* pt.c (lookup_template_class_1): Splice out abi_tag attribute if
[official-gcc.git] / gcc / sel-sched.c
blobe860300094a87a46dedb9a22117382ac8c51996c
1 /* Instruction scheduling pass. Selective scheduler and pipeliner.
2 Copyright (C) 2006-2014 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "tm.h"
24 #include "rtl-error.h"
25 #include "tm_p.h"
26 #include "hard-reg-set.h"
27 #include "regs.h"
28 #include "function.h"
29 #include "flags.h"
30 #include "insn-config.h"
31 #include "insn-attr.h"
32 #include "except.h"
33 #include "recog.h"
34 #include "params.h"
35 #include "target.h"
36 #include "output.h"
37 #include "sched-int.h"
38 #include "ggc.h"
39 #include "tree.h"
40 #include "vec.h"
41 #include "langhooks.h"
42 #include "rtlhooks-def.h"
43 #include "emit-rtl.h"
44 #include "ira.h"
45 #include "rtl-iter.h"
47 #ifdef INSN_SCHEDULING
48 #include "sel-sched-ir.h"
49 #include "sel-sched-dump.h"
50 #include "sel-sched.h"
51 #include "dbgcnt.h"
53 /* Implementation of selective scheduling approach.
54 The below implementation follows the original approach with the following
55 changes:
57 o the scheduler works after register allocation (but can be also tuned
58 to work before RA);
59 o some instructions are not copied or register renamed;
60 o conditional jumps are not moved with code duplication;
61 o several jumps in one parallel group are not supported;
62 o when pipelining outer loops, code motion through inner loops
63 is not supported;
64 o control and data speculation are supported;
65 o some improvements for better compile time/performance were made.
67 Terminology
68 ===========
70 A vinsn, or virtual insn, is an insn with additional data characterizing
71 insn pattern, such as LHS, RHS, register sets used/set/clobbered, etc.
72 Vinsns also act as smart pointers to save memory by reusing them in
73 different expressions. A vinsn is described by vinsn_t type.
75 An expression is a vinsn with additional data characterizing its properties
76 at some point in the control flow graph. The data may be its usefulness,
77 priority, speculative status, whether it was renamed/subsituted, etc.
78 An expression is described by expr_t type.
80 Availability set (av_set) is a set of expressions at a given control flow
81 point. It is represented as av_set_t. The expressions in av sets are kept
82 sorted in the terms of expr_greater_p function. It allows to truncate
83 the set while leaving the best expressions.
85 A fence is a point through which code motion is prohibited. On each step,
86 we gather a parallel group of insns at a fence. It is possible to have
87 multiple fences. A fence is represented via fence_t.
89 A boundary is the border between the fence group and the rest of the code.
90 Currently, we never have more than one boundary per fence, as we finalize
91 the fence group when a jump is scheduled. A boundary is represented
92 via bnd_t.
94 High-level overview
95 ===================
97 The scheduler finds regions to schedule, schedules each one, and finalizes.
98 The regions are formed starting from innermost loops, so that when the inner
99 loop is pipelined, its prologue can be scheduled together with yet unprocessed
100 outer loop. The rest of acyclic regions are found using extend_rgns:
101 the blocks that are not yet allocated to any regions are traversed in top-down
102 order, and a block is added to a region to which all its predecessors belong;
103 otherwise, the block starts its own region.
105 The main scheduling loop (sel_sched_region_2) consists of just
106 scheduling on each fence and updating fences. For each fence,
107 we fill a parallel group of insns (fill_insns) until some insns can be added.
108 First, we compute available exprs (av-set) at the boundary of the current
109 group. Second, we choose the best expression from it. If the stall is
110 required to schedule any of the expressions, we advance the current cycle
111 appropriately. So, the final group does not exactly correspond to a VLIW
112 word. Third, we move the chosen expression to the boundary (move_op)
113 and update the intermediate av sets and liveness sets. We quit fill_insns
114 when either no insns left for scheduling or we have scheduled enough insns
115 so we feel like advancing a scheduling point.
117 Computing available expressions
118 ===============================
120 The computation (compute_av_set) is a bottom-up traversal. At each insn,
121 we're moving the union of its successors' sets through it via
122 moveup_expr_set. The dependent expressions are removed. Local
123 transformations (substitution, speculation) are applied to move more
124 exprs. Then the expr corresponding to the current insn is added.
125 The result is saved on each basic block header.
127 When traversing the CFG, we're moving down for no more than max_ws insns.
128 Also, we do not move down to ineligible successors (is_ineligible_successor),
129 which include moving along a back-edge, moving to already scheduled code,
130 and moving to another fence. The first two restrictions are lifted during
131 pipelining, which allows us to move insns along a back-edge. We always have
132 an acyclic region for scheduling because we forbid motion through fences.
134 Choosing the best expression
135 ============================
137 We sort the final availability set via sel_rank_for_schedule, then we remove
138 expressions which are not yet ready (tick_check_p) or which dest registers
139 cannot be used. For some of them, we choose another register via
140 find_best_reg. To do this, we run find_used_regs to calculate the set of
141 registers which cannot be used. The find_used_regs function performs
142 a traversal of code motion paths for an expr. We consider for renaming
143 only registers which are from the same regclass as the original one and
144 using which does not interfere with any live ranges. Finally, we convert
145 the resulting set to the ready list format and use max_issue and reorder*
146 hooks similarly to the Haifa scheduler.
148 Scheduling the best expression
149 ==============================
151 We run the move_op routine to perform the same type of code motion paths
152 traversal as in find_used_regs. (These are working via the same driver,
153 code_motion_path_driver.) When moving down the CFG, we look for original
154 instruction that gave birth to a chosen expression. We undo
155 the transformations performed on an expression via the history saved in it.
156 When found, we remove the instruction or leave a reg-reg copy/speculation
157 check if needed. On a way up, we insert bookkeeping copies at each join
158 point. If a copy is not needed, it will be removed later during this
159 traversal. We update the saved av sets and liveness sets on the way up, too.
161 Finalizing the schedule
162 =======================
164 When pipelining, we reschedule the blocks from which insns were pipelined
165 to get a tighter schedule. On Itanium, we also perform bundling via
166 the same routine from ia64.c.
168 Dependence analysis changes
169 ===========================
171 We augmented the sched-deps.c with hooks that get called when a particular
172 dependence is found in a particular part of an insn. Using these hooks, we
173 can do several actions such as: determine whether an insn can be moved through
174 another (has_dependence_p, moveup_expr); find out whether an insn can be
175 scheduled on the current cycle (tick_check_p); find out registers that
176 are set/used/clobbered by an insn and find out all the strange stuff that
177 restrict its movement, like SCHED_GROUP_P or CANT_MOVE (done in
178 init_global_and_expr_for_insn).
180 Initialization changes
181 ======================
183 There are parts of haifa-sched.c, sched-deps.c, and sched-rgn.c that are
184 reused in all of the schedulers. We have split up the initialization of data
185 of such parts into different functions prefixed with scheduler type and
186 postfixed with the type of data initialized: {,sel_,haifa_}sched_{init,finish},
187 sched_rgn_init/finish, sched_deps_init/finish, sched_init_{luids/bbs}, etc.
188 The same splitting is done with current_sched_info structure:
189 dependence-related parts are in sched_deps_info, common part is in
190 common_sched_info, and haifa/sel/etc part is in current_sched_info.
192 Target contexts
193 ===============
195 As we now have multiple-point scheduling, this would not work with backends
196 which save some of the scheduler state to use it in the target hooks.
197 For this purpose, we introduce a concept of target contexts, which
198 encapsulate such information. The backend should implement simple routines
199 of allocating/freeing/setting such a context. The scheduler calls these
200 as target hooks and handles the target context as an opaque pointer (similar
201 to the DFA state type, state_t).
203 Various speedups
204 ================
206 As the correct data dependence graph is not supported during scheduling (which
207 is to be changed in mid-term), we cache as much of the dependence analysis
208 results as possible to avoid reanalyzing. This includes: bitmap caches on
209 each insn in stream of the region saying yes/no for a query with a pair of
210 UIDs; hashtables with the previously done transformations on each insn in
211 stream; a vector keeping a history of transformations on each expr.
213 Also, we try to minimize the dependence context used on each fence to check
214 whether the given expression is ready for scheduling by removing from it
215 insns that are definitely completed the execution. The results of
216 tick_check_p checks are also cached in a vector on each fence.
218 We keep a valid liveness set on each insn in a region to avoid the high
219 cost of recomputation on large basic blocks.
221 Finally, we try to minimize the number of needed updates to the availability
222 sets. The updates happen in two cases: when fill_insns terminates,
223 we advance all fences and increase the stage number to show that the region
224 has changed and the sets are to be recomputed; and when the next iteration
225 of a loop in fill_insns happens (but this one reuses the saved av sets
226 on bb headers.) Thus, we try to break the fill_insns loop only when
227 "significant" number of insns from the current scheduling window was
228 scheduled. This should be made a target param.
231 TODO: correctly support the data dependence graph at all stages and get rid
232 of all caches. This should speed up the scheduler.
233 TODO: implement moving cond jumps with bookkeeping copies on both targets.
234 TODO: tune the scheduler before RA so it does not create too much pseudos.
237 References:
238 S.-M. Moon and K. Ebcioglu. Parallelizing nonnumerical code with
239 selective scheduling and software pipelining.
240 ACM TOPLAS, Vol 19, No. 6, pages 853--898, Nov. 1997.
242 Andrey Belevantsev, Maxim Kuvyrkov, Vladimir Makarov, Dmitry Melnik,
243 and Dmitry Zhurikhin. An interblock VLIW-targeted instruction scheduler
244 for GCC. In Proceedings of GCC Developers' Summit 2006.
246 Arutyun Avetisyan, Andrey Belevantsev, and Dmitry Melnik. GCC Instruction
247 Scheduler and Software Pipeliner on the Itanium Platform. EPIC-7 Workshop.
248 http://rogue.colorado.edu/EPIC7/.
252 /* True when pipelining is enabled. */
253 bool pipelining_p;
255 /* True if bookkeeping is enabled. */
256 bool bookkeeping_p;
258 /* Maximum number of insns that are eligible for renaming. */
259 int max_insns_to_rename;
262 /* Definitions of local types and macros. */
264 /* Represents possible outcomes of moving an expression through an insn. */
265 enum MOVEUP_EXPR_CODE
267 /* The expression is not changed. */
268 MOVEUP_EXPR_SAME,
270 /* Not changed, but requires a new destination register. */
271 MOVEUP_EXPR_AS_RHS,
273 /* Cannot be moved. */
274 MOVEUP_EXPR_NULL,
276 /* Changed (substituted or speculated). */
277 MOVEUP_EXPR_CHANGED
280 /* The container to be passed into rtx search & replace functions. */
281 struct rtx_search_arg
283 /* What we are searching for. */
284 rtx x;
286 /* The occurrence counter. */
287 int n;
290 typedef struct rtx_search_arg *rtx_search_arg_p;
292 /* This struct contains precomputed hard reg sets that are needed when
293 computing registers available for renaming. */
294 struct hard_regs_data
296 /* For every mode, this stores registers available for use with
297 that mode. */
298 HARD_REG_SET regs_for_mode[NUM_MACHINE_MODES];
300 /* True when regs_for_mode[mode] is initialized. */
301 bool regs_for_mode_ok[NUM_MACHINE_MODES];
303 /* For every register, it has regs that are ok to rename into it.
304 The register in question is always set. If not, this means
305 that the whole set is not computed yet. */
306 HARD_REG_SET regs_for_rename[FIRST_PSEUDO_REGISTER];
308 /* For every mode, this stores registers not available due to
309 call clobbering. */
310 HARD_REG_SET regs_for_call_clobbered[NUM_MACHINE_MODES];
312 /* All registers that are used or call used. */
313 HARD_REG_SET regs_ever_used;
315 #ifdef STACK_REGS
316 /* Stack registers. */
317 HARD_REG_SET stack_regs;
318 #endif
321 /* Holds the results of computation of available for renaming and
322 unavailable hard registers. */
323 struct reg_rename
325 /* These are unavailable due to calls crossing, globalness, etc. */
326 HARD_REG_SET unavailable_hard_regs;
328 /* These are *available* for renaming. */
329 HARD_REG_SET available_for_renaming;
331 /* Whether this code motion path crosses a call. */
332 bool crosses_call;
335 /* A global structure that contains the needed information about harg
336 regs. */
337 static struct hard_regs_data sel_hrd;
340 /* This structure holds local data used in code_motion_path_driver hooks on
341 the same or adjacent levels of recursion. Here we keep those parameters
342 that are not used in code_motion_path_driver routine itself, but only in
343 its hooks. Moreover, all parameters that can be modified in hooks are
344 in this structure, so all other parameters passed explicitly to hooks are
345 read-only. */
346 struct cmpd_local_params
348 /* Local params used in move_op_* functions. */
350 /* Edges for bookkeeping generation. */
351 edge e1, e2;
353 /* C_EXPR merged from all successors and locally allocated temporary C_EXPR. */
354 expr_t c_expr_merged, c_expr_local;
356 /* Local params used in fur_* functions. */
357 /* Copy of the ORIGINAL_INSN list, stores the original insns already
358 found before entering the current level of code_motion_path_driver. */
359 def_list_t old_original_insns;
361 /* Local params used in move_op_* functions. */
362 /* True when we have removed last insn in the block which was
363 also a boundary. Do not update anything or create bookkeeping copies. */
364 BOOL_BITFIELD removed_last_insn : 1;
367 /* Stores the static parameters for move_op_* calls. */
368 struct moveop_static_params
370 /* Destination register. */
371 rtx dest;
373 /* Current C_EXPR. */
374 expr_t c_expr;
376 /* An UID of expr_vliw which is to be moved up. If we find other exprs,
377 they are to be removed. */
378 int uid;
380 #ifdef ENABLE_CHECKING
381 /* This is initialized to the insn on which the driver stopped its traversal. */
382 insn_t failed_insn;
383 #endif
385 /* True if we scheduled an insn with different register. */
386 bool was_renamed;
389 /* Stores the static parameters for fur_* calls. */
390 struct fur_static_params
392 /* Set of registers unavailable on the code motion path. */
393 regset used_regs;
395 /* Pointer to the list of original insns definitions. */
396 def_list_t *original_insns;
398 /* True if a code motion path contains a CALL insn. */
399 bool crosses_call;
402 typedef struct fur_static_params *fur_static_params_p;
403 typedef struct cmpd_local_params *cmpd_local_params_p;
404 typedef struct moveop_static_params *moveop_static_params_p;
406 /* Set of hooks and parameters that determine behaviour specific to
407 move_op or find_used_regs functions. */
408 struct code_motion_path_driver_info_def
410 /* Called on enter to the basic block. */
411 int (*on_enter) (insn_t, cmpd_local_params_p, void *, bool);
413 /* Called when original expr is found. */
414 void (*orig_expr_found) (insn_t, expr_t, cmpd_local_params_p, void *);
416 /* Called while descending current basic block if current insn is not
417 the original EXPR we're searching for. */
418 bool (*orig_expr_not_found) (insn_t, av_set_t, void *);
420 /* Function to merge C_EXPRes from different successors. */
421 void (*merge_succs) (insn_t, insn_t, int, cmpd_local_params_p, void *);
423 /* Function to finalize merge from different successors and possibly
424 deallocate temporary data structures used for merging. */
425 void (*after_merge_succs) (cmpd_local_params_p, void *);
427 /* Called on the backward stage of recursion to do moveup_expr.
428 Used only with move_op_*. */
429 void (*ascend) (insn_t, void *);
431 /* Called on the ascending pass, before returning from the current basic
432 block or from the whole traversal. */
433 void (*at_first_insn) (insn_t, cmpd_local_params_p, void *);
435 /* When processing successors in move_op we need only descend into
436 SUCCS_NORMAL successors, while in find_used_regs we need SUCCS_ALL. */
437 int succ_flags;
439 /* The routine name to print in dumps ("move_op" of "find_used_regs"). */
440 const char *routine_name;
443 /* Global pointer to current hooks, either points to MOVE_OP_HOOKS or
444 FUR_HOOKS. */
445 struct code_motion_path_driver_info_def *code_motion_path_driver_info;
447 /* Set of hooks for performing move_op and find_used_regs routines with
448 code_motion_path_driver. */
449 extern struct code_motion_path_driver_info_def move_op_hooks, fur_hooks;
451 /* True if/when we want to emulate Haifa scheduler in the common code.
452 This is used in sched_rgn_local_init and in various places in
453 sched-deps.c. */
454 int sched_emulate_haifa_p;
456 /* GLOBAL_LEVEL is used to discard information stored in basic block headers
457 av_sets. Av_set of bb header is valid if its (bb header's) level is equal
458 to GLOBAL_LEVEL. And invalid if lesser. This is primarily used to advance
459 scheduling window. */
460 int global_level;
462 /* Current fences. */
463 flist_t fences;
465 /* True when separable insns should be scheduled as RHSes. */
466 static bool enable_schedule_as_rhs_p;
468 /* Used in verify_target_availability to assert that target reg is reported
469 unavailabile by both TARGET_UNAVAILABLE and find_used_regs only if
470 we haven't scheduled anything on the previous fence.
471 if scheduled_something_on_previous_fence is true, TARGET_UNAVAILABLE can
472 have more conservative value than the one returned by the
473 find_used_regs, thus we shouldn't assert that these values are equal. */
474 static bool scheduled_something_on_previous_fence;
476 /* All newly emitted insns will have their uids greater than this value. */
477 static int first_emitted_uid;
479 /* Set of basic blocks that are forced to start new ebbs. This is a subset
480 of all the ebb heads. */
481 static bitmap_head _forced_ebb_heads;
482 bitmap_head *forced_ebb_heads = &_forced_ebb_heads;
484 /* Blocks that need to be rescheduled after pipelining. */
485 bitmap blocks_to_reschedule = NULL;
487 /* True when the first lv set should be ignored when updating liveness. */
488 static bool ignore_first = false;
490 /* Number of insns max_issue has initialized data structures for. */
491 static int max_issue_size = 0;
493 /* Whether we can issue more instructions. */
494 static int can_issue_more;
496 /* Maximum software lookahead window size, reduced when rescheduling after
497 pipelining. */
498 static int max_ws;
500 /* Number of insns scheduled in current region. */
501 static int num_insns_scheduled;
503 /* A vector of expressions is used to be able to sort them. */
504 static vec<expr_t> vec_av_set = vNULL;
506 /* A vector of vinsns is used to hold temporary lists of vinsns. */
507 typedef vec<vinsn_t> vinsn_vec_t;
509 /* This vector has the exprs which may still present in av_sets, but actually
510 can't be moved up due to bookkeeping created during code motion to another
511 fence. See comment near the call to update_and_record_unavailable_insns
512 for the detailed explanations. */
513 static vinsn_vec_t vec_bookkeeping_blocked_vinsns = vinsn_vec_t ();
515 /* This vector has vinsns which are scheduled with renaming on the first fence
516 and then seen on the second. For expressions with such vinsns, target
517 availability information may be wrong. */
518 static vinsn_vec_t vec_target_unavailable_vinsns = vinsn_vec_t ();
520 /* Vector to store temporary nops inserted in move_op to prevent removal
521 of empty bbs. */
522 static vec<insn_t> vec_temp_moveop_nops = vNULL;
524 /* These bitmaps record original instructions scheduled on the current
525 iteration and bookkeeping copies created by them. */
526 static bitmap current_originators = NULL;
527 static bitmap current_copies = NULL;
529 /* This bitmap marks the blocks visited by code_motion_path_driver so we don't
530 visit them afterwards. */
531 static bitmap code_motion_visited_blocks = NULL;
533 /* Variables to accumulate different statistics. */
535 /* The number of bookkeeping copies created. */
536 static int stat_bookkeeping_copies;
538 /* The number of insns that required bookkeeiping for their scheduling. */
539 static int stat_insns_needed_bookkeeping;
541 /* The number of insns that got renamed. */
542 static int stat_renamed_scheduled;
544 /* The number of substitutions made during scheduling. */
545 static int stat_substitutions_total;
548 /* Forward declarations of static functions. */
549 static bool rtx_ok_for_substitution_p (rtx, rtx);
550 static int sel_rank_for_schedule (const void *, const void *);
551 static av_set_t find_sequential_best_exprs (bnd_t, expr_t, bool);
552 static basic_block find_block_for_bookkeeping (edge e1, edge e2, bool lax);
554 static rtx get_dest_from_orig_ops (av_set_t);
555 static basic_block generate_bookkeeping_insn (expr_t, edge, edge);
556 static bool find_used_regs (insn_t, av_set_t, regset, struct reg_rename *,
557 def_list_t *);
558 static bool move_op (insn_t, av_set_t, expr_t, rtx, expr_t, bool*);
559 static int code_motion_path_driver (insn_t, av_set_t, ilist_t,
560 cmpd_local_params_p, void *);
561 static void sel_sched_region_1 (void);
562 static void sel_sched_region_2 (int);
563 static av_set_t compute_av_set_inside_bb (insn_t, ilist_t, int, bool);
565 static void debug_state (state_t);
568 /* Functions that work with fences. */
570 /* Advance one cycle on FENCE. */
571 static void
572 advance_one_cycle (fence_t fence)
574 unsigned i;
575 int cycle;
576 rtx_insn *insn;
578 advance_state (FENCE_STATE (fence));
579 cycle = ++FENCE_CYCLE (fence);
580 FENCE_ISSUED_INSNS (fence) = 0;
581 FENCE_STARTS_CYCLE_P (fence) = 1;
582 can_issue_more = issue_rate;
583 FENCE_ISSUE_MORE (fence) = can_issue_more;
585 for (i = 0; vec_safe_iterate (FENCE_EXECUTING_INSNS (fence), i, &insn); )
587 if (INSN_READY_CYCLE (insn) < cycle)
589 remove_from_deps (FENCE_DC (fence), insn);
590 FENCE_EXECUTING_INSNS (fence)->unordered_remove (i);
591 continue;
593 i++;
595 if (sched_verbose >= 2)
597 sel_print ("Finished a cycle. Current cycle = %d\n", FENCE_CYCLE (fence));
598 debug_state (FENCE_STATE (fence));
602 /* Returns true when SUCC in a fallthru bb of INSN, possibly
603 skipping empty basic blocks. */
604 static bool
605 in_fallthru_bb_p (rtx insn, rtx succ)
607 basic_block bb = BLOCK_FOR_INSN (insn);
608 edge e;
610 if (bb == BLOCK_FOR_INSN (succ))
611 return true;
613 e = find_fallthru_edge_from (bb);
614 if (e)
615 bb = e->dest;
616 else
617 return false;
619 while (sel_bb_empty_p (bb))
620 bb = bb->next_bb;
622 return bb == BLOCK_FOR_INSN (succ);
625 /* Construct successor fences from OLD_FENCEs and put them in NEW_FENCES.
