[AArch64] Fix -mlow-precision-div (PR 86838)
[official-gcc.git] / gcc / ada / sem_res.adb
blobddfa5430a7b7a0effd9b055c1aa57c421b77b766
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ R E S --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2018, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
26 with Atree; use Atree;
27 with Checks; use Checks;
28 with Debug; use Debug;
29 with Debug_A; use Debug_A;
30 with Einfo; use Einfo;
31 with Errout; use Errout;
32 with Expander; use Expander;
33 with Exp_Disp; use Exp_Disp;
34 with Exp_Ch6; use Exp_Ch6;
35 with Exp_Ch7; use Exp_Ch7;
36 with Exp_Tss; use Exp_Tss;
37 with Exp_Util; use Exp_Util;
38 with Freeze; use Freeze;
39 with Ghost; use Ghost;
40 with Inline; use Inline;
41 with Itypes; use Itypes;
42 with Lib; use Lib;
43 with Lib.Xref; use Lib.Xref;
44 with Namet; use Namet;
45 with Nmake; use Nmake;
46 with Nlists; use Nlists;
47 with Opt; use Opt;
48 with Output; use Output;
49 with Par_SCO; use Par_SCO;
50 with Restrict; use Restrict;
51 with Rident; use Rident;
52 with Rtsfind; use Rtsfind;
53 with Sem; use Sem;
54 with Sem_Aux; use Sem_Aux;
55 with Sem_Aggr; use Sem_Aggr;
56 with Sem_Attr; use Sem_Attr;
57 with Sem_Cat; use Sem_Cat;
58 with Sem_Ch4; use Sem_Ch4;
59 with Sem_Ch3; use Sem_Ch3;
60 with Sem_Ch6; use Sem_Ch6;
61 with Sem_Ch8; use Sem_Ch8;
62 with Sem_Ch13; use Sem_Ch13;
63 with Sem_Dim; use Sem_Dim;
64 with Sem_Disp; use Sem_Disp;
65 with Sem_Dist; use Sem_Dist;
66 with Sem_Elab; use Sem_Elab;
67 with Sem_Elim; use Sem_Elim;
68 with Sem_Eval; use Sem_Eval;
69 with Sem_Intr; use Sem_Intr;
70 with Sem_Util; use Sem_Util;
71 with Targparm; use Targparm;
72 with Sem_Type; use Sem_Type;
73 with Sem_Warn; use Sem_Warn;
74 with Sinfo; use Sinfo;
75 with Sinfo.CN; use Sinfo.CN;
76 with Snames; use Snames;
77 with Stand; use Stand;
78 with Stringt; use Stringt;
79 with Style; use Style;
80 with Tbuild; use Tbuild;
81 with Uintp; use Uintp;
82 with Urealp; use Urealp;
84 package body Sem_Res is
86 -----------------------
87 -- Local Subprograms --
88 -----------------------
90 -- Second pass (top-down) type checking and overload resolution procedures
91 -- Typ is the type required by context. These procedures propagate the
92 -- type information recursively to the descendants of N. If the node is not
93 -- overloaded, its Etype is established in the first pass. If overloaded,
94 -- the Resolve routines set the correct type. For arithmetic operators, the
95 -- Etype is the base type of the context.
97 -- Note that Resolve_Attribute is separated off in Sem_Attr
99 procedure Check_Discriminant_Use (N : Node_Id);
100 -- Enforce the restrictions on the use of discriminants when constraining
101 -- a component of a discriminated type (record or concurrent type).
103 procedure Check_For_Visible_Operator (N : Node_Id; T : Entity_Id);
104 -- Given a node for an operator associated with type T, check that the
105 -- operator is visible. Operators all of whose operands are universal must
106 -- be checked for visibility during resolution because their type is not
107 -- determinable based on their operands.
109 procedure Check_Fully_Declared_Prefix
110 (Typ : Entity_Id;
111 Pref : Node_Id);
112 -- Check that the type of the prefix of a dereference is not incomplete
114 function Check_Infinite_Recursion (N : Node_Id) return Boolean;
115 -- Given a call node, N, which is known to occur immediately within the
116 -- subprogram being called, determines whether it is a detectable case of
117 -- an infinite recursion, and if so, outputs appropriate messages. Returns
118 -- True if an infinite recursion is detected, and False otherwise.
120 procedure Check_No_Direct_Boolean_Operators (N : Node_Id);
121 -- N is the node for a logical operator. If the operator is predefined, and
122 -- the root type of the operands is Standard.Boolean, then a check is made
123 -- for restriction No_Direct_Boolean_Operators. This procedure also handles
124 -- the style check for Style_Check_Boolean_And_Or.
126 function Is_Atomic_Ref_With_Address (N : Node_Id) return Boolean;
127 -- N is either an indexed component or a selected component. This function
128 -- returns true if the prefix refers to an object that has an address
129 -- clause (the case in which we may want to issue a warning).
131 function Is_Definite_Access_Type (E : Entity_Id) return Boolean;
132 -- Determine whether E is an access type declared by an access declaration,
133 -- and not an (anonymous) allocator type.
135 function Is_Predefined_Op (Nam : Entity_Id) return Boolean;
136 -- Utility to check whether the entity for an operator is a predefined
137 -- operator, in which case the expression is left as an operator in the
138 -- tree (else it is rewritten into a call). An instance of an intrinsic
139 -- conversion operation may be given an operator name, but is not treated
140 -- like an operator. Note that an operator that is an imported back-end
141 -- builtin has convention Intrinsic, but is expected to be rewritten into
142 -- a call, so such an operator is not treated as predefined by this
143 -- predicate.
145 procedure Preanalyze_And_Resolve
146 (N : Node_Id;
147 T : Entity_Id;
148 With_Freezing : Boolean);
149 -- Subsidiary of public versions of Preanalyze_And_Resolve.
151 procedure Replace_Actual_Discriminants (N : Node_Id; Default : Node_Id);
152 -- If a default expression in entry call N depends on the discriminants
153 -- of the task, it must be replaced with a reference to the discriminant
154 -- of the task being called.
156 procedure Resolve_Op_Concat_Arg
157 (N : Node_Id;
158 Arg : Node_Id;
159 Typ : Entity_Id;
160 Is_Comp : Boolean);
161 -- Internal procedure for Resolve_Op_Concat to resolve one operand of
162 -- concatenation operator. The operand is either of the array type or of
163 -- the component type. If the operand is an aggregate, and the component
164 -- type is composite, this is ambiguous if component type has aggregates.
166 procedure Resolve_Op_Concat_First (N : Node_Id; Typ : Entity_Id);
167 -- Does the first part of the work of Resolve_Op_Concat
169 procedure Resolve_Op_Concat_Rest (N : Node_Id; Typ : Entity_Id);
170 -- Does the "rest" of the work of Resolve_Op_Concat, after the left operand
171 -- has been resolved. See Resolve_Op_Concat for details.
173 procedure Resolve_Allocator (N : Node_Id; Typ : Entity_Id);
174 procedure Resolve_Arithmetic_Op (N : Node_Id; Typ : Entity_Id);
175 procedure Resolve_Call (N : Node_Id; Typ : Entity_Id);
176 procedure Resolve_Case_Expression (N : Node_Id; Typ : Entity_Id);
177 procedure Resolve_Character_Literal (N : Node_Id; Typ : Entity_Id);
178 procedure Resolve_Comparison_Op (N : Node_Id; Typ : Entity_Id);
179 procedure Resolve_Entity_Name (N : Node_Id; Typ : Entity_Id);
180 procedure Resolve_Equality_Op (N : Node_Id; Typ : Entity_Id);
181 procedure Resolve_Explicit_Dereference (N : Node_Id; Typ : Entity_Id);
182 procedure Resolve_Expression_With_Actions (N : Node_Id; Typ : Entity_Id);
183 procedure Resolve_If_Expression (N : Node_Id; Typ : Entity_Id);
184 procedure Resolve_Generalized_Indexing (N : Node_Id; Typ : Entity_Id);
185 procedure Resolve_Indexed_Component (N : Node_Id; Typ : Entity_Id);
186 procedure Resolve_Integer_Literal (N : Node_Id; Typ : Entity_Id);
187 procedure Resolve_Logical_Op (N : Node_Id; Typ : Entity_Id);
188 procedure Resolve_Membership_Op (N : Node_Id; Typ : Entity_Id);
189 procedure Resolve_Null (N : Node_Id; Typ : Entity_Id);
190 procedure Resolve_Operator_Symbol (N : Node_Id; Typ : Entity_Id);
191 procedure Resolve_Op_Concat (N : Node_Id; Typ : Entity_Id);
192 procedure Resolve_Op_Expon (N : Node_Id; Typ : Entity_Id);
193 procedure Resolve_Op_Not (N : Node_Id; Typ : Entity_Id);
194 procedure Resolve_Qualified_Expression (N : Node_Id; Typ : Entity_Id);
195 procedure Resolve_Raise_Expression (N : Node_Id; Typ : Entity_Id);
196 procedure Resolve_Range (N : Node_Id; Typ : Entity_Id);
197 procedure Resolve_Real_Literal (N : Node_Id; Typ : Entity_Id);
198 procedure Resolve_Reference (N : Node_Id; Typ : Entity_Id);
199 procedure Resolve_Selected_Component (N : Node_Id; Typ : Entity_Id);
200 procedure Resolve_Shift (N : Node_Id; Typ : Entity_Id);
201 procedure Resolve_Short_Circuit (N : Node_Id; Typ : Entity_Id);
202 procedure Resolve_Slice (N : Node_Id; Typ : Entity_Id);
203 procedure Resolve_String_Literal (N : Node_Id; Typ : Entity_Id);
204 procedure Resolve_Target_Name (N : Node_Id; Typ : Entity_Id);
205 procedure Resolve_Type_Conversion (N : Node_Id; Typ : Entity_Id);
206 procedure Resolve_Unary_Op (N : Node_Id; Typ : Entity_Id);
207 procedure Resolve_Unchecked_Expression (N : Node_Id; Typ : Entity_Id);
208 procedure Resolve_Unchecked_Type_Conversion (N : Node_Id; Typ : Entity_Id);
210 function Operator_Kind
211 (Op_Name : Name_Id;
212 Is_Binary : Boolean) return Node_Kind;
213 -- Utility to map the name of an operator into the corresponding Node. Used
214 -- by other node rewriting procedures.
216 procedure Resolve_Actuals (N : Node_Id; Nam : Entity_Id);
217 -- Resolve actuals of call, and add default expressions for missing ones.
218 -- N is the Node_Id for the subprogram call, and Nam is the entity of the
219 -- called subprogram.
221 procedure Resolve_Entry_Call (N : Node_Id; Typ : Entity_Id);
222 -- Called from Resolve_Call, when the prefix denotes an entry or element
223 -- of entry family. Actuals are resolved as for subprograms, and the node
224 -- is rebuilt as an entry call. Also called for protected operations. Typ
225 -- is the context type, which is used when the operation is a protected
226 -- function with no arguments, and the return value is indexed.
228 procedure Resolve_Intrinsic_Operator (N : Node_Id; Typ : Entity_Id);
229 -- A call to a user-defined intrinsic operator is rewritten as a call to
230 -- the corresponding predefined operator, with suitable conversions. Note
231 -- that this applies only for intrinsic operators that denote predefined
232 -- operators, not ones that are intrinsic imports of back-end builtins.
234 procedure Resolve_Intrinsic_Unary_Operator (N : Node_Id; Typ : Entity_Id);
235 -- Ditto, for arithmetic unary operators
237 procedure Rewrite_Operator_As_Call (N : Node_Id; Nam : Entity_Id);
238 -- If an operator node resolves to a call to a user-defined operator,
239 -- rewrite the node as a function call.
241 procedure Make_Call_Into_Operator
242 (N : Node_Id;
243 Typ : Entity_Id;
244 Op_Id : Entity_Id);
245 -- Inverse transformation: if an operator is given in functional notation,
246 -- then after resolving the node, transform into an operator node, so that
247 -- operands are resolved properly. Recall that predefined operators do not
248 -- have a full signature and special resolution rules apply.
250 procedure Rewrite_Renamed_Operator
251 (N : Node_Id;
252 Op : Entity_Id;
253 Typ : Entity_Id);
254 -- An operator can rename another, e.g. in an instantiation. In that
255 -- case, the proper operator node must be constructed and resolved.
257 procedure Set_String_Literal_Subtype (N : Node_Id; Typ : Entity_Id);
258 -- The String_Literal_Subtype is built for all strings that are not
259 -- operands of a static concatenation operation. If the argument is not
260 -- a N_String_Literal node, then the call has no effect.
262 procedure Set_Slice_Subtype (N : Node_Id);
263 -- Build subtype of array type, with the range specified by the slice
265 procedure Simplify_Type_Conversion (N : Node_Id);
266 -- Called after N has been resolved and evaluated, but before range checks
267 -- have been applied. Currently simplifies a combination of floating-point
268 -- to integer conversion and Rounding or Truncation attribute.
270 function Unique_Fixed_Point_Type (N : Node_Id) return Entity_Id;
271 -- A universal_fixed expression in an universal context is unambiguous if
272 -- there is only one applicable fixed point type. Determining whether there
273 -- is only one requires a search over all visible entities, and happens
274 -- only in very pathological cases (see 6115-006).
276 -------------------------
277 -- Ambiguous_Character --
278 -------------------------
280 procedure Ambiguous_Character (C : Node_Id) is
281 E : Entity_Id;
283 begin
284 if Nkind (C) = N_Character_Literal then
285 Error_Msg_N ("ambiguous character literal", C);
287 -- First the ones in Standard
289 Error_Msg_N ("\\possible interpretation: Character!", C);
290 Error_Msg_N ("\\possible interpretation: Wide_Character!", C);
292 -- Include Wide_Wide_Character in Ada 2005 mode
294 if Ada_Version >= Ada_2005 then
295 Error_Msg_N ("\\possible interpretation: Wide_Wide_Character!", C);
296 end if;
298 -- Now any other types that match
300 E := Current_Entity (C);
301 while Present (E) loop
302 Error_Msg_NE ("\\possible interpretation:}!", C, Etype (E));
303 E := Homonym (E);
304 end loop;
305 end if;
306 end Ambiguous_Character;
308 -------------------------
309 -- Analyze_And_Resolve --
310 -------------------------
312 procedure Analyze_And_Resolve (N : Node_Id) is
313 begin
314 Analyze (N);
315 Resolve (N);
316 end Analyze_And_Resolve;
318 procedure Analyze_And_Resolve (N : Node_Id; Typ : Entity_Id) is
319 begin
320 Analyze (N);
321 Resolve (N, Typ);
322 end Analyze_And_Resolve;
324 -- Versions with check(s) suppressed
326 procedure Analyze_And_Resolve
327 (N : Node_Id;
328 Typ : Entity_Id;
329 Suppress : Check_Id)
331 Scop : constant Entity_Id := Current_Scope;
333 begin
334 if Suppress = All_Checks then
335 declare
336 Sva : constant Suppress_Array := Scope_Suppress.Suppress;
337 begin
338 Scope_Suppress.Suppress := (others => True);
339 Analyze_And_Resolve (N, Typ);
340 Scope_Suppress.Suppress := Sva;
341 end;
343 else
344 declare
345 Svg : constant Boolean := Scope_Suppress.Suppress (Suppress);
346 begin
347 Scope_Suppress.Suppress (Suppress) := True;
348 Analyze_And_Resolve (N, Typ);
349 Scope_Suppress.Suppress (Suppress) := Svg;
350 end;
351 end if;
353 if Current_Scope /= Scop
354 and then Scope_Is_Transient
355 then
356 -- This can only happen if a transient scope was created for an inner
357 -- expression, which will be removed upon completion of the analysis
358 -- of an enclosing construct. The transient scope must have the
359 -- suppress status of the enclosing environment, not of this Analyze
360 -- call.
362 Scope_Stack.Table (Scope_Stack.Last).Save_Scope_Suppress :=
363 Scope_Suppress;
364 end if;
365 end Analyze_And_Resolve;
367 procedure Analyze_And_Resolve
368 (N : Node_Id;
369 Suppress : Check_Id)
371 Scop : constant Entity_Id := Current_Scope;
373 begin
374 if Suppress = All_Checks then
375 declare
376 Sva : constant Suppress_Array := Scope_Suppress.Suppress;
377 begin
378 Scope_Suppress.Suppress := (others => True);
379 Analyze_And_Resolve (N);
380 Scope_Suppress.Suppress := Sva;
381 end;
383 else
384 declare
385 Svg : constant Boolean := Scope_Suppress.Suppress (Suppress);
386 begin
387 Scope_Suppress.Suppress (Suppress) := True;
388 Analyze_And_Resolve (N);
389 Scope_Suppress.Suppress (Suppress) := Svg;
390 end;
391 end if;
393 if Current_Scope /= Scop and then Scope_Is_Transient then
394 Scope_Stack.Table (Scope_Stack.Last).Save_Scope_Suppress :=
395 Scope_Suppress;
396 end if;
397 end Analyze_And_Resolve;
399 ----------------------------
400 -- Check_Discriminant_Use --
401 ----------------------------
403 procedure Check_Discriminant_Use (N : Node_Id) is
404 PN : constant Node_Id := Parent (N);
405 Disc : constant Entity_Id := Entity (N);
406 P : Node_Id;
407 D : Node_Id;
409 begin
410 -- Any use in a spec-expression is legal
412 if In_Spec_Expression then
413 null;
415 elsif Nkind (PN) = N_Range then
417 -- Discriminant cannot be used to constrain a scalar type
419 P := Parent (PN);
421 if Nkind (P) = N_Range_Constraint
422 and then Nkind (Parent (P)) = N_Subtype_Indication
423 and then Nkind (Parent (Parent (P))) = N_Component_Definition
424 then
425 Error_Msg_N ("discriminant cannot constrain scalar type", N);
427 elsif Nkind (P) = N_Index_Or_Discriminant_Constraint then
429 -- The following check catches the unusual case where a
430 -- discriminant appears within an index constraint that is part
431 -- of a larger expression within a constraint on a component,
432 -- e.g. "C : Int range 1 .. F (new A(1 .. D))". For now we only
433 -- check case of record components, and note that a similar check
434 -- should also apply in the case of discriminant constraints
435 -- below. ???
437 -- Note that the check for N_Subtype_Declaration below is to
438 -- detect the valid use of discriminants in the constraints of a
439 -- subtype declaration when this subtype declaration appears
440 -- inside the scope of a record type (which is syntactically
441 -- illegal, but which may be created as part of derived type
442 -- processing for records). See Sem_Ch3.Build_Derived_Record_Type
443 -- for more info.
445 if Ekind (Current_Scope) = E_Record_Type
446 and then Scope (Disc) = Current_Scope
447 and then not
448 (Nkind (Parent (P)) = N_Subtype_Indication
449 and then
450 Nkind_In (Parent (Parent (P)), N_Component_Definition,
451 N_Subtype_Declaration)
452 and then Paren_Count (N) = 0)
453 then
454 Error_Msg_N
455 ("discriminant must appear alone in component constraint", N);
456 return;
457 end if;
459 -- Detect a common error:
461 -- type R (D : Positive := 100) is record
462 -- Name : String (1 .. D);
463 -- end record;
465 -- The default value causes an object of type R to be allocated
466 -- with room for Positive'Last characters. The RM does not mandate
467 -- the allocation of the maximum size, but that is what GNAT does
468 -- so we should warn the programmer that there is a problem.
470 Check_Large : declare
471 SI : Node_Id;
472 T : Entity_Id;
473 TB : Node_Id;
474 CB : Entity_Id;
476 function Large_Storage_Type (T : Entity_Id) return Boolean;
477 -- Return True if type T has a large enough range that any
478 -- array whose index type covered the whole range of the type
479 -- would likely raise Storage_Error.
481 ------------------------
482 -- Large_Storage_Type --
483 ------------------------
485 function Large_Storage_Type (T : Entity_Id) return Boolean is
486 begin
487 -- The type is considered large if its bounds are known at
488 -- compile time and if it requires at least as many bits as
489 -- a Positive to store the possible values.
491 return Compile_Time_Known_Value (Type_Low_Bound (T))
492 and then Compile_Time_Known_Value (Type_High_Bound (T))
493 and then
494 Minimum_Size (T, Biased => True) >=
495 RM_Size (Standard_Positive);
496 end Large_Storage_Type;
498 -- Start of processing for Check_Large
500 begin
501 -- Check that the Disc has a large range
503 if not Large_Storage_Type (Etype (Disc)) then
504 goto No_Danger;
505 end if;
507 -- If the enclosing type is limited, we allocate only the
508 -- default value, not the maximum, and there is no need for
509 -- a warning.
511 if Is_Limited_Type (Scope (Disc)) then
512 goto No_Danger;
513 end if;
515 -- Check that it is the high bound
517 if N /= High_Bound (PN)
518 or else No (Discriminant_Default_Value (Disc))
519 then
520 goto No_Danger;
521 end if;
523 -- Check the array allows a large range at this bound. First
524 -- find the array
526 SI := Parent (P);
528 if Nkind (SI) /= N_Subtype_Indication then
529 goto No_Danger;
530 end if;
532 T := Entity (Subtype_Mark (SI));
534 if not Is_Array_Type (T) then
535 goto No_Danger;
536 end if;
538 -- Next, find the dimension
540 TB := First_Index (T);
541 CB := First (Constraints (P));
542 while True
543 and then Present (TB)
544 and then Present (CB)
545 and then CB /= PN
546 loop
547 Next_Index (TB);
548 Next (CB);
549 end loop;
551 if CB /= PN then
552 goto No_Danger;
553 end if;
555 -- Now, check the dimension has a large range
557 if not Large_Storage_Type (Etype (TB)) then
558 goto No_Danger;
559 end if;
561 -- Warn about the danger
563 Error_Msg_N
564 ("??creation of & object may raise Storage_Error!",
565 Scope (Disc));
567 <<No_Danger>>
568 null;
570 end Check_Large;
571 end if;
573 -- Legal case is in index or discriminant constraint
575 elsif Nkind_In (PN, N_Index_Or_Discriminant_Constraint,
576 N_Discriminant_Association)
577 then
578 if Paren_Count (N) > 0 then
579 Error_Msg_N
580 ("discriminant in constraint must appear alone", N);
582 elsif Nkind (N) = N_Expanded_Name
583 and then Comes_From_Source (N)
584 then
585 Error_Msg_N
586 ("discriminant must appear alone as a direct name", N);
587 end if;
589 return;
591 -- Otherwise, context is an expression. It should not be within (i.e. a
592 -- subexpression of) a constraint for a component.
594 else
595 D := PN;
596 P := Parent (PN);
597 while not Nkind_In (P, N_Component_Declaration,
598 N_Subtype_Indication,
599 N_Entry_Declaration)
600 loop
601 D := P;
602 P := Parent (P);
603 exit when No (P);
604 end loop;
606 -- If the discriminant is used in an expression that is a bound of a
607 -- scalar type, an Itype is created and the bounds are attached to
608 -- its range, not to the original subtype indication. Such use is of
609 -- course a double fault.
611 if (Nkind (P) = N_Subtype_Indication
612 and then Nkind_In (Parent (P), N_Component_Definition,
613 N_Derived_Type_Definition)
614 and then D = Constraint (P))
616 -- The constraint itself may be given by a subtype indication,
617 -- rather than by a more common discrete range.
619 or else (Nkind (P) = N_Subtype_Indication
620 and then
621 Nkind (Parent (P)) = N_Index_Or_Discriminant_Constraint)
622 or else Nkind (P) = N_Entry_Declaration
623 or else Nkind (D) = N_Defining_Identifier
624 then
625 Error_Msg_N
626 ("discriminant in constraint must appear alone", N);
627 end if;
628 end if;
629 end Check_Discriminant_Use;
631 --------------------------------
632 -- Check_For_Visible_Operator --
633 --------------------------------
635 procedure Check_For_Visible_Operator (N : Node_Id; T : Entity_Id) is
636 begin
637 if Is_Invisible_Operator (N, T) then
638 Error_Msg_NE -- CODEFIX
639 ("operator for} is not directly visible!", N, First_Subtype (T));
640 Error_Msg_N -- CODEFIX
641 ("use clause would make operation legal!", N);
642 end if;
643 end Check_For_Visible_Operator;
645 ----------------------------------
646 -- Check_Fully_Declared_Prefix --
647 ----------------------------------
649 procedure Check_Fully_Declared_Prefix
650 (Typ : Entity_Id;
651 Pref : Node_Id)
653 begin
654 -- Check that the designated type of the prefix of a dereference is
655 -- not an incomplete type. This cannot be done unconditionally, because
656 -- dereferences of private types are legal in default expressions. This
657 -- case is taken care of in Check_Fully_Declared, called below. There
658 -- are also 2005 cases where it is legal for the prefix to be unfrozen.
660 -- This consideration also applies to similar checks for allocators,
661 -- qualified expressions, and type conversions.
663 -- An additional exception concerns other per-object expressions that
664 -- are not directly related to component declarations, in particular
665 -- representation pragmas for tasks. These will be per-object
666 -- expressions if they depend on discriminants or some global entity.
667 -- If the task has access discriminants, the designated type may be
668 -- incomplete at the point the expression is resolved. This resolution
669 -- takes place within the body of the initialization procedure, where
670 -- the discriminant is replaced by its discriminal.
672 if Is_Entity_Name (Pref)
673 and then Ekind (Entity (Pref)) = E_In_Parameter
674 then
675 null;
677 -- Ada 2005 (AI-326): Tagged incomplete types allowed. The wrong usages
678 -- are handled by Analyze_Access_Attribute, Analyze_Assignment,
679 -- Analyze_Object_Renaming, and Freeze_Entity.
681 elsif Ada_Version >= Ada_2005
682 and then Is_Entity_Name (Pref)
683 and then Is_Access_Type (Etype (Pref))
684 and then Ekind (Directly_Designated_Type (Etype (Pref))) =
685 E_Incomplete_Type
686 and then Is_Tagged_Type (Directly_Designated_Type (Etype (Pref)))
687 then
688 null;
689 else
690 Check_Fully_Declared (Typ, Parent (Pref));
691 end if;
692 end Check_Fully_Declared_Prefix;
694 ------------------------------
695 -- Check_Infinite_Recursion --
696 ------------------------------
698 function Check_Infinite_Recursion (N : Node_Id) return Boolean is
699 P : Node_Id;
700 C : Node_Id;
702 function Same_Argument_List return Boolean;
703 -- Check whether list of actuals is identical to list of formals of
704 -- called function (which is also the enclosing scope).
706 ------------------------
707 -- Same_Argument_List --
708 ------------------------
710 function Same_Argument_List return Boolean is
711 A : Node_Id;
712 F : Entity_Id;
713 Subp : Entity_Id;
715 begin
716 if not Is_Entity_Name (Name (N)) then
717 return False;
718 else
719 Subp := Entity (Name (N));
720 end if;
722 F := First_Formal (Subp);
723 A := First_Actual (N);
724 while Present (F) and then Present (A) loop
725 if not Is_Entity_Name (A) or else Entity (A) /= F then
726 return False;
727 end if;
729 Next_Actual (A);
730 Next_Formal (F);
731 end loop;
733 return True;
734 end Same_Argument_List;
736 -- Start of processing for Check_Infinite_Recursion
738 begin
739 -- Special case, if this is a procedure call and is a call to the
740 -- current procedure with the same argument list, then this is for
741 -- sure an infinite recursion and we insert a call to raise SE.
743 if Is_List_Member (N)
744 and then List_Length (List_Containing (N)) = 1
745 and then Same_Argument_List
746 then
747 declare
748 P : constant Node_Id := Parent (N);
749 begin
750 if Nkind (P) = N_Handled_Sequence_Of_Statements
751 and then Nkind (Parent (P)) = N_Subprogram_Body
752 and then Is_Empty_List (Declarations (Parent (P)))
753 then
754 Error_Msg_Warn := SPARK_Mode /= On;
755 Error_Msg_N ("!infinite recursion<<", N);
756 Error_Msg_N ("\!Storage_Error [<<", N);
757 Insert_Action (N,
758 Make_Raise_Storage_Error (Sloc (N),
759 Reason => SE_Infinite_Recursion));
760 return True;
761 end if;
762 end;
763 end if;
765 -- If not that special case, search up tree, quitting if we reach a
766 -- construct (e.g. a conditional) that tells us that this is not a
767 -- case for an infinite recursion warning.
769 C := N;
770 loop
771 P := Parent (C);
773 -- If no parent, then we were not inside a subprogram, this can for
774 -- example happen when processing certain pragmas in a spec. Just
775 -- return False in this case.
777 if No (P) then
778 return False;
779 end if;
781 -- Done if we get to subprogram body, this is definitely an infinite
782 -- recursion case if we did not find anything to stop us.
784 exit when Nkind (P) = N_Subprogram_Body;
786 -- If appearing in conditional, result is false
788 if Nkind_In (P, N_Or_Else,
789 N_And_Then,
790 N_Case_Expression,
791 N_Case_Statement,
792 N_If_Expression,
793 N_If_Statement)
794 then
795 return False;
797 elsif Nkind (P) = N_Handled_Sequence_Of_Statements
798 and then C /= First (Statements (P))
799 then
800 -- If the call is the expression of a return statement and the
801 -- actuals are identical to the formals, it's worth a warning.
802 -- However, we skip this if there is an immediately preceding
803 -- raise statement, since the call is never executed.
805 -- Furthermore, this corresponds to a common idiom:
807 -- function F (L : Thing) return Boolean is
808 -- begin
809 -- raise Program_Error;
810 -- return F (L);
811 -- end F;
813 -- for generating a stub function
815 if Nkind (Parent (N)) = N_Simple_Return_Statement
816 and then Same_Argument_List
817 then
818 exit when not Is_List_Member (Parent (N));
820 -- OK, return statement is in a statement list, look for raise
822 declare
823 Nod : Node_Id;
825 begin
826 -- Skip past N_Freeze_Entity nodes generated by expansion
828 Nod := Prev (Parent (N));
829 while Present (Nod)
830 and then Nkind (Nod) = N_Freeze_Entity
831 loop
832 Prev (Nod);
833 end loop;
835 -- If no raise statement, give warning. We look at the
836 -- original node, because in the case of "raise ... with
837 -- ...", the node has been transformed into a call.
839 exit when Nkind (Original_Node (Nod)) /= N_Raise_Statement
840 and then
841 (Nkind (Nod) not in N_Raise_xxx_Error
842 or else Present (Condition (Nod)));
843 end;
844 end if;
846 return False;
848 else
849 C := P;
850 end if;
851 end loop;
853 Error_Msg_Warn := SPARK_Mode /= On;
854 Error_Msg_N ("!possible infinite recursion<<", N);
855 Error_Msg_N ("\!??Storage_Error ]<<", N);
857 return True;
858 end Check_Infinite_Recursion;
860 ---------------------------------------
861 -- Check_No_Direct_Boolean_Operators --
862 ---------------------------------------
864 procedure Check_No_Direct_Boolean_Operators (N : Node_Id) is
865 begin
866 if Scope (Entity (N)) = Standard_Standard
867 and then Root_Type (Etype (Left_Opnd (N))) = Standard_Boolean
868 then
869 -- Restriction only applies to original source code
871 if Comes_From_Source (N) then
872 Check_Restriction (No_Direct_Boolean_Operators, N);
873 end if;
874 end if;
876 -- Do style check (but skip if in instance, error is on template)
878 if Style_Check then
879 if not In_Instance then
880 Check_Boolean_Operator (N);
881 end if;
882 end if;
883 end Check_No_Direct_Boolean_Operators;
885 ------------------------------
886 -- Check_Parameterless_Call --
887 ------------------------------
889 procedure Check_Parameterless_Call (N : Node_Id) is
890 Nam : Node_Id;
892 function Prefix_Is_Access_Subp return Boolean;
893 -- If the prefix is of an access_to_subprogram type, the node must be
894 -- rewritten as a call. Ditto if the prefix is overloaded and all its
895 -- interpretations are access to subprograms.
897 ---------------------------
898 -- Prefix_Is_Access_Subp --
899 ---------------------------
901 function Prefix_Is_Access_Subp return Boolean is
902 I : Interp_Index;
903 It : Interp;
905 begin
906 -- If the context is an attribute reference that can apply to
907 -- functions, this is never a parameterless call (RM 4.1.4(6)).
909 if Nkind (Parent (N)) = N_Attribute_Reference
910 and then Nam_In (Attribute_Name (Parent (N)), Name_Address,
911 Name_Code_Address,
912 Name_Access)
913 then
914 return False;
915 end if;
917 if not Is_Overloaded (N) then
918 return
919 Ekind (Etype (N)) = E_Subprogram_Type
920 and then Base_Type (Etype (Etype (N))) /= Standard_Void_Type;
921 else
922 Get_First_Interp (N, I, It);
923 while Present (It.Typ) loop
924 if Ekind (It.Typ) /= E_Subprogram_Type
925 or else Base_Type (Etype (It.Typ)) = Standard_Void_Type
926 then
927 return False;
928 end if;
930 Get_Next_Interp (I, It);
931 end loop;
933 return True;
934 end if;
935 end Prefix_Is_Access_Subp;
937 -- Start of processing for Check_Parameterless_Call
939 begin
940 -- Defend against junk stuff if errors already detected
942 if Total_Errors_Detected /= 0 then
943 if Nkind (N) in N_Has_Etype and then Etype (N) = Any_Type then
944 return;
945 elsif Nkind (N) in N_Has_Chars
946 and then not Is_Valid_Name (Chars (N))
947 then
948 return;
949 end if;
951 Require_Entity (N);
952 end if;
954 -- If the context expects a value, and the name is a procedure, this is
955 -- most likely a missing 'Access. Don't try to resolve the parameterless
956 -- call, error will be caught when the outer call is analyzed.
958 if Is_Entity_Name (N)
959 and then Ekind (Entity (N)) = E_Procedure
960 and then not Is_Overloaded (N)
961 and then
962 Nkind_In (Parent (N), N_Parameter_Association,
963 N_Function_Call,
964 N_Procedure_Call_Statement)
965 then
966 return;
967 end if;
969 -- Rewrite as call if overloadable entity that is (or could be, in the
970 -- overloaded case) a function call. If we know for sure that the entity
971 -- is an enumeration literal, we do not rewrite it.
973 -- If the entity is the name of an operator, it cannot be a call because
974 -- operators cannot have default parameters. In this case, this must be
975 -- a string whose contents coincide with an operator name. Set the kind
976 -- of the node appropriately.
978 if (Is_Entity_Name (N)
979 and then Nkind (N) /= N_Operator_Symbol
980 and then Is_Overloadable (Entity (N))
981 and then (Ekind (Entity (N)) /= E_Enumeration_Literal
982 or else Is_Overloaded (N)))
984 -- Rewrite as call if it is an explicit dereference of an expression of
985 -- a subprogram access type, and the subprogram type is not that of a
986 -- procedure or entry.
988 or else
989 (Nkind (N) = N_Explicit_Dereference and then Prefix_Is_Access_Subp)
991 -- Rewrite as call if it is a selected component which is a function,
992 -- this is the case of a call to a protected function (which may be
993 -- overloaded with other protected operations).
995 or else
996 (Nkind (N) = N_Selected_Component
997 and then (Ekind (Entity (Selector_Name (N))) = E_Function
998 or else
999 (Ekind_In (Entity (Selector_Name (N)), E_Entry,
1000 E_Procedure)
1001 and then Is_Overloaded (Selector_Name (N)))))
1003 -- If one of the above three conditions is met, rewrite as call. Apply
1004 -- the rewriting only once.
1006 then
1007 if Nkind (Parent (N)) /= N_Function_Call
1008 or else N /= Name (Parent (N))
1009 then
1011 -- This may be a prefixed call that was not fully analyzed, e.g.
1012 -- an actual in an instance.
1014 if Ada_Version >= Ada_2005
1015 and then Nkind (N) = N_Selected_Component
1016 and then Is_Dispatching_Operation (Entity (Selector_Name (N)))
1017 then
1018 Analyze_Selected_Component (N);
1020 if Nkind (N) /= N_Selected_Component then
1021 return;
1022 end if;
1023 end if;
1025 -- The node is the name of the parameterless call. Preserve its
1026 -- descendants, which may be complex expressions.
1028 Nam := Relocate_Node (N);
1030 -- If overloaded, overload set belongs to new copy
1032 Save_Interps (N, Nam);
1034 -- Change node to parameterless function call (note that the
1035 -- Parameter_Associations associations field is left set to Empty,
1036 -- its normal default value since there are no parameters)
1038 Change_Node (N, N_Function_Call);
1039 Set_Name (N, Nam);
1040 Set_Sloc (N, Sloc (Nam));
1041 Analyze_Call (N);
1042 end if;
1044 elsif Nkind (N) = N_Parameter_Association then
1045 Check_Parameterless_Call (Explicit_Actual_Parameter (N));
1047 elsif Nkind (N) = N_Operator_Symbol then
1048 Change_Operator_Symbol_To_String_Literal (N);
1049 Set_Is_Overloaded (N, False);
1050 Set_Etype (N, Any_String);
1051 end if;
1052 end Check_Parameterless_Call;
1054 --------------------------------
1055 -- Is_Atomic_Ref_With_Address --
1056 --------------------------------
1058 function Is_Atomic_Ref_With_Address (N : Node_Id) return Boolean is
1059 Pref : constant Node_Id := Prefix (N);
1061 begin
1062 if not Is_Entity_Name (Pref) then
1063 return False;
1065 else
1066 declare
1067 Pent : constant Entity_Id := Entity (Pref);
1068 Ptyp : constant Entity_Id := Etype (Pent);
1069 begin
1070 return not Is_Access_Type (Ptyp)
1071 and then (Is_Atomic (Ptyp) or else Is_Atomic (Pent))
1072 and then Present (Address_Clause (Pent));
1073 end;
1074 end if;
1075 end Is_Atomic_Ref_With_Address;
1077 -----------------------------
1078 -- Is_Definite_Access_Type --
1079 -----------------------------
1081 function Is_Definite_Access_Type (E : Entity_Id) return Boolean is
1082 Btyp : constant Entity_Id := Base_Type (E);
1083 begin
1084 return Ekind (Btyp) = E_Access_Type
1085 or else (Ekind (Btyp) = E_Access_Subprogram_Type
1086 and then Comes_From_Source (Btyp));
1087 end Is_Definite_Access_Type;
1089 ----------------------
1090 -- Is_Predefined_Op --
1091 ----------------------
1093 function Is_Predefined_Op (Nam : Entity_Id) return Boolean is
1094 begin
1095 -- Predefined operators are intrinsic subprograms
1097 if not Is_Intrinsic_Subprogram (Nam) then
1098 return False;
1099 end if;
1101 -- A call to a back-end builtin is never a predefined operator
1103 if Is_Imported (Nam) and then Present (Interface_Name (Nam)) then
1104 return False;
1105 end if;
1107 return not Is_Generic_Instance (Nam)
1108 and then Chars (Nam) in Any_Operator_Name
1109 and then (No (Alias (Nam)) or else Is_Predefined_Op (Alias (Nam)));
1110 end Is_Predefined_Op;
1112 -----------------------------
1113 -- Make_Call_Into_Operator --
1114 -----------------------------
1116 procedure Make_Call_Into_Operator
1117 (N : Node_Id;
1118 Typ : Entity_Id;
1119 Op_Id : Entity_Id)
1121 Op_Name : constant Name_Id := Chars (Op_Id);
1122 Act1 : Node_Id := First_Actual (N);
1123 Act2 : Node_Id := Next_Actual (Act1);
1124 Error : Boolean := False;
1125 Func : constant Entity_Id := Entity (Name (N));
1126 Is_Binary : constant Boolean := Present (Act2);
1127 Op_Node : Node_Id;
1128 Opnd_Type : Entity_Id := Empty;
1129 Orig_Type : Entity_Id := Empty;
1130 Pack : Entity_Id;
1132 type Kind_Test is access function (E : Entity_Id) return Boolean;
1134 function Operand_Type_In_Scope (S : Entity_Id) return Boolean;
1135 -- If the operand is not universal, and the operator is given by an
1136 -- expanded name, verify that the operand has an interpretation with a
1137 -- type defined in the given scope of the operator.
1139 function Type_In_P (Test : Kind_Test) return Entity_Id;
1140 -- Find a type of the given class in package Pack that contains the
1141 -- operator.
1143 ---------------------------
1144 -- Operand_Type_In_Scope --
1145 ---------------------------
1147 function Operand_Type_In_Scope (S : Entity_Id) return Boolean is
1148 Nod : constant Node_Id := Right_Opnd (Op_Node);
1149 I : Interp_Index;
1150 It : Interp;
1152 begin
1153 if not Is_Overloaded (Nod) then
1154 return Scope (Base_Type (Etype (Nod))) = S;
1156 else
1157 Get_First_Interp (Nod, I, It);
1158 while Present (It.Typ) loop
1159 if Scope (Base_Type (It.Typ)) = S then
1160 return True;
1161 end if;
1163 Get_Next_Interp (I, It);
1164 end loop;
1166 return False;
1167 end if;
1168 end Operand_Type_In_Scope;
1170 ---------------
1171 -- Type_In_P --
1172 ---------------
1174 function Type_In_P (Test : Kind_Test) return Entity_Id is
1175 E : Entity_Id;
1177 function In_Decl return Boolean;
1178 -- Verify that node is not part of the type declaration for the
1179 -- candidate type, which would otherwise be invisible.
1181 -------------
1182 -- In_Decl --
1183 -------------
1185 function In_Decl return Boolean is
1186 Decl_Node : constant Node_Id := Parent (E);
1187 N2 : Node_Id;
1189 begin
1190 N2 := N;
1192 if Etype (E) = Any_Type then
1193 return True;
1195 elsif No (Decl_Node) then
1196 return False;
1198 else
1199 while Present (N2)
1200 and then Nkind (N2) /= N_Compilation_Unit
1201 loop
1202 if N2 = Decl_Node then
1203 return True;
1204 else
1205 N2 := Parent (N2);
1206 end if;
1207 end loop;
1209 return False;
1210 end if;
1211 end In_Decl;
1213 -- Start of processing for Type_In_P
1215 begin
1216 -- If the context type is declared in the prefix package, this is the
1217 -- desired base type.
1219 if Scope (Base_Type (Typ)) = Pack and then Test (Typ) then
1220 return Base_Type (Typ);
1222 else
1223 E := First_Entity (Pack);
1224 while Present (E) loop
1225 if Test (E) and then not In_Decl then
1226 return E;
1227 end if;
1229 Next_Entity (E);
1230 end loop;
1232 return Empty;
1233 end if;
1234 end Type_In_P;
1236 -- Start of processing for Make_Call_Into_Operator
1238 begin
1239 Op_Node := New_Node (Operator_Kind (Op_Name, Is_Binary), Sloc (N));
1241 -- Ensure that the corresponding operator has the same parent as the
1242 -- original call. This guarantees that parent traversals performed by
1243 -- the ABE mechanism succeed.
1245 Set_Parent (Op_Node, Parent (N));
1247 -- Binary operator
1249 if Is_Binary then
1250 Set_Left_Opnd (Op_Node, Relocate_Node (Act1));
1251 Set_Right_Opnd (Op_Node, Relocate_Node (Act2));
1252 Save_Interps (Act1, Left_Opnd (Op_Node));
1253 Save_Interps (Act2, Right_Opnd (Op_Node));
1254 Act1 := Left_Opnd (Op_Node);
1255 Act2 := Right_Opnd (Op_Node);
1257 -- Unary operator
1259 else
1260 Set_Right_Opnd (Op_Node, Relocate_Node (Act1));
1261 Save_Interps (Act1, Right_Opnd (Op_Node));
1262 Act1 := Right_Opnd (Op_Node);
1263 end if;
1265 -- If the operator is denoted by an expanded name, and the prefix is
1266 -- not Standard, but the operator is a predefined one whose scope is
1267 -- Standard, then this is an implicit_operator, inserted as an
1268 -- interpretation by the procedure of the same name. This procedure
1269 -- overestimates the presence of implicit operators, because it does
1270 -- not examine the type of the operands. Verify now that the operand
1271 -- type appears in the given scope. If right operand is universal,
1272 -- check the other operand. In the case of concatenation, either
1273 -- argument can be the component type, so check the type of the result.
1274 -- If both arguments are literals, look for a type of the right kind
1275 -- defined in the given scope. This elaborate nonsense is brought to
1276 -- you courtesy of b33302a. The type itself must be frozen, so we must
1277 -- find the type of the proper class in the given scope.
1279 -- A final wrinkle is the multiplication operator for fixed point types,
1280 -- which is defined in Standard only, and not in the scope of the
1281 -- fixed point type itself.
1283 if Nkind (Name (N)) = N_Expanded_Name then
1284 Pack := Entity (Prefix (Name (N)));
1286 -- If this is a package renaming, get renamed entity, which will be
1287 -- the scope of the operands if operaton is type-correct.
1289 if Present (Renamed_Entity (Pack)) then
1290 Pack := Renamed_Entity (Pack);
1291 end if;
1293 -- If the entity being called is defined in the given package, it is
1294 -- a renaming of a predefined operator, and known to be legal.
1296 if Scope (Entity (Name (N))) = Pack
1297 and then Pack /= Standard_Standard
1298 then
1299 null;
1301 -- Visibility does not need to be checked in an instance: if the
1302 -- operator was not visible in the generic it has been diagnosed
1303 -- already, else there is an implicit copy of it in the instance.
1305 elsif In_Instance then
1306 null;
1308 elsif Nam_In (Op_Name, Name_Op_Multiply, Name_Op_Divide)
1309 and then Is_Fixed_Point_Type (Etype (Left_Opnd (Op_Node)))
1310 and then Is_Fixed_Point_Type (Etype (Right_Opnd (Op_Node)))
1311 then
1312 if Pack /= Standard_Standard then
1313 Error := True;
1314 end if;
1316 -- Ada 2005 AI-420: Predefined equality on Universal_Access is
1317 -- available.
1319 elsif Ada_Version >= Ada_2005
1320 and then Nam_In (Op_Name, Name_Op_Eq, Name_Op_Ne)
1321 and then Ekind (Etype (Act1)) = E_Anonymous_Access_Type
1322 then
1323 null;
1325 else
1326 Opnd_Type := Base_Type (Etype (Right_Opnd (Op_Node)));
1328 if Op_Name = Name_Op_Concat then
1329 Opnd_Type := Base_Type (Typ);
1331 elsif (Scope (Opnd_Type) = Standard_Standard
1332 and then Is_Binary)
1333 or else (Nkind (Right_Opnd (Op_Node)) = N_Attribute_Reference
1334 and then Is_Binary
1335 and then not Comes_From_Source (Opnd_Type))
1336 then
1337 Opnd_Type := Base_Type (Etype (Left_Opnd (Op_Node)));
1338 end if;
1340 if Scope (Opnd_Type) = Standard_Standard then
1342 -- Verify that the scope contains a type that corresponds to
1343 -- the given literal. Optimize the case where Pack is Standard.
1345 if Pack /= Standard_Standard then
1346 if Opnd_Type = Universal_Integer then
1347 Orig_Type := Type_In_P (Is_Integer_Type'Access);
1349 elsif Opnd_Type = Universal_Real then
1350 Orig_Type := Type_In_P (Is_Real_Type'Access);
1352 elsif Opnd_Type = Any_String then
1353 Orig_Type := Type_In_P (Is_String_Type'Access);
1355 elsif Opnd_Type = Any_Access then
1356 Orig_Type := Type_In_P (Is_Definite_Access_Type'Access);
1358 elsif Opnd_Type = Any_Composite then
1359 Orig_Type := Type_In_P (Is_Composite_Type'Access);
1361 if Present (Orig_Type) then
1362 if Has_Private_Component (Orig_Type) then
1363 Orig_Type := Empty;
1364 else
1365 Set_Etype (Act1, Orig_Type);
1367 if Is_Binary then
1368 Set_Etype (Act2, Orig_Type);
1369 end if;
1370 end if;
1371 end if;
1373 else
1374 Orig_Type := Empty;
1375 end if;
1377 Error := No (Orig_Type);
1378 end if;
1380 elsif Ekind (Opnd_Type) = E_Allocator_Type
1381 and then No (Type_In_P (Is_Definite_Access_Type'Access))
1382 then
1383 Error := True;
1385 -- If the type is defined elsewhere, and the operator is not
1386 -- defined in the given scope (by a renaming declaration, e.g.)
1387 -- then this is an error as well. If an extension of System is
1388 -- present, and the type may be defined there, Pack must be
1389 -- System itself.
1391 elsif Scope (Opnd_Type) /= Pack
1392 and then Scope (Op_Id) /= Pack
1393 and then (No (System_Aux_Id)
1394 or else Scope (Opnd_Type) /= System_Aux_Id
1395 or else Pack /= Scope (System_Aux_Id))
1396 then
1397 if not Is_Overloaded (Right_Opnd (Op_Node)) then
1398 Error := True;
1399 else
1400 Error := not Operand_Type_In_Scope (Pack);
1401 end if;
1403 elsif Pack = Standard_Standard
1404 and then not Operand_Type_In_Scope (Standard_Standard)
1405 then
1406 Error := True;
1407 end if;
1408 end if;
1410 if Error then
1411 Error_Msg_Node_2 := Pack;
1412 Error_Msg_NE
1413 ("& not declared in&", N, Selector_Name (Name (N)));
1414 Set_Etype (N, Any_Type);
1415 return;
1417 -- Detect a mismatch between the context type and the result type
1418 -- in the named package, which is otherwise not detected if the
1419 -- operands are universal. Check is only needed if source entity is
1420 -- an operator, not a function that renames an operator.
1422 elsif Nkind (Parent (N)) /= N_Type_Conversion
1423 and then Ekind (Entity (Name (N))) = E_Operator
1424 and then Is_Numeric_Type (Typ)
1425 and then not Is_Universal_Numeric_Type (Typ)
1426 and then Scope (Base_Type (Typ)) /= Pack
1427 and then not In_Instance
1428 then
1429 if Is_Fixed_Point_Type (Typ)
1430 and then Nam_In (Op_Name, Name_Op_Multiply, Name_Op_Divide)
1431 then
1432 -- Already checked above
1434 null;
1436 -- Operator may be defined in an extension of System
1438 elsif Present (System_Aux_Id)
1439 and then Present (Opnd_Type)
1440 and then Scope (Opnd_Type) = System_Aux_Id
1441 then
1442 null;
1444 else
1445 -- Could we use Wrong_Type here??? (this would require setting
1446 -- Etype (N) to the actual type found where Typ was expected).
1448 Error_Msg_NE ("expect }", N, Typ);
1449 end if;
1450 end if;
1451 end if;
1453 Set_Chars (Op_Node, Op_Name);
1455 if not Is_Private_Type (Etype (N)) then
1456 Set_Etype (Op_Node, Base_Type (Etype (N)));
1457 else
1458 Set_Etype (Op_Node, Etype (N));
1459 end if;
1461 -- If this is a call to a function that renames a predefined equality,
1462 -- the renaming declaration provides a type that must be used to
1463 -- resolve the operands. This must be done now because resolution of
1464 -- the equality node will not resolve any remaining ambiguity, and it
1465 -- assumes that the first operand is not overloaded.
1467 if Nam_In (Op_Name, Name_Op_Eq, Name_Op_Ne)
1468 and then Ekind (Func) = E_Function
1469 and then Is_Overloaded (Act1)
1470 then
1471 Resolve (Act1, Base_Type (Etype (First_Formal (Func))));
1472 Resolve (Act2, Base_Type (Etype (First_Formal (Func))));
1473 end if;
1475 Set_Entity (Op_Node, Op_Id);
1476 Generate_Reference (Op_Id, N, ' ');
1478 -- Do rewrite setting Comes_From_Source on the result if the original
1479 -- call came from source. Although it is not strictly the case that the
1480 -- operator as such comes from the source, logically it corresponds
1481 -- exactly to the function call in the source, so it should be marked
1482 -- this way (e.g. to make sure that validity checks work fine).
1484 declare
1485 CS : constant Boolean := Comes_From_Source (N);
1486 begin
1487 Rewrite (N, Op_Node);
1488 Set_Comes_From_Source (N, CS);
1489 end;
1491 -- If this is an arithmetic operator and the result type is private,
1492 -- the operands and the result must be wrapped in conversion to
1493 -- expose the underlying numeric type and expand the proper checks,
1494 -- e.g. on division.
1496 if Is_Private_Type (Typ) then
1497 case Nkind (N) is
1498 when N_Op_Add
1499 | N_Op_Divide
1500 | N_Op_Expon
1501 | N_Op_Mod
1502 | N_Op_Multiply
1503 | N_Op_Rem
1504 | N_Op_Subtract
1506 Resolve_Intrinsic_Operator (N, Typ);
1508 when N_Op_Abs
1509 | N_Op_Minus
1510 | N_Op_Plus
1512 Resolve_Intrinsic_Unary_Operator (N, Typ);
1514 when others =>
1515 Resolve (N, Typ);
1516 end case;
1517 else
1518 Resolve (N, Typ);
1519 end if;
1521 -- If in ASIS_Mode, propagate operand types to original actuals of
1522 -- function call, which would otherwise not be fully resolved. If
1523 -- the call has already been constant-folded, nothing to do. We
1524 -- relocate the operand nodes rather than copy them, to preserve
1525 -- original_node pointers, given that the operands themselves may
1526 -- have been rewritten. If the call was itself a rewriting of an
1527 -- operator node, nothing to do.
1529 if ASIS_Mode
1530 and then Nkind (N) in N_Op
1531 and then Nkind (Original_Node (N)) = N_Function_Call
1532 then
1533 declare
1534 L : Node_Id;
1535 R : constant Node_Id := Right_Opnd (N);
1537 Old_First : constant Node_Id :=
1538 First (Parameter_Associations (Original_Node (N)));
1539 Old_Sec : Node_Id;
1541 begin
1542 if Is_Binary then
1543 L := Left_Opnd (N);
1544 Old_Sec := Next (Old_First);
1546 -- If the original call has named associations, replace the
1547 -- explicit actual parameter in the association with the proper
1548 -- resolved operand.
1550 if Nkind (Old_First) = N_Parameter_Association then
1551 if Chars (Selector_Name (Old_First)) =
1552 Chars (First_Entity (Op_Id))
1553 then
1554 Rewrite (Explicit_Actual_Parameter (Old_First),
1555 Relocate_Node (L));
1556 else
1557 Rewrite (Explicit_Actual_Parameter (Old_First),
1558 Relocate_Node (R));
1559 end if;
1561 else
1562 Rewrite (Old_First, Relocate_Node (L));
1563 end if;
1565 if Nkind (Old_Sec) = N_Parameter_Association then
1566 if Chars (Selector_Name (Old_Sec)) =
1567 Chars (First_Entity (Op_Id))
1568 then
1569 Rewrite (Explicit_Actual_Parameter (Old_Sec),
1570 Relocate_Node (L));
1571 else
1572 Rewrite (Explicit_Actual_Parameter (Old_Sec),
1573 Relocate_Node (R));
1574 end if;
1576 else
1577 Rewrite (Old_Sec, Relocate_Node (R));
1578 end if;
1580 else
1581 if Nkind (Old_First) = N_Parameter_Association then
1582 Rewrite (Explicit_Actual_Parameter (Old_First),
1583 Relocate_Node (R));
1584 else
1585 Rewrite (Old_First, Relocate_Node (R));
1586 end if;
1587 end if;
1588 end;
1590 Set_Parent (Original_Node (N), Parent (N));
1591 end if;
1592 end Make_Call_Into_Operator;
1594 -------------------
1595 -- Operator_Kind --
1596 -------------------
1598 function Operator_Kind
1599 (Op_Name : Name_Id;
1600 Is_Binary : Boolean) return Node_Kind
1602 Kind : Node_Kind;
1604 begin
1605 -- Use CASE statement or array???
