 = alpha*(4*beta-X3)-8*gamma²
627 for i := 0; i < 8; i++ {
628 beta[i] <<= 2
630 p224Sub(&beta, &beta, x3)
631 p224Reduce(&beta)
632 p224Square(&gamma, &gamma, &c)
633 for i := 0; i < 8; i++ {
634 gamma[i] <<= 3
636 p224Reduce(&gamma)
637 p224Mul(y3, &alpha, &beta, &c)
638 p224Sub(y3, y3, &gamma)
639 p224Reduce(y3)
642 // p224CopyConditional sets *out = *in iff the least-significant-bit of control
643 // is true, and it runs in constant time.
644 func p224CopyConditional(out, in *p224FieldElement, control uint32) {
645 control <<= 31
646 control = uint32(int32(control) >> 31)
648 for i := 0; i < 8; i++ {
649 out[i] ^= (out[i] ^ in[i]) & control
653 func p224ScalarMult(outX, outY, outZ, inX, inY, inZ *p224FieldElement, scalar []byte) {
654 var xx, yy, zz p224FieldElement
655 for i := 0; i < 8; i++ {
656 outX[i] = 0
657 outY[i] = 0
658 outZ[i] = 0
661 for _, byte := range scalar {
662 for bitNum := uint(0); bitNum < 8; bitNum++ {
663 p224DoubleJacobian(outX, outY, outZ, outX, outY, outZ)
664 bit := uint32((byte >> (7 - bitNum)) & 1)
665 p224AddJacobian(&xx, &yy, &zz, inX, inY, inZ, outX, outY, outZ)
666 p224CopyConditional(outX, &xx, bit)
667 p224CopyConditional(outY, &yy, bit)
668 p224CopyConditional(outZ, &zz, bit)
673 // p224ToAffine converts from Jacobian to affine form.
674 func p224ToAffine(x, y, z *p224FieldElement) (*big.Int, *big.Int) {
675 var zinv, zinvsq, outx, outy p224FieldElement
676 var tmp p224LargeFieldElement
678 if isPointAtInfinity := p224IsZero(z); isPointAtInfinity == 1 {
679 return new(big.Int), new(big.Int)
682 p224Invert(&zinv, z)
683 p224Square(&zinvsq, &zinv, &tmp)
684 p224Mul(x, x, &zinvsq, &tmp)
685 p224Mul(&zinvsq, &zinvsq, &zinv, &tmp)
686 p224Mul(y, y, &zinvsq, &tmp)
688 p224Contract(&outx, x)
689 p224Contract(&outy, y)
690 return p224ToBig(&outx), p224ToBig(&outy)
693 // get28BitsFromEnd returns the least-significant 28 bits from buf>>shift,
694 // where buf is interpreted as a big-endian number.
695 func get28BitsFromEnd(buf []byte, shift uint) (uint32, []byte) {
696 var ret uint32
698 for i := uint(0); i < 4; i++ {
699 var b byte
700 if l := len(buf); l > 0 {
701 b = buf[l-1]
702 // We don't remove the byte if we're about to return and we're not
703 // reading all of it.
704 if i != 3 || shift == 4 {
705 buf = buf[:l-1]
708 ret |= uint32(b) << (8 * i) >> shift
710 ret &= bottom28Bits
711 return ret, buf
714 // p224FromBig sets *out = *in.
715 func p224FromBig(out *p224FieldElement, in *big.Int) {
716 bytes := in.Bytes()
717 out[0], bytes = get28BitsFromEnd(bytes, 0)
718 out[1], bytes = get28BitsFromEnd(bytes, 4)
719 out[2], bytes = get28BitsFromEnd(bytes, 0)
720 out[3], bytes = get28BitsFromEnd(bytes, 4)
721 out[4], bytes = get28BitsFromEnd(bytes, 0)
722 out[5], bytes = get28BitsFromEnd(bytes, 4)
723 out[6], bytes = get28BitsFromEnd(bytes, 0)
724 out[7], bytes = get28BitsFromEnd(bytes, 4)
727 // p224ToBig returns in as a big.Int.
728 func p224ToBig(in *p224FieldElement) *big.Int {
729 var buf [28]byte
730 buf[27] = byte(in[0])
731 buf[26] = byte(in[0] >> 8)
732 buf[25] = byte(in[0] >> 16)
733 buf[24] = byte(((in[0] >> 24) & 0x0f) | (in[1]<<4)&0xf0)
735 buf[23] = byte(in[1] >> 4)
736 buf[22] = byte(in[1] >> 12)
737 buf[21] = byte(in[1] >> 20)
739 buf[20] = byte(in[2])
740 buf[19] = byte(in[2] >> 8)
741 buf[18] = byte(in[2] >> 16)
742 buf[17] = byte(((in[2] >> 24) & 0x0f) | (in[3]<<4)&0xf0)
744 buf[16] = byte(in[3] >> 4)
745 buf[15] = byte(in[3] >> 12)
746 buf[14] = byte(in[3] >> 20)
748 buf[13] = byte(in[4])
749 buf[12] = byte(in[4] >> 8)
750 buf[11] = byte(in[4] >> 16)
751 buf[10] = byte(((in[4] >> 24) & 0x0f) | (in[5]<<4)&0xf0)
753 buf[9] = byte(in[5] >> 4)
754 buf[8] = byte(in[5] >> 12)
755 buf[7] = byte(in[5] >> 20)
757 buf[6] = byte(in[6])
758 buf[5] = byte(in[6] >> 8)
759 buf[4] = byte(in[6] >> 16)
760 buf[3] = byte(((in[6] >> 24) & 0x0f) | (in[7]<<4)&0xf0)
762 buf[2] = byte(in[7] >> 4)
763 buf[1] = byte(in[7] >> 12)
764 buf[0] = byte(in[7] >> 20)
766 return new(big.Int).SetBytes(buf[:])