626 When a successor will continue a ebb, transfer all parameters of a fence
627 to the new fence. ORIG_MAX_SEQNO is the maximal seqno before this round
628 of scheduling helping to distinguish between the old and the new code. */
629 static void
630 extract_new_fences_from (flist_t old_fences, flist_tail_t new_fences,
631 int orig_max_seqno)
633 bool was_here_p = false;
634 insn_t insn = NULL;
635 insn_t succ;
636 succ_iterator si;
637 ilist_iterator ii;
638 fence_t fence = FLIST_FENCE (old_fences);
639 basic_block bb;
641 /* Get the only element of FENCE_BNDS (fence). */
642 FOR_EACH_INSN (insn, ii, FENCE_BNDS (fence))
644 gcc_assert (!was_here_p);
645 was_here_p = true;
647 gcc_assert (was_here_p && insn != NULL_RTX);
649 /* When in the "middle" of the block, just move this fence
650 to the new list. */
651 bb = BLOCK_FOR_INSN (insn);
652 if (! sel_bb_end_p (insn)
653 || (single_succ_p (bb)
654 && single_pred_p (single_succ (bb))))
656 insn_t succ;
658 succ = (sel_bb_end_p (insn)
659 ? sel_bb_head (single_succ (bb))
660 : NEXT_INSN (insn));
662 if (INSN_SEQNO (succ) > 0
663 && INSN_SEQNO (succ) <= orig_max_seqno
664 && INSN_SCHED_TIMES (succ) <= 0)
666 FENCE_INSN (fence) = succ;
667 move_fence_to_fences (old_fences, new_fences);
669 if (sched_verbose >= 1)
670 sel_print ("Fence %d continues as %d[%d] (state continue)\n",
671 INSN_UID (insn), INSN_UID (succ), BLOCK_NUM (succ));
673 return;
676 /* Otherwise copy fence's structures to (possibly) multiple successors. */
677 FOR_EACH_SUCC_1 (succ, si, insn, SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
679 int seqno = INSN_SEQNO (succ);
681 if (0 < seqno && seqno <= orig_max_seqno
682 && (pipelining_p || INSN_SCHED_TIMES (succ) <= 0))
684 bool b = (in_same_ebb_p (insn, succ)
685 || in_fallthru_bb_p (insn, succ));
687 if (sched_verbose >= 1)
688 sel_print ("Fence %d continues as %d[%d] (state %s)\n",
689 INSN_UID (insn), INSN_UID (succ),
690 BLOCK_NUM (succ), b ? "continue" : "reset");
692 if (b)
693 add_dirty_fence_to_fences (new_fences, succ, fence);
694 else
696 /* Mark block of the SUCC as head of the new ebb. */
697 bitmap_set_bit (forced_ebb_heads, BLOCK_NUM (succ));
698 add_clean_fence_to_fences (new_fences, succ, fence);
705 /* Functions to support substitution. */
707 /* Returns whether INSN with dependence status DS is eligible for
708 substitution, i.e. it's a copy operation x := y, and RHS that is
709 moved up through this insn should be substituted. */
710 static bool
711 can_substitute_through_p (insn_t insn, ds_t ds)
713 /* We can substitute only true dependencies. */
714 if ((ds & DEP_OUTPUT)
715 || (ds & DEP_ANTI)
716 || ! INSN_RHS (insn)
717 || ! INSN_LHS (insn))
718 return false;
720 /* Now we just need to make sure the INSN_RHS consists of only one
721 simple REG rtx. */
722 if (REG_P (INSN_LHS (insn))
723 && REG_P (INSN_RHS (insn)))
724 return true;
725 return false;
728 /* Substitute all occurrences of INSN's destination in EXPR' vinsn with INSN's
729 source (if INSN is eligible for substitution). Returns TRUE if
730 substitution was actually performed, FALSE otherwise. Substitution might
731 be not performed because it's either EXPR' vinsn doesn't contain INSN's
732 destination or the resulting insn is invalid for the target machine.
733 When UNDO is true, perform unsubstitution instead (the difference is in
734 the part of rtx on which validate_replace_rtx is called). */
735 static bool
736 substitute_reg_in_expr (expr_t expr, insn_t insn, bool undo)
738 rtx *where;
739 bool new_insn_valid;
740 vinsn_t *vi = &EXPR_VINSN (expr);
741 bool has_rhs = VINSN_RHS (*vi) != NULL;
742 rtx old, new_rtx;
744 /* Do not try to replace in SET_DEST. Although we'll choose new
745 register for the RHS, we don't want to change RHS' original reg.
746 If the insn is not SET, we may still be able to substitute something
747 in it, and if we're here (don't have deps), it doesn't write INSN's
748 dest. */
749 where = (has_rhs
750 ? &VINSN_RHS (*vi)
751 : &PATTERN (VINSN_INSN_RTX (*vi)));
752 old = undo ? INSN_RHS (insn) : INSN_LHS (insn);
754 /* Substitute if INSN has a form of x:=y and LHS(INSN) occurs in *VI. */
755 if (rtx_ok_for_substitution_p (old, *where))
757 rtx_insn *new_insn;
758 rtx *where_replace;
760 /* We should copy these rtxes before substitution. */
761 new_rtx = copy_rtx (undo ? INSN_LHS (insn) : INSN_RHS (insn));
762 new_insn = create_copy_of_insn_rtx (VINSN_INSN_RTX (*vi));
764 /* Where we'll replace.
765 WHERE_REPLACE should point inside NEW_INSN, so INSN_RHS couldn't be
766 used instead of SET_SRC. */
767 where_replace = (has_rhs
768 ? &SET_SRC (PATTERN (new_insn))
769 : &PATTERN (new_insn));
771 new_insn_valid
772 = validate_replace_rtx_part_nosimplify (old, new_rtx, where_replace,
773 new_insn);
775 /* ??? Actually, constrain_operands result depends upon choice of
776 destination register. E.g. if we allow single register to be an rhs,
777 and if we try to move dx=ax(as rhs) through ax=dx, we'll result
778 in invalid insn dx=dx, so we'll loose this rhs here.
779 Just can't come up with significant testcase for this, so just
780 leaving it for now. */
781 if (new_insn_valid)
783 change_vinsn_in_expr (expr,
784 create_vinsn_from_insn_rtx (new_insn, false));
786 /* Do not allow clobbering the address register of speculative
787 insns. */
788 if ((EXPR_SPEC_DONE_DS (expr) & SPECULATIVE)
789 && register_unavailable_p (VINSN_REG_USES (EXPR_VINSN (expr)),
790 expr_dest_reg (expr)))
791 EXPR_TARGET_AVAILABLE (expr) = false;
793 return true;
795 else
796 return false;
798 else
799 return false;
802 /* Return the number of places WHAT appears within WHERE.
803 Bail out when we found a reference occupying several hard registers. */
804 static int
805 count_occurrences_equiv (const_rtx what, const_rtx where)
807 int count = 0;
808 subrtx_iterator::array_type array;
809 FOR_EACH_SUBRTX (iter, array, where, NONCONST)
811 const_rtx x = *iter;
812 if (REG_P (x) && REGNO (x) == REGNO (what))
814 /* Bail out if mode is different or more than one register is
815 used. */
816 if (GET_MODE (x) != GET_MODE (what)
817 || (HARD_REGISTER_P (x)
818 && hard_regno_nregs[REGNO (x)][GET_MODE (x)] > 1))
819 return 0;
820 count += 1;
822 else if (GET_CODE (x) == SUBREG
823 && (!REG_P (SUBREG_REG (x))
824 || REGNO (SUBREG_REG (x)) == REGNO (what)))
825 /* ??? Do not support substituting regs inside subregs. In that case,
826 simplify_subreg will be called by validate_replace_rtx, and
827 unsubstitution will fail later. */
828 return 0;
830 return count;
833 /* Returns TRUE if WHAT is found in WHERE rtx tree. */
834 static bool
835 rtx_ok_for_substitution_p (rtx what, rtx where)
837 return (count_occurrences_equiv (what, where) > 0);
841 /* Functions to support register renaming. */
843 /* Substitute VI's set source with REGNO. Returns newly created pattern
844 that has REGNO as its source. */
845 static rtx_insn *
846 create_insn_rtx_with_rhs (vinsn_t vi, rtx rhs_rtx)
848 rtx lhs_rtx;
849 rtx pattern;
850 rtx_insn *insn_rtx;
852 lhs_rtx = copy_rtx (VINSN_LHS (vi));
854 pattern = gen_rtx_SET (VOIDmode, lhs_rtx, rhs_rtx);
855 insn_rtx = create_insn_rtx_from_pattern (pattern, NULL_RTX);
857 return insn_rtx;
860 /* Returns whether INSN's src can be replaced with register number
861 NEW_SRC_REG. E.g. the following insn is valid for i386:
863 (insn:HI 2205 6585 2207 727 ../../gcc/libiberty/regex.c:3337
864 (set (mem/s:QI (plus:SI (plus:SI (reg/f:SI 7 sp)
865 (reg:SI 0 ax [orig:770 c1 ] [770]))
866 (const_int 288 [0x120])) [0 str S1 A8])
867 (const_int 0 [0x0])) 43 {*movqi_1} (nil)
868 (nil))
870 But if we change (const_int 0 [0x0]) to (reg:QI 4 si), it will be invalid
871 because of operand constraints:
873 (define_insn "*movqi_1"
874 [(set (match_operand:QI 0 "nonimmediate_operand" "=q,q ,q ,r,r ,?r,m")
875 (match_operand:QI 1 "general_operand" " q,qn,qm,q,rn,qm,qn")
878 So do constrain_operands here, before choosing NEW_SRC_REG as best
879 reg for rhs. */
881 static bool
882 replace_src_with_reg_ok_p (insn_t insn, rtx new_src_reg)
884 vinsn_t vi = INSN_VINSN (insn);
885 enum machine_mode mode;
886 rtx dst_loc;
887 bool res;
889 gcc_assert (VINSN_SEPARABLE_P (vi));
891 get_dest_and_mode (insn, &dst_loc, &mode);
892 gcc_assert (mode == GET_MODE (new_src_reg));
894 if (REG_P (dst_loc) && REGNO (new_src_reg) == REGNO (dst_loc))
895 return true;
897 /* See whether SET_SRC can be replaced with this register. */
898 validate_change (insn, &SET_SRC (PATTERN (insn)), new_src_reg, 1);
899 res = verify_changes (0);
900 cancel_changes (0);
902 return res;
905 /* Returns whether INSN still be valid after replacing it's DEST with
906 register NEW_REG. */
907 static bool
908 replace_dest_with_reg_ok_p (insn_t insn, rtx new_reg)
910 vinsn_t vi = INSN_VINSN (insn);
911 bool res;
913 /* We should deal here only with separable insns. */
914 gcc_assert (VINSN_SEPARABLE_P (vi));
915 gcc_assert (GET_MODE (VINSN_LHS (vi)) == GET_MODE (new_reg));
917 /* See whether SET_DEST can be replaced with this register. */
918 validate_change (insn, &SET_DEST (PATTERN (insn)), new_reg, 1);
919 res = verify_changes (0);
920 cancel_changes (0);
922 return res;
925 /* Create a pattern with rhs of VI and lhs of LHS_RTX. */
926 static rtx_insn *
927 create_insn_rtx_with_lhs (vinsn_t vi, rtx lhs_rtx)
929 rtx rhs_rtx;
930 rtx pattern;
931 rtx_insn *insn_rtx;
933 rhs_rtx = copy_rtx (VINSN_RHS (vi));
935 pattern = gen_rtx_SET (VOIDmode, lhs_rtx, rhs_rtx);
936 insn_rtx = create_insn_rtx_from_pattern (pattern, NULL_RTX);
938 return insn_rtx;
941 /* Substitute lhs in the given expression EXPR for the register with number
942 NEW_REGNO. SET_DEST may be arbitrary rtx, not only register. */
943 static void
944 replace_dest_with_reg_in_expr (expr_t expr, rtx new_reg)
946 rtx_insn *insn_rtx;
947 vinsn_t vinsn;
949 insn_rtx = create_insn_rtx_with_lhs (EXPR_VINSN (expr), new_reg);
950 vinsn = create_vinsn_from_insn_rtx (insn_rtx, false);
952 change_vinsn_in_expr (expr, vinsn);
953 EXPR_WAS_RENAMED (expr) = 1;
954 EXPR_TARGET_AVAILABLE (expr) = 1;
957 /* Returns whether VI writes either one of the USED_REGS registers or,
958 if a register is a hard one, one of the UNAVAILABLE_HARD_REGS registers. */
959 static bool
960 vinsn_writes_one_of_regs_p (vinsn_t vi, regset used_regs,
961 HARD_REG_SET unavailable_hard_regs)
963 unsigned regno;
964 reg_set_iterator rsi;
966 EXECUTE_IF_SET_IN_REG_SET (VINSN_REG_SETS (vi), 0, regno, rsi)
968 if (REGNO_REG_SET_P (used_regs, regno))
969 return true;
970 if (HARD_REGISTER_NUM_P (regno)
971 && TEST_HARD_REG_BIT (unavailable_hard_regs, regno))
972 return true;
975 EXECUTE_IF_SET_IN_REG_SET (VINSN_REG_CLOBBERS (vi), 0, regno, rsi)
977 if (REGNO_REG_SET_P (used_regs, regno))
978 return true;
979 if (HARD_REGISTER_NUM_P (regno)
980 && TEST_HARD_REG_BIT (unavailable_hard_regs, regno))
981 return true;
984 return false;
987 /* Returns register class of the output register in INSN.
988 Returns NO_REGS for call insns because some targets have constraints on
989 destination register of a call insn.
991 Code adopted from regrename.c::build_def_use. */
992 static enum reg_class
993 get_reg_class (rtx_insn *insn)
995 int i, n_ops;
997 extract_insn (insn);
998 if (! constrain_operands (1))
999 fatal_insn_not_found (insn);
1000 preprocess_constraints (insn);
1001 n_ops = recog_data.n_operands;
1003 const operand_alternative *op_alt = which_op_alt ();
1004 if (asm_noperands (PATTERN (insn)) > 0)
1006 for (i = 0; i < n_ops; i++)
1007 if (recog_data.operand_type[i] == OP_OUT)
1009 rtx *loc = recog_data.operand_loc[i];
1010 rtx op = *loc;
1011 enum reg_class cl = alternative_class (op_alt, i);
1013 if (REG_P (op)
1014 && REGNO (op) == ORIGINAL_REGNO (op))
1015 continue;
1017 return cl;
1020 else if (!CALL_P (insn))
1022 for (i = 0; i < n_ops + recog_data.n_dups; i++)
1024 int opn = i < n_ops ? i : recog_data.dup_num[i - n_ops];
1025 enum reg_class cl = alternative_class (op_alt, opn);
1027 if (recog_data.operand_type[opn] == OP_OUT ||
1028 recog_data.operand_type[opn] == OP_INOUT)
1029 return cl;
1033 /* Insns like
1034 (insn (set (reg:CCZ 17 flags) (compare:CCZ ...)))
1035 may result in returning NO_REGS, cause flags is written implicitly through
1036 CMP insn, which has no OP_OUT | OP_INOUT operands. */
1037 return NO_REGS;
1040 #ifdef HARD_REGNO_RENAME_OK
1041 /* Calculate HARD_REGNO_RENAME_OK data for REGNO. */
1042 static void
1043 init_hard_regno_rename (int regno)
1045 int cur_reg;
1047 SET_HARD_REG_BIT (sel_hrd.regs_for_rename[regno], regno);
1049 for (cur_reg = 0; cur_reg < FIRST_PSEUDO_REGISTER; cur_reg++)
1051 /* We are not interested in renaming in other regs. */
1052 if (!TEST_HARD_REG_BIT (sel_hrd.regs_ever_used, cur_reg))
1053 continue;
1055 if (HARD_REGNO_RENAME_OK (regno, cur_reg))
1056 SET_HARD_REG_BIT (sel_hrd.regs_for_rename[regno], cur_reg);
1059 #endif
1061 /* A wrapper around HARD_REGNO_RENAME_OK that will look into the hard regs
1062 data first. */
1063 static inline bool
1064 sel_hard_regno_rename_ok (int from ATTRIBUTE_UNUSED, int to ATTRIBUTE_UNUSED)
1066 #ifdef HARD_REGNO_RENAME_OK
1067 /* Check whether this is all calculated. */
1068 if (TEST_HARD_REG_BIT (sel_hrd.regs_for_rename[from], from))
1069 return TEST_HARD_REG_BIT (sel_hrd.regs_for_rename[from], to);
1071 init_hard_regno_rename (from);
1073 return TEST_HARD_REG_BIT (sel_hrd.regs_for_rename[from], to);
1074 #else
1075 return true;
1076 #endif
1079 /* Calculate set of registers that are capable of holding MODE. */
1080 static void
1081 init_regs_for_mode (enum machine_mode mode)
1083 int cur_reg;
1085 CLEAR_HARD_REG_SET (sel_hrd.regs_for_mode[mode]);
1086 CLEAR_HARD_REG_SET (sel_hrd.regs_for_call_clobbered[mode]);
1088 for (cur_reg = 0; cur_reg < FIRST_PSEUDO_REGISTER; cur_reg++)
1090 int nregs;
1091 int i;
1093 /* See whether it accepts all modes that occur in
1094 original insns. */
1095 if (! HARD_REGNO_MODE_OK (cur_reg, mode))
1096 continue;
1098 nregs = hard_regno_nregs[cur_reg][mode];
1100 for (i = nregs - 1; i >= 0; --i)
1101 if (fixed_regs[cur_reg + i]
1102 || global_regs[cur_reg + i]
1103 /* Can't use regs which aren't saved by
1104 the prologue. */
1105 || !TEST_HARD_REG_BIT (sel_hrd.regs_ever_used, cur_reg + i)
1106 /* Can't use regs with non-null REG_BASE_VALUE, because adjusting
1107 it affects aliasing globally and invalidates all AV sets. */
1108 || get_reg_base_value (cur_reg + i)
1109 #ifdef LEAF_REGISTERS
1110 /* We can't use a non-leaf register if we're in a
1111 leaf function. */
1112 || (crtl->is_leaf
1113 && !LEAF_REGISTERS[cur_reg + i])
1114 #endif
1116 break;
1118 if (i >= 0)
1119 continue;
1121 if (HARD_REGNO_CALL_PART_CLOBBERED (cur_reg, mode))
1122 SET_HARD_REG_BIT (sel_hrd.regs_for_call_clobbered[mode],
1123 cur_reg);
1125 /* If the CUR_REG passed all the checks above,
1126 then it's ok. */
1127 SET_HARD_REG_BIT (sel_hrd.regs_for_mode[mode], cur_reg);
1130 sel_hrd.regs_for_mode_ok[mode] = true;
1133 /* Init all register sets gathered in HRD. */
1134 static void
1135 init_hard_regs_data (void)
1137 int cur_reg = 0;
1138 int cur_mode = 0;
1140 CLEAR_HARD_REG_SET (sel_hrd.regs_ever_used);
1141 for (cur_reg = 0; cur_reg < FIRST_PSEUDO_REGISTER; cur_reg++)
1142 if (df_regs_ever_live_p (cur_reg) || call_used_regs[cur_reg])
1143 SET_HARD_REG_BIT (sel_hrd.regs_ever_used, cur_reg);
1145 /* Initialize registers that are valid based on mode when this is
1146 really needed. */
1147 for (cur_mode = 0; cur_mode < NUM_MACHINE_MODES; cur_mode++)
1148 sel_hrd.regs_for_mode_ok[cur_mode] = false;
1150 /* Mark that all HARD_REGNO_RENAME_OK is not calculated. */
1151 for (cur_reg = 0; cur_reg < FIRST_PSEUDO_REGISTER; cur_reg++)
1152 CLEAR_HARD_REG_SET (sel_hrd.regs_for_rename[cur_reg]);
1154 #ifdef STACK_REGS
1155 CLEAR_HARD_REG_SET (sel_hrd.stack_regs);
1157 for (cur_reg = FIRST_STACK_REG; cur_reg <= LAST_STACK_REG; cur_reg++)
1158 SET_HARD_REG_BIT (sel_hrd.stack_regs, cur_reg);
1159 #endif
1162 /* Mark hardware regs in REG_RENAME_P that are not suitable
1163 for renaming rhs in INSN due to hardware restrictions (register class,
1164 modes compatibility etc). This doesn't affect original insn's dest reg,
1165 if it isn't in USED_REGS. DEF is a definition insn of rhs for which the
1166 destination register is sought. LHS (DEF->ORIG_INSN) may be REG or MEM.