1607 if Is_Binary then
1608 if Op_Name = Name_Op_And then
1609 Kind := N_Op_And;
1610 elsif Op_Name = Name_Op_Or then
1611 Kind := N_Op_Or;
1612 elsif Op_Name = Name_Op_Xor then
1613 Kind := N_Op_Xor;
1614 elsif Op_Name = Name_Op_Eq then
1615 Kind := N_Op_Eq;
1616 elsif Op_Name = Name_Op_Ne then
1617 Kind := N_Op_Ne;
1618 elsif Op_Name = Name_Op_Lt then
1619 Kind := N_Op_Lt;
1620 elsif Op_Name = Name_Op_Le then
1621 Kind := N_Op_Le;
1622 elsif Op_Name = Name_Op_Gt then
1623 Kind := N_Op_Gt;
1624 elsif Op_Name = Name_Op_Ge then
1625 Kind := N_Op_Ge;
1626 elsif Op_Name = Name_Op_Add then
1627 Kind := N_Op_Add;
1628 elsif Op_Name = Name_Op_Subtract then
1629 Kind := N_Op_Subtract;
1630 elsif Op_Name = Name_Op_Concat then
1631 Kind := N_Op_Concat;
1632 elsif Op_Name = Name_Op_Multiply then
1633 Kind := N_Op_Multiply;
1634 elsif Op_Name = Name_Op_Divide then
1635 Kind := N_Op_Divide;
1636 elsif Op_Name = Name_Op_Mod then
1637 Kind := N_Op_Mod;
1638 elsif Op_Name = Name_Op_Rem then
1639 Kind := N_Op_Rem;
1640 elsif Op_Name = Name_Op_Expon then
1641 Kind := N_Op_Expon;
1642 else
1643 raise Program_Error;
1644 end if;
1646 -- Unary operators
1648 else
1649 if Op_Name = Name_Op_Add then
1650 Kind := N_Op_Plus;
1651 elsif Op_Name = Name_Op_Subtract then
1652 Kind := N_Op_Minus;
1653 elsif Op_Name = Name_Op_Abs then
1654 Kind := N_Op_Abs;
1655 elsif Op_Name = Name_Op_Not then
1656 Kind := N_Op_Not;
1657 else
1658 raise Program_Error;
1659 end if;
1660 end if;
1662 return Kind;
1663 end Operator_Kind;
1665 ----------------------------
1666 -- Preanalyze_And_Resolve --
1667 ----------------------------
1669 procedure Preanalyze_And_Resolve
1670 (N : Node_Id;
1671 T : Entity_Id;
1672 With_Freezing : Boolean)
1674 Save_Full_Analysis : constant Boolean := Full_Analysis;
1675 Save_Must_Not_Freeze : constant Boolean := Must_Not_Freeze (N);
1676 Save_Preanalysis_Count : constant Nat :=
1677 Inside_Preanalysis_Without_Freezing;
1678 begin
1679 pragma Assert (Nkind (N) in N_Subexpr);
1681 if not With_Freezing then
1682 Set_Must_Not_Freeze (N);
1683 Inside_Preanalysis_Without_Freezing :=
1684 Inside_Preanalysis_Without_Freezing + 1;
1685 end if;
1687 Full_Analysis := False;
1688 Expander_Mode_Save_And_Set (False);
1690 -- Normally, we suppress all checks for this preanalysis. There is no
1691 -- point in processing them now, since they will be applied properly
1692 -- and in the proper location when the default expressions reanalyzed
1693 -- and reexpanded later on. We will also have more information at that
1694 -- point for possible suppression of individual checks.
1696 -- However, in SPARK mode, most expansion is suppressed, and this
1697 -- later reanalysis and reexpansion may not occur. SPARK mode does
1698 -- require the setting of checking flags for proof purposes, so we
1699 -- do the SPARK preanalysis without suppressing checks.
1701 -- This special handling for SPARK mode is required for example in the
1702 -- case of Ada 2012 constructs such as quantified expressions, which are
1703 -- expanded in two separate steps.
1705 if GNATprove_Mode then
1706 Analyze_And_Resolve (N, T);
1707 else
1708 Analyze_And_Resolve (N, T, Suppress => All_Checks);
1709 end if;
1711 Expander_Mode_Restore;
1712 Full_Analysis := Save_Full_Analysis;
1713 Set_Must_Not_Freeze (N, Save_Must_Not_Freeze);
1715 if not With_Freezing then
1716 Inside_Preanalysis_Without_Freezing :=
1717 Inside_Preanalysis_Without_Freezing - 1;
1718 end if;
1720 pragma Assert
1721 (Inside_Preanalysis_Without_Freezing = Save_Preanalysis_Count);
1722 end Preanalyze_And_Resolve;
1724 ----------------------------
1725 -- Preanalyze_And_Resolve --
1726 ----------------------------
1728 procedure Preanalyze_And_Resolve (N : Node_Id; T : Entity_Id) is
1729 begin
1730 Preanalyze_And_Resolve (N, T, With_Freezing => False);
1731 end Preanalyze_And_Resolve;
1733 -- Version without context type
1735 procedure Preanalyze_And_Resolve (N : Node_Id) is
1736 Save_Full_Analysis : constant Boolean := Full_Analysis;
1738 begin
1739 Full_Analysis := False;
1740 Expander_Mode_Save_And_Set (False);
1742 Analyze (N);
1743 Resolve (N, Etype (N), Suppress => All_Checks);
1745 Expander_Mode_Restore;
1746 Full_Analysis := Save_Full_Analysis;
1747 end Preanalyze_And_Resolve;
1749 ------------------------------------------
1750 -- Preanalyze_With_Freezing_And_Resolve --
1751 ------------------------------------------
1753 procedure Preanalyze_With_Freezing_And_Resolve
1754 (N : Node_Id;
1755 T : Entity_Id)
1757 begin
1758 Preanalyze_And_Resolve (N, T, With_Freezing => True);
1759 end Preanalyze_With_Freezing_And_Resolve;
1761 ----------------------------------
1762 -- Replace_Actual_Discriminants --
1763 ----------------------------------
1765 procedure Replace_Actual_Discriminants (N : Node_Id; Default : Node_Id) is
1766 Loc : constant Source_Ptr := Sloc (N);
1767 Tsk : Node_Id := Empty;
1769 function Process_Discr (Nod : Node_Id) return Traverse_Result;
1770 -- Comment needed???
1772 -------------------
1773 -- Process_Discr --
1774 -------------------
1776 function Process_Discr (Nod : Node_Id) return Traverse_Result is
1777 Ent : Entity_Id;
1779 begin
1780 if Nkind (Nod) = N_Identifier then
1781 Ent := Entity (Nod);
1783 if Present (Ent)
1784 and then Ekind (Ent) = E_Discriminant
1785 then
1786 Rewrite (Nod,
1787 Make_Selected_Component (Loc,
1788 Prefix => New_Copy_Tree (Tsk, New_Sloc => Loc),
1789 Selector_Name => Make_Identifier (Loc, Chars (Ent))));
1791 Set_Etype (Nod, Etype (Ent));
1792 end if;
1794 end if;
1796 return OK;
1797 end Process_Discr;
1799 procedure Replace_Discrs is new Traverse_Proc (Process_Discr);
1801 -- Start of processing for Replace_Actual_Discriminants
1803 begin
1804 if Expander_Active then
1805 null;
1807 -- Allow the replacement of concurrent discriminants in GNATprove even
1808 -- though this is a light expansion activity. Note that generic units
1809 -- are not modified.
1811 elsif GNATprove_Mode and not Inside_A_Generic then
1812 null;
1814 else
1815 return;
1816 end if;
1818 if Nkind (Name (N)) = N_Selected_Component then
1819 Tsk := Prefix (Name (N));
1821 elsif Nkind (Name (N)) = N_Indexed_Component then
1822 Tsk := Prefix (Prefix (Name (N)));
1823 end if;
1825 if Present (Tsk) then
1826 Replace_Discrs (Default);
1827 end if;
1828 end Replace_Actual_Discriminants;
1830 -------------
1831 -- Resolve --
1832 -------------
1834 procedure Resolve (N : Node_Id; Typ : Entity_Id) is
1835 Ambiguous : Boolean := False;
1836 Ctx_Type : Entity_Id := Typ;
1837 Expr_Type : Entity_Id := Empty; -- prevent junk warning
1838 Err_Type : Entity_Id := Empty;
1839 Found : Boolean := False;
1840 From_Lib : Boolean;
1841 I : Interp_Index;
1842 I1 : Interp_Index := 0; -- prevent junk warning
1843 It : Interp;
1844 It1 : Interp;
1845 Seen : Entity_Id := Empty; -- prevent junk warning
1847 function Comes_From_Predefined_Lib_Unit (Nod : Node_Id) return Boolean;
1848 -- Determine whether a node comes from a predefined library unit or
1849 -- Standard.
1851 procedure Patch_Up_Value (N : Node_Id; Typ : Entity_Id);
1852 -- Try and fix up a literal so that it matches its expected type. New
1853 -- literals are manufactured if necessary to avoid cascaded errors.
1855 procedure Report_Ambiguous_Argument;
1856 -- Additional diagnostics when an ambiguous call has an ambiguous
1857 -- argument (typically a controlling actual).
1859 procedure Resolution_Failed;
1860 -- Called when attempt at resolving current expression fails
1862 ------------------------------------
1863 -- Comes_From_Predefined_Lib_Unit --
1864 -------------------------------------
1866 function Comes_From_Predefined_Lib_Unit (Nod : Node_Id) return Boolean is
1867 begin
1868 return
1869 Sloc (Nod) = Standard_Location or else In_Predefined_Unit (Nod);
1870 end Comes_From_Predefined_Lib_Unit;
1872 --------------------
1873 -- Patch_Up_Value --
1874 --------------------
1876 procedure Patch_Up_Value (N : Node_Id; Typ : Entity_Id) is
1877 begin
1878 if Nkind (N) = N_Integer_Literal and then Is_Real_Type (Typ) then
1879 Rewrite (N,
1880 Make_Real_Literal (Sloc (N),
1881 Realval => UR_From_Uint (Intval (N))));
1882 Set_Etype (N, Universal_Real);
1883 Set_Is_Static_Expression (N);
1885 elsif Nkind (N) = N_Real_Literal and then Is_Integer_Type (Typ) then
1886 Rewrite (N,
1887 Make_Integer_Literal (Sloc (N),
1888 Intval => UR_To_Uint (Realval (N))));
1889 Set_Etype (N, Universal_Integer);
1890 Set_Is_Static_Expression (N);
1892 elsif Nkind (N) = N_String_Literal
1893 and then Is_Character_Type (Typ)
1894 then
1895 Set_Character_Literal_Name (Char_Code (Character'Pos ('A')));
1896 Rewrite (N,
1897 Make_Character_Literal (Sloc (N),
1898 Chars => Name_Find,
1899 Char_Literal_Value =>
1900 UI_From_Int (Character'Pos ('A'))));
1901 Set_Etype (N, Any_Character);
1902 Set_Is_Static_Expression (N);
1904 elsif Nkind (N) /= N_String_Literal and then Is_String_Type (Typ) then
1905 Rewrite (N,
1906 Make_String_Literal (Sloc (N),
1907 Strval => End_String));
1909 elsif Nkind (N) = N_Range then
1910 Patch_Up_Value (Low_Bound (N), Typ);
1911 Patch_Up_Value (High_Bound (N), Typ);
1912 end if;
1913 end Patch_Up_Value;
1915 -------------------------------
1916 -- Report_Ambiguous_Argument --
1917 -------------------------------
1919 procedure Report_Ambiguous_Argument is
1920 Arg : constant Node_Id := First (Parameter_Associations (N));
1921 I : Interp_Index;
1922 It : Interp;
1924 begin
1925 if Nkind (Arg) = N_Function_Call
1926 and then Is_Entity_Name (Name (Arg))
1927 and then Is_Overloaded (Name (Arg))
1928 then
1929 Error_Msg_NE ("ambiguous call to&", Arg, Name (Arg));
1931 -- Could use comments on what is going on here???
1933 Get_First_Interp (Name (Arg), I, It);
1934 while Present (It.Nam) loop
1935 Error_Msg_Sloc := Sloc (It.Nam);
1937 if Nkind (Parent (It.Nam)) = N_Full_Type_Declaration then
1938 Error_Msg_N ("interpretation (inherited) #!", Arg);
1939 else
1940 Error_Msg_N ("interpretation #!", Arg);
1941 end if;
1943 Get_Next_Interp (I, It);
1944 end loop;
1945 end if;
1946 end Report_Ambiguous_Argument;
1948 -----------------------
1949 -- Resolution_Failed --
1950 -----------------------
1952 procedure Resolution_Failed is
1953 begin
1954 Patch_Up_Value (N, Typ);
1956 -- Set the type to the desired one to minimize cascaded errors. Note
1957 -- that this is an approximation and does not work in all cases.
1959 Set_Etype (N, Typ);
1961 Debug_A_Exit ("resolving ", N, " (done, resolution failed)");
1962 Set_Is_Overloaded (N, False);
1964 -- The caller will return without calling the expander, so we need
1965 -- to set the analyzed flag. Note that it is fine to set Analyzed
1966 -- to True even if we are in the middle of a shallow analysis,
1967 -- (see the spec of sem for more details) since this is an error
1968 -- situation anyway, and there is no point in repeating the
1969 -- analysis later (indeed it won't work to repeat it later, since
1970 -- we haven't got a clear resolution of which entity is being
1971 -- referenced.)
1973 Set_Analyzed (N, True);
1974 return;
1975 end Resolution_Failed;
1977 -- Start of processing for Resolve
1979 begin
1980 if N = Error then
1981 return;
1982 end if;
1984 -- Access attribute on remote subprogram cannot be used for a non-remote
1985 -- access-to-subprogram type.
1987 if Nkind (N) = N_Attribute_Reference
1988 and then Nam_In (Attribute_Name (N), Name_Access,
1989 Name_Unrestricted_Access,
1990 Name_Unchecked_Access)
1991 and then Comes_From_Source (N)
1992 and then Is_Entity_Name (Prefix (N))
1993 and then Is_Subprogram (Entity (Prefix (N)))
1994 and then Is_Remote_Call_Interface (Entity (Prefix (N)))
1995 and then not Is_Remote_Access_To_Subprogram_Type (Typ)
1996 then
1997 Error_Msg_N
1998 ("prefix must statically denote a non-remote subprogram", N);
1999 end if;
2001 From_Lib := Comes_From_Predefined_Lib_Unit (N);
2003 -- If the context is a Remote_Access_To_Subprogram, access attributes
2004 -- must be resolved with the corresponding fat pointer. There is no need
2005 -- to check for the attribute name since the return type of an
2006 -- attribute is never a remote type.
2008 if Nkind (N) = N_Attribute_Reference
2009 and then Comes_From_Source (N)
2010 and then (Is_Remote_Call_Interface (Typ) or else Is_Remote_Types (Typ))
2011 then
2012 declare
2013 Attr : constant Attribute_Id :=
2014 Get_Attribute_Id (Attribute_Name (N));
2015 Pref : constant Node_Id := Prefix (N);
2016 Decl : Node_Id;
2017 Spec : Node_Id;
2018 Is_Remote : Boolean := True;
2020 begin
2021 -- Check that Typ is a remote access-to-subprogram type
2023 if Is_Remote_Access_To_Subprogram_Type (Typ) then
2025 -- Prefix (N) must statically denote a remote subprogram
2026 -- declared in a package specification.
2028 if Attr = Attribute_Access or else
2029 Attr = Attribute_Unchecked_Access or else
2030 Attr = Attribute_Unrestricted_Access
2031 then
2032 Decl := Unit_Declaration_Node (Entity (Pref));
2034 if Nkind (Decl) = N_Subprogram_Body then
2035 Spec := Corresponding_Spec (Decl);
2037 if Present (Spec) then
2038 Decl := Unit_Declaration_Node (Spec);
2039 end if;
2040 end if;
2042 Spec := Parent (Decl);
2044 if not Is_Entity_Name (Prefix (N))
2045 or else Nkind (Spec) /= N_Package_Specification
2046 or else
2047 not Is_Remote_Call_Interface (Defining_Entity (Spec))
2048 then
2049 Is_Remote := False;
2050 Error_Msg_N
2051 ("prefix must statically denote a remote subprogram ",
2053 end if;
2055 -- If we are generating code in distributed mode, perform
2056 -- semantic checks against corresponding remote entities.
2058 if Expander_Active
2059 and then Get_PCS_Name /= Name_No_DSA
2060 then
2061 Check_Subtype_Conformant
2062 (New_Id => Entity (Prefix (N)),
2063 Old_Id => Designated_Type
2064 (Corresponding_Remote_Type (Typ)),
2065 Err_Loc => N);
2067 if Is_Remote then
2068 Process_Remote_AST_Attribute (N, Typ);
2069 end if;
2070 end if;
2071 end if;
2072 end if;
2073 end;
2074 end if;
2076 Debug_A_Entry ("resolving ", N);
2078 if Debug_Flag_V then
2079 Write_Overloads (N);
2080 end if;
2082 if Comes_From_Source (N) then
2083 if Is_Fixed_Point_Type (Typ) then
2084 Check_Restriction (No_Fixed_Point, N);
2086 elsif Is_Floating_Point_Type (Typ)
2087 and then Typ /= Universal_Real
2088 and then Typ /= Any_Real
2089 then
2090 Check_Restriction (No_Floating_Point, N);
2091 end if;
2092 end if;
2094 -- Return if already analyzed
2096 if Analyzed (N) then
2097 Debug_A_Exit ("resolving ", N, " (done, already analyzed)");
2098 Analyze_Dimension (N);
2099 return;
2101 -- Any case of Any_Type as the Etype value means that we had a
2102 -- previous error.
2104 elsif Etype (N) = Any_Type then
2105 Debug_A_Exit ("resolving ", N, " (done, Etype = Any_Type)");
2106 return;
2107 end if;
2109 Check_Parameterless_Call (N);
2111 -- The resolution of an Expression_With_Actions is determined by
2112 -- its Expression.
2114 if Nkind (N) = N_Expression_With_Actions then
2115 Resolve (Expression (N), Typ);
2117 Found := True;
2118 Expr_Type := Etype (Expression (N));
2120 -- If not overloaded, then we know the type, and all that needs doing
2121 -- is to check that this type is compatible with the context.
2123 elsif not Is_Overloaded (N) then
2124 Found := Covers (Typ, Etype (N));
2125 Expr_Type := Etype (N);
2127 -- In the overloaded case, we must select the interpretation that
2128 -- is compatible with the context (i.e. the type passed to Resolve)
2130 else
2131 -- Loop through possible interpretations
2133 Get_First_Interp (N, I, It);
2134 Interp_Loop : while Present (It.Typ) loop
2135 if Debug_Flag_V then
2136 Write_Str ("Interp: ");
2137 Write_Interp (It);
2138 end if;
2140 -- We are only interested in interpretations that are compatible
2141 -- with the expected type, any other interpretations are ignored.
2143 if not Covers (Typ, It.Typ) then
2144 if Debug_Flag_V then
2145 Write_Str (" interpretation incompatible with context");
2146 Write_Eol;
2147 end if;
2149 else
2150 -- Skip the current interpretation if it is disabled by an
2151 -- abstract operator. This action is performed only when the
2152 -- type against which we are resolving is the same as the
2153 -- type of the interpretation.
2155 if Ada_Version >= Ada_2005
2156 and then It.Typ = Typ
2157 and then Typ /= Universal_Integer
2158 and then Typ /= Universal_Real
2159 and then Present (It.Abstract_Op)
2160 then
2161 if Debug_Flag_V then
2162 Write_Line ("Skip.");
2163 end if;
2165 goto Continue;
2166 end if;
2168 -- First matching interpretation
2170 if not Found then
2171 Found := True;
2172 I1 := I;
2173 Seen := It.Nam;
2174 Expr_Type := It.Typ;
2176 -- Matching interpretation that is not the first, maybe an
2177 -- error, but there are some cases where preference rules are
2178 -- used to choose between the two possibilities. These and
2179 -- some more obscure cases are handled in Disambiguate.
2181 else
2182 -- If the current statement is part of a predefined library
2183 -- unit, then all interpretations which come from user level
2184 -- packages should not be considered. Check previous and
2185 -- current one.
2187 if From_Lib then
2188 if not Comes_From_Predefined_Lib_Unit (It.Nam) then
2189 goto Continue;
2191 elsif not Comes_From_Predefined_Lib_Unit (Seen) then
2193 -- Previous interpretation must be discarded
2195 I1 := I;
2196 Seen := It.Nam;
2197 Expr_Type := It.Typ;
2198 Set_Entity (N, Seen);
2199 goto Continue;
2200 end if;
2201 end if;
2203 -- Otherwise apply further disambiguation steps
2205 Error_Msg_Sloc := Sloc (Seen);
2206 It1 := Disambiguate (N, I1, I, Typ);
2208 -- Disambiguation has succeeded. Skip the remaining
2209 -- interpretations.
2211 if It1 /= No_Interp then
2212 Seen := It1.Nam;
2213 Expr_Type := It1.Typ;
2215 while Present (It.Typ) loop
2216 Get_Next_Interp (I, It);
2217 end loop;
2219 else
2220 -- Before we issue an ambiguity complaint, check for the
2221 -- case of a subprogram call where at least one of the
2222 -- arguments is Any_Type, and if so suppress the message,
2223 -- since it is a cascaded error. This can also happen for
2224 -- a generalized indexing operation.
2226 if Nkind (N) in N_Subprogram_Call
2227 or else (Nkind (N) = N_Indexed_Component
2228 and then Present (Generalized_Indexing (N)))
2229 then
2230 declare
2231 A : Node_Id;
2232 E : Node_Id;
2234 begin
2235 if Nkind (N) = N_Indexed_Component then
2236 Rewrite (N, Generalized_Indexing (N));
2237 end if;
2239 A := First_Actual (N);
2240 while Present (A) loop
2241 E := A;
2243 if Nkind (E) = N_Parameter_Association then
2244 E := Explicit_Actual_Parameter (E);
2245 end if;
2247 if Etype (E) = Any_Type then
2248 if Debug_Flag_V then
2249 Write_Str ("Any_Type in call");
2250 Write_Eol;
2251 end if;
2253 exit Interp_Loop;
2254 end if;
2256 Next_Actual (A);
2257 end loop;
2258 end;
2260 elsif Nkind (N) in N_Binary_Op
2261 and then (Etype (Left_Opnd (N)) = Any_Type
2262 or else Etype (Right_Opnd (N)) = Any_Type)
2263 then
2264 exit Interp_Loop;
2266 elsif Nkind (N) in N_Unary_Op
2267 and then Etype (Right_Opnd (N)) = Any_Type
2268 then
2269 exit Interp_Loop;
2270 end if;
2272 -- Not that special case, so issue message using the flag
2273 -- Ambiguous to control printing of the header message
2274 -- only at the start of an ambiguous set.
2276 if not Ambiguous then
2277 if Nkind (N) = N_Function_Call
2278 and then Nkind (Name (N)) = N_Explicit_Dereference
2279 then
2280 Error_Msg_N
2281 ("ambiguous expression (cannot resolve indirect "
2282 & "call)!", N);
2283 else
2284 Error_Msg_NE -- CODEFIX
2285 ("ambiguous expression (cannot resolve&)!",
2286 N, It.Nam);
2287 end if;
2289 Ambiguous := True;
2291 if Nkind (Parent (Seen)) = N_Full_Type_Declaration then
2292 Error_Msg_N
2293 ("\\possible interpretation (inherited)#!", N);
2294 else
2295 Error_Msg_N -- CODEFIX
2296 ("\\possible interpretation#!", N);
2297 end if;
2299 if Nkind (N) in N_Subprogram_Call
2300 and then Present (Parameter_Associations (N))
2301 then
2302 Report_Ambiguous_Argument;
2303 end if;
2304 end if;
2306 Error_Msg_Sloc := Sloc (It.Nam);
2308 -- By default, the error message refers to the candidate
2309 -- interpretation. But if it is a predefined operator, it
2310 -- is implicitly declared at the declaration of the type
2311 -- of the operand. Recover the sloc of that declaration
2312 -- for the error message.
2314 if Nkind (N) in N_Op
2315 and then Scope (It.Nam) = Standard_Standard
2316 and then not Is_Overloaded (Right_Opnd (N))
2317 and then Scope (Base_Type (Etype (Right_Opnd (N)))) /=
2318 Standard_Standard
2319 then
2320 Err_Type := First_Subtype (Etype (Right_Opnd (N)));
2322 if Comes_From_Source (Err_Type)
2323 and then Present (Parent (Err_Type))
2324 then
2325 Error_Msg_Sloc := Sloc (Parent (Err_Type));
2326 end if;
2328 elsif Nkind (N) in N_Binary_Op
2329 and then Scope (It.Nam) = Standard_Standard
2330 and then not Is_Overloaded (Left_Opnd (N))
2331 and then Scope (Base_Type (Etype (Left_Opnd (N)))) /=
2332 Standard_Standard
2333 then
2334 Err_Type := First_Subtype (Etype (Left_Opnd (N)));
2336 if Comes_From_Source (Err_Type)
2337 and then Present (Parent (Err_Type))
2338 then
2339 Error_Msg_Sloc := Sloc (Parent (Err_Type));
2340 end if;
2342 -- If this is an indirect call, use the subprogram_type
2343 -- in the message, to have a meaningful location. Also
2344 -- indicate if this is an inherited operation, created
2345 -- by a type declaration.
2347 elsif Nkind (N) = N_Function_Call
2348 and then Nkind (Name (N)) = N_Explicit_Dereference
2349 and then Is_Type (It.Nam)
2350 then
2351 Err_Type := It.Nam;
2352 Error_Msg_Sloc :=
2353 Sloc (Associated_Node_For_Itype (Err_Type));
2354 else
2355 Err_Type := Empty;
2356 end if;
2358 if Nkind (N) in N_Op
2359 and then Scope (It.Nam) = Standard_Standard
2360 and then Present (Err_Type)
2361 then
2362 -- Special-case the message for universal_fixed
2363 -- operators, which are not declared with the type
2364 -- of the operand, but appear forever in Standard.
2366 if It.Typ = Universal_Fixed
2367 and then Scope (It.Nam) = Standard_Standard
2368 then
2369 Error_Msg_N
2370 ("\\possible interpretation as universal_fixed "
2371 & "operation (RM 4.5.5 (19))", N);
2372 else
2373 Error_Msg_N
2374 ("\\possible interpretation (predefined)#!", N);
2375 end if;
2377 elsif
2378 Nkind (Parent (It.Nam)) = N_Full_Type_Declaration
2379 then
2380 Error_Msg_N
2381 ("\\possible interpretation (inherited)#!", N);
2382 else
2383 Error_Msg_N -- CODEFIX
2384 ("\\possible interpretation#!", N);
2385 end if;
2387 end if;
2388 end if;
2390 -- We have a matching interpretation, Expr_Type is the type
2391 -- from this interpretation, and Seen is the entity.
2393 -- For an operator, just set the entity name. The type will be
2394 -- set by the specific operator resolution routine.
2396 if Nkind (N) in N_Op then
2397 Set_Entity (N, Seen);
2398 Generate_Reference (Seen, N);
2400 elsif Nkind_In (N, N_Case_Expression,
2401 N_Character_Literal,
2402 N_Delta_Aggregate,
2403 N_If_Expression)
2404 then
2405 Set_Etype (N, Expr_Type);
2407 -- AI05-0139-2: Expression is overloaded because type has
2408 -- implicit dereference. If type matches context, no implicit
2409 -- dereference is involved. If the expression is an entity,
2410 -- generate a reference to it, as this is not done for an
2411 -- overloaded construct during analysis.
2413 elsif Has_Implicit_Dereference (Expr_Type) then
2414 Set_Etype (N, Expr_Type);
2415 Set_Is_Overloaded (N, False);
2417 if Is_Entity_Name (N) then
2418 Generate_Reference (Entity (N), N);
2419 end if;
2421 exit Interp_Loop;
2423 elsif Is_Overloaded (N)
2424 and then Present (It.Nam)
2425 and then Ekind (It.Nam) = E_Discriminant
2426 and then Has_Implicit_Dereference (It.Nam)
2427 then
2428 -- If the node is a general indexing, the dereference is
2429 -- is inserted when resolving the rewritten form, else
2430 -- insert it now.
2432 if Nkind (N) /= N_Indexed_Component
2433 or else No (Generalized_Indexing (N))
2434 then
2435 Build_Explicit_Dereference (N, It.Nam);
2436 end if;
2438 -- For an explicit dereference, attribute reference, range,
2439 -- short-circuit form (which is not an operator node), or call
2440 -- with a name that is an explicit dereference, there is
2441 -- nothing to be done at this point.
2443 elsif Nkind_In (N, N_Attribute_Reference,
2444 N_And_Then,
2445 N_Explicit_Dereference,
2446 N_Identifier,
2447 N_Indexed_Component,
2448 N_Or_Else,
2449 N_Range,
2450 N_Selected_Component,
2451 N_Slice)
2452 or else Nkind (Name (N)) = N_Explicit_Dereference
2453 then
2454 null;
2456 -- For procedure or function calls, set the type of the name,
2457 -- and also the entity pointer for the prefix.
2459 elsif Nkind (N) in N_Subprogram_Call
2460 and then Is_Entity_Name (Name (N))
2461 then
2462 Set_Etype (Name (N), Expr_Type);
2463 Set_Entity (Name (N), Seen);
2464 Generate_Reference (Seen, Name (N));
2466 elsif Nkind (N) = N_Function_Call
2467 and then Nkind (Name (N)) = N_Selected_Component
2468 then
2469 Set_Etype (Name (N), Expr_Type);
2470 Set_Entity (Selector_Name (Name (N)), Seen);
2471 Generate_Reference (Seen, Selector_Name (Name (N)));
2473 -- For all other cases, just set the type of the Name
2475 else
2476 Set_Etype (Name (N), Expr_Type);
2477 end if;
2479 end if;
2481 <<Continue>>
2483 -- Move to next interpretation
2485 exit Interp_Loop when No (It.Typ);
2487 Get_Next_Interp (I, It);
2488 end loop Interp_Loop;
2489 end if;
2491 -- At this stage Found indicates whether or not an acceptable
2492 -- interpretation exists. If not, then we have an error, except that if
2493 -- the context is Any_Type as a result of some other error, then we
2494 -- suppress the error report.
2496 if not Found then
2497 if Typ /= Any_Type then
2499 -- If type we are looking for is Void, then this is the procedure
2500 -- call case, and the error is simply that what we gave is not a
2501 -- procedure name (we think of procedure calls as expressions with
2502 -- types internally, but the user doesn't think of them this way).
2504 if Typ = Standard_Void_Type then
2506 -- Special case message if function used as a procedure
2508 if Nkind (N) = N_Procedure_Call_Statement
2509 and then Is_Entity_Name (Name (N))
2510 and then Ekind (Entity (Name (N))) = E_Function
2511 then
2512 Error_Msg_NE
2513 ("cannot use call to function & as a statement",
2514 Name (N), Entity (Name (N)));
2515 Error_Msg_N
2516 ("\return value of a function call cannot be ignored",
2517 Name (N));
2519 -- Otherwise give general message (not clear what cases this
2520 -- covers, but no harm in providing for them).
2522 else
2523 Error_Msg_N ("expect procedure name in procedure call", N);
2524 end if;
2526 Found := True;
2528 -- Otherwise we do have a subexpression with the wrong type
2530 -- Check for the case of an allocator which uses an access type
2531 -- instead of the designated type. This is a common error and we
2532 -- specialize the message, posting an error on the operand of the
2533 -- allocator, complaining that we expected the designated type of
2534 -- the allocator.
2536 elsif Nkind (N) = N_Allocator
2537 and then Is_Access_Type (Typ)
2538 and then Is_Access_Type (Etype (N))
2539 and then Designated_Type (Etype (N)) = Typ
2540 then
2541 Wrong_Type (Expression (N), Designated_Type (Typ));
2542 Found := True;
2544 -- Check for view mismatch on Null in instances, for which the
2545 -- view-swapping mechanism has no identifier.
2547 elsif (In_Instance or else In_Inlined_Body)
2548 and then (Nkind (N) = N_Null)
2549 and then Is_Private_Type (Typ)
2550 and then Is_Access_Type (Full_View (Typ))
2551 then
2552 Resolve (N, Full_View (Typ));
2553 Set_Etype (N, Typ);
2554 return;
2556 -- Check for an aggregate. Sometimes we can get bogus aggregates
2557 -- from misuse of parentheses, and we are about to complain about
2558 -- the aggregate without even looking inside it.
2560 -- Instead, if we have an aggregate of type Any_Composite, then
2561 -- analyze and resolve the component fields, and then only issue
2562 -- another message if we get no errors doing this (otherwise
2563 -- assume that the errors in the aggregate caused the problem).
2565 elsif Nkind (N) = N_Aggregate
2566 and then Etype (N) = Any_Composite
2567 then
2568 -- Disable expansion in any case. If there is a type mismatch
2569 -- it may be fatal to try to expand the aggregate. The flag
2570 -- would otherwise be set to false when the error is posted.
2572 Expander_Active := False;
2574 declare
2575 procedure Check_Aggr (Aggr : Node_Id);
2576 -- Check one aggregate, and set Found to True if we have a
2577 -- definite error in any of its elements
2579 procedure Check_Elmt (Aelmt : Node_Id);
2580 -- Check one element of aggregate and set Found to True if
2581 -- we definitely have an error in the element.
2583 ----------------
2584 -- Check_Aggr --
2585 ----------------
2587 procedure Check_Aggr (Aggr : Node_Id) is
2588 Elmt : Node_Id;
2590 begin
2591 if Present (Expressions (Aggr)) then
2592 Elmt := First (Expressions (Aggr));
2593 while Present (Elmt) loop
2594 Check_Elmt (Elmt);
2595 Next (Elmt);
2596 end loop;
2597 end if;
2599 if Present (Component_Associations (Aggr)) then
2600 Elmt := First (Component_Associations (Aggr));
2601 while Present (Elmt) loop
2603 -- If this is a default-initialized component, then
2604 -- there is nothing to check. The box will be
2605 -- replaced by the appropriate call during late
2606 -- expansion.
2608 if Nkind (Elmt) /= N_Iterated_Component_Association
2609 and then not Box_Present (Elmt)
2610 then
2611 Check_Elmt (Expression (Elmt));
2612 end if;
2614 Next (Elmt);
2615 end loop;
2616 end if;
2617 end Check_Aggr;
2619 ----------------
2620 -- Check_Elmt --
2621 ----------------
2623 procedure Check_Elmt (Aelmt : Node_Id) is
2624 begin
2625 -- If we have a nested aggregate, go inside it (to
2626 -- attempt a naked analyze-resolve of the aggregate can
2627 -- cause undesirable cascaded errors). Do not resolve
2628 -- expression if it needs a type from context, as for
2629 -- integer * fixed expression.
2631 if Nkind (Aelmt) = N_Aggregate then
2632 Check_Aggr (Aelmt);
2634 else
2635 Analyze (Aelmt);
2637 if not Is_Overloaded (Aelmt)
2638 and then Etype (Aelmt) /= Any_Fixed
2639 then
2640 Resolve (Aelmt);
2641 end if;
2643 if Etype (Aelmt) = Any_Type then
2644 Found := True;
2645 end if;
2646 end if;
2647 end Check_Elmt;
2649 begin
2650 Check_Aggr (N);
2651 end;
2652 end if;
2654 -- Looks like we have a type error, but check for special case
2655 -- of Address wanted, integer found, with the configuration pragma
2656 -- Allow_Integer_Address active. If we have this case, introduce
2657 -- an unchecked conversion to allow the integer expression to be
2658 -- treated as an Address. The reverse case of integer wanted,
2659 -- Address found, is treated in an analogous manner.
2661 if Address_Integer_Convert_OK (Typ, Etype (N)) then
2662 Rewrite (N, Unchecked_Convert_To (Typ, Relocate_Node (N)));
2663 Analyze_And_Resolve (N, Typ);
2664 return;
2666 -- Under relaxed RM semantics silently replace occurrences of null
2667 -- by System.Address_Null.
2669 elsif Null_To_Null_Address_Convert_OK (N, Typ) then
2670 Replace_Null_By_Null_Address (N);
2671 Analyze_And_Resolve (N, Typ);
2672 return;
2673 end if;
2675 -- That special Allow_Integer_Address check did not apply, so we
2676 -- have a real type error. If an error message was issued already,
2677 -- Found got reset to True, so if it's still False, issue standard
2678 -- Wrong_Type message.
2680 if not Found then
2681 if Is_Overloaded (N) and then Nkind (N) = N_Function_Call then
2682 declare
2683 Subp_Name : Node_Id;
2685 begin
2686 if Is_Entity_Name (Name (N)) then
2687 Subp_Name := Name (N);
2689 elsif Nkind (Name (N)) = N_Selected_Component then
2691 -- Protected operation: retrieve operation name
2693 Subp_Name := Selector_Name (Name (N));
2695 else
2696 raise Program_Error;
2697 end if;
2699 Error_Msg_Node_2 := Typ;
2700 Error_Msg_NE
2701 ("no visible interpretation of& matches expected type&",
2702 N, Subp_Name);
2703 end;
2705 if All_Errors_Mode then
2706 declare
2707 Index : Interp_Index;
2708 It : Interp;
2710 begin
2711 Error_Msg_N ("\\possible interpretations:", N);
2713 Get_First_Interp (Name (N), Index, It);
2714 while Present (It.Nam) loop
2715 Error_Msg_Sloc := Sloc (It.Nam);
2716 Error_Msg_Node_2 := It.Nam;
2717 Error_Msg_NE
2718 ("\\ type& for & declared#", N, It.Typ);
2719 Get_Next_Interp (Index, It);
2720 end loop;
2721 end;
2723 else
2724 Error_Msg_N ("\use -gnatf for details", N);
2725 end if;
2727 else
2728 Wrong_Type (N, Typ);
2729 end if;
2730 end if;
2731 end if;
2733 Resolution_Failed;
2734 return;
2736 -- Test if we have more than one interpretation for the context
2738 elsif Ambiguous then
2739 Resolution_Failed;
2740 return;
2742 -- Only one intepretation
2744 else
2745 -- In Ada 2005, if we have something like "X : T := 2 + 2;", where
2746 -- the "+" on T is abstract, and the operands are of universal type,
2747 -- the above code will have (incorrectly) resolved the "+" to the
2748 -- universal one in Standard. Therefore check for this case and give
2749 -- an error. We can't do this earlier, because it would cause legal
2750 -- cases to get errors (when some other type has an abstract "+").
2752 if Ada_Version >= Ada_2005
2753 and then Nkind (N) in N_Op
2754 and then Is_Overloaded (N)
2755 and then Is_Universal_Numeric_Type (Etype (Entity (N)))
2756 then
2757 Get_First_Interp (N, I, It);
2758 while Present (It.Typ) loop
2759 if Present (It.Abstract_Op) and then
2760 Etype (It.Abstract_Op) = Typ
2761 then
2762 Error_Msg_NE
2763 ("cannot call abstract subprogram &!", N, It.Abstract_Op);
2764 return;
2765 end if;
2767 Get_Next_Interp (I, It);
2768 end loop;
2769 end if;
2771 -- Here we have an acceptable interpretation for the context
2773 -- Propagate type information and normalize tree for various
2774 -- predefined operations. If the context only imposes a class of
2775 -- types, rather than a specific type, propagate the actual type
2776 -- downward.
2778 if Typ = Any_Integer or else
2779 Typ = Any_Boolean or else
2780 Typ = Any_Modular or else
2781 Typ = Any_Real or else
2782 Typ = Any_Discrete
2783 then
2784 Ctx_Type := Expr_Type;
2786 -- Any_Fixed is legal in a real context only if a specific fixed-
2787 -- point type is imposed. If Norman Cohen can be confused by this,
2788 -- it deserves a separate message.
2790 if Typ = Any_Real
2791 and then Expr_Type = Any_Fixed
2792 then
2793 Error_Msg_N ("illegal context for mixed mode operation", N);
2794 Set_Etype (N, Universal_Real);
2795 Ctx_Type := Universal_Real;
2796 end if;
2797 end if;
2799 -- A user-defined operator is transformed into a function call at
2800 -- this point, so that further processing knows that operators are
2801 -- really operators (i.e. are predefined operators). User-defined
2802 -- operators that are intrinsic are just renamings of the predefined
2803 -- ones, and need not be turned into calls either, but if they rename
2804 -- a different operator, we must transform the node accordingly.
2805 -- Instantiations of Unchecked_Conversion are intrinsic but are
2806 -- treated as functions, even if given an operator designator.
2808 if Nkind (N) in N_Op
2809 and then Present (Entity (N))
2810 and then Ekind (Entity (N)) /= E_Operator
2811 then
2812 if not Is_Predefined_Op (Entity (N)) then
2813 Rewrite_Operator_As_Call (N, Entity (N));
2815 elsif Present (Alias (Entity (N)))
2816 and then
2817 Nkind (Parent (Parent (Entity (N)))) =
2818 N_Subprogram_Renaming_Declaration
2819 then
2820 Rewrite_Renamed_Operator (N, Alias (Entity (N)), Typ);
2822 -- If the node is rewritten, it will be fully resolved in
2823 -- Rewrite_Renamed_Operator.
2825 if Analyzed (N) then
2826 return;
2827 end if;
2828 end if;
2829 end if;
2831 case N_Subexpr'(Nkind (N)) is
2832 when N_Aggregate =>
2833 Resolve_Aggregate (N, Ctx_Type);
2835 when N_Allocator =>
2836 Resolve_Allocator (N, Ctx_Type);
2838 when N_Short_Circuit =>
2839 Resolve_Short_Circuit (N, Ctx_Type);
2841 when N_Attribute_Reference =>
2842 Resolve_Attribute (N, Ctx_Type);
2844 when N_Case_Expression =>
2845 Resolve_Case_Expression (N, Ctx_Type);
2847 when N_Character_Literal =>
2848 Resolve_Character_Literal (N, Ctx_Type);
2850 when N_Delta_Aggregate =>
2851 Resolve_Delta_Aggregate (N, Ctx_Type);
2853 when N_Expanded_Name =>
2854 Resolve_Entity_Name (N, Ctx_Type);
2856 when N_Explicit_Dereference =>
2857 Resolve_Explicit_Dereference (N, Ctx_Type);
2859 when N_Expression_With_Actions =>
2860 Resolve_Expression_With_Actions (N, Ctx_Type);
2862 when N_Extension_Aggregate =>
2863 Resolve_Extension_Aggregate (N, Ctx_Type);
2865 when N_Function_Call =>
2866 Resolve_Call (N, Ctx_Type);
2868 when N_Identifier =>
2869 Resolve_Entity_Name (N, Ctx_Type);
2871 when N_If_Expression =>
2872 Resolve_If_Expression (N, Ctx_Type);
2874 when N_Indexed_Component =>
2875 Resolve_Indexed_Component (N, Ctx_Type);
2877 when N_Integer_Literal =>
2878 Resolve_Integer_Literal (N, Ctx_Type);
2880 when N_Membership_Test =>
2881 Resolve_Membership_Op (N, Ctx_Type);
2883 when N_Null =>
2884 Resolve_Null (N, Ctx_Type);
2886 when N_Op_And
2887 | N_Op_Or
2888 | N_Op_Xor
2890 Resolve_Logical_Op (N, Ctx_Type);
2892 when N_Op_Eq
2893 | N_Op_Ne
2895 Resolve_Equality_Op (N, Ctx_Type);
2897 when N_Op_Ge
2898 | N_Op_Gt
2899 | N_Op_Le
2900 | N_Op_Lt
2902 Resolve_Comparison_Op (N, Ctx_Type);
2904 when N_Op_Not =>
2905 Resolve_Op_Not (N, Ctx_Type);
2907 when N_Op_Add
2908 | N_Op_Divide
2909 | N_Op_Mod
2910 | N_Op_Multiply
2911 | N_Op_Rem
2912 | N_Op_Subtract
2914 Resolve_Arithmetic_Op (N, Ctx_Type);
2916 when N_Op_Concat =>
2917 Resolve_Op_Concat (N, Ctx_Type);
2919 when N_Op_Expon =>
2920 Resolve_Op_Expon (N, Ctx_Type);
2922 when N_Op_Abs
2923 | N_Op_Minus
2924 | N_Op_Plus
2926 Resolve_Unary_Op (N, Ctx_Type);
2928 when N_Op_Shift =>
2929 Resolve_Shift (N, Ctx_Type);
2931 when N_Procedure_Call_Statement =>
2932 Resolve_Call (N, Ctx_Type);
2934 when N_Operator_Symbol =>
2935 Resolve_Operator_Symbol (N, Ctx_Type);
2937 when N_Qualified_Expression =>
2938 Resolve_Qualified_Expression (N, Ctx_Type);
2940 -- Why is the following null, needs a comment ???
2942 when N_Quantified_Expression =>
2943 null;
2945 when N_Raise_Expression =>
2946 Resolve_Raise_Expression (N, Ctx_Type);
2948 when N_Raise_xxx_Error =>
2949 Set_Etype (N, Ctx_Type);
2951 when N_Range =>
2952 Resolve_Range (N, Ctx_Type);
2954 when N_Real_Literal =>
2955 Resolve_Real_Literal (N, Ctx_Type);
2957 when N_Reference =>
2958 Resolve_Reference (N, Ctx_Type);
2960 when N_Selected_Component =>
2961 Resolve_Selected_Component (N, Ctx_Type);
2963 when N_Slice =>
2964 Resolve_Slice (N, Ctx_Type);
2966 when N_String_Literal =>
2967 Resolve_String_Literal (N, Ctx_Type);
2969 when N_Target_Name =>
2970 Resolve_Target_Name (N, Ctx_Type);
2972 when N_Type_Conversion =>
2973 Resolve_Type_Conversion (N, Ctx_Type);
2975 when N_Unchecked_Expression =>
2976 Resolve_Unchecked_Expression (N, Ctx_Type);
2978 when N_Unchecked_Type_Conversion =>
2979 Resolve_Unchecked_Type_Conversion (N, Ctx_Type);
2980 end case;
2982 -- Mark relevant use-type and use-package clauses as effective using
2983 -- the original node because constant folding may have occured and
2984 -- removed references that need to be examined.
2986 if Nkind (Original_Node (N)) in N_Op then
2987 Mark_Use_Clauses (Original_Node (N));
2988 end if;
2990 -- Ada 2012 (AI05-0149): Apply an (implicit) conversion to an
2991 -- expression of an anonymous access type that occurs in the context
2992 -- of a named general access type, except when the expression is that
2993 -- of a membership test. This ensures proper legality checking in
2994 -- terms of allowed conversions (expressions that would be illegal to
2995 -- convert implicitly are allowed in membership tests).
2997 if Ada_Version >= Ada_2012
2998 and then Ekind (Ctx_Type) = E_General_Access_Type
2999 and then Ekind (Etype (N)) = E_Anonymous_Access_Type
3000 and then Nkind (Parent (N)) not in N_Membership_Test
3001 then
3002 Rewrite (N, Convert_To (Ctx_Type, Relocate_Node (N)));
3003 Analyze_And_Resolve (N, Ctx_Type);
3004 end if;
3006 -- If the subexpression was replaced by a non-subexpression, then
3007 -- all we do is to expand it. The only legitimate case we know of
3008 -- is converting procedure call statement to entry call statements,
3009 -- but there may be others, so we are making this test general.
3011 if Nkind (N) not in N_Subexpr then
3012 Debug_A_Exit ("resolving ", N, " (done)");
3013 Expand (N);
3014 return;
3015 end if;
3017 -- The expression is definitely NOT overloaded at this point, so
3018 -- we reset the Is_Overloaded flag to avoid any confusion when
3019 -- reanalyzing the node.
3021 Set_Is_Overloaded (N, False);
3023 -- Freeze expression type, entity if it is a name, and designated
3024 -- type if it is an allocator (RM 13.14(10,11,13)).
3026 -- Now that the resolution of the type of the node is complete, and
3027 -- we did not detect an error, we can expand this node. We skip the
3028 -- expand call if we are in a default expression, see section
3029 -- "Handling of Default Expressions" in Sem spec.
3031 Debug_A_Exit ("resolving ", N, " (done)");
3033 -- We unconditionally freeze the expression, even if we are in
3034 -- default expression mode (the Freeze_Expression routine tests this
3035 -- flag and only freezes static types if it is set).
3037 -- Ada 2012 (AI05-177): The declaration of an expression function
3038 -- does not cause freezing, but we never reach here in that case.
3039 -- Here we are resolving the corresponding expanded body, so we do
3040 -- need to perform normal freezing.
3042 -- As elsewhere we do not emit freeze node within a generic. We make
3043 -- an exception for entities that are expressions, only to detect
3044 -- misuses of deferred constants and preserve the output of various
3045 -- tests.
3047 if not Inside_A_Generic or else Is_Entity_Name (N) then
3048 Freeze_Expression (N);
3049 end if;
3051 -- Now we can do the expansion
3053 Expand (N);
3054 end if;
3055 end Resolve;
3057 -------------
3058 -- Resolve --
3059 -------------
3061 -- Version with check(s) suppressed
3063 procedure Resolve (N : Node_Id; Typ : Entity_Id; Suppress : Check_Id) is
3064 begin
3065 if Suppress = All_Checks then
3066 declare
3067 Sva : constant Suppress_Array := Scope_Suppress.Suppress;
3068 begin
3069 Scope_Suppress.Suppress := (others => True);
3070 Resolve (N, Typ);
3071 Scope_Suppress.Suppress := Sva;
3072 end;
3074 else
3075 declare
3076 Svg : constant Boolean := Scope_Suppress.Suppress (Suppress);
3077 begin
3078 Scope_Suppress.Suppress (Suppress) := True;
3079 Resolve (N, Typ);
3080 Scope_Suppress.Suppress (Suppress) := Svg;
3081 end;
3082 end if;
3083 end Resolve;
3085 -------------
3086 -- Resolve --
3087 -------------
3089 -- Version with implicit type
3091 procedure Resolve (N : Node_Id) is
3092 begin
3093 Resolve (N, Etype (N));
3094 end Resolve;
3096 ---------------------
3097 -- Resolve_Actuals --
3098 ---------------------
3100 procedure Resolve_Actuals (N : Node_Id; Nam : Entity_Id) is
3101 Loc : constant Source_Ptr := Sloc (N);
3102 A : Node_Id;
3103 A_Id : Entity_Id;
3104 A_Typ : Entity_Id := Empty; -- init to avoid warning
3105 F : Entity_Id;
3106 F_Typ : Entity_Id;
3107 Prev : Node_Id := Empty;
3108 Orig_A : Node_Id;
3109 Real_F : Entity_Id := Empty; -- init to avoid warning
3111 Real_Subp : Entity_Id;
3112 -- If the subprogram being called is an inherited operation for
3113 -- a formal derived type in an instance, Real_Subp is the subprogram
3114 -- that will be called. It may have different formal names than the
3115 -- operation of the formal in the generic, so after actual is resolved
3116 -- the name of the actual in a named association must carry the name
3117 -- of the actual of the subprogram being called.
3119 procedure Check_Aliased_Parameter;
3120 -- Check rules on aliased parameters and related accessibility rules
3121 -- in (RM 3.10.2 (10.2-10.4)).
3123 procedure Check_Argument_Order;
3124 -- Performs a check for the case where the actuals are all simple
3125 -- identifiers that correspond to the formal names, but in the wrong
3126 -- order, which is considered suspicious and cause for a warning.
3128 procedure Check_Prefixed_Call;
3129 -- If the original node is an overloaded call in prefix notation,
3130 -- insert an 'Access or a dereference as needed over the first actual.
3131 -- Try_Object_Operation has already verified that there is a valid
3132 -- interpretation, but the form of the actual can only be determined
3133 -- once the primitive operation is identified.
3135 procedure Flag_Effectively_Volatile_Objects (Expr : Node_Id);
3136 -- Emit an error concerning the illegal usage of an effectively volatile
3137 -- object in interfering context (SPARK RM 7.13(12)).
3139 procedure Insert_Default;
3140 -- If the actual is missing in a call, insert in the actuals list
3141 -- an instance of the default expression. The insertion is always
3142 -- a named association.
3144 function Same_Ancestor (T1, T2 : Entity_Id) return Boolean;
3145 -- Check whether T1 and T2, or their full views, are derived from a
3146 -- common type. Used to enforce the restrictions on array conversions
3147 -- of AI95-00246.
3149 function Static_Concatenation (N : Node_Id) return Boolean;
3150 -- Predicate to determine whether an actual that is a concatenation
3151 -- will be evaluated statically and does not need a transient scope.
3152 -- This must be determined before the actual is resolved and expanded
3153 -- because if needed the transient scope must be introduced earlier.
3155 -----------------------------
3156 -- Check_Aliased_Parameter --
3157 -----------------------------
3159 procedure Check_Aliased_Parameter is
3160 Nominal_Subt : Entity_Id;
3162 begin
3163 if Is_Aliased (F) then
3164 if Is_Tagged_Type (A_Typ) then
3165 null;
3167 elsif Is_Aliased_View (A) then
3168 if Is_Constr_Subt_For_U_Nominal (A_Typ) then
3169 Nominal_Subt := Base_Type (A_Typ);
3170 else
3171 Nominal_Subt := A_Typ;
3172 end if;
3174 if Subtypes_Statically_Match (F_Typ, Nominal_Subt) then
3175 null;
3177 -- In a generic body assume the worst for generic formals:
3178 -- they can have a constrained partial view (AI05-041).
3180 elsif Has_Discriminants (F_Typ)
3181 and then not Is_Constrained (F_Typ)
3182 and then not Has_Constrained_Partial_View (F_Typ)
3183 and then not Is_Generic_Type (F_Typ)
3184 then
3185 null;
3187 else
3188 Error_Msg_NE ("untagged actual does not match "
3189 & "aliased formal&", A, F);
3190 end if;
3192 else
3193 Error_Msg_NE ("actual for aliased formal& must be "
3194 & "aliased object", A, F);
3195 end if;
3197 if Ekind (Nam) = E_Procedure then
3198 null;
3200 elsif Ekind (Etype (Nam)) = E_Anonymous_Access_Type then
3201 if Nkind (Parent (N)) = N_Type_Conversion
3202 and then Type_Access_Level (Etype (Parent (N))) <
3203 Object_Access_Level (A)
3204 then
3205 Error_Msg_N ("aliased actual has wrong accessibility", A);
3206 end if;
3208 elsif Nkind (Parent (N)) = N_Qualified_Expression
3209 and then Nkind (Parent (Parent (N))) = N_Allocator
3210 and then Type_Access_Level (Etype (Parent (Parent (N)))) <
3211 Object_Access_Level (A)
3212 then
3213 Error_Msg_N
3214 ("aliased actual in allocator has wrong accessibility", A);
3215 end if;
3216 end if;
3217 end Check_Aliased_Parameter;
3219 --------------------------
3220 -- Check_Argument_Order --
3221 --------------------------
3223 procedure Check_Argument_Order is
3224 begin
3225 -- Nothing to do if no parameters, or original node is neither a
3226 -- function call nor a procedure call statement (happens in the
3227 -- operator-transformed-to-function call case), or the call does
3228 -- not come from source, or this warning is off.
3230 if not Warn_On_Parameter_Order
3231 or else No (Parameter_Associations (N))
3232 or else Nkind (Original_Node (N)) not in N_Subprogram_Call
3233 or else not Comes_From_Source (N)
3234 then
3235 return;
3236 end if;
3238 declare
3239 Nargs : constant Nat := List_Length (Parameter_Associations (N));
3241 begin
3242 -- Nothing to do if only one parameter
3244 if Nargs < 2 then
3245 return;
3246 end if;
3248 -- Here if at least two arguments
3250 declare
3251 Actuals : array (1 .. Nargs) of Node_Id;
3252 Actual : Node_Id;
3253 Formal : Node_Id;
3255 Wrong_Order : Boolean := False;
3256 -- Set True if an out of order case is found
3258 begin
3259 -- Collect identifier names of actuals, fail if any actual is
3260 -- not a simple identifier, and record max length of name.
3262 Actual := First (Parameter_Associations (N));
3263 for J in Actuals'Range loop
3264 if Nkind (Actual) /= N_Identifier then
3265 return;
3266 else
3267 Actuals (J) := Actual;
3268 Next (Actual);
3269 end if;
3270 end loop;
3272 -- If we got this far, all actuals are identifiers and the list
3273 -- of their names is stored in the Actuals array.
3275 Formal := First_Formal (Nam);
3276 for J in Actuals'Range loop
3278 -- If we ran out of formals, that's odd, probably an error
3279 -- which will be detected elsewhere, but abandon the search.
3281 if No (Formal) then
3282 return;
3283 end if;
3285 -- If name matches and is in order OK
3287 if Chars (Formal) = Chars (Actuals (J)) then
3288 null;
3290 else
3291 -- If no match, see if it is elsewhere in list and if so
3292 -- flag potential wrong order if type is compatible.
3294 for K in Actuals'Range loop
3295 if Chars (Formal) = Chars (Actuals (K))
3296 and then
3297 Has_Compatible_Type (Actuals (K), Etype (Formal))
3298 then
3299 Wrong_Order := True;
3300 goto Continue;
3301 end if;
3302 end loop;
3304 -- No match
3306 return;
3307 end if;
3309 <<Continue>> Next_Formal (Formal);
3310 end loop;
3312 -- If Formals left over, also probably an error, skip warning
3314 if Present (Formal) then
3315 return;
3316 end if;
3318 -- Here we give the warning if something was out of order
3320 if Wrong_Order then
3321 Error_Msg_N
3322 ("?P?actuals for this call may be in wrong order", N);
3323 end if;
3324 end;
3325 end;
3326 end Check_Argument_Order;
3328 -------------------------
3329 -- Check_Prefixed_Call --
3330 -------------------------
3332 procedure Check_Prefixed_Call is
3333 Act : constant Node_Id := First_Actual (N);
3334 A_Type : constant Entity_Id := Etype (Act);
3335 F_Type : constant Entity_Id := Etype (First_Formal (Nam));
3336 Orig : constant Node_Id := Original_Node (N);
3337 New_A : Node_Id;
3339 begin
3340 -- Check whether the call is a prefixed call, with or without
3341 -- additional actuals.
3343 if Nkind (Orig) = N_Selected_Component
3344 or else
3345 (Nkind (Orig) = N_Indexed_Component
3346 and then Nkind (Prefix (Orig)) = N_Selected_Component
3347 and then Is_Entity_Name (Prefix (Prefix (Orig)))
3348 and then Is_Entity_Name (Act)
3349 and then Chars (Act) = Chars (Prefix (Prefix (Orig))))
3350 then
3351 if Is_Access_Type (A_Type)
3352 and then not Is_Access_Type (F_Type)
3353 then
3354 -- Introduce dereference on object in prefix
3356 New_A :=
3357 Make_Explicit_Dereference (Sloc (Act),
3358 Prefix => Relocate_Node (Act));
3359 Rewrite (Act, New_A);
3360 Analyze (Act);
3362 elsif Is_Access_Type (F_Type)
3363 and then not Is_Access_Type (A_Type)
3364 then
3365 -- Introduce an implicit 'Access in prefix
3367 if not Is_Aliased_View (Act) then
3368 Error_Msg_NE
3369 ("object in prefixed call to& must be aliased "
3370 & "(RM 4.1.3 (13 1/2))",
3371 Prefix (Act), Nam);
3372 end if;
3374 Rewrite (Act,
3375 Make_Attribute_Reference (Loc,
3376 Attribute_Name => Name_Access,
3377 Prefix => Relocate_Node (Act)));
3378 end if;
3380 Analyze (Act);
3381 end if;
3382 end Check_Prefixed_Call;
3384 ---------------------------------------
3385 -- Flag_Effectively_Volatile_Objects --
3386 ---------------------------------------
3388 procedure Flag_Effectively_Volatile_Objects (Expr : Node_Id) is
3389 function Flag_Object (N : Node_Id) return Traverse_Result;
3390 -- Determine whether arbitrary node N denotes an effectively volatile
3391 -- object and if it does, emit an error.
3393 -----------------
3394 -- Flag_Object --
3395 -----------------
3397 function Flag_Object (N : Node_Id) return Traverse_Result is
3398 Id : Entity_Id;
3400 begin
3401 -- Do not consider nested function calls because they have already
3402 -- been processed during their own resolution.
3404 if Nkind (N) = N_Function_Call then
3405 return Skip;
3407 elsif Is_Entity_Name (N) and then Present (Entity (N)) then
3408 Id := Entity (N);
3410 if Is_Object (Id)
3411 and then Is_Effectively_Volatile (Id)
3412 and then (Async_Writers_Enabled (Id)
3413 or else Effective_Reads_Enabled (Id))
3414 then
3415 Error_Msg_N
3416 ("volatile object cannot appear in this context (SPARK "
3417 & "RM 7.1.3(11))", N);
3418 return Skip;
3419 end if;
3420 end if;
3422 return OK;
3423 end Flag_Object;
3425 procedure Flag_Objects is new Traverse_Proc (Flag_Object);
3427 -- Start of processing for Flag_Effectively_Volatile_Objects
3429 begin
3430 Flag_Objects (Expr);
3431 end Flag_Effectively_Volatile_Objects;
3433 --------------------
3434 -- Insert_Default --
3435 --------------------
3437 procedure Insert_Default is
3438 Actval : Node_Id;
3439 Assoc : Node_Id;
3441 begin
3442 -- Missing argument in call, nothing to insert
3444 if No (Default_Value (F)) then
3445 return;
3447 else
3448 -- Note that we do a full New_Copy_Tree, so that any associated
3449 -- Itypes are properly copied. This may not be needed any more,
3450 -- but it does no harm as a safety measure. Defaults of a generic
3451 -- formal may be out of bounds of the corresponding actual (see
3452 -- cc1311b) and an additional check may be required.
3454 Actval :=
3455 New_Copy_Tree
3456 (Default_Value (F),
3457 New_Scope => Current_Scope,
3458 New_Sloc => Loc);
3460 -- Propagate dimension information, if any.
3462 Copy_Dimensions (Default_Value (F), Actval);
3464 if Is_Concurrent_Type (Scope (Nam))
3465 and then Has_Discriminants (Scope (Nam))
3466 then
3467 Replace_Actual_Discriminants (N, Actval);
3468 end if;
3470 if Is_Overloadable (Nam)
3471 and then Present (Alias (Nam))
3472 then
3473 if Base_Type (Etype (F)) /= Base_Type (Etype (Actval))
3474 and then not Is_Tagged_Type (Etype (F))
3475 then
3476 -- If default is a real literal, do not introduce a
3477 -- conversion whose effect may depend on the run-time
3478 -- size of universal real.
3480 if Nkind (Actval) = N_Real_Literal then
3481 Set_Etype (Actval, Base_Type (Etype (F)));
3482 else
3483 Actval := Unchecked_Convert_To (Etype (F), Actval);
3484 end if;
3485 end if;
3487 if Is_Scalar_Type (Etype (F)) then
3488 Enable_Range_Check (Actval);
3489 end if;
3491 Set_Parent (Actval, N);
3493 -- Resolve aggregates with their base type, to avoid scope
3494 -- anomalies: the subtype was first built in the subprogram
3495 -- declaration, and the current call may be nested.
3497 if Nkind (Actval) = N_Aggregate then
3498 Analyze_And_Resolve (Actval, Etype (F));
3499 else
3500 Analyze_And_Resolve (Actval, Etype (Actval));
3501 end if;
3503 else
3504 Set_Parent (Actval, N);
3506 -- See note above concerning aggregates
3508 if Nkind (Actval) = N_Aggregate
3509 and then Has_Discriminants (Etype (Actval))
3510 then
3511 Analyze_And_Resolve (Actval, Base_Type (Etype (Actval)));
3513 -- Resolve entities with their own type, which may differ from
3514 -- the type of a reference in a generic context (the view
3515 -- swapping mechanism did not anticipate the re-analysis of
3516 -- default values in calls).
3518 elsif Is_Entity_Name (Actval) then
3519 Analyze_And_Resolve (Actval, Etype (Entity (Actval)));
3521 else
3522 Analyze_And_Resolve (Actval, Etype (Actval));
3523 end if;
3524 end if;
3526 -- If default is a tag indeterminate function call, propagate tag
3527 -- to obtain proper dispatching.
3529 if Is_Controlling_Formal (F)
3530 and then Nkind (Default_Value (F)) = N_Function_Call
3531 then
3532 Set_Is_Controlling_Actual (Actval);
3533 end if;
3534 end if;
3536 -- If the default expression raises constraint error, then just
3537 -- silently replace it with an N_Raise_Constraint_Error node, since
3538 -- we already gave the warning on the subprogram spec. If node is
3539 -- already a Raise_Constraint_Error leave as is, to prevent loops in
3540 -- the warnings removal machinery.
3542 if Raises_Constraint_Error (Actval)
3543 and then Nkind (Actval) /= N_Raise_Constraint_Error
3544 then
3545 Rewrite (Actval,
3546 Make_Raise_Constraint_Error (Loc,
3547 Reason => CE_Range_Check_Failed));
3549 Set_Raises_Constraint_Error (Actval);
3550 Set_Etype (Actval, Etype (F));
3551 end if;
3553 Assoc :=
3554 Make_Parameter_Association (Loc,
3555 Explicit_Actual_Parameter => Actval,
3556 Selector_Name => Make_Identifier (Loc, Chars (F)));
3558 -- Case of insertion is first named actual
3560 if No (Prev)
3561 or else Nkind (Parent (Prev)) /= N_Parameter_Association
3562 then
3563 Set_Next_Named_Actual (Assoc, First_Named_Actual (N));
3564 Set_First_Named_Actual (N, Actval);
3566 if No (Prev) then
3567 if No (Parameter_Associations (N)) then
3568 Set_Parameter_Associations (N, New_List (Assoc));
3569 else
3570 Append (Assoc, Parameter_Associations (N));
3571 end if;
3573 else
3574 Insert_After (Prev, Assoc);
3575 end if;
3577 -- Case of insertion is not first named actual
3579 else
3580 Set_Next_Named_Actual
3581 (Assoc, Next_Named_Actual (Parent (Prev)));
3582 Set_Next_Named_Actual (Parent (Prev), Actval);
3583 Append (Assoc, Parameter_Associations (N));
3584 end if;
3586 Mark_Rewrite_Insertion (Assoc);
3587 Mark_Rewrite_Insertion (Actval);
3589 Prev := Actval;
3590 end Insert_Default;
3592 -------------------
3593 -- Same_Ancestor --
3594 -------------------
3596 function Same_Ancestor (T1, T2 : Entity_Id) return Boolean is
3597 FT1 : Entity_Id := T1;
3598 FT2 : Entity_Id := T2;
3600 begin
3601 if Is_Private_Type (T1)
3602 and then Present (Full_View (T1))
3603 then
3604 FT1 := Full_View (T1);
3605 end if;
3607 if Is_Private_Type (T2)
3608 and then Present (Full_View (T2))
3609 then
3610 FT2 := Full_View (T2);
3611 end if;
3613 return Root_Type (Base_Type (FT1)) = Root_Type (Base_Type (FT2));
3614 end Same_Ancestor;
3616 --------------------------
3617 -- Static_Concatenation --
3618 --------------------------
3620 function Static_Concatenation (N : Node_Id) return Boolean is
3621 begin
3622 case Nkind (N) is
3623 when N_String_Literal =>
3624 return True;
3626 when N_Op_Concat =>
3628 -- Concatenation is static when both operands are static and
3629 -- the concatenation operator is a predefined one.
3631 return Scope (Entity (N)) = Standard_Standard
3632 and then
3633 Static_Concatenation (Left_Opnd (N))
3634 and then
3635 Static_Concatenation (Right_Opnd (N));
3637 when others =>
3638 if Is_Entity_Name (N) then
3639 declare
3640 Ent : constant Entity_Id := Entity (N);
3641 begin
3642 return Ekind (Ent) = E_Constant
3643 and then Present (Constant_Value (Ent))
3644 and then
3645 Is_OK_Static_Expression (Constant_Value (Ent));
3646 end;
3648 else
3649 return False;
3650 end if;
3651 end case;
3652 end Static_Concatenation;
3654 -- Start of processing for Resolve_Actuals
3656 begin
3657 Check_Argument_Order;
3659 if Is_Overloadable (Nam)
3660 and then Is_Inherited_Operation (Nam)
3661 and then In_Instance
3662 and then Present (Alias (Nam))
3663 and then Present (Overridden_Operation (Alias (Nam)))
3664 then
3665 Real_Subp := Alias (Nam);
3666 else
3667 Real_Subp := Empty;
3668 end if;
3670 if Present (First_Actual (N)) then
3671 Check_Prefixed_Call;
3672 end if;
3674 A := First_Actual (N);
3675 F := First_Formal (Nam);
3677 if Present (Real_Subp) then
3678 Real_F := First_Formal (Real_Subp);
3679 end if;
3681 while Present (F) loop
3682 if No (A) and then Needs_No_Actuals (Nam) then
3683 null;
3685 -- If we have an error in any actual or formal, indicated by a type
3686 -- of Any_Type, then abandon resolution attempt, and set result type
3687 -- to Any_Type. Skip this if the actual is a Raise_Expression, whose
3688 -- type is imposed from context.
3690 elsif (Present (A) and then Etype (A) = Any_Type)
3691 or else Etype (F) = Any_Type
3692 then
3693 if Nkind (A) /= N_Raise_Expression then
3694 Set_Etype (N, Any_Type);
3695 return;
3696 end if;
3697 end if;
3699 -- Case where actual is present
3701 -- If the actual is an entity, generate a reference to it now. We
3702 -- do this before the actual is resolved, because a formal of some
3703 -- protected subprogram, or a task discriminant, will be rewritten
3704 -- during expansion, and the source entity reference may be lost.
3706 if Present (A)
3707 and then Is_Entity_Name (A)
3708 and then Comes_From_Source (A)
3709 then
3710 -- Annotate the tree by creating a variable reference marker when
3711 -- the actual denotes a variable reference, in case the reference
3712 -- is folded or optimized away. The variable reference marker is
3713 -- automatically saved for later examination by the ABE Processing
3714 -- phase. The status of the reference is set as follows:
3716 -- status mode
3717 -- read IN, IN OUT
3718 -- write IN OUT, OUT
3720 if Needs_Variable_Reference_Marker
3721 (N => A,
3722 Calls_OK => True)
3723 then
3724 Build_Variable_Reference_Marker
3725 (N => A,
3726 Read => Ekind (F) /= E_Out_Parameter,
3727 Write => Ekind (F) /= E_In_Parameter);
3728 end if;
3730 Orig_A := Entity (A);
3732 if Present (Orig_A) then
3733 if Is_Formal (Orig_A)
3734 and then Ekind (F) /= E_In_Parameter
3735 then
3736 Generate_Reference (Orig_A, A, 'm');
3738 elsif not Is_Overloaded (A) then
3739 if Ekind (F) /= E_Out_Parameter then
3740 Generate_Reference (Orig_A, A);
3742 -- RM 6.4.1(12): For an out parameter that is passed by
3743 -- copy, the formal parameter object is created, and:
3745 -- * For an access type, the formal parameter is initialized
3746 -- from the value of the actual, without checking that the
3747 -- value satisfies any constraint, any predicate, or any
3748 -- exclusion of the null value.
3750 -- * For a scalar type that has the Default_Value aspect
3751 -- specified, the formal parameter is initialized from the
3752 -- value of the actual, without checking that the value
3753 -- satisfies any constraint or any predicate.
3754 -- I do not understand why this case is included??? this is
3755 -- not a case where an OUT parameter is treated as IN OUT.
3757 -- * For a composite type with discriminants or that has
3758 -- implicit initial values for any subcomponents, the
3759 -- behavior is as for an in out parameter passed by copy.
3761 -- Hence for these cases we generate the read reference now
3762 -- (the write reference will be generated later by
3763 -- Note_Possible_Modification).
3765 elsif Is_By_Copy_Type (Etype (F))
3766 and then
3767 (Is_Access_Type (Etype (F))
3768 or else
3769 (Is_Scalar_Type (Etype (F))
3770 and then
3771 Present (Default_Aspect_Value (Etype (F))))
3772 or else
3773 (Is_Composite_Type (Etype (F))
3774 and then (Has_Discriminants (Etype (F))
3775 or else Is_Partially_Initialized_Type
3776 (Etype (F)))))
3777 then
3778 Generate_Reference (Orig_A, A);
3779 end if;
3780 end if;
3781 end if;
3782 end if;
3784 if Present (A)
3785 and then (Nkind (Parent (A)) /= N_Parameter_Association
3786 or else Chars (Selector_Name (Parent (A))) = Chars (F))
3787 then
3788 -- If style checking mode on, check match of formal name
3790 if Style_Check then
3791 if Nkind (Parent (A)) = N_Parameter_Association then
3792 Check_Identifier (Selector_Name (Parent (A)), F);
3793 end if;
3794 end if;
3796 -- If the formal is Out or In_Out, do not resolve and expand the
3797 -- conversion, because it is subsequently expanded into explicit
3798 -- temporaries and assignments. However, the object of the
3799 -- conversion can be resolved. An exception is the case of tagged
3800 -- type conversion with a class-wide actual. In that case we want
3801 -- the tag check to occur and no temporary will be needed (no
3802 -- representation change can occur) and the parameter is passed by
3803 -- reference, so we go ahead and resolve the type conversion.
3804 -- Another exception is the case of reference to component or
3805 -- subcomponent of a bit-packed array, in which case we want to
3806 -- defer expansion to the point the in and out assignments are
3807 -- performed.
3809 if Ekind (F) /= E_In_Parameter
3810 and then Nkind (A) = N_Type_Conversion
3811 and then not Is_Class_Wide_Type (Etype (Expression (A)))
3812 then
3813 if Ekind (F) = E_In_Out_Parameter
3814 and then Is_Array_Type (Etype (F))
3815 then
3816 -- In a view conversion, the conversion must be legal in
3817 -- both directions, and thus both component types must be
3818 -- aliased, or neither (4.6 (8)).
3820 -- The extra rule in 4.6 (24.9.2) seems unduly restrictive:
3821 -- the privacy requirement should not apply to generic
3822 -- types, and should be checked in an instance. ARG query
3823 -- is in order ???
3825 if Has_Aliased_Components (Etype (Expression (A))) /=
3826 Has_Aliased_Components (Etype (F))
3827 then
3828 Error_Msg_N
3829 ("both component types in a view conversion must be"
3830 & " aliased, or neither", A);
3832 -- Comment here??? what set of cases???
3834 elsif
3835 not Same_Ancestor (Etype (F), Etype (Expression (A)))
3836 then
3837 -- Check view conv between unrelated by ref array types
3839 if Is_By_Reference_Type (Etype (F))
3840 or else Is_By_Reference_Type (Etype (Expression (A)))
3841 then
3842 Error_Msg_N
3843 ("view conversion between unrelated by reference "
3844 & "array types not allowed (\'A'I-00246)", A);
3846 -- In Ada 2005 mode, check view conversion component
3847 -- type cannot be private, tagged, or volatile. Note
3848 -- that we only apply this to source conversions. The
3849 -- generated code can contain conversions which are
3850 -- not subject to this test, and we cannot extract the
3851 -- component type in such cases since it is not present.
3853 elsif Comes_From_Source (A)
3854 and then Ada_Version >= Ada_2005
3855 then
3856 declare
3857 Comp_Type : constant Entity_Id :=
3858 Component_Type
3859 (Etype (Expression (A)));
3860 begin
3861 if (Is_Private_Type (Comp_Type)
3862 and then not Is_Generic_Type (Comp_Type))
3863 or else Is_Tagged_Type (Comp_Type)
3864 or else Is_Volatile (Comp_Type)
3865 then
3866 Error_Msg_N
3867 ("component type of a view conversion cannot"
3868 & " be private, tagged, or volatile"
3869 & " (RM 4.6 (24))",
3870 Expression (A));
3871 end if;
3872 end;
3873 end if;
3874 end if;
3875 end if;
3877 -- Resolve expression if conversion is all OK
3879 if (Conversion_OK (A)
3880 or else Valid_Conversion (A, Etype (A), Expression (A)))
3881 and then not Is_Ref_To_Bit_Packed_Array (Expression (A))
3882 then
3883 Resolve (Expression (A));
3884 end if;
3886 -- If the actual is a function call that returns a limited
3887 -- unconstrained object that needs finalization, create a
3888 -- transient scope for it, so that it can receive the proper
3889 -- finalization list.
3891 elsif Expander_Active
3892 and then Nkind (A) = N_Function_Call
3893 and then Is_Limited_Record (Etype (F))
3894 and then not Is_Constrained (Etype (F))
3895 and then (Needs_Finalization (Etype (F))
3896 or else Has_Task (Etype (F)))
3897 then
3898 Establish_Transient_Scope (A, Manage_Sec_Stack => False);
3899 Resolve (A, Etype (F));
3901 -- A small optimization: if one of the actuals is a concatenation
3902 -- create a block around a procedure call to recover stack space.
3903 -- This alleviates stack usage when several procedure calls in
3904 -- the same statement list use concatenation. We do not perform
3905 -- this wrapping for code statements, where the argument is a
3906 -- static string, and we want to preserve warnings involving
3907 -- sequences of such statements.
3909 elsif Expander_Active
3910 and then Nkind (A) = N_Op_Concat
3911 and then Nkind (N) = N_Procedure_Call_Statement
3912 and then not (Is_Intrinsic_Subprogram (Nam)
3913 and then Chars (Nam) = Name_Asm)
3914 and then not Static_Concatenation (A)
3915 then
3916 Establish_Transient_Scope (A, Manage_Sec_Stack => False);
3917 Resolve (A, Etype (F));
3919 else
3920 if Nkind (A) = N_Type_Conversion
3921 and then Is_Array_Type (Etype (F))
3922 and then not Same_Ancestor (Etype (F), Etype (Expression (A)))
3923 and then
3924 (Is_Limited_Type (Etype (F))
3925 or else Is_Limited_Type (Etype (Expression (A))))
3926 then
3927 Error_Msg_N
3928 ("conversion between unrelated limited array types not "
3929 & "allowed ('A'I-00246)", A);
3931 if Is_Limited_Type (Etype (F)) then
3932 Explain_Limited_Type (Etype (F), A);
3933 end if;
3935 if Is_Limited_Type (Etype (Expression (A))) then
3936 Explain_Limited_Type (Etype (Expression (A)), A);
3937 end if;
3938 end if;
3940 -- (Ada 2005: AI-251): If the actual is an allocator whose
3941 -- directly designated type is a class-wide interface, we build
3942 -- an anonymous access type to use it as the type of the
3943 -- allocator. Later, when the subprogram call is expanded, if
3944 -- the interface has a secondary dispatch table the expander
3945 -- will add a type conversion to force the correct displacement
3946 -- of the pointer.
3948 if Nkind (A) = N_Allocator then
3949 declare
3950 DDT : constant Entity_Id :=
3951 Directly_Designated_Type (Base_Type (Etype (F)));
3953 New_Itype : Entity_Id;
3955 begin
3956 if Is_Class_Wide_Type (DDT)
3957 and then Is_Interface (DDT)
3958 then
3959 New_Itype := Create_Itype (E_Anonymous_Access_Type, A);
3960 Set_Etype (New_Itype, Etype (A));
3961 Set_Directly_Designated_Type
3962 (New_Itype, Directly_Designated_Type (Etype (A)));
3963 Set_Etype (A, New_Itype);
3964 end if;
3966 -- Ada 2005, AI-162:If the actual is an allocator, the
3967 -- innermost enclosing statement is the master of the
3968 -- created object. This needs to be done with expansion
3969 -- enabled only, otherwise the transient scope will not
3970 -- be removed in the expansion of the wrapped construct.
3972 if Expander_Active
3973 and then (Needs_Finalization (DDT)
3974 or else Has_Task (DDT))
3975 then
3976 Establish_Transient_Scope
3977 (A, Manage_Sec_Stack => False);
3978 end if;
3979 end;
3981 if Ekind (Etype (F)) = E_Anonymous_Access_Type then
3982 Check_Restriction (No_Access_Parameter_Allocators, A);
3983 end if;
3984 end if;
3986 -- (Ada 2005): The call may be to a primitive operation of a
3987 -- tagged synchronized type, declared outside of the type. In
3988 -- this case the controlling actual must be converted to its
3989 -- corresponding record type, which is the formal type. The
3990 -- actual may be a subtype, either because of a constraint or
3991 -- because it is a generic actual, so use base type to locate
3992 -- concurrent type.
3994 F_Typ := Base_Type (Etype (F));
3996 if Is_Tagged_Type (F_Typ)
3997 and then (Is_Concurrent_Type (F_Typ)
3998 or else Is_Concurrent_Record_Type (F_Typ))
3999 then
4000 -- If the actual is overloaded, look for an interpretation
4001 -- that has a synchronized type.
4003 if not Is_Overloaded (A) then
4004 A_Typ := Base_Type (Etype (A));
4006 else
4007 declare
4008 Index : Interp_Index;
4009 It : Interp;
4011 begin
4012 Get_First_Interp (A, Index, It);
4013 while Present (It.Typ) loop
4014 if Is_Concurrent_Type (It.Typ)
4015 or else Is_Concurrent_Record_Type (It.Typ)
4016 then
4017 A_Typ := Base_Type (It.Typ);
4018 exit;
4019 end if;
4021 Get_Next_Interp (Index, It);
4022 end loop;
4023 end;
4024 end if;
4026 declare
4027 Full_A_Typ : Entity_Id;
4029 begin
4030 if Present (Full_View (A_Typ)) then
4031 Full_A_Typ := Base_Type (Full_View (A_Typ));
4032 else
4033 Full_A_Typ := A_Typ;
4034 end if;
4036 -- Tagged synchronized type (case 1): the actual is a
4037 -- concurrent type.
4039 if Is_Concurrent_Type (A_Typ)
4040 and then Corresponding_Record_Type (A_Typ) = F_Typ
4041 then
4042 Rewrite (A,
4043 Unchecked_Convert_To
4044 (Corresponding_Record_Type (A_Typ), A));
4045 Resolve (A, Etype (F));
4047 -- Tagged synchronized type (case 2): the formal is a
4048 -- concurrent type.
4050 elsif Ekind (Full_A_Typ) = E_Record_Type
4051 and then Present
4052 (Corresponding_Concurrent_Type (Full_A_Typ))
4053 and then Is_Concurrent_Type (F_Typ)
4054 and then Present (Corresponding_Record_Type (F_Typ))
4055 and then Full_A_Typ = Corresponding_Record_Type (F_Typ)
4056 then
4057 Resolve (A, Corresponding_Record_Type (F_Typ));
4059 -- Common case
4061 else
4062 Resolve (A, Etype (F));
4063 end if;
4064 end;
4066 -- Not a synchronized operation
4068 else
4069 Resolve (A, Etype (F));
4070 end if;
4071 end if;
4073 A_Typ := Etype (A);
4074 F_Typ := Etype (F);
4076 -- An actual cannot be an untagged formal incomplete type
4078 if Ekind (A_Typ) = E_Incomplete_Type
4079 and then not Is_Tagged_Type (A_Typ)
4080 and then Is_Generic_Type (A_Typ)
4081 then
4082 Error_Msg_N
4083 ("invalid use of untagged formal incomplete type", A);
4084 end if;
4086 if Comes_From_Source (Original_Node (N))
4087 and then Nkind_In (Original_Node (N), N_Function_Call,
4088 N_Procedure_Call_Statement)
4089 then
4090 -- In formal mode, check that actual parameters matching
4091 -- formals of tagged types are objects (or ancestor type
4092 -- conversions of objects), not general expressions.
4094 if Is_Actual_Tagged_Parameter (A) then
4095 if Is_SPARK_05_Object_Reference (A) then
4096 null;
4098 elsif Nkind (A) = N_Type_Conversion then
4099 declare
4100 Operand : constant Node_Id := Expression (A);
4101 Operand_Typ : constant Entity_Id := Etype (Operand);
4102 Target_Typ : constant Entity_Id := A_Typ;
4104 begin
4105 if not Is_SPARK_05_Object_Reference (Operand) then
4106 Check_SPARK_05_Restriction
4107 ("object required", Operand);
4109 -- In formal mode, the only view conversions are those
4110 -- involving ancestor conversion of an extended type.
4112 elsif not
4113 (Is_Tagged_Type (Target_Typ)
4114 and then not Is_Class_Wide_Type (Target_Typ)
4115 and then Is_Tagged_Type (Operand_Typ)
4116 and then not Is_Class_Wide_Type (Operand_Typ)
4117 and then Is_Ancestor (Target_Typ, Operand_Typ))
4118 then
4119 if Ekind_In
4120 (F, E_Out_Parameter, E_In_Out_Parameter)
4121 then
4122 Check_SPARK_05_Restriction
4123 ("ancestor conversion is the only permitted "
4124 & "view conversion", A);
4125 else
4126 Check_SPARK_05_Restriction
4127 ("ancestor conversion required", A);
4128 end if;
4130 else
4131 null;
4132 end if;
4133 end;
4135 else
4136 Check_SPARK_05_Restriction ("object required", A);
4137 end if;
4139 -- In formal mode, the only view conversions are those
4140 -- involving ancestor conversion of an extended type.
4142 elsif Nkind (A) = N_Type_Conversion
4143 and then Ekind_In (F, E_Out_Parameter, E_In_Out_Parameter)
4144 then
4145 Check_SPARK_05_Restriction
4146 ("ancestor conversion is the only permitted view "
4147 & "conversion", A);
4148 end if;
4149 end if;
4151 -- has warnings suppressed, then we reset Never_Set_In_Source for
4152 -- the calling entity. The reason for this is to catch cases like
4153 -- GNAT.Spitbol.Patterns.Vstring_Var where the called subprogram
4154 -- uses trickery to modify an IN parameter.
4156 if Ekind (F) = E_In_Parameter
4157 and then Is_Entity_Name (A)
4158 and then Present (Entity (A))
4159 and then Ekind (Entity (A)) = E_Variable
4160 and then Has_Warnings_Off (F_Typ)
4161 then
4162 Set_Never_Set_In_Source (Entity (A), False);
4163 end if;
4165 -- Perform error checks for IN and IN OUT parameters
4167 if Ekind (F) /= E_Out_Parameter then
4169 -- Check unset reference. For scalar parameters, it is clearly
4170 -- wrong to pass an uninitialized value as either an IN or
4171 -- IN-OUT parameter. For composites, it is also clearly an
4172 -- error to pass a completely uninitialized value as an IN
4173 -- parameter, but the case of IN OUT is trickier. We prefer
4174 -- not to give a warning here. For example, suppose there is
4175 -- a routine that sets some component of a record to False.
4176 -- It is perfectly reasonable to make this IN-OUT and allow
4177 -- either initialized or uninitialized records to be passed
4178 -- in this case.
4180 -- For partially initialized composite values, we also avoid
4181 -- warnings, since it is quite likely that we are passing a
4182 -- partially initialized value and only the initialized fields
4183 -- will in fact be read in the subprogram.
4185 if Is_Scalar_Type (A_Typ)
4186 or else (Ekind (F) = E_In_Parameter
4187 and then not Is_Partially_Initialized_Type (A_Typ))
4188 then
4189 Check_Unset_Reference (A);
4190 end if;
4192 -- In Ada 83 we cannot pass an OUT parameter as an IN or IN OUT
4193 -- actual to a nested call, since this constitutes a reading of
4194 -- the parameter, which is not allowed.
4196 if Ada_Version = Ada_83
4197 and then Is_Entity_Name (A)
4198 and then Ekind (Entity (A)) = E_Out_Parameter
4199 then
4200 Error_Msg_N ("(Ada 83) illegal reading of out parameter", A);
4201 end if;
4202 end if;
4204 -- In -gnatd.q mode, forget that a given array is constant when
4205 -- it is passed as an IN parameter to a foreign-convention
4206 -- subprogram. This is in case the subprogram evilly modifies the
4207 -- object. Of course, correct code would use IN OUT.
4209 if Debug_Flag_Dot_Q
4210 and then Ekind (F) = E_In_Parameter
4211 and then Has_Foreign_Convention (Nam)
4212 and then Is_Array_Type (F_Typ)
4213 and then Nkind (A) in N_Has_Entity
4214 and then Present (Entity (A))
4215 then
4216 Set_Is_True_Constant (Entity (A), False);
4217 end if;
4219 -- Case of OUT or IN OUT parameter
4221 if Ekind (F) /= E_In_Parameter then
4223 -- For an Out parameter, check for useless assignment. Note
4224 -- that we can't set Last_Assignment this early, because we may
4225 -- kill current values in Resolve_Call, and that call would
4226 -- clobber the Last_Assignment field.
4228 -- Note: call Warn_On_Useless_Assignment before doing the check
4229 -- below for Is_OK_Variable_For_Out_Formal so that the setting
4230 -- of Referenced_As_LHS/Referenced_As_Out_Formal properly
4231 -- reflects the last assignment, not this one.
4233 if Ekind (F) = E_Out_Parameter then
4234 if Warn_On_Modified_As_Out_Parameter (F)
4235 and then Is_Entity_Name (A)
4236 and then Present (Entity (A))
4237 and then Comes_From_Source (N)
4238 then
4239 Warn_On_Useless_Assignment (Entity (A), A);
4240 end if;
4241 end if;
4243 -- Validate the form of the actual. Note that the call to
4244 -- Is_OK_Variable_For_Out_Formal generates the required
4245 -- reference in this case.
4247 -- A call to an initialization procedure for an aggregate
4248 -- component may initialize a nested component of a constant
4249 -- designated object. In this context the object is variable.
4251 if not Is_OK_Variable_For_Out_Formal (A)
4252 and then not Is_Init_Proc (Nam)
4253 then
4254 Error_Msg_NE ("actual for& must be a variable", A, F);
4256 if Is_Subprogram (Current_Scope) then
4257 if Is_Invariant_Procedure (Current_Scope)
4258 or else Is_Partial_Invariant_Procedure (Current_Scope)
4259 then
4260 Error_Msg_N
4261 ("function used in invariant cannot modify its "
4262 & "argument", F);
4264 elsif Is_Predicate_Function (Current_Scope) then
4265 Error_Msg_N
4266 ("function used in predicate cannot modify its "
4267 & "argument", F);
4268 end if;
4269 end if;
4270 end if;
4272 -- What's the following about???
4274 if Is_Entity_Name (A) then
4275 Kill_Checks (Entity (A));
4276 else
4277 Kill_All_Checks;
4278 end if;
4279 end if;
4281 if Etype (A) = Any_Type then
4282 Set_Etype (N, Any_Type);
4283 return;
4284 end if;
4286 -- Apply appropriate constraint/predicate checks for IN [OUT] case
4288 if Ekind_In (F, E_In_Parameter, E_In_Out_Parameter) then
4290 -- Apply predicate tests except in certain special cases. Note
4291 -- that it might be more consistent to apply these only when
4292 -- expansion is active (in Exp_Ch6.Expand_Actuals), as we do
4293 -- for the outbound predicate tests ??? In any case indicate
4294 -- the function being called, for better warnings if the call
4295 -- leads to an infinite recursion.
4297 if Predicate_Tests_On_Arguments (Nam) then
4298 Apply_Predicate_Check (A, F_Typ, Nam);
4299 end if;
4301 -- Apply required constraint checks
4303 -- Gigi looks at the check flag and uses the appropriate types.
4304 -- For now since one flag is used there is an optimization
4305 -- which might not be done in the IN OUT case since Gigi does
4306 -- not do any analysis. More thought required about this ???
4308 -- In fact is this comment obsolete??? doesn't the expander now
4309 -- generate all these tests anyway???
4311 if Is_Scalar_Type (Etype (A)) then
4312 Apply_Scalar_Range_Check (A, F_Typ);
4314 elsif Is_Array_Type (Etype (A)) then
4315 Apply_Length_Check (A, F_Typ);
4317 elsif Is_Record_Type (F_Typ)
4318 and then Has_Discriminants (F_Typ)
4319 and then Is_Constrained (F_Typ)
4320 and then (not Is_Derived_Type (F_Typ)
4321 or else Comes_From_Source (Nam))
4322 then
4323 Apply_Discriminant_Check (A, F_Typ);
4325 -- For view conversions of a discriminated object, apply
4326 -- check to object itself, the conversion alreay has the
4327 -- proper type.
4329 if Nkind (A) = N_Type_Conversion
4330 and then Is_Constrained (Etype (Expression (A)))
4331 then
4332 Apply_Discriminant_Check (Expression (A), F_Typ);
4333 end if;
4335 elsif Is_Access_Type (F_Typ)
4336 and then Is_Array_Type (Designated_Type (F_Typ))
4337 and then Is_Constrained (Designated_Type (F_Typ))
4338 then
4339 Apply_Length_Check (A, F_Typ);
4341 elsif Is_Access_Type (F_Typ)
4342 and then Has_Discriminants (Designated_Type (F_Typ))
4343 and then Is_Constrained (Designated_Type (F_Typ))
4344 then
4345 Apply_Discriminant_Check (A, F_Typ);
4347 else
4348 Apply_Range_Check (A, F_Typ);
4349 end if;
4351 -- Ada 2005 (AI-231): Note that the controlling parameter case
4352 -- already existed in Ada 95, which is partially checked
4353 -- elsewhere (see Checks), and we don't want the warning
4354 -- message to differ.
4356 if Is_Access_Type (F_Typ)
4357 and then Can_Never_Be_Null (F_Typ)
4358 and then Known_Null (A)
4359 then
4360 if Is_Controlling_Formal (F) then
4361 Apply_Compile_Time_Constraint_Error
4362 (N => A,
4363 Msg => "null value not allowed here??",
4364 Reason => CE_Access_Check_Failed);
4366 elsif Ada_Version >= Ada_2005 then
4367 Apply_Compile_Time_Constraint_Error
4368 (N => A,
4369 Msg => "(Ada 2005) null not allowed in "
4370 & "null-excluding formal??",
4371 Reason => CE_Null_Not_Allowed);
4372 end if;
4373 end if;
4374 end if;
4376 -- Checks for OUT parameters and IN OUT parameters
4378 if Ekind_In (F, E_Out_Parameter, E_In_Out_Parameter) then
4380 -- If there is a type conversion, make sure the return value
4381 -- meets the constraints of the variable before the conversion.
4383 if Nkind (A) = N_Type_Conversion then
4384 if Is_Scalar_Type (A_Typ) then
4385 Apply_Scalar_Range_Check
4386 (Expression (A), Etype (Expression (A)), A_Typ);
4388 -- In addition, the returned value of the parameter must
4389 -- satisfy the bounds of the object type (see comment
4390 -- below).
4392 Apply_Scalar_Range_Check (A, A_Typ, F_Typ);
4394 else
4395 Apply_Range_Check
4396 (Expression (A), Etype (Expression (A)), A_Typ);
4397 end if;
4399 -- If no conversion, apply scalar range checks and length check
4400 -- based on the subtype of the actual (NOT that of the formal).
4401 -- This indicates that the check takes place on return from the
4402 -- call. During expansion the required constraint checks are
4403 -- inserted. In GNATprove mode, in the absence of expansion,
4404 -- the flag indicates that the returned value is valid.
4406 else
4407 if Is_Scalar_Type (F_Typ) then
4408 Apply_Scalar_Range_Check (A, A_Typ, F_Typ);
4410 elsif Is_Array_Type (F_Typ)
4411 and then Ekind (F) = E_Out_Parameter
4412 then
4413 Apply_Length_Check (A, F_Typ);
4414 else
4415 Apply_Range_Check (A, A_Typ, F_Typ);
4416 end if;
4417 end if;
4419 -- Note: we do not apply the predicate checks for the case of
4420 -- OUT and IN OUT parameters. They are instead applied in the
4421 -- Expand_Actuals routine in Exp_Ch6.
4422 end if;
4424 -- An actual associated with an access parameter is implicitly
4425 -- converted to the anonymous access type of the formal and must
4426 -- satisfy the legality checks for access conversions.
4428 if Ekind (F_Typ) = E_Anonymous_Access_Type then
4429 if not Valid_Conversion (A, F_Typ, A) then
4430 Error_Msg_N
4431 ("invalid implicit conversion for access parameter", A);
4432 end if;
4434 -- If the actual is an access selected component of a variable,
4435 -- the call may modify its designated object. It is reasonable
4436 -- to treat this as a potential modification of the enclosing
4437 -- record, to prevent spurious warnings that it should be
4438 -- declared as a constant, because intuitively programmers
4439 -- regard the designated subcomponent as part of the record.
4441 if Nkind (A) = N_Selected_Component
4442 and then Is_Entity_Name (Prefix (A))
4443 and then not Is_Constant_Object (Entity (Prefix (A)))
4444 then
4445 Note_Possible_Modification (A, Sure => False);
4446 end if;
4447 end if;
4449 -- Check bad case of atomic/volatile argument (RM C.6(12))
4451 if Is_By_Reference_Type (Etype (F))
4452 and then Comes_From_Source (N)
4453 then
4454 if Is_Atomic_Object (A)
4455 and then not Is_Atomic (Etype (F))
4456 then
4457 Error_Msg_NE
4458 ("cannot pass atomic argument to non-atomic formal&",
4459 A, F);
4461 elsif Is_Volatile_Object (A)
4462 and then not Is_Volatile (Etype (F))
4463 then
4464 Error_Msg_NE
4465 ("cannot pass volatile argument to non-volatile formal&",
4466 A, F);
4467 end if;
4468 end if;
4470 -- Check that subprograms don't have improper controlling
4471 -- arguments (RM 3.9.2 (9)).
4473 -- A primitive operation may have an access parameter of an
4474 -- incomplete tagged type, but a dispatching call is illegal
4475 -- if the type is still incomplete.
4477 if Is_Controlling_Formal (F) then
4478 Set_Is_Controlling_Actual (A);
4480 if Ekind (Etype (F)) = E_Anonymous_Access_Type then
4481 declare
4482 Desig : constant Entity_Id := Designated_Type (Etype (F));
4483 begin
4484 if Ekind (Desig) = E_Incomplete_Type
4485 and then No (Full_View (Desig))
4486 and then No (Non_Limited_View (Desig))
4487 then
4488 Error_Msg_NE
4489 ("premature use of incomplete type& "
4490 & "in dispatching call", A, Desig);
4491 end if;
4492 end;
4493 end if;
4495 elsif Nkind (A) = N_Explicit_Dereference then
4496 Validate_Remote_Access_To_Class_Wide_Type (A);
4497 end if;
4499 -- Apply legality rule 3.9.2 (9/1)
4501 if (Is_Class_Wide_Type (A_Typ) or else Is_Dynamically_Tagged (A))
4502 and then not Is_Class_Wide_Type (F_Typ)
4503 and then not Is_Controlling_Formal (F)
4504 and then not In_Instance
4505 then
4506 Error_Msg_N ("class-wide argument not allowed here!", A);
4508 if Is_Subprogram (Nam) and then Comes_From_Source (Nam) then
4509 Error_Msg_Node_2 := F_Typ;
4510 Error_Msg_NE
4511 ("& is not a dispatching operation of &!", A, Nam);
4512 end if;
4514 -- Apply the checks described in 3.10.2(27): if the context is a
4515 -- specific access-to-object, the actual cannot be class-wide.
4516 -- Use base type to exclude access_to_subprogram cases.
4518 elsif Is_Access_Type (A_Typ)
4519 and then Is_Access_Type (F_Typ)
4520 and then not Is_Access_Subprogram_Type (Base_Type (F_Typ))
4521 and then (Is_Class_Wide_Type (Designated_Type (A_Typ))
4522 or else (Nkind (A) = N_Attribute_Reference
4523 and then
4524 Is_Class_Wide_Type (Etype (Prefix (A)))))
4525 and then not Is_Class_Wide_Type (Designated_Type (F_Typ))
4526 and then not Is_Controlling_Formal (F)
4528 -- Disable these checks for call to imported C++ subprograms
4530 and then not
4531 (Is_Entity_Name (Name (N))
4532 and then Is_Imported (Entity (Name (N)))
4533 and then Convention (Entity (Name (N))) = Convention_CPP)
4534 then
4535 Error_Msg_N
4536 ("access to class-wide argument not allowed here!", A);
4538 if Is_Subprogram (Nam) and then Comes_From_Source (Nam) then
4539 Error_Msg_Node_2 := Designated_Type (F_Typ);
4540 Error_Msg_NE
4541 ("& is not a dispatching operation of &!", A, Nam);
4542 end if;
4543 end if;
4545 Check_Aliased_Parameter;
4547 Eval_Actual (A);
4549 -- If it is a named association, treat the selector_name as a
4550 -- proper identifier, and mark the corresponding entity.
4552 if Nkind (Parent (A)) = N_Parameter_Association
4554 -- Ignore reference in SPARK mode, as it refers to an entity not
4555 -- in scope at the point of reference, so the reference should
4556 -- be ignored for computing effects of subprograms.
4558 and then not GNATprove_Mode
4559 then
4560 -- If subprogram is overridden, use name of formal that
4561 -- is being called.
4563 if Present (Real_Subp) then
4564 Set_Entity (Selector_Name (Parent (A)), Real_F);
4565 Set_Etype (Selector_Name (Parent (A)), Etype (Real_F));
4567 else
4568 Set_Entity (Selector_Name (Parent (A)), F);
4569 Generate_Reference (F, Selector_Name (Parent (A)));
4570 Set_Etype (Selector_Name (Parent (A)), F_Typ);
4571 Generate_Reference (F_Typ, N, ' ');
4572 end if;
4573 end if;
4575 Prev := A;
4577 if Ekind (F) /= E_Out_Parameter then
4578 Check_Unset_Reference (A);
4579 end if;
4581 -- The following checks are only relevant when SPARK_Mode is on as
4582 -- they are not standard Ada legality rule. Internally generated
4583 -- temporaries are ignored.
4585 if SPARK_Mode = On and then Comes_From_Source (A) then
4587 -- An effectively volatile object may act as an actual when the
4588 -- corresponding formal is of a non-scalar effectively volatile
4589 -- type (SPARK RM 7.1.3(11)).
4591 if not Is_Scalar_Type (Etype (F))
4592 and then Is_Effectively_Volatile (Etype (F))
4593 then
4594 null;
4596 -- An effectively volatile object may act as an actual in a
4597 -- call to an instance of Unchecked_Conversion.
4598 -- (SPARK RM 7.1.3(11)).
4600 elsif Is_Unchecked_Conversion_Instance (Nam) then
4601 null;
4603 -- The actual denotes an object
4605 elsif Is_Effectively_Volatile_Object (A) then
4606 Error_Msg_N
4607 ("volatile object cannot act as actual in a call (SPARK "
4608 & "RM 7.1.3(11))", A);
4610 -- Otherwise the actual denotes an expression. Inspect the
4611 -- expression and flag each effectively volatile object with
4612 -- enabled property Async_Writers or Effective_Reads as illegal
4613 -- because it apprears within an interfering context. Note that
4614 -- this is usually done in Resolve_Entity_Name, but when the
4615 -- effectively volatile object appears as an actual in a call,
4616 -- the call must be resolved first.
4618 else
4619 Flag_Effectively_Volatile_Objects (A);
4620 end if;
4622 -- An effectively volatile variable cannot act as an actual
4623 -- parameter in a procedure call when the variable has enabled
4624 -- property Effective_Reads and the corresponding formal is of
4625 -- mode IN (SPARK RM 7.1.3(10)).
4627 if Ekind (Nam) = E_Procedure
4628 and then Ekind (F) = E_In_Parameter
4629 and then Is_Entity_Name (A)
4630 then
4631 A_Id := Entity (A);
4633 if Ekind (A_Id) = E_Variable
4634 and then Is_Effectively_Volatile (Etype (A_Id))
4635 and then Effective_Reads_Enabled (A_Id)
4636 then
4637 Error_Msg_NE
4638 ("effectively volatile variable & cannot appear as "
4639 & "actual in procedure call", A, A_Id);
4641 Error_Msg_Name_1 := Name_Effective_Reads;
4642 Error_Msg_N ("\\variable has enabled property %", A);
4643 Error_Msg_N ("\\corresponding formal has mode IN", A);
4644 end if;
4645 end if;
4646 end if;
4648 -- A formal parameter of a specific tagged type whose related
4649 -- subprogram is subject to pragma Extensions_Visible with value
4650 -- "False" cannot act as an actual in a subprogram with value
4651 -- "True" (SPARK RM 6.1.7(3)).
4653 if Is_EVF_Expression (A)
4654 and then Extensions_Visible_Status (Nam) =
4655 Extensions_Visible_True
4656 then
4657 Error_Msg_N
4658 ("formal parameter cannot act as actual parameter when "
4659 & "Extensions_Visible is False", A);
4660 Error_Msg_NE
4661 ("\subprogram & has Extensions_Visible True", A, Nam);
4662 end if;
4664 -- The actual parameter of a Ghost subprogram whose formal is of
4665 -- mode IN OUT or OUT must be a Ghost variable (SPARK RM 6.9(12)).
4667 if Comes_From_Source (Nam)
4668 and then Is_Ghost_Entity (Nam)
4669 and then Ekind_In (F, E_In_Out_Parameter, E_Out_Parameter)
4670 and then Is_Entity_Name (A)
4671 and then Present (Entity (A))
4672 and then not Is_Ghost_Entity (Entity (A))
4673 then
4674 Error_Msg_NE
4675 ("non-ghost variable & cannot appear as actual in call to "
4676 & "ghost procedure", A, Entity (A));
4678 if Ekind (F) = E_In_Out_Parameter then
4679 Error_Msg_N ("\corresponding formal has mode `IN OUT`", A);
4680 else
4681 Error_Msg_N ("\corresponding formal has mode OUT", A);
4682 end if;
4683 end if;
4685 Next_Actual (A);
4687 -- Case where actual is not present
4689 else
4690 Insert_Default;
4691 end if;
4693 Next_Formal (F);
4695 if Present (Real_Subp) then
4696 Next_Formal (Real_F);
4697 end if;
4698 end loop;
4699 end Resolve_Actuals;
4701 -----------------------
4702 -- Resolve_Allocator --
4703 -----------------------
4705 procedure Resolve_Allocator (N : Node_Id; Typ : Entity_Id) is
4706 Desig_T : constant Entity_Id := Designated_Type (Typ);
4707 E : constant Node_Id := Expression (N);
4708 Subtyp : Entity_Id;
4709 Discrim : Entity_Id;
4710 Constr : Node_Id;
4711 Aggr : Node_Id;
4712 Assoc : Node_Id := Empty;
4713 Disc_Exp : Node_Id;
4715 procedure Check_Allocator_Discrim_Accessibility
4716 (Disc_Exp : Node_Id;
4717 Alloc_Typ : Entity_Id);
4718 -- Check that accessibility level associated with an access discriminant
4719 -- initialized in an allocator by the expression Disc_Exp is not deeper
4720 -- than the level of the allocator type Alloc_Typ. An error message is
4721 -- issued if this condition is violated. Specialized checks are done for
4722 -- the cases of a constraint expression which is an access attribute or
4723 -- an access discriminant.
4725 function In_Dispatching_Context return Boolean;
4726 -- If the allocator is an actual in a call, it is allowed to be class-
4727 -- wide when the context is not because it is a controlling actual.
4729 -------------------------------------------
4730 -- Check_Allocator_Discrim_Accessibility --
4731 -------------------------------------------
4733 procedure Check_Allocator_Discrim_Accessibility
4734 (Disc_Exp : Node_Id;
4735 Alloc_Typ : Entity_Id)
4737 begin
4738 if Type_Access_Level (Etype (Disc_Exp)) >
4739 Deepest_Type_Access_Level (Alloc_Typ)
4740 then
4741 Error_Msg_N
4742 ("operand type has deeper level than allocator type", Disc_Exp);
4744 -- When the expression is an Access attribute the level of the prefix
4745 -- object must not be deeper than that of the allocator's type.
4747 elsif Nkind (Disc_Exp) = N_Attribute_Reference
4748 and then Get_Attribute_Id (Attribute_Name (Disc_Exp)) =
4749 Attribute_Access
4750 and then Object_Access_Level (Prefix (Disc_Exp)) >
4751 Deepest_Type_Access_Level (Alloc_Typ)
4752 then
4753 Error_Msg_N
4754 ("prefix of attribute has deeper level than allocator type",
4755 Disc_Exp);
4757 -- When the expression is an access discriminant the check is against
4758 -- the level of the prefix object.
4760 elsif Ekind (Etype (Disc_Exp)) = E_Anonymous_Access_Type
4761 and then Nkind (Disc_Exp) = N_Selected_Component
4762 and then Object_Access_Level (Prefix (Disc_Exp)) >
4763 Deepest_Type_Access_Level (Alloc_Typ)
4764 then
4765 Error_Msg_N
4766 ("access discriminant has deeper level than allocator type",
4767 Disc_Exp);
4769 -- All other cases are legal
4771 else
4772 null;
4773 end if;
4774 end Check_Allocator_Discrim_Accessibility;
4776 ----------------------------
4777 -- In_Dispatching_Context --
4778 ----------------------------
4780 function In_Dispatching_Context return Boolean is
4781 Par : constant Node_Id := Parent (N);
4783 begin
4784 return Nkind (Par) in N_Subprogram_Call
4785 and then Is_Entity_Name (Name (Par))
4786 and then Is_Dispatching_Operation (Entity (Name (Par)));
4787 end In_Dispatching_Context;
4789 -- Start of processing for Resolve_Allocator
4791 begin
4792 -- Replace general access with specific type
4794 if Ekind (Etype (N)) = E_Allocator_Type then
4795 Set_Etype (N, Base_Type (Typ));
4796 end if;
4798 if Is_Abstract_Type (Typ) then
4799 Error_Msg_N ("type of allocator cannot be abstract", N);
4800 end if;
4802 -- For qualified expression, resolve the expression using the given
4803 -- subtype (nothing to do for type mark, subtype indication)
4805 if Nkind (E) = N_Qualified_Expression then
4806 if Is_Class_Wide_Type (Etype (E))
4807 and then not Is_Class_Wide_Type (Desig_T)
4808 and then not In_Dispatching_Context
4809 then
4810 Error_Msg_N
4811 ("class-wide allocator not allowed for this access type", N);
4812 end if;
4814 Resolve (Expression (E), Etype (E));
4815 Check_Non_Static_Context (Expression (E));
4816 Check_Unset_Reference (Expression (E));
4818 -- Allocators generated by the build-in-place expansion mechanism
4819 -- are explicitly marked as coming from source but do not need to be
4820 -- checked for limited initialization. To exclude this case, ensure
4821 -- that the parent of the allocator is a source node.
4822 -- The return statement constructed for an Expression_Function does
4823 -- not come from source but requires a limited check.
4825 if Is_Limited_Type (Etype (E))
4826 and then Comes_From_Source (N)
4827 and then
4828 (Comes_From_Source (Parent (N))
4829 or else
4830 (Ekind (Current_Scope) = E_Function
4831 and then Nkind (Original_Node (Unit_Declaration_Node
4832 (Current_Scope))) = N_Expression_Function))
4833 and then not In_Instance_Body
4834 then
4835 if not OK_For_Limited_Init (Etype (E), Expression (E)) then
4836 if Nkind (Parent (N)) = N_Assignment_Statement then
4837 Error_Msg_N
4838 ("illegal expression for initialized allocator of a "
4839 & "limited type (RM 7.5 (2.7/2))", N);
4840 else
4841 Error_Msg_N
4842 ("initialization not allowed for limited types", N);
4843 end if;
4845 Explain_Limited_Type (Etype (E), N);
4846 end if;
4847 end if;
4849 -- A qualified expression requires an exact match of the type. Class-
4850 -- wide matching is not allowed.
4852 if (Is_Class_Wide_Type (Etype (Expression (E)))
4853 or else Is_Class_Wide_Type (Etype (E)))
4854 and then Base_Type (Etype (Expression (E))) /= Base_Type (Etype (E))
4855 then
4856 Wrong_Type (Expression (E), Etype (E));
4857 end if;
4859 -- Calls to build-in-place functions are not currently supported in
4860 -- allocators for access types associated with a simple storage pool.
4861 -- Supporting such allocators may require passing additional implicit
4862 -- parameters to build-in-place functions (or a significant revision
4863 -- of the current b-i-p implementation to unify the handling for
4864 -- multiple kinds of storage pools). ???
4866 if Is_Limited_View (Desig_T)
4867 and then Nkind (Expression (E)) = N_Function_Call
4868 then
4869 declare
4870 Pool : constant Entity_Id :=
4871 Associated_Storage_Pool (Root_Type (Typ));
4872 begin
4873 if Present (Pool)
4874 and then
4875 Present (Get_Rep_Pragma
4876 (Etype (Pool), Name_Simple_Storage_Pool_Type))
4877 then
4878 Error_Msg_N
4879 ("limited function calls not yet supported in simple "
4880 & "storage pool allocators", Expression (E));
4881 end if;
4882 end;
4883 end if;
4885 -- A special accessibility check is needed for allocators that
4886 -- constrain access discriminants. The level of the type of the
4887 -- expression used to constrain an access discriminant cannot be
4888 -- deeper than the type of the allocator (in contrast to access
4889 -- parameters, where the level of the actual can be arbitrary).
4891 -- We can't use Valid_Conversion to perform this check because in
4892 -- general the type of the allocator is unrelated to the type of
4893 -- the access discriminant.
4895 if Ekind (Typ) /= E_Anonymous_Access_Type
4896 or else Is_Local_Anonymous_Access (Typ)
4897 then
4898 Subtyp := Entity (Subtype_Mark (E));
4900 Aggr := Original_Node (Expression (E));
4902 if Has_Discriminants (Subtyp)
4903 and then Nkind_In (Aggr, N_Aggregate, N_Extension_Aggregate)
4904 then
4905 Discrim := First_Discriminant (Base_Type (Subtyp));
4907 -- Get the first component expression of the aggregate
4909 if Present (Expressions (Aggr)) then
4910 Disc_Exp := First (Expressions (Aggr));
4912 elsif Present (Component_Associations (Aggr)) then
4913 Assoc := First (Component_Associations (Aggr));
4915 if Present (Assoc) then
4916 Disc_Exp := Expression (Assoc);
4917 else
4918 Disc_Exp := Empty;
4919 end if;
4921 else
4922 Disc_Exp := Empty;
4923 end if;
4925 while Present (Discrim) and then Present (Disc_Exp) loop
4926 if Ekind (Etype (Discrim)) = E_Anonymous_Access_Type then
4927 Check_Allocator_Discrim_Accessibility (Disc_Exp, Typ);
4928 end if;
4930 Next_Discriminant (Discrim);
4932 if Present (Discrim) then
4933 if Present (Assoc) then
4934 Next (Assoc);
4935 Disc_Exp := Expression (Assoc);
4937 elsif Present (Next (Disc_Exp)) then
4938 Next (Disc_Exp);
4940 else
4941 Assoc := First (Component_Associations (Aggr));
4943 if Present (Assoc) then
4944 Disc_Exp := Expression (Assoc);
4945 else
4946 Disc_Exp := Empty;
4947 end if;
4948 end if;
4949 end if;
4950 end loop;
4951 end if;
4952 end if;
4954 -- For a subtype mark or subtype indication, freeze the subtype
4956 else
4957 Freeze_Expression (E);
4959 if Is_Access_Constant (Typ) and then not No_Initialization (N) then
4960 Error_Msg_N
4961 ("initialization required for access-to-constant allocator", N);
4962 end if;
4964 -- A special accessibility check is needed for allocators that
4965 -- constrain access discriminants. The level of the type of the
4966 -- expression used to constrain an access discriminant cannot be
4967 -- deeper than the type of the allocator (in contrast to access
4968 -- parameters, where the level of the actual can be arbitrary).
4969 -- We can't use Valid_Conversion to perform this check because
4970 -- in general the type of the allocator is unrelated to the type
4971 -- of the access discriminant.