1167 Registers that are in used_regs are always marked in
1168 unavailable_hard_regs as well. */
1170 static void
1171 mark_unavailable_hard_regs (def_t def, struct reg_rename *reg_rename_p,
1172 regset used_regs ATTRIBUTE_UNUSED)
1174 enum machine_mode mode;
1175 enum reg_class cl = NO_REGS;
1176 rtx orig_dest;
1177 unsigned cur_reg, regno;
1178 hard_reg_set_iterator hrsi;
1180 gcc_assert (GET_CODE (PATTERN (def->orig_insn)) == SET);
1181 gcc_assert (reg_rename_p);
1183 orig_dest = SET_DEST (PATTERN (def->orig_insn));
1185 /* We have decided not to rename 'mem = something;' insns, as 'something'
1186 is usually a register. */
1187 if (!REG_P (orig_dest))
1188 return;
1190 regno = REGNO (orig_dest);
1192 /* If before reload, don't try to work with pseudos. */
1193 if (!reload_completed && !HARD_REGISTER_NUM_P (regno))
1194 return;
1196 if (reload_completed)
1197 cl = get_reg_class (def->orig_insn);
1199 /* Stop if the original register is one of the fixed_regs, global_regs or
1200 frame pointer, or we could not discover its class. */
1201 if (fixed_regs[regno]
1202 || global_regs[regno]
1203 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
1204 || (frame_pointer_needed && regno == HARD_FRAME_POINTER_REGNUM)
1205 #else
1206 || (frame_pointer_needed && regno == FRAME_POINTER_REGNUM)
1207 #endif
1208 || (reload_completed && cl == NO_REGS))
1210 SET_HARD_REG_SET (reg_rename_p->unavailable_hard_regs);
1212 /* Give a chance for original register, if it isn't in used_regs. */
1213 if (!def->crosses_call)
1214 CLEAR_HARD_REG_BIT (reg_rename_p->unavailable_hard_regs, regno);
1216 return;
1219 /* If something allocated on stack in this function, mark frame pointer
1220 register unavailable, considering also modes.
1221 FIXME: it is enough to do this once per all original defs. */
1222 if (frame_pointer_needed)
1224 add_to_hard_reg_set (&reg_rename_p->unavailable_hard_regs,
1225 Pmode, FRAME_POINTER_REGNUM);
1227 if (!HARD_FRAME_POINTER_IS_FRAME_POINTER)
1228 add_to_hard_reg_set (&reg_rename_p->unavailable_hard_regs,
1229 Pmode, HARD_FRAME_POINTER_REGNUM);
1232 #ifdef STACK_REGS
1233 /* For the stack registers the presence of FIRST_STACK_REG in USED_REGS
1234 is equivalent to as if all stack regs were in this set.
1235 I.e. no stack register can be renamed, and even if it's an original
1236 register here we make sure it won't be lifted over it's previous def
1237 (it's previous def will appear as if it's a FIRST_STACK_REG def.
1238 The HARD_REGNO_RENAME_OK covers other cases in condition below. */
1239 if (IN_RANGE (REGNO (orig_dest), FIRST_STACK_REG, LAST_STACK_REG)
1240 && REGNO_REG_SET_P (used_regs, FIRST_STACK_REG))
1241 IOR_HARD_REG_SET (reg_rename_p->unavailable_hard_regs,
1242 sel_hrd.stack_regs);
1243 #endif
1245 /* If there's a call on this path, make regs from call_used_reg_set
1246 unavailable. */
1247 if (def->crosses_call)
1248 IOR_HARD_REG_SET (reg_rename_p->unavailable_hard_regs,
1249 call_used_reg_set);
1251 /* Stop here before reload: we need FRAME_REGS, STACK_REGS, and crosses_call,
1252 but not register classes. */
1253 if (!reload_completed)
1254 return;
1256 /* Leave regs as 'available' only from the current
1257 register class. */
1258 COPY_HARD_REG_SET (reg_rename_p->available_for_renaming,
1259 reg_class_contents[cl]);
1261 mode = GET_MODE (orig_dest);
1263 /* Leave only registers available for this mode. */
1264 if (!sel_hrd.regs_for_mode_ok[mode])
1265 init_regs_for_mode (mode);
1266 AND_HARD_REG_SET (reg_rename_p->available_for_renaming,
1267 sel_hrd.regs_for_mode[mode]);
1269 /* Exclude registers that are partially call clobbered. */
1270 if (def->crosses_call
1271 && ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode))
1272 AND_COMPL_HARD_REG_SET (reg_rename_p->available_for_renaming,
1273 sel_hrd.regs_for_call_clobbered[mode]);
1275 /* Leave only those that are ok to rename. */
1276 EXECUTE_IF_SET_IN_HARD_REG_SET (reg_rename_p->available_for_renaming,
1277 0, cur_reg, hrsi)
1279 int nregs;
1280 int i;
1282 nregs = hard_regno_nregs[cur_reg][mode];
1283 gcc_assert (nregs > 0);
1285 for (i = nregs - 1; i >= 0; --i)
1286 if (! sel_hard_regno_rename_ok (regno + i, cur_reg + i))
1287 break;
1289 if (i >= 0)
1290 CLEAR_HARD_REG_BIT (reg_rename_p->available_for_renaming,
1291 cur_reg);
1294 AND_COMPL_HARD_REG_SET (reg_rename_p->available_for_renaming,
1295 reg_rename_p->unavailable_hard_regs);
1297 /* Regno is always ok from the renaming part of view, but it really
1298 could be in *unavailable_hard_regs already, so set it here instead
1299 of there. */
1300 SET_HARD_REG_BIT (reg_rename_p->available_for_renaming, regno);
1303 /* reg_rename_tick[REG1] > reg_rename_tick[REG2] if REG1 was chosen as the
1304 best register more recently than REG2. */
1305 static int reg_rename_tick[FIRST_PSEUDO_REGISTER];
1307 /* Indicates the number of times renaming happened before the current one. */
1308 static int reg_rename_this_tick;
1310 /* Choose the register among free, that is suitable for storing
1311 the rhs value.
1313 ORIGINAL_INSNS is the list of insns where the operation (rhs)
1314 originally appears. There could be multiple original operations
1315 for single rhs since we moving it up and merging along different
1316 paths.
1318 Some code is adapted from regrename.c (regrename_optimize).
1319 If original register is available, function returns it.
1320 Otherwise it performs the checks, so the new register should
1321 comply with the following:
1322 - it should not violate any live ranges (such registers are in
1323 REG_RENAME_P->available_for_renaming set);
1324 - it should not be in the HARD_REGS_USED regset;
1325 - it should be in the class compatible with original uses;
1326 - it should not be clobbered through reference with different mode;
1327 - if we're in the leaf function, then the new register should
1328 not be in the LEAF_REGISTERS;
1329 - etc.
1331 If several registers meet the conditions, the register with smallest
1332 tick is returned to achieve more even register allocation.
1334 If original register seems to be ok, we set *IS_ORIG_REG_P_PTR to true.
1336 If no register satisfies the above conditions, NULL_RTX is returned. */
1337 static rtx
1338 choose_best_reg_1 (HARD_REG_SET hard_regs_used,
1339 struct reg_rename *reg_rename_p,
1340 def_list_t original_insns, bool *is_orig_reg_p_ptr)
1342 int best_new_reg;
1343 unsigned cur_reg;
1344 enum machine_mode mode = VOIDmode;
1345 unsigned regno, i, n;
1346 hard_reg_set_iterator hrsi;
1347 def_list_iterator di;
1348 def_t def;
1350 /* If original register is available, return it. */
1351 *is_orig_reg_p_ptr = true;
1353 FOR_EACH_DEF (def, di, original_insns)
1355 rtx orig_dest = SET_DEST (PATTERN (def->orig_insn));
1357 gcc_assert (REG_P (orig_dest));
1359 /* Check that all original operations have the same mode.
1360 This is done for the next loop; if we'd return from this
1361 loop, we'd check only part of them, but in this case
1362 it doesn't matter. */
1363 if (mode == VOIDmode)
1364 mode = GET_MODE (orig_dest);
1365 gcc_assert (mode == GET_MODE (orig_dest));
1367 regno = REGNO (orig_dest);
1368 for (i = 0, n = hard_regno_nregs[regno][mode]; i < n; i++)
1369 if (TEST_HARD_REG_BIT (hard_regs_used, regno + i))
1370 break;
1372 /* All hard registers are available. */
1373 if (i == n)
1375 gcc_assert (mode != VOIDmode);
1377 /* Hard registers should not be shared. */
1378 return gen_rtx_REG (mode, regno);
1382 *is_orig_reg_p_ptr = false;
1383 best_new_reg = -1;
1385 /* Among all available regs choose the register that was
1386 allocated earliest. */
1387 EXECUTE_IF_SET_IN_HARD_REG_SET (reg_rename_p->available_for_renaming,
1388 0, cur_reg, hrsi)
1389 if (! TEST_HARD_REG_BIT (hard_regs_used, cur_reg))
1391 /* Check that all hard regs for mode are available. */
1392 for (i = 1, n = hard_regno_nregs[cur_reg][mode]; i < n; i++)
1393 if (TEST_HARD_REG_BIT (hard_regs_used, cur_reg + i)
1394 || !TEST_HARD_REG_BIT (reg_rename_p->available_for_renaming,
1395 cur_reg + i))
1396 break;
1398 if (i < n)
1399 continue;
1401 /* All hard registers are available. */
1402 if (best_new_reg < 0
1403 || reg_rename_tick[cur_reg] < reg_rename_tick[best_new_reg])
1405 best_new_reg = cur_reg;
1407 /* Return immediately when we know there's no better reg. */
1408 if (! reg_rename_tick[best_new_reg])
1409 break;
1413 if (best_new_reg >= 0)
1415 /* Use the check from the above loop. */
1416 gcc_assert (mode != VOIDmode);
1417 return gen_rtx_REG (mode, best_new_reg);
1420 return NULL_RTX;
1423 /* A wrapper around choose_best_reg_1 () to verify that we make correct
1424 assumptions about available registers in the function. */
1425 static rtx
1426 choose_best_reg (HARD_REG_SET hard_regs_used, struct reg_rename *reg_rename_p,
1427 def_list_t original_insns, bool *is_orig_reg_p_ptr)
1429 rtx best_reg = choose_best_reg_1 (hard_regs_used, reg_rename_p,
1430 original_insns, is_orig_reg_p_ptr);
1432 /* FIXME loop over hard_regno_nregs here. */
1433 gcc_assert (best_reg == NULL_RTX
1434 || TEST_HARD_REG_BIT (sel_hrd.regs_ever_used, REGNO (best_reg)));
1436 return best_reg;
1439 /* Choose the pseudo register for storing rhs value. As this is supposed
1440 to work before reload, we return either the original register or make
1441 the new one. The parameters are the same that in choose_nest_reg_1
1442 functions, except that USED_REGS may contain pseudos.
1443 If we work with hard regs, check also REG_RENAME_P->UNAVAILABLE_HARD_REGS.
1445 TODO: take into account register pressure while doing this. Up to this
1446 moment, this function would never return NULL for pseudos, but we should
1447 not rely on this. */
1448 static rtx
1449 choose_best_pseudo_reg (regset used_regs,
1450 struct reg_rename *reg_rename_p,
1451 def_list_t original_insns, bool *is_orig_reg_p_ptr)
1453 def_list_iterator i;
1454 def_t def;
1455 enum machine_mode mode = VOIDmode;
1456 bool bad_hard_regs = false;
1458 /* We should not use this after reload. */
1459 gcc_assert (!reload_completed);
1461 /* If original register is available, return it. */
1462 *is_orig_reg_p_ptr = true;
1464 FOR_EACH_DEF (def, i, original_insns)
1466 rtx dest = SET_DEST (PATTERN (def->orig_insn));
1467 int orig_regno;
1469 gcc_assert (REG_P (dest));
1471 /* Check that all original operations have the same mode. */
1472 if (mode == VOIDmode)
1473 mode = GET_MODE (dest);
1474 else
1475 gcc_assert (mode == GET_MODE (dest));
1476 orig_regno = REGNO (dest);
1478 if (!REGNO_REG_SET_P (used_regs, orig_regno))
1480 if (orig_regno < FIRST_PSEUDO_REGISTER)
1482 gcc_assert (df_regs_ever_live_p (orig_regno));
1484 /* For hard registers, we have to check hardware imposed
1485 limitations (frame/stack registers, calls crossed). */
1486 if (!TEST_HARD_REG_BIT (reg_rename_p->unavailable_hard_regs,
1487 orig_regno))
1489 /* Don't let register cross a call if it doesn't already
1490 cross one. This condition is written in accordance with
1491 that in sched-deps.c sched_analyze_reg(). */
1492 if (!reg_rename_p->crosses_call
1493 || REG_N_CALLS_CROSSED (orig_regno) > 0)
1494 return gen_rtx_REG (mode, orig_regno);
1497 bad_hard_regs = true;
1499 else
1500 return dest;
1504 *is_orig_reg_p_ptr = false;
1506 /* We had some original hard registers that couldn't be used.
1507 Those were likely special. Don't try to create a pseudo. */
1508 if (bad_hard_regs)
1509 return NULL_RTX;
1511 /* We haven't found a register from original operations. Get a new one.
1512 FIXME: control register pressure somehow. */
1514 rtx new_reg = gen_reg_rtx (mode);
1516 gcc_assert (mode != VOIDmode);
1518 max_regno = max_reg_num ();
1519 maybe_extend_reg_info_p ();
1520 REG_N_CALLS_CROSSED (REGNO (new_reg)) = reg_rename_p->crosses_call ? 1 : 0;
1522 return new_reg;
1526 /* True when target of EXPR is available due to EXPR_TARGET_AVAILABLE,
1527 USED_REGS and REG_RENAME_P->UNAVAILABLE_HARD_REGS. */
1528 static void
1529 verify_target_availability (expr_t expr, regset used_regs,
1530 struct reg_rename *reg_rename_p)
1532 unsigned n, i, regno;
1533 enum machine_mode mode;
1534 bool target_available, live_available, hard_available;
1536 if (!REG_P (EXPR_LHS (expr)) || EXPR_TARGET_AVAILABLE (expr) < 0)
1537 return;
1539 regno = expr_dest_regno (expr);
1540 mode = GET_MODE (EXPR_LHS (expr));
1541 target_available = EXPR_TARGET_AVAILABLE (expr) == 1;
1542 n = HARD_REGISTER_NUM_P (regno) ? hard_regno_nregs[regno][mode] : 1;
1544 live_available = hard_available = true;
1545 for (i = 0; i < n; i++)
1547 if (bitmap_bit_p (used_regs, regno + i))
1548 live_available = false;
1549 if (TEST_HARD_REG_BIT (reg_rename_p->unavailable_hard_regs, regno + i))
1550 hard_available = false;
1553 /* When target is not available, it may be due to hard register
1554 restrictions, e.g. crosses calls, so we check hard_available too. */
1555 if (target_available)
1556 gcc_assert (live_available);
1557 else
1558 /* Check only if we haven't scheduled something on the previous fence,
1559 cause due to MAX_SOFTWARE_LOOKAHEAD_WINDOW_SIZE issues
1560 and having more than one fence, we may end having targ_un in a block
1561 in which successors target register is actually available.
1563 The last condition handles the case when a dependence from a call insn
1564 was created in sched-deps.c for insns with destination registers that
1565 never crossed a call before, but do cross one after our code motion.
1567 FIXME: in the latter case, we just uselessly called find_used_regs,
1568 because we can't move this expression with any other register
1569 as well. */
1570 gcc_assert (scheduled_something_on_previous_fence || !live_available
1571 || !hard_available
1572 || (!reload_completed && reg_rename_p->crosses_call
1573 && REG_N_CALLS_CROSSED (regno) == 0));
1576 /* Collect unavailable registers due to liveness for EXPR from BNDS
1577 into USED_REGS. Save additional information about available
1578 registers and unavailable due to hardware restriction registers
1579 into REG_RENAME_P structure. Save original insns into ORIGINAL_INSNS
1580 list. */
1581 static void
1582 collect_unavailable_regs_from_bnds (expr_t expr, blist_t bnds, regset used_regs,
1583 struct reg_rename *reg_rename_p,
1584 def_list_t *original_insns)
1586 for (; bnds; bnds = BLIST_NEXT (bnds))
1588 bool res;
1589 av_set_t orig_ops = NULL;
1590 bnd_t bnd = BLIST_BND (bnds);
1592 /* If the chosen best expr doesn't belong to current boundary,
1593 skip it. */
1594 if (!av_set_is_in_p (BND_AV1 (bnd), EXPR_VINSN (expr)))
1595 continue;
1597 /* Put in ORIG_OPS all exprs from this boundary that became
1598 RES on top. */
1599 orig_ops = find_sequential_best_exprs (bnd, expr, false);
1601 /* Compute used regs and OR it into the USED_REGS. */
1602 res = find_used_regs (BND_TO (bnd), orig_ops, used_regs,
1603 reg_rename_p, original_insns);
1605 /* FIXME: the assert is true until we'd have several boundaries. */
1606 gcc_assert (res);
1607 av_set_clear (&orig_ops);
1611 /* Return TRUE if it is possible to replace LHSes of ORIG_INSNS with BEST_REG.
1612 If BEST_REG is valid, replace LHS of EXPR with it. */
1613 static bool
1614 try_replace_dest_reg (ilist_t orig_insns, rtx best_reg, expr_t expr)
1616 /* Try whether we'll be able to generate the insn
1617 'dest := best_reg' at the place of the original operation. */
1618 for (; orig_insns; orig_insns = ILIST_NEXT (orig_insns))
1620 insn_t orig_insn = DEF_LIST_DEF (orig_insns)->orig_insn;
1622 gcc_assert (EXPR_SEPARABLE_P (INSN_EXPR (orig_insn)));
1624 if (REGNO (best_reg) != REGNO (INSN_LHS (orig_insn))
1625 && (! replace_src_with_reg_ok_p (orig_insn, best_reg)
1626 || ! replace_dest_with_reg_ok_p (orig_insn, best_reg)))
1627 return false;
1630 /* Make sure that EXPR has the right destination
1631 register. */
1632 if (expr_dest_regno (expr) != REGNO (best_reg))
1633 replace_dest_with_reg_in_expr (expr, best_reg);
1634 else
1635 EXPR_TARGET_AVAILABLE (expr) = 1;
1637 return true;
1640 /* Select and assign best register to EXPR searching from BNDS.