4973 if Nkind (Original_Node (E)) = N_Subtype_Indication
4974 and then (Ekind (Typ) /= E_Anonymous_Access_Type
4975 or else Is_Local_Anonymous_Access (Typ))
4976 then
4977 Subtyp := Entity (Subtype_Mark (Original_Node (E)));
4979 if Has_Discriminants (Subtyp) then
4980 Discrim := First_Discriminant (Base_Type (Subtyp));
4981 Constr := First (Constraints (Constraint (Original_Node (E))));
4982 while Present (Discrim) and then Present (Constr) loop
4983 if Ekind (Etype (Discrim)) = E_Anonymous_Access_Type then
4984 if Nkind (Constr) = N_Discriminant_Association then
4985 Disc_Exp := Original_Node (Expression (Constr));
4986 else
4987 Disc_Exp := Original_Node (Constr);
4988 end if;
4990 Check_Allocator_Discrim_Accessibility (Disc_Exp, Typ);
4991 end if;
4993 Next_Discriminant (Discrim);
4994 Next (Constr);
4995 end loop;
4996 end if;
4997 end if;
4998 end if;
5000 -- Ada 2005 (AI-344): A class-wide allocator requires an accessibility
5001 -- check that the level of the type of the created object is not deeper
5002 -- than the level of the allocator's access type, since extensions can
5003 -- now occur at deeper levels than their ancestor types. This is a
5004 -- static accessibility level check; a run-time check is also needed in
5005 -- the case of an initialized allocator with a class-wide argument (see
5006 -- Expand_Allocator_Expression).
5008 if Ada_Version >= Ada_2005
5009 and then Is_Class_Wide_Type (Desig_T)
5010 then
5011 declare
5012 Exp_Typ : Entity_Id;
5014 begin
5015 if Nkind (E) = N_Qualified_Expression then
5016 Exp_Typ := Etype (E);
5017 elsif Nkind (E) = N_Subtype_Indication then
5018 Exp_Typ := Entity (Subtype_Mark (Original_Node (E)));
5019 else
5020 Exp_Typ := Entity (E);
5021 end if;
5023 if Type_Access_Level (Exp_Typ) >
5024 Deepest_Type_Access_Level (Typ)
5025 then
5026 if In_Instance_Body then
5027 Error_Msg_Warn := SPARK_Mode /= On;
5028 Error_Msg_N
5029 ("type in allocator has deeper level than designated "
5030 & "class-wide type<<", E);
5031 Error_Msg_N ("\Program_Error [<<", E);
5033 Rewrite (N,
5034 Make_Raise_Program_Error (Sloc (N),
5035 Reason => PE_Accessibility_Check_Failed));
5036 Set_Etype (N, Typ);
5038 -- Do not apply Ada 2005 accessibility checks on a class-wide
5039 -- allocator if the type given in the allocator is a formal
5040 -- type. A run-time check will be performed in the instance.
5042 elsif not Is_Generic_Type (Exp_Typ) then
5043 Error_Msg_N
5044 ("type in allocator has deeper level than designated "
5045 & "class-wide type", E);
5046 end if;
5047 end if;
5048 end;
5049 end if;
5051 -- Check for allocation from an empty storage pool. But do not complain
5052 -- if it's a return statement for a build-in-place function, because the
5053 -- allocator is there just in case the caller uses an allocator. If the
5054 -- caller does use an allocator, it will be caught at the call site.
5056 if No_Pool_Assigned (Typ)
5057 and then not Alloc_For_BIP_Return (N)
5058 then
5059 Error_Msg_N ("allocation from empty storage pool!", N);
5061 -- If the context is an unchecked conversion, as may happen within an
5062 -- inlined subprogram, the allocator is being resolved with its own
5063 -- anonymous type. In that case, if the target type has a specific
5064 -- storage pool, it must be inherited explicitly by the allocator type.
5066 elsif Nkind (Parent (N)) = N_Unchecked_Type_Conversion
5067 and then No (Associated_Storage_Pool (Typ))
5068 then
5069 Set_Associated_Storage_Pool
5070 (Typ, Associated_Storage_Pool (Etype (Parent (N))));
5071 end if;
5073 if Ekind (Etype (N)) = E_Anonymous_Access_Type then
5074 Check_Restriction (No_Anonymous_Allocators, N);
5075 end if;
5077 -- Check that an allocator with task parts isn't for a nested access
5078 -- type when restriction No_Task_Hierarchy applies.
5080 if not Is_Library_Level_Entity (Base_Type (Typ))
5081 and then Has_Task (Base_Type (Desig_T))
5082 then
5083 Check_Restriction (No_Task_Hierarchy, N);
5084 end if;
5086 -- An illegal allocator may be rewritten as a raise Program_Error
5087 -- statement.
5089 if Nkind (N) = N_Allocator then
5091 -- Avoid coextension processing for an allocator that is the
5092 -- expansion of a build-in-place function call.
5094 if Nkind (Original_Node (N)) = N_Allocator
5095 and then Nkind (Expression (Original_Node (N))) =
5096 N_Qualified_Expression
5097 and then Nkind (Expression (Expression (Original_Node (N)))) =
5098 N_Function_Call
5099 and then Is_Expanded_Build_In_Place_Call
5100 (Expression (Expression (Original_Node (N))))
5101 then
5102 null; -- b-i-p function call case
5104 else
5105 -- An anonymous access discriminant is the definition of a
5106 -- coextension.
5108 if Ekind (Typ) = E_Anonymous_Access_Type
5109 and then Nkind (Associated_Node_For_Itype (Typ)) =
5110 N_Discriminant_Specification
5111 then
5112 declare
5113 Discr : constant Entity_Id :=
5114 Defining_Identifier (Associated_Node_For_Itype (Typ));
5116 begin
5117 Check_Restriction (No_Coextensions, N);
5119 -- Ada 2012 AI05-0052: If the designated type of the
5120 -- allocator is limited, then the allocator shall not
5121 -- be used to define the value of an access discriminant
5122 -- unless the discriminated type is immutably limited.
5124 if Ada_Version >= Ada_2012
5125 and then Is_Limited_Type (Desig_T)
5126 and then not Is_Limited_View (Scope (Discr))
5127 then
5128 Error_Msg_N
5129 ("only immutably limited types can have anonymous "
5130 & "access discriminants designating a limited type",
5132 end if;
5133 end;
5135 -- Avoid marking an allocator as a dynamic coextension if it is
5136 -- within a static construct.
5138 if not Is_Static_Coextension (N) then
5139 Set_Is_Dynamic_Coextension (N);
5141 -- Finalization and deallocation of coextensions utilizes an
5142 -- approximate implementation which does not directly adhere
5143 -- to the semantic rules. Warn on potential issues involving
5144 -- coextensions.
5146 if Is_Controlled (Desig_T) then
5147 Error_Msg_N
5148 ("??coextension will not be finalized when its "
5149 & "associated owner is deallocated or finalized", N);
5150 else
5151 Error_Msg_N
5152 ("??coextension will not be deallocated when its "
5153 & "associated owner is deallocated", N);
5154 end if;
5155 end if;
5157 -- Cleanup for potential static coextensions
5159 else
5160 Set_Is_Dynamic_Coextension (N, False);
5161 Set_Is_Static_Coextension (N, False);
5163 -- Anonymous access-to-controlled objects are not finalized on
5164 -- time because this involves run-time ownership and currently
5165 -- this property is not available. In rare cases the object may
5166 -- not be finalized at all. Warn on potential issues involving
5167 -- anonymous access-to-controlled objects.
5169 if Ekind (Typ) = E_Anonymous_Access_Type
5170 and then Is_Controlled_Active (Desig_T)
5171 then
5172 Error_Msg_N
5173 ("??object designated by anonymous access object might "
5174 & "not be finalized until its enclosing library unit "
5175 & "goes out of scope", N);
5176 Error_Msg_N ("\use named access type instead", N);
5177 end if;
5178 end if;
5179 end if;
5180 end if;
5182 -- Report a simple error: if the designated object is a local task,
5183 -- its body has not been seen yet, and its activation will fail an
5184 -- elaboration check.
5186 if Is_Task_Type (Desig_T)
5187 and then Scope (Base_Type (Desig_T)) = Current_Scope
5188 and then Is_Compilation_Unit (Current_Scope)
5189 and then Ekind (Current_Scope) = E_Package
5190 and then not In_Package_Body (Current_Scope)
5191 then
5192 Error_Msg_Warn := SPARK_Mode /= On;
5193 Error_Msg_N ("cannot activate task before body seen<<", N);
5194 Error_Msg_N ("\Program_Error [<<", N);
5195 end if;
5197 -- Ada 2012 (AI05-0111-3): Detect an attempt to allocate a task or a
5198 -- type with a task component on a subpool. This action must raise
5199 -- Program_Error at runtime.
5201 if Ada_Version >= Ada_2012
5202 and then Nkind (N) = N_Allocator
5203 and then Present (Subpool_Handle_Name (N))
5204 and then Has_Task (Desig_T)
5205 then
5206 Error_Msg_Warn := SPARK_Mode /= On;
5207 Error_Msg_N ("cannot allocate task on subpool<<", N);
5208 Error_Msg_N ("\Program_Error [<<", N);
5210 Rewrite (N,
5211 Make_Raise_Program_Error (Sloc (N),
5212 Reason => PE_Explicit_Raise));
5213 Set_Etype (N, Typ);
5214 end if;
5215 end Resolve_Allocator;
5217 ---------------------------
5218 -- Resolve_Arithmetic_Op --
5219 ---------------------------
5221 -- Used for resolving all arithmetic operators except exponentiation
5223 procedure Resolve_Arithmetic_Op (N : Node_Id; Typ : Entity_Id) is
5224 L : constant Node_Id := Left_Opnd (N);
5225 R : constant Node_Id := Right_Opnd (N);
5226 TL : constant Entity_Id := Base_Type (Etype (L));
5227 TR : constant Entity_Id := Base_Type (Etype (R));
5228 T : Entity_Id;
5229 Rop : Node_Id;
5231 B_Typ : constant Entity_Id := Base_Type (Typ);
5232 -- We do the resolution using the base type, because intermediate values
5233 -- in expressions always are of the base type, not a subtype of it.
5235 function Expected_Type_Is_Any_Real (N : Node_Id) return Boolean;
5236 -- Returns True if N is in a context that expects "any real type"
5238 function Is_Integer_Or_Universal (N : Node_Id) return Boolean;
5239 -- Return True iff given type is Integer or universal real/integer
5241 procedure Set_Mixed_Mode_Operand (N : Node_Id; T : Entity_Id);
5242 -- Choose type of integer literal in fixed-point operation to conform
5243 -- to available fixed-point type. T is the type of the other operand,
5244 -- which is needed to determine the expected type of N.
5246 procedure Set_Operand_Type (N : Node_Id);
5247 -- Set operand type to T if universal
5249 -------------------------------
5250 -- Expected_Type_Is_Any_Real --
5251 -------------------------------
5253 function Expected_Type_Is_Any_Real (N : Node_Id) return Boolean is
5254 begin
5255 -- N is the expression after "delta" in a fixed_point_definition;
5256 -- see RM-3.5.9(6):
5258 return Nkind_In (Parent (N), N_Ordinary_Fixed_Point_Definition,
5259 N_Decimal_Fixed_Point_Definition,
5261 -- N is one of the bounds in a real_range_specification;
5262 -- see RM-3.5.7(5):
5264 N_Real_Range_Specification,
5266 -- N is the expression of a delta_constraint;
5267 -- see RM-J.3(3):
5269 N_Delta_Constraint);
5270 end Expected_Type_Is_Any_Real;
5272 -----------------------------
5273 -- Is_Integer_Or_Universal --
5274 -----------------------------
5276 function Is_Integer_Or_Universal (N : Node_Id) return Boolean is
5277 T : Entity_Id;
5278 Index : Interp_Index;
5279 It : Interp;
5281 begin
5282 if not Is_Overloaded (N) then
5283 T := Etype (N);
5284 return Base_Type (T) = Base_Type (Standard_Integer)
5285 or else T = Universal_Integer
5286 or else T = Universal_Real;
5287 else
5288 Get_First_Interp (N, Index, It);
5289 while Present (It.Typ) loop
5290 if Base_Type (It.Typ) = Base_Type (Standard_Integer)
5291 or else It.Typ = Universal_Integer
5292 or else It.Typ = Universal_Real
5293 then
5294 return True;
5295 end if;
5297 Get_Next_Interp (Index, It);
5298 end loop;
5299 end if;
5301 return False;
5302 end Is_Integer_Or_Universal;
5304 ----------------------------
5305 -- Set_Mixed_Mode_Operand --
5306 ----------------------------
5308 procedure Set_Mixed_Mode_Operand (N : Node_Id; T : Entity_Id) is
5309 Index : Interp_Index;
5310 It : Interp;
5312 begin
5313 if Universal_Interpretation (N) = Universal_Integer then
5315 -- A universal integer literal is resolved as standard integer
5316 -- except in the case of a fixed-point result, where we leave it
5317 -- as universal (to be handled by Exp_Fixd later on)
5319 if Is_Fixed_Point_Type (T) then
5320 Resolve (N, Universal_Integer);
5321 else
5322 Resolve (N, Standard_Integer);
5323 end if;
5325 elsif Universal_Interpretation (N) = Universal_Real
5326 and then (T = Base_Type (Standard_Integer)
5327 or else T = Universal_Integer
5328 or else T = Universal_Real)
5329 then
5330 -- A universal real can appear in a fixed-type context. We resolve
5331 -- the literal with that context, even though this might raise an
5332 -- exception prematurely (the other operand may be zero).
5334 Resolve (N, B_Typ);
5336 elsif Etype (N) = Base_Type (Standard_Integer)
5337 and then T = Universal_Real
5338 and then Is_Overloaded (N)
5339 then
5340 -- Integer arg in mixed-mode operation. Resolve with universal
5341 -- type, in case preference rule must be applied.
5343 Resolve (N, Universal_Integer);
5345 elsif Etype (N) = T and then B_Typ /= Universal_Fixed then
5347 -- If the operand is part of a fixed multiplication operation,
5348 -- a conversion will be applied to each operand, so resolve it
5349 -- with its own type.
5351 if Nkind_In (Parent (N), N_Op_Divide, N_Op_Multiply) then
5352 Resolve (N);
5354 else
5355 -- Not a mixed-mode operation, resolve with context
5357 Resolve (N, B_Typ);
5358 end if;
5360 elsif Etype (N) = Any_Fixed then
5362 -- N may itself be a mixed-mode operation, so use context type
5364 Resolve (N, B_Typ);
5366 elsif Is_Fixed_Point_Type (T)
5367 and then B_Typ = Universal_Fixed
5368 and then Is_Overloaded (N)
5369 then
5370 -- Must be (fixed * fixed) operation, operand must have one
5371 -- compatible interpretation.
5373 Resolve (N, Any_Fixed);
5375 elsif Is_Fixed_Point_Type (B_Typ)
5376 and then (T = Universal_Real or else Is_Fixed_Point_Type (T))
5377 and then Is_Overloaded (N)
5378 then
5379 -- C * F(X) in a fixed context, where C is a real literal or a
5380 -- fixed-point expression. F must have either a fixed type
5381 -- interpretation or an integer interpretation, but not both.
5383 Get_First_Interp (N, Index, It);
5384 while Present (It.Typ) loop
5385 if Base_Type (It.Typ) = Base_Type (Standard_Integer) then
5386 if Analyzed (N) then
5387 Error_Msg_N ("ambiguous operand in fixed operation", N);
5388 else
5389 Resolve (N, Standard_Integer);
5390 end if;
5392 elsif Is_Fixed_Point_Type (It.Typ) then
5393 if Analyzed (N) then
5394 Error_Msg_N ("ambiguous operand in fixed operation", N);
5395 else
5396 Resolve (N, It.Typ);
5397 end if;
5398 end if;
5400 Get_Next_Interp (Index, It);
5401 end loop;
5403 -- Reanalyze the literal with the fixed type of the context. If
5404 -- context is Universal_Fixed, we are within a conversion, leave
5405 -- the literal as a universal real because there is no usable
5406 -- fixed type, and the target of the conversion plays no role in
5407 -- the resolution.
5409 declare
5410 Op2 : Node_Id;
5411 T2 : Entity_Id;
5413 begin
5414 if N = L then
5415 Op2 := R;
5416 else
5417 Op2 := L;
5418 end if;
5420 if B_Typ = Universal_Fixed
5421 and then Nkind (Op2) = N_Real_Literal
5422 then
5423 T2 := Universal_Real;
5424 else
5425 T2 := B_Typ;
5426 end if;
5428 Set_Analyzed (Op2, False);
5429 Resolve (Op2, T2);
5430 end;
5432 -- A universal real conditional expression can appear in a fixed-type
5433 -- context and must be resolved with that context to facilitate the
5434 -- code generation in the back end.
5436 elsif Nkind_In (N, N_Case_Expression, N_If_Expression)
5437 and then Etype (N) = Universal_Real
5438 and then Is_Fixed_Point_Type (B_Typ)
5439 then
5440 Resolve (N, B_Typ);
5442 else
5443 Resolve (N);
5444 end if;
5445 end Set_Mixed_Mode_Operand;
5447 ----------------------
5448 -- Set_Operand_Type --
5449 ----------------------
5451 procedure Set_Operand_Type (N : Node_Id) is
5452 begin
5453 if Etype (N) = Universal_Integer
5454 or else Etype (N) = Universal_Real
5455 then
5456 Set_Etype (N, T);
5457 end if;
5458 end Set_Operand_Type;
5460 -- Start of processing for Resolve_Arithmetic_Op
5462 begin
5463 if Comes_From_Source (N)
5464 and then Ekind (Entity (N)) = E_Function
5465 and then Is_Imported (Entity (N))
5466 and then Is_Intrinsic_Subprogram (Entity (N))
5467 then
5468 Resolve_Intrinsic_Operator (N, Typ);
5469 return;
5471 -- Special-case for mixed-mode universal expressions or fixed point type
5472 -- operation: each argument is resolved separately. The same treatment
5473 -- is required if one of the operands of a fixed point operation is
5474 -- universal real, since in this case we don't do a conversion to a
5475 -- specific fixed-point type (instead the expander handles the case).
5477 -- Set the type of the node to its universal interpretation because
5478 -- legality checks on an exponentiation operand need the context.
5480 elsif (B_Typ = Universal_Integer or else B_Typ = Universal_Real)
5481 and then Present (Universal_Interpretation (L))
5482 and then Present (Universal_Interpretation (R))
5483 then
5484 Set_Etype (N, B_Typ);
5485 Resolve (L, Universal_Interpretation (L));
5486 Resolve (R, Universal_Interpretation (R));
5488 elsif (B_Typ = Universal_Real
5489 or else Etype (N) = Universal_Fixed
5490 or else (Etype (N) = Any_Fixed
5491 and then Is_Fixed_Point_Type (B_Typ))
5492 or else (Is_Fixed_Point_Type (B_Typ)
5493 and then (Is_Integer_Or_Universal (L)
5494 or else
5495 Is_Integer_Or_Universal (R))))
5496 and then Nkind_In (N, N_Op_Multiply, N_Op_Divide)
5497 then
5498 if TL = Universal_Integer or else TR = Universal_Integer then
5499 Check_For_Visible_Operator (N, B_Typ);
5500 end if;
5502 -- If context is a fixed type and one operand is integer, the other
5503 -- is resolved with the type of the context.
5505 if Is_Fixed_Point_Type (B_Typ)
5506 and then (Base_Type (TL) = Base_Type (Standard_Integer)
5507 or else TL = Universal_Integer)
5508 then
5509 Resolve (R, B_Typ);
5510 Resolve (L, TL);
5512 elsif Is_Fixed_Point_Type (B_Typ)
5513 and then (Base_Type (TR) = Base_Type (Standard_Integer)
5514 or else TR = Universal_Integer)
5515 then
5516 Resolve (L, B_Typ);
5517 Resolve (R, TR);
5519 -- If both operands are universal and the context is a floating
5520 -- point type, the operands are resolved to the type of the context.
5522 elsif Is_Floating_Point_Type (B_Typ) then
5523 Resolve (L, B_Typ);
5524 Resolve (R, B_Typ);
5526 else
5527 Set_Mixed_Mode_Operand (L, TR);
5528 Set_Mixed_Mode_Operand (R, TL);
5529 end if;
5531 -- Check the rule in RM05-4.5.5(19.1/2) disallowing universal_fixed
5532 -- multiplying operators from being used when the expected type is
5533 -- also universal_fixed. Note that B_Typ will be Universal_Fixed in
5534 -- some cases where the expected type is actually Any_Real;
5535 -- Expected_Type_Is_Any_Real takes care of that case.
5537 if Etype (N) = Universal_Fixed
5538 or else Etype (N) = Any_Fixed
5539 then
5540 if B_Typ = Universal_Fixed
5541 and then not Expected_Type_Is_Any_Real (N)
5542 and then not Nkind_In (Parent (N), N_Type_Conversion,
5543 N_Unchecked_Type_Conversion)
5544 then
5545 Error_Msg_N ("type cannot be determined from context!", N);
5546 Error_Msg_N ("\explicit conversion to result type required", N);
5548 Set_Etype (L, Any_Type);
5549 Set_Etype (R, Any_Type);
5551 else
5552 if Ada_Version = Ada_83
5553 and then Etype (N) = Universal_Fixed
5554 and then not
5555 Nkind_In (Parent (N), N_Type_Conversion,
5556 N_Unchecked_Type_Conversion)
5557 then
5558 Error_Msg_N
5559 ("(Ada 83) fixed-point operation needs explicit "
5560 & "conversion", N);
5561 end if;
5563 -- The expected type is "any real type" in contexts like
5565 -- type T is delta <universal_fixed-expression> ...
5567 -- in which case we need to set the type to Universal_Real
5568 -- so that static expression evaluation will work properly.
5570 if Expected_Type_Is_Any_Real (N) then
5571 Set_Etype (N, Universal_Real);
5572 else
5573 Set_Etype (N, B_Typ);
5574 end if;
5575 end if;
5577 elsif Is_Fixed_Point_Type (B_Typ)
5578 and then (Is_Integer_Or_Universal (L)
5579 or else Nkind (L) = N_Real_Literal
5580 or else Nkind (R) = N_Real_Literal
5581 or else Is_Integer_Or_Universal (R))
5582 then
5583 Set_Etype (N, B_Typ);
5585 elsif Etype (N) = Any_Fixed then
5587 -- If no previous errors, this is only possible if one operand is
5588 -- overloaded and the context is universal. Resolve as such.
5590 Set_Etype (N, B_Typ);
5591 end if;
5593 else
5594 if (TL = Universal_Integer or else TL = Universal_Real)
5595 and then
5596 (TR = Universal_Integer or else TR = Universal_Real)
5597 then
5598 Check_For_Visible_Operator (N, B_Typ);
5599 end if;
5601 -- If the context is Universal_Fixed and the operands are also
5602 -- universal fixed, this is an error, unless there is only one
5603 -- applicable fixed_point type (usually Duration).
5605 if B_Typ = Universal_Fixed and then Etype (L) = Universal_Fixed then
5606 T := Unique_Fixed_Point_Type (N);
5608 if T = Any_Type then
5609 Set_Etype (N, T);
5610 return;
5611 else
5612 Resolve (L, T);
5613 Resolve (R, T);
5614 end if;
5616 else
5617 Resolve (L, B_Typ);
5618 Resolve (R, B_Typ);
5619 end if;
5621 -- If one of the arguments was resolved to a non-universal type.
5622 -- label the result of the operation itself with the same type.
5623 -- Do the same for the universal argument, if any.
5625 T := Intersect_Types (L, R);
5626 Set_Etype (N, Base_Type (T));
5627 Set_Operand_Type (L);
5628 Set_Operand_Type (R);
5629 end if;
5631 Generate_Operator_Reference (N, Typ);
5632 Analyze_Dimension (N);
5633 Eval_Arithmetic_Op (N);
5635 -- In SPARK, a multiplication or division with operands of fixed point
5636 -- types must be qualified or explicitly converted to identify the
5637 -- result type.
5639 if (Is_Fixed_Point_Type (Etype (L))
5640 or else Is_Fixed_Point_Type (Etype (R)))
5641 and then Nkind_In (N, N_Op_Multiply, N_Op_Divide)
5642 and then
5643 not Nkind_In (Parent (N), N_Qualified_Expression, N_Type_Conversion)
5644 then
5645 Check_SPARK_05_Restriction
5646 ("operation should be qualified or explicitly converted", N);
5647 end if;
5649 -- Set overflow and division checking bit
5651 if Nkind (N) in N_Op then
5652 if not Overflow_Checks_Suppressed (Etype (N)) then
5653 Enable_Overflow_Check (N);
5654 end if;
5656 -- Give warning if explicit division by zero
5658 if Nkind_In (N, N_Op_Divide, N_Op_Rem, N_Op_Mod)
5659 and then not Division_Checks_Suppressed (Etype (N))
5660 then
5661 Rop := Right_Opnd (N);
5663 if Compile_Time_Known_Value (Rop)
5664 and then ((Is_Integer_Type (Etype (Rop))
5665 and then Expr_Value (Rop) = Uint_0)
5666 or else
5667 (Is_Real_Type (Etype (Rop))
5668 and then Expr_Value_R (Rop) = Ureal_0))
5669 then
5670 -- Specialize the warning message according to the operation.
5671 -- When SPARK_Mode is On, force a warning instead of an error
5672 -- in that case, as this likely corresponds to deactivated
5673 -- code. The following warnings are for the case
5675 case Nkind (N) is
5676 when N_Op_Divide =>
5678 -- For division, we have two cases, for float division
5679 -- of an unconstrained float type, on a machine where
5680 -- Machine_Overflows is false, we don't get an exception
5681 -- at run-time, but rather an infinity or Nan. The Nan
5682 -- case is pretty obscure, so just warn about infinities.
5684 if Is_Floating_Point_Type (Typ)
5685 and then not Is_Constrained (Typ)
5686 and then not Machine_Overflows_On_Target
5687 then
5688 Error_Msg_N
5689 ("float division by zero, may generate "
5690 & "'+'/'- infinity??", Right_Opnd (N));
5692 -- For all other cases, we get a Constraint_Error
5694 else
5695 Apply_Compile_Time_Constraint_Error
5696 (N, "division by zero??", CE_Divide_By_Zero,
5697 Loc => Sloc (Right_Opnd (N)),
5698 Warn => SPARK_Mode = On);
5699 end if;
5701 when N_Op_Rem =>
5702 Apply_Compile_Time_Constraint_Error
5703 (N, "rem with zero divisor??", CE_Divide_By_Zero,
5704 Loc => Sloc (Right_Opnd (N)),
5705 Warn => SPARK_Mode = On);
5707 when N_Op_Mod =>
5708 Apply_Compile_Time_Constraint_Error
5709 (N, "mod with zero divisor??", CE_Divide_By_Zero,
5710 Loc => Sloc (Right_Opnd (N)),
5711 Warn => SPARK_Mode = On);
5713 -- Division by zero can only happen with division, rem,
5714 -- and mod operations.
5716 when others =>
5717 raise Program_Error;
5718 end case;
5720 -- In GNATprove mode, we enable the division check so that
5721 -- GNATprove will issue a message if it cannot be proved.
5723 if GNATprove_Mode then
5724 Activate_Division_Check (N);
5725 end if;
5727 -- Otherwise just set the flag to check at run time
5729 else
5730 Activate_Division_Check (N);
5731 end if;
5732 end if;
5734 -- If Restriction No_Implicit_Conditionals is active, then it is
5735 -- violated if either operand can be negative for mod, or for rem
5736 -- if both operands can be negative.
5738 if Restriction_Check_Required (No_Implicit_Conditionals)
5739 and then Nkind_In (N, N_Op_Rem, N_Op_Mod)
5740 then
5741 declare
5742 Lo : Uint;
5743 Hi : Uint;
5744 OK : Boolean;
5746 LNeg : Boolean;
5747 RNeg : Boolean;
5748 -- Set if corresponding operand might be negative
5750 begin
5751 Determine_Range
5752 (Left_Opnd (N), OK, Lo, Hi, Assume_Valid => True);
5753 LNeg := (not OK) or else Lo < 0;
5755 Determine_Range
5756 (Right_Opnd (N), OK, Lo, Hi, Assume_Valid => True);
5757 RNeg := (not OK) or else Lo < 0;
5759 -- Check if we will be generating conditionals. There are two
5760 -- cases where that can happen, first for REM, the only case
5761 -- is largest negative integer mod -1, where the division can
5762 -- overflow, but we still have to give the right result. The
5763 -- front end generates a test for this annoying case. Here we
5764 -- just test if both operands can be negative (that's what the
5765 -- expander does, so we match its logic here).
5767 -- The second case is mod where either operand can be negative.
5768 -- In this case, the back end has to generate additional tests.
5770 if (Nkind (N) = N_Op_Rem and then (LNeg and RNeg))
5771 or else
5772 (Nkind (N) = N_Op_Mod and then (LNeg or RNeg))
5773 then
5774 Check_Restriction (No_Implicit_Conditionals, N);
5775 end if;
5776 end;
5777 end if;
5778 end if;
5780 Check_Unset_Reference (L);
5781 Check_Unset_Reference (R);
5782 end Resolve_Arithmetic_Op;
5784 ------------------
5785 -- Resolve_Call --
5786 ------------------
5788 procedure Resolve_Call (N : Node_Id; Typ : Entity_Id) is
5789 function Same_Or_Aliased_Subprograms
5790 (S : Entity_Id;
5791 E : Entity_Id) return Boolean;
5792 -- Returns True if the subprogram entity S is the same as E or else
5793 -- S is an alias of E.
5795 ---------------------------------
5796 -- Same_Or_Aliased_Subprograms --
5797 ---------------------------------
5799 function Same_Or_Aliased_Subprograms
5800 (S : Entity_Id;
5801 E : Entity_Id) return Boolean
5803 Subp_Alias : constant Entity_Id := Alias (S);
5804 begin
5805 return S = E or else (Present (Subp_Alias) and then Subp_Alias = E);
5806 end Same_Or_Aliased_Subprograms;
5808 -- Local variables
5810 Loc : constant Source_Ptr := Sloc (N);
5811 Subp : constant Node_Id := Name (N);
5812 Body_Id : Entity_Id;
5813 I : Interp_Index;
5814 It : Interp;
5815 Nam : Entity_Id;
5816 Nam_Decl : Node_Id;
5817 Nam_UA : Entity_Id;
5818 Norm_OK : Boolean;
5819 Rtype : Entity_Id;
5820 Scop : Entity_Id;
5822 -- Start of processing for Resolve_Call
5824 begin
5825 -- Preserve relevant elaboration-related attributes of the context which
5826 -- are no longer available or very expensive to recompute once analysis,
5827 -- resolution, and expansion are over.
5829 Mark_Elaboration_Attributes
5830 (N_Id => N,
5831 Checks => True,
5832 Modes => True,
5833 Warnings => True);
5835 -- The context imposes a unique interpretation with type Typ on a
5836 -- procedure or function call. Find the entity of the subprogram that
5837 -- yields the expected type, and propagate the corresponding formal
5838 -- constraints on the actuals. The caller has established that an
5839 -- interpretation exists, and emitted an error if not unique.
5841 -- First deal with the case of a call to an access-to-subprogram,
5842 -- dereference made explicit in Analyze_Call.
5844 if Ekind (Etype (Subp)) = E_Subprogram_Type then
5845 if not Is_Overloaded (Subp) then
5846 Nam := Etype (Subp);
5848 else
5849 -- Find the interpretation whose type (a subprogram type) has a
5850 -- return type that is compatible with the context. Analysis of
5851 -- the node has established that one exists.
5853 Nam := Empty;
5855 Get_First_Interp (Subp, I, It);
5856 while Present (It.Typ) loop
5857 if Covers (Typ, Etype (It.Typ)) then
5858 Nam := It.Typ;
5859 exit;
5860 end if;
5862 Get_Next_Interp (I, It);
5863 end loop;
5865 if No (Nam) then
5866 raise Program_Error;
5867 end if;
5868 end if;
5870 -- If the prefix is not an entity, then resolve it
5872 if not Is_Entity_Name (Subp) then
5873 Resolve (Subp, Nam);
5874 end if;
5876 -- For an indirect call, we always invalidate checks, since we do not
5877 -- know whether the subprogram is local or global. Yes we could do
5878 -- better here, e.g. by knowing that there are no local subprograms,
5879 -- but it does not seem worth the effort. Similarly, we kill all
5880 -- knowledge of current constant values.
5882 Kill_Current_Values;
5884 -- If this is a procedure call which is really an entry call, do
5885 -- the conversion of the procedure call to an entry call. Protected
5886 -- operations use the same circuitry because the name in the call
5887 -- can be an arbitrary expression with special resolution rules.
5889 elsif Nkind_In (Subp, N_Selected_Component, N_Indexed_Component)
5890 or else (Is_Entity_Name (Subp)
5891 and then Ekind_In (Entity (Subp), E_Entry, E_Entry_Family))
5892 then
5893 Resolve_Entry_Call (N, Typ);
5895 if Legacy_Elaboration_Checks then
5896 Check_Elab_Call (N);
5897 end if;
5899 -- Annotate the tree by creating a call marker in case the original
5900 -- call is transformed by expansion. The call marker is automatically
5901 -- saved for later examination by the ABE Processing phase.
5903 Build_Call_Marker (N);
5905 -- Kill checks and constant values, as above for indirect case
5906 -- Who knows what happens when another task is activated?
5908 Kill_Current_Values;
5909 return;
5911 -- Normal subprogram call with name established in Resolve
5913 elsif not (Is_Type (Entity (Subp))) then
5914 Nam := Entity (Subp);
5915 Set_Entity_With_Checks (Subp, Nam);
5917 -- Otherwise we must have the case of an overloaded call
5919 else
5920 pragma Assert (Is_Overloaded (Subp));
5922 -- Initialize Nam to prevent warning (we know it will be assigned
5923 -- in the loop below, but the compiler does not know that).
5925 Nam := Empty;
5927 Get_First_Interp (Subp, I, It);
5928 while Present (It.Typ) loop
5929 if Covers (Typ, It.Typ) then
5930 Nam := It.Nam;
5931 Set_Entity_With_Checks (Subp, Nam);
5932 exit;
5933 end if;
5935 Get_Next_Interp (I, It);
5936 end loop;
5937 end if;
5939 if Is_Access_Subprogram_Type (Base_Type (Etype (Nam)))
5940 and then not Is_Access_Subprogram_Type (Base_Type (Typ))
5941 and then Nkind (Subp) /= N_Explicit_Dereference
5942 and then Present (Parameter_Associations (N))
5943 then
5944 -- The prefix is a parameterless function call that returns an access
5945 -- to subprogram. If parameters are present in the current call, add
5946 -- add an explicit dereference. We use the base type here because
5947 -- within an instance these may be subtypes.
5949 -- The dereference is added either in Analyze_Call or here. Should
5950 -- be consolidated ???
5952 Set_Is_Overloaded (Subp, False);
5953 Set_Etype (Subp, Etype (Nam));
5954 Insert_Explicit_Dereference (Subp);
5955 Nam := Designated_Type (Etype (Nam));
5956 Resolve (Subp, Nam);
5957 end if;
5959 -- Check that a call to Current_Task does not occur in an entry body
5961 if Is_RTE (Nam, RE_Current_Task) then
5962 declare
5963 P : Node_Id;
5965 begin
5966 P := N;
5967 loop
5968 P := Parent (P);
5970 -- Exclude calls that occur within the default of a formal
5971 -- parameter of the entry, since those are evaluated outside
5972 -- of the body.
5974 exit when No (P) or else Nkind (P) = N_Parameter_Specification;
5976 if Nkind (P) = N_Entry_Body
5977 or else (Nkind (P) = N_Subprogram_Body
5978 and then Is_Entry_Barrier_Function (P))
5979 then
5980 Rtype := Etype (N);
5981 Error_Msg_Warn := SPARK_Mode /= On;
5982 Error_Msg_NE
5983 ("& should not be used in entry body (RM C.7(17))<<",
5984 N, Nam);
5985 Error_Msg_NE ("\Program_Error [<<", N, Nam);
5986 Rewrite (N,
5987 Make_Raise_Program_Error (Loc,
5988 Reason => PE_Current_Task_In_Entry_Body));
5989 Set_Etype (N, Rtype);
5990 return;
5991 end if;
5992 end loop;
5993 end;
5994 end if;
5996 -- Check that a procedure call does not occur in the context of the
5997 -- entry call statement of a conditional or timed entry call. Note that
5998 -- the case of a call to a subprogram renaming of an entry will also be
5999 -- rejected. The test for N not being an N_Entry_Call_Statement is
6000 -- defensive, covering the possibility that the processing of entry
6001 -- calls might reach this point due to later modifications of the code
6002 -- above.
6004 if Nkind (Parent (N)) = N_Entry_Call_Alternative
6005 and then Nkind (N) /= N_Entry_Call_Statement
6006 and then Entry_Call_Statement (Parent (N)) = N
6007 then
6008 if Ada_Version < Ada_2005 then
6009 Error_Msg_N ("entry call required in select statement", N);
6011 -- Ada 2005 (AI-345): If a procedure_call_statement is used
6012 -- for a procedure_or_entry_call, the procedure_name or
6013 -- procedure_prefix of the procedure_call_statement shall denote
6014 -- an entry renamed by a procedure, or (a view of) a primitive
6015 -- subprogram of a limited interface whose first parameter is
6016 -- a controlling parameter.
6018 elsif Nkind (N) = N_Procedure_Call_Statement
6019 and then not Is_Renamed_Entry (Nam)
6020 and then not Is_Controlling_Limited_Procedure (Nam)
6021 then
6022 Error_Msg_N
6023 ("entry call or dispatching primitive of interface required", N);
6024 end if;
6025 end if;
6027 -- If the SPARK_05 restriction is active, we are not allowed
6028 -- to have a call to a subprogram before we see its completion.
6030 if not Has_Completion (Nam)
6031 and then Restriction_Check_Required (SPARK_05)
6033 -- Don't flag strange internal calls
6035 and then Comes_From_Source (N)
6036 and then Comes_From_Source (Nam)
6038 -- Only flag calls in extended main source
6040 and then In_Extended_Main_Source_Unit (Nam)
6041 and then In_Extended_Main_Source_Unit (N)
6043 -- Exclude enumeration literals from this processing
6045 and then Ekind (Nam) /= E_Enumeration_Literal
6046 then
6047 Check_SPARK_05_Restriction
6048 ("call to subprogram cannot appear before its body", N);
6049 end if;
6051 -- Check that this is not a call to a protected procedure or entry from
6052 -- within a protected function.
6054 Check_Internal_Protected_Use (N, Nam);
6056 -- Freeze the subprogram name if not in a spec-expression. Note that
6057 -- we freeze procedure calls as well as function calls. Procedure calls
6058 -- are not frozen according to the rules (RM 13.14(14)) because it is
6059 -- impossible to have a procedure call to a non-frozen procedure in
6060 -- pure Ada, but in the code that we generate in the expander, this
6061 -- rule needs extending because we can generate procedure calls that
6062 -- need freezing.
6064 -- In Ada 2012, expression functions may be called within pre/post
6065 -- conditions of subsequent functions or expression functions. Such
6066 -- calls do not freeze when they appear within generated bodies,
6067 -- (including the body of another expression function) which would
6068 -- place the freeze node in the wrong scope. An expression function
6069 -- is frozen in the usual fashion, by the appearance of a real body,
6070 -- or at the end of a declarative part.
6072 if Is_Entity_Name (Subp)
6073 and then not In_Spec_Expression
6074 and then not Is_Expression_Function_Or_Completion (Current_Scope)
6075 and then
6076 (not Is_Expression_Function_Or_Completion (Entity (Subp))
6077 or else Scope (Entity (Subp)) = Current_Scope)
6078 then
6079 Freeze_Expression (Subp);
6080 end if;
6082 -- For a predefined operator, the type of the result is the type imposed
6083 -- by context, except for a predefined operation on universal fixed.
6084 -- Otherwise The type of the call is the type returned by the subprogram
6085 -- being called.
6087 if Is_Predefined_Op (Nam) then
6088 if Etype (N) /= Universal_Fixed then
6089 Set_Etype (N, Typ);
6090 end if;
6092 -- If the subprogram returns an array type, and the context requires the
6093 -- component type of that array type, the node is really an indexing of
6094 -- the parameterless call. Resolve as such. A pathological case occurs
6095 -- when the type of the component is an access to the array type. In
6096 -- this case the call is truly ambiguous. If the call is to an intrinsic
6097 -- subprogram, it can't be an indexed component. This check is necessary
6098 -- because if it's Unchecked_Conversion, and we have "type T_Ptr is
6099 -- access T;" and "type T is array (...) of T_Ptr;" (i.e. an array of
6100 -- pointers to the same array), the compiler gets confused and does an
6101 -- infinite recursion.
6103 elsif (Needs_No_Actuals (Nam) or else Needs_One_Actual (Nam))
6104 and then
6105 ((Is_Array_Type (Etype (Nam))
6106 and then Covers (Typ, Component_Type (Etype (Nam))))
6107 or else
6108 (Is_Access_Type (Etype (Nam))
6109 and then Is_Array_Type (Designated_Type (Etype (Nam)))
6110 and then
6111 Covers (Typ, Component_Type (Designated_Type (Etype (Nam))))
6112 and then not Is_Intrinsic_Subprogram (Entity (Subp))))
6113 then
6114 declare
6115 Index_Node : Node_Id;
6116 New_Subp : Node_Id;
6117 Ret_Type : constant Entity_Id := Etype (Nam);
6119 begin
6120 if Is_Access_Type (Ret_Type)
6121 and then Ret_Type = Component_Type (Designated_Type (Ret_Type))
6122 then
6123 Error_Msg_N
6124 ("cannot disambiguate function call and indexing", N);
6125 else
6126 New_Subp := Relocate_Node (Subp);
6128 -- The called entity may be an explicit dereference, in which
6129 -- case there is no entity to set.
6131 if Nkind (New_Subp) /= N_Explicit_Dereference then
6132 Set_Entity (Subp, Nam);
6133 end if;
6135 if (Is_Array_Type (Ret_Type)
6136 and then Component_Type (Ret_Type) /= Any_Type)
6137 or else
6138 (Is_Access_Type (Ret_Type)
6139 and then
6140 Component_Type (Designated_Type (Ret_Type)) /= Any_Type)
6141 then
6142 if Needs_No_Actuals (Nam) then
6144 -- Indexed call to a parameterless function
6146 Index_Node :=
6147 Make_Indexed_Component (Loc,
6148 Prefix =>
6149 Make_Function_Call (Loc, Name => New_Subp),
6150 Expressions => Parameter_Associations (N));
6151 else
6152 -- An Ada 2005 prefixed call to a primitive operation
6153 -- whose first parameter is the prefix. This prefix was
6154 -- prepended to the parameter list, which is actually a
6155 -- list of indexes. Remove the prefix in order to build
6156 -- the proper indexed component.
6158 Index_Node :=
6159 Make_Indexed_Component (Loc,
6160 Prefix =>
6161 Make_Function_Call (Loc,
6162 Name => New_Subp,
6163 Parameter_Associations =>
6164 New_List
6165 (Remove_Head (Parameter_Associations (N)))),
6166 Expressions => Parameter_Associations (N));
6167 end if;
6169 -- Preserve the parenthesis count of the node
6171 Set_Paren_Count (Index_Node, Paren_Count (N));
6173 -- Since we are correcting a node classification error made
6174 -- by the parser, we call Replace rather than Rewrite.
6176 Replace (N, Index_Node);
6178 Set_Etype (Prefix (N), Ret_Type);
6179 Set_Etype (N, Typ);
6180 Resolve_Indexed_Component (N, Typ);
6182 if Legacy_Elaboration_Checks then
6183 Check_Elab_Call (Prefix (N));
6184 end if;
6186 -- Annotate the tree by creating a call marker in case
6187 -- the original call is transformed by expansion. The call
6188 -- marker is automatically saved for later examination by
6189 -- the ABE Processing phase.
6191 Build_Call_Marker (Prefix (N));
6192 end if;
6193 end if;
6195 return;
6196 end;
6198 else
6199 -- If the called function is not declared in the main unit and it
6200 -- returns the limited view of type then use the available view (as
6201 -- is done in Try_Object_Operation) to prevent back-end confusion;
6202 -- for the function entity itself. The call must appear in a context
6203 -- where the nonlimited view is available. If the function entity is
6204 -- in the extended main unit then no action is needed, because the
6205 -- back end handles this case. In either case the type of the call
6206 -- is the nonlimited view.
6208 if From_Limited_With (Etype (Nam))
6209 and then Present (Available_View (Etype (Nam)))
6210 then
6211 Set_Etype (N, Available_View (Etype (Nam)));
6213 if not In_Extended_Main_Code_Unit (Nam) then
6214 Set_Etype (Nam, Available_View (Etype (Nam)));
6215 end if;
6217 else
6218 Set_Etype (N, Etype (Nam));
6219 end if;
6220 end if;
6222 -- In the case where the call is to an overloaded subprogram, Analyze
6223 -- calls Normalize_Actuals once per overloaded subprogram. Therefore in
6224 -- such a case Normalize_Actuals needs to be called once more to order
6225 -- the actuals correctly. Otherwise the call will have the ordering
6226 -- given by the last overloaded subprogram whether this is the correct
6227 -- one being called or not.
6229 if Is_Overloaded (Subp) then
6230 Normalize_Actuals (N, Nam, False, Norm_OK);
6231 pragma Assert (Norm_OK);
6232 end if;
6234 -- In any case, call is fully resolved now. Reset Overload flag, to
6235 -- prevent subsequent overload resolution if node is analyzed again
6237 Set_Is_Overloaded (Subp, False);
6238 Set_Is_Overloaded (N, False);
6240 -- A Ghost entity must appear in a specific context
6242 if Is_Ghost_Entity (Nam) and then Comes_From_Source (N) then
6243 Check_Ghost_Context (Nam, N);
6244 end if;
6246 -- If we are calling the current subprogram from immediately within its
6247 -- body, then that is the case where we can sometimes detect cases of
6248 -- infinite recursion statically. Do not try this in case restriction
6249 -- No_Recursion is in effect anyway, and do it only for source calls.
6251 if Comes_From_Source (N) then
6252 Scop := Current_Scope;
6254 -- Check violation of SPARK_05 restriction which does not permit
6255 -- a subprogram body to contain a call to the subprogram directly.
6257 if Restriction_Check_Required (SPARK_05)
6258 and then Same_Or_Aliased_Subprograms (Nam, Scop)
6259 then
6260 Check_SPARK_05_Restriction
6261 ("subprogram may not contain direct call to itself", N);
6262 end if;
6264 -- Issue warning for possible infinite recursion in the absence
6265 -- of the No_Recursion restriction.
6267 if Same_Or_Aliased_Subprograms (Nam, Scop)
6268 and then not Restriction_Active (No_Recursion)
6269 and then Check_Infinite_Recursion (N)
6270 then
6271 -- Here we detected and flagged an infinite recursion, so we do
6272 -- not need to test the case below for further warnings. Also we
6273 -- are all done if we now have a raise SE node.
6275 if Nkind (N) = N_Raise_Storage_Error then
6276 return;
6277 end if;
6279 -- If call is to immediately containing subprogram, then check for
6280 -- the case of a possible run-time detectable infinite recursion.
6282 else
6283 Scope_Loop : while Scop /= Standard_Standard loop
6284 if Same_Or_Aliased_Subprograms (Nam, Scop) then
6286 -- Although in general case, recursion is not statically
6287 -- checkable, the case of calling an immediately containing
6288 -- subprogram is easy to catch.
6290 Check_Restriction (No_Recursion, N);
6292 -- If the recursive call is to a parameterless subprogram,
6293 -- then even if we can't statically detect infinite
6294 -- recursion, this is pretty suspicious, and we output a
6295 -- warning. Furthermore, we will try later to detect some
6296 -- cases here at run time by expanding checking code (see
6297 -- Detect_Infinite_Recursion in package Exp_Ch6).
6299 -- If the recursive call is within a handler, do not emit a
6300 -- warning, because this is a common idiom: loop until input
6301 -- is correct, catch illegal input in handler and restart.
6303 if No (First_Formal (Nam))
6304 and then Etype (Nam) = Standard_Void_Type
6305 and then not Error_Posted (N)
6306 and then Nkind (Parent (N)) /= N_Exception_Handler
6307 then
6308 -- For the case of a procedure call. We give the message
6309 -- only if the call is the first statement in a sequence
6310 -- of statements, or if all previous statements are
6311 -- simple assignments. This is simply a heuristic to
6312 -- decrease false positives, without losing too many good
6313 -- warnings. The idea is that these previous statements
6314 -- may affect global variables the procedure depends on.
6315 -- We also exclude raise statements, that may arise from
6316 -- constraint checks and are probably unrelated to the
6317 -- intended control flow.
6319 if Nkind (N) = N_Procedure_Call_Statement
6320 and then Is_List_Member (N)
6321 then
6322 declare
6323 P : Node_Id;
6324 begin
6325 P := Prev (N);
6326 while Present (P) loop
6327 if not Nkind_In (P, N_Assignment_Statement,
6328 N_Raise_Constraint_Error)
6329 then
6330 exit Scope_Loop;
6331 end if;
6333 Prev (P);
6334 end loop;
6335 end;
6336 end if;
6338 -- Do not give warning if we are in a conditional context
6340 declare
6341 K : constant Node_Kind := Nkind (Parent (N));
6342 begin
6343 if (K = N_Loop_Statement
6344 and then Present (Iteration_Scheme (Parent (N))))
6345 or else K = N_If_Statement
6346 or else K = N_Elsif_Part
6347 or else K = N_Case_Statement_Alternative
6348 then
6349 exit Scope_Loop;
6350 end if;
6351 end;
6353 -- Here warning is to be issued
6355 Set_Has_Recursive_Call (Nam);
6356 Error_Msg_Warn := SPARK_Mode /= On;
6357 Error_Msg_N ("possible infinite recursion<<!", N);
6358 Error_Msg_N ("\Storage_Error ]<<!", N);
6359 end if;
6361 exit Scope_Loop;
6362 end if;
6364 Scop := Scope (Scop);
6365 end loop Scope_Loop;
6366 end if;
6367 end if;
6369 -- Check obsolescent reference to Ada.Characters.Handling subprogram
6371 Check_Obsolescent_2005_Entity (Nam, Subp);
6373 -- If subprogram name is a predefined operator, it was given in
6374 -- functional notation. Replace call node with operator node, so
6375 -- that actuals can be resolved appropriately.
6377 if Is_Predefined_Op (Nam) or else Ekind (Nam) = E_Operator then
6378 Make_Call_Into_Operator (N, Typ, Entity (Name (N)));
6379 return;
6381 elsif Present (Alias (Nam))
6382 and then Is_Predefined_Op (Alias (Nam))
6383 then
6384 Resolve_Actuals (N, Nam);
6385 Make_Call_Into_Operator (N, Typ, Alias (Nam));
6386 return;
6387 end if;
6389 -- Create a transient scope if the resulting type requires it
6391 -- There are several notable exceptions:
6393 -- a) In init procs, the transient scope overhead is not needed, and is
6394 -- even incorrect when the call is a nested initialization call for a
6395 -- component whose expansion may generate adjust calls. However, if the
6396 -- call is some other procedure call within an initialization procedure
6397 -- (for example a call to Create_Task in the init_proc of the task
6398 -- run-time record) a transient scope must be created around this call.
6400 -- b) Enumeration literal pseudo-calls need no transient scope
6402 -- c) Intrinsic subprograms (Unchecked_Conversion and source info
6403 -- functions) do not use the secondary stack even though the return
6404 -- type may be unconstrained.
6406 -- d) Calls to a build-in-place function, since such functions may
6407 -- allocate their result directly in a target object, and cases where
6408 -- the result does get allocated in the secondary stack are checked for
6409 -- within the specialized Exp_Ch6 procedures for expanding those
6410 -- build-in-place calls.
6412 -- e) Calls to inlinable expression functions do not use the secondary
6413 -- stack (since the call will be replaced by its returned object).
6415 -- f) If the subprogram is marked Inline_Always, then even if it returns
6416 -- an unconstrained type the call does not require use of the secondary
6417 -- stack. However, inlining will only take place if the body to inline
6418 -- is already present. It may not be available if e.g. the subprogram is
6419 -- declared in a child instance.
6421 if Is_Inlined (Nam)
6422 and then Has_Pragma_Inline (Nam)
6423 and then Nkind (Unit_Declaration_Node (Nam)) = N_Subprogram_Declaration
6424 and then Present (Body_To_Inline (Unit_Declaration_Node (Nam)))
6425 then
6426 null;
6428 elsif Ekind (Nam) = E_Enumeration_Literal
6429 or else Is_Build_In_Place_Function (Nam)
6430 or else Is_Intrinsic_Subprogram (Nam)
6431 or else Is_Inlinable_Expression_Function (Nam)
6432 then
6433 null;
6435 elsif Expander_Active
6436 and then Ekind_In (Nam, E_Function, E_Subprogram_Type)
6437 and then Requires_Transient_Scope (Etype (Nam))
6438 then
6439 Establish_Transient_Scope (N, Manage_Sec_Stack => True);
6441 -- If the call appears within the bounds of a loop, it will be
6442 -- rewritten and reanalyzed, nothing left to do here.
6444 if Nkind (N) /= N_Function_Call then
6445 return;
6446 end if;
6447 end if;
6449 -- A protected function cannot be called within the definition of the
6450 -- enclosing protected type, unless it is part of a pre/postcondition
6451 -- on another protected operation. This may appear in the entry wrapper
6452 -- created for an entry with preconditions.
6454 if Is_Protected_Type (Scope (Nam))
6455 and then In_Open_Scopes (Scope (Nam))
6456 and then not Has_Completion (Scope (Nam))
6457 and then not In_Spec_Expression
6458 and then not Is_Entry_Wrapper (Current_Scope)
6459 then
6460 Error_Msg_NE
6461 ("& cannot be called before end of protected definition", N, Nam);
6462 end if;
6464 -- Propagate interpretation to actuals, and add default expressions
6465 -- where needed.
6467 if Present (First_Formal (Nam)) then
6468 Resolve_Actuals (N, Nam);
6470 -- Overloaded literals are rewritten as function calls, for purpose of
6471 -- resolution. After resolution, we can replace the call with the
6472 -- literal itself.
6474 elsif Ekind (Nam) = E_Enumeration_Literal then
6475 Copy_Node (Subp, N);
6476 Resolve_Entity_Name (N, Typ);
6478 -- Avoid validation, since it is a static function call
6480 Generate_Reference (Nam, Subp);
6481 return;
6482 end if;
6484 -- If the subprogram is not global, then kill all saved values and
6485 -- checks. This is a bit conservative, since in many cases we could do
6486 -- better, but it is not worth the effort. Similarly, we kill constant
6487 -- values. However we do not need to do this for internal entities
6488 -- (unless they are inherited user-defined subprograms), since they
6489 -- are not in the business of molesting local values.
6491 -- If the flag Suppress_Value_Tracking_On_Calls is set, then we also
6492 -- kill all checks and values for calls to global subprograms. This
6493 -- takes care of the case where an access to a local subprogram is
6494 -- taken, and could be passed directly or indirectly and then called
6495 -- from almost any context.
6497 -- Note: we do not do this step till after resolving the actuals. That
6498 -- way we still take advantage of the current value information while
6499 -- scanning the actuals.
6501 -- We suppress killing values if we are processing the nodes associated
6502 -- with N_Freeze_Entity nodes. Otherwise the declaration of a tagged
6503 -- type kills all the values as part of analyzing the code that
6504 -- initializes the dispatch tables.
6506 if Inside_Freezing_Actions = 0
6507 and then (not Is_Library_Level_Entity (Nam)
6508 or else Suppress_Value_Tracking_On_Call
6509 (Nearest_Dynamic_Scope (Current_Scope)))
6510 and then (Comes_From_Source (Nam)
6511 or else (Present (Alias (Nam))
6512 and then Comes_From_Source (Alias (Nam))))
6513 then
6514 Kill_Current_Values;
6515 end if;
6517 -- If we are warning about unread OUT parameters, this is the place to
6518 -- set Last_Assignment for OUT and IN OUT parameters. We have to do this
6519 -- after the above call to Kill_Current_Values (since that call clears
6520 -- the Last_Assignment field of all local variables).
6522 if (Warn_On_Modified_Unread or Warn_On_All_Unread_Out_Parameters)
6523 and then Comes_From_Source (N)
6524 and then In_Extended_Main_Source_Unit (N)
6525 then
6526 declare
6527 F : Entity_Id;
6528 A : Node_Id;
6530 begin
6531 F := First_Formal (Nam);
6532 A := First_Actual (N);
6533 while Present (F) and then Present (A) loop
6534 if Ekind_In (F, E_Out_Parameter, E_In_Out_Parameter)
6535 and then Warn_On_Modified_As_Out_Parameter (F)
6536 and then Is_Entity_Name (A)
6537 and then Present (Entity (A))
6538 and then Comes_From_Source (N)
6539 and then Safe_To_Capture_Value (N, Entity (A))
6540 then
6541 Set_Last_Assignment (Entity (A), A);
6542 end if;
6544 Next_Formal (F);
6545 Next_Actual (A);
6546 end loop;
6547 end;
6548 end if;
6550 -- If the subprogram is a primitive operation, check whether or not
6551 -- it is a correct dispatching call.
6553 if Is_Overloadable (Nam)
6554 and then Is_Dispatching_Operation (Nam)
6555 then
6556 Check_Dispatching_Call (N);
6558 elsif Ekind (Nam) /= E_Subprogram_Type
6559 and then Is_Abstract_Subprogram (Nam)
6560 and then not In_Instance
6561 then
6562 Error_Msg_NE ("cannot call abstract subprogram &!", N, Nam);
6563 end if;
6565 -- If this is a dispatching call, generate the appropriate reference,
6566 -- for better source navigation in GPS.
6568 if Is_Overloadable (Nam)
6569 and then Present (Controlling_Argument (N))
6570 then
6571 Generate_Reference (Nam, Subp, 'R');
6573 -- Normal case, not a dispatching call: generate a call reference
6575 else
6576 Generate_Reference (Nam, Subp, 's');
6577 end if;
6579 if Is_Intrinsic_Subprogram (Nam) then
6580 Check_Intrinsic_Call (N);
6581 end if;
6583 -- Check for violation of restriction No_Specific_Termination_Handlers
6584 -- and warn on a potentially blocking call to Abort_Task.
6586 if Restriction_Check_Required (No_Specific_Termination_Handlers)
6587 and then (Is_RTE (Nam, RE_Set_Specific_Handler)
6588 or else
6589 Is_RTE (Nam, RE_Specific_Handler))
6590 then
6591 Check_Restriction (No_Specific_Termination_Handlers, N);
6593 elsif Is_RTE (Nam, RE_Abort_Task) then
6594 Check_Potentially_Blocking_Operation (N);
6595 end if;
6597 -- A call to Ada.Real_Time.Timing_Events.Set_Handler to set a relative
6598 -- timing event violates restriction No_Relative_Delay (AI-0211). We
6599 -- need to check the second argument to determine whether it is an
6600 -- absolute or relative timing event.
6602 if Restriction_Check_Required (No_Relative_Delay)
6603 and then Is_RTE (Nam, RE_Set_Handler)
6604 and then Is_RTE (Etype (Next_Actual (First_Actual (N))), RE_Time_Span)
6605 then
6606 Check_Restriction (No_Relative_Delay, N);
6607 end if;
6609 -- Issue an error for a call to an eliminated subprogram. This routine
6610 -- will not perform the check if the call appears within a default
6611 -- expression.
6613 Check_For_Eliminated_Subprogram (Subp, Nam);
6615 -- In formal mode, the primitive operations of a tagged type or type
6616 -- extension do not include functions that return the tagged type.
6618 if Nkind (N) = N_Function_Call
6619 and then Is_Tagged_Type (Etype (N))
6620 and then Is_Entity_Name (Name (N))
6621 and then Is_Inherited_Operation_For_Type (Entity (Name (N)), Etype (N))
6622 then
6623 Check_SPARK_05_Restriction ("function not inherited", N);
6624 end if;
6626 -- Implement rule in 12.5.1 (23.3/2): In an instance, if the actual is
6627 -- class-wide and the call dispatches on result in a context that does
6628 -- not provide a tag, the call raises Program_Error.
6630 if Nkind (N) = N_Function_Call
6631 and then In_Instance
6632 and then Is_Generic_Actual_Type (Typ)
6633 and then Is_Class_Wide_Type (Typ)
6634 and then Has_Controlling_Result (Nam)
6635 and then Nkind (Parent (N)) = N_Object_Declaration
6636 then
6637 -- Verify that none of the formals are controlling
6639 declare
6640 Call_OK : Boolean := False;
6641 F : Entity_Id;
6643 begin
6644 F := First_Formal (Nam);
6645 while Present (F) loop
6646 if Is_Controlling_Formal (F) then
6647 Call_OK := True;
6648 exit;
6649 end if;
6651 Next_Formal (F);
6652 end loop;
6654 if not Call_OK then
6655 Error_Msg_Warn := SPARK_Mode /= On;
6656 Error_Msg_N ("!cannot determine tag of result<<", N);
6657 Error_Msg_N ("\Program_Error [<<!", N);
6658 Insert_Action (N,
6659 Make_Raise_Program_Error (Sloc (N),
6660 Reason => PE_Explicit_Raise));
6661 end if;
6662 end;
6663 end if;
6665 -- Check for calling a function with OUT or IN OUT parameter when the
6666 -- calling context (us right now) is not Ada 2012, so does not allow
6667 -- OUT or IN OUT parameters in function calls. Functions declared in
6668 -- a predefined unit are OK, as they may be called indirectly from a
6669 -- user-declared instantiation.
6671 if Ada_Version < Ada_2012
6672 and then Ekind (Nam) = E_Function
6673 and then Has_Out_Or_In_Out_Parameter (Nam)
6674 and then not In_Predefined_Unit (Nam)
6675 then
6676 Error_Msg_NE ("& has at least one OUT or `IN OUT` parameter", N, Nam);
6677 Error_Msg_N ("\call to this function only allowed in Ada 2012", N);
6678 end if;
6680 -- Check the dimensions of the actuals in the call. For function calls,
6681 -- propagate the dimensions from the returned type to N.
6683 Analyze_Dimension_Call (N, Nam);
6685 -- All done, evaluate call and deal with elaboration issues
6687 Eval_Call (N);
6689 if Legacy_Elaboration_Checks then
6690 Check_Elab_Call (N);
6691 end if;
6693 -- Annotate the tree by creating a call marker in case the original call
6694 -- is transformed by expansion. The call marker is automatically saved
6695 -- for later examination by the ABE Processing phase.
6697 Build_Call_Marker (N);
6699 -- In GNATprove mode, expansion is disabled, but we want to inline some
6700 -- subprograms to facilitate formal verification. Indirect calls through
6701 -- a subprogram type or within a generic cannot be inlined. Inlining is
6702 -- performed only for calls subject to SPARK_Mode on.
6704 if GNATprove_Mode
6705 and then SPARK_Mode = On
6706 and then Is_Overloadable (Nam)
6707 and then not Inside_A_Generic
6708 then
6709 Nam_UA := Ultimate_Alias (Nam);
6710 Nam_Decl := Unit_Declaration_Node (Nam_UA);
6712 if Nkind (Nam_Decl) = N_Subprogram_Declaration then
6713 Body_Id := Corresponding_Body (Nam_Decl);
6715 -- Nothing to do if the subprogram is not eligible for inlining in
6716 -- GNATprove mode, or inlining is disabled with switch -gnatdm
6718 if not Is_Inlined_Always (Nam_UA)
6719 or else not Can_Be_Inlined_In_GNATprove_Mode (Nam_UA, Body_Id)
6720 or else Debug_Flag_M
6721 then
6722 null;
6724 -- Calls cannot be inlined inside assertions, as GNATprove treats
6725 -- assertions as logic expressions. Only issue a message when the
6726 -- body has been seen, otherwise this leads to spurious messages
6727 -- on expression functions.
6729 elsif In_Assertion_Expr /= 0 then
6730 if Present (Body_Id) then
6731 Cannot_Inline
6732 ("cannot inline & (in assertion expression)?", N, Nam_UA);
6733 end if;
6735 -- Calls cannot be inlined inside default expressions
6737 elsif In_Default_Expr then
6738 Cannot_Inline
6739 ("cannot inline & (in default expression)?", N, Nam_UA);
6741 -- Inlining should not be performed during preanalysis
6743 elsif Full_Analysis then
6745 -- Do not inline calls inside expression functions or functions
6746 -- generated by the front end for subtype predicates, as this
6747 -- would prevent interpreting them as logical formulas in
6748 -- GNATprove. Only issue a message when the body has been seen,
6749 -- otherwise this leads to spurious messages on callees that
6750 -- are themselves expression functions.
6752 if Present (Current_Subprogram)
6753 and then
6754 (Is_Expression_Function_Or_Completion (Current_Subprogram)
6755 or else Is_Predicate_Function (Current_Subprogram)
6756 or else Is_Invariant_Procedure (Current_Subprogram)
6757 or else Is_DIC_Procedure (Current_Subprogram))
6758 then
6759 if Present (Body_Id)
6760 and then Present (Body_To_Inline (Nam_Decl))
6761 then
6762 if Is_Predicate_Function (Current_Subprogram) then
6763 Cannot_Inline
6764 ("cannot inline & (inside predicate)?",
6765 N, Nam_UA);
6767 elsif Is_Invariant_Procedure (Current_Subprogram) then
6768 Cannot_Inline
6769 ("cannot inline & (inside invariant)?",
6770 N, Nam_UA);
6772 elsif Is_DIC_Procedure (Current_Subprogram) then
6773 Cannot_Inline
6774 ("cannot inline & (inside Default_Initial_Condition)?",
6775 N, Nam_UA);
6777 else
6778 Cannot_Inline
6779 ("cannot inline & (inside expression function)?",
6780 N, Nam_UA);
6781 end if;
6782 end if;
6784 -- With the one-pass inlining technique, a call cannot be
6785 -- inlined if the corresponding body has not been seen yet.
6787 elsif No (Body_Id) then
6788 Cannot_Inline
6789 ("cannot inline & (body not seen yet)?", N, Nam_UA);
6791 -- Nothing to do if there is no body to inline, indicating that
6792 -- the subprogram is not suitable for inlining in GNATprove
6793 -- mode.
6795 elsif No (Body_To_Inline (Nam_Decl)) then
6796 null;
6798 -- Calls cannot be inlined inside potentially unevaluated
6799 -- expressions, as this would create complex actions inside
6800 -- expressions, that are not handled by GNATprove.
6802 elsif Is_Potentially_Unevaluated (N) then
6803 Cannot_Inline
6804 ("cannot inline & (in potentially unevaluated context)?",
6805 N, Nam_UA);
6807 -- Do not inline calls which would possibly lead to missing a
6808 -- type conversion check on an input parameter.
6810 elsif not Call_Can_Be_Inlined_In_GNATprove_Mode (N, Nam) then
6811 Cannot_Inline
6812 ("cannot inline & (possible check on input parameters)?",
6813 N, Nam_UA);
6815 -- Otherwise, inline the call
6817 else
6818 Expand_Inlined_Call (N, Nam_UA, Nam);
6819 end if;
6820 end if;
6821 end if;
6822 end if;
6824 Mark_Use_Clauses (Subp);
6826 Warn_On_Overlapping_Actuals (Nam, N);
6827 end Resolve_Call;
6829 -----------------------------
6830 -- Resolve_Case_Expression --
6831 -----------------------------
6833 procedure Resolve_Case_Expression (N : Node_Id; Typ : Entity_Id) is
6834 Alt : Node_Id;
6835 Alt_Expr : Node_Id;
6836 Alt_Typ : Entity_Id;
6837 Is_Dyn : Boolean;
6839 begin
6840 Alt := First (Alternatives (N));
6841 while Present (Alt) loop
6842 Alt_Expr := Expression (Alt);
6844 if Error_Posted (Alt_Expr) then
6845 return;
6846 end if;
6848 Resolve (Alt_Expr, Typ);
6849 Alt_Typ := Etype (Alt_Expr);
6851 -- When the expression is of a scalar subtype different from the
6852 -- result subtype, then insert a conversion to ensure the generation
6853 -- of a constraint check.
6855 if Is_Scalar_Type (Alt_Typ) and then Alt_Typ /= Typ then
6856 Rewrite (Alt_Expr, Convert_To (Typ, Alt_Expr));
6857 Analyze_And_Resolve (Alt_Expr, Typ);
6858 end if;
6860 Next (Alt);
6861 end loop;
6863 -- Apply RM 4.5.7 (17/3): whether the expression is statically or
6864 -- dynamically tagged must be known statically.
6866 if Is_Tagged_Type (Typ) and then not Is_Class_Wide_Type (Typ) then
6867 Alt := First (Alternatives (N));
6868 Is_Dyn := Is_Dynamically_Tagged (Expression (Alt));
6870 while Present (Alt) loop
6871 if Is_Dynamically_Tagged (Expression (Alt)) /= Is_Dyn then
6872 Error_Msg_N
6873 ("all or none of the dependent expressions can be "
6874 & "dynamically tagged", N);
6875 end if;
6877 Next (Alt);
6878 end loop;
6879 end if;
6881 Set_Etype (N, Typ);
6882 Eval_Case_Expression (N);
6883 Analyze_Dimension (N);
6884 end Resolve_Case_Expression;
6886 -------------------------------
6887 -- Resolve_Character_Literal --
6888 -------------------------------
6890 procedure Resolve_Character_Literal (N : Node_Id; Typ : Entity_Id) is
6891 B_Typ : constant Entity_Id := Base_Type (Typ);
6892 C : Entity_Id;
6894 begin
6895 -- Verify that the character does belong to the type of the context
6897 Set_Etype (N, B_Typ);
6898 Eval_Character_Literal (N);
6900 -- Wide_Wide_Character literals must always be defined, since the set
6901 -- of wide wide character literals is complete, i.e. if a character
6902 -- literal is accepted by the parser, then it is OK for wide wide
6903 -- character (out of range character literals are rejected).
6905 if Root_Type (B_Typ) = Standard_Wide_Wide_Character then
6906 return;
6908 -- Always accept character literal for type Any_Character, which
6909 -- occurs in error situations and in comparisons of literals, both
6910 -- of which should accept all literals.
6912 elsif B_Typ = Any_Character then
6913 return;
6915 -- For Standard.Character or a type derived from it, check that the
6916 -- literal is in range.
6918 elsif Root_Type (B_Typ) = Standard_Character then
6919 if In_Character_Range (UI_To_CC (Char_Literal_Value (N))) then
6920 return;
6921 end if;
6923 -- For Standard.Wide_Character or a type derived from it, check that the
6924 -- literal is in range.
6926 elsif Root_Type (B_Typ) = Standard_Wide_Character then
6927 if In_Wide_Character_Range (UI_To_CC (Char_Literal_Value (N))) then
6928 return;
6929 end if;
6931 -- If the entity is already set, this has already been resolved in a
6932 -- generic context, or comes from expansion. Nothing else to do.
6934 elsif Present (Entity (N)) then
6935 return;
6937 -- Otherwise we have a user defined character type, and we can use the
6938 -- standard visibility mechanisms to locate the referenced entity.
6940 else
6941 C := Current_Entity (N);
6942 while Present (C) loop
6943 if Etype (C) = B_Typ then
6944 Set_Entity_With_Checks (N, C);
6945 Generate_Reference (C, N);
6946 return;
6947 end if;
6949 C := Homonym (C);
6950 end loop;
6951 end if;
6953 -- If we fall through, then the literal does not match any of the
6954 -- entries of the enumeration type. This isn't just a constraint error
6955 -- situation, it is an illegality (see RM 4.2).
6957 Error_Msg_NE
6958 ("character not defined for }", N, First_Subtype (B_Typ));
6959 end Resolve_Character_Literal;
6961 ---------------------------
6962 -- Resolve_Comparison_Op --
6963 ---------------------------
6965 -- Context requires a boolean type, and plays no role in resolution.
6966 -- Processing identical to that for equality operators. The result type is
6967 -- the base type, which matters when pathological subtypes of booleans with
6968 -- limited ranges are used.
6970 procedure Resolve_Comparison_Op (N : Node_Id; Typ : Entity_Id) is
6971 L : constant Node_Id := Left_Opnd (N);
6972 R : constant Node_Id := Right_Opnd (N);
6973 T : Entity_Id;
6975 begin
6976 -- If this is an intrinsic operation which is not predefined, use the
6977 -- types of its declared arguments to resolve the possibly overloaded
6978 -- operands. Otherwise the operands are unambiguous and specify the
6979 -- expected type.
6981 if Scope (Entity (N)) /= Standard_Standard then
6982 T := Etype (First_Entity (Entity (N)));
6984 else
6985 T := Find_Unique_Type (L, R);
6987 if T = Any_Fixed then
6988 T := Unique_Fixed_Point_Type (L);
6989 end if;
6990 end if;
6992 Set_Etype (N, Base_Type (Typ));
6993 Generate_Reference (T, N, ' ');
6995 -- Skip remaining processing if already set to Any_Type
6997 if T = Any_Type then
6998 return;
6999 end if;
7001 -- Deal with other error cases
7003 if T = Any_String or else
7004 T = Any_Composite or else
7005 T = Any_Character
7006 then
7007 if T = Any_Character then
7008 Ambiguous_Character (L);
7009 else
7010 Error_Msg_N ("ambiguous operands for comparison", N);
7011 end if;
7013 Set_Etype (N, Any_Type);
7014 return;
7015 end if;
7017 -- Resolve the operands if types OK
7019 Resolve (L, T);
7020 Resolve (R, T);
7021 Check_Unset_Reference (L);
7022 Check_Unset_Reference (R);
7023 Generate_Operator_Reference (N, T);
7024 Check_Low_Bound_Tested (N);
7026 -- In SPARK, ordering operators <, <=, >, >= are not defined for Boolean
7027 -- types or array types except String.
7029 if Is_Boolean_Type (T) then
7030 Check_SPARK_05_Restriction
7031 ("comparison is not defined on Boolean type", N);
7033 elsif Is_Array_Type (T)
7034 and then Base_Type (T) /= Standard_String
7035 then
7036 Check_SPARK_05_Restriction
7037 ("comparison is not defined on array types other than String", N);
7038 end if;
7040 -- Check comparison on unordered enumeration
7042 if Bad_Unordered_Enumeration_Reference (N, Etype (L)) then
7043 Error_Msg_Sloc := Sloc (Etype (L));
7044 Error_Msg_NE
7045 ("comparison on unordered enumeration type& declared#?U?",
7046 N, Etype (L));
7047 end if;
7049 Analyze_Dimension (N);
7051 -- Evaluate the relation (note we do this after the above check since
7052 -- this Eval call may change N to True/False. Skip this evaluation
7053 -- inside assertions, in order to keep assertions as written by users
7054 -- for tools that rely on these, e.g. GNATprove for loop invariants.
7055 -- Except evaluation is still performed even inside assertions for
7056 -- comparisons between values of universal type, which are useless
7057 -- for static analysis tools, and not supported even by GNATprove.
7059 if In_Assertion_Expr = 0
7060 or else (Is_Universal_Numeric_Type (Etype (L))
7061 and then
7062 Is_Universal_Numeric_Type (Etype (R)))
7063 then
7064 Eval_Relational_Op (N);
7065 end if;
7066 end Resolve_Comparison_Op;
7068 -----------------------------------------
7069 -- Resolve_Discrete_Subtype_Indication --
7070 -----------------------------------------
7072 procedure Resolve_Discrete_Subtype_Indication
7073 (N : Node_Id;
7074 Typ : Entity_Id)
7076 R : Node_Id;
7077 S : Entity_Id;
7079 begin
7080 Analyze (Subtype_Mark (N));
7081 S := Entity (Subtype_Mark (N));
7083 if Nkind (Constraint (N)) /= N_Range_Constraint then
7084 Error_Msg_N ("expect range constraint for discrete type", N);
7085 Set_Etype (N, Any_Type);
7087 else
7088 R := Range_Expression (Constraint (N));
7090 if R = Error then
7091 return;
7092 end if;
7094 Analyze (R);
7096 if Base_Type (S) /= Base_Type (Typ) then
7097 Error_Msg_NE
7098 ("expect subtype of }", N, First_Subtype (Typ));
7100 -- Rewrite the constraint as a range of Typ
7101 -- to allow compilation to proceed further.
7103 Set_Etype (N, Typ);
7104 Rewrite (Low_Bound (R),
7105 Make_Attribute_Reference (Sloc (Low_Bound (R)),
7106 Prefix => New_Occurrence_Of (Typ, Sloc (R)),
7107 Attribute_Name => Name_First));
7108 Rewrite (High_Bound (R),
7109 Make_Attribute_Reference (Sloc (High_Bound (R)),
7110 Prefix => New_Occurrence_Of (Typ, Sloc (R)),
7111 Attribute_Name => Name_First));
7113 else
7114 Resolve (R, Typ);
7115 Set_Etype (N, Etype (R));
7117 -- Additionally, we must check that the bounds are compatible
7118 -- with the given subtype, which might be different from the
7119 -- type of the context.
7121 Apply_Range_Check (R, S);
7123 -- ??? If the above check statically detects a Constraint_Error
7124 -- it replaces the offending bound(s) of the range R with a
7125 -- Constraint_Error node. When the itype which uses these bounds
7126 -- is frozen the resulting call to Duplicate_Subexpr generates
7127 -- a new temporary for the bounds.
7129 -- Unfortunately there are other itypes that are also made depend
7130 -- on these bounds, so when Duplicate_Subexpr is called they get
7131 -- a forward reference to the newly created temporaries and Gigi
7132 -- aborts on such forward references. This is probably sign of a
7133 -- more fundamental problem somewhere else in either the order of
7134 -- itype freezing or the way certain itypes are constructed.
7136 -- To get around this problem we call Remove_Side_Effects right
7137 -- away if either bounds of R are a Constraint_Error.
7139 declare
7140 L : constant Node_Id := Low_Bound (R);
7141 H : constant Node_Id := High_Bound (R);
7143 begin
7144 if Nkind (L) = N_Raise_Constraint_Error then
7145 Remove_Side_Effects (L);
7146 end if;
7148 if Nkind (H) = N_Raise_Constraint_Error then
7149 Remove_Side_Effects (H);
7150 end if;
7151 end;
7153 Check_Unset_Reference (Low_Bound (R));
7154 Check_Unset_Reference (High_Bound (R));
7155 end if;
7156 end if;
7157 end Resolve_Discrete_Subtype_Indication;
7159 -------------------------
7160 -- Resolve_Entity_Name --
7161 -------------------------
7163 -- Used to resolve identifiers and expanded names
7165 procedure Resolve_Entity_Name (N : Node_Id; Typ : Entity_Id) is
7166 function Is_Assignment_Or_Object_Expression
7167 (Context : Node_Id;
7168 Expr : Node_Id) return Boolean;
7169 -- Determine whether node Context denotes an assignment statement or an
7170 -- object declaration whose expression is node Expr.
7172 ----------------------------------------
7173 -- Is_Assignment_Or_Object_Expression --
7174 ----------------------------------------
7176 function Is_Assignment_Or_Object_Expression
7177 (Context : Node_Id;
7178 Expr : Node_Id) return Boolean
7180 begin
7181 if Nkind_In (Context, N_Assignment_Statement,
7182 N_Object_Declaration)
7183 and then Expression (Context) = Expr
7184 then
7185 return True;
7187 -- Check whether a construct that yields a name is the expression of
7188 -- an assignment statement or an object declaration.
7190 elsif (Nkind_In (Context, N_Attribute_Reference,
7191 N_Explicit_Dereference,
7192 N_Indexed_Component,
7193 N_Selected_Component,
7194 N_Slice)
7195 and then Prefix (Context) = Expr)
7196 or else
7197 (Nkind_In (Context, N_Type_Conversion,
7198 N_Unchecked_Type_Conversion)
7199 and then Expression (Context) = Expr)
7200 then
7201 return
7202 Is_Assignment_Or_Object_Expression
7203 (Context => Parent (Context),
7204 Expr => Context);
7206 -- Otherwise the context is not an assignment statement or an object
7207 -- declaration.
7209 else
7210 return False;
7211 end if;
7212 end Is_Assignment_Or_Object_Expression;
7214 -- Local variables
7216 E : constant Entity_Id := Entity (N);
7217 Par : Node_Id;
7219 -- Start of processing for Resolve_Entity_Name
7221 begin
7222 -- If garbage from errors, set to Any_Type and return
7224 if No (E) and then Total_Errors_Detected /= 0 then
7225 Set_Etype (N, Any_Type);
7226 return;
7227 end if;
7229 -- Replace named numbers by corresponding literals. Note that this is
7230 -- the one case where Resolve_Entity_Name must reset the Etype, since
7231 -- it is currently marked as universal.
7233 if Ekind (E) = E_Named_Integer then
7234 Set_Etype (N, Typ);
7235 Eval_Named_Integer (N);
7237 elsif Ekind (E) = E_Named_Real then
7238 Set_Etype (N, Typ);
7239 Eval_Named_Real (N);
7241 -- For enumeration literals, we need to make sure that a proper style
7242 -- check is done, since such literals are overloaded, and thus we did
7243 -- not do a style check during the first phase of analysis.
7245 elsif Ekind (E) = E_Enumeration_Literal then
7246 Set_Entity_With_Checks (N, E);
7247 Eval_Entity_Name (N);
7249 -- Case of (sub)type name appearing in a context where an expression
7250 -- is expected. This is legal if occurrence is a current instance.
7251 -- See RM 8.6 (17/3).
7253 elsif Is_Type (E) then
7254 if Is_Current_Instance (N) then
7255 null;
7257 -- Any other use is an error
7259 else
7260 Error_Msg_N
7261 ("invalid use of subtype mark in expression or call", N);
7262 end if;
7264 -- Check discriminant use if entity is discriminant in current scope,
7265 -- i.e. discriminant of record or concurrent type currently being
7266 -- analyzed. Uses in corresponding body are unrestricted.
7268 elsif Ekind (E) = E_Discriminant
7269 and then Scope (E) = Current_Scope
7270 and then not Has_Completion (Current_Scope)
7271 then
7272 Check_Discriminant_Use (N);
7274 -- A parameterless generic function cannot appear in a context that
7275 -- requires resolution.
7277 elsif Ekind (E) = E_Generic_Function then
7278 Error_Msg_N ("illegal use of generic function", N);
7280 -- In Ada 83 an OUT parameter cannot be read, but attributes of
7281 -- array types (i.e. bounds and length) are legal.
7283 elsif Ekind (E) = E_Out_Parameter
7284 and then (Nkind (Parent (N)) /= N_Attribute_Reference
7285 or else Is_Scalar_Type (Etype (E)))
7287 and then (Nkind (Parent (N)) in N_Op
7288 or else Nkind (Parent (N)) = N_Explicit_Dereference
7289 or else Is_Assignment_Or_Object_Expression
7290 (Context => Parent (N),
7291 Expr => N))
7292 then
7293 if Ada_Version = Ada_83 then
7294 Error_Msg_N ("(Ada 83) illegal reading of out parameter", N);
7295 end if;
7297 -- In all other cases, just do the possible static evaluation
7299 else
7300 -- A deferred constant that appears in an expression must have a
7301 -- completion, unless it has been removed by in-place expansion of
7302 -- an aggregate. A constant that is a renaming does not need
7303 -- initialization.
7305 if Ekind (E) = E_Constant
7306 and then Comes_From_Source (E)
7307 and then No (Constant_Value (E))
7308 and then Is_Frozen (Etype (E))
7309 and then not In_Spec_Expression
7310 and then not Is_Imported (E)
7311 and then Nkind (Parent (E)) /= N_Object_Renaming_Declaration
7312 then
7313 if No_Initialization (Parent (E))
7314 or else (Present (Full_View (E))
7315 and then No_Initialization (Parent (Full_View (E))))
7316 then
7317 null;
7318 else
7319 Error_Msg_N
7320 ("deferred constant is frozen before completion", N);
7321 end if;
7322 end if;
7324 Eval_Entity_Name (N);
7325 end if;
7327 Par := Parent (N);
7329 -- When the entity appears in a parameter association, retrieve the
7330 -- related subprogram call.
7332 if Nkind (Par) = N_Parameter_Association then
7333 Par := Parent (Par);
7334 end if;
7336 if Comes_From_Source (N) then
7338 -- The following checks are only relevant when SPARK_Mode is on as
7339 -- they are not standard Ada legality rules.
7341 if SPARK_Mode = On then
7343 -- An effectively volatile object subject to enabled properties
7344 -- Async_Writers or Effective_Reads must appear in non-interfering
7345 -- context (SPARK RM 7.1.3(12)).
7347 if Is_Object (E)
7348 and then Is_Effectively_Volatile (E)
7349 and then (Async_Writers_Enabled (E)
7350 or else Effective_Reads_Enabled (E))
7351 and then not Is_OK_Volatile_Context (Par, N)
7352 then
7353 SPARK_Msg_N
7354 ("volatile object cannot appear in this context "
7355 & "(SPARK RM 7.1.3(12))", N);
7356 end if;
7358 -- Check for possible elaboration issues with respect to reads of
7359 -- variables. The act of renaming the variable is not considered a
7360 -- read as it simply establishes an alias.
7362 if Legacy_Elaboration_Checks
7363 and then Ekind (E) = E_Variable
7364 and then Dynamic_Elaboration_Checks
7365 and then Nkind (Par) /= N_Object_Renaming_Declaration
7366 then
7367 Check_Elab_Call (N);
7368 end if;
7369 end if;
7371 -- The variable may eventually become a constituent of a single
7372 -- protected/task type. Record the reference now and verify its
7373 -- legality when analyzing the contract of the variable
7374 -- (SPARK RM 9.3).
7376 if Ekind (E) = E_Variable then
7377 Record_Possible_Part_Of_Reference (E, N);
7378 end if;
7380 -- A Ghost entity must appear in a specific context
7382 if Is_Ghost_Entity (E) then
7383 Check_Ghost_Context (E, N);
7384 end if;
7385 end if;
7387 -- We may be resolving an entity within expanded code, so a reference to
7388 -- an entity should be ignored when calculating effective use clauses to
7389 -- avoid inappropriate marking.
7391 if Comes_From_Source (N) then
7392 Mark_Use_Clauses (E);
7393 end if;
7394 end Resolve_Entity_Name;
7396 -------------------
7397 -- Resolve_Entry --
7398 -------------------
7400 procedure Resolve_Entry (Entry_Name : Node_Id) is
7401 Loc : constant Source_Ptr := Sloc (Entry_Name);
7402 Nam : Entity_Id;
7403 New_N : Node_Id;
7404 S : Entity_Id;
7405 Tsk : Entity_Id;
7406 E_Name : Node_Id;
7407 Index : Node_Id;
7409 function Actual_Index_Type (E : Entity_Id) return Entity_Id;
7410 -- If the bounds of the entry family being called depend on task
7411 -- discriminants, build a new index subtype where a discriminant is
7412 -- replaced with the value of the discriminant of the target task.
7413 -- The target task is the prefix of the entry name in the call.
7415 -----------------------
7416 -- Actual_Index_Type --
7417 -----------------------
7419 function Actual_Index_Type (E : Entity_Id) return Entity_Id is
7420 Typ : constant Entity_Id := Entry_Index_Type (E);
7421 Tsk : constant Entity_Id := Scope (E);
7422 Lo : constant Node_Id := Type_Low_Bound (Typ);
7423 Hi : constant Node_Id := Type_High_Bound (Typ);
7424 New_T : Entity_Id;
7426 function Actual_Discriminant_Ref (Bound : Node_Id) return Node_Id;
7427 -- If the bound is given by a discriminant, replace with a reference
7428 -- to the discriminant of the same name in the target task. If the
7429 -- entry name is the target of a requeue statement and the entry is
7430 -- in the current protected object, the bound to be used is the
7431 -- discriminal of the object (see Apply_Range_Checks for details of
7432 -- the transformation).
7434 -----------------------------
7435 -- Actual_Discriminant_Ref --
7436 -----------------------------
7438 function Actual_Discriminant_Ref (Bound : Node_Id) return Node_Id is
7439 Typ : constant Entity_Id := Etype (Bound);
7440 Ref : Node_Id;
7442 begin
7443 Remove_Side_Effects (Bound);
7445 if not Is_Entity_Name (Bound)
7446 or else Ekind (Entity (Bound)) /= E_Discriminant
7447 then
7448 return Bound;
7450 elsif Is_Protected_Type (Tsk)
7451 and then In_Open_Scopes (Tsk)
7452 and then Nkind (Parent (Entry_Name)) = N_Requeue_Statement
7453 then
7454 -- Note: here Bound denotes a discriminant of the corresponding
7455 -- record type tskV, whose discriminal is a formal of the
7456 -- init-proc tskVIP. What we want is the body discriminal,
7457 -- which is associated to the discriminant of the original
7458 -- concurrent type tsk.
7460 return New_Occurrence_Of
7461 (Find_Body_Discriminal (Entity (Bound)), Loc);
7463 else
7464 Ref :=
7465 Make_Selected_Component (Loc,
7466 Prefix => New_Copy_Tree (Prefix (Prefix (Entry_Name))),
7467 Selector_Name => New_Occurrence_Of (Entity (Bound), Loc));
7468 Analyze (Ref);
7469 Resolve (Ref, Typ);
7470 return Ref;
7471 end if;
7472 end Actual_Discriminant_Ref;
7474 -- Start of processing for Actual_Index_Type
7476 begin
7477 if not Has_Discriminants (Tsk)
7478 or else (not Is_Entity_Name (Lo) and then not Is_Entity_Name (Hi))
7479 then
7480 return Entry_Index_Type (E);
7482 else
7483 New_T := Create_Itype (Ekind (Typ), Parent (Entry_Name));
7484 Set_Etype (New_T, Base_Type (Typ));
7485 Set_Size_Info (New_T, Typ);
7486 Set_RM_Size (New_T, RM_Size (Typ));
7487 Set_Scalar_Range (New_T,
7488 Make_Range (Sloc (Entry_Name),
7489 Low_Bound => Actual_Discriminant_Ref (Lo),
7490 High_Bound => Actual_Discriminant_Ref (Hi)));
7492 return New_T;
7493 end if;
7494 end Actual_Index_Type;
7496 -- Start of processing for Resolve_Entry
7498 begin
7499 -- Find name of entry being called, and resolve prefix of name with its
7500 -- own type. The prefix can be overloaded, and the name and signature of
7501 -- the entry must be taken into account.
7503 if Nkind (Entry_Name) = N_Indexed_Component then
7505 -- Case of dealing with entry family within the current tasks
7507 E_Name := Prefix (Entry_Name);
7509 else
7510 E_Name := Entry_Name;
7511 end if;
7513 if Is_Entity_Name (E_Name) then
7515 -- Entry call to an entry (or entry family) in the current task. This
7516 -- is legal even though the task will deadlock. Rewrite as call to
7517 -- current task.
7519 -- This can also be a call to an entry in an enclosing task. If this
7520 -- is a single task, we have to retrieve its name, because the scope
7521 -- of the entry is the task type, not the object. If the enclosing
7522 -- task is a task type, the identity of the task is given by its own
7523 -- self variable.
7525 -- Finally this can be a requeue on an entry of the same task or
7526 -- protected object.
7528 S := Scope (Entity (E_Name));
7530 for J in reverse 0 .. Scope_Stack.Last loop
7531 if Is_Task_Type (Scope_Stack.Table (J).Entity)
7532 and then not Comes_From_Source (S)
7533 then
7534 -- S is an enclosing task or protected object. The concurrent
7535 -- declaration has been converted into a type declaration, and
7536 -- the object itself has an object declaration that follows
7537 -- the type in the same declarative part.
7539 Tsk := Next_Entity (S);
7540 while Etype (Tsk) /= S loop
7541 Next_Entity (Tsk);
7542 end loop;
7544 S := Tsk;
7545 exit;
7547 elsif S = Scope_Stack.Table (J).Entity then
7549 -- Call to current task. Will be transformed into call to Self
7551 exit;
7553 end if;
7554 end loop;
7556 New_N :=
7557 Make_Selected_Component (Loc,
7558 Prefix => New_Occurrence_Of (S, Loc),
7559 Selector_Name =>
7560 New_Occurrence_Of (Entity (E_Name), Loc));
7561 Rewrite (E_Name, New_N);
7562 Analyze (E_Name);
7564 elsif Nkind (Entry_Name) = N_Selected_Component
7565 and then Is_Overloaded (Prefix (Entry_Name))
7566 then
7567 -- Use the entry name (which must be unique at this point) to find
7568 -- the prefix that returns the corresponding task/protected type.
7570 declare
7571 Pref : constant Node_Id := Prefix (Entry_Name);
7572 Ent : constant Entity_Id := Entity (Selector_Name (Entry_Name));
7573 I : Interp_Index;
7574 It : Interp;
7576 begin
7577 Get_First_Interp (Pref, I, It);
7578 while Present (It.Typ) loop
7579 if Scope (Ent) = It.Typ then
7580 Set_Etype (Pref, It.Typ);
7581 exit;
7582 end if;
7584 Get_Next_Interp (I, It);
7585 end loop;
7586 end;
7587 end if;
7589 if Nkind (Entry_Name) = N_Selected_Component then
7590 Resolve (Prefix (Entry_Name));
7592 else pragma Assert (Nkind (Entry_Name) = N_Indexed_Component);
7593 Nam := Entity (Selector_Name (Prefix (Entry_Name)));
7594 Resolve (Prefix (Prefix (Entry_Name)));
7595 Index := First (Expressions (Entry_Name));
7596 Resolve (Index, Entry_Index_Type (Nam));
7598 -- Generate a reference for the index when it denotes an entity
7600 if Is_Entity_Name (Index) then
7601 Generate_Reference (Entity (Index), Nam);
7602 end if;
7604 -- Up to this point the expression could have been the actual in a
7605 -- simple entry call, and be given by a named association.
7607 if Nkind (Index) = N_Parameter_Association then
7608 Error_Msg_N ("expect expression for entry index", Index);
7609 else
7610 Apply_Range_Check (Index, Actual_Index_Type (Nam));
7611 end if;
7612 end if;
7613 end Resolve_Entry;
7615 ------------------------
7616 -- Resolve_Entry_Call --
7617 ------------------------
7619 procedure Resolve_Entry_Call (N : Node_Id; Typ : Entity_Id) is
7620 Entry_Name : constant Node_Id := Name (N);
7621 Loc : constant Source_Ptr := Sloc (Entry_Name);
7623 Nam : Entity_Id;
7624 Norm_OK : Boolean;
7625 Obj : Node_Id;
7626 Was_Over : Boolean;
7628 begin
7629 -- We kill all checks here, because it does not seem worth the effort to
7630 -- do anything better, an entry call is a big operation.
7632 Kill_All_Checks;
7634 -- Processing of the name is similar for entry calls and protected
7635 -- operation calls. Once the entity is determined, we can complete
7636 -- the resolution of the actuals.
7638 -- The selector may be overloaded, in the case of a protected object
7639 -- with overloaded functions. The type of the context is used for
7640 -- resolution.
7642 if Nkind (Entry_Name) = N_Selected_Component
7643 and then Is_Overloaded (Selector_Name (Entry_Name))
7644 and then Typ /= Standard_Void_Type
7645 then
7646 declare
7647 I : Interp_Index;
7648 It : Interp;
7650 begin
7651 Get_First_Interp (Selector_Name (Entry_Name), I, It);
7652 while Present (It.Typ) loop
7653 if Covers (Typ, It.Typ) then
7654 Set_Entity (Selector_Name (Entry_Name), It.Nam);
7655 Set_Etype (Entry_Name, It.Typ);
7657 Generate_Reference (It.Typ, N, ' ');
7658 end if;
7660 Get_Next_Interp (I, It);
7661 end loop;
7662 end;
7663 end if;
7665 Resolve_Entry (Entry_Name);
7667 if Nkind (Entry_Name) = N_Selected_Component then
7669 -- Simple entry or protected operation call
7671 Nam := Entity (Selector_Name (Entry_Name));
7672 Obj := Prefix (Entry_Name);
7674 if Is_Subprogram (Nam) then
7675 Check_For_Eliminated_Subprogram (Entry_Name, Nam);
7676 end if;
7678 Was_Over := Is_Overloaded (Selector_Name (Entry_Name));
7680 else pragma Assert (Nkind (Entry_Name) = N_Indexed_Component);
7682 -- Call to member of entry family
7684 Nam := Entity (Selector_Name (Prefix (Entry_Name)));
7685 Obj := Prefix (Prefix (Entry_Name));
7686 Was_Over := Is_Overloaded (Selector_Name (Prefix (Entry_Name)));
7687 end if;
7689 -- We cannot in general check the maximum depth of protected entry calls
7690 -- at compile time. But we can tell that any protected entry call at all
7691 -- violates a specified nesting depth of zero.
7693 if Is_Protected_Type (Scope (Nam)) then
7694 Check_Restriction (Max_Entry_Queue_Length, N);
7695 end if;
7697 -- Use context type to disambiguate a protected function that can be
7698 -- called without actuals and that returns an array type, and where the
7699 -- argument list may be an indexing of the returned value.
7701 if Ekind (Nam) = E_Function
7702 and then Needs_No_Actuals (Nam)
7703 and then Present (Parameter_Associations (N))
7704 and then
7705 ((Is_Array_Type (Etype (Nam))
7706 and then Covers (Typ, Component_Type (Etype (Nam))))
7708 or else (Is_Access_Type (Etype (Nam))
7709 and then Is_Array_Type (Designated_Type (Etype (Nam)))
7710 and then
7711 Covers
7712 (Typ,
7713 Component_Type (Designated_Type (Etype (Nam))))))
7714 then
7715 declare
7716 Index_Node : Node_Id;
7718 begin
7719 Index_Node :=
7720 Make_Indexed_Component (Loc,
7721 Prefix =>
7722 Make_Function_Call (Loc, Name => Relocate_Node (Entry_Name)),
7723 Expressions => Parameter_Associations (N));
7725 -- Since we are correcting a node classification error made by the
7726 -- parser, we call Replace rather than Rewrite.
7728 Replace (N, Index_Node);
7729 Set_Etype (Prefix (N), Etype (Nam));
7730 Set_Etype (N, Typ);
7731 Resolve_Indexed_Component (N, Typ);
7732 return;
7733 end;
7734 end if;
7736 if Ekind_In (Nam, E_Entry, E_Entry_Family)
7737 and then Present (Contract_Wrapper (Nam))
7738 and then Current_Scope /= Contract_Wrapper (Nam)
7739 then
7740 -- Note the entity being called before rewriting the call, so that
7741 -- it appears used at this point.
7743 Generate_Reference (Nam, Entry_Name, 'r');
7745 -- Rewrite as call to the precondition wrapper, adding the task
7746 -- object to the list of actuals. If the call is to a member of an
7747 -- entry family, include the index as well.
7749 declare
7750 New_Call : Node_Id;
7751 New_Actuals : List_Id;
7753 begin
7754 New_Actuals := New_List (Obj);
7756 if Nkind (Entry_Name) = N_Indexed_Component then
7757 Append_To (New_Actuals,
7758 New_Copy_Tree (First (Expressions (Entry_Name))));
7759 end if;
7761 Append_List (Parameter_Associations (N), New_Actuals);
7762 New_Call :=
7763 Make_Procedure_Call_Statement (Loc,
7764 Name =>
7765 New_Occurrence_Of (Contract_Wrapper (Nam), Loc),
7766 Parameter_Associations => New_Actuals);
7767 Rewrite (N, New_Call);
7769 -- Preanalyze and resolve new call. Current procedure is called
7770 -- from Resolve_Call, after which expansion will take place.
7772 Preanalyze_And_Resolve (N);
7773 return;
7774 end;
7775 end if;
7777 -- The operation name may have been overloaded. Order the actuals
7778 -- according to the formals of the resolved entity, and set the return
7779 -- type to that of the operation.
7781 if Was_Over then
7782 Normalize_Actuals (N, Nam, False, Norm_OK);
7783 pragma Assert (Norm_OK);
7784 Set_Etype (N, Etype (Nam));
7786 -- Reset the Is_Overloaded flag, since resolution is now completed
7788 -- Simple entry call
7790 if Nkind (Entry_Name) = N_Selected_Component then
7791 Set_Is_Overloaded (Selector_Name (Entry_Name), False);
7793 -- Call to a member of an entry family
7795 else pragma Assert (Nkind (Entry_Name) = N_Indexed_Component);
7796 Set_Is_Overloaded (Selector_Name (Prefix (Entry_Name)), False);
7797 end if;
7798 end if;
7800 Resolve_Actuals (N, Nam);
7801 Check_Internal_Protected_Use (N, Nam);
7803 -- Create a call reference to the entry
7805 Generate_Reference (Nam, Entry_Name, 's');
7807 if Ekind_In (Nam, E_Entry, E_Entry_Family) then
7808 Check_Potentially_Blocking_Operation (N);
7809 end if;
7811 -- Verify that a procedure call cannot masquerade as an entry
7812 -- call where an entry call is expected.
7814 if Ekind (Nam) = E_Procedure then
7815 if Nkind (Parent (N)) = N_Entry_Call_Alternative
7816 and then N = Entry_Call_Statement (Parent (N))
7817 then
7818 Error_Msg_N ("entry call required in select statement", N);
7820 elsif Nkind (Parent (N)) = N_Triggering_Alternative
7821 and then N = Triggering_Statement (Parent (N))
7822 then
7823 Error_Msg_N ("triggering statement cannot be procedure call", N);
7825 elsif Ekind (Scope (Nam)) = E_Task_Type
7826 and then not In_Open_Scopes (Scope (Nam))
7827 then
7828 Error_Msg_N ("task has no entry with this name", Entry_Name);
7829 end if;
7830 end if;
7832 -- After resolution, entry calls and protected procedure calls are
7833 -- changed into entry calls, for expansion. The structure of the node
7834 -- does not change, so it can safely be done in place. Protected
7835 -- function calls must keep their structure because they are
7836 -- subexpressions.
7838 if Ekind (Nam) /= E_Function then
7840 -- A protected operation that is not a function may modify the
7841 -- corresponding object, and cannot apply to a constant. If this
7842 -- is an internal call, the prefix is the type itself.
7844 if Is_Protected_Type (Scope (Nam))
7845 and then not Is_Variable (Obj)
7846 and then (not Is_Entity_Name (Obj)
7847 or else not Is_Type (Entity (Obj)))
7848 then
7849 Error_Msg_N
7850 ("prefix of protected procedure or entry call must be variable",
7851 Entry_Name);
7852 end if;
7854 declare
7855 Entry_Call : Node_Id;
7857 begin
7858 Entry_Call :=
7859 Make_Entry_Call_Statement (Loc,
7860 Name => Entry_Name,
7861 Parameter_Associations => Parameter_Associations (N));
7863 -- Inherit relevant attributes from the original call
7865 Set_First_Named_Actual
7866 (Entry_Call, First_Named_Actual (N));
7868 Set_Is_Elaboration_Checks_OK_Node
7869 (Entry_Call, Is_Elaboration_Checks_OK_Node (N));
7871 Set_Is_Elaboration_Warnings_OK_Node
7872 (Entry_Call, Is_Elaboration_Warnings_OK_Node (N));
7874 Set_Is_SPARK_Mode_On_Node
7875 (Entry_Call, Is_SPARK_Mode_On_Node (N));
7877 Rewrite (N, Entry_Call);
7878 Set_Analyzed (N, True);
7879 end;
7881 -- Protected functions can return on the secondary stack, in which case
7882 -- we must trigger the transient scope mechanism.
7884 elsif Expander_Active
7885 and then Requires_Transient_Scope (Etype (Nam))
7886 then
7887 Establish_Transient_Scope (N, Manage_Sec_Stack => True);
7888 end if;
7889 end Resolve_Entry_Call;
7891 -------------------------
7892 -- Resolve_Equality_Op --
7893 -------------------------
7895 -- Both arguments must have the same type, and the boolean context does
7896 -- not participate in the resolution. The first pass verifies that the
7897 -- interpretation is not ambiguous, and the type of the left argument is
7898 -- correctly set, or is Any_Type in case of ambiguity. If both arguments
7899 -- are strings or aggregates, allocators, or Null, they are ambiguous even
7900 -- though they carry a single (universal) type. Diagnose this case here.
7902 procedure Resolve_Equality_Op (N : Node_Id; Typ : Entity_Id) is
7903 L : constant Node_Id := Left_Opnd (N);
7904 R : constant Node_Id := Right_Opnd (N);
7905 T : Entity_Id := Find_Unique_Type (L, R);
7907 procedure Check_If_Expression (Cond : Node_Id);
7908 -- The resolution rule for if expressions requires that each such must
7909 -- have a unique type. This means that if several dependent expressions
7910 -- are of a non-null anonymous access type, and the context does not
7911 -- impose an expected type (as can be the case in an equality operation)
7912 -- the expression must be rejected.
7914 procedure Explain_Redundancy (N : Node_Id);
7915 -- Attempt to explain the nature of a redundant comparison with True. If
7916 -- the expression N is too complex, this routine issues a general error
7917 -- message.
7919 function Find_Unique_Access_Type return Entity_Id;
7920 -- In the case of allocators and access attributes, the context must
7921 -- provide an indication of the specific access type to be used. If
7922 -- one operand is of such a "generic" access type, check whether there
7923 -- is a specific visible access type that has the same designated type.
7924 -- This is semantically dubious, and of no interest to any real code,
7925 -- but c48008a makes it all worthwhile.
7927 -------------------------
7928 -- Check_If_Expression --
7929 -------------------------
7931 procedure Check_If_Expression (Cond : Node_Id) is
7932 Then_Expr : Node_Id;
7933 Else_Expr : Node_Id;
7935 begin
7936 if Nkind (Cond) = N_If_Expression then
7937 Then_Expr := Next (First (Expressions (Cond)));
7938 Else_Expr := Next (Then_Expr);
7940 if Nkind (Then_Expr) /= N_Null
7941 and then Nkind (Else_Expr) /= N_Null
7942 then
7943 Error_Msg_N ("cannot determine type of if expression", Cond);
7944 end if;
7945 end if;
7946 end Check_If_Expression;
7948 ------------------------
7949 -- Explain_Redundancy --
7950 ------------------------
7952 procedure Explain_Redundancy (N : Node_Id) is
7953 Error : Name_Id;
7954 Val : Node_Id;
7955 Val_Id : Entity_Id;
7957 begin
7958 Val := N;
7960 -- Strip the operand down to an entity
7962 loop
7963 if Nkind (Val) = N_Selected_Component then
7964 Val := Selector_Name (Val);
7965 else
7966 exit;
7967 end if;
7968 end loop;
7970 -- The construct denotes an entity
7972 if Is_Entity_Name (Val) and then Present (Entity (Val)) then
7973 Val_Id := Entity (Val);
7975 -- Do not generate an error message when the comparison is done
7976 -- against the enumeration literal Standard.True.
7978 if Ekind (Val_Id) /= E_Enumeration_Literal then
7980 -- Build a customized error message
7982 Name_Len := 0;
7983 Add_Str_To_Name_Buffer ("?r?");
7985 if Ekind (Val_Id) = E_Component then
7986 Add_Str_To_Name_Buffer ("component ");
7988 elsif Ekind (Val_Id) = E_Constant then
7989 Add_Str_To_Name_Buffer ("constant ");
7991 elsif Ekind (Val_Id) = E_Discriminant then
7992 Add_Str_To_Name_Buffer ("discriminant ");
7994 elsif Is_Formal (Val_Id) then
7995 Add_Str_To_Name_Buffer ("parameter ");
7997 elsif Ekind (Val_Id) = E_Variable then
7998 Add_Str_To_Name_Buffer ("variable ");
7999 end if;
8001 Add_Str_To_Name_Buffer ("& is always True!");
8002 Error := Name_Find;
8004 Error_Msg_NE (Get_Name_String (Error), Val, Val_Id);
8005 end if;
8007 -- The construct is too complex to disect, issue a general message
8009 else
8010 Error_Msg_N ("?r?expression is always True!", Val);
8011 end if;
8012 end Explain_Redundancy;
8014 -----------------------------
8015 -- Find_Unique_Access_Type --
8016 -----------------------------
8018 function Find_Unique_Access_Type return Entity_Id is
8019 Acc : Entity_Id;
8020 E : Entity_Id;
8021 S : Entity_Id;
8023 begin
8024 if Ekind_In (Etype (R), E_Allocator_Type,
8025 E_Access_Attribute_Type)
8026 then
8027 Acc := Designated_Type (Etype (R));
8029 elsif Ekind_In (Etype (L), E_Allocator_Type,
8030 E_Access_Attribute_Type)
8031 then
8032 Acc := Designated_Type (Etype (L));
8033 else
8034 return Empty;
8035 end if;
8037 S := Current_Scope;
8038 while S /= Standard_Standard loop
8039 E := First_Entity (S);
8040 while Present (E) loop
8041 if Is_Type (E)
8042 and then Is_Access_Type (E)
8043 and then Ekind (E) /= E_Allocator_Type
8044 and then Designated_Type (E) = Base_Type (Acc)
8045 then
8046 return E;
8047 end if;
8049 Next_Entity (E);
8050 end loop;
8052 S := Scope (S);
8053 end loop;
8055 return Empty;
8056 end Find_Unique_Access_Type;
8058 -- Start of processing for Resolve_Equality_Op
8060 begin
8061 Set_Etype (N, Base_Type (Typ));
8062 Generate_Reference (T, N, ' ');
8064 if T = Any_Fixed then
8065 T := Unique_Fixed_Point_Type (L);
8066 end if;
8068 if T /= Any_Type then
8069 if T = Any_String or else
8070 T = Any_Composite or else
8071 T = Any_Character
8072 then
8073 if T = Any_Character then
8074 Ambiguous_Character (L);
8075 else
8076 Error_Msg_N ("ambiguous operands for equality", N);
8077 end if;
8079 Set_Etype (N, Any_Type);
8080 return;
8082 elsif T = Any_Access
8083 or else Ekind_In (T, E_Allocator_Type, E_Access_Attribute_Type)
8084 then
8085 T := Find_Unique_Access_Type;
8087 if No (T) then
8088 Error_Msg_N ("ambiguous operands for equality", N);
8089 Set_Etype (N, Any_Type);
8090 return;
8091 end if;
8093 -- If expressions must have a single type, and if the context does
8094 -- not impose one the dependent expressions cannot be anonymous
8095 -- access types.
8097 -- Why no similar processing for case expressions???
8099 elsif Ada_Version >= Ada_2012
8100 and then Ekind_In (Etype (L), E_Anonymous_Access_Type,
8101 E_Anonymous_Access_Subprogram_Type)
8102 and then Ekind_In (Etype (R), E_Anonymous_Access_Type,
8103 E_Anonymous_Access_Subprogram_Type)
8104 then
8105 Check_If_Expression (L);
8106 Check_If_Expression (R);
8107 end if;
8109 Resolve (L, T);
8110 Resolve (R, T);
8112 -- In SPARK, equality operators = and /= for array types other than
8113 -- String are only defined when, for each index position, the
8114 -- operands have equal static bounds.
8116 if Is_Array_Type (T) then
8118 -- Protect call to Matching_Static_Array_Bounds to avoid costly
8119 -- operation if not needed.
8121 if Restriction_Check_Required (SPARK_05)
8122 and then Base_Type (T) /= Standard_String
8123 and then Base_Type (Etype (L)) = Base_Type (Etype (R))
8124 and then Etype (L) /= Any_Composite -- or else L in error
8125 and then Etype (R) /= Any_Composite -- or else R in error
8126 and then not Matching_Static_Array_Bounds (Etype (L), Etype (R))
8127 then
8128 Check_SPARK_05_Restriction
8129 ("array types should have matching static bounds", N);
8130 end if;
8131 end if;
8133 -- If the unique type is a class-wide type then it will be expanded
8134 -- into a dispatching call to the predefined primitive. Therefore we
8135 -- check here for potential violation of such restriction.
8137 if Is_Class_Wide_Type (T) then
8138 Check_Restriction (No_Dispatching_Calls, N);
8139 end if;
8141 -- Only warn for redundant equality comparison to True for objects
8142 -- (e.g. "X = True") and operations (e.g. "(X < Y) = True"). For
8143 -- other expressions, it may be a matter of preference to write
8144 -- "Expr = True" or "Expr".
8146 if Warn_On_Redundant_Constructs
8147 and then Comes_From_Source (N)
8148 and then Comes_From_Source (R)
8149 and then Is_Entity_Name (R)
8150 and then Entity (R) = Standard_True
8151 and then
8152 ((Is_Entity_Name (L) and then Is_Object (Entity (L)))
8153 or else
8154 Nkind (L) in N_Op)
8155 then
8156 Error_Msg_N -- CODEFIX
8157 ("?r?comparison with True is redundant!", N);
8158 Explain_Redundancy (Original_Node (R));
8159 end if;
8161 Check_Unset_Reference (L);
8162 Check_Unset_Reference (R);
8163 Generate_Operator_Reference (N, T);
8164 Check_Low_Bound_Tested (N);
8166 -- If this is an inequality, it may be the implicit inequality
8167 -- created for a user-defined operation, in which case the corres-
8168 -- ponding equality operation is not intrinsic, and the operation
8169 -- cannot be constant-folded. Else fold.
8171 if Nkind (N) = N_Op_Eq
8172 or else Comes_From_Source (Entity (N))
8173 or else Ekind (Entity (N)) = E_Operator
8174 or else Is_Intrinsic_Subprogram
8175 (Corresponding_Equality (Entity (N)))
8176 then
8177 Analyze_Dimension (N);
8178 Eval_Relational_Op (N);
8180 elsif Nkind (N) = N_Op_Ne
8181 and then Is_Abstract_Subprogram (Entity (N))
8182 then
8183 Error_Msg_NE ("cannot call abstract subprogram &!", N, Entity (N));
8184 end if;
8186 -- Ada 2005: If one operand is an anonymous access type, convert the
8187 -- other operand to it, to ensure that the underlying types match in
8188 -- the back-end. Same for access_to_subprogram, and the conversion
8189 -- verifies that the types are subtype conformant.
8191 -- We apply the same conversion in the case one of the operands is a
8192 -- private subtype of the type of the other.
8194 -- Why the Expander_Active test here ???
8196 if Expander_Active
8197 and then
8198 (Ekind_In (T, E_Anonymous_Access_Type,
8199 E_Anonymous_Access_Subprogram_Type)
8200 or else Is_Private_Type (T))
8201 then
8202 if Etype (L) /= T then
8203 Rewrite (L,
8204 Make_Unchecked_Type_Conversion (Sloc (L),
8205 Subtype_Mark => New_Occurrence_Of (T, Sloc (L)),
8206 Expression => Relocate_Node (L)));
8207 Analyze_And_Resolve (L, T);
8208 end if;
8210 if (Etype (R)) /= T then
8211 Rewrite (R,
8212 Make_Unchecked_Type_Conversion (Sloc (R),
8213 Subtype_Mark => New_Occurrence_Of (Etype (L), Sloc (R)),
8214 Expression => Relocate_Node (R)));
8215 Analyze_And_Resolve (R, T);
8216 end if;
8217 end if;
8218 end if;
8219 end Resolve_Equality_Op;
8221 ----------------------------------
8222 -- Resolve_Explicit_Dereference --
8223 ----------------------------------
8225 procedure Resolve_Explicit_Dereference (N : Node_Id; Typ : Entity_Id) is
8226 Loc : constant Source_Ptr := Sloc (N);
8227 New_N : Node_Id;
8228 P : constant Node_Id := Prefix (N);
8230 P_Typ : Entity_Id;
8231 -- The candidate prefix type, if overloaded
8233 I : Interp_Index;
8234 It : Interp;
8236 begin
8237 Check_Fully_Declared_Prefix (Typ, P);
8238 P_Typ := Empty;
8240 -- A useful optimization: check whether the dereference denotes an
8241 -- element of a container, and if so rewrite it as a call to the
8242 -- corresponding Element function.