1641 Set *IS_ORIG_REG_P to TRUE if original register was selected.
1642 Return FALSE if no register can be chosen, which could happen when:
1643 * EXPR_SEPARABLE_P is true but we were unable to find suitable register;
1644 * EXPR_SEPARABLE_P is false but the insn sets/clobbers one of the registers
1645 that are used on the moving path. */
1646 static bool
1647 find_best_reg_for_expr (expr_t expr, blist_t bnds, bool *is_orig_reg_p)
1649 static struct reg_rename reg_rename_data;
1651 regset used_regs;
1652 def_list_t original_insns = NULL;
1653 bool reg_ok;
1655 *is_orig_reg_p = false;
1657 /* Don't bother to do anything if this insn doesn't set any registers. */
1658 if (bitmap_empty_p (VINSN_REG_SETS (EXPR_VINSN (expr)))
1659 && bitmap_empty_p (VINSN_REG_CLOBBERS (EXPR_VINSN (expr))))
1660 return true;
1662 used_regs = get_clear_regset_from_pool ();
1663 CLEAR_HARD_REG_SET (reg_rename_data.unavailable_hard_regs);
1665 collect_unavailable_regs_from_bnds (expr, bnds, used_regs, &reg_rename_data,
1666 &original_insns);
1668 #ifdef ENABLE_CHECKING
1669 /* If after reload, make sure we're working with hard regs here. */
1670 if (reload_completed)
1672 reg_set_iterator rsi;
1673 unsigned i;
1675 EXECUTE_IF_SET_IN_REG_SET (used_regs, FIRST_PSEUDO_REGISTER, i, rsi)
1676 gcc_unreachable ();
1678 #endif
1680 if (EXPR_SEPARABLE_P (expr))
1682 rtx best_reg = NULL_RTX;
1683 /* Check that we have computed availability of a target register
1684 correctly. */
1685 verify_target_availability (expr, used_regs, &reg_rename_data);
1687 /* Turn everything in hard regs after reload. */
1688 if (reload_completed)
1690 HARD_REG_SET hard_regs_used;
1691 REG_SET_TO_HARD_REG_SET (hard_regs_used, used_regs);
1693 /* Join hard registers unavailable due to register class
1694 restrictions and live range intersection. */
1695 IOR_HARD_REG_SET (hard_regs_used,
1696 reg_rename_data.unavailable_hard_regs);
1698 best_reg = choose_best_reg (hard_regs_used, &reg_rename_data,
1699 original_insns, is_orig_reg_p);
1701 else
1702 best_reg = choose_best_pseudo_reg (used_regs, &reg_rename_data,
1703 original_insns, is_orig_reg_p);
1705 if (!best_reg)
1706 reg_ok = false;
1707 else if (*is_orig_reg_p)
1709 /* In case of unification BEST_REG may be different from EXPR's LHS
1710 when EXPR's LHS is unavailable, and there is another LHS among
1711 ORIGINAL_INSNS. */
1712 reg_ok = try_replace_dest_reg (original_insns, best_reg, expr);
1714 else
1716 /* Forbid renaming of low-cost insns. */
1717 if (sel_vinsn_cost (EXPR_VINSN (expr)) < 2)
1718 reg_ok = false;
1719 else
1720 reg_ok = try_replace_dest_reg (original_insns, best_reg, expr);
1723 else
1725 /* If !EXPR_SCHEDULE_AS_RHS (EXPR), just make sure INSN doesn't set
1726 any of the HARD_REGS_USED set. */
1727 if (vinsn_writes_one_of_regs_p (EXPR_VINSN (expr), used_regs,
1728 reg_rename_data.unavailable_hard_regs))
1730 reg_ok = false;
1731 gcc_assert (EXPR_TARGET_AVAILABLE (expr) <= 0);
1733 else
1735 reg_ok = true;
1736 gcc_assert (EXPR_TARGET_AVAILABLE (expr) != 0);
1740 ilist_clear (&original_insns);
1741 return_regset_to_pool (used_regs);
1743 return reg_ok;
1747 /* Return true if dependence described by DS can be overcomed. */
1748 static bool
1749 can_speculate_dep_p (ds_t ds)
1751 if (spec_info == NULL)
1752 return false;
1754 /* Leave only speculative data. */
1755 ds &= SPECULATIVE;
1757 if (ds == 0)
1758 return false;
1761 /* FIXME: make sched-deps.c produce only those non-hard dependencies,
1762 that we can overcome. */
1763 ds_t spec_mask = spec_info->mask;
1765 if ((ds & spec_mask) != ds)
1766 return false;
1769 if (ds_weak (ds) < spec_info->data_weakness_cutoff)
1770 return false;
1772 return true;
1775 /* Get a speculation check instruction.
1776 C_EXPR is a speculative expression,
1777 CHECK_DS describes speculations that should be checked,
1778 ORIG_INSN is the original non-speculative insn in the stream. */
1779 static insn_t
1780 create_speculation_check (expr_t c_expr, ds_t check_ds, insn_t orig_insn)
1782 rtx check_pattern;
1783 rtx_insn *insn_rtx;
1784 insn_t insn;
1785 basic_block recovery_block;
1786 rtx_insn *label;
1788 /* Create a recovery block if target is going to emit branchy check, or if
1789 ORIG_INSN was speculative already. */
1790 if (targetm.sched.needs_block_p (check_ds)
1791 || EXPR_SPEC_DONE_DS (INSN_EXPR (orig_insn)) != 0)
1793 recovery_block = sel_create_recovery_block (orig_insn);
1794 label = BB_HEAD (recovery_block);
1796 else
1798 recovery_block = NULL;
1799 label = NULL;
1802 /* Get pattern of the check. */
1803 check_pattern = targetm.sched.gen_spec_check (EXPR_INSN_RTX (c_expr), label,
1804 check_ds);
1806 gcc_assert (check_pattern != NULL);
1808 /* Emit check. */
1809 insn_rtx = create_insn_rtx_from_pattern (check_pattern, label);
1811 insn = sel_gen_insn_from_rtx_after (insn_rtx, INSN_EXPR (orig_insn),
1812 INSN_SEQNO (orig_insn), orig_insn);
1814 /* Make check to be non-speculative. */
1815 EXPR_SPEC_DONE_DS (INSN_EXPR (insn)) = 0;
1816 INSN_SPEC_CHECKED_DS (insn) = check_ds;
1818 /* Decrease priority of check by difference of load/check instruction
1819 latencies. */
1820 EXPR_PRIORITY (INSN_EXPR (insn)) -= (sel_vinsn_cost (INSN_VINSN (orig_insn))
1821 - sel_vinsn_cost (INSN_VINSN (insn)));
1823 /* Emit copy of original insn (though with replaced target register,
1824 if needed) to the recovery block. */
1825 if (recovery_block != NULL)
1827 rtx twin_rtx;
1829 twin_rtx = copy_rtx (PATTERN (EXPR_INSN_RTX (c_expr)));
1830 twin_rtx = create_insn_rtx_from_pattern (twin_rtx, NULL_RTX);
1831 sel_gen_recovery_insn_from_rtx_after (twin_rtx,
1832 INSN_EXPR (orig_insn),
1833 INSN_SEQNO (insn),
1834 bb_note (recovery_block));
1837 /* If we've generated a data speculation check, make sure
1838 that all the bookkeeping instruction we'll create during
1839 this move_op () will allocate an ALAT entry so that the
1840 check won't fail.
1841 In case of control speculation we must convert C_EXPR to control
1842 speculative mode, because failing to do so will bring us an exception
1843 thrown by the non-control-speculative load. */
1844 check_ds = ds_get_max_dep_weak (check_ds);
1845 speculate_expr (c_expr, check_ds);
1847 return insn;
1850 /* True when INSN is a "regN = regN" copy. */
1851 static bool
1852 identical_copy_p (rtx insn)
1854 rtx lhs, rhs, pat;
1856 pat = PATTERN (insn);
1858 if (GET_CODE (pat) != SET)
1859 return false;
1861 lhs = SET_DEST (pat);
1862 if (!REG_P (lhs))
1863 return false;
1865 rhs = SET_SRC (pat);
1866 if (!REG_P (rhs))
1867 return false;
1869 return REGNO (lhs) == REGNO (rhs);
1872 /* Undo all transformations on *AV_PTR that were done when
1873 moving through INSN. */
1874 static void
1875 undo_transformations (av_set_t *av_ptr, rtx_insn *insn)
1877 av_set_iterator av_iter;
1878 expr_t expr;
1879 av_set_t new_set = NULL;
1881 /* First, kill any EXPR that uses registers set by an insn. This is
1882 required for correctness. */
1883 FOR_EACH_EXPR_1 (expr, av_iter, av_ptr)
1884 if (!sched_insns_conditions_mutex_p (insn, EXPR_INSN_RTX (expr))
1885 && bitmap_intersect_p (INSN_REG_SETS (insn),
1886 VINSN_REG_USES (EXPR_VINSN (expr)))
1887 /* When an insn looks like 'r1 = r1', we could substitute through
1888 it, but the above condition will still hold. This happened with
1889 gcc.c-torture/execute/961125-1.c. */
1890 && !identical_copy_p (insn))
1892 if (sched_verbose >= 6)
1893 sel_print ("Expr %d removed due to use/set conflict\n",
1894 INSN_UID (EXPR_INSN_RTX (expr)));
1895 av_set_iter_remove (&av_iter);
1898 /* Undo transformations looking at the history vector. */
1899 FOR_EACH_EXPR (expr, av_iter, *av_ptr)
1901 int index = find_in_history_vect (EXPR_HISTORY_OF_CHANGES (expr),
1902 insn, EXPR_VINSN (expr), true);
1904 if (index >= 0)
1906 expr_history_def *phist;
1908 phist = &EXPR_HISTORY_OF_CHANGES (expr)[index];
1910 switch (phist->type)
1912 case TRANS_SPECULATION:
1914 ds_t old_ds, new_ds;
1916 /* Compute the difference between old and new speculative
1917 statuses: that's what we need to check.
1918 Earlier we used to assert that the status will really
1919 change. This no longer works because only the probability
1920 bits in the status may have changed during compute_av_set,
1921 and in the case of merging different probabilities of the
1922 same speculative status along different paths we do not
1923 record this in the history vector. */
1924 old_ds = phist->spec_ds;
1925 new_ds = EXPR_SPEC_DONE_DS (expr);
1927 old_ds &= SPECULATIVE;
1928 new_ds &= SPECULATIVE;
1929 new_ds &= ~old_ds;
1931 EXPR_SPEC_TO_CHECK_DS (expr) |= new_ds;
1932 break;
1934 case TRANS_SUBSTITUTION:
1936 expr_def _tmp_expr, *tmp_expr = &_tmp_expr;
1937 vinsn_t new_vi;
1938 bool add = true;
1940 new_vi = phist->old_expr_vinsn;
1942 gcc_assert (VINSN_SEPARABLE_P (new_vi)
1943 == EXPR_SEPARABLE_P (expr));
1944 copy_expr (tmp_expr, expr);
1946 if (vinsn_equal_p (phist->new_expr_vinsn,
1947 EXPR_VINSN (tmp_expr)))
1948 change_vinsn_in_expr (tmp_expr, new_vi);
1949 else
1950 /* This happens when we're unsubstituting on a bookkeeping
1951 copy, which was in turn substituted. The history is wrong
1952 in this case. Do it the hard way. */
1953 add = substitute_reg_in_expr (tmp_expr, insn, true);
1954 if (add)
1955 av_set_add (&new_set, tmp_expr);
1956 clear_expr (tmp_expr);
1957 break;
1959 default:
1960 gcc_unreachable ();
1966 av_set_union_and_clear (av_ptr, &new_set, NULL);
1970 /* Moveup_* helpers for code motion and computing av sets. */
1972 /* Propagates EXPR inside an insn group through THROUGH_INSN.
1973 The difference from the below function is that only substitution is
1974 performed. */
1975 static enum MOVEUP_EXPR_CODE
1976 moveup_expr_inside_insn_group (expr_t expr, insn_t through_insn)
1978 vinsn_t vi = EXPR_VINSN (expr);
1979 ds_t *has_dep_p;
1980 ds_t full_ds;
1982 /* Do this only inside insn group. */
1983 gcc_assert (INSN_SCHED_CYCLE (through_insn) > 0);
1985 full_ds = has_dependence_p (expr, through_insn, &has_dep_p);
1986 if (full_ds == 0)
1987 return MOVEUP_EXPR_SAME;
1989 /* Substitution is the possible choice in this case. */
1990 if (has_dep_p[DEPS_IN_RHS])
1992 /* Can't substitute UNIQUE VINSNs. */
1993 gcc_assert (!VINSN_UNIQUE_P (vi));
1995 if (can_substitute_through_p (through_insn,
1996 has_dep_p[DEPS_IN_RHS])
1997 && substitute_reg_in_expr (expr, through_insn, false))
1999 EXPR_WAS_SUBSTITUTED (expr) = true;
2000 return MOVEUP_EXPR_CHANGED;
2003 /* Don't care about this, as even true dependencies may be allowed
2004 in an insn group. */
2005 return MOVEUP_EXPR_SAME;
2008 /* This can catch output dependencies in COND_EXECs. */
2009 if (has_dep_p[DEPS_IN_INSN])
2010 return MOVEUP_EXPR_NULL;
2012 /* This is either an output or an anti dependence, which usually have
2013 a zero latency. Allow this here, if we'd be wrong, tick_check_p
2014 will fix this. */
2015 gcc_assert (has_dep_p[DEPS_IN_LHS]);
2016 return MOVEUP_EXPR_AS_RHS;
2019 /* True when a trapping EXPR cannot be moved through THROUGH_INSN. */
2020 #define CANT_MOVE_TRAPPING(expr, through_insn) \
2021 (VINSN_MAY_TRAP_P (EXPR_VINSN (expr)) \
2022 && !sel_insn_has_single_succ_p ((through_insn), SUCCS_ALL) \
2023 && !sel_insn_is_speculation_check (through_insn))
2025 /* True when a conflict on a target register was found during moveup_expr. */
2026 static bool was_target_conflict = false;
2028 /* Return true when moving a debug INSN across THROUGH_INSN will
2029 create a bookkeeping block. We don't want to create such blocks,
2030 for they would cause codegen differences between compilations with
2031 and without debug info. */
2033 static bool
2034 moving_insn_creates_bookkeeping_block_p (insn_t insn,
2035 insn_t through_insn)
2037 basic_block bbi, bbt;
2038 edge e1, e2;
2039 edge_iterator ei1, ei2;
2041 if (!bookkeeping_can_be_created_if_moved_through_p (through_insn))
2043 if (sched_verbose >= 9)
2044 sel_print ("no bookkeeping required: ");
2045 return FALSE;
2048 bbi = BLOCK_FOR_INSN (insn);
2050 if (EDGE_COUNT (bbi->preds) == 1)
2052 if (sched_verbose >= 9)
2053 sel_print ("only one pred edge: ");
2054 return TRUE;
2057 bbt = BLOCK_FOR_INSN (through_insn);
2059 FOR_EACH_EDGE (e1, ei1, bbt->succs)
2061 FOR_EACH_EDGE (e2, ei2, bbi->preds)
2063 if (find_block_for_bookkeeping (e1, e2, TRUE))
2065 if (sched_verbose >= 9)
2066 sel_print ("found existing block: ");
2067 return FALSE;
2072 if (sched_verbose >= 9)
2073 sel_print ("would create bookkeeping block: ");
2075 return TRUE;
2078 /* Return true when the conflict with newly created implicit clobbers
2079 between EXPR and THROUGH_INSN is found because of renaming. */
2080 static bool
2081 implicit_clobber_conflict_p (insn_t through_insn, expr_t expr)
2083 HARD_REG_SET temp;
2084 rtx_insn *insn;
2085 rtx reg, rhs, pat;
2086 hard_reg_set_iterator hrsi;
2087 unsigned regno;
2088 bool valid;
2090 /* Make a new pseudo register. */
2091 reg = gen_reg_rtx (GET_MODE (EXPR_LHS (expr)));
2092 max_regno = max_reg_num ();
2093 maybe_extend_reg_info_p ();
2095 /* Validate a change and bail out early. */
2096 insn = EXPR_INSN_RTX (expr);
2097 validate_change (insn, &SET_DEST (PATTERN (insn)), reg, true);
2098 valid = verify_changes (0);
2099 cancel_changes (0);
2100 if (!valid)
2102 if (sched_verbose >= 6)
2103 sel_print ("implicit clobbers failed validation, ");
2104 return true;
2107 /* Make a new insn with it. */
2108 rhs = copy_rtx (VINSN_RHS (EXPR_VINSN (expr)));
2109 pat = gen_rtx_SET (VOIDmode, reg, rhs);
2110 start_sequence ();
2111 insn = emit_insn (pat);
2112 end_sequence ();
2114 /* Calculate implicit clobbers. */
2115 extract_insn (insn);
2116 preprocess_constraints (insn);
2117 ira_implicitly_set_insn_hard_regs (&temp);
2118 AND_COMPL_HARD_REG_SET (temp, ira_no_alloc_regs);
2120 /* If any implicit clobber registers intersect with regular ones in
2121 through_insn, we have a dependency and thus bail out. */
2122 EXECUTE_IF_SET_IN_HARD_REG_SET (temp, 0, regno, hrsi)
2124 vinsn_t vi = INSN_VINSN (through_insn);
2125 if (bitmap_bit_p (VINSN_REG_SETS (vi), regno)
2126 || bitmap_bit_p (VINSN_REG_CLOBBERS (vi), regno)
2127 || bitmap_bit_p (VINSN_REG_USES (vi), regno))
2128 return true;
2131 return false;
2134 /* Modifies EXPR so it can be moved through the THROUGH_INSN,
2135 performing necessary transformations. Record the type of transformation
2136 made in PTRANS_TYPE, when it is not NULL. When INSIDE_INSN_GROUP,
2137 permit all dependencies except true ones, and try to remove those
2138 too via forward substitution. All cases when a non-eliminable
2139 non-zero cost dependency exists inside an insn group will be fixed
2140 in tick_check_p instead. */
2141 static enum MOVEUP_EXPR_CODE
2142 moveup_expr (expr_t expr, insn_t through_insn, bool inside_insn_group,
2143 enum local_trans_type *ptrans_type)
2145 vinsn_t vi = EXPR_VINSN (expr);
2146 insn_t insn = VINSN_INSN_RTX (vi);
2147 bool was_changed = false;
2148 bool as_rhs = false;
2149 ds_t *has_dep_p;
2150 ds_t full_ds;
2152 /* ??? We use dependencies of non-debug insns on debug insns to
2153 indicate that the debug insns need to be reset if the non-debug
2154 insn is pulled ahead of it. It's hard to figure out how to
2155 introduce such a notion in sel-sched, but it already fails to
2156 support debug insns in other ways, so we just go ahead and
2157 let the deug insns go corrupt for now. */
2158 if (DEBUG_INSN_P (through_insn) && !DEBUG_INSN_P (insn))
2159 return MOVEUP_EXPR_SAME;
2161 /* When inside_insn_group, delegate to the helper. */
2162 if (inside_insn_group)
2163 return moveup_expr_inside_insn_group (expr, through_insn);
2165 /* Deal with unique insns and control dependencies. */
2166 if (VINSN_UNIQUE_P (vi))
2168 /* We can move jumps without side-effects or jumps that are
2169 mutually exclusive with instruction THROUGH_INSN (all in cases
2170 dependencies allow to do so and jump is not speculative). */
2171 if (control_flow_insn_p (insn))
2173 basic_block fallthru_bb;
2175 /* Do not move checks and do not move jumps through other
2176 jumps. */
2177 if (control_flow_insn_p (through_insn)
2178 || sel_insn_is_speculation_check (insn))
2179 return MOVEUP_EXPR_NULL;
2181 /* Don't move jumps through CFG joins. */
2182 if (bookkeeping_can_be_created_if_moved_through_p (through_insn))
2183 return MOVEUP_EXPR_NULL;
2185 /* The jump should have a clear fallthru block, and
2186 this block should be in the current region. */
2187 if ((fallthru_bb = fallthru_bb_of_jump (insn)) == NULL
2188 || ! in_current_region_p (fallthru_bb))
2189 return MOVEUP_EXPR_NULL;
2191 /* And it should be mutually exclusive with through_insn. */
2192 if (! sched_insns_conditions_mutex_p (insn, through_insn)
2193 && ! DEBUG_INSN_P (through_insn))
2194 return MOVEUP_EXPR_NULL;
2197 /* Don't move what we can't move. */
2198 if (EXPR_CANT_MOVE (expr)
2199 && BLOCK_FOR_INSN (through_insn) != BLOCK_FOR_INSN (insn))
2200 return MOVEUP_EXPR_NULL;
2202 /* Don't move SCHED_GROUP instruction through anything.
2203 If we don't force this, then it will be possible to start
2204 scheduling a sched_group before all its dependencies are
2205 resolved.
2206 ??? Haifa deals with this issue by delaying the SCHED_GROUP
2207 as late as possible through rank_for_schedule. */
2208 if (SCHED_GROUP_P (insn))
2209 return MOVEUP_EXPR_NULL;
2211 else
2212 gcc_assert (!control_flow_insn_p (insn));
2214 /* Don't move debug insns if this would require bookkeeping. */
2215 if (DEBUG_INSN_P (insn)
2216 && BLOCK_FOR_INSN (through_insn) != BLOCK_FOR_INSN (insn)
2217 && moving_insn_creates_bookkeeping_block_p (insn, through_insn))
2218 return MOVEUP_EXPR_NULL;
2220 /* Deal with data dependencies. */
2221 was_target_conflict = false;
2222 full_ds = has_dependence_p (expr, through_insn, &has_dep_p);
2223 if (full_ds == 0)
2225 if (!CANT_MOVE_TRAPPING (expr, through_insn))
2226 return MOVEUP_EXPR_SAME;
2228 else
2230 /* We can move UNIQUE insn up only as a whole and unchanged,
2231 so it shouldn't have any dependencies. */
2232 if (VINSN_UNIQUE_P (vi))
2233 return MOVEUP_EXPR_NULL;
2236 if (full_ds != 0 && can_speculate_dep_p (full_ds))
2238 int res;
2240 res = speculate_expr (expr, full_ds);
2241 if (res >= 0)
2243 /* Speculation was successful. */
2244 full_ds = 0;
2245 was_changed = (res > 0);
2246 if (res == 2)
2247 was_target_conflict = true;
2248 if (ptrans_type)
2249 *ptrans_type = TRANS_SPECULATION;
2250 sel_clear_has_dependence ();
2254 if (has_dep_p[DEPS_IN_INSN])
2255 /* We have some dependency that cannot be discarded. */
2256 return MOVEUP_EXPR_NULL;
2258 if (has_dep_p[DEPS_IN_LHS])
2260 /* Only separable insns can be moved up with the new register.