8244 -- Disabled for now, on advice of ARG. A more restricted form of the
8245 -- predicate might be acceptable ???
8247 -- if Is_Container_Element (N) then
8248 -- return;
8249 -- end if;
8251 if Is_Overloaded (P) then
8253 -- Use the context type to select the prefix that has the correct
8254 -- designated type. Keep the first match, which will be the inner-
8255 -- most.
8257 Get_First_Interp (P, I, It);
8259 while Present (It.Typ) loop
8260 if Is_Access_Type (It.Typ)
8261 and then Covers (Typ, Designated_Type (It.Typ))
8262 then
8263 if No (P_Typ) then
8264 P_Typ := It.Typ;
8265 end if;
8267 -- Remove access types that do not match, but preserve access
8268 -- to subprogram interpretations, in case a further dereference
8269 -- is needed (see below).
8271 elsif Ekind (It.Typ) /= E_Access_Subprogram_Type then
8272 Remove_Interp (I);
8273 end if;
8275 Get_Next_Interp (I, It);
8276 end loop;
8278 if Present (P_Typ) then
8279 Resolve (P, P_Typ);
8280 Set_Etype (N, Designated_Type (P_Typ));
8282 else
8283 -- If no interpretation covers the designated type of the prefix,
8284 -- this is the pathological case where not all implementations of
8285 -- the prefix allow the interpretation of the node as a call. Now
8286 -- that the expected type is known, Remove other interpretations
8287 -- from prefix, rewrite it as a call, and resolve again, so that
8288 -- the proper call node is generated.
8290 Get_First_Interp (P, I, It);
8291 while Present (It.Typ) loop
8292 if Ekind (It.Typ) /= E_Access_Subprogram_Type then
8293 Remove_Interp (I);
8294 end if;
8296 Get_Next_Interp (I, It);
8297 end loop;
8299 New_N :=
8300 Make_Function_Call (Loc,
8301 Name =>
8302 Make_Explicit_Dereference (Loc,
8303 Prefix => P),
8304 Parameter_Associations => New_List);
8306 Save_Interps (N, New_N);
8307 Rewrite (N, New_N);
8308 Analyze_And_Resolve (N, Typ);
8309 return;
8310 end if;
8312 -- If not overloaded, resolve P with its own type
8314 else
8315 Resolve (P);
8316 end if;
8318 -- If the prefix might be null, add an access check
8320 if Is_Access_Type (Etype (P))
8321 and then not Can_Never_Be_Null (Etype (P))
8322 then
8323 Apply_Access_Check (N);
8324 end if;
8326 -- If the designated type is a packed unconstrained array type, and the
8327 -- explicit dereference is not in the context of an attribute reference,
8328 -- then we must compute and set the actual subtype, since it is needed
8329 -- by Gigi. The reason we exclude the attribute case is that this is
8330 -- handled fine by Gigi, and in fact we use such attributes to build the
8331 -- actual subtype. We also exclude generated code (which builds actual
8332 -- subtypes directly if they are needed).
8334 if Is_Array_Type (Etype (N))
8335 and then Is_Packed (Etype (N))
8336 and then not Is_Constrained (Etype (N))
8337 and then Nkind (Parent (N)) /= N_Attribute_Reference
8338 and then Comes_From_Source (N)
8339 then
8340 Set_Etype (N, Get_Actual_Subtype (N));
8341 end if;
8343 Analyze_Dimension (N);
8345 -- Note: No Eval processing is required for an explicit dereference,
8346 -- because such a name can never be static.
8348 end Resolve_Explicit_Dereference;
8350 -------------------------------------
8351 -- Resolve_Expression_With_Actions --
8352 -------------------------------------
8354 procedure Resolve_Expression_With_Actions (N : Node_Id; Typ : Entity_Id) is
8355 begin
8356 Set_Etype (N, Typ);
8358 -- If N has no actions, and its expression has been constant folded,
8359 -- then rewrite N as just its expression. Note, we can't do this in
8360 -- the general case of Is_Empty_List (Actions (N)) as this would cause
8361 -- Expression (N) to be expanded again.
8363 if Is_Empty_List (Actions (N))
8364 and then Compile_Time_Known_Value (Expression (N))
8365 then
8366 Rewrite (N, Expression (N));
8367 end if;
8368 end Resolve_Expression_With_Actions;
8370 ----------------------------------
8371 -- Resolve_Generalized_Indexing --
8372 ----------------------------------
8374 procedure Resolve_Generalized_Indexing (N : Node_Id; Typ : Entity_Id) is
8375 Indexing : constant Node_Id := Generalized_Indexing (N);
8376 Call : Node_Id;
8377 Indexes : List_Id;
8378 Pref : Node_Id;
8380 begin
8381 -- In ASIS mode, propagate the information about the indexes back to
8382 -- to the original indexing node. The generalized indexing is either
8383 -- a function call, or a dereference of one. The actuals include the
8384 -- prefix of the original node, which is the container expression.
8386 if ASIS_Mode then
8387 Resolve (Indexing, Typ);
8388 Set_Etype (N, Etype (Indexing));
8389 Set_Is_Overloaded (N, False);
8391 Call := Indexing;
8392 while Nkind_In (Call, N_Explicit_Dereference, N_Selected_Component)
8393 loop
8394 Call := Prefix (Call);
8395 end loop;
8397 if Nkind (Call) = N_Function_Call then
8398 Indexes := New_Copy_List (Parameter_Associations (Call));
8399 Pref := Remove_Head (Indexes);
8400 Set_Expressions (N, Indexes);
8402 -- If expression is to be reanalyzed, reset Generalized_Indexing
8403 -- to recreate call node, as is the case when the expression is
8404 -- part of an expression function.
8406 if In_Spec_Expression then
8407 Set_Generalized_Indexing (N, Empty);
8408 end if;
8410 Set_Prefix (N, Pref);
8411 end if;
8413 else
8414 Rewrite (N, Indexing);
8415 Resolve (N, Typ);
8416 end if;
8417 end Resolve_Generalized_Indexing;
8419 ---------------------------
8420 -- Resolve_If_Expression --
8421 ---------------------------
8423 procedure Resolve_If_Expression (N : Node_Id; Typ : Entity_Id) is
8424 Condition : constant Node_Id := First (Expressions (N));
8425 Then_Expr : Node_Id;
8426 Else_Expr : Node_Id;
8427 Else_Typ : Entity_Id;
8428 Then_Typ : Entity_Id;
8430 begin
8431 -- Defend against malformed expressions
8433 if No (Condition) then
8434 return;
8435 end if;
8437 Then_Expr := Next (Condition);
8439 if No (Then_Expr) then
8440 return;
8441 end if;
8443 Else_Expr := Next (Then_Expr);
8445 Resolve (Condition, Any_Boolean);
8446 Resolve (Then_Expr, Typ);
8447 Then_Typ := Etype (Then_Expr);
8449 -- When the "then" expression is of a scalar subtype different from the
8450 -- result subtype, then insert a conversion to ensure the generation of
8451 -- a constraint check. The same is done for the else part below, again
8452 -- comparing subtypes rather than base types.
8454 if Is_Scalar_Type (Then_Typ) and then Then_Typ /= Typ then
8455 Rewrite (Then_Expr, Convert_To (Typ, Then_Expr));
8456 Analyze_And_Resolve (Then_Expr, Typ);
8457 end if;
8459 -- If ELSE expression present, just resolve using the determined type
8460 -- If type is universal, resolve to any member of the class.
8462 if Present (Else_Expr) then
8463 if Typ = Universal_Integer then
8464 Resolve (Else_Expr, Any_Integer);
8466 elsif Typ = Universal_Real then
8467 Resolve (Else_Expr, Any_Real);
8469 else
8470 Resolve (Else_Expr, Typ);
8471 end if;
8473 Else_Typ := Etype (Else_Expr);
8475 if Is_Scalar_Type (Else_Typ) and then Else_Typ /= Typ then
8476 Rewrite (Else_Expr, Convert_To (Typ, Else_Expr));
8477 Analyze_And_Resolve (Else_Expr, Typ);
8479 -- Apply RM 4.5.7 (17/3): whether the expression is statically or
8480 -- dynamically tagged must be known statically.
8482 elsif Is_Tagged_Type (Typ) and then not Is_Class_Wide_Type (Typ) then
8483 if Is_Dynamically_Tagged (Then_Expr) /=
8484 Is_Dynamically_Tagged (Else_Expr)
8485 then
8486 Error_Msg_N ("all or none of the dependent expressions "
8487 & "can be dynamically tagged", N);
8488 end if;
8489 end if;
8491 -- If no ELSE expression is present, root type must be Standard.Boolean
8492 -- and we provide a Standard.True result converted to the appropriate
8493 -- Boolean type (in case it is a derived boolean type).
8495 elsif Root_Type (Typ) = Standard_Boolean then
8496 Else_Expr :=
8497 Convert_To (Typ, New_Occurrence_Of (Standard_True, Sloc (N)));
8498 Analyze_And_Resolve (Else_Expr, Typ);
8499 Append_To (Expressions (N), Else_Expr);
8501 else
8502 Error_Msg_N ("can only omit ELSE expression in Boolean case", N);
8503 Append_To (Expressions (N), Error);
8504 end if;
8506 Set_Etype (N, Typ);
8508 if not Error_Posted (N) then
8509 Eval_If_Expression (N);
8510 end if;
8512 Analyze_Dimension (N);
8513 end Resolve_If_Expression;
8515 -------------------------------
8516 -- Resolve_Indexed_Component --
8517 -------------------------------
8519 procedure Resolve_Indexed_Component (N : Node_Id; Typ : Entity_Id) is
8520 Name : constant Node_Id := Prefix (N);
8521 Expr : Node_Id;
8522 Array_Type : Entity_Id := Empty; -- to prevent junk warning
8523 Index : Node_Id;
8525 begin
8526 if Present (Generalized_Indexing (N)) then
8527 Resolve_Generalized_Indexing (N, Typ);
8528 return;
8529 end if;
8531 if Is_Overloaded (Name) then
8533 -- Use the context type to select the prefix that yields the correct
8534 -- component type.
8536 declare
8537 I : Interp_Index;
8538 It : Interp;
8539 I1 : Interp_Index := 0;
8540 P : constant Node_Id := Prefix (N);
8541 Found : Boolean := False;
8543 begin
8544 Get_First_Interp (P, I, It);
8545 while Present (It.Typ) loop
8546 if (Is_Array_Type (It.Typ)
8547 and then Covers (Typ, Component_Type (It.Typ)))
8548 or else (Is_Access_Type (It.Typ)
8549 and then Is_Array_Type (Designated_Type (It.Typ))
8550 and then
8551 Covers
8552 (Typ,
8553 Component_Type (Designated_Type (It.Typ))))
8554 then
8555 if Found then
8556 It := Disambiguate (P, I1, I, Any_Type);
8558 if It = No_Interp then
8559 Error_Msg_N ("ambiguous prefix for indexing", N);
8560 Set_Etype (N, Typ);
8561 return;
8563 else
8564 Found := True;
8565 Array_Type := It.Typ;
8566 I1 := I;
8567 end if;
8569 else
8570 Found := True;
8571 Array_Type := It.Typ;
8572 I1 := I;
8573 end if;
8574 end if;
8576 Get_Next_Interp (I, It);
8577 end loop;
8578 end;
8580 else
8581 Array_Type := Etype (Name);
8582 end if;
8584 Resolve (Name, Array_Type);
8585 Array_Type := Get_Actual_Subtype_If_Available (Name);
8587 -- If prefix is access type, dereference to get real array type.
8588 -- Note: we do not apply an access check because the expander always
8589 -- introduces an explicit dereference, and the check will happen there.
8591 if Is_Access_Type (Array_Type) then
8592 Array_Type := Designated_Type (Array_Type);
8593 end if;
8595 -- If name was overloaded, set component type correctly now
8596 -- If a misplaced call to an entry family (which has no index types)
8597 -- return. Error will be diagnosed from calling context.
8599 if Is_Array_Type (Array_Type) then
8600 Set_Etype (N, Component_Type (Array_Type));
8601 else
8602 return;
8603 end if;
8605 Index := First_Index (Array_Type);
8606 Expr := First (Expressions (N));
8608 -- The prefix may have resolved to a string literal, in which case its
8609 -- etype has a special representation. This is only possible currently
8610 -- if the prefix is a static concatenation, written in functional
8611 -- notation.
8613 if Ekind (Array_Type) = E_String_Literal_Subtype then
8614 Resolve (Expr, Standard_Positive);
8616 else
8617 while Present (Index) and Present (Expr) loop
8618 Resolve (Expr, Etype (Index));
8619 Check_Unset_Reference (Expr);
8621 if Is_Scalar_Type (Etype (Expr)) then
8622 Apply_Scalar_Range_Check (Expr, Etype (Index));
8623 else
8624 Apply_Range_Check (Expr, Get_Actual_Subtype (Index));
8625 end if;
8627 Next_Index (Index);
8628 Next (Expr);
8629 end loop;
8630 end if;
8632 Analyze_Dimension (N);
8634 -- Do not generate the warning on suspicious index if we are analyzing
8635 -- package Ada.Tags; otherwise we will report the warning with the
8636 -- Prims_Ptr field of the dispatch table.
8638 if Scope (Etype (Prefix (N))) = Standard_Standard
8639 or else not
8640 Is_RTU (Cunit_Entity (Get_Source_Unit (Etype (Prefix (N)))),
8641 Ada_Tags)
8642 then
8643 Warn_On_Suspicious_Index (Name, First (Expressions (N)));
8644 Eval_Indexed_Component (N);
8645 end if;
8647 -- If the array type is atomic, and the component is not atomic, then
8648 -- this is worth a warning, since we have a situation where the access
8649 -- to the component may cause extra read/writes of the atomic array
8650 -- object, or partial word accesses, which could be unexpected.
8652 if Nkind (N) = N_Indexed_Component
8653 and then Is_Atomic_Ref_With_Address (N)
8654 and then not (Has_Atomic_Components (Array_Type)
8655 or else (Is_Entity_Name (Prefix (N))
8656 and then Has_Atomic_Components
8657 (Entity (Prefix (N)))))
8658 and then not Is_Atomic (Component_Type (Array_Type))
8659 then
8660 Error_Msg_N
8661 ("??access to non-atomic component of atomic array", Prefix (N));
8662 Error_Msg_N
8663 ("??\may cause unexpected accesses to atomic object", Prefix (N));
8664 end if;
8665 end Resolve_Indexed_Component;
8667 -----------------------------
8668 -- Resolve_Integer_Literal --
8669 -----------------------------
8671 procedure Resolve_Integer_Literal (N : Node_Id; Typ : Entity_Id) is
8672 begin
8673 Set_Etype (N, Typ);
8674 Eval_Integer_Literal (N);
8675 end Resolve_Integer_Literal;
8677 --------------------------------
8678 -- Resolve_Intrinsic_Operator --
8679 --------------------------------
8681 procedure Resolve_Intrinsic_Operator (N : Node_Id; Typ : Entity_Id) is
8682 Btyp : constant Entity_Id := Base_Type (Underlying_Type (Typ));
8683 Op : Entity_Id;
8684 Arg1 : Node_Id;
8685 Arg2 : Node_Id;
8687 function Convert_Operand (Opnd : Node_Id) return Node_Id;
8688 -- If the operand is a literal, it cannot be the expression in a
8689 -- conversion. Use a qualified expression instead.
8691 ---------------------
8692 -- Convert_Operand --
8693 ---------------------
8695 function Convert_Operand (Opnd : Node_Id) return Node_Id is
8696 Loc : constant Source_Ptr := Sloc (Opnd);
8697 Res : Node_Id;
8699 begin
8700 if Nkind_In (Opnd, N_Integer_Literal, N_Real_Literal) then
8701 Res :=
8702 Make_Qualified_Expression (Loc,
8703 Subtype_Mark => New_Occurrence_Of (Btyp, Loc),
8704 Expression => Relocate_Node (Opnd));
8705 Analyze (Res);
8707 else
8708 Res := Unchecked_Convert_To (Btyp, Opnd);
8709 end if;
8711 return Res;
8712 end Convert_Operand;
8714 -- Start of processing for Resolve_Intrinsic_Operator
8716 begin
8717 -- We must preserve the original entity in a generic setting, so that
8718 -- the legality of the operation can be verified in an instance.
8720 if not Expander_Active then
8721 return;
8722 end if;
8724 Op := Entity (N);
8725 while Scope (Op) /= Standard_Standard loop
8726 Op := Homonym (Op);
8727 pragma Assert (Present (Op));
8728 end loop;
8730 Set_Entity (N, Op);
8731 Set_Is_Overloaded (N, False);
8733 -- If the result or operand types are private, rewrite with unchecked
8734 -- conversions on the operands and the result, to expose the proper
8735 -- underlying numeric type.
8737 if Is_Private_Type (Typ)
8738 or else Is_Private_Type (Etype (Left_Opnd (N)))
8739 or else Is_Private_Type (Etype (Right_Opnd (N)))
8740 then
8741 Arg1 := Convert_Operand (Left_Opnd (N));
8743 if Nkind (N) = N_Op_Expon then
8744 Arg2 := Unchecked_Convert_To (Standard_Integer, Right_Opnd (N));
8745 else
8746 Arg2 := Convert_Operand (Right_Opnd (N));
8747 end if;
8749 if Nkind (Arg1) = N_Type_Conversion then
8750 Save_Interps (Left_Opnd (N), Expression (Arg1));
8751 end if;
8753 if Nkind (Arg2) = N_Type_Conversion then
8754 Save_Interps (Right_Opnd (N), Expression (Arg2));
8755 end if;
8757 Set_Left_Opnd (N, Arg1);
8758 Set_Right_Opnd (N, Arg2);
8760 Set_Etype (N, Btyp);
8761 Rewrite (N, Unchecked_Convert_To (Typ, N));
8762 Resolve (N, Typ);
8764 elsif Typ /= Etype (Left_Opnd (N))
8765 or else Typ /= Etype (Right_Opnd (N))
8766 then
8767 -- Add explicit conversion where needed, and save interpretations in
8768 -- case operands are overloaded.
8770 Arg1 := Convert_To (Typ, Left_Opnd (N));
8771 Arg2 := Convert_To (Typ, Right_Opnd (N));
8773 if Nkind (Arg1) = N_Type_Conversion then
8774 Save_Interps (Left_Opnd (N), Expression (Arg1));
8775 else
8776 Save_Interps (Left_Opnd (N), Arg1);
8777 end if;
8779 if Nkind (Arg2) = N_Type_Conversion then
8780 Save_Interps (Right_Opnd (N), Expression (Arg2));
8781 else
8782 Save_Interps (Right_Opnd (N), Arg2);
8783 end if;
8785 Rewrite (Left_Opnd (N), Arg1);
8786 Rewrite (Right_Opnd (N), Arg2);
8787 Analyze (Arg1);
8788 Analyze (Arg2);
8789 Resolve_Arithmetic_Op (N, Typ);
8791 else
8792 Resolve_Arithmetic_Op (N, Typ);
8793 end if;
8794 end Resolve_Intrinsic_Operator;
8796 --------------------------------------
8797 -- Resolve_Intrinsic_Unary_Operator --
8798 --------------------------------------
8800 procedure Resolve_Intrinsic_Unary_Operator
8801 (N : Node_Id;
8802 Typ : Entity_Id)
8804 Btyp : constant Entity_Id := Base_Type (Underlying_Type (Typ));
8805 Op : Entity_Id;
8806 Arg2 : Node_Id;
8808 begin
8809 Op := Entity (N);
8810 while Scope (Op) /= Standard_Standard loop
8811 Op := Homonym (Op);
8812 pragma Assert (Present (Op));
8813 end loop;
8815 Set_Entity (N, Op);
8817 if Is_Private_Type (Typ) then
8818 Arg2 := Unchecked_Convert_To (Btyp, Right_Opnd (N));
8819 Save_Interps (Right_Opnd (N), Expression (Arg2));
8821 Set_Right_Opnd (N, Arg2);
8823 Set_Etype (N, Btyp);
8824 Rewrite (N, Unchecked_Convert_To (Typ, N));
8825 Resolve (N, Typ);
8827 else
8828 Resolve_Unary_Op (N, Typ);
8829 end if;
8830 end Resolve_Intrinsic_Unary_Operator;
8832 ------------------------
8833 -- Resolve_Logical_Op --
8834 ------------------------
8836 procedure Resolve_Logical_Op (N : Node_Id; Typ : Entity_Id) is
8837 B_Typ : Entity_Id;
8839 begin
8840 Check_No_Direct_Boolean_Operators (N);
8842 -- Predefined operations on scalar types yield the base type. On the
8843 -- other hand, logical operations on arrays yield the type of the
8844 -- arguments (and the context).
8846 if Is_Array_Type (Typ) then
8847 B_Typ := Typ;
8848 else
8849 B_Typ := Base_Type (Typ);
8850 end if;
8852 -- The following test is required because the operands of the operation
8853 -- may be literals, in which case the resulting type appears to be
8854 -- compatible with a signed integer type, when in fact it is compatible
8855 -- only with modular types. If the context itself is universal, the
8856 -- operation is illegal.
8858 if not Valid_Boolean_Arg (Typ) then
8859 Error_Msg_N ("invalid context for logical operation", N);
8860 Set_Etype (N, Any_Type);
8861 return;
8863 elsif Typ = Any_Modular then
8864 Error_Msg_N
8865 ("no modular type available in this context", N);
8866 Set_Etype (N, Any_Type);
8867 return;
8869 elsif Is_Modular_Integer_Type (Typ)
8870 and then Etype (Left_Opnd (N)) = Universal_Integer
8871 and then Etype (Right_Opnd (N)) = Universal_Integer
8872 then
8873 Check_For_Visible_Operator (N, B_Typ);
8874 end if;
8876 -- Replace AND by AND THEN, or OR by OR ELSE, if Short_Circuit_And_Or
8877 -- is active and the result type is standard Boolean (do not mess with
8878 -- ops that return a nonstandard Boolean type, because something strange
8879 -- is going on).
8881 -- Note: you might expect this replacement to be done during expansion,
8882 -- but that doesn't work, because when the pragma Short_Circuit_And_Or
8883 -- is used, no part of the right operand of an "and" or "or" operator
8884 -- should be executed if the left operand would short-circuit the
8885 -- evaluation of the corresponding "and then" or "or else". If we left
8886 -- the replacement to expansion time, then run-time checks associated
8887 -- with such operands would be evaluated unconditionally, due to being
8888 -- before the condition prior to the rewriting as short-circuit forms
8889 -- during expansion.
8891 if Short_Circuit_And_Or
8892 and then B_Typ = Standard_Boolean
8893 and then Nkind_In (N, N_Op_And, N_Op_Or)
8894 then
8895 -- Mark the corresponding putative SCO operator as truly a logical
8896 -- (and short-circuit) operator.
8898 if Generate_SCO and then Comes_From_Source (N) then
8899 Set_SCO_Logical_Operator (N);
8900 end if;
8902 if Nkind (N) = N_Op_And then
8903 Rewrite (N,
8904 Make_And_Then (Sloc (N),
8905 Left_Opnd => Relocate_Node (Left_Opnd (N)),
8906 Right_Opnd => Relocate_Node (Right_Opnd (N))));
8907 Analyze_And_Resolve (N, B_Typ);
8909 -- Case of OR changed to OR ELSE
8911 else
8912 Rewrite (N,
8913 Make_Or_Else (Sloc (N),
8914 Left_Opnd => Relocate_Node (Left_Opnd (N)),
8915 Right_Opnd => Relocate_Node (Right_Opnd (N))));
8916 Analyze_And_Resolve (N, B_Typ);
8917 end if;
8919 -- Return now, since analysis of the rewritten ops will take care of
8920 -- other reference bookkeeping and expression folding.
8922 return;
8923 end if;
8925 Resolve (Left_Opnd (N), B_Typ);
8926 Resolve (Right_Opnd (N), B_Typ);
8928 Check_Unset_Reference (Left_Opnd (N));
8929 Check_Unset_Reference (Right_Opnd (N));
8931 Set_Etype (N, B_Typ);
8932 Generate_Operator_Reference (N, B_Typ);
8933 Eval_Logical_Op (N);
8935 -- In SPARK, logical operations AND, OR and XOR for arrays are defined
8936 -- only when both operands have same static lower and higher bounds. Of
8937 -- course the types have to match, so only check if operands are
8938 -- compatible and the node itself has no errors.
8940 if Is_Array_Type (B_Typ)
8941 and then Nkind (N) in N_Binary_Op
8942 then
8943 declare
8944 Left_Typ : constant Node_Id := Etype (Left_Opnd (N));
8945 Right_Typ : constant Node_Id := Etype (Right_Opnd (N));
8947 begin
8948 -- Protect call to Matching_Static_Array_Bounds to avoid costly
8949 -- operation if not needed.
8951 if Restriction_Check_Required (SPARK_05)
8952 and then Base_Type (Left_Typ) = Base_Type (Right_Typ)
8953 and then Left_Typ /= Any_Composite -- or Left_Opnd in error
8954 and then Right_Typ /= Any_Composite -- or Right_Opnd in error
8955 and then not Matching_Static_Array_Bounds (Left_Typ, Right_Typ)
8956 then
8957 Check_SPARK_05_Restriction
8958 ("array types should have matching static bounds", N);
8959 end if;
8960 end;
8961 end if;
8962 end Resolve_Logical_Op;
8964 ---------------------------
8965 -- Resolve_Membership_Op --
8966 ---------------------------
8968 -- The context can only be a boolean type, and does not determine the
8969 -- arguments. Arguments should be unambiguous, but the preference rule for
8970 -- universal types applies.
8972 procedure Resolve_Membership_Op (N : Node_Id; Typ : Entity_Id) is
8973 pragma Warnings (Off, Typ);
8975 L : constant Node_Id := Left_Opnd (N);
8976 R : constant Node_Id := Right_Opnd (N);
8977 T : Entity_Id;
8979 procedure Resolve_Set_Membership;
8980 -- Analysis has determined a unique type for the left operand. Use it to
8981 -- resolve the disjuncts.
8983 ----------------------------
8984 -- Resolve_Set_Membership --
8985 ----------------------------
8987 procedure Resolve_Set_Membership is
8988 Alt : Node_Id;
8989 Ltyp : Entity_Id;
8991 begin
8992 -- If the left operand is overloaded, find type compatible with not
8993 -- overloaded alternative of the right operand.
8995 if Is_Overloaded (L) then
8996 Ltyp := Empty;
8997 Alt := First (Alternatives (N));
8998 while Present (Alt) loop
8999 if not Is_Overloaded (Alt) then
9000 Ltyp := Intersect_Types (L, Alt);
9001 exit;
9002 else
9003 Next (Alt);
9004 end if;
9005 end loop;
9007 -- Unclear how to resolve expression if all alternatives are also
9008 -- overloaded.
9010 if No (Ltyp) then
9011 Error_Msg_N ("ambiguous expression", N);
9012 end if;
9014 else
9015 Ltyp := Etype (L);
9016 end if;
9018 Resolve (L, Ltyp);
9020 Alt := First (Alternatives (N));
9021 while Present (Alt) loop
9023 -- Alternative is an expression, a range
9024 -- or a subtype mark.
9026 if not Is_Entity_Name (Alt)
9027 or else not Is_Type (Entity (Alt))
9028 then
9029 Resolve (Alt, Ltyp);
9030 end if;
9032 Next (Alt);
9033 end loop;
9035 -- Check for duplicates for discrete case
9037 if Is_Discrete_Type (Ltyp) then
9038 declare
9039 type Ent is record
9040 Alt : Node_Id;
9041 Val : Uint;
9042 end record;
9044 Alts : array (0 .. List_Length (Alternatives (N))) of Ent;
9045 Nalts : Nat;
9047 begin
9048 -- Loop checking duplicates. This is quadratic, but giant sets
9049 -- are unlikely in this context so it's a reasonable choice.
9051 Nalts := 0;
9052 Alt := First (Alternatives (N));
9053 while Present (Alt) loop
9054 if Is_OK_Static_Expression (Alt)
9055 and then (Nkind_In (Alt, N_Integer_Literal,
9056 N_Character_Literal)
9057 or else Nkind (Alt) in N_Has_Entity)
9058 then
9059 Nalts := Nalts + 1;
9060 Alts (Nalts) := (Alt, Expr_Value (Alt));
9062 for J in 1 .. Nalts - 1 loop
9063 if Alts (J).Val = Alts (Nalts).Val then
9064 Error_Msg_Sloc := Sloc (Alts (J).Alt);
9065 Error_Msg_N ("duplicate of value given#??", Alt);
9066 end if;
9067 end loop;
9068 end if;
9070 Alt := Next (Alt);
9071 end loop;
9072 end;
9073 end if;
9075 -- RM 4.5.2 (28.1/3) specifies that for types other than records or
9076 -- limited types, evaluation of a membership test uses the predefined
9077 -- equality for the type. This may be confusing to users, and the
9078 -- following warning appears useful for the most common case.
9080 if Is_Scalar_Type (Ltyp)
9081 and then Present (Get_User_Defined_Eq (Ltyp))
9082 then
9083 Error_Msg_NE
9084 ("membership test on& uses predefined equality?", N, Ltyp);
9085 Error_Msg_N
9086 ("\even if user-defined equality exists (RM 4.5.2 (28.1/3)?", N);
9087 end if;
9088 end Resolve_Set_Membership;
9090 -- Start of processing for Resolve_Membership_Op
9092 begin
9093 if L = Error or else R = Error then
9094 return;
9095 end if;
9097 if Present (Alternatives (N)) then
9098 Resolve_Set_Membership;
9099 goto SM_Exit;
9101 elsif not Is_Overloaded (R)
9102 and then
9103 (Etype (R) = Universal_Integer
9104 or else
9105 Etype (R) = Universal_Real)
9106 and then Is_Overloaded (L)
9107 then
9108 T := Etype (R);
9110 -- Ada 2005 (AI-251): Support the following case:
9112 -- type I is interface;
9113 -- type T is tagged ...
9115 -- function Test (O : I'Class) is
9116 -- begin
9117 -- return O in T'Class.
9118 -- end Test;
9120 -- In this case we have nothing else to do. The membership test will be
9121 -- done at run time.
9123 elsif Ada_Version >= Ada_2005
9124 and then Is_Class_Wide_Type (Etype (L))
9125 and then Is_Interface (Etype (L))
9126 and then not Is_Interface (Etype (R))
9127 then
9128 return;
9129 else
9130 T := Intersect_Types (L, R);
9131 end if;
9133 -- If mixed-mode operations are present and operands are all literal,
9134 -- the only interpretation involves Duration, which is probably not
9135 -- the intention of the programmer.
9137 if T = Any_Fixed then
9138 T := Unique_Fixed_Point_Type (N);
9140 if T = Any_Type then
9141 return;
9142 end if;
9143 end if;
9145 Resolve (L, T);
9146 Check_Unset_Reference (L);
9148 if Nkind (R) = N_Range
9149 and then not Is_Scalar_Type (T)
9150 then
9151 Error_Msg_N ("scalar type required for range", R);
9152 end if;
9154 if Is_Entity_Name (R) then
9155 Freeze_Expression (R);
9156 else
9157 Resolve (R, T);
9158 Check_Unset_Reference (R);
9159 end if;
9161 -- Here after resolving membership operation
9163 <<SM_Exit>>
9165 Eval_Membership_Op (N);
9166 end Resolve_Membership_Op;
9168 ------------------
9169 -- Resolve_Null --
9170 ------------------
9172 procedure Resolve_Null (N : Node_Id; Typ : Entity_Id) is
9173 Loc : constant Source_Ptr := Sloc (N);
9175 begin
9176 -- Handle restriction against anonymous null access values This
9177 -- restriction can be turned off using -gnatdj.
9179 -- Ada 2005 (AI-231): Remove restriction
9181 if Ada_Version < Ada_2005
9182 and then not Debug_Flag_J
9183 and then Ekind (Typ) = E_Anonymous_Access_Type
9184 and then Comes_From_Source (N)
9185 then
9186 -- In the common case of a call which uses an explicitly null value
9187 -- for an access parameter, give specialized error message.
9189 if Nkind (Parent (N)) in N_Subprogram_Call then
9190 Error_Msg_N
9191 ("null is not allowed as argument for an access parameter", N);
9193 -- Standard message for all other cases (are there any?)
9195 else
9196 Error_Msg_N
9197 ("null cannot be of an anonymous access type", N);
9198 end if;
9199 end if;
9201 -- Ada 2005 (AI-231): Generate the null-excluding check in case of
9202 -- assignment to a null-excluding object.
9204 if Ada_Version >= Ada_2005
9205 and then Can_Never_Be_Null (Typ)
9206 and then Nkind (Parent (N)) = N_Assignment_Statement
9207 then
9208 if Inside_Init_Proc then
9210 -- Decide whether to generate an if_statement around our
9211 -- null-excluding check to avoid them on certain internal object
9212 -- declarations by looking at the type the current Init_Proc
9213 -- belongs to.
9215 -- Generate:
9216 -- if T1b_skip_null_excluding_check then
9217 -- [constraint_error "access check failed"]
9218 -- end if;
9220 if Needs_Conditional_Null_Excluding_Check
9221 (Etype (First_Formal (Enclosing_Init_Proc)))
9222 then
9223 Insert_Action (N,
9224 Make_If_Statement (Loc,
9225 Condition =>
9226 Make_Identifier (Loc,
9227 New_External_Name
9228 (Chars (Typ), "_skip_null_excluding_check")),
9229 Then_Statements =>
9230 New_List (
9231 Make_Raise_Constraint_Error (Loc,
9232 Reason => CE_Access_Check_Failed))));
9234 -- Otherwise, simply create the check
9236 else
9237 Insert_Action (N,
9238 Make_Raise_Constraint_Error (Loc,
9239 Reason => CE_Access_Check_Failed));
9240 end if;
9241 else
9242 Insert_Action
9243 (Compile_Time_Constraint_Error (N,
9244 "(Ada 2005) null not allowed in null-excluding objects??"),
9245 Make_Raise_Constraint_Error (Loc,
9246 Reason => CE_Access_Check_Failed));
9247 end if;
9248 end if;
9250 -- In a distributed context, null for a remote access to subprogram may
9251 -- need to be replaced with a special record aggregate. In this case,
9252 -- return after having done the transformation.
9254 if (Ekind (Typ) = E_Record_Type
9255 or else Is_Remote_Access_To_Subprogram_Type (Typ))
9256 and then Remote_AST_Null_Value (N, Typ)
9257 then
9258 return;
9259 end if;
9261 -- The null literal takes its type from the context
9263 Set_Etype (N, Typ);
9264 end Resolve_Null;
9266 -----------------------
9267 -- Resolve_Op_Concat --
9268 -----------------------
9270 procedure Resolve_Op_Concat (N : Node_Id; Typ : Entity_Id) is
9272 -- We wish to avoid deep recursion, because concatenations are often
9273 -- deeply nested, as in A&B&...&Z. Therefore, we walk down the left
9274 -- operands nonrecursively until we find something that is not a simple
9275 -- concatenation (A in this case). We resolve that, and then walk back
9276 -- up the tree following Parent pointers, calling Resolve_Op_Concat_Rest
9277 -- to do the rest of the work at each level. The Parent pointers allow
9278 -- us to avoid recursion, and thus avoid running out of memory. See also
9279 -- Sem_Ch4.Analyze_Concatenation, where a similar approach is used.
9281 NN : Node_Id := N;
9282 Op1 : Node_Id;
9284 begin
9285 -- The following code is equivalent to:
9287 -- Resolve_Op_Concat_First (NN, Typ);
9288 -- Resolve_Op_Concat_Arg (N, ...);
9289 -- Resolve_Op_Concat_Rest (N, Typ);
9291 -- where the Resolve_Op_Concat_Arg call recurses back here if the left
9292 -- operand is a concatenation.
9294 -- Walk down left operands
9296 loop
9297 Resolve_Op_Concat_First (NN, Typ);
9298 Op1 := Left_Opnd (NN);
9299 exit when not (Nkind (Op1) = N_Op_Concat
9300 and then not Is_Array_Type (Component_Type (Typ))
9301 and then Entity (Op1) = Entity (NN));
9302 NN := Op1;
9303 end loop;
9305 -- Now (given the above example) NN is A&B and Op1 is A
9307 -- First resolve Op1 ...
9309 Resolve_Op_Concat_Arg (NN, Op1, Typ, Is_Component_Left_Opnd (NN));
9311 -- ... then walk NN back up until we reach N (where we started), calling
9312 -- Resolve_Op_Concat_Rest along the way.
9314 loop
9315 Resolve_Op_Concat_Rest (NN, Typ);
9316 exit when NN = N;
9317 NN := Parent (NN);
9318 end loop;
9320 if Base_Type (Etype (N)) /= Standard_String then
9321 Check_SPARK_05_Restriction
9322 ("result of concatenation should have type String", N);
9323 end if;
9324 end Resolve_Op_Concat;
9326 ---------------------------
9327 -- Resolve_Op_Concat_Arg --
9328 ---------------------------
9330 procedure Resolve_Op_Concat_Arg
9331 (N : Node_Id;
9332 Arg : Node_Id;
9333 Typ : Entity_Id;
9334 Is_Comp : Boolean)
9336 Btyp : constant Entity_Id := Base_Type (Typ);
9337 Ctyp : constant Entity_Id := Component_Type (Typ);
9339 begin
9340 if In_Instance then
9341 if Is_Comp
9342 or else (not Is_Overloaded (Arg)
9343 and then Etype (Arg) /= Any_Composite
9344 and then Covers (Ctyp, Etype (Arg)))
9345 then
9346 Resolve (Arg, Ctyp);
9347 else
9348 Resolve (Arg, Btyp);
9349 end if;
9351 -- If both Array & Array and Array & Component are visible, there is a
9352 -- potential ambiguity that must be reported.
9354 elsif Has_Compatible_Type (Arg, Ctyp) then
9355 if Nkind (Arg) = N_Aggregate
9356 and then Is_Composite_Type (Ctyp)
9357 then
9358 if Is_Private_Type (Ctyp) then
9359 Resolve (Arg, Btyp);
9361 -- If the operation is user-defined and not overloaded use its
9362 -- profile. The operation may be a renaming, in which case it has
9363 -- been rewritten, and we want the original profile.
9365 elsif not Is_Overloaded (N)
9366 and then Comes_From_Source (Entity (Original_Node (N)))
9367 and then Ekind (Entity (Original_Node (N))) = E_Function
9368 then
9369 Resolve (Arg,
9370 Etype
9371 (Next_Formal (First_Formal (Entity (Original_Node (N))))));
9372 return;
9374 -- Otherwise an aggregate may match both the array type and the
9375 -- component type.
9377 else
9378 Error_Msg_N ("ambiguous aggregate must be qualified", Arg);
9379 Set_Etype (Arg, Any_Type);
9380 end if;
9382 else
9383 if Is_Overloaded (Arg)
9384 and then Has_Compatible_Type (Arg, Typ)
9385 and then Etype (Arg) /= Any_Type
9386 then
9387 declare
9388 I : Interp_Index;
9389 It : Interp;
9390 Func : Entity_Id;
9392 begin
9393 Get_First_Interp (Arg, I, It);
9394 Func := It.Nam;
9395 Get_Next_Interp (I, It);
9397 -- Special-case the error message when the overloading is
9398 -- caused by a function that yields an array and can be
9399 -- called without parameters.
9401 if It.Nam = Func then
9402 Error_Msg_Sloc := Sloc (Func);
9403 Error_Msg_N ("ambiguous call to function#", Arg);
9404 Error_Msg_NE
9405 ("\\interpretation as call yields&", Arg, Typ);
9406 Error_Msg_NE
9407 ("\\interpretation as indexing of call yields&",
9408 Arg, Component_Type (Typ));
9410 else
9411 Error_Msg_N ("ambiguous operand for concatenation!", Arg);
9413 Get_First_Interp (Arg, I, It);
9414 while Present (It.Nam) loop
9415 Error_Msg_Sloc := Sloc (It.Nam);
9417 if Base_Type (It.Typ) = Btyp
9418 or else
9419 Base_Type (It.Typ) = Base_Type (Ctyp)
9420 then
9421 Error_Msg_N -- CODEFIX
9422 ("\\possible interpretation#", Arg);
9423 end if;
9425 Get_Next_Interp (I, It);
9426 end loop;
9427 end if;
9428 end;
9429 end if;
9431 Resolve (Arg, Component_Type (Typ));
9433 if Nkind (Arg) = N_String_Literal then
9434 Set_Etype (Arg, Component_Type (Typ));
9435 end if;
9437 if Arg = Left_Opnd (N) then
9438 Set_Is_Component_Left_Opnd (N);
9439 else
9440 Set_Is_Component_Right_Opnd (N);
9441 end if;
9442 end if;
9444 else
9445 Resolve (Arg, Btyp);
9446 end if;
9448 -- Concatenation is restricted in SPARK: each operand must be either a
9449 -- string literal, the name of a string constant, a static character or
9450 -- string expression, or another concatenation. Arg cannot be a
9451 -- concatenation here as callers of Resolve_Op_Concat_Arg call it
9452 -- separately on each final operand, past concatenation operations.
9454 if Is_Character_Type (Etype (Arg)) then
9455 if not Is_OK_Static_Expression (Arg) then
9456 Check_SPARK_05_Restriction
9457 ("character operand for concatenation should be static", Arg);
9458 end if;
9460 elsif Is_String_Type (Etype (Arg)) then
9461 if not (Nkind_In (Arg, N_Identifier, N_Expanded_Name)
9462 and then Is_Constant_Object (Entity (Arg)))
9463 and then not Is_OK_Static_Expression (Arg)
9464 then
9465 Check_SPARK_05_Restriction
9466 ("string operand for concatenation should be static", Arg);
9467 end if;
9469 -- Do not issue error on an operand that is neither a character nor a
9470 -- string, as the error is issued in Resolve_Op_Concat.
9472 else
9473 null;
9474 end if;
9476 Check_Unset_Reference (Arg);
9477 end Resolve_Op_Concat_Arg;
9479 -----------------------------
9480 -- Resolve_Op_Concat_First --
9481 -----------------------------
9483 procedure Resolve_Op_Concat_First (N : Node_Id; Typ : Entity_Id) is
9484 Btyp : constant Entity_Id := Base_Type (Typ);
9485 Op1 : constant Node_Id := Left_Opnd (N);
9486 Op2 : constant Node_Id := Right_Opnd (N);
9488 begin
9489 -- The parser folds an enormous sequence of concatenations of string
9490 -- literals into "" & "...", where the Is_Folded_In_Parser flag is set
9491 -- in the right operand. If the expression resolves to a predefined "&"
9492 -- operator, all is well. Otherwise, the parser's folding is wrong, so
9493 -- we give an error. See P_Simple_Expression in Par.Ch4.
9495 if Nkind (Op2) = N_String_Literal
9496 and then Is_Folded_In_Parser (Op2)
9497 and then Ekind (Entity (N)) = E_Function
9498 then
9499 pragma Assert (Nkind (Op1) = N_String_Literal -- should be ""
9500 and then String_Length (Strval (Op1)) = 0);
9501 Error_Msg_N ("too many user-defined concatenations", N);
9502 return;
9503 end if;
9505 Set_Etype (N, Btyp);
9507 if Is_Limited_Composite (Btyp) then
9508 Error_Msg_N ("concatenation not available for limited array", N);
9509 Explain_Limited_Type (Btyp, N);
9510 end if;
9511 end Resolve_Op_Concat_First;
9513 ----------------------------
9514 -- Resolve_Op_Concat_Rest --
9515 ----------------------------
9517 procedure Resolve_Op_Concat_Rest (N : Node_Id; Typ : Entity_Id) is
9518 Op1 : constant Node_Id := Left_Opnd (N);
9519 Op2 : constant Node_Id := Right_Opnd (N);
9521 begin
9522 Resolve_Op_Concat_Arg (N, Op2, Typ, Is_Component_Right_Opnd (N));
9524 Generate_Operator_Reference (N, Typ);
9526 if Is_String_Type (Typ) then
9527 Eval_Concatenation (N);
9528 end if;
9530 -- If this is not a static concatenation, but the result is a string
9531 -- type (and not an array of strings) ensure that static string operands
9532 -- have their subtypes properly constructed.
9534 if Nkind (N) /= N_String_Literal
9535 and then Is_Character_Type (Component_Type (Typ))
9536 then
9537 Set_String_Literal_Subtype (Op1, Typ);
9538 Set_String_Literal_Subtype (Op2, Typ);
9539 end if;
9540 end Resolve_Op_Concat_Rest;
9542 ----------------------
9543 -- Resolve_Op_Expon --
9544 ----------------------
9546 procedure Resolve_Op_Expon (N : Node_Id; Typ : Entity_Id) is
9547 B_Typ : constant Entity_Id := Base_Type (Typ);
9549 begin
9550 -- Catch attempts to do fixed-point exponentiation with universal
9551 -- operands, which is a case where the illegality is not caught during
9552 -- normal operator analysis. This is not done in preanalysis mode
9553 -- since the tree is not fully decorated during preanalysis.
9555 if Full_Analysis then
9556 if Is_Fixed_Point_Type (Typ) and then Comes_From_Source (N) then
9557 Error_Msg_N ("exponentiation not available for fixed point", N);
9558 return;
9560 elsif Nkind (Parent (N)) in N_Op
9561 and then Present (Etype (Parent (N)))
9562 and then Is_Fixed_Point_Type (Etype (Parent (N)))
9563 and then Etype (N) = Universal_Real
9564 and then Comes_From_Source (N)
9565 then
9566 Error_Msg_N ("exponentiation not available for fixed point", N);
9567 return;
9568 end if;
9569 end if;
9571 if Comes_From_Source (N)
9572 and then Ekind (Entity (N)) = E_Function
9573 and then Is_Imported (Entity (N))
9574 and then Is_Intrinsic_Subprogram (Entity (N))
9575 then
9576 Resolve_Intrinsic_Operator (N, Typ);
9577 return;
9578 end if;
9580 if Etype (Left_Opnd (N)) = Universal_Integer
9581 or else Etype (Left_Opnd (N)) = Universal_Real
9582 then
9583 Check_For_Visible_Operator (N, B_Typ);
9584 end if;
9586 -- We do the resolution using the base type, because intermediate values
9587 -- in expressions are always of the base type, not a subtype of it.
9589 Resolve (Left_Opnd (N), B_Typ);
9590 Resolve (Right_Opnd (N), Standard_Integer);
9592 -- For integer types, right argument must be in Natural range
9594 if Is_Integer_Type (Typ) then
9595 Apply_Scalar_Range_Check (Right_Opnd (N), Standard_Natural);
9596 end if;
9598 Check_Unset_Reference (Left_Opnd (N));
9599 Check_Unset_Reference (Right_Opnd (N));
9601 Set_Etype (N, B_Typ);
9602 Generate_Operator_Reference (N, B_Typ);
9604 Analyze_Dimension (N);
9606 if Ada_Version >= Ada_2012 and then Has_Dimension_System (B_Typ) then
9607 -- Evaluate the exponentiation operator for dimensioned type
9609 Eval_Op_Expon_For_Dimensioned_Type (N, B_Typ);
9610 else
9611 Eval_Op_Expon (N);
9612 end if;
9614 -- Set overflow checking bit. Much cleverer code needed here eventually
9615 -- and perhaps the Resolve routines should be separated for the various
9616 -- arithmetic operations, since they will need different processing. ???
9618 if Nkind (N) in N_Op then
9619 if not Overflow_Checks_Suppressed (Etype (N)) then
9620 Enable_Overflow_Check (N);
9621 end if;
9622 end if;
9623 end Resolve_Op_Expon;
9625 --------------------
9626 -- Resolve_Op_Not --
9627 --------------------
9629 procedure Resolve_Op_Not (N : Node_Id; Typ : Entity_Id) is
9630 B_Typ : Entity_Id;
9632 function Parent_Is_Boolean return Boolean;
9633 -- This function determines if the parent node is a boolean operator or
9634 -- operation (comparison op, membership test, or short circuit form) and
9635 -- the not in question is the left operand of this operation. Note that
9636 -- if the not is in parens, then false is returned.
9638 -----------------------
9639 -- Parent_Is_Boolean --
9640 -----------------------
9642 function Parent_Is_Boolean return Boolean is
9643 begin
9644 if Paren_Count (N) /= 0 then
9645 return False;
9647 else
9648 case Nkind (Parent (N)) is
9649 when N_And_Then
9650 | N_In
9651 | N_Not_In
9652 | N_Op_And
9653 | N_Op_Eq
9654 | N_Op_Ge
9655 | N_Op_Gt
9656 | N_Op_Le
9657 | N_Op_Lt
9658 | N_Op_Ne
9659 | N_Op_Or
9660 | N_Op_Xor
9661 | N_Or_Else
9663 return Left_Opnd (Parent (N)) = N;
9665 when others =>
9666 return False;
9667 end case;
9668 end if;
9669 end Parent_Is_Boolean;
9671 -- Start of processing for Resolve_Op_Not
9673 begin
9674 -- Predefined operations on scalar types yield the base type. On the
9675 -- other hand, logical operations on arrays yield the type of the
9676 -- arguments (and the context).
9678 if Is_Array_Type (Typ) then
9679 B_Typ := Typ;
9680 else
9681 B_Typ := Base_Type (Typ);
9682 end if;
9684 -- Straightforward case of incorrect arguments
9686 if not Valid_Boolean_Arg (Typ) then
9687 Error_Msg_N ("invalid operand type for operator&", N);
9688 Set_Etype (N, Any_Type);
9689 return;
9691 -- Special case of probable missing parens
9693 elsif Typ = Universal_Integer or else Typ = Any_Modular then
9694 if Parent_Is_Boolean then
9695 Error_Msg_N
9696 ("operand of not must be enclosed in parentheses",
9697 Right_Opnd (N));
9698 else
9699 Error_Msg_N
9700 ("no modular type available in this context", N);
9701 end if;
9703 Set_Etype (N, Any_Type);
9704 return;
9706 -- OK resolution of NOT
9708 else
9709 -- Warn if non-boolean types involved. This is a case like not a < b
9710 -- where a and b are modular, where we will get (not a) < b and most
9711 -- likely not (a < b) was intended.
9713 if Warn_On_Questionable_Missing_Parens
9714 and then not Is_Boolean_Type (Typ)
9715 and then Parent_Is_Boolean
9716 then
9717 Error_Msg_N ("?q?not expression should be parenthesized here!", N);
9718 end if;
9720 -- Warn on double negation if checking redundant constructs
9722 if Warn_On_Redundant_Constructs
9723 and then Comes_From_Source (N)
9724 and then Comes_From_Source (Right_Opnd (N))
9725 and then Root_Type (Typ) = Standard_Boolean
9726 and then Nkind (Right_Opnd (N)) = N_Op_Not
9727 then
9728 Error_Msg_N ("redundant double negation?r?", N);
9729 end if;
9731 -- Complete resolution and evaluation of NOT
9733 Resolve (Right_Opnd (N), B_Typ);
9734 Check_Unset_Reference (Right_Opnd (N));
9735 Set_Etype (N, B_Typ);
9736 Generate_Operator_Reference (N, B_Typ);
9737 Eval_Op_Not (N);
9738 end if;
9739 end Resolve_Op_Not;
9741 -----------------------------
9742 -- Resolve_Operator_Symbol --
9743 -----------------------------
9745 -- Nothing to be done, all resolved already
9747 procedure Resolve_Operator_Symbol (N : Node_Id; Typ : Entity_Id) is
9748 pragma Warnings (Off, N);
9749 pragma Warnings (Off, Typ);
9751 begin
9752 null;
9753 end Resolve_Operator_Symbol;
9755 ----------------------------------
9756 -- Resolve_Qualified_Expression --
9757 ----------------------------------
9759 procedure Resolve_Qualified_Expression (N : Node_Id; Typ : Entity_Id) is
9760 pragma Warnings (Off, Typ);
9762 Target_Typ : constant Entity_Id := Entity (Subtype_Mark (N));
9763 Expr : constant Node_Id := Expression (N);
9765 begin
9766 Resolve (Expr, Target_Typ);
9768 -- Protect call to Matching_Static_Array_Bounds to avoid costly
9769 -- operation if not needed.
9771 if Restriction_Check_Required (SPARK_05)
9772 and then Is_Array_Type (Target_Typ)
9773 and then Is_Array_Type (Etype (Expr))
9774 and then Etype (Expr) /= Any_Composite -- or else Expr in error
9775 and then not Matching_Static_Array_Bounds (Target_Typ, Etype (Expr))
9776 then
9777 Check_SPARK_05_Restriction
9778 ("array types should have matching static bounds", N);
9779 end if;
9781 -- A qualified expression requires an exact match of the type, class-
9782 -- wide matching is not allowed. However, if the qualifying type is
9783 -- specific and the expression has a class-wide type, it may still be
9784 -- okay, since it can be the result of the expansion of a call to a
9785 -- dispatching function, so we also have to check class-wideness of the
9786 -- type of the expression's original node.
9788 if (Is_Class_Wide_Type (Target_Typ)
9789 or else
9790 (Is_Class_Wide_Type (Etype (Expr))
9791 and then Is_Class_Wide_Type (Etype (Original_Node (Expr)))))
9792 and then Base_Type (Etype (Expr)) /= Base_Type (Target_Typ)
9793 then
9794 Wrong_Type (Expr, Target_Typ);
9795 end if;
9797 -- If the target type is unconstrained, then we reset the type of the
9798 -- result from the type of the expression. For other cases, the actual
9799 -- subtype of the expression is the target type.
9801 if Is_Composite_Type (Target_Typ)
9802 and then not Is_Constrained (Target_Typ)
9803 then
9804 Set_Etype (N, Etype (Expr));
9805 end if;
9807 Analyze_Dimension (N);
9808 Eval_Qualified_Expression (N);
9810 -- If we still have a qualified expression after the static evaluation,
9811 -- then apply a scalar range check if needed. The reason that we do this
9812 -- after the Eval call is that otherwise, the application of the range
9813 -- check may convert an illegal static expression and result in warning
9814 -- rather than giving an error (e.g Integer'(Integer'Last + 1)).
9816 if Nkind (N) = N_Qualified_Expression and then Is_Scalar_Type (Typ) then
9817 Apply_Scalar_Range_Check (Expr, Typ);
9818 end if;
9820 -- Finally, check whether a predicate applies to the target type. This
9821 -- comes from AI12-0100. As for type conversions, check the enclosing
9822 -- context to prevent an infinite expansion.
9824 if Has_Predicates (Target_Typ) then
9825 if Nkind (Parent (N)) = N_Function_Call
9826 and then Present (Name (Parent (N)))
9827 and then (Is_Predicate_Function (Entity (Name (Parent (N))))
9828 or else
9829 Is_Predicate_Function_M (Entity (Name (Parent (N)))))
9830 then
9831 null;
9833 -- In the case of a qualified expression in an allocator, the check
9834 -- is applied when expanding the allocator, so avoid redundant check.
9836 elsif Nkind (N) = N_Qualified_Expression
9837 and then Nkind (Parent (N)) /= N_Allocator
9838 then
9839 Apply_Predicate_Check (N, Target_Typ);
9840 end if;
9841 end if;
9842 end Resolve_Qualified_Expression;
9844 ------------------------------
9845 -- Resolve_Raise_Expression --
9846 ------------------------------
9848 procedure Resolve_Raise_Expression (N : Node_Id; Typ : Entity_Id) is
9849 begin
9850 if Typ = Raise_Type then
9851 Error_Msg_N ("cannot find unique type for raise expression", N);
9852 Set_Etype (N, Any_Type);
9853 else
9854 Set_Etype (N, Typ);
9855 end if;
9856 end Resolve_Raise_Expression;
9858 -------------------
9859 -- Resolve_Range --
9860 -------------------
9862 procedure Resolve_Range (N : Node_Id; Typ : Entity_Id) is
9863 L : constant Node_Id := Low_Bound (N);
9864 H : constant Node_Id := High_Bound (N);
9866 function First_Last_Ref return Boolean;
9867 -- Returns True if N is of the form X'First .. X'Last where X is the
9868 -- same entity for both attributes.
9870 --------------------
9871 -- First_Last_Ref --
9872 --------------------
9874 function First_Last_Ref return Boolean is
9875 Lorig : constant Node_Id := Original_Node (L);
9876 Horig : constant Node_Id := Original_Node (H);
9878 begin
9879 if Nkind (Lorig) = N_Attribute_Reference
9880 and then Nkind (Horig) = N_Attribute_Reference
9881 and then Attribute_Name (Lorig) = Name_First
9882 and then Attribute_Name (Horig) = Name_Last
9883 then
9884 declare
9885 PL : constant Node_Id := Prefix (Lorig);
9886 PH : constant Node_Id := Prefix (Horig);
9887 begin
9888 if Is_Entity_Name (PL)
9889 and then Is_Entity_Name (PH)
9890 and then Entity (PL) = Entity (PH)
9891 then
9892 return True;
9893 end if;
9894 end;
9895 end if;
9897 return False;
9898 end First_Last_Ref;
9900 -- Start of processing for Resolve_Range
9902 begin
9903 Set_Etype (N, Typ);
9905 -- The lower bound should be in Typ. The higher bound can be in Typ's
9906 -- base type if the range is null. It may still be invalid if it is
9907 -- higher than the lower bound. This is checked later in the context in
9908 -- which the range appears.
9910 Resolve (L, Typ);
9911 Resolve (H, Base_Type (Typ));
9913 -- Reanalyze the lower bound after both bounds have been analyzed, so
9914 -- that the range is known to be static or not by now. This may trigger
9915 -- more compile-time evaluation, which is useful for static analysis
9916 -- with GNATprove. This is not needed for compilation or static analysis
9917 -- with CodePeer, as full expansion does that evaluation then.
9919 if GNATprove_Mode then
9920 Set_Analyzed (L, False);
9921 Resolve (L, Typ);
9922 end if;
9924 -- Check for inappropriate range on unordered enumeration type
9926 if Bad_Unordered_Enumeration_Reference (N, Typ)
9928 -- Exclude X'First .. X'Last if X is the same entity for both
9930 and then not First_Last_Ref
9931 then
9932 Error_Msg_Sloc := Sloc (Typ);
9933 Error_Msg_NE
9934 ("subrange of unordered enumeration type& declared#?U?", N, Typ);
9935 end if;
9937 Check_Unset_Reference (L);
9938 Check_Unset_Reference (H);
9940 -- We have to check the bounds for being within the base range as
9941 -- required for a non-static context. Normally this is automatic and
9942 -- done as part of evaluating expressions, but the N_Range node is an
9943 -- exception, since in GNAT we consider this node to be a subexpression,
9944 -- even though in Ada it is not. The circuit in Sem_Eval could check for
9945 -- this, but that would put the test on the main evaluation path for
9946 -- expressions.
9948 Check_Non_Static_Context (L);
9949 Check_Non_Static_Context (H);
9951 -- Check for an ambiguous range over character literals. This will
9952 -- happen with a membership test involving only literals.
9954 if Typ = Any_Character then
9955 Ambiguous_Character (L);
9956 Set_Etype (N, Any_Type);
9957 return;
9958 end if;
9960 -- If bounds are static, constant-fold them, so size computations are
9961 -- identical between front-end and back-end. Do not perform this
9962 -- transformation while analyzing generic units, as type information
9963 -- would be lost when reanalyzing the constant node in the instance.
9965 if Is_Discrete_Type (Typ) and then Expander_Active then
9966 if Is_OK_Static_Expression (L) then
9967 Fold_Uint (L, Expr_Value (L), Is_OK_Static_Expression (L));
9968 end if;
9970 if Is_OK_Static_Expression (H) then
9971 Fold_Uint (H, Expr_Value (H), Is_OK_Static_Expression (H));
9972 end if;
9973 end if;
9974 end Resolve_Range;
9976 --------------------------
9977 -- Resolve_Real_Literal --
9978 --------------------------
9980 procedure Resolve_Real_Literal (N : Node_Id; Typ : Entity_Id) is
9981 Actual_Typ : constant Entity_Id := Etype (N);
9983 begin
9984 -- Special processing for fixed-point literals to make sure that the
9985 -- value is an exact multiple of small where this is required. We skip
9986 -- this for the universal real case, and also for generic types.
9988 if Is_Fixed_Point_Type (Typ)
9989 and then Typ /= Universal_Fixed
9990 and then Typ /= Any_Fixed
9991 and then not Is_Generic_Type (Typ)
9992 then
9993 declare
9994 Val : constant Ureal := Realval (N);
9995 Cintr : constant Ureal := Val / Small_Value (Typ);
9996 Cint : constant Uint := UR_Trunc (Cintr);
9997 Den : constant Uint := Norm_Den (Cintr);
9998 Stat : Boolean;
10000 begin
10001 -- Case of literal is not an exact multiple of the Small
10003 if Den /= 1 then
10005 -- For a source program literal for a decimal fixed-point type,
10006 -- this is statically illegal (RM 4.9(36)).
10008 if Is_Decimal_Fixed_Point_Type (Typ)
10009 and then Actual_Typ = Universal_Real
10010 and then Comes_From_Source (N)
10011 then
10012 Error_Msg_N ("value has extraneous low order digits", N);
10013 end if;
10015 -- Generate a warning if literal from source
10017 if Is_OK_Static_Expression (N)
10018 and then Warn_On_Bad_Fixed_Value
10019 then
10020 Error_Msg_N
10021 ("?b?static fixed-point value is not a multiple of Small!",
10023 end if;
10025 -- Replace literal by a value that is the exact representation
10026 -- of a value of the type, i.e. a multiple of the small value,
10027 -- by truncation, since Machine_Rounds is false for all GNAT
10028 -- fixed-point types (RM 4.9(38)).
10030 Stat := Is_OK_Static_Expression (N);
10031 Rewrite (N,
10032 Make_Real_Literal (Sloc (N),
10033 Realval => Small_Value (Typ) * Cint));
10035 Set_Is_Static_Expression (N, Stat);
10036 end if;
10038 -- In all cases, set the corresponding integer field
10040 Set_Corresponding_Integer_Value (N, Cint);
10041 end;
10042 end if;
10044 -- Now replace the actual type by the expected type as usual
10046 Set_Etype (N, Typ);
10047 Eval_Real_Literal (N);
10048 end Resolve_Real_Literal;
10050 -----------------------
10051 -- Resolve_Reference --
10052 -----------------------
10054 procedure Resolve_Reference (N : Node_Id; Typ : Entity_Id) is
10055 P : constant Node_Id := Prefix (N);
10057 begin
10058 -- Replace general access with specific type
10060 if Ekind (Etype (N)) = E_Allocator_Type then
10061 Set_Etype (N, Base_Type (Typ));
10062 end if;
10064 Resolve (P, Designated_Type (Etype (N)));
10066 -- If we are taking the reference of a volatile entity, then treat it as
10067 -- a potential modification of this entity. This is too conservative,
10068 -- but necessary because remove side effects can cause transformations
10069 -- of normal assignments into reference sequences that otherwise fail to
10070 -- notice the modification.
10072 if Is_Entity_Name (P) and then Treat_As_Volatile (Entity (P)) then
10073 Note_Possible_Modification (P, Sure => False);
10074 end if;
10075 end Resolve_Reference;
10077 --------------------------------
10078 -- Resolve_Selected_Component --
10079 --------------------------------
10081 procedure Resolve_Selected_Component (N : Node_Id; Typ : Entity_Id) is
10082 Comp : Entity_Id;
10083 Comp1 : Entity_Id := Empty; -- prevent junk warning
10084 P : constant Node_Id := Prefix (N);
10085 S : constant Node_Id := Selector_Name (N);
10086 T : Entity_Id := Etype (P);
10087 I : Interp_Index;
10088 I1 : Interp_Index := 0; -- prevent junk warning
10089 It : Interp;
10090 It1 : Interp;
10091 Found : Boolean;
10093 function Init_Component return Boolean;
10094 -- Check whether this is the initialization of a component within an
10095 -- init proc (by assignment or call to another init proc). If true,
10096 -- there is no need for a discriminant check.
10098 --------------------
10099 -- Init_Component --
10100 --------------------
10102 function Init_Component return Boolean is
10103 begin
10104 return Inside_Init_Proc
10105 and then Nkind (Prefix (N)) = N_Identifier
10106 and then Chars (Prefix (N)) = Name_uInit
10107 and then Nkind (Parent (Parent (N))) = N_Case_Statement_Alternative;
10108 end Init_Component;
10110 -- Start of processing for Resolve_Selected_Component
10112 begin
10113 if Is_Overloaded (P) then
10115 -- Use the context type to select the prefix that has a selector
10116 -- of the correct name and type.
10118 Found := False;
10119 Get_First_Interp (P, I, It);
10121 Search : while Present (It.Typ) loop
10122 if Is_Access_Type (It.Typ) then
10123 T := Designated_Type (It.Typ);
10124 else
10125 T := It.Typ;
10126 end if;
10128 -- Locate selected component. For a private prefix the selector
10129 -- can denote a discriminant.
10131 if Is_Record_Type (T) or else Is_Private_Type (T) then
10133 -- The visible components of a class-wide type are those of
10134 -- the root type.
10136 if Is_Class_Wide_Type (T) then
10137 T := Etype (T);
10138 end if;
10140 Comp := First_Entity (T);
10141 while Present (Comp) loop
10142 if Chars (Comp) = Chars (S)
10143 and then Covers (Typ, Etype (Comp))
10144 then
10145 if not Found then
10146 Found := True;
10147 I1 := I;
10148 It1 := It;
10149 Comp1 := Comp;
10151 else
10152 It := Disambiguate (P, I1, I, Any_Type);
10154 if It = No_Interp then
10155 Error_Msg_N
10156 ("ambiguous prefix for selected component", N);
10157 Set_Etype (N, Typ);
10158 return;
10160 else
10161 It1 := It;
10163 -- There may be an implicit dereference. Retrieve
10164 -- designated record type.
10166 if Is_Access_Type (It1.Typ) then
10167 T := Designated_Type (It1.Typ);
10168 else
10169 T := It1.Typ;
10170 end if;
10172 if Scope (Comp1) /= T then
10174 -- Resolution chooses the new interpretation.
10175 -- Find the component with the right name.
10177 Comp1 := First_Entity (T);
10178 while Present (Comp1)
10179 and then Chars (Comp1) /= Chars (S)
10180 loop
10181 Comp1 := Next_Entity (Comp1);
10182 end loop;
10183 end if;
10185 exit Search;
10186 end if;
10187 end if;
10188 end if;
10190 Comp := Next_Entity (Comp);
10191 end loop;
10192 end if;
10194 Get_Next_Interp (I, It);
10195 end loop Search;
10197 -- There must be a legal interpretation at this point
10199 pragma Assert (Found);
10200 Resolve (P, It1.Typ);
10201 Set_Etype (N, Typ);
10202 Set_Entity_With_Checks (S, Comp1);
10204 -- The type of the context and that of the component are
10205 -- compatible and in general identical, but if they are anonymous
10206 -- access-to-subprogram types, the relevant type is that of the
10207 -- component. This matters in Unnest_Subprograms mode, where the
10208 -- relevant context is the one in which the type is declared, not
10209 -- the point of use. This determines what activation record to use.
10211 if Ekind (Typ) = E_Anonymous_Access_Subprogram_Type then
10212 Set_Etype (N, Etype (Comp1));
10213 end if;
10215 else
10216 -- Resolve prefix with its type
10218 Resolve (P, T);
10219 end if;
10221 -- Generate cross-reference. We needed to wait until full overloading
10222 -- resolution was complete to do this, since otherwise we can't tell if
10223 -- we are an lvalue or not.
10225 if May_Be_Lvalue (N) then
10226 Generate_Reference (Entity (S), S, 'm');
10227 else
10228 Generate_Reference (Entity (S), S, 'r');
10229 end if;
10231 -- If prefix is an access type, the node will be transformed into an
10232 -- explicit dereference during expansion. The type of the node is the
10233 -- designated type of that of the prefix.
10235 if Is_Access_Type (Etype (P)) then
10236 T := Designated_Type (Etype (P));
10237 Check_Fully_Declared_Prefix (T, P);
10238 else
10239 T := Etype (P);
10240 end if;
10242 -- Set flag for expander if discriminant check required on a component
10243 -- appearing within a variant.
10245 if Has_Discriminants (T)
10246 and then Ekind (Entity (S)) = E_Component
10247 and then Present (Original_Record_Component (Entity (S)))
10248 and then Ekind (Original_Record_Component (Entity (S))) = E_Component
10249 and then
10250 Is_Declared_Within_Variant (Original_Record_Component (Entity (S)))
10251 and then not Discriminant_Checks_Suppressed (T)
10252 and then not Init_Component
10253 then
10254 Set_Do_Discriminant_Check (N);
10255 end if;
10257 if Ekind (Entity (S)) = E_Void then
10258 Error_Msg_N ("premature use of component", S);
10259 end if;
10261 -- If the prefix is a record conversion, this may be a renamed
10262 -- discriminant whose bounds differ from those of the original
10263 -- one, so we must ensure that a range check is performed.
10265 if Nkind (P) = N_Type_Conversion
10266 and then Ekind (Entity (S)) = E_Discriminant
10267 and then Is_Discrete_Type (Typ)
10268 then
10269 Set_Etype (N, Base_Type (Typ));
10270 end if;
10272 -- Note: No Eval processing is required, because the prefix is of a
10273 -- record type, or protected type, and neither can possibly be static.
10275 -- If the record type is atomic, and the component is non-atomic, then
10276 -- this is worth a warning, since we have a situation where the access
10277 -- to the component may cause extra read/writes of the atomic array
10278 -- object, or partial word accesses, both of which may be unexpected.
10280 if Nkind (N) = N_Selected_Component
10281 and then Is_Atomic_Ref_With_Address (N)
10282 and then not Is_Atomic (Entity (S))
10283 and then not Is_Atomic (Etype (Entity (S)))
10284 then
10285 Error_Msg_N
10286 ("??access to non-atomic component of atomic record",
10287 Prefix (N));
10288 Error_Msg_N
10289 ("\??may cause unexpected accesses to atomic object",
10290 Prefix (N));
10291 end if;
10293 Analyze_Dimension (N);
10294 end Resolve_Selected_Component;
10296 -------------------
10297 -- Resolve_Shift --
10298 -------------------
10300 procedure Resolve_Shift (N : Node_Id; Typ : Entity_Id) is
10301 B_Typ : constant Entity_Id := Base_Type (Typ);
10302 L : constant Node_Id := Left_Opnd (N);
10303 R : constant Node_Id := Right_Opnd (N);
10305 begin
10306 -- We do the resolution using the base type, because intermediate values
10307 -- in expressions always are of the base type, not a subtype of it.
10309 Resolve (L, B_Typ);
10310 Resolve (R, Standard_Natural);
10312 Check_Unset_Reference (L);
10313 Check_Unset_Reference (R);
10315 Set_Etype (N, B_Typ);
10316 Generate_Operator_Reference (N, B_Typ);
10317 Eval_Shift (N);
10318 end Resolve_Shift;
10320 ---------------------------
10321 -- Resolve_Short_Circuit --
10322 ---------------------------
10324 procedure Resolve_Short_Circuit (N : Node_Id; Typ : Entity_Id) is
10325 B_Typ : constant Entity_Id := Base_Type (Typ);
10326 L : constant Node_Id := Left_Opnd (N);
10327 R : constant Node_Id := Right_Opnd (N);
10329 begin
10330 -- Ensure all actions associated with the left operand (e.g.
10331 -- finalization of transient objects) are fully evaluated locally within
10332 -- an expression with actions. This is particularly helpful for coverage
10333 -- analysis. However this should not happen in generics or if option
10334 -- Minimize_Expression_With_Actions is set.
10336 if Expander_Active and not Minimize_Expression_With_Actions then
10337 declare
10338 Reloc_L : constant Node_Id := Relocate_Node (L);
10339 begin
10340 Save_Interps (Old_N => L, New_N => Reloc_L);
10342 Rewrite (L,
10343 Make_Expression_With_Actions (Sloc (L),
10344 Actions => New_List,
10345 Expression => Reloc_L));
10347 -- Set Comes_From_Source on L to preserve warnings for unset
10348 -- reference.
10350 Set_Comes_From_Source (L, Comes_From_Source (Reloc_L));
10351 end;
10352 end if;
10354 Resolve (L, B_Typ);
10355 Resolve (R, B_Typ);
10357 -- Check for issuing warning for always False assert/check, this happens
10358 -- when assertions are turned off, in which case the pragma Assert/Check
10359 -- was transformed into:
10361 -- if False and then <condition> then ...
10363 -- and we detect this pattern
10365 if Warn_On_Assertion_Failure
10366 and then Is_Entity_Name (R)
10367 and then Entity (R) = Standard_False
10368 and then Nkind (Parent (N)) = N_If_Statement
10369 and then Nkind (N) = N_And_Then
10370 and then Is_Entity_Name (L)
10371 and then Entity (L) = Standard_False
10372 then
10373 declare
10374 Orig : constant Node_Id := Original_Node (Parent (N));
10376 begin
10377 -- Special handling of Asssert pragma
10379 if Nkind (Orig) = N_Pragma
10380 and then Pragma_Name (Orig) = Name_Assert
10381 then
10382 declare
10383 Expr : constant Node_Id :=
10384 Original_Node
10385 (Expression
10386 (First (Pragma_Argument_Associations (Orig))));
10388 begin
10389 -- Don't warn if original condition is explicit False,
10390 -- since obviously the failure is expected in this case.
10392 if Is_Entity_Name (Expr)
10393 and then Entity (Expr) = Standard_False
10394 then
10395 null;
10397 -- Issue warning. We do not want the deletion of the
10398 -- IF/AND-THEN to take this message with it. We achieve this
10399 -- by making sure that the expanded code points to the Sloc
10400 -- of the expression, not the original pragma.
10402 else
10403 -- Note: Use Error_Msg_F here rather than Error_Msg_N.
10404 -- The source location of the expression is not usually
10405 -- the best choice here. For example, it gets located on
10406 -- the last AND keyword in a chain of boolean expressiond
10407 -- AND'ed together. It is best to put the message on the
10408 -- first character of the assertion, which is the effect
10409 -- of the First_Node call here.
10411 Error_Msg_F
10412 ("?A?assertion would fail at run time!",
10413 Expression
10414 (First (Pragma_Argument_Associations (Orig))));
10415 end if;
10416 end;
10418 -- Similar processing for Check pragma
10420 elsif Nkind (Orig) = N_Pragma
10421 and then Pragma_Name (Orig) = Name_Check
10422 then
10423 -- Don't want to warn if original condition is explicit False
10425 declare
10426 Expr : constant Node_Id :=
10427 Original_Node
10428 (Expression
10429 (Next (First (Pragma_Argument_Associations (Orig)))));
10430 begin
10431 if Is_Entity_Name (Expr)
10432 and then Entity (Expr) = Standard_False
10433 then
10434 null;
10436 -- Post warning
10438 else
10439 -- Again use Error_Msg_F rather than Error_Msg_N, see
10440 -- comment above for an explanation of why we do this.
10442 Error_Msg_F
10443 ("?A?check would fail at run time!",
10444 Expression
10445 (Last (Pragma_Argument_Associations (Orig))));
10446 end if;
10447 end;
10448 end if;
10449 end;
10450 end if;
10452 -- Continue with processing of short circuit
10454 Check_Unset_Reference (L);
10455 Check_Unset_Reference (R);
10457 Set_Etype (N, B_Typ);
10458 Eval_Short_Circuit (N);
10459 end Resolve_Short_Circuit;
10461 -------------------
10462 -- Resolve_Slice --
10463 -------------------
10465 procedure Resolve_Slice (N : Node_Id; Typ : Entity_Id) is
10466 Drange : constant Node_Id := Discrete_Range (N);
10467 Name : constant Node_Id := Prefix (N);
10468 Array_Type : Entity_Id := Empty;
10469 Dexpr : Node_Id := Empty;
10470 Index_Type : Entity_Id;
10472 begin
10473 if Is_Overloaded (Name) then
10475 -- Use the context type to select the prefix that yields the correct
10476 -- array type.
10478 declare
10479 I : Interp_Index;
10480 I1 : Interp_Index := 0;
10481 It : Interp;
10482 P : constant Node_Id := Prefix (N);
10483 Found : Boolean := False;
10485 begin
10486 Get_First_Interp (P, I, It);
10487 while Present (It.Typ) loop
10488 if (Is_Array_Type (It.Typ)
10489 and then Covers (Typ, It.Typ))
10490 or else (Is_Access_Type (It.Typ)
10491 and then Is_Array_Type (Designated_Type (It.Typ))
10492 and then Covers (Typ, Designated_Type (It.Typ)))
10493 then
10494 if Found then
10495 It := Disambiguate (P, I1, I, Any_Type);
10497 if It = No_Interp then
10498 Error_Msg_N ("ambiguous prefix for slicing", N);
10499 Set_Etype (N, Typ);
10500 return;
10501 else
10502 Found := True;
10503 Array_Type := It.Typ;
10504 I1 := I;
10505 end if;
10506 else
10507 Found := True;
10508 Array_Type := It.Typ;
10509 I1 := I;
10510 end if;
10511 end if;
10513 Get_Next_Interp (I, It);
10514 end loop;
10515 end;
10517 else
10518 Array_Type := Etype (Name);
10519 end if;
10521 Resolve (Name, Array_Type);
10523 if Is_Access_Type (Array_Type) then
10524 Apply_Access_Check (N);
10525 Array_Type := Designated_Type (Array_Type);
10527 -- If the prefix is an access to an unconstrained array, we must use
10528 -- the actual subtype of the object to perform the index checks. The
10529 -- object denoted by the prefix is implicit in the node, so we build
10530 -- an explicit representation for it in order to compute the actual
10531 -- subtype.
10533 if not Is_Constrained (Array_Type) then
10534 Remove_Side_Effects (Prefix (N));
10536 declare
10537 Obj : constant Node_Id :=
10538 Make_Explicit_Dereference (Sloc (N),
10539 Prefix => New_Copy_Tree (Prefix (N)));
10540 begin
10541 Set_Etype (Obj, Array_Type);
10542 Set_Parent (Obj, Parent (N));
10543 Array_Type := Get_Actual_Subtype (Obj);
10544 end;
10545 end if;
10547 elsif Is_Entity_Name (Name)
10548 or else Nkind (Name) = N_Explicit_Dereference
10549 or else (Nkind (Name) = N_Function_Call
10550 and then not Is_Constrained (Etype (Name)))
10551 then
10552 Array_Type := Get_Actual_Subtype (Name);
10554 -- If the name is a selected component that depends on discriminants,
10555 -- build an actual subtype for it. This can happen only when the name
10556 -- itself is overloaded; otherwise the actual subtype is created when
10557 -- the selected component is analyzed.
10559 elsif Nkind (Name) = N_Selected_Component
10560 and then Full_Analysis
10561 and then Depends_On_Discriminant (First_Index (Array_Type))
10562 then
10563 declare
10564 Act_Decl : constant Node_Id :=
10565 Build_Actual_Subtype_Of_Component (Array_Type, Name);
10566 begin
10567 Insert_Action (N, Act_Decl);
10568 Array_Type := Defining_Identifier (Act_Decl);
10569 end;
10571 -- Maybe this should just be "else", instead of checking for the
10572 -- specific case of slice??? This is needed for the case where the
10573 -- prefix is an Image attribute, which gets expanded to a slice, and so
10574 -- has a constrained subtype which we want to use for the slice range
10575 -- check applied below (the range check won't get done if the
10576 -- unconstrained subtype of the 'Image is used).
10578 elsif Nkind (Name) = N_Slice then
10579 Array_Type := Etype (Name);
10580 end if;
10582 -- Obtain the type of the array index
10584 if Ekind (Array_Type) = E_String_Literal_Subtype then
10585 Index_Type := Etype (String_Literal_Low_Bound (Array_Type));
10586 else
10587 Index_Type := Etype (First_Index (Array_Type));
10588 end if;
10590 -- If name was overloaded, set slice type correctly now
10592 Set_Etype (N, Array_Type);
10594 -- Handle the generation of a range check that compares the array index
10595 -- against the discrete_range. The check is not applied to internally
10596 -- built nodes associated with the expansion of dispatch tables. Check
10597 -- that Ada.Tags has already been loaded to avoid extra dependencies on
10598 -- the unit.
10600 if Tagged_Type_Expansion
10601 and then RTU_Loaded (Ada_Tags)
10602 and then Nkind (Prefix (N)) = N_Selected_Component
10603 and then Present (Entity (Selector_Name (Prefix (N))))
10604 and then Entity (Selector_Name (Prefix (N))) =
10605 RTE_Record_Component (RE_Prims_Ptr)
10606 then
10607 null;
10609 -- The discrete_range is specified by a subtype indication. Create a
10610 -- shallow copy and inherit the type, parent and source location from
10611 -- the discrete_range. This ensures that the range check is inserted
10612 -- relative to the slice and that the runtime exception points to the
10613 -- proper construct.
10615 elsif Is_Entity_Name (Drange) then
10616 Dexpr := New_Copy (Scalar_Range (Entity (Drange)));
10618 Set_Etype (Dexpr, Etype (Drange));
10619 Set_Parent (Dexpr, Parent (Drange));
10620 Set_Sloc (Dexpr, Sloc (Drange));
10622 -- The discrete_range is a regular range. Resolve the bounds and remove
10623 -- their side effects.
10625 else
10626 Resolve (Drange, Base_Type (Index_Type));
10628 if Nkind (Drange) = N_Range then
10629 Force_Evaluation (Low_Bound (Drange));
10630 Force_Evaluation (High_Bound (Drange));
10632 Dexpr := Drange;
10633 end if;
10634 end if;
10636 if Present (Dexpr) then
10637 Apply_Range_Check (Dexpr, Index_Type);
10638 end if;
10640 Set_Slice_Subtype (N);
10642 -- Check bad use of type with predicates
10644 declare
10645 Subt : Entity_Id;
10647 begin
10648 if Nkind (Drange) = N_Subtype_Indication
10649 and then Has_Predicates (Entity (Subtype_Mark (Drange)))
10650 then
10651 Subt := Entity (Subtype_Mark (Drange));
10652 else
10653 Subt := Etype (Drange);
10654 end if;
10656 if Has_Predicates (Subt) then
10657 Bad_Predicated_Subtype_Use
10658 ("subtype& has predicate, not allowed in slice", Drange, Subt);
10659 end if;
10660 end;
10662 -- Otherwise here is where we check suspicious indexes
10664 if Nkind (Drange) = N_Range then
10665 Warn_On_Suspicious_Index (Name, Low_Bound (Drange));
10666 Warn_On_Suspicious_Index (Name, High_Bound (Drange));
10667 end if;
10669 Analyze_Dimension (N);
10670 Eval_Slice (N);
10671 end Resolve_Slice;
10673 ----------------------------
10674 -- Resolve_String_Literal --
10675 ----------------------------
10677 procedure Resolve_String_Literal (N : Node_Id; Typ : Entity_Id) is
10678 C_Typ : constant Entity_Id := Component_Type (Typ);
10679 R_Typ : constant Entity_Id := Root_Type (C_Typ);
10680 Loc : constant Source_Ptr := Sloc (N);
10681 Str : constant String_Id := Strval (N);
10682 Strlen : constant Nat := String_Length (Str);
10683 Subtype_Id : Entity_Id;
10684 Need_Check : Boolean;
10686 begin
10687 -- For a string appearing in a concatenation, defer creation of the
10688 -- string_literal_subtype until the end of the resolution of the
10689 -- concatenation, because the literal may be constant-folded away. This
10690 -- is a useful optimization for long concatenation expressions.
10692 -- If the string is an aggregate built for a single character (which
10693 -- happens in a non-static context) or a is null string to which special
10694 -- checks may apply, we build the subtype. Wide strings must also get a
10695 -- string subtype if they come from a one character aggregate. Strings
10696 -- generated by attributes might be static, but it is often hard to
10697 -- determine whether the enclosing context is static, so we generate
10698 -- subtypes for them as well, thus losing some rarer optimizations ???
10699 -- Same for strings that come from a static conversion.
10701 Need_Check :=
10702 (Strlen = 0 and then Typ /= Standard_String)
10703 or else Nkind (Parent (N)) /= N_Op_Concat
10704 or else (N /= Left_Opnd (Parent (N))
10705 and then N /= Right_Opnd (Parent (N)))
10706 or else ((Typ = Standard_Wide_String
10707 or else Typ = Standard_Wide_Wide_String)
10708 and then Nkind (Original_Node (N)) /= N_String_Literal);
10710 -- If the resolving type is itself a string literal subtype, we can just
10711 -- reuse it, since there is no point in creating another.
10713 if Ekind (Typ) = E_String_Literal_Subtype then
10714 Subtype_Id := Typ;
10716 elsif Nkind (Parent (N)) = N_Op_Concat
10717 and then not Need_Check
10718 and then not Nkind_In (Original_Node (N), N_Character_Literal,
10719 N_Attribute_Reference,
10720 N_Qualified_Expression,
10721 N_Type_Conversion)
10722 then
10723 Subtype_Id := Typ;
10725 -- Do not generate a string literal subtype for the default expression
10726 -- of a formal parameter in GNATprove mode. This is because the string
10727 -- subtype is associated with the freezing actions of the subprogram,
10728 -- however freezing is disabled in GNATprove mode and as a result the
10729 -- subtype is unavailable.
10731 elsif GNATprove_Mode
10732 and then Nkind (Parent (N)) = N_Parameter_Specification
10733 then
10734 Subtype_Id := Typ;
10736 -- Otherwise we must create a string literal subtype. Note that the
10737 -- whole idea of string literal subtypes is simply to avoid the need
10738 -- for building a full fledged array subtype for each literal.
10740 else
10741 Set_String_Literal_Subtype (N, Typ);
10742 Subtype_Id := Etype (N);
10743 end if;
10745 if Nkind (Parent (N)) /= N_Op_Concat
10746 or else Need_Check
10747 then
10748 Set_Etype (N, Subtype_Id);
10749 Eval_String_Literal (N);
10750 end if;
10752 if Is_Limited_Composite (Typ)
10753 or else Is_Private_Composite (Typ)
10754 then
10755 Error_Msg_N ("string literal not available for private array", N);
10756 Set_Etype (N, Any_Type);
10757 return;
10758 end if;
10760 -- The validity of a null string has been checked in the call to
10761 -- Eval_String_Literal.
10763 if Strlen = 0 then
10764 return;
10766 -- Always accept string literal with component type Any_Character, which
10767 -- occurs in error situations and in comparisons of literals, both of
10768 -- which should accept all literals.
10770 elsif R_Typ = Any_Character then
10771 return;
10773 -- If the type is bit-packed, then we always transform the string
10774 -- literal into a full fledged aggregate.
10776 elsif Is_Bit_Packed_Array (Typ) then
10777 null;
10779 -- Deal with cases of Wide_Wide_String, Wide_String, and String
10781 else
10782 -- For Standard.Wide_Wide_String, or any other type whose component
10783 -- type is Standard.Wide_Wide_Character, we know that all the
10784 -- characters in the string must be acceptable, since the parser
10785 -- accepted the characters as valid character literals.
10787 if R_Typ = Standard_Wide_Wide_Character then
10788 null;
10790 -- For the case of Standard.String, or any other type whose component
10791 -- type is Standard.Character, we must make sure that there are no
10792 -- wide characters in the string, i.e. that it is entirely composed
10793 -- of characters in range of type Character.
10795 -- If the string literal is the result of a static concatenation, the
10796 -- test has already been performed on the components, and need not be
10797 -- repeated.
10799 elsif R_Typ = Standard_Character
10800 and then Nkind (Original_Node (N)) /= N_Op_Concat
10801 then
10802 for J in 1 .. Strlen loop
10803 if not In_Character_Range (Get_String_Char (Str, J)) then
10805 -- If we are out of range, post error. This is one of the
10806 -- very few places that we place the flag in the middle of
10807 -- a token, right under the offending wide character. Not
10808 -- quite clear if this is right wrt wide character encoding
10809 -- sequences, but it's only an error message.
10811 Error_Msg
10812 ("literal out of range of type Standard.Character",
10813 Source_Ptr (Int (Loc) + J));
10814 return;
10815 end if;
10816 end loop;
10818 -- For the case of Standard.Wide_String, or any other type whose
10819 -- component type is Standard.Wide_Character, we must make sure that
10820 -- there are no wide characters in the string, i.e. that it is
10821 -- entirely composed of characters in range of type Wide_Character.
10823 -- If the string literal is the result of a static concatenation,
10824 -- the test has already been performed on the components, and need
10825 -- not be repeated.
10827 elsif R_Typ = Standard_Wide_Character
10828 and then Nkind (Original_Node (N)) /= N_Op_Concat
10829 then
10830 for J in 1 .. Strlen loop
10831 if not In_Wide_Character_Range (Get_String_Char (Str, J)) then
10833 -- If we are out of range, post error. This is one of the
10834 -- very few places that we place the flag in the middle of
10835 -- a token, right under the offending wide character.
10837 -- This is not quite right, because characters in general
10838 -- will take more than one character position ???
10840 Error_Msg
10841 ("literal out of range of type Standard.Wide_Character",
10842 Source_Ptr (Int (Loc) + J));
10843 return;
10844 end if;
10845 end loop;
10847 -- If the root type is not a standard character, then we will convert
10848 -- the string into an aggregate and will let the aggregate code do
10849 -- the checking. Standard Wide_Wide_Character is also OK here.
10851 else
10852 null;
10853 end if;
10855 -- See if the component type of the array corresponding to the string
10856 -- has compile time known bounds. If yes we can directly check
10857 -- whether the evaluation of the string will raise constraint error.
10858 -- Otherwise we need to transform the string literal into the
10859 -- corresponding character aggregate and let the aggregate code do
10860 -- the checking. We use the same transformation if the component
10861 -- type has a static predicate, which will be applied to each
10862 -- character when the aggregate is resolved.
10864 if Is_Standard_Character_Type (R_Typ) then
10866 -- Check for the case of full range, where we are definitely OK
10868 if Component_Type (Typ) = Base_Type (Component_Type (Typ)) then
10869 return;
10870 end if;
10872 -- Here the range is not the complete base type range, so check
10874 declare
10875 Comp_Typ_Lo : constant Node_Id :=
10876 Type_Low_Bound (Component_Type (Typ));
10877 Comp_Typ_Hi : constant Node_Id :=
10878 Type_High_Bound (Component_Type (Typ));
10880 Char_Val : Uint;
10882 begin
10883 if Compile_Time_Known_Value (Comp_Typ_Lo)
10884 and then Compile_Time_Known_Value (Comp_Typ_Hi)
10885 then
10886 for J in 1 .. Strlen loop
10887 Char_Val := UI_From_Int (Int (Get_String_Char (Str, J)));
10889 if Char_Val < Expr_Value (Comp_Typ_Lo)
10890 or else Char_Val > Expr_Value (Comp_Typ_Hi)
10891 then
10892 Apply_Compile_Time_Constraint_Error
10893 (N, "character out of range??",
10894 CE_Range_Check_Failed,
10895 Loc => Source_Ptr (Int (Loc) + J));
10896 end if;
10897 end loop;
10899 if not Has_Static_Predicate (C_Typ) then
10900 return;
10901 end if;
10902 end if;
10903 end;
10904 end if;
10905 end if;
10907 -- If we got here we meed to transform the string literal into the
10908 -- equivalent qualified positional array aggregate. This is rather
10909 -- heavy artillery for this situation, but it is hard work to avoid.
10911 declare
10912 Lits : constant List_Id := New_List;
10913 P : Source_Ptr := Loc + 1;
10914 C : Char_Code;
10916 begin
10917 -- Build the character literals, we give them source locations that
10918 -- correspond to the string positions, which is a bit tricky given
10919 -- the possible presence of wide character escape sequences.
10921 for J in 1 .. Strlen loop
10922 C := Get_String_Char (Str, J);
10923 Set_Character_Literal_Name (C);
10925 Append_To (Lits,
10926 Make_Character_Literal (P,
10927 Chars => Name_Find,
10928 Char_Literal_Value => UI_From_CC (C)));
10930 if In_Character_Range (C) then
10931 P := P + 1;
10933 -- Should we have a call to Skip_Wide here ???
10935 -- ??? else
10936 -- Skip_Wide (P);
10938 end if;
10939 end loop;
10941 Rewrite (N,
10942 Make_Qualified_Expression (Loc,
10943 Subtype_Mark => New_Occurrence_Of (Typ, Loc),
10944 Expression =>
10945 Make_Aggregate (Loc, Expressions => Lits)));
10947 Analyze_And_Resolve (N, Typ);
10948 end;
10949 end Resolve_String_Literal;
10951 -------------------------
10952 -- Resolve_Target_Name --
10953 -------------------------
10955 procedure Resolve_Target_Name (N : Node_Id; Typ : Entity_Id) is
10956 begin
10957 Set_Etype (N, Typ);
10958 end Resolve_Target_Name;
10960 -----------------------------
10961 -- Resolve_Type_Conversion --
10962 -----------------------------
10964 procedure Resolve_Type_Conversion (N : Node_Id; Typ : Entity_Id) is
10965 Conv_OK : constant Boolean := Conversion_OK (N);
10966 Operand : constant Node_Id := Expression (N);
10967 Operand_Typ : constant Entity_Id := Etype (Operand);
10968 Target_Typ : constant Entity_Id := Etype (N);
10969 Rop : Node_Id;
10970 Orig_N : Node_Id;
10971 Orig_T : Node_Id;
10973 Test_Redundant : Boolean := Warn_On_Redundant_Constructs;
10974 -- Set to False to suppress cases where we want to suppress the test
10975 -- for redundancy to avoid possible false positives on this warning.
10977 begin
10978 if not Conv_OK
10979 and then not Valid_Conversion (N, Target_Typ, Operand)
10980 then
10981 return;
10982 end if;
10984 -- If the Operand Etype is Universal_Fixed, then the conversion is
10985 -- never redundant. We need this check because by the time we have
10986 -- finished the rather complex transformation, the conversion looks
10987 -- redundant when it is not.
10989 if Operand_Typ = Universal_Fixed then
10990 Test_Redundant := False;
10992 -- If the operand is marked as Any_Fixed, then special processing is
10993 -- required. This is also a case where we suppress the test for a
10994 -- redundant conversion, since most certainly it is not redundant.
10996 elsif Operand_Typ = Any_Fixed then
10997 Test_Redundant := False;
10999 -- Mixed-mode operation involving a literal. Context must be a fixed
11000 -- type which is applied to the literal subsequently.
11002 -- Multiplication and division involving two fixed type operands must
11003 -- yield a universal real because the result is computed in arbitrary
11004 -- precision.
11006 if Is_Fixed_Point_Type (Typ)
11007 and then Nkind_In (Operand, N_Op_Divide, N_Op_Multiply)
11008 and then Etype (Left_Opnd (Operand)) = Any_Fixed
11009 and then Etype (Right_Opnd (Operand)) = Any_Fixed
11010 then
11011 Set_Etype (Operand, Universal_Real);
11013 elsif Is_Numeric_Type (Typ)
11014 and then Nkind_In (Operand, N_Op_Multiply, N_Op_Divide)
11015 and then (Etype (Right_Opnd (Operand)) = Universal_Real
11016 or else
11017 Etype (Left_Opnd (Operand)) = Universal_Real)
11018 then
11019 -- Return if expression is ambiguous
11021 if Unique_Fixed_Point_Type (N) = Any_Type then
11022 return;
11024 -- If nothing else, the available fixed type is Duration
11026 else
11027 Set_Etype (Operand, Standard_Duration);
11028 end if;
11030 -- Resolve the real operand with largest available precision
11032 if Etype (Right_Opnd (Operand)) = Universal_Real then
11033 Rop := New_Copy_Tree (Right_Opnd (Operand));
11034 else
11035 Rop := New_Copy_Tree (Left_Opnd (Operand));
11036 end if;
11038 Resolve (Rop, Universal_Real);
11040 -- If the operand is a literal (it could be a non-static and
11041 -- illegal exponentiation) check whether the use of Duration
11042 -- is potentially inaccurate.
11044 if Nkind (Rop) = N_Real_Literal
11045 and then Realval (Rop) /= Ureal_0
11046 and then abs (Realval (Rop)) < Delta_Value (Standard_Duration)
11047 then
11048 Error_Msg_N
11049 ("??universal real operand can only "
11050 & "be interpreted as Duration!", Rop);
11051 Error_Msg_N
11052 ("\??precision will be lost in the conversion!", Rop);
11053 end if;
11055 elsif Is_Numeric_Type (Typ)
11056 and then Nkind (Operand) in N_Op
11057 and then Unique_Fixed_Point_Type (N) /= Any_Type
11058 then
11059 Set_Etype (Operand, Standard_Duration);
11061 else
11062 Error_Msg_N ("invalid context for mixed mode operation", N);
11063 Set_Etype (Operand, Any_Type);
11064 return;
11065 end if;
11066 end if;
11068 Resolve (Operand);
11070 -- In SPARK, a type conversion between array types should be restricted
11071 -- to types which have matching static bounds.
11073 -- Protect call to Matching_Static_Array_Bounds to avoid costly
11074 -- operation if not needed.
11076 if Restriction_Check_Required (SPARK_05)
11077 and then Is_Array_Type (Target_Typ)
11078 and then Is_Array_Type (Operand_Typ)
11079 and then Operand_Typ /= Any_Composite -- or else Operand in error
11080 and then not Matching_Static_Array_Bounds (Target_Typ, Operand_Typ)
11081 then
11082 Check_SPARK_05_Restriction
11083 ("array types should have matching static bounds", N);
11084 end if;
11086 -- In formal mode, the operand of an ancestor type conversion must be an
11087 -- object (not an expression).
11089 if Is_Tagged_Type (Target_Typ)
11090 and then not Is_Class_Wide_Type (Target_Typ)
11091 and then Is_Tagged_Type (Operand_Typ)
11092 and then not Is_Class_Wide_Type (Operand_Typ)
11093 and then Is_Ancestor (Target_Typ, Operand_Typ)
11094 and then not Is_SPARK_05_Object_Reference (Operand)
11095 then
11096 Check_SPARK_05_Restriction ("object required", Operand);
11097 end if;
11099 Analyze_Dimension (N);
11101 -- Note: we do the Eval_Type_Conversion call before applying the
11102 -- required checks for a subtype conversion. This is important, since
11103 -- both are prepared under certain circumstances to change the type
11104 -- conversion to a constraint error node, but in the case of
11105 -- Eval_Type_Conversion this may reflect an illegality in the static
11106 -- case, and we would miss the illegality (getting only a warning
11107 -- message), if we applied the type conversion checks first.
11109 Eval_Type_Conversion (N);
11111 -- Even when evaluation is not possible, we may be able to simplify the
11112 -- conversion or its expression. This needs to be done before applying
11113 -- checks, since otherwise the checks may use the original expression
11114 -- and defeat the simplifications. This is specifically the case for
11115 -- elimination of the floating-point Truncation attribute in
11116 -- float-to-int conversions.
11118 Simplify_Type_Conversion (N);
11120 -- If after evaluation we still have a type conversion, then we may need
11121 -- to apply checks required for a subtype conversion.
11123 -- Skip these type conversion checks if universal fixed operands
11124 -- operands involved, since range checks are handled separately for
11125 -- these cases (in the appropriate Expand routines in unit Exp_Fixd).
11127 if Nkind (N) = N_Type_Conversion
11128 and then not Is_Generic_Type (Root_Type (Target_Typ))
11129 and then Target_Typ /= Universal_Fixed
11130 and then Operand_Typ /= Universal_Fixed
11131 then
11132 Apply_Type_Conversion_Checks (N);
11133 end if;
11135 -- Issue warning for conversion of simple object to its own type. We
11136 -- have to test the original nodes, since they may have been rewritten
11137 -- by various optimizations.
11139 Orig_N := Original_Node (N);
11141 -- Here we test for a redundant conversion if the warning mode is
11142 -- active (and was not locally reset), and we have a type conversion
11143 -- from source not appearing in a generic instance.
11145 if Test_Redundant
11146 and then Nkind (Orig_N) = N_Type_Conversion
11147 and then Comes_From_Source (Orig_N)
11148 and then not In_Instance
11149 then
11150 Orig_N := Original_Node (Expression (Orig_N));
11151 Orig_T := Target_Typ;
11153 -- If the node is part of a larger expression, the Target_Type
11154 -- may not be the original type of the node if the context is a
11155 -- condition. Recover original type to see if conversion is needed.
11157 if Is_Boolean_Type (Orig_T)
11158 and then Nkind (Parent (N)) in N_Op
11159 then
11160 Orig_T := Etype (Parent (N));
11161 end if;
11163 -- If we have an entity name, then give the warning if the entity
11164 -- is the right type, or if it is a loop parameter covered by the
11165 -- original type (that's needed because loop parameters have an
11166 -- odd subtype coming from the bounds).
11168 if (Is_Entity_Name (Orig_N)
11169 and then
11170 (Etype (Entity (Orig_N)) = Orig_T
11171 or else
11172 (Ekind (Entity (Orig_N)) = E_Loop_Parameter
11173 and then Covers (Orig_T, Etype (Entity (Orig_N))))))
11175 -- If not an entity, then type of expression must match
11177 or else Etype (Orig_N) = Orig_T
11178 then
11179 -- One more check, do not give warning if the analyzed conversion
11180 -- has an expression with non-static bounds, and the bounds of the
11181 -- target are static. This avoids junk warnings in cases where the
11182 -- conversion is necessary to establish staticness, for example in
11183 -- a case statement.
11185 if not Is_OK_Static_Subtype (Operand_Typ)
11186 and then Is_OK_Static_Subtype (Target_Typ)
11187 then
11188 null;
11190 -- Finally, if this type conversion occurs in a context requiring
11191 -- a prefix, and the expression is a qualified expression then the
11192 -- type conversion is not redundant, since a qualified expression
11193 -- is not a prefix, whereas a type conversion is. For example, "X
11194 -- := T'(Funx(...)).Y;" is illegal because a selected component
11195 -- requires a prefix, but a type conversion makes it legal: "X :=
11196 -- T(T'(Funx(...))).Y;"
11198 -- In Ada 2012, a qualified expression is a name, so this idiom is
11199 -- no longer needed, but we still suppress the warning because it
11200 -- seems unfriendly for warnings to pop up when you switch to the
11201 -- newer language version.
11203 elsif Nkind (Orig_N) = N_Qualified_Expression
11204 and then Nkind_In (Parent (N), N_Attribute_Reference,
11205 N_Indexed_Component,
11206 N_Selected_Component,
11207 N_Slice,
11208 N_Explicit_Dereference)
11209 then
11210 null;
11212 -- Never warn on conversion to Long_Long_Integer'Base since
11213 -- that is most likely an artifact of the extended overflow
11214 -- checking and comes from complex expanded code.
11216 elsif Orig_T = Base_Type (Standard_Long_Long_Integer) then
11217 null;
11219 -- Here we give the redundant conversion warning. If it is an
11220 -- entity, give the name of the entity in the message. If not,
11221 -- just mention the expression.
11223 -- Shoudn't we test Warn_On_Redundant_Constructs here ???
11225 else
11226 if Is_Entity_Name (Orig_N) then
11227 Error_Msg_Node_2 := Orig_T;
11228 Error_Msg_NE -- CODEFIX
11229 ("??redundant conversion, & is of type &!",
11230 N, Entity (Orig_N));
11231 else
11232 Error_Msg_NE
11233 ("??redundant conversion, expression is of type&!",
11234 N, Orig_T);
11235 end if;
11236 end if;
11237 end if;
11238 end if;
11240 -- Ada 2005 (AI-251): Handle class-wide interface type conversions.
11241 -- No need to perform any interface conversion if the type of the
11242 -- expression coincides with the target type.
11244 if Ada_Version >= Ada_2005
11245 and then Expander_Active
11246 and then Operand_Typ /= Target_Typ
11247 then
11248 declare
11249 Opnd : Entity_Id := Operand_Typ;
11250 Target : Entity_Id := Target_Typ;
11252 begin
11253 -- If the type of the operand is a limited view, use nonlimited
11254 -- view when available. If it is a class-wide type, recover the
11255 -- class-wide type of the nonlimited view.
11257 if From_Limited_With (Opnd)
11258 and then Has_Non_Limited_View (Opnd)
11259 then
11260 Opnd := Non_Limited_View (Opnd);
11261 Set_Etype (Expression (N), Opnd);
11262 end if;
11264 if Is_Access_Type (Opnd) then
11265 Opnd := Designated_Type (Opnd);
11266 end if;
11268 if Is_Access_Type (Target_Typ) then
11269 Target := Designated_Type (Target);
11270 end if;
11272 if Opnd = Target then
11273 null;
11275 -- Conversion from interface type
11277 elsif Is_Interface (Opnd) then
11279 -- Ada 2005 (AI-217): Handle entities from limited views
11281 if From_Limited_With (Opnd) then
11282 Error_Msg_Qual_Level := 99;
11283 Error_Msg_NE -- CODEFIX
11284 ("missing WITH clause on package &", N,
11285 Cunit_Entity (Get_Source_Unit (Base_Type (Opnd))));
11286 Error_Msg_N
11287 ("type conversions require visibility of the full view",
11290 elsif From_Limited_With (Target)
11291 and then not
11292 (Is_Access_Type (Target_Typ)
11293 and then Present (Non_Limited_View (Etype (Target))))
11294 then
11295 Error_Msg_Qual_Level := 99;
11296 Error_Msg_NE -- CODEFIX
11297 ("missing WITH clause on package &", N,
11298 Cunit_Entity (Get_Source_Unit (Base_Type (Target))));
11299 Error_Msg_N
11300 ("type conversions require visibility of the full view",
11303 else
11304 Expand_Interface_Conversion (N);
11305 end if;
11307 -- Conversion to interface type
11309 elsif Is_Interface (Target) then
11311 -- Handle subtypes
11313 if Ekind_In (Opnd, E_Protected_Subtype, E_Task_Subtype) then
11314 Opnd := Etype (Opnd);
11315 end if;
11317 if Is_Class_Wide_Type (Opnd)
11318 or else Interface_Present_In_Ancestor
11319 (Typ => Opnd,
11320 Iface => Target)
11321 then
11322 Expand_Interface_Conversion (N);
11323 else
11324 Error_Msg_Name_1 := Chars (Etype (Target));
11325 Error_Msg_Name_2 := Chars (Opnd);
11326 Error_Msg_N
11327 ("wrong interface conversion (% is not a progenitor "
11328 & "of %)", N);
11329 end if;
11330 end if;
11331 end;
11332 end if;
11334 -- Ada 2012: once the type conversion is resolved, check whether the
11335 -- operand statisfies the static predicate of the target type.
11337 if Has_Predicates (Target_Typ) then
11338 Check_Expression_Against_Static_Predicate (N, Target_Typ);
11339 end if;
11341 -- If at this stage we have a real to integer conversion, make sure that
11342 -- the Do_Range_Check flag is set, because such conversions in general
11343 -- need a range check. We only need this if expansion is off.
11344 -- In GNATprove mode, we only do that when converting from fixed-point
11345 -- (as floating-point to integer conversions are now handled in
11346 -- GNATprove mode).
11348 if Nkind (N) = N_Type_Conversion
11349 and then not Expander_Active
11350 and then Is_Integer_Type (Target_Typ)
11351 and then (Is_Fixed_Point_Type (Operand_Typ)
11352 or else (not GNATprove_Mode
11353 and then Is_Floating_Point_Type (Operand_Typ)))
11354 then
11355 Set_Do_Range_Check (Operand);
11356 end if;
11358 -- Generating C code a type conversion of an access to constrained
11359 -- array type to access to unconstrained array type involves building
11360 -- a fat pointer which in general cannot be generated on the fly. We
11361 -- remove side effects in order to store the result of the conversion
11362 -- into a temporary.
11364 if Modify_Tree_For_C
11365 and then Nkind (N) = N_Type_Conversion
11366 and then Nkind (Parent (N)) /= N_Object_Declaration
11367 and then Is_Access_Type (Etype (N))
11368 and then Is_Array_Type (Designated_Type (Etype (N)))
11369 and then not Is_Constrained (Designated_Type (Etype (N)))
11370 and then Is_Constrained (Designated_Type (Etype (Expression (N))))
11371 then
11372 Remove_Side_Effects (N);
11373 end if;
11374 end Resolve_Type_Conversion;
11376 ----------------------
11377 -- Resolve_Unary_Op --
11378 ----------------------
11380 procedure Resolve_Unary_Op (N : Node_Id; Typ : Entity_Id) is
11381 B_Typ : constant Entity_Id := Base_Type (Typ);
11382 R : constant Node_Id := Right_Opnd (N);
11383 OK : Boolean;
11384 Lo : Uint;
11385 Hi : Uint;
11387 begin
11388 if Is_Modular_Integer_Type (Typ) and then Nkind (N) /= N_Op_Not then
11389 Error_Msg_Name_1 := Chars (Typ);
11390 Check_SPARK_05_Restriction
11391 ("unary operator not defined for modular type%", N);
11392 end if;
11394 -- Deal with intrinsic unary operators
11396 if Comes_From_Source (N)
11397 and then Ekind (Entity (N)) = E_Function
11398 and then Is_Imported (Entity (N))
11399 and then Is_Intrinsic_Subprogram (Entity (N))
11400 then
11401 Resolve_Intrinsic_Unary_Operator (N, Typ);
11402 return;
11403 end if;
11405 -- Deal with universal cases
11407 if Etype (R) = Universal_Integer
11408 or else
11409 Etype (R) = Universal_Real
11410 then
11411 Check_For_Visible_Operator (N, B_Typ);
11412 end if;
11414 Set_Etype (N, B_Typ);
11415 Resolve (R, B_Typ);
11417 -- Generate warning for expressions like abs (x mod 2)
11419 if Warn_On_Redundant_Constructs
11420 and then Nkind (N) = N_Op_Abs
11421 then
11422 Determine_Range (Right_Opnd (N), OK, Lo, Hi);
11424 if OK and then Hi >= Lo and then Lo >= 0 then
11425 Error_Msg_N -- CODEFIX
11426 ("?r?abs applied to known non-negative value has no effect", N);
11427 end if;
11428 end if;
11430 -- Deal with reference generation
11432 Check_Unset_Reference (R);
11433 Generate_Operator_Reference (N, B_Typ);
11434 Analyze_Dimension (N);
11435 Eval_Unary_Op (N);
11437 -- Set overflow checking bit. Much cleverer code needed here eventually
11438 -- and perhaps the Resolve routines should be separated for the various
11439 -- arithmetic operations, since they will need different processing ???
11441 if Nkind (N) in N_Op then
11442 if not Overflow_Checks_Suppressed (Etype (N)) then
11443 Enable_Overflow_Check (N);
11444 end if;
11445 end if;
11447 -- Generate warning for expressions like -5 mod 3 for integers. No need
11448 -- to worry in the floating-point case, since parens do not affect the
11449 -- result so there is no point in giving in a warning.
11451 declare
11452 Norig : constant Node_Id := Original_Node (N);
11453 Rorig : Node_Id;
11454 Val : Uint;
11455 HB : Uint;
11456 LB : Uint;
11457 Lval : Uint;
11458 Opnd : Node_Id;
11460 begin
11461 if Warn_On_Questionable_Missing_Parens
11462 and then Comes_From_Source (Norig)
11463 and then Is_Integer_Type (Typ)
11464 and then Nkind (Norig) = N_Op_Minus
11465 then
11466 Rorig := Original_Node (Right_Opnd (Norig));
11468 -- We are looking for cases where the right operand is not
11469 -- parenthesized, and is a binary operator, multiply, divide, or
11470 -- mod. These are the cases where the grouping can affect results.
11472 if Paren_Count (Rorig) = 0
11473 and then Nkind_In (Rorig, N_Op_Mod, N_Op_Multiply, N_Op_Divide)
11474 then
11475 -- For mod, we always give the warning, since the value is
11476 -- affected by the parenthesization (e.g. (-5) mod 315 /=
11477 -- -(5 mod 315)). But for the other cases, the only concern is
11478 -- overflow, e.g. for the case of 8 big signed (-(2 * 64)
11479 -- overflows, but (-2) * 64 does not). So we try to give the
11480 -- message only when overflow is possible.
11482 if Nkind (Rorig) /= N_Op_Mod
11483 and then Compile_Time_Known_Value (R)
11484 then
11485 Val := Expr_Value (R);
11487 if Compile_Time_Known_Value (Type_High_Bound (Typ)) then
11488 HB := Expr_Value (Type_High_Bound (Typ));
11489 else
11490 HB := Expr_Value (Type_High_Bound (Base_Type (Typ)));
11491 end if;
11493 if Compile_Time_Known_Value (Type_Low_Bound (Typ)) then
11494 LB := Expr_Value (Type_Low_Bound (Typ));
11495 else
11496 LB := Expr_Value (Type_Low_Bound (Base_Type (Typ)));
11497 end if;
11499 -- Note that the test below is deliberately excluding the
11500 -- largest negative number, since that is a potentially
11501 -- troublesome case (e.g. -2 * x, where the result is the
11502 -- largest negative integer has an overflow with 2 * x).
11504 if Val > LB and then Val <= HB then
11505 return;
11506 end if;
11507 end if;
11509 -- For the multiplication case, the only case we have to worry
11510 -- about is when (-a)*b is exactly the largest negative number
11511 -- so that -(a*b) can cause overflow. This can only happen if
11512 -- a is a power of 2, and more generally if any operand is a
11513 -- constant that is not a power of 2, then the parentheses
11514 -- cannot affect whether overflow occurs. We only bother to
11515 -- test the left most operand
11517 -- Loop looking at left operands for one that has known value
11519 Opnd := Rorig;
11520 Opnd_Loop : while Nkind (Opnd) = N_Op_Multiply loop
11521 if Compile_Time_Known_Value (Left_Opnd (Opnd)) then
11522 Lval := UI_Abs (Expr_Value (Left_Opnd (Opnd)));
11524 -- Operand value of 0 or 1 skips warning
11526 if Lval <= 1 then
11527 return;
11529 -- Otherwise check power of 2, if power of 2, warn, if
11530 -- anything else, skip warning.