2261 Anyways, we should mark that the original register is
2262 unavailable. */
2263 if (!enable_schedule_as_rhs_p || !EXPR_SEPARABLE_P (expr))
2264 return MOVEUP_EXPR_NULL;
2266 /* When renaming a hard register to a pseudo before reload, extra
2267 dependencies can occur from the implicit clobbers of the insn.
2268 Filter out such cases here. */
2269 if (!reload_completed && REG_P (EXPR_LHS (expr))
2270 && HARD_REGISTER_P (EXPR_LHS (expr))
2271 && implicit_clobber_conflict_p (through_insn, expr))
2273 if (sched_verbose >= 6)
2274 sel_print ("implicit clobbers conflict detected, ");
2275 return MOVEUP_EXPR_NULL;
2277 EXPR_TARGET_AVAILABLE (expr) = false;
2278 was_target_conflict = true;
2279 as_rhs = true;
2282 /* At this point we have either separable insns, that will be lifted
2283 up only as RHSes, or non-separable insns with no dependency in lhs.
2284 If dependency is in RHS, then try to perform substitution and move up
2285 substituted RHS:
2287 Ex. 1: Ex.2
2288 y = x; y = x;
2289 z = y*2; y = y*2;
2291 In Ex.1 y*2 can be substituted for x*2 and the whole operation can be
2292 moved above y=x assignment as z=x*2.
2294 In Ex.2 y*2 also can be substituted for x*2, but only the right hand
2295 side can be moved because of the output dependency. The operation was
2296 cropped to its rhs above. */
2297 if (has_dep_p[DEPS_IN_RHS])
2299 ds_t *rhs_dsp = &has_dep_p[DEPS_IN_RHS];
2301 /* Can't substitute UNIQUE VINSNs. */
2302 gcc_assert (!VINSN_UNIQUE_P (vi));
2304 if (can_speculate_dep_p (*rhs_dsp))
2306 int res;
2308 res = speculate_expr (expr, *rhs_dsp);
2309 if (res >= 0)
2311 /* Speculation was successful. */
2312 *rhs_dsp = 0;
2313 was_changed = (res > 0);
2314 if (res == 2)
2315 was_target_conflict = true;
2316 if (ptrans_type)
2317 *ptrans_type = TRANS_SPECULATION;
2319 else
2320 return MOVEUP_EXPR_NULL;
2322 else if (can_substitute_through_p (through_insn,
2323 *rhs_dsp)
2324 && substitute_reg_in_expr (expr, through_insn, false))
2326 /* ??? We cannot perform substitution AND speculation on the same
2327 insn. */
2328 gcc_assert (!was_changed);
2329 was_changed = true;
2330 if (ptrans_type)
2331 *ptrans_type = TRANS_SUBSTITUTION;
2332 EXPR_WAS_SUBSTITUTED (expr) = true;
2334 else
2335 return MOVEUP_EXPR_NULL;
2338 /* Don't move trapping insns through jumps.
2339 This check should be at the end to give a chance to control speculation
2340 to perform its duties. */
2341 if (CANT_MOVE_TRAPPING (expr, through_insn))
2342 return MOVEUP_EXPR_NULL;
2344 return (was_changed
2345 ? MOVEUP_EXPR_CHANGED
2346 : (as_rhs
2347 ? MOVEUP_EXPR_AS_RHS
2348 : MOVEUP_EXPR_SAME));
2351 /* Try to look at bitmap caches for EXPR and INSN pair, return true
2352 if successful. When INSIDE_INSN_GROUP, also try ignore dependencies
2353 that can exist within a parallel group. Write to RES the resulting
2354 code for moveup_expr. */
2355 static bool
2356 try_bitmap_cache (expr_t expr, insn_t insn,
2357 bool inside_insn_group,
2358 enum MOVEUP_EXPR_CODE *res)
2360 int expr_uid = INSN_UID (EXPR_INSN_RTX (expr));
2362 /* First check whether we've analyzed this situation already. */
2363 if (bitmap_bit_p (INSN_ANALYZED_DEPS (insn), expr_uid))
2365 if (bitmap_bit_p (INSN_FOUND_DEPS (insn), expr_uid))
2367 if (sched_verbose >= 6)
2368 sel_print ("removed (cached)\n");
2369 *res = MOVEUP_EXPR_NULL;
2370 return true;
2372 else
2374 if (sched_verbose >= 6)
2375 sel_print ("unchanged (cached)\n");
2376 *res = MOVEUP_EXPR_SAME;
2377 return true;
2380 else if (bitmap_bit_p (INSN_FOUND_DEPS (insn), expr_uid))
2382 if (inside_insn_group)
2384 if (sched_verbose >= 6)
2385 sel_print ("unchanged (as RHS, cached, inside insn group)\n");
2386 *res = MOVEUP_EXPR_SAME;
2387 return true;
2390 else
2391 EXPR_TARGET_AVAILABLE (expr) = false;
2393 /* This is the only case when propagation result can change over time,
2394 as we can dynamically switch off scheduling as RHS. In this case,
2395 just check the flag to reach the correct decision. */
2396 if (enable_schedule_as_rhs_p)
2398 if (sched_verbose >= 6)
2399 sel_print ("unchanged (as RHS, cached)\n");
2400 *res = MOVEUP_EXPR_AS_RHS;
2401 return true;
2403 else
2405 if (sched_verbose >= 6)
2406 sel_print ("removed (cached as RHS, but renaming"
2407 " is now disabled)\n");
2408 *res = MOVEUP_EXPR_NULL;
2409 return true;
2413 return false;
2416 /* Try to look at bitmap caches for EXPR and INSN pair, return true
2417 if successful. Write to RES the resulting code for moveup_expr. */
2418 static bool
2419 try_transformation_cache (expr_t expr, insn_t insn,
2420 enum MOVEUP_EXPR_CODE *res)
2422 struct transformed_insns *pti
2423 = (struct transformed_insns *)
2424 htab_find_with_hash (INSN_TRANSFORMED_INSNS (insn),
2425 &EXPR_VINSN (expr),
2426 VINSN_HASH_RTX (EXPR_VINSN (expr)));
2427 if (pti)
2429 /* This EXPR was already moved through this insn and was
2430 changed as a result. Fetch the proper data from
2431 the hashtable. */
2432 insert_in_history_vect (&EXPR_HISTORY_OF_CHANGES (expr),
2433 INSN_UID (insn), pti->type,
2434 pti->vinsn_old, pti->vinsn_new,
2435 EXPR_SPEC_DONE_DS (expr));
2437 if (INSN_IN_STREAM_P (VINSN_INSN_RTX (pti->vinsn_new)))
2438 pti->vinsn_new = vinsn_copy (pti->vinsn_new, true);
2439 change_vinsn_in_expr (expr, pti->vinsn_new);
2440 if (pti->was_target_conflict)
2441 EXPR_TARGET_AVAILABLE (expr) = false;
2442 if (pti->type == TRANS_SPECULATION)
2444 EXPR_SPEC_DONE_DS (expr) = pti->ds;
2445 EXPR_NEEDS_SPEC_CHECK_P (expr) |= pti->needs_check;
2448 if (sched_verbose >= 6)
2450 sel_print ("changed (cached): ");
2451 dump_expr (expr);
2452 sel_print ("\n");
2455 *res = MOVEUP_EXPR_CHANGED;
2456 return true;
2459 return false;
2462 /* Update bitmap caches on INSN with result RES of propagating EXPR. */
2463 static void
2464 update_bitmap_cache (expr_t expr, insn_t insn, bool inside_insn_group,
2465 enum MOVEUP_EXPR_CODE res)
2467 int expr_uid = INSN_UID (EXPR_INSN_RTX (expr));
2469 /* Do not cache result of propagating jumps through an insn group,
2470 as it is always true, which is not useful outside the group. */
2471 if (inside_insn_group)
2472 return;
2474 if (res == MOVEUP_EXPR_NULL)
2476 bitmap_set_bit (INSN_ANALYZED_DEPS (insn), expr_uid);
2477 bitmap_set_bit (INSN_FOUND_DEPS (insn), expr_uid);
2479 else if (res == MOVEUP_EXPR_SAME)
2481 bitmap_set_bit (INSN_ANALYZED_DEPS (insn), expr_uid);
2482 bitmap_clear_bit (INSN_FOUND_DEPS (insn), expr_uid);
2484 else if (res == MOVEUP_EXPR_AS_RHS)
2486 bitmap_clear_bit (INSN_ANALYZED_DEPS (insn), expr_uid);
2487 bitmap_set_bit (INSN_FOUND_DEPS (insn), expr_uid);
2489 else
2490 gcc_unreachable ();
2493 /* Update hashtable on INSN with changed EXPR, old EXPR_OLD_VINSN
2494 and transformation type TRANS_TYPE. */
2495 static void
2496 update_transformation_cache (expr_t expr, insn_t insn,
2497 bool inside_insn_group,
2498 enum local_trans_type trans_type,
2499 vinsn_t expr_old_vinsn)
2501 struct transformed_insns *pti;
2503 if (inside_insn_group)
2504 return;
2506 pti = XNEW (struct transformed_insns);
2507 pti->vinsn_old = expr_old_vinsn;
2508 pti->vinsn_new = EXPR_VINSN (expr);
2509 pti->type = trans_type;
2510 pti->was_target_conflict = was_target_conflict;
2511 pti->ds = EXPR_SPEC_DONE_DS (expr);
2512 pti->needs_check = EXPR_NEEDS_SPEC_CHECK_P (expr);
2513 vinsn_attach (pti->vinsn_old);
2514 vinsn_attach (pti->vinsn_new);
2515 *((struct transformed_insns **)
2516 htab_find_slot_with_hash (INSN_TRANSFORMED_INSNS (insn),
2517 pti, VINSN_HASH_RTX (expr_old_vinsn),
2518 INSERT)) = pti;
2521 /* Same as moveup_expr, but first looks up the result of
2522 transformation in caches. */
2523 static enum MOVEUP_EXPR_CODE
2524 moveup_expr_cached (expr_t expr, insn_t insn, bool inside_insn_group)
2526 enum MOVEUP_EXPR_CODE res;
2527 bool got_answer = false;
2529 if (sched_verbose >= 6)
2531 sel_print ("Moving ");
2532 dump_expr (expr);
2533 sel_print (" through %d: ", INSN_UID (insn));
2536 if (DEBUG_INSN_P (EXPR_INSN_RTX (expr))
2537 && (sel_bb_head (BLOCK_FOR_INSN (EXPR_INSN_RTX (expr)))
2538 == EXPR_INSN_RTX (expr)))
2539 /* Don't use cached information for debug insns that are heads of
2540 basic blocks. */;
2541 else if (try_bitmap_cache (expr, insn, inside_insn_group, &res))
2542 /* When inside insn group, we do not want remove stores conflicting
2543 with previosly issued loads. */
2544 got_answer = ! inside_insn_group || res != MOVEUP_EXPR_NULL;
2545 else if (try_transformation_cache (expr, insn, &res))
2546 got_answer = true;
2548 if (! got_answer)
2550 /* Invoke moveup_expr and record the results. */
2551 vinsn_t expr_old_vinsn = EXPR_VINSN (expr);
2552 ds_t expr_old_spec_ds = EXPR_SPEC_DONE_DS (expr);
2553 int expr_uid = INSN_UID (VINSN_INSN_RTX (expr_old_vinsn));
2554 bool unique_p = VINSN_UNIQUE_P (expr_old_vinsn);
2555 enum local_trans_type trans_type = TRANS_SUBSTITUTION;
2557 /* ??? Invent something better than this. We can't allow old_vinsn
2558 to go, we need it for the history vector. */
2559 vinsn_attach (expr_old_vinsn);
2561 res = moveup_expr (expr, insn, inside_insn_group,
2562 &trans_type);
2563 switch (res)
2565 case MOVEUP_EXPR_NULL:
2566 update_bitmap_cache (expr, insn, inside_insn_group, res);
2567 if (sched_verbose >= 6)
2568 sel_print ("removed\n");
2569 break;
2571 case MOVEUP_EXPR_SAME:
2572 update_bitmap_cache (expr, insn, inside_insn_group, res);
2573 if (sched_verbose >= 6)
2574 sel_print ("unchanged\n");
2575 break;
2577 case MOVEUP_EXPR_AS_RHS:
2578 gcc_assert (!unique_p || inside_insn_group);
2579 update_bitmap_cache (expr, insn, inside_insn_group, res);
2580 if (sched_verbose >= 6)
2581 sel_print ("unchanged (as RHS)\n");
2582 break;
2584 case MOVEUP_EXPR_CHANGED:
2585 gcc_assert (INSN_UID (EXPR_INSN_RTX (expr)) != expr_uid
2586 || EXPR_SPEC_DONE_DS (expr) != expr_old_spec_ds);
2587 insert_in_history_vect (&EXPR_HISTORY_OF_CHANGES (expr),
2588 INSN_UID (insn), trans_type,
2589 expr_old_vinsn, EXPR_VINSN (expr),
2590 expr_old_spec_ds);
2591 update_transformation_cache (expr, insn, inside_insn_group,
2592 trans_type, expr_old_vinsn);
2593 if (sched_verbose >= 6)
2595 sel_print ("changed: ");
2596 dump_expr (expr);
2597 sel_print ("\n");
2599 break;
2600 default:
2601 gcc_unreachable ();
2604 vinsn_detach (expr_old_vinsn);
2607 return res;
2610 /* Moves an av set AVP up through INSN, performing necessary
2611 transformations. */
2612 static void
2613 moveup_set_expr (av_set_t *avp, insn_t insn, bool inside_insn_group)
2615 av_set_iterator i;
2616 expr_t expr;
2618 FOR_EACH_EXPR_1 (expr, i, avp)
2621 switch (moveup_expr_cached (expr, insn, inside_insn_group))
2623 case MOVEUP_EXPR_SAME:
2624 case MOVEUP_EXPR_AS_RHS:
2625 break;
2627 case MOVEUP_EXPR_NULL:
2628 av_set_iter_remove (&i);
2629 break;
2631 case MOVEUP_EXPR_CHANGED:
2632 expr = merge_with_other_exprs (avp, &i, expr);
2633 break;
2635 default:
2636 gcc_unreachable ();
2641 /* Moves AVP set along PATH. */
2642 static void
2643 moveup_set_inside_insn_group (av_set_t *avp, ilist_t path)
2645 int last_cycle;
2647 if (sched_verbose >= 6)
2648 sel_print ("Moving expressions up in the insn group...\n");
2649 if (! path)
2650 return;
2651 last_cycle = INSN_SCHED_CYCLE (ILIST_INSN (path));
2652 while (path
2653 && INSN_SCHED_CYCLE (ILIST_INSN (path)) == last_cycle)
2655 moveup_set_expr (avp, ILIST_INSN (path), true);
2656 path = ILIST_NEXT (path);
2660 /* Returns true if after moving EXPR along PATH it equals to EXPR_VLIW. */
2661 static bool
2662 equal_after_moveup_path_p (expr_t expr, ilist_t path, expr_t expr_vliw)
2664 expr_def _tmp, *tmp = &_tmp;
2665 int last_cycle;
2666 bool res = true;
2668 copy_expr_onside (tmp, expr);
2669 last_cycle = path ? INSN_SCHED_CYCLE (ILIST_INSN (path)) : 0;
2670 while (path
2671 && res
2672 && INSN_SCHED_CYCLE (ILIST_INSN (path)) == last_cycle)
2674 res = (moveup_expr_cached (tmp, ILIST_INSN (path), true)
2675 != MOVEUP_EXPR_NULL);
2676 path = ILIST_NEXT (path);
2679 if (res)
2681 vinsn_t tmp_vinsn = EXPR_VINSN (tmp);
2682 vinsn_t expr_vliw_vinsn = EXPR_VINSN (expr_vliw);
2684 if (tmp_vinsn != expr_vliw_vinsn)
2685 res = vinsn_equal_p (tmp_vinsn, expr_vliw_vinsn);
2688 clear_expr (tmp);
2689 return res;
2693 /* Functions that compute av and lv sets. */
2695 /* Returns true if INSN is not a downward continuation of the given path P in
2696 the current stage. */
2697 static bool
2698 is_ineligible_successor (insn_t insn, ilist_t p)
2700 insn_t prev_insn;
2702 /* Check if insn is not deleted. */
2703 if (PREV_INSN (insn) && NEXT_INSN (PREV_INSN (insn)) != insn)
2704 gcc_unreachable ();
2705 else if (NEXT_INSN (insn) && PREV_INSN (NEXT_INSN (insn)) != insn)
2706 gcc_unreachable ();
2708 /* If it's the first insn visited, then the successor is ok. */
2709 if (!p)
2710 return false;
2712 prev_insn = ILIST_INSN (p);
2714 if (/* a backward edge. */
2715 INSN_SEQNO (insn) < INSN_SEQNO (prev_insn)
2716 /* is already visited. */
2717 || (INSN_SEQNO (insn) == INSN_SEQNO (prev_insn)
2718 && (ilist_is_in_p (p, insn)
2719 /* We can reach another fence here and still seqno of insn
2720 would be equal to seqno of prev_insn. This is possible
2721 when prev_insn is a previously created bookkeeping copy.
2722 In that case it'd get a seqno of insn. Thus, check here
2723 whether insn is in current fence too. */
2724 || IN_CURRENT_FENCE_P (insn)))
2725 /* Was already scheduled on this round. */
2726 || (INSN_SEQNO (insn) > INSN_SEQNO (prev_insn)
2727 && IN_CURRENT_FENCE_P (insn))
2728 /* An insn from another fence could also be
2729 scheduled earlier even if this insn is not in
2730 a fence list right now. Check INSN_SCHED_CYCLE instead. */
2731 || (!pipelining_p
2732 && INSN_SCHED_TIMES (insn) > 0))
2733 return true;
2734 else
2735 return false;
2738 /* Computes the av_set below the last bb insn INSN, doing all the 'dirty work'
2739 of handling multiple successors and properly merging its av_sets. P is
2740 the current path traversed. WS is the size of lookahead window.
2741 Return the av set computed. */
2742 static av_set_t
2743 compute_av_set_at_bb_end (insn_t insn, ilist_t p, int ws)
2745 struct succs_info *sinfo;
2746 av_set_t expr_in_all_succ_branches = NULL;
2747 int is;
2748 insn_t succ, zero_succ = NULL;
2749 av_set_t av1 = NULL;
2751 gcc_assert (sel_bb_end_p (insn));
2753 /* Find different kind of successors needed for correct computing of
2754 SPEC and TARGET_AVAILABLE attributes. */
2755 sinfo = compute_succs_info (insn, SUCCS_NORMAL);
2757 /* Debug output. */
2758 if (sched_verbose >= 6)
2760 sel_print ("successors of bb end (%d): ", INSN_UID (insn));
2761 dump_insn_vector (sinfo->succs_ok);
2762 sel_print ("\n");
2763 if (sinfo->succs_ok_n != sinfo->all_succs_n)
2764 sel_print ("real successors num: %d\n", sinfo->all_succs_n);
2767 /* Add insn to the tail of current path. */
2768 ilist_add (&p, insn);
2770 FOR_EACH_VEC_ELT (sinfo->succs_ok, is, succ)
2772 av_set_t succ_set;
2774 /* We will edit SUCC_SET and EXPR_SPEC field of its elements. */
2775 succ_set = compute_av_set_inside_bb (succ, p, ws, true);
2777 av_set_split_usefulness (succ_set,
2778 sinfo->probs_ok[is],
2779 sinfo->all_prob);
2781 if (sinfo->all_succs_n > 1)
2783 /* Find EXPR'es that came from *all* successors and save them
2784 into expr_in_all_succ_branches. This set will be used later
2785 for calculating speculation attributes of EXPR'es. */
2786 if (is == 0)
2788 expr_in_all_succ_branches = av_set_copy (succ_set);
2790 /* Remember the first successor for later. */
2791 zero_succ = succ;
2793 else
2795 av_set_iterator i;
2796 expr_t expr;
2798 FOR_EACH_EXPR_1 (expr, i, &expr_in_all_succ_branches)
2799 if (!av_set_is_in_p (succ_set, EXPR_VINSN (expr)))
2800 av_set_iter_remove (&i);
2804 /* Union the av_sets. Check liveness restrictions on target registers
2805 in special case of two successors. */
2806 if (sinfo->succs_ok_n == 2 && is == 1)
2808 basic_block bb0 = BLOCK_FOR_INSN (zero_succ);
2809 basic_block bb1 = BLOCK_FOR_INSN (succ);
2811 gcc_assert (BB_LV_SET_VALID_P (bb0) && BB_LV_SET_VALID_P (bb1));
2812 av_set_union_and_live (&av1, &succ_set,
2813 BB_LV_SET (bb0),
2814 BB_LV_SET (bb1),
2815 insn);
2817 else
2818 av_set_union_and_clear (&av1, &succ_set, insn);
2821 /* Check liveness restrictions via hard way when there are more than
2822 two successors. */
2823 if (sinfo->succs_ok_n > 2)
2824 FOR_EACH_VEC_ELT (sinfo->succs_ok, is, succ)
2826 basic_block succ_bb = BLOCK_FOR_INSN (succ);
2828 gcc_assert (BB_LV_SET_VALID_P (succ_bb));
2829 mark_unavailable_targets (av1, BB_AV_SET (succ_bb),
2830 BB_LV_SET (succ_bb));
2833 /* Finally, check liveness restrictions on paths leaving the region. */
2834 if (sinfo->all_succs_n > sinfo->succs_ok_n)
2835 FOR_EACH_VEC_ELT (sinfo->succs_other, is, succ)
2836 mark_unavailable_targets
2837 (av1, NULL, BB_LV_SET (BLOCK_FOR_INSN (succ)));
2839 if (sinfo->all_succs_n > 1)
2841 av_set_iterator i;
2842 expr_t expr;
2844 /* Increase the spec attribute of all EXPR'es that didn't come
2845 from all successors. */
2846 FOR_EACH_EXPR (expr, i, av1)
2847 if (!av_set_is_in_p (expr_in_all_succ_branches, EXPR_VINSN (expr)))
2848 EXPR_SPEC (expr)++;
2850 av_set_clear (&expr_in_all_succ_branches);
2852 /* Do not move conditional branches through other
2853 conditional branches. So, remove all conditional
2854 branches from av_set if current operator is a conditional
2855 branch. */
2856 av_set_substract_cond_branches (&av1);
2859 ilist_remove (&p);
2860 free_succs_info (sinfo);
2862 if (sched_verbose >= 6)
2864 sel_print ("av_succs (%d): ", INSN_UID (insn));
2865 dump_av_set (av1);
2866 sel_print ("\n");
2869 return av1;
2872 /* This function computes av_set for the FIRST_INSN by dragging valid
2873 av_set through all basic block insns either from the end of basic block
2874 (computed using compute_av_set_at_bb_end) or from the insn on which
2875 MAX_WS was exceeded. It uses compute_av_set_at_bb_end to compute av_set
2876 below the basic block and handling conditional branches.