11532 else
11533 while Lval /= 2 loop
11534 if Lval mod 2 = 1 then
11535 return;
11536 else
11537 Lval := Lval / 2;
11538 end if;
11539 end loop;
11541 exit Opnd_Loop;
11542 end if;
11543 end if;
11545 -- Keep looking at left operands
11547 Opnd := Left_Opnd (Opnd);
11548 end loop Opnd_Loop;
11550 -- For rem or "/" we can only have a problematic situation
11551 -- if the divisor has a value of minus one or one. Otherwise
11552 -- overflow is impossible (divisor > 1) or we have a case of
11553 -- division by zero in any case.
11555 if Nkind_In (Rorig, N_Op_Divide, N_Op_Rem)
11556 and then Compile_Time_Known_Value (Right_Opnd (Rorig))
11557 and then UI_Abs (Expr_Value (Right_Opnd (Rorig))) /= 1
11558 then
11559 return;
11560 end if;
11562 -- If we fall through warning should be issued
11564 -- Shouldn't we test Warn_On_Questionable_Missing_Parens ???
11566 Error_Msg_N
11567 ("??unary minus expression should be parenthesized here!", N);
11568 end if;
11569 end if;
11570 end;
11571 end Resolve_Unary_Op;
11573 ----------------------------------
11574 -- Resolve_Unchecked_Expression --
11575 ----------------------------------
11577 procedure Resolve_Unchecked_Expression
11578 (N : Node_Id;
11579 Typ : Entity_Id)
11581 begin
11582 Resolve (Expression (N), Typ, Suppress => All_Checks);
11583 Set_Etype (N, Typ);
11584 end Resolve_Unchecked_Expression;
11586 ---------------------------------------
11587 -- Resolve_Unchecked_Type_Conversion --
11588 ---------------------------------------
11590 procedure Resolve_Unchecked_Type_Conversion
11591 (N : Node_Id;
11592 Typ : Entity_Id)
11594 pragma Warnings (Off, Typ);
11596 Operand : constant Node_Id := Expression (N);
11597 Opnd_Type : constant Entity_Id := Etype (Operand);
11599 begin
11600 -- Resolve operand using its own type
11602 Resolve (Operand, Opnd_Type);
11604 -- In an inlined context, the unchecked conversion may be applied
11605 -- to a literal, in which case its type is the type of the context.
11606 -- (In other contexts conversions cannot apply to literals).
11608 if In_Inlined_Body
11609 and then (Opnd_Type = Any_Character or else
11610 Opnd_Type = Any_Integer or else
11611 Opnd_Type = Any_Real)
11612 then
11613 Set_Etype (Operand, Typ);
11614 end if;
11616 Analyze_Dimension (N);
11617 Eval_Unchecked_Conversion (N);
11618 end Resolve_Unchecked_Type_Conversion;
11620 ------------------------------
11621 -- Rewrite_Operator_As_Call --
11622 ------------------------------
11624 procedure Rewrite_Operator_As_Call (N : Node_Id; Nam : Entity_Id) is
11625 Loc : constant Source_Ptr := Sloc (N);
11626 Actuals : constant List_Id := New_List;
11627 New_N : Node_Id;
11629 begin
11630 if Nkind (N) in N_Binary_Op then
11631 Append (Left_Opnd (N), Actuals);
11632 end if;
11634 Append (Right_Opnd (N), Actuals);
11636 New_N :=
11637 Make_Function_Call (Sloc => Loc,
11638 Name => New_Occurrence_Of (Nam, Loc),
11639 Parameter_Associations => Actuals);
11641 Preserve_Comes_From_Source (New_N, N);
11642 Preserve_Comes_From_Source (Name (New_N), N);
11643 Rewrite (N, New_N);
11644 Set_Etype (N, Etype (Nam));
11645 end Rewrite_Operator_As_Call;
11647 ------------------------------
11648 -- Rewrite_Renamed_Operator --
11649 ------------------------------
11651 procedure Rewrite_Renamed_Operator
11652 (N : Node_Id;
11653 Op : Entity_Id;
11654 Typ : Entity_Id)
11656 Nam : constant Name_Id := Chars (Op);
11657 Is_Binary : constant Boolean := Nkind (N) in N_Binary_Op;
11658 Op_Node : Node_Id;
11660 begin
11661 -- Do not perform this transformation within a pre/postcondition,
11662 -- because the expression will be reanalyzed, and the transformation
11663 -- might affect the visibility of the operator, e.g. in an instance.
11664 -- Note that fully analyzed and expanded pre/postconditions appear as
11665 -- pragma Check equivalents.
11667 if In_Pre_Post_Condition (N) then
11668 return;
11669 end if;
11671 -- Likewise when an expression function is being preanalyzed, since the
11672 -- expression will be reanalyzed as part of the generated body.
11674 if In_Spec_Expression then
11675 declare
11676 S : constant Entity_Id := Current_Scope_No_Loops;
11677 begin
11678 if Ekind (S) = E_Function
11679 and then Nkind (Original_Node (Unit_Declaration_Node (S))) =
11680 N_Expression_Function
11681 then
11682 return;
11683 end if;
11684 end;
11685 end if;
11687 -- Rewrite the operator node using the real operator, not its renaming.
11688 -- Exclude user-defined intrinsic operations of the same name, which are
11689 -- treated separately and rewritten as calls.
11691 if Ekind (Op) /= E_Function or else Chars (N) /= Nam then
11692 Op_Node := New_Node (Operator_Kind (Nam, Is_Binary), Sloc (N));
11693 Set_Chars (Op_Node, Nam);
11694 Set_Etype (Op_Node, Etype (N));
11695 Set_Entity (Op_Node, Op);
11696 Set_Right_Opnd (Op_Node, Right_Opnd (N));
11698 -- Indicate that both the original entity and its renaming are
11699 -- referenced at this point.
11701 Generate_Reference (Entity (N), N);
11702 Generate_Reference (Op, N);
11704 if Is_Binary then
11705 Set_Left_Opnd (Op_Node, Left_Opnd (N));
11706 end if;
11708 Rewrite (N, Op_Node);
11710 -- If the context type is private, add the appropriate conversions so
11711 -- that the operator is applied to the full view. This is done in the
11712 -- routines that resolve intrinsic operators.
11714 if Is_Intrinsic_Subprogram (Op) and then Is_Private_Type (Typ) then
11715 case Nkind (N) is
11716 when N_Op_Add
11717 | N_Op_Divide
11718 | N_Op_Expon
11719 | N_Op_Mod
11720 | N_Op_Multiply
11721 | N_Op_Rem
11722 | N_Op_Subtract
11724 Resolve_Intrinsic_Operator (N, Typ);
11726 when N_Op_Abs
11727 | N_Op_Minus
11728 | N_Op_Plus
11730 Resolve_Intrinsic_Unary_Operator (N, Typ);
11732 when others =>
11733 Resolve (N, Typ);
11734 end case;
11735 end if;
11737 elsif Ekind (Op) = E_Function and then Is_Intrinsic_Subprogram (Op) then
11739 -- Operator renames a user-defined operator of the same name. Use the
11740 -- original operator in the node, which is the one Gigi knows about.
11742 Set_Entity (N, Op);
11743 Set_Is_Overloaded (N, False);
11744 end if;
11745 end Rewrite_Renamed_Operator;
11747 -----------------------
11748 -- Set_Slice_Subtype --
11749 -----------------------
11751 -- Build an implicit subtype declaration to represent the type delivered by
11752 -- the slice. This is an abbreviated version of an array subtype. We define
11753 -- an index subtype for the slice, using either the subtype name or the
11754 -- discrete range of the slice. To be consistent with index usage elsewhere
11755 -- we create a list header to hold the single index. This list is not
11756 -- otherwise attached to the syntax tree.
11758 procedure Set_Slice_Subtype (N : Node_Id) is
11759 Loc : constant Source_Ptr := Sloc (N);
11760 Index_List : constant List_Id := New_List;
11761 Index : Node_Id;
11762 Index_Subtype : Entity_Id;
11763 Index_Type : Entity_Id;
11764 Slice_Subtype : Entity_Id;
11765 Drange : constant Node_Id := Discrete_Range (N);
11767 begin
11768 Index_Type := Base_Type (Etype (Drange));
11770 if Is_Entity_Name (Drange) then
11771 Index_Subtype := Entity (Drange);
11773 else
11774 -- We force the evaluation of a range. This is definitely needed in
11775 -- the renamed case, and seems safer to do unconditionally. Note in
11776 -- any case that since we will create and insert an Itype referring
11777 -- to this range, we must make sure any side effect removal actions
11778 -- are inserted before the Itype definition.
11780 if Nkind (Drange) = N_Range then
11781 Force_Evaluation (Low_Bound (Drange));
11782 Force_Evaluation (High_Bound (Drange));
11784 -- If the discrete range is given by a subtype indication, the
11785 -- type of the slice is the base of the subtype mark.
11787 elsif Nkind (Drange) = N_Subtype_Indication then
11788 declare
11789 R : constant Node_Id := Range_Expression (Constraint (Drange));
11790 begin
11791 Index_Type := Base_Type (Entity (Subtype_Mark (Drange)));
11792 Force_Evaluation (Low_Bound (R));
11793 Force_Evaluation (High_Bound (R));
11794 end;
11795 end if;
11797 Index_Subtype := Create_Itype (Subtype_Kind (Ekind (Index_Type)), N);
11799 -- Take a new copy of Drange (where bounds have been rewritten to
11800 -- reference side-effect-free names). Using a separate tree ensures
11801 -- that further expansion (e.g. while rewriting a slice assignment
11802 -- into a FOR loop) does not attempt to remove side effects on the
11803 -- bounds again (which would cause the bounds in the index subtype
11804 -- definition to refer to temporaries before they are defined) (the
11805 -- reason is that some names are considered side effect free here
11806 -- for the subtype, but not in the context of a loop iteration
11807 -- scheme).
11809 Set_Scalar_Range (Index_Subtype, New_Copy_Tree (Drange));
11810 Set_Parent (Scalar_Range (Index_Subtype), Index_Subtype);
11811 Set_Etype (Index_Subtype, Index_Type);
11812 Set_Size_Info (Index_Subtype, Index_Type);
11813 Set_RM_Size (Index_Subtype, RM_Size (Index_Type));
11814 end if;
11816 Slice_Subtype := Create_Itype (E_Array_Subtype, N);
11818 Index := New_Occurrence_Of (Index_Subtype, Loc);
11819 Set_Etype (Index, Index_Subtype);
11820 Append (Index, Index_List);
11822 Set_First_Index (Slice_Subtype, Index);
11823 Set_Etype (Slice_Subtype, Base_Type (Etype (N)));
11824 Set_Is_Constrained (Slice_Subtype, True);
11826 Check_Compile_Time_Size (Slice_Subtype);
11828 -- The Etype of the existing Slice node is reset to this slice subtype.
11829 -- Its bounds are obtained from its first index.
11831 Set_Etype (N, Slice_Subtype);
11833 -- For bit-packed slice subtypes, freeze immediately (except in the case
11834 -- of being in a "spec expression" where we never freeze when we first
11835 -- see the expression).
11837 if Is_Bit_Packed_Array (Slice_Subtype) and not In_Spec_Expression then
11838 Freeze_Itype (Slice_Subtype, N);
11840 -- For all other cases insert an itype reference in the slice's actions
11841 -- so that the itype is frozen at the proper place in the tree (i.e. at
11842 -- the point where actions for the slice are analyzed). Note that this
11843 -- is different from freezing the itype immediately, which might be
11844 -- premature (e.g. if the slice is within a transient scope). This needs
11845 -- to be done only if expansion is enabled.
11847 elsif Expander_Active then
11848 Ensure_Defined (Typ => Slice_Subtype, N => N);
11849 end if;
11850 end Set_Slice_Subtype;
11852 --------------------------------
11853 -- Set_String_Literal_Subtype --
11854 --------------------------------
11856 procedure Set_String_Literal_Subtype (N : Node_Id; Typ : Entity_Id) is
11857 Loc : constant Source_Ptr := Sloc (N);
11858 Low_Bound : constant Node_Id :=
11859 Type_Low_Bound (Etype (First_Index (Typ)));
11860 Subtype_Id : Entity_Id;
11862 begin
11863 if Nkind (N) /= N_String_Literal then
11864 return;
11865 end if;
11867 Subtype_Id := Create_Itype (E_String_Literal_Subtype, N);
11868 Set_String_Literal_Length (Subtype_Id, UI_From_Int
11869 (String_Length (Strval (N))));
11870 Set_Etype (Subtype_Id, Base_Type (Typ));
11871 Set_Is_Constrained (Subtype_Id);
11872 Set_Etype (N, Subtype_Id);
11874 -- The low bound is set from the low bound of the corresponding index
11875 -- type. Note that we do not store the high bound in the string literal
11876 -- subtype, but it can be deduced if necessary from the length and the
11877 -- low bound.
11879 if Is_OK_Static_Expression (Low_Bound) then
11880 Set_String_Literal_Low_Bound (Subtype_Id, Low_Bound);
11882 -- If the lower bound is not static we create a range for the string
11883 -- literal, using the index type and the known length of the literal.
11884 -- The index type is not necessarily Positive, so the upper bound is
11885 -- computed as T'Val (T'Pos (Low_Bound) + L - 1).
11887 else
11888 declare
11889 Index_List : constant List_Id := New_List;
11890 Index_Type : constant Entity_Id := Etype (First_Index (Typ));
11891 High_Bound : constant Node_Id :=
11892 Make_Attribute_Reference (Loc,
11893 Attribute_Name => Name_Val,
11894 Prefix =>
11895 New_Occurrence_Of (Index_Type, Loc),
11896 Expressions => New_List (
11897 Make_Op_Add (Loc,
11898 Left_Opnd =>
11899 Make_Attribute_Reference (Loc,
11900 Attribute_Name => Name_Pos,
11901 Prefix =>
11902 New_Occurrence_Of (Index_Type, Loc),
11903 Expressions =>
11904 New_List (New_Copy_Tree (Low_Bound))),
11905 Right_Opnd =>
11906 Make_Integer_Literal (Loc,
11907 String_Length (Strval (N)) - 1))));
11909 Array_Subtype : Entity_Id;
11910 Drange : Node_Id;
11911 Index : Node_Id;
11912 Index_Subtype : Entity_Id;
11914 begin
11915 if Is_Integer_Type (Index_Type) then
11916 Set_String_Literal_Low_Bound
11917 (Subtype_Id, Make_Integer_Literal (Loc, 1));
11919 else
11920 -- If the index type is an enumeration type, build bounds
11921 -- expression with attributes.
11923 Set_String_Literal_Low_Bound
11924 (Subtype_Id,
11925 Make_Attribute_Reference (Loc,
11926 Attribute_Name => Name_First,
11927 Prefix =>
11928 New_Occurrence_Of (Base_Type (Index_Type), Loc)));
11929 Set_Etype (String_Literal_Low_Bound (Subtype_Id), Index_Type);
11930 end if;
11932 Analyze_And_Resolve (String_Literal_Low_Bound (Subtype_Id));
11934 -- Build bona fide subtype for the string, and wrap it in an
11935 -- unchecked conversion, because the back end expects the
11936 -- String_Literal_Subtype to have a static lower bound.
11938 Index_Subtype :=
11939 Create_Itype (Subtype_Kind (Ekind (Index_Type)), N);
11940 Drange := Make_Range (Loc, New_Copy_Tree (Low_Bound), High_Bound);
11941 Set_Scalar_Range (Index_Subtype, Drange);
11942 Set_Parent (Drange, N);
11943 Analyze_And_Resolve (Drange, Index_Type);
11945 -- In this context, the Index_Type may already have a constraint,
11946 -- so use common base type on string subtype. The base type may
11947 -- be used when generating attributes of the string, for example
11948 -- in the context of a slice assignment.
11950 Set_Etype (Index_Subtype, Base_Type (Index_Type));
11951 Set_Size_Info (Index_Subtype, Index_Type);
11952 Set_RM_Size (Index_Subtype, RM_Size (Index_Type));
11954 Array_Subtype := Create_Itype (E_Array_Subtype, N);
11956 Index := New_Occurrence_Of (Index_Subtype, Loc);
11957 Set_Etype (Index, Index_Subtype);
11958 Append (Index, Index_List);
11960 Set_First_Index (Array_Subtype, Index);
11961 Set_Etype (Array_Subtype, Base_Type (Typ));
11962 Set_Is_Constrained (Array_Subtype, True);
11964 Rewrite (N,
11965 Make_Unchecked_Type_Conversion (Loc,
11966 Subtype_Mark => New_Occurrence_Of (Array_Subtype, Loc),
11967 Expression => Relocate_Node (N)));
11968 Set_Etype (N, Array_Subtype);
11969 end;
11970 end if;
11971 end Set_String_Literal_Subtype;
11973 ------------------------------
11974 -- Simplify_Type_Conversion --
11975 ------------------------------
11977 procedure Simplify_Type_Conversion (N : Node_Id) is
11978 begin
11979 if Nkind (N) = N_Type_Conversion then
11980 declare
11981 Operand : constant Node_Id := Expression (N);
11982 Target_Typ : constant Entity_Id := Etype (N);
11983 Opnd_Typ : constant Entity_Id := Etype (Operand);
11985 begin
11986 -- Special processing if the conversion is the expression of a
11987 -- Rounding or Truncation attribute reference. In this case we
11988 -- replace:
11990 -- ityp (ftyp'Rounding (x)) or ityp (ftyp'Truncation (x))
11992 -- by
11994 -- ityp (x)
11996 -- with the Float_Truncate flag set to False or True respectively,
11997 -- which is more efficient.
11999 if Is_Floating_Point_Type (Opnd_Typ)
12000 and then
12001 (Is_Integer_Type (Target_Typ)
12002 or else (Is_Fixed_Point_Type (Target_Typ)
12003 and then Conversion_OK (N)))
12004 and then Nkind (Operand) = N_Attribute_Reference
12005 and then Nam_In (Attribute_Name (Operand), Name_Rounding,
12006 Name_Truncation)
12007 then
12008 declare
12009 Truncate : constant Boolean :=
12010 Attribute_Name (Operand) = Name_Truncation;
12011 begin
12012 Rewrite (Operand,
12013 Relocate_Node (First (Expressions (Operand))));
12014 Set_Float_Truncate (N, Truncate);
12015 end;
12016 end if;
12017 end;
12018 end if;
12019 end Simplify_Type_Conversion;
12021 -----------------------------
12022 -- Unique_Fixed_Point_Type --
12023 -----------------------------
12025 function Unique_Fixed_Point_Type (N : Node_Id) return Entity_Id is
12026 procedure Fixed_Point_Error (T1 : Entity_Id; T2 : Entity_Id);
12027 -- Give error messages for true ambiguity. Messages are posted on node
12028 -- N, and entities T1, T2 are the possible interpretations.
12030 -----------------------
12031 -- Fixed_Point_Error --
12032 -----------------------
12034 procedure Fixed_Point_Error (T1 : Entity_Id; T2 : Entity_Id) is
12035 begin
12036 Error_Msg_N ("ambiguous universal_fixed_expression", N);
12037 Error_Msg_NE ("\\possible interpretation as}", N, T1);
12038 Error_Msg_NE ("\\possible interpretation as}", N, T2);
12039 end Fixed_Point_Error;
12041 -- Local variables
12043 ErrN : Node_Id;
12044 Item : Node_Id;
12045 Scop : Entity_Id;
12046 T1 : Entity_Id;
12047 T2 : Entity_Id;
12049 -- Start of processing for Unique_Fixed_Point_Type
12051 begin
12052 -- The operations on Duration are visible, so Duration is always a
12053 -- possible interpretation.
12055 T1 := Standard_Duration;
12057 -- Look for fixed-point types in enclosing scopes
12059 Scop := Current_Scope;
12060 while Scop /= Standard_Standard loop
12061 T2 := First_Entity (Scop);
12062 while Present (T2) loop
12063 if Is_Fixed_Point_Type (T2)
12064 and then Current_Entity (T2) = T2
12065 and then Scope (Base_Type (T2)) = Scop
12066 then
12067 if Present (T1) then
12068 Fixed_Point_Error (T1, T2);
12069 return Any_Type;
12070 else
12071 T1 := T2;
12072 end if;
12073 end if;
12075 Next_Entity (T2);
12076 end loop;
12078 Scop := Scope (Scop);
12079 end loop;
12081 -- Look for visible fixed type declarations in the context
12083 Item := First (Context_Items (Cunit (Current_Sem_Unit)));
12084 while Present (Item) loop
12085 if Nkind (Item) = N_With_Clause then
12086 Scop := Entity (Name (Item));
12087 T2 := First_Entity (Scop);
12088 while Present (T2) loop
12089 if Is_Fixed_Point_Type (T2)
12090 and then Scope (Base_Type (T2)) = Scop
12091 and then (Is_Potentially_Use_Visible (T2) or else In_Use (T2))
12092 then
12093 if Present (T1) then
12094 Fixed_Point_Error (T1, T2);
12095 return Any_Type;
12096 else
12097 T1 := T2;
12098 end if;
12099 end if;
12101 Next_Entity (T2);
12102 end loop;
12103 end if;
12105 Next (Item);
12106 end loop;
12108 if Nkind (N) = N_Real_Literal then
12109 Error_Msg_NE ("??real literal interpreted as }!", N, T1);
12111 else
12112 -- When the context is a type conversion, issue the warning on the
12113 -- expression of the conversion because it is the actual operation.
12115 if Nkind_In (N, N_Type_Conversion, N_Unchecked_Type_Conversion) then
12116 ErrN := Expression (N);
12117 else
12118 ErrN := N;
12119 end if;
12121 Error_Msg_NE
12122 ("??universal_fixed expression interpreted as }!", ErrN, T1);
12123 end if;
12125 return T1;
12126 end Unique_Fixed_Point_Type;
12128 ----------------------
12129 -- Valid_Conversion --
12130 ----------------------
12132 function Valid_Conversion
12133 (N : Node_Id;
12134 Target : Entity_Id;
12135 Operand : Node_Id;
12136 Report_Errs : Boolean := True) return Boolean
12138 Target_Type : constant Entity_Id := Base_Type (Target);
12139 Opnd_Type : Entity_Id := Etype (Operand);
12140 Inc_Ancestor : Entity_Id;
12142 function Conversion_Check
12143 (Valid : Boolean;
12144 Msg : String) return Boolean;
12145 -- Little routine to post Msg if Valid is False, returns Valid value
12147 procedure Conversion_Error_N (Msg : String; N : Node_Or_Entity_Id);
12148 -- If Report_Errs, then calls Errout.Error_Msg_N with its arguments
12150 procedure Conversion_Error_NE
12151 (Msg : String;
12152 N : Node_Or_Entity_Id;
12153 E : Node_Or_Entity_Id);
12154 -- If Report_Errs, then calls Errout.Error_Msg_NE with its arguments
12156 function In_Instance_Code return Boolean;
12157 -- Return True if expression is within an instance but is not in one of
12158 -- the actuals of the instantiation. Type conversions within an instance
12159 -- are not rechecked because type visbility may lead to spurious errors,
12160 -- but conversions in an actual for a formal object must be checked.
12162 function Valid_Tagged_Conversion
12163 (Target_Type : Entity_Id;
12164 Opnd_Type : Entity_Id) return Boolean;
12165 -- Specifically test for validity of tagged conversions
12167 function Valid_Array_Conversion return Boolean;
12168 -- Check index and component conformance, and accessibility levels if
12169 -- the component types are anonymous access types (Ada 2005).
12171 ----------------------
12172 -- Conversion_Check --
12173 ----------------------
12175 function Conversion_Check
12176 (Valid : Boolean;
12177 Msg : String) return Boolean
12179 begin
12180 if not Valid
12182 -- A generic unit has already been analyzed and we have verified
12183 -- that a particular conversion is OK in that context. Since the
12184 -- instance is reanalyzed without relying on the relationships
12185 -- established during the analysis of the generic, it is possible
12186 -- to end up with inconsistent views of private types. Do not emit
12187 -- the error message in such cases. The rest of the machinery in
12188 -- Valid_Conversion still ensures the proper compatibility of
12189 -- target and operand types.
12191 and then not In_Instance_Code
12192 then
12193 Conversion_Error_N (Msg, Operand);
12194 end if;
12196 return Valid;
12197 end Conversion_Check;
12199 ------------------------
12200 -- Conversion_Error_N --
12201 ------------------------
12203 procedure Conversion_Error_N (Msg : String; N : Node_Or_Entity_Id) is
12204 begin
12205 if Report_Errs then
12206 Error_Msg_N (Msg, N);
12207 end if;
12208 end Conversion_Error_N;
12210 -------------------------
12211 -- Conversion_Error_NE --
12212 -------------------------
12214 procedure Conversion_Error_NE
12215 (Msg : String;
12216 N : Node_Or_Entity_Id;
12217 E : Node_Or_Entity_Id)
12219 begin
12220 if Report_Errs then
12221 Error_Msg_NE (Msg, N, E);
12222 end if;
12223 end Conversion_Error_NE;
12225 ----------------------
12226 -- In_Instance_Code --
12227 ----------------------
12229 function In_Instance_Code return Boolean is
12230 Par : Node_Id;
12232 begin
12233 if not In_Instance then
12234 return False;
12236 else
12237 Par := Parent (N);
12238 while Present (Par) loop
12240 -- The expression is part of an actual object if it appears in
12241 -- the generated object declaration in the instance.
12243 if Nkind (Par) = N_Object_Declaration
12244 and then Present (Corresponding_Generic_Association (Par))
12245 then
12246 return False;
12248 else
12249 exit when
12250 Nkind (Par) in N_Statement_Other_Than_Procedure_Call
12251 or else Nkind (Par) in N_Subprogram_Call
12252 or else Nkind (Par) in N_Declaration;
12253 end if;
12255 Par := Parent (Par);
12256 end loop;
12258 -- Otherwise the expression appears within the instantiated unit
12260 return True;
12261 end if;
12262 end In_Instance_Code;
12264 ----------------------------
12265 -- Valid_Array_Conversion --
12266 ----------------------------
12268 function Valid_Array_Conversion return Boolean is
12269 Opnd_Comp_Type : constant Entity_Id := Component_Type (Opnd_Type);
12270 Opnd_Comp_Base : constant Entity_Id := Base_Type (Opnd_Comp_Type);
12272 Opnd_Index : Node_Id;
12273 Opnd_Index_Type : Entity_Id;
12275 Target_Comp_Type : constant Entity_Id :=
12276 Component_Type (Target_Type);
12277 Target_Comp_Base : constant Entity_Id :=
12278 Base_Type (Target_Comp_Type);
12280 Target_Index : Node_Id;
12281 Target_Index_Type : Entity_Id;
12283 begin
12284 -- Error if wrong number of dimensions
12287 Number_Dimensions (Target_Type) /= Number_Dimensions (Opnd_Type)
12288 then
12289 Conversion_Error_N
12290 ("incompatible number of dimensions for conversion", Operand);
12291 return False;
12293 -- Number of dimensions matches
12295 else
12296 -- Loop through indexes of the two arrays
12298 Target_Index := First_Index (Target_Type);
12299 Opnd_Index := First_Index (Opnd_Type);
12300 while Present (Target_Index) and then Present (Opnd_Index) loop
12301 Target_Index_Type := Etype (Target_Index);
12302 Opnd_Index_Type := Etype (Opnd_Index);
12304 -- Error if index types are incompatible
12306 if not (Is_Integer_Type (Target_Index_Type)
12307 and then Is_Integer_Type (Opnd_Index_Type))
12308 and then (Root_Type (Target_Index_Type)
12309 /= Root_Type (Opnd_Index_Type))
12310 then
12311 Conversion_Error_N
12312 ("incompatible index types for array conversion",
12313 Operand);
12314 return False;
12315 end if;
12317 Next_Index (Target_Index);
12318 Next_Index (Opnd_Index);
12319 end loop;
12321 -- If component types have same base type, all set
12323 if Target_Comp_Base = Opnd_Comp_Base then
12324 null;
12326 -- Here if base types of components are not the same. The only
12327 -- time this is allowed is if we have anonymous access types.
12329 -- The conversion of arrays of anonymous access types can lead
12330 -- to dangling pointers. AI-392 formalizes the accessibility
12331 -- checks that must be applied to such conversions to prevent
12332 -- out-of-scope references.
12334 elsif Ekind_In
12335 (Target_Comp_Base, E_Anonymous_Access_Type,
12336 E_Anonymous_Access_Subprogram_Type)
12337 and then Ekind (Opnd_Comp_Base) = Ekind (Target_Comp_Base)
12338 and then
12339 Subtypes_Statically_Match (Target_Comp_Type, Opnd_Comp_Type)
12340 then
12341 if Type_Access_Level (Target_Type) <
12342 Deepest_Type_Access_Level (Opnd_Type)
12343 then
12344 if In_Instance_Body then
12345 Error_Msg_Warn := SPARK_Mode /= On;
12346 Conversion_Error_N
12347 ("source array type has deeper accessibility "
12348 & "level than target<<", Operand);
12349 Conversion_Error_N ("\Program_Error [<<", Operand);
12350 Rewrite (N,
12351 Make_Raise_Program_Error (Sloc (N),
12352 Reason => PE_Accessibility_Check_Failed));
12353 Set_Etype (N, Target_Type);
12354 return False;
12356 -- Conversion not allowed because of accessibility levels
12358 else
12359 Conversion_Error_N
12360 ("source array type has deeper accessibility "
12361 & "level than target", Operand);
12362 return False;
12363 end if;
12365 else
12366 null;
12367 end if;
12369 -- All other cases where component base types do not match
12371 else
12372 Conversion_Error_N
12373 ("incompatible component types for array conversion",
12374 Operand);
12375 return False;
12376 end if;
12378 -- Check that component subtypes statically match. For numeric
12379 -- types this means that both must be either constrained or
12380 -- unconstrained. For enumeration types the bounds must match.
12381 -- All of this is checked in Subtypes_Statically_Match.
12383 if not Subtypes_Statically_Match
12384 (Target_Comp_Type, Opnd_Comp_Type)
12385 then
12386 Conversion_Error_N
12387 ("component subtypes must statically match", Operand);
12388 return False;
12389 end if;
12390 end if;
12392 return True;
12393 end Valid_Array_Conversion;
12395 -----------------------------
12396 -- Valid_Tagged_Conversion --
12397 -----------------------------
12399 function Valid_Tagged_Conversion
12400 (Target_Type : Entity_Id;
12401 Opnd_Type : Entity_Id) return Boolean
12403 begin
12404 -- Upward conversions are allowed (RM 4.6(22))
12406 if Covers (Target_Type, Opnd_Type)
12407 or else Is_Ancestor (Target_Type, Opnd_Type)
12408 then
12409 return True;
12411 -- Downward conversion are allowed if the operand is class-wide
12412 -- (RM 4.6(23)).
12414 elsif Is_Class_Wide_Type (Opnd_Type)
12415 and then Covers (Opnd_Type, Target_Type)
12416 then
12417 return True;
12419 elsif Covers (Opnd_Type, Target_Type)
12420 or else Is_Ancestor (Opnd_Type, Target_Type)
12421 then
12422 return
12423 Conversion_Check (False,
12424 "downward conversion of tagged objects not allowed");
12426 -- Ada 2005 (AI-251): The conversion to/from interface types is
12427 -- always valid. The types involved may be class-wide (sub)types.
12429 elsif Is_Interface (Etype (Base_Type (Target_Type)))
12430 or else Is_Interface (Etype (Base_Type (Opnd_Type)))
12431 then
12432 return True;
12434 -- If the operand is a class-wide type obtained through a limited_
12435 -- with clause, and the context includes the nonlimited view, use
12436 -- it to determine whether the conversion is legal.
12438 elsif Is_Class_Wide_Type (Opnd_Type)
12439 and then From_Limited_With (Opnd_Type)
12440 and then Present (Non_Limited_View (Etype (Opnd_Type)))
12441 and then Is_Interface (Non_Limited_View (Etype (Opnd_Type)))
12442 then
12443 return True;
12445 elsif Is_Access_Type (Opnd_Type)
12446 and then Is_Interface (Directly_Designated_Type (Opnd_Type))
12447 then
12448 return True;
12450 else
12451 Conversion_Error_NE
12452 ("invalid tagged conversion, not compatible with}",
12453 N, First_Subtype (Opnd_Type));
12454 return False;
12455 end if;
12456 end Valid_Tagged_Conversion;
12458 -- Start of processing for Valid_Conversion
12460 begin
12461 Check_Parameterless_Call (Operand);
12463 if Is_Overloaded (Operand) then
12464 declare
12465 I : Interp_Index;
12466 I1 : Interp_Index;
12467 It : Interp;
12468 It1 : Interp;
12469 N1 : Entity_Id;
12470 T1 : Entity_Id;
12472 begin
12473 -- Remove procedure calls, which syntactically cannot appear in
12474 -- this context, but which cannot be removed by type checking,
12475 -- because the context does not impose a type.
12477 -- The node may be labelled overloaded, but still contain only one
12478 -- interpretation because others were discarded earlier. If this
12479 -- is the case, retain the single interpretation if legal.
12481 Get_First_Interp (Operand, I, It);
12482 Opnd_Type := It.Typ;
12483 Get_Next_Interp (I, It);
12485 if Present (It.Typ)
12486 and then Opnd_Type /= Standard_Void_Type
12487 then
12488 -- More than one candidate interpretation is available
12490 Get_First_Interp (Operand, I, It);
12491 while Present (It.Typ) loop
12492 if It.Typ = Standard_Void_Type then
12493 Remove_Interp (I);
12494 end if;
12496 -- When compiling for a system where Address is of a visible
12497 -- integer type, spurious ambiguities can be produced when
12498 -- arithmetic operations have a literal operand and return
12499 -- System.Address or a descendant of it. These ambiguities
12500 -- are usually resolved by the context, but for conversions
12501 -- there is no context type and the removal of the spurious
12502 -- operations must be done explicitly here.
12504 if not Address_Is_Private
12505 and then Is_Descendant_Of_Address (It.Typ)
12506 then
12507 Remove_Interp (I);
12508 end if;
12510 Get_Next_Interp (I, It);
12511 end loop;
12512 end if;
12514 Get_First_Interp (Operand, I, It);
12515 I1 := I;
12516 It1 := It;
12518 if No (It.Typ) then
12519 Conversion_Error_N ("illegal operand in conversion", Operand);
12520 return False;
12521 end if;
12523 Get_Next_Interp (I, It);
12525 if Present (It.Typ) then
12526 N1 := It1.Nam;
12527 T1 := It1.Typ;
12528 It1 := Disambiguate (Operand, I1, I, Any_Type);
12530 if It1 = No_Interp then
12531 Conversion_Error_N
12532 ("ambiguous operand in conversion", Operand);
12534 -- If the interpretation involves a standard operator, use
12535 -- the location of the type, which may be user-defined.
12537 if Sloc (It.Nam) = Standard_Location then
12538 Error_Msg_Sloc := Sloc (It.Typ);
12539 else
12540 Error_Msg_Sloc := Sloc (It.Nam);
12541 end if;
12543 Conversion_Error_N -- CODEFIX
12544 ("\\possible interpretation#!", Operand);
12546 if Sloc (N1) = Standard_Location then
12547 Error_Msg_Sloc := Sloc (T1);
12548 else
12549 Error_Msg_Sloc := Sloc (N1);
12550 end if;
12552 Conversion_Error_N -- CODEFIX
12553 ("\\possible interpretation#!", Operand);
12555 return False;
12556 end if;
12557 end if;
12559 Set_Etype (Operand, It1.Typ);
12560 Opnd_Type := It1.Typ;
12561 end;
12562 end if;
12564 -- Deal with conversion of integer type to address if the pragma
12565 -- Allow_Integer_Address is in effect. We convert the conversion to
12566 -- an unchecked conversion in this case and we are all done.
12568 if Address_Integer_Convert_OK (Opnd_Type, Target_Type) then
12569 Rewrite (N, Unchecked_Convert_To (Target_Type, Expression (N)));
12570 Analyze_And_Resolve (N, Target_Type);
12571 return True;
12572 end if;
12574 -- If we are within a child unit, check whether the type of the
12575 -- expression has an ancestor in a parent unit, in which case it
12576 -- belongs to its derivation class even if the ancestor is private.
12577 -- See RM 7.3.1 (5.2/3).
12579 Inc_Ancestor := Get_Incomplete_View_Of_Ancestor (Opnd_Type);
12581 -- Numeric types
12583 if Is_Numeric_Type (Target_Type) then
12585 -- A universal fixed expression can be converted to any numeric type
12587 if Opnd_Type = Universal_Fixed then
12588 return True;
12590 -- Also no need to check when in an instance or inlined body, because
12591 -- the legality has been established when the template was analyzed.
12592 -- Furthermore, numeric conversions may occur where only a private
12593 -- view of the operand type is visible at the instantiation point.
12594 -- This results in a spurious error if we check that the operand type
12595 -- is a numeric type.
12597 -- Note: in a previous version of this unit, the following tests were
12598 -- applied only for generated code (Comes_From_Source set to False),
12599 -- but in fact the test is required for source code as well, since
12600 -- this situation can arise in source code.
12602 elsif In_Instance_Code or else In_Inlined_Body then
12603 return True;
12605 -- Otherwise we need the conversion check
12607 else
12608 return Conversion_Check
12609 (Is_Numeric_Type (Opnd_Type)
12610 or else
12611 (Present (Inc_Ancestor)
12612 and then Is_Numeric_Type (Inc_Ancestor)),
12613 "illegal operand for numeric conversion");
12614 end if;
12616 -- Array types
12618 elsif Is_Array_Type (Target_Type) then
12619 if not Is_Array_Type (Opnd_Type)
12620 or else Opnd_Type = Any_Composite
12621 or else Opnd_Type = Any_String
12622 then
12623 Conversion_Error_N
12624 ("illegal operand for array conversion", Operand);
12625 return False;
12627 else
12628 return Valid_Array_Conversion;
12629 end if;
12631 -- Ada 2005 (AI-251): Internally generated conversions of access to
12632 -- interface types added to force the displacement of the pointer to
12633 -- reference the corresponding dispatch table.
12635 elsif not Comes_From_Source (N)
12636 and then Is_Access_Type (Target_Type)
12637 and then Is_Interface (Designated_Type (Target_Type))
12638 then
12639 return True;
12641 -- Ada 2005 (AI-251): Anonymous access types where target references an
12642 -- interface type.
12644 elsif Is_Access_Type (Opnd_Type)
12645 and then Ekind_In (Target_Type, E_General_Access_Type,
12646 E_Anonymous_Access_Type)
12647 and then Is_Interface (Directly_Designated_Type (Target_Type))
12648 then
12649 -- Check the static accessibility rule of 4.6(17). Note that the
12650 -- check is not enforced when within an instance body, since the
12651 -- RM requires such cases to be caught at run time.
12653 -- If the operand is a rewriting of an allocator no check is needed
12654 -- because there are no accessibility issues.
12656 if Nkind (Original_Node (N)) = N_Allocator then
12657 null;
12659 elsif Ekind (Target_Type) /= E_Anonymous_Access_Type then
12660 if Type_Access_Level (Opnd_Type) >
12661 Deepest_Type_Access_Level (Target_Type)
12662 then
12663 -- In an instance, this is a run-time check, but one we know
12664 -- will fail, so generate an appropriate warning. The raise
12665 -- will be generated by Expand_N_Type_Conversion.
12667 if In_Instance_Body then
12668 Error_Msg_Warn := SPARK_Mode /= On;
12669 Conversion_Error_N
12670 ("cannot convert local pointer to non-local access type<<",
12671 Operand);
12672 Conversion_Error_N ("\Program_Error [<<", Operand);
12674 else
12675 Conversion_Error_N
12676 ("cannot convert local pointer to non-local access type",
12677 Operand);
12678 return False;
12679 end if;
12681 -- Special accessibility checks are needed in the case of access
12682 -- discriminants declared for a limited type.
12684 elsif Ekind (Opnd_Type) = E_Anonymous_Access_Type
12685 and then not Is_Local_Anonymous_Access (Opnd_Type)
12686 then
12687 -- When the operand is a selected access discriminant the check
12688 -- needs to be made against the level of the object denoted by
12689 -- the prefix of the selected name (Object_Access_Level handles
12690 -- checking the prefix of the operand for this case).
12692 if Nkind (Operand) = N_Selected_Component
12693 and then Object_Access_Level (Operand) >
12694 Deepest_Type_Access_Level (Target_Type)
12695 then
12696 -- In an instance, this is a run-time check, but one we know
12697 -- will fail, so generate an appropriate warning. The raise
12698 -- will be generated by Expand_N_Type_Conversion.
12700 if In_Instance_Body then
12701 Error_Msg_Warn := SPARK_Mode /= On;
12702 Conversion_Error_N
12703 ("cannot convert access discriminant to non-local "
12704 & "access type<<", Operand);
12705 Conversion_Error_N ("\Program_Error [<<", Operand);
12707 -- Real error if not in instance body
12709 else
12710 Conversion_Error_N
12711 ("cannot convert access discriminant to non-local "
12712 & "access type", Operand);
12713 return False;
12714 end if;
12715 end if;
12717 -- The case of a reference to an access discriminant from
12718 -- within a limited type declaration (which will appear as
12719 -- a discriminal) is always illegal because the level of the
12720 -- discriminant is considered to be deeper than any (nameable)
12721 -- access type.
12723 if Is_Entity_Name (Operand)
12724 and then not Is_Local_Anonymous_Access (Opnd_Type)
12725 and then
12726 Ekind_In (Entity (Operand), E_In_Parameter, E_Constant)
12727 and then Present (Discriminal_Link (Entity (Operand)))
12728 then
12729 Conversion_Error_N
12730 ("discriminant has deeper accessibility level than target",
12731 Operand);
12732 return False;
12733 end if;
12734 end if;
12735 end if;
12737 return True;
12739 -- General and anonymous access types
12741 elsif Ekind_In (Target_Type, E_General_Access_Type,
12742 E_Anonymous_Access_Type)
12743 and then
12744 Conversion_Check
12745 (Is_Access_Type (Opnd_Type)
12746 and then not
12747 Ekind_In (Opnd_Type, E_Access_Subprogram_Type,
12748 E_Access_Protected_Subprogram_Type),
12749 "must be an access-to-object type")
12750 then
12751 if Is_Access_Constant (Opnd_Type)
12752 and then not Is_Access_Constant (Target_Type)
12753 then
12754 Conversion_Error_N
12755 ("access-to-constant operand type not allowed", Operand);
12756 return False;
12757 end if;
12759 -- Check the static accessibility rule of 4.6(17). Note that the
12760 -- check is not enforced when within an instance body, since the RM
12761 -- requires such cases to be caught at run time.
12763 if Ekind (Target_Type) /= E_Anonymous_Access_Type
12764 or else Is_Local_Anonymous_Access (Target_Type)
12765 or else Nkind (Associated_Node_For_Itype (Target_Type)) =
12766 N_Object_Declaration
12767 then
12768 -- Ada 2012 (AI05-0149): Perform legality checking on implicit
12769 -- conversions from an anonymous access type to a named general
12770 -- access type. Such conversions are not allowed in the case of
12771 -- access parameters and stand-alone objects of an anonymous
12772 -- access type. The implicit conversion case is recognized by
12773 -- testing that Comes_From_Source is False and that it's been
12774 -- rewritten. The Comes_From_Source test isn't sufficient because
12775 -- nodes in inlined calls to predefined library routines can have
12776 -- Comes_From_Source set to False. (Is there a better way to test
12777 -- for implicit conversions???)
12779 if Ada_Version >= Ada_2012
12780 and then not Comes_From_Source (N)
12781 and then Is_Rewrite_Substitution (N)
12782 and then Ekind (Target_Type) = E_General_Access_Type
12783 and then Ekind (Opnd_Type) = E_Anonymous_Access_Type
12784 then
12785 if Is_Itype (Opnd_Type) then
12787 -- Implicit conversions aren't allowed for objects of an
12788 -- anonymous access type, since such objects have nonstatic
12789 -- levels in Ada 2012.
12791 if Nkind (Associated_Node_For_Itype (Opnd_Type)) =
12792 N_Object_Declaration
12793 then
12794 Conversion_Error_N
12795 ("implicit conversion of stand-alone anonymous "
12796 & "access object not allowed", Operand);
12797 return False;
12799 -- Implicit conversions aren't allowed for anonymous access
12800 -- parameters. The "not Is_Local_Anonymous_Access_Type" test
12801 -- is done to exclude anonymous access results.
12803 elsif not Is_Local_Anonymous_Access (Opnd_Type)
12804 and then Nkind_In (Associated_Node_For_Itype (Opnd_Type),
12805 N_Function_Specification,
12806 N_Procedure_Specification)
12807 then
12808 Conversion_Error_N
12809 ("implicit conversion of anonymous access formal "
12810 & "not allowed", Operand);
12811 return False;
12813 -- This is a case where there's an enclosing object whose
12814 -- to which the "statically deeper than" relationship does
12815 -- not apply (such as an access discriminant selected from
12816 -- a dereference of an access parameter).
12818 elsif Object_Access_Level (Operand)
12819 = Scope_Depth (Standard_Standard)
12820 then
12821 Conversion_Error_N
12822 ("implicit conversion of anonymous access value "
12823 & "not allowed", Operand);
12824 return False;
12826 -- In other cases, the level of the operand's type must be
12827 -- statically less deep than that of the target type, else
12828 -- implicit conversion is disallowed (by RM12-8.6(27.1/3)).
12830 elsif Type_Access_Level (Opnd_Type) >
12831 Deepest_Type_Access_Level (Target_Type)
12832 then
12833 Conversion_Error_N
12834 ("implicit conversion of anonymous access value "
12835 & "violates accessibility", Operand);
12836 return False;
12837 end if;
12838 end if;
12840 elsif Type_Access_Level (Opnd_Type) >
12841 Deepest_Type_Access_Level (Target_Type)
12842 then
12843 -- In an instance, this is a run-time check, but one we know
12844 -- will fail, so generate an appropriate warning. The raise
12845 -- will be generated by Expand_N_Type_Conversion.
12847 if In_Instance_Body then
12848 Error_Msg_Warn := SPARK_Mode /= On;
12849 Conversion_Error_N
12850 ("cannot convert local pointer to non-local access type<<",
12851 Operand);
12852 Conversion_Error_N ("\Program_Error [<<", Operand);
12854 -- If not in an instance body, this is a real error
12856 else
12857 -- Avoid generation of spurious error message
12859 if not Error_Posted (N) then
12860 Conversion_Error_N
12861 ("cannot convert local pointer to non-local access type",
12862 Operand);
12863 end if;
12865 return False;
12866 end if;
12868 -- Special accessibility checks are needed in the case of access
12869 -- discriminants declared for a limited type.
12871 elsif Ekind (Opnd_Type) = E_Anonymous_Access_Type
12872 and then not Is_Local_Anonymous_Access (Opnd_Type)
12873 then
12874 -- When the operand is a selected access discriminant the check
12875 -- needs to be made against the level of the object denoted by
12876 -- the prefix of the selected name (Object_Access_Level handles
12877 -- checking the prefix of the operand for this case).
12879 if Nkind (Operand) = N_Selected_Component
12880 and then Object_Access_Level (Operand) >
12881 Deepest_Type_Access_Level (Target_Type)
12882 then
12883 -- In an instance, this is a run-time check, but one we know
12884 -- will fail, so generate an appropriate warning. The raise
12885 -- will be generated by Expand_N_Type_Conversion.
12887 if In_Instance_Body then
12888 Error_Msg_Warn := SPARK_Mode /= On;
12889 Conversion_Error_N
12890 ("cannot convert access discriminant to non-local "
12891 & "access type<<", Operand);
12892 Conversion_Error_N ("\Program_Error [<<", Operand);
12894 -- If not in an instance body, this is a real error
12896 else
12897 Conversion_Error_N
12898 ("cannot convert access discriminant to non-local "
12899 & "access type", Operand);
12900 return False;
12901 end if;
12902 end if;
12904 -- The case of a reference to an access discriminant from
12905 -- within a limited type declaration (which will appear as
12906 -- a discriminal) is always illegal because the level of the
12907 -- discriminant is considered to be deeper than any (nameable)
12908 -- access type.
12910 if Is_Entity_Name (Operand)
12911 and then
12912 Ekind_In (Entity (Operand), E_In_Parameter, E_Constant)
12913 and then Present (Discriminal_Link (Entity (Operand)))
12914 then
12915 Conversion_Error_N
12916 ("discriminant has deeper accessibility level than target",
12917 Operand);
12918 return False;
12919 end if;
12920 end if;
12921 end if;
12923 -- In the presence of limited_with clauses we have to use nonlimited
12924 -- views, if available.
12926 Check_Limited : declare
12927 function Full_Designated_Type (T : Entity_Id) return Entity_Id;
12928 -- Helper function to handle limited views
12930 --------------------------
12931 -- Full_Designated_Type --
12932 --------------------------
12934 function Full_Designated_Type (T : Entity_Id) return Entity_Id is
12935 Desig : constant Entity_Id := Designated_Type (T);
12937 begin
12938 -- Handle the limited view of a type
12940 if From_Limited_With (Desig)
12941 and then Has_Non_Limited_View (Desig)
12942 then
12943 return Available_View (Desig);
12944 else
12945 return Desig;
12946 end if;
12947 end Full_Designated_Type;
12949 -- Local Declarations
12951 Target : constant Entity_Id := Full_Designated_Type (Target_Type);
12952 Opnd : constant Entity_Id := Full_Designated_Type (Opnd_Type);
12954 Same_Base : constant Boolean :=
12955 Base_Type (Target) = Base_Type (Opnd);
12957 -- Start of processing for Check_Limited
12959 begin
12960 if Is_Tagged_Type (Target) then
12961 return Valid_Tagged_Conversion (Target, Opnd);
12963 else
12964 if not Same_Base then
12965 Conversion_Error_NE
12966 ("target designated type not compatible with }",
12967 N, Base_Type (Opnd));
12968 return False;
12970 -- Ada 2005 AI-384: legality rule is symmetric in both
12971 -- designated types. The conversion is legal (with possible
12972 -- constraint check) if either designated type is
12973 -- unconstrained.
12975 elsif Subtypes_Statically_Match (Target, Opnd)
12976 or else
12977 (Has_Discriminants (Target)
12978 and then
12979 (not Is_Constrained (Opnd)
12980 or else not Is_Constrained (Target)))
12981 then
12982 -- Special case, if Value_Size has been used to make the
12983 -- sizes different, the conversion is not allowed even
12984 -- though the subtypes statically match.
12986 if Known_Static_RM_Size (Target)
12987 and then Known_Static_RM_Size (Opnd)
12988 and then RM_Size (Target) /= RM_Size (Opnd)
12989 then
12990 Conversion_Error_NE
12991 ("target designated subtype not compatible with }",
12992 N, Opnd);
12993 Conversion_Error_NE
12994 ("\because sizes of the two designated subtypes differ",
12995 N, Opnd);
12996 return False;
12998 -- Normal case where conversion is allowed
13000 else
13001 return True;
13002 end if;
13004 else
13005 Error_Msg_NE
13006 ("target designated subtype not compatible with }",
13007 N, Opnd);
13008 return False;
13009 end if;
13010 end if;
13011 end Check_Limited;
13013 -- Access to subprogram types. If the operand is an access parameter,
13014 -- the type has a deeper accessibility that any master, and cannot be
13015 -- assigned. We must make an exception if the conversion is part of an
13016 -- assignment and the target is the return object of an extended return
13017 -- statement, because in that case the accessibility check takes place
13018 -- after the return.
13020 elsif Is_Access_Subprogram_Type (Target_Type)
13022 -- Note: this test of Opnd_Type is there to prevent entering this
13023 -- branch in the case of a remote access to subprogram type, which
13024 -- is internally represented as an E_Record_Type.
13026 and then Is_Access_Type (Opnd_Type)
13027 then
13028 if Ekind (Base_Type (Opnd_Type)) = E_Anonymous_Access_Subprogram_Type
13029 and then Is_Entity_Name (Operand)
13030 and then Ekind (Entity (Operand)) = E_In_Parameter
13031 and then
13032 (Nkind (Parent (N)) /= N_Assignment_Statement
13033 or else not Is_Entity_Name (Name (Parent (N)))
13034 or else not Is_Return_Object (Entity (Name (Parent (N)))))
13035 then
13036 Conversion_Error_N
13037 ("illegal attempt to store anonymous access to subprogram",
13038 Operand);
13039 Conversion_Error_N
13040 ("\value has deeper accessibility than any master "
13041 & "(RM 3.10.2 (13))",
13042 Operand);
13044 Error_Msg_NE
13045 ("\use named access type for& instead of access parameter",
13046 Operand, Entity (Operand));
13047 end if;
13049 -- Check that the designated types are subtype conformant
13051 Check_Subtype_Conformant (New_Id => Designated_Type (Target_Type),
13052 Old_Id => Designated_Type (Opnd_Type),
13053 Err_Loc => N);
13055 -- Check the static accessibility rule of 4.6(20)
13057 if Type_Access_Level (Opnd_Type) >
13058 Deepest_Type_Access_Level (Target_Type)
13059 then
13060 Conversion_Error_N
13061 ("operand type has deeper accessibility level than target",
13062 Operand);
13064 -- Check that if the operand type is declared in a generic body,
13065 -- then the target type must be declared within that same body
13066 -- (enforces last sentence of 4.6(20)).
13068 elsif Present (Enclosing_Generic_Body (Opnd_Type)) then
13069 declare
13070 O_Gen : constant Node_Id :=
13071 Enclosing_Generic_Body (Opnd_Type);
13073 T_Gen : Node_Id;
13075 begin
13076 T_Gen := Enclosing_Generic_Body (Target_Type);
13077 while Present (T_Gen) and then T_Gen /= O_Gen loop
13078 T_Gen := Enclosing_Generic_Body (T_Gen);
13079 end loop;
13081 if T_Gen /= O_Gen then
13082 Conversion_Error_N
13083 ("target type must be declared in same generic body "
13084 & "as operand type", N);
13085 end if;
13086 end;
13087 end if;
13089 return True;
13091 -- Remote access to subprogram types
13093 elsif Is_Remote_Access_To_Subprogram_Type (Target_Type)
13094 and then Is_Remote_Access_To_Subprogram_Type (Opnd_Type)
13095 then
13096 -- It is valid to convert from one RAS type to another provided
13097 -- that their specification statically match.
13099 -- Note: at this point, remote access to subprogram types have been
13100 -- expanded to their E_Record_Type representation, and we need to
13101 -- go back to the original access type definition using the
13102 -- Corresponding_Remote_Type attribute in order to check that the
13103 -- designated profiles match.
13105 pragma Assert (Ekind (Target_Type) = E_Record_Type);
13106 pragma Assert (Ekind (Opnd_Type) = E_Record_Type);
13108 Check_Subtype_Conformant
13109 (New_Id =>
13110 Designated_Type (Corresponding_Remote_Type (Target_Type)),
13111 Old_Id =>
13112 Designated_Type (Corresponding_Remote_Type (Opnd_Type)),
13113 Err_Loc =>
13115 return True;
13117 -- If it was legal in the generic, it's legal in the instance
13119 elsif In_Instance_Body then
13120 return True;
13122 -- If both are tagged types, check legality of view conversions
13124 elsif Is_Tagged_Type (Target_Type)
13125 and then
13126 Is_Tagged_Type (Opnd_Type)
13127 then
13128 return Valid_Tagged_Conversion (Target_Type, Opnd_Type);
13130 -- Types derived from the same root type are convertible
13132 elsif Root_Type (Target_Type) = Root_Type (Opnd_Type) then
13133 return True;
13135 -- In an instance or an inlined body, there may be inconsistent views of
13136 -- the same type, or of types derived from a common root.
13138 elsif (In_Instance or In_Inlined_Body)
13139 and then
13140 Root_Type (Underlying_Type (Target_Type)) =
13141 Root_Type (Underlying_Type (Opnd_Type))
13142 then
13143 return True;
13145 -- Special check for common access type error case
13147 elsif Ekind (Target_Type) = E_Access_Type
13148 and then Is_Access_Type (Opnd_Type)
13149 then
13150 Conversion_Error_N ("target type must be general access type!", N);
13151 Conversion_Error_NE -- CODEFIX
13152 ("add ALL to }!", N, Target_Type);
13153 return False;
13155 -- Here we have a real conversion error
13157 else
13158 -- Check for missing regular with_clause when only a limited view of
13159 -- target is available.
13161 if From_Limited_With (Opnd_Type) and then In_Package_Body then
13162 Conversion_Error_NE
13163 ("invalid conversion, not compatible with limited view of }",
13164 N, Opnd_Type);
13165 Conversion_Error_NE
13166 ("\add with_clause for& to current unit!", N, Scope (Opnd_Type));
13168 elsif Is_Access_Type (Opnd_Type)
13169 and then From_Limited_With (Designated_Type (Opnd_Type))
13170 and then In_Package_Body
13171 then
13172 Conversion_Error_NE
13173 ("invalid conversion, not compatible with }", N, Opnd_Type);
13174 Conversion_Error_NE
13175 ("\add with_clause for& to current unit!",
13176 N, Scope (Designated_Type (Opnd_Type)));
13178 else
13179 Conversion_Error_NE
13180 ("invalid conversion, not compatible with }", N, Opnd_Type);
13181 end if;
13183 return False;
13184 end if;
13185 end Valid_Conversion;
13187 end Sem_Res;