2877 FIRST_INSN - the basic block head, P - path consisting of the insns
2878 traversed on the way to the FIRST_INSN (the path is sparse, only bb heads
2879 and bb ends are added to the path), WS - current window size,
2880 NEED_COPY_P - true if we'll make a copy of av_set before returning it. */
2881 static av_set_t
2882 compute_av_set_inside_bb (insn_t first_insn, ilist_t p, int ws,
2883 bool need_copy_p)
2885 insn_t cur_insn;
2886 int end_ws = ws;
2887 insn_t bb_end = sel_bb_end (BLOCK_FOR_INSN (first_insn));
2888 insn_t after_bb_end = NEXT_INSN (bb_end);
2889 insn_t last_insn;
2890 av_set_t av = NULL;
2891 basic_block cur_bb = BLOCK_FOR_INSN (first_insn);
2893 /* Return NULL if insn is not on the legitimate downward path. */
2894 if (is_ineligible_successor (first_insn, p))
2896 if (sched_verbose >= 6)
2897 sel_print ("Insn %d is ineligible_successor\n", INSN_UID (first_insn));
2899 return NULL;
2902 /* If insn already has valid av(insn) computed, just return it. */
2903 if (AV_SET_VALID_P (first_insn))
2905 av_set_t av_set;
2907 if (sel_bb_head_p (first_insn))
2908 av_set = BB_AV_SET (BLOCK_FOR_INSN (first_insn));
2909 else
2910 av_set = NULL;
2912 if (sched_verbose >= 6)
2914 sel_print ("Insn %d has a valid av set: ", INSN_UID (first_insn));
2915 dump_av_set (av_set);
2916 sel_print ("\n");
2919 return need_copy_p ? av_set_copy (av_set) : av_set;
2922 ilist_add (&p, first_insn);
2924 /* As the result after this loop have completed, in LAST_INSN we'll
2925 have the insn which has valid av_set to start backward computation
2926 from: it either will be NULL because on it the window size was exceeded
2927 or other valid av_set as returned by compute_av_set for the last insn
2928 of the basic block. */
2929 for (last_insn = first_insn; last_insn != after_bb_end;
2930 last_insn = NEXT_INSN (last_insn))
2932 /* We may encounter valid av_set not only on bb_head, but also on
2933 those insns on which previously MAX_WS was exceeded. */
2934 if (AV_SET_VALID_P (last_insn))
2936 if (sched_verbose >= 6)
2937 sel_print ("Insn %d has a valid empty av set\n", INSN_UID (last_insn));
2938 break;
2941 /* The special case: the last insn of the BB may be an
2942 ineligible_successor due to its SEQ_NO that was set on
2943 it as a bookkeeping. */
2944 if (last_insn != first_insn
2945 && is_ineligible_successor (last_insn, p))
2947 if (sched_verbose >= 6)
2948 sel_print ("Insn %d is ineligible_successor\n", INSN_UID (last_insn));
2949 break;
2952 if (DEBUG_INSN_P (last_insn))
2953 continue;
2955 if (end_ws > max_ws)
2957 /* We can reach max lookahead size at bb_header, so clean av_set
2958 first. */
2959 INSN_WS_LEVEL (last_insn) = global_level;
2961 if (sched_verbose >= 6)
2962 sel_print ("Insn %d is beyond the software lookahead window size\n",
2963 INSN_UID (last_insn));
2964 break;
2967 end_ws++;
2970 /* Get the valid av_set into AV above the LAST_INSN to start backward
2971 computation from. It either will be empty av_set or av_set computed from
2972 the successors on the last insn of the current bb. */
2973 if (last_insn != after_bb_end)
2975 av = NULL;
2977 /* This is needed only to obtain av_sets that are identical to
2978 those computed by the old compute_av_set version. */
2979 if (last_insn == first_insn && !INSN_NOP_P (last_insn))
2980 av_set_add (&av, INSN_EXPR (last_insn));
2982 else
2983 /* END_WS is always already increased by 1 if LAST_INSN == AFTER_BB_END. */
2984 av = compute_av_set_at_bb_end (bb_end, p, end_ws);
2986 /* Compute av_set in AV starting from below the LAST_INSN up to
2987 location above the FIRST_INSN. */
2988 for (cur_insn = PREV_INSN (last_insn); cur_insn != PREV_INSN (first_insn);
2989 cur_insn = PREV_INSN (cur_insn))
2990 if (!INSN_NOP_P (cur_insn))
2992 expr_t expr;
2994 moveup_set_expr (&av, cur_insn, false);
2996 /* If the expression for CUR_INSN is already in the set,
2997 replace it by the new one. */
2998 expr = av_set_lookup (av, INSN_VINSN (cur_insn));
2999 if (expr != NULL)
3001 clear_expr (expr);
3002 copy_expr (expr, INSN_EXPR (cur_insn));
3004 else
3005 av_set_add (&av, INSN_EXPR (cur_insn));
3008 /* Clear stale bb_av_set. */
3009 if (sel_bb_head_p (first_insn))
3011 av_set_clear (&BB_AV_SET (cur_bb));
3012 BB_AV_SET (cur_bb) = need_copy_p ? av_set_copy (av) : av;
3013 BB_AV_LEVEL (cur_bb) = global_level;
3016 if (sched_verbose >= 6)
3018 sel_print ("Computed av set for insn %d: ", INSN_UID (first_insn));
3019 dump_av_set (av);
3020 sel_print ("\n");
3023 ilist_remove (&p);
3024 return av;
3027 /* Compute av set before INSN.
3028 INSN - the current operation (actual rtx INSN)
3029 P - the current path, which is list of insns visited so far
3030 WS - software lookahead window size.
3031 UNIQUE_P - TRUE, if returned av_set will be changed, hence
3032 if we want to save computed av_set in s_i_d, we should make a copy of it.
3034 In the resulting set we will have only expressions that don't have delay
3035 stalls and nonsubstitutable dependences. */
3036 static av_set_t
3037 compute_av_set (insn_t insn, ilist_t p, int ws, bool unique_p)
3039 return compute_av_set_inside_bb (insn, p, ws, unique_p);
3042 /* Propagate a liveness set LV through INSN. */
3043 static void
3044 propagate_lv_set (regset lv, insn_t insn)
3046 gcc_assert (INSN_P (insn));
3048 if (INSN_NOP_P (insn))
3049 return;
3051 df_simulate_one_insn_backwards (BLOCK_FOR_INSN (insn), insn, lv);
3054 /* Return livness set at the end of BB. */
3055 static regset
3056 compute_live_after_bb (basic_block bb)
3058 edge e;
3059 edge_iterator ei;
3060 regset lv = get_clear_regset_from_pool ();
3062 gcc_assert (!ignore_first);
3064 FOR_EACH_EDGE (e, ei, bb->succs)
3065 if (sel_bb_empty_p (e->dest))
3067 if (! BB_LV_SET_VALID_P (e->dest))
3069 gcc_unreachable ();
3070 gcc_assert (BB_LV_SET (e->dest) == NULL);
3071 BB_LV_SET (e->dest) = compute_live_after_bb (e->dest);
3072 BB_LV_SET_VALID_P (e->dest) = true;
3074 IOR_REG_SET (lv, BB_LV_SET (e->dest));
3076 else
3077 IOR_REG_SET (lv, compute_live (sel_bb_head (e->dest)));
3079 return lv;
3082 /* Compute the set of all live registers at the point before INSN and save
3083 it at INSN if INSN is bb header. */
3084 regset
3085 compute_live (insn_t insn)
3087 basic_block bb = BLOCK_FOR_INSN (insn);
3088 insn_t final, temp;
3089 regset lv;
3091 /* Return the valid set if we're already on it. */
3092 if (!ignore_first)
3094 regset src = NULL;
3096 if (sel_bb_head_p (insn) && BB_LV_SET_VALID_P (bb))
3097 src = BB_LV_SET (bb);
3098 else
3100 gcc_assert (in_current_region_p (bb));
3101 if (INSN_LIVE_VALID_P (insn))
3102 src = INSN_LIVE (insn);
3105 if (src)
3107 lv = get_regset_from_pool ();
3108 COPY_REG_SET (lv, src);
3110 if (sel_bb_head_p (insn) && ! BB_LV_SET_VALID_P (bb))
3112 COPY_REG_SET (BB_LV_SET (bb), lv);
3113 BB_LV_SET_VALID_P (bb) = true;
3116 return_regset_to_pool (lv);
3117 return lv;
3121 /* We've skipped the wrong lv_set. Don't skip the right one. */
3122 ignore_first = false;
3123 gcc_assert (in_current_region_p (bb));
3125 /* Find a valid LV set in this block or below, if needed.
3126 Start searching from the next insn: either ignore_first is true, or
3127 INSN doesn't have a correct live set. */
3128 temp = NEXT_INSN (insn);
3129 final = NEXT_INSN (BB_END (bb));
3130 while (temp != final && ! INSN_LIVE_VALID_P (temp))
3131 temp = NEXT_INSN (temp);
3132 if (temp == final)
3134 lv = compute_live_after_bb (bb);
3135 temp = PREV_INSN (temp);
3137 else
3139 lv = get_regset_from_pool ();
3140 COPY_REG_SET (lv, INSN_LIVE (temp));
3143 /* Put correct lv sets on the insns which have bad sets. */
3144 final = PREV_INSN (insn);
3145 while (temp != final)
3147 propagate_lv_set (lv, temp);
3148 COPY_REG_SET (INSN_LIVE (temp), lv);
3149 INSN_LIVE_VALID_P (temp) = true;
3150 temp = PREV_INSN (temp);
3153 /* Also put it in a BB. */
3154 if (sel_bb_head_p (insn))
3156 basic_block bb = BLOCK_FOR_INSN (insn);
3158 COPY_REG_SET (BB_LV_SET (bb), lv);
3159 BB_LV_SET_VALID_P (bb) = true;
3162 /* We return LV to the pool, but will not clear it there. Thus we can
3163 legimatelly use LV till the next use of regset_pool_get (). */
3164 return_regset_to_pool (lv);
3165 return lv;
3168 /* Update liveness sets for INSN. */
3169 static inline void
3170 update_liveness_on_insn (rtx_insn *insn)
3172 ignore_first = true;
3173 compute_live (insn);
3176 /* Compute liveness below INSN and write it into REGS. */
3177 static inline void
3178 compute_live_below_insn (rtx_insn *insn, regset regs)
3180 rtx_insn *succ;
3181 succ_iterator si;
3183 FOR_EACH_SUCC_1 (succ, si, insn, SUCCS_ALL)
3184 IOR_REG_SET (regs, compute_live (succ));
3187 /* Update the data gathered in av and lv sets starting from INSN. */
3188 static void
3189 update_data_sets (rtx_insn *insn)
3191 update_liveness_on_insn (insn);
3192 if (sel_bb_head_p (insn))
3194 gcc_assert (AV_LEVEL (insn) != 0);
3195 BB_AV_LEVEL (BLOCK_FOR_INSN (insn)) = -1;
3196 compute_av_set (insn, NULL, 0, 0);
3201 /* Helper for move_op () and find_used_regs ().
3202 Return speculation type for which a check should be created on the place
3203 of INSN. EXPR is one of the original ops we are searching for. */
3204 static ds_t
3205 get_spec_check_type_for_insn (insn_t insn, expr_t expr)
3207 ds_t to_check_ds;
3208 ds_t already_checked_ds = EXPR_SPEC_DONE_DS (INSN_EXPR (insn));
3210 to_check_ds = EXPR_SPEC_TO_CHECK_DS (expr);
3212 if (targetm.sched.get_insn_checked_ds)
3213 already_checked_ds |= targetm.sched.get_insn_checked_ds (insn);
3215 if (spec_info != NULL
3216 && (spec_info->flags & SEL_SCHED_SPEC_DONT_CHECK_CONTROL))
3217 already_checked_ds |= BEGIN_CONTROL;
3219 already_checked_ds = ds_get_speculation_types (already_checked_ds);
3221 to_check_ds &= ~already_checked_ds;
3223 return to_check_ds;
3226 /* Find the set of registers that are unavailable for storing expres
3227 while moving ORIG_OPS up on the path starting from INSN due to
3228 liveness (USED_REGS) or hardware restrictions (REG_RENAME_P).
3230 All the original operations found during the traversal are saved in the
3231 ORIGINAL_INSNS list.
3233 REG_RENAME_P denotes the set of hardware registers that
3234 can not be used with renaming due to the register class restrictions,
3235 mode restrictions and other (the register we'll choose should be
3236 compatible class with the original uses, shouldn't be in call_used_regs,
3237 should be HARD_REGNO_RENAME_OK etc).
3239 Returns TRUE if we've found all original insns, FALSE otherwise.
3241 This function utilizes code_motion_path_driver (formerly find_used_regs_1)
3242 to traverse the code motion paths. This helper function finds registers
3243 that are not available for storing expres while moving ORIG_OPS up on the
3244 path starting from INSN. A register considered as used on the moving path,
3245 if one of the following conditions is not satisfied:
3247 (1) a register not set or read on any path from xi to an instance of
3248 the original operation,
3249 (2) not among the live registers of the point immediately following the
3250 first original operation on a given downward path, except for the
3251 original target register of the operation,
3252 (3) not live on the other path of any conditional branch that is passed
3253 by the operation, in case original operations are not present on
3254 both paths of the conditional branch.
3256 All the original operations found during the traversal are saved in the
3257 ORIGINAL_INSNS list.
3259 REG_RENAME_P->CROSSES_CALL is true, if there is a call insn on the path
3260 from INSN to original insn. In this case CALL_USED_REG_SET will be added
3261 to unavailable hard regs at the point original operation is found. */
3263 static bool
3264 find_used_regs (insn_t insn, av_set_t orig_ops, regset used_regs,
3265 struct reg_rename *reg_rename_p, def_list_t *original_insns)
3267 def_list_iterator i;
3268 def_t def;
3269 int res;
3270 bool needs_spec_check_p = false;
3271 expr_t expr;
3272 av_set_iterator expr_iter;
3273 struct fur_static_params sparams;
3274 struct cmpd_local_params lparams;
3276 /* We haven't visited any blocks yet. */
3277 bitmap_clear (code_motion_visited_blocks);
3279 /* Init parameters for code_motion_path_driver. */
3280 sparams.crosses_call = false;
3281 sparams.original_insns = original_insns;
3282 sparams.used_regs = used_regs;
3284 /* Set the appropriate hooks and data. */
3285 code_motion_path_driver_info = &fur_hooks;
3287 res = code_motion_path_driver (insn, orig_ops, NULL, &lparams, &sparams);
3289 reg_rename_p->crosses_call |= sparams.crosses_call;
3291 gcc_assert (res == 1);
3292 gcc_assert (original_insns && *original_insns);
3294 /* ??? We calculate whether an expression needs a check when computing
3295 av sets. This information is not as precise as it could be due to
3296 merging this bit in merge_expr. We can do better in find_used_regs,
3297 but we want to avoid multiple traversals of the same code motion
3298 paths. */
3299 FOR_EACH_EXPR (expr, expr_iter, orig_ops)
3300 needs_spec_check_p |= EXPR_NEEDS_SPEC_CHECK_P (expr);
3302 /* Mark hardware regs in REG_RENAME_P that are not suitable
3303 for renaming expr in INSN due to hardware restrictions (register class,
3304 modes compatibility etc). */
3305 FOR_EACH_DEF (def, i, *original_insns)
3307 vinsn_t vinsn = INSN_VINSN (def->orig_insn);
3309 if (VINSN_SEPARABLE_P (vinsn))
3310 mark_unavailable_hard_regs (def, reg_rename_p, used_regs);
3312 /* Do not allow clobbering of ld.[sa] address in case some of the
3313 original operations need a check. */
3314 if (needs_spec_check_p)
3315 IOR_REG_SET (used_regs, VINSN_REG_USES (vinsn));
3318 return true;
3322 /* Functions to choose the best insn from available ones. */
3324 /* Adjusts the priority for EXPR using the backend *_adjust_priority hook. */
3325 static int
3326 sel_target_adjust_priority (expr_t expr)
3328 int priority = EXPR_PRIORITY (expr);
3329 int new_priority;
3331 if (targetm.sched.adjust_priority)
3332 new_priority = targetm.sched.adjust_priority (EXPR_INSN_RTX (expr), priority);
3333 else
3334 new_priority = priority;
3336 /* If the priority has changed, adjust EXPR_PRIORITY_ADJ accordingly. */
3337 EXPR_PRIORITY_ADJ (expr) = new_priority - EXPR_PRIORITY (expr);
3339 gcc_assert (EXPR_PRIORITY_ADJ (expr) >= 0);
3341 if (sched_verbose >= 4)
3342 sel_print ("sel_target_adjust_priority: insn %d, %d+%d = %d.\n",
3343 INSN_UID (EXPR_INSN_RTX (expr)), EXPR_PRIORITY (expr),
3344 EXPR_PRIORITY_ADJ (expr), new_priority);
3346 return new_priority;
3349 /* Rank two available exprs for schedule. Never return 0 here. */
3350 static int
3351 sel_rank_for_schedule (const void *x, const void *y)
3353 expr_t tmp = *(const expr_t *) y;
3354 expr_t tmp2 = *(const expr_t *) x;
3355 insn_t tmp_insn, tmp2_insn;
3356 vinsn_t tmp_vinsn, tmp2_vinsn;
3357 int val;
3359 tmp_vinsn = EXPR_VINSN (tmp);
3360 tmp2_vinsn = EXPR_VINSN (tmp2);
3361 tmp_insn = EXPR_INSN_RTX (tmp);
3362 tmp2_insn = EXPR_INSN_RTX (tmp2);
3364 /* Schedule debug insns as early as possible. */
3365 if (DEBUG_INSN_P (tmp_insn) && !DEBUG_INSN_P (tmp2_insn))
3366 return -1;
3367 else if (DEBUG_INSN_P (tmp2_insn))
3368 return 1;
3370 /* Prefer SCHED_GROUP_P insns to any others. */
3371 if (SCHED_GROUP_P (tmp_insn) != SCHED_GROUP_P (tmp2_insn))
3373 if (VINSN_UNIQUE_P (tmp_vinsn) && VINSN_UNIQUE_P (tmp2_vinsn))
3374 return SCHED_GROUP_P (tmp2_insn) ? 1 : -1;
3376 /* Now uniqueness means SCHED_GROUP_P is set, because schedule groups
3377 cannot be cloned. */
3378 if (VINSN_UNIQUE_P (tmp2_vinsn))
3379 return 1;
3380 return -1;
3383 /* Discourage scheduling of speculative checks. */
3384 val = (sel_insn_is_speculation_check (tmp_insn)
3385 - sel_insn_is_speculation_check (tmp2_insn));
3386 if (val)
3387 return val;
3389 /* Prefer not scheduled insn over scheduled one. */
3390 if (EXPR_SCHED_TIMES (tmp) > 0 || EXPR_SCHED_TIMES (tmp2) > 0)
3392 val = EXPR_SCHED_TIMES (tmp) - EXPR_SCHED_TIMES (tmp2);
3393 if (val)
3394 return val;
3397 /* Prefer jump over non-jump instruction. */
3398 if (control_flow_insn_p (tmp_insn) && !control_flow_insn_p (tmp2_insn))
3399 return -1;
3400 else if (control_flow_insn_p (tmp2_insn) && !control_flow_insn_p (tmp_insn))
3401 return 1;
3403 /* Prefer an expr with greater priority. */
3404 if (EXPR_USEFULNESS (tmp) != 0 && EXPR_USEFULNESS (tmp2) != 0)
3406 int p2 = EXPR_PRIORITY (tmp2) + EXPR_PRIORITY_ADJ (tmp2),
3407 p1 = EXPR_PRIORITY (tmp) + EXPR_PRIORITY_ADJ (tmp);
3409 val = p2 * EXPR_USEFULNESS (tmp2) - p1 * EXPR_USEFULNESS (tmp);
3411 else
3412 val = EXPR_PRIORITY (tmp2) - EXPR_PRIORITY (tmp)
3413 + EXPR_PRIORITY_ADJ (tmp2) - EXPR_PRIORITY_ADJ (tmp);
3414 if (val)
3415 return val;
3417 if (spec_info != NULL && spec_info->mask != 0)
3418 /* This code was taken from haifa-sched.c: rank_for_schedule (). */
3420 ds_t ds1, ds2;
3421 dw_t dw1, dw2;
3422 int dw;
3424 ds1 = EXPR_SPEC_DONE_DS (tmp);
3425 if (ds1)
3426 dw1 = ds_weak (ds1);
3427 else
3428 dw1 = NO_DEP_WEAK;
3430 ds2 = EXPR_SPEC_DONE_DS (tmp2);
3431 if (ds2)
3432 dw2 = ds_weak (ds2);
3433 else
3434 dw2 = NO_DEP_WEAK;
3436 dw = dw2 - dw1;
3437 if (dw > (NO_DEP_WEAK / 8) || dw < -(NO_DEP_WEAK / 8))
3438 return dw;
3441 /* Prefer an old insn to a bookkeeping insn. */
3442 if (INSN_UID (tmp_insn) < first_emitted_uid
3443 && INSN_UID (tmp2_insn) >= first_emitted_uid)
3444 return -1;
3445 if (INSN_UID (tmp_insn) >= first_emitted_uid
3446 && INSN_UID (tmp2_insn) < first_emitted_uid)
3447 return 1;
3449 /* Prefer an insn with smaller UID, as a last resort.
3450 We can't safely use INSN_LUID as it is defined only for those insns
3451 that are in the stream. */
3452 return INSN_UID (tmp_insn) - INSN_UID (tmp2_insn);
3455 /* Filter out expressions from av set pointed to by AV_PTR
3456 that are pipelined too many times. */
3457 static void
3458 process_pipelined_exprs (av_set_t *av_ptr)
3460 expr_t expr;
3461 av_set_iterator si;
3463 /* Don't pipeline already pipelined code as that would increase
3464 number of unnecessary register moves. */
3465 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3467 if (EXPR_SCHED_TIMES (expr)
3468 >= PARAM_VALUE (PARAM_SELSCHED_MAX_SCHED_TIMES))
3469 av_set_iter_remove (&si);
3473 /* Filter speculative insns from AV_PTR if we don't want them. */
3474 static void
3475 process_spec_exprs (av_set_t *av_ptr)
3477 expr_t expr;
3478 av_set_iterator si;
3480 if (spec_info == NULL)
3481 return;
3483 /* Scan *AV_PTR to find out if we want to consider speculative
3484 instructions for scheduling. */
3485 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3487 ds_t ds;
3489 ds = EXPR_SPEC_DONE_DS (expr);
3491 /* The probability of a success is too low - don't speculate. */
3492 if ((ds & SPECULATIVE)
3493 && (ds_weak (ds) < spec_info->data_weakness_cutoff
3494 || EXPR_USEFULNESS (expr) < spec_info->control_weakness_cutoff
3495 || (pipelining_p && false
3496 && (ds & DATA_SPEC)
3497 && (ds & CONTROL_SPEC))))
3499 av_set_iter_remove (&si);
3500 continue;
3505 /* Search for any use-like insns in AV_PTR and decide on scheduling
3506 them. Return one when found, and NULL otherwise.
3507 Note that we check here whether a USE could be scheduled to avoid
3508 an infinite loop later. */
3509 static expr_t
3510 process_use_exprs (av_set_t *av_ptr)
3512 expr_t expr;
3513 av_set_iterator si;
3514 bool uses_present_p = false;
3515 bool try_uses_p = true;
3517 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3519 /* This will also initialize INSN_CODE for later use. */
3520 if (recog_memoized (EXPR_INSN_RTX (expr)) < 0)
3522 /* If we have a USE in *AV_PTR that was not scheduled yet,
3523 do so because it will do good only. */
3524 if (EXPR_SCHED_TIMES (expr) <= 0)
3526 if (EXPR_TARGET_AVAILABLE (expr) == 1)
3527 return expr;
3529 av_set_iter_remove (&si);
3531 else
3533 gcc_assert (pipelining_p);
3535 uses_present_p = true;
3538 else
3539 try_uses_p = false;
3542 if (uses_present_p)
3544 /* If we don't want to schedule any USEs right now and we have some
3545 in *AV_PTR, remove them, else just return the first one found. */
3546 if (!try_uses_p)
3548 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3549 if (INSN_CODE (EXPR_INSN_RTX (expr)) < 0)
3550 av_set_iter_remove (&si);
3552 else
3554 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3556 gcc_assert (INSN_CODE (EXPR_INSN_RTX (expr)) < 0);
3558 if (EXPR_TARGET_AVAILABLE (expr) == 1)
3559 return expr;
3561 av_set_iter_remove (&si);
3566 return NULL;
3569 /* Lookup EXPR in VINSN_VEC and return TRUE if found. Also check patterns from
3570 EXPR's history of changes. */
3571 static bool
3572 vinsn_vec_has_expr_p (vinsn_vec_t vinsn_vec, expr_t expr)
3574 vinsn_t vinsn, expr_vinsn;
3575 int n;
3576 unsigned i;
3578 /* Start with checking expr itself and then proceed with all the old forms
3579 of expr taken from its history vector. */
3580 for (i = 0, expr_vinsn = EXPR_VINSN (expr);
3581 expr_vinsn;
3582 expr_vinsn = (i < EXPR_HISTORY_OF_CHANGES (expr).length ()
3583 ? EXPR_HISTORY_OF_CHANGES (expr)[i++].old_expr_vinsn
3584 : NULL))
3585 FOR_EACH_VEC_ELT (vinsn_vec, n, vinsn)
3586 if (VINSN_SEPARABLE_P (vinsn))
3588 if (vinsn_equal_p (vinsn, expr_vinsn))
3589 return true;
3591 else
3593 /* For non-separable instructions, the blocking insn can have
3594 another pattern due to substitution, and we can't choose
3595 different register as in the above case. Check all registers
3596 being written instead. */
3597 if (bitmap_intersect_p (VINSN_REG_SETS (vinsn),
3598 VINSN_REG_SETS (expr_vinsn)))
3599 return true;
3602 return false;
3605 #ifdef ENABLE_CHECKING
3606 /* Return true if either of expressions from ORIG_OPS can be blocked
3607 by previously created bookkeeping code. STATIC_PARAMS points to static
3608 parameters of move_op. */
3609 static bool
3610 av_set_could_be_blocked_by_bookkeeping_p (av_set_t orig_ops, void *static_params)
3612 expr_t expr;
3613 av_set_iterator iter;
3614 moveop_static_params_p sparams;
3616 /* This checks that expressions in ORIG_OPS are not blocked by bookkeeping
3617 created while scheduling on another fence. */
3618 FOR_EACH_EXPR (expr, iter, orig_ops)
3619 if (vinsn_vec_has_expr_p (vec_bookkeeping_blocked_vinsns, expr))
3620 return true;
3622 gcc_assert (code_motion_path_driver_info == &move_op_hooks);
3623 sparams = (moveop_static_params_p) static_params;
3625 /* Expressions can be also blocked by bookkeeping created during current
3626 move_op. */
3627 if (bitmap_bit_p (current_copies, INSN_UID (sparams->failed_insn)))
3628 FOR_EACH_EXPR (expr, iter, orig_ops)
3629 if (moveup_expr_cached (expr, sparams->failed_insn, false) != MOVEUP_EXPR_NULL)
3630 return true;
3632 /* Expressions in ORIG_OPS may have wrong destination register due to
3633 renaming. Check with the right register instead. */
3634 if (sparams->dest && REG_P (sparams->dest))
3636 rtx reg = sparams->dest;
3637 vinsn_t failed_vinsn = INSN_VINSN (sparams->failed_insn);
3639 if (register_unavailable_p (VINSN_REG_SETS (failed_vinsn), reg)
3640 || register_unavailable_p (VINSN_REG_USES (failed_vinsn), reg)
3641 || register_unavailable_p (VINSN_REG_CLOBBERS (failed_vinsn), reg))
3642 return true;
3645 return false;
3647 #endif
3649 /* Clear VINSN_VEC and detach vinsns. */
3650 static void
3651 vinsn_vec_clear (vinsn_vec_t *vinsn_vec)
3653 unsigned len = vinsn_vec->length ();
3654 if (len > 0)
3656 vinsn_t vinsn;
3657 int n;
3659 FOR_EACH_VEC_ELT (*vinsn_vec, n, vinsn)
3660 vinsn_detach (vinsn);
3661 vinsn_vec->block_remove (0, len);
3665 /* Add the vinsn of EXPR to the VINSN_VEC. */
3666 static void
3667 vinsn_vec_add (vinsn_vec_t *vinsn_vec, expr_t expr)
3669 vinsn_attach (EXPR_VINSN (expr));
3670 vinsn_vec->safe_push (EXPR_VINSN (expr));
3673 /* Free the vector representing blocked expressions. */
3674 static void
3675 vinsn_vec_free (vinsn_vec_t &vinsn_vec)
3677 vinsn_vec.release ();
3680 /* Increase EXPR_PRIORITY_ADJ for INSN by AMOUNT. */
3682 void sel_add_to_insn_priority (rtx insn, int amount)
3684 EXPR_PRIORITY_ADJ (INSN_EXPR (insn)) += amount;
3686 if (sched_verbose >= 2)
3687 sel_print ("sel_add_to_insn_priority: insn %d, by %d (now %d+%d).\n",
3688 INSN_UID (insn), amount, EXPR_PRIORITY (INSN_EXPR (insn)),
3689 EXPR_PRIORITY_ADJ (INSN_EXPR (insn)));
3692 /* Turn AV into a vector, filter inappropriate insns and sort it. Return
3693 true if there is something to schedule. BNDS and FENCE are current
3694 boundaries and fence, respectively. If we need to stall for some cycles
3695 before an expr from AV would become available, write this number to
3696 *PNEED_STALL. */
3697 static bool
3698 fill_vec_av_set (av_set_t av, blist_t bnds, fence_t fence,
3699 int *pneed_stall)
3701 av_set_iterator si;
3702 expr_t expr;
3703 int sched_next_worked = 0, stalled, n;
3704 static int av_max_prio, est_ticks_till_branch;
3705 int min_need_stall = -1;
3706 deps_t dc = BND_DC (BLIST_BND (bnds));
3708 /* Bail out early when the ready list contained only USEs/CLOBBERs that are
3709 already scheduled. */
3710 if (av == NULL)
3711 return false;
3713 /* Empty vector from the previous stuff. */
3714 if (vec_av_set.length () > 0)
3715 vec_av_set.block_remove (0, vec_av_set.length ());
3717 /* Turn the set into a vector for sorting and call sel_target_adjust_priority
3718 for each insn. */
3719 gcc_assert (vec_av_set.is_empty ());
3720 FOR_EACH_EXPR (expr, si, av)
3722 vec_av_set.safe_push (expr);
3724 gcc_assert (EXPR_PRIORITY_ADJ (expr) == 0 || *pneed_stall);
3726 /* Adjust priority using target backend hook. */
3727 sel_target_adjust_priority (expr);
3730 /* Sort the vector. */
3731 vec_av_set.qsort (sel_rank_for_schedule);
3733 /* We record maximal priority of insns in av set for current instruction
3734 group. */
3735 if (FENCE_STARTS_CYCLE_P (fence))
3736 av_max_prio = est_ticks_till_branch = INT_MIN;
3738 /* Filter out inappropriate expressions. Loop's direction is reversed to
3739 visit "best" instructions first. We assume that vec::unordered_remove
3740 moves last element in place of one being deleted. */
3741 for (n = vec_av_set.length () - 1, stalled = 0; n >= 0; n--)
3743 expr_t expr = vec_av_set[n];
3744 insn_t insn = EXPR_INSN_RTX (expr);
3745 signed char target_available;
3746 bool is_orig_reg_p = true;
3747 int need_cycles, new_prio;
3748 bool fence_insn_p = INSN_UID (insn) == INSN_UID (FENCE_INSN (fence));
3750 /* Don't allow any insns other than from SCHED_GROUP if we have one. */
3751 if (FENCE_SCHED_NEXT (fence) && insn != FENCE_SCHED_NEXT (fence))
3753 vec_av_set.unordered_remove (n);
3754 continue;
3757 /* Set number of sched_next insns (just in case there
3758 could be several). */
3759 if (FENCE_SCHED_NEXT (fence))
3760 sched_next_worked++;
3762 /* Check all liveness requirements and try renaming.
3763 FIXME: try to minimize calls to this. */
3764 target_available = EXPR_TARGET_AVAILABLE (expr);
3766 /* If insn was already scheduled on the current fence,
3767 set TARGET_AVAILABLE to -1 no matter what expr's attribute says. */
3768 if (vinsn_vec_has_expr_p (vec_target_unavailable_vinsns, expr)
3769 && !fence_insn_p)
3770 target_available = -1;
3772 /* If the availability of the EXPR is invalidated by the insertion of
3773 bookkeeping earlier, make sure that we won't choose this expr for
3774 scheduling if it's not separable, and if it is separable, then
3775 we have to recompute the set of available registers for it. */
3776 if (vinsn_vec_has_expr_p (vec_bookkeeping_blocked_vinsns, expr))
3778 vec_av_set.unordered_remove (n);
3779 if (sched_verbose >= 4)
3780 sel_print ("Expr %d is blocked by bookkeeping inserted earlier\n",
3781 INSN_UID (insn));
3782 continue;
3785 if (target_available == true)
3787 /* Do nothing -- we can use an existing register. */
3788 is_orig_reg_p = EXPR_SEPARABLE_P (expr);
3790 else if (/* Non-separable instruction will never
3791 get another register. */
3792 (target_available == false
3793 && !EXPR_SEPARABLE_P (expr))
3794 /* Don't try to find a register for low-priority expression. */
3795 || (int) vec_av_set.length () - 1 - n >= max_insns_to_rename
3796 /* ??? FIXME: Don't try to rename data speculation. */
3797 || (EXPR_SPEC_DONE_DS (expr) & BEGIN_DATA)
3798 || ! find_best_reg_for_expr (expr, bnds, &is_orig_reg_p))
3800 vec_av_set.unordered_remove (n);
3801 if (sched_verbose >= 4)
3802 sel_print ("Expr %d has no suitable target register\n",
3803 INSN_UID (insn));
3805 /* A fence insn should not get here. */
3806 gcc_assert (!fence_insn_p);
3807 continue;
3810 /* At this point a fence insn should always be available. */
3811 gcc_assert (!fence_insn_p
3812 || INSN_UID (FENCE_INSN (fence)) == INSN_UID (EXPR_INSN_RTX (expr)));
3814 /* Filter expressions that need to be renamed or speculated when
3815 pipelining, because compensating register copies or speculation
3816 checks are likely to be placed near the beginning of the loop,
3817 causing a stall. */
3818 if (pipelining_p && EXPR_ORIG_SCHED_CYCLE (expr) > 0
3819 && (!is_orig_reg_p || EXPR_SPEC_DONE_DS (expr) != 0))
3821 /* Estimation of number of cycles until loop branch for
3822 renaming/speculation to be successful. */
3823 int need_n_ticks_till_branch = sel_vinsn_cost (EXPR_VINSN (expr));
3825 if ((int) current_loop_nest->ninsns < 9)
3827 vec_av_set.unordered_remove (n);
3828 if (sched_verbose >= 4)
3829 sel_print ("Pipelining expr %d will likely cause stall\n",
3830 INSN_UID (insn));
3831 continue;
3834 if ((int) current_loop_nest->ninsns - num_insns_scheduled
3835 < need_n_ticks_till_branch * issue_rate / 2
3836 && est_ticks_till_branch < need_n_ticks_till_branch)
3838 vec_av_set.unordered_remove (n);
3839 if (sched_verbose >= 4)
3840 sel_print ("Pipelining expr %d will likely cause stall\n",
3841 INSN_UID (insn));
3842 continue;
3846 /* We want to schedule speculation checks as late as possible. Discard
3847 them from av set if there are instructions with higher priority. */
3848 if (sel_insn_is_speculation_check (insn)
3849 && EXPR_PRIORITY (expr) < av_max_prio)
3851 stalled++;
3852 min_need_stall = min_need_stall < 0 ? 1 : MIN (min_need_stall, 1);
3853 vec_av_set.unordered_remove (n);
3854 if (sched_verbose >= 4)
3855 sel_print ("Delaying speculation check %d until its first use\n",
3856 INSN_UID (insn));
3857 continue;
3860 /* Ignore EXPRs available from pipelining to update AV_MAX_PRIO. */
3861 if (EXPR_ORIG_SCHED_CYCLE (expr) <= 0)
3862 av_max_prio = MAX (av_max_prio, EXPR_PRIORITY (expr));
3864 /* Don't allow any insns whose data is not yet ready.
3865 Check first whether we've already tried them and failed. */
3866 if (INSN_UID (insn) < FENCE_READY_TICKS_SIZE (fence))
3868 need_cycles = (FENCE_READY_TICKS (fence)[INSN_UID (insn)]
3869 - FENCE_CYCLE (fence));
3870 if (EXPR_ORIG_SCHED_CYCLE (expr) <= 0)
3871 est_ticks_till_branch = MAX (est_ticks_till_branch,
3872 EXPR_PRIORITY (expr) + need_cycles);
3874 if (need_cycles > 0)
3876 stalled++;
3877 min_need_stall = (min_need_stall < 0
3878 ? need_cycles
3879 : MIN (min_need_stall, need_cycles));
3880 vec_av_set.unordered_remove (n);
3882 if (sched_verbose >= 4)
3883 sel_print ("Expr %d is not ready until cycle %d (cached)\n",
3884 INSN_UID (insn),
3885 FENCE_READY_TICKS (fence)[INSN_UID (insn)]);
3886 continue;
3890 /* Now resort to dependence analysis to find whether EXPR might be
3891 stalled due to dependencies from FENCE's context. */
3892 need_cycles = tick_check_p (expr, dc, fence);
3893 new_prio = EXPR_PRIORITY (expr) + EXPR_PRIORITY_ADJ (expr) + need_cycles;
3895 if (EXPR_ORIG_SCHED_CYCLE (expr) <= 0)
3896 est_ticks_till_branch = MAX (est_ticks_till_branch,
3897 new_prio);
3899 if (need_cycles > 0)
3901 if (INSN_UID (insn) >= FENCE_READY_TICKS_SIZE (fence))
3903 int new_size = INSN_UID (insn) * 3 / 2;
3905 FENCE_READY_TICKS (fence)
3906 = (int *) xrecalloc (FENCE_READY_TICKS (fence),
3907 new_size, FENCE_READY_TICKS_SIZE (fence),
3908 sizeof (int));
3910 FENCE_READY_TICKS (fence)[INSN_UID (insn)]
3911 = FENCE_CYCLE (fence) + need_cycles;
3913 stalled++;
3914 min_need_stall = (min_need_stall < 0
3915 ? need_cycles
3916 : MIN (min_need_stall, need_cycles));
3918 vec_av_set.unordered_remove (n);
3920 if (sched_verbose >= 4)
3921 sel_print ("Expr %d is not ready yet until cycle %d\n",
3922 INSN_UID (insn),
3923 FENCE_READY_TICKS (fence)[INSN_UID (insn)]);
3924 continue;
3927 if (sched_verbose >= 4)
3928 sel_print ("Expr %d is ok\n", INSN_UID (insn));
3929 min_need_stall = 0;
3932 /* Clear SCHED_NEXT. */
3933 if (FENCE_SCHED_NEXT (fence))
3935 gcc_assert (sched_next_worked == 1);
3936 FENCE_SCHED_NEXT (fence) = NULL;
3939 /* No need to stall if this variable was not initialized. */
3940 if (min_need_stall < 0)
3941 min_need_stall = 0;
3943 if (vec_av_set.is_empty ())
3945 /* We need to set *pneed_stall here, because later we skip this code
3946 when ready list is empty. */
3947 *pneed_stall = min_need_stall;
3948 return false;
3950 else
3951 gcc_assert (min_need_stall == 0);
3953 /* Sort the vector. */
3954 vec_av_set.qsort (sel_rank_for_schedule);
3956 if (sched_verbose >= 4)
3958 sel_print ("Total ready exprs: %d, stalled: %d\n",
3959 vec_av_set.length (), stalled);
3960 sel_print ("Sorted av set (%d): ", vec_av_set.length ());
3961 FOR_EACH_VEC_ELT (vec_av_set, n, expr)
3962 dump_expr (expr);
3963 sel_print ("\n");
3966 *pneed_stall = 0;
3967 return true;
3970 /* Convert a vectored and sorted av set to the ready list that
3971 the rest of the backend wants to see. */
3972 static void
3973 convert_vec_av_set_to_ready (void)
3975 int n;
3976 expr_t expr;
3978 /* Allocate and fill the ready list from the sorted vector. */
3979 ready.n_ready = vec_av_set.length ();
3980 ready.first = ready.n_ready - 1;
3982 gcc_assert (ready.n_ready > 0);
3984 if (ready.n_ready > max_issue_size)
3986 max_issue_size = ready.n_ready;
3987 sched_extend_ready_list (ready.n_ready);
3990 FOR_EACH_VEC_ELT (vec_av_set, n, expr)
3992 vinsn_t vi = EXPR_VINSN (expr);
3993 insn_t insn = VINSN_INSN_RTX (vi);
3995 ready_try[n] = 0;
3996 ready.vec[n] = insn;
4000 /* Initialize ready list from *AV_PTR for the max_issue () call.
4001 If any unrecognizable insn found in *AV_PTR, return it (and skip
4002 max_issue). BND and FENCE are current boundary and fence,
4003 respectively. If we need to stall for some cycles before an expr
4004 from *AV_PTR would become available, write this number to *PNEED_STALL. */
4005 static expr_t
4006 fill_ready_list (av_set_t *av_ptr, blist_t bnds, fence_t fence,
4007 int *pneed_stall)
4009 expr_t expr;
4011 /* We do not support multiple boundaries per fence. */
4012 gcc_assert (BLIST_NEXT (bnds) == NULL);
4014 /* Process expressions required special handling, i.e. pipelined,
4015 speculative and recog() < 0 expressions first. */
4016 process_pipelined_exprs (av_ptr);
4017 process_spec_exprs (av_ptr);
4019 /* A USE could be scheduled immediately. */
4020 expr = process_use_exprs (av_ptr);
4021 if (expr)
4023 *pneed_stall = 0;
4024 return expr;
4027 /* Turn the av set to a vector for sorting. */
4028 if (! fill_vec_av_set (*av_ptr, bnds, fence, pneed_stall))
4030 ready.n_ready = 0;
4031 return NULL;
4034 /* Build the final ready list. */
4035 convert_vec_av_set_to_ready ();
4036 return NULL;
4039 /* Wrapper for dfa_new_cycle (). Returns TRUE if cycle was advanced. */
4040 static bool
4041 sel_dfa_new_cycle (insn_t insn, fence_t fence)
4043 int last_scheduled_cycle = FENCE_LAST_SCHEDULED_INSN (fence)
4044 ? INSN_SCHED_CYCLE (FENCE_LAST_SCHEDULED_INSN (fence))
4045 : FENCE_CYCLE (fence) - 1;
4046 bool res = false;
4047 int sort_p = 0;
4049 if (!targetm.sched.dfa_new_cycle)
4050 return false;
4052 memcpy (curr_state, FENCE_STATE (fence), dfa_state_size);
4054 while (!sort_p && targetm.sched.dfa_new_cycle (sched_dump, sched_verbose,
4055 insn, last_scheduled_cycle,
4056 FENCE_CYCLE (fence), &sort_p))
4058 memcpy (FENCE_STATE (fence), curr_state, dfa_state_size);
4059 advance_one_cycle (fence);
4060 memcpy (curr_state, FENCE_STATE (fence), dfa_state_size);
4061 res = true;
4064 return res;
4067 /* Invoke reorder* target hooks on the ready list. Return the number of insns
4068 we can issue. FENCE is the current fence. */
4069 static int
4070 invoke_reorder_hooks (fence_t fence)
4072 int issue_more;
4073 bool ran_hook = false;
4075 /* Call the reorder hook at the beginning of the cycle, and call
4076 the reorder2 hook in the middle of the cycle. */
4077 if (FENCE_ISSUED_INSNS (fence) == 0)
4079 if (targetm.sched.reorder
4080 && !SCHED_GROUP_P (ready_element (&ready, 0))
4081 && ready.n_ready > 1)
4083 /* Don't give reorder the most prioritized insn as it can break
4084 pipelining. */
4085 if (pipelining_p)
4086 --ready.n_ready;
4088 issue_more
4089 = targetm.sched.reorder (sched_dump, sched_verbose,
4090 ready_lastpos (&ready),
4091 &ready.n_ready, FENCE_CYCLE (fence));
4093 if (pipelining_p)
4094 ++ready.n_ready;
4096 ran_hook = true;
4098 else
4099 /* Initialize can_issue_more for variable_issue. */
4100 issue_more = issue_rate;
4102 else if (targetm.sched.reorder2
4103 && !SCHED_GROUP_P (ready_element (&ready, 0)))
4105 if (ready.n_ready == 1)
4106 issue_more =
4107 targetm.sched.reorder2 (sched_dump, sched_verbose,
4108 ready_lastpos (&ready),
4109 &ready.n_ready, FENCE_CYCLE (fence));
4110 else
4112 if (pipelining_p)
4113 --ready.n_ready;
4115 issue_more =
4116 targetm.sched.reorder2 (sched_dump, sched_verbose,
4117 ready.n_ready
4118 ? ready_lastpos (&ready) : NULL,
4119 &ready.n_ready, FENCE_CYCLE (fence));
4121 if (pipelining_p)
4122 ++ready.n_ready;
4125 ran_hook = true;
4127 else
4128 issue_more = FENCE_ISSUE_MORE (fence);
4130 /* Ensure that ready list and vec_av_set are in line with each other,
4131 i.e. vec_av_set[i] == ready_element (&ready, i). */
4132 if (issue_more && ran_hook)
4134 int i, j, n;
4135 rtx_insn **arr = ready.vec;
4136 expr_t *vec = vec_av_set.address ();
4138 for (i = 0, n = ready.n_ready; i < n; i++)
4139 if (EXPR_INSN_RTX (vec[i]) != arr[i])
4141 expr_t tmp;
4143 for (j = i; j < n; j++)
4144 if (EXPR_INSN_RTX (vec[j]) == arr[i])
4145 break;
4146 gcc_assert (j < n);
4148 tmp = vec[i];
4149 vec[i] = vec[j];
4150 vec[j] = tmp;
4154 return issue_more;
4157 /* Return an EXPR corresponding to INDEX element of ready list, if
4158 FOLLOW_READY_ELEMENT is true (i.e., an expr of
4159 ready_element (&ready, INDEX) will be returned), and to INDEX element of
4160 ready.vec otherwise. */
4161 static inline expr_t
4162 find_expr_for_ready (int index, bool follow_ready_element)
4164 expr_t expr;
4165 int real_index;
4167 real_index = follow_ready_element ? ready.first - index : index;
4169 expr = vec_av_set[real_index];
4170 gcc_assert (ready.vec[real_index] == EXPR_INSN_RTX (expr));
4172 return expr;
4175 /* Calculate insns worth trying via lookahead_guard hook. Return a number
4176 of such insns found. */
4177 static int
4178 invoke_dfa_lookahead_guard (void)
4180 int i, n;
4181 bool have_hook
4182 = targetm.sched.first_cycle_multipass_dfa_lookahead_guard != NULL;
4184 if (sched_verbose >= 2)
4185 sel_print ("ready after reorder: ");
4187 for (i = 0, n = 0; i < ready.n_ready; i++)
4189 expr_t expr;
4190 insn_t insn;
4191 int r;
4193 /* In this loop insn is Ith element of the ready list given by
4194 ready_element, not Ith element of ready.vec. */
4195 insn = ready_element (&ready, i);
4197 if (! have_hook || i == 0)
4198 r = 0;
4199 else
4200 r = targetm.sched.first_cycle_multipass_dfa_lookahead_guard (insn, i);
4202 gcc_assert (INSN_CODE (insn) >= 0);
4204 /* Only insns with ready_try = 0 can get here
4205 from fill_ready_list. */
4206 gcc_assert (ready_try [i] == 0);
4207 ready_try[i] = r;
4208 if (!r)
4209 n++;
4211 expr = find_expr_for_ready (i, true);
4213 if (sched_verbose >= 2)
4215 dump_vinsn (EXPR_VINSN (expr));
4216 sel_print (":%d; ", ready_try[i]);
4220 if (sched_verbose >= 2)
4221 sel_print ("\n");
4222 return n;
4225 /* Calculate the number of privileged insns and return it. */
4226 static int
4227 calculate_privileged_insns (void)
4229 expr_t cur_expr, min_spec_expr = NULL;
4230 int privileged_n = 0, i;
4232 for (i = 0; i < ready.n_ready; i++)
4234 if (ready_try[i])
4235 continue;
4237 if (! min_spec_expr)
4238 min_spec_expr = find_expr_for_ready (i, true);
4240 cur_expr = find_expr_for_ready (i, true);
4242 if (EXPR_SPEC (cur_expr) > EXPR_SPEC (min_spec_expr))
4243 break;
4245 ++privileged_n;
4248 if (i == ready.n_ready)
4249 privileged_n = 0;
4251 if (sched_verbose >= 2)
4252 sel_print ("privileged_n: %d insns with SPEC %d\n",
4253 privileged_n, privileged_n ? EXPR_SPEC (min_spec_expr) : -1);
4254 return privileged_n;
4257 /* Call the rest of the hooks after the choice was made. Return
4258 the number of insns that still can be issued given that the current
4259 number is ISSUE_MORE. FENCE and BEST_INSN are the current fence
4260 and the insn chosen for scheduling, respectively. */
4261 static int
4262 invoke_aftermath_hooks (fence_t fence, rtx_insn *best_insn, int issue_more)
4264 gcc_assert (INSN_P (best_insn));
4266 /* First, call dfa_new_cycle, and then variable_issue, if available. */
4267 sel_dfa_new_cycle (best_insn, fence);
4269 if (targetm.sched.variable_issue)
4271 memcpy (curr_state, FENCE_STATE (fence), dfa_state_size);
4272 issue_more =
4273 targetm.sched.variable_issue (sched_dump, sched_verbose, best_insn,
4274 issue_more);
4275 memcpy (FENCE_STATE (fence), curr_state, dfa_state_size);
4277 else if (GET_CODE (PATTERN (best_insn)) != USE
4278 && GET_CODE (PATTERN (best_insn)) != CLOBBER)
4279 issue_more--;
4281 return issue_more;
4284 /* Estimate the cost of issuing INSN on DFA state STATE. */
4285 static int
4286 estimate_insn_cost (rtx_insn *insn, state_t state)
4288 static state_t temp = NULL;
4289 int cost;
4291 if (!temp)
4292 temp = xmalloc (dfa_state_size);
4294 memcpy (temp, state, dfa_state_size);
4295 cost = state_transition (temp, insn);
4297 if (cost < 0)
4298 return 0;
4299 else if (cost == 0)
4300 return 1;
4301 return cost;
4304 /* Return the cost of issuing EXPR on the FENCE as estimated by DFA.
4305 This function properly handles ASMs, USEs etc. */
4306 static int
4307 get_expr_cost (expr_t expr, fence_t fence)
4309 rtx_insn *insn = EXPR_INSN_RTX (expr);
4311 if (recog_memoized (insn) < 0)
4313 if (!FENCE_STARTS_CYCLE_P (fence)
4314 && INSN_ASM_P (insn))
4315 /* This is asm insn which is tryed to be issued on the
4316 cycle not first. Issue it on the next cycle. */
4317 return 1;
4318 else
4319 /* A USE insn, or something else we don't need to
4320 understand. We can't pass these directly to
4321 state_transition because it will trigger a
4322 fatal error for unrecognizable insns. */
4323 return 0;
4325 else
4326 return estimate_insn_cost (insn, FENCE_STATE (fence));
4329 /* Find the best insn for scheduling, either via max_issue or just take
4330 the most prioritized available. */
4331 static int
4332 choose_best_insn (fence_t fence, int privileged_n, int *index)
4334 int can_issue = 0;
4336 if (dfa_lookahead > 0)
4338 cycle_issued_insns = FENCE_ISSUED_INSNS (fence);
4339 /* TODO: pass equivalent of first_cycle_insn_p to max_issue (). */
4340 can_issue = max_issue (&ready, privileged_n,
4341 FENCE_STATE (fence), true, index);
4342 if (sched_verbose >= 2)
4343 sel_print ("max_issue: we can issue %d insns, already did %d insns\n",
4344 can_issue, FENCE_ISSUED_INSNS (fence));
4346 else
4348 /* We can't use max_issue; just return the first available element. */
4349 int i;
4351 for (i = 0; i < ready.n_ready; i++)
4353 expr_t expr = find_expr_for_ready (i, true);
4355 if (get_expr_cost (expr, fence) < 1)
4357 can_issue = can_issue_more;
4358 *index = i;
4360 if (sched_verbose >= 2)
4361 sel_print ("using %dth insn from the ready list\n", i + 1);
4363 break;
4367 if (i == ready.n_ready)
4369 can_issue = 0;
4370 *index = -1;
4374 return can_issue;
4377 /* Choose the best expr from *AV_VLIW_PTR and a suitable register for it.
4378 BNDS and FENCE are current boundaries and scheduling fence respectively.
4379 Return the expr found and NULL if nothing can be issued atm.
4380 Write to PNEED_STALL the number of cycles to stall if no expr was found. */
4381 static expr_t
4382 find_best_expr (av_set_t *av_vliw_ptr, blist_t bnds, fence_t fence,
4383 int *pneed_stall)
4385 expr_t best;
4387 /* Choose the best insn for scheduling via:
4388 1) sorting the ready list based on priority;
4389 2) calling the reorder hook;
4390 3) calling max_issue. */
4391 best = fill_ready_list (av_vliw_ptr, bnds, fence, pneed_stall);
4392 if (best == NULL && ready.n_ready > 0)
4394 int privileged_n, index;
4396 can_issue_more = invoke_reorder_hooks (fence);
4397 if (can_issue_more > 0)
4399 /* Try choosing the best insn until we find one that is could be
4400 scheduled due to liveness restrictions on its destination register.
4401 In the future, we'd like to choose once and then just probe insns
4402 in the order of their priority. */
4403 invoke_dfa_lookahead_guard ();
4404 privileged_n = calculate_privileged_insns ();
4405 can_issue_more = choose_best_insn (fence, privileged_n, &index);
4406 if (can_issue_more)
4407 best = find_expr_for_ready (index, true);
4409 /* We had some available insns, so if we can't issue them,
4410 we have a stall. */
4411 if (can_issue_more == 0)
4413 best = NULL;
4414 *pneed_stall = 1;
4418 if (best != NULL)
4420 can_issue_more = invoke_aftermath_hooks (fence, EXPR_INSN_RTX (best),
4421 can_issue_more);
4422 if (targetm.sched.variable_issue
4423 && can_issue_more == 0)
4424 *pneed_stall = 1;
4427 if (sched_verbose >= 2)
4429 if (best != NULL)
4431 sel_print ("Best expression (vliw form): ");
4432 dump_expr (best);
4433 sel_print ("; cycle %d\n", FENCE_CYCLE (fence));
4435 else
4436 sel_print ("No best expr found!\n");
4439 return best;
4443 /* Functions that implement the core of the scheduler. */
4446 /* Emit an instruction from EXPR with SEQNO and VINSN after
4447 PLACE_TO_INSERT. */
4448 static insn_t
4449 emit_insn_from_expr_after (expr_t expr, vinsn_t vinsn, int seqno,
4450 insn_t place_to_insert)
4452 /* This assert fails when we have identical instructions
4453 one of which dominates the other. In this case move_op ()
4454 finds the first instruction and doesn't search for second one.
4455 The solution would be to compute av_set after the first found
4456 insn and, if insn present in that set, continue searching.
4457 For now we workaround this issue in move_op. */
4458 gcc_assert (!INSN_IN_STREAM_P (EXPR_INSN_RTX (expr)));
4460 if (EXPR_WAS_RENAMED (expr))
4462 unsigned regno = expr_dest_regno (expr);
4464 if (HARD_REGISTER_NUM_P (regno))
4466 df_set_regs_ever_live (regno, true);
4467 reg_rename_tick[regno] = ++reg_rename_this_tick;
4471 return sel_gen_insn_from_expr_after (expr, vinsn, seqno,
4472 place_to_insert);
4475 /* Return TRUE if BB can hold bookkeeping code. */
4476 static bool
4477 block_valid_for_bookkeeping_p (basic_block bb)
4479 insn_t bb_end = BB_END (bb);
4481 if (!in_current_region_p (bb) || EDGE_COUNT (bb->succs) > 1)
4482 return false;
4484 if (INSN_P (bb_end))
4486 if (INSN_SCHED_TIMES (bb_end) > 0)
4487 return false;
4489 else
4490 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (bb_end));
4492 return true;
4495 /* Attempt to find a block that can hold bookkeeping code for path(s) incoming
4496 into E2->dest, except from E1->src (there may be a sequence of empty basic
4497 blocks between E1->src and E2->dest). Return found block, or NULL if new
4498 one must be created. If LAX holds, don't assume there is a simple path
4499 from E1->src to E2->dest. */
4500 static basic_block
4501 find_block_for_bookkeeping (edge e1, edge e2, bool lax)
4503 basic_block candidate_block = NULL;
4504 edge e;
4506 /* Loop over edges from E1 to E2, inclusive. */
4507 for (e = e1; !lax || e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun); e =
4508 EDGE_SUCC (e->dest, 0))
4510 if (EDGE_COUNT (e->dest->preds) == 2)
4512 if (candidate_block == NULL)
4513 candidate_block = (EDGE_PRED (e->dest, 0) == e
4514 ? EDGE_PRED (e->dest, 1)->src
4515 : EDGE_PRED (e->dest, 0)->src);
4516 else
4517 /* Found additional edge leading to path from e1 to e2
4518 from aside. */
4519 return NULL;
4521 else if (EDGE_COUNT (e->dest->preds) > 2)
4522 /* Several edges leading to path from e1 to e2 from aside. */
4523 return NULL;
4525 if (e == e2)
4526 return ((!lax || candidate_block)
4527 && block_valid_for_bookkeeping_p (candidate_block)
4528 ? candidate_block
4529 : NULL);
4531 if (lax && EDGE_COUNT (e->dest->succs) != 1)
4532 return NULL;
4535 if (lax)
4536 return NULL;
4538 gcc_unreachable ();
4541 /* Create new basic block for bookkeeping code for path(s) incoming into
4542 E2->dest, except from E1->src. Return created block. */
4543 static basic_block
4544 create_block_for_bookkeeping (edge e1, edge e2)
4546 basic_block new_bb, bb = e2->dest;
4548 /* Check that we don't spoil the loop structure. */
4549 if (current_loop_nest)
4551 basic_block latch = current_loop_nest->latch;
4553 /* We do not split header. */
4554 gcc_assert (e2->dest != current_loop_nest->header);
4556 /* We do not redirect the only edge to the latch block. */
4557 gcc_assert (e1->dest != latch
4558 || !single_pred_p (latch)
4559 || e1 != single_pred_edge (latch));
4562 /* Split BB to insert BOOK_INSN there. */
4563 new_bb = sched_split_block (bb, NULL);
4565 /* Move note_list from the upper bb. */
4566 gcc_assert (BB_NOTE_LIST (new_bb) == NULL_RTX);
4567 BB_NOTE_LIST (new_bb) = BB_NOTE_LIST (bb);
4568 BB_NOTE_LIST (bb) = NULL;
4570 gcc_assert (e2->dest == bb);
4572 /* Skip block for bookkeeping copy when leaving E1->src. */
4573 if (e1->flags & EDGE_FALLTHRU)
4574 sel_redirect_edge_and_branch_force (e1, new_bb);
4575 else
4576 sel_redirect_edge_and_branch (e1, new_bb);
4578 gcc_assert (e1->dest == new_bb);
4579 gcc_assert (sel_bb_empty_p (bb));
4581 /* To keep basic block numbers in sync between debug and non-debug
4582 compilations, we have to rotate blocks here. Consider that we
4583 started from (a,b)->d, (c,d)->e, and d contained only debug
4584 insns. It would have been removed before if the debug insns
4585 weren't there, so we'd have split e rather than d. So what we do
4586 now is to swap the block numbers of new_bb and
4587 single_succ(new_bb) == e, so that the insns that were in e before
4588 get the new block number. */
4590 if (MAY_HAVE_DEBUG_INSNS)
4592 basic_block succ;
4593 insn_t insn = sel_bb_head (new_bb);
4594 insn_t last;
4596 if (DEBUG_INSN_P (insn)
4597 && single_succ_p (new_bb)
4598 && (succ = single_succ (new_bb))
4599 && succ != EXIT_BLOCK_PTR_FOR_FN (cfun)
4600 && DEBUG_INSN_P ((last = sel_bb_end (new_bb))))
4602 while (insn != last && (DEBUG_INSN_P (insn) || NOTE_P (insn)))
4603 insn = NEXT_INSN (insn);
4605 if (insn == last)
4607 sel_global_bb_info_def gbi;
4608 sel_region_bb_info_def rbi;
4609 int i;
4611 if (sched_verbose >= 2)
4612 sel_print ("Swapping block ids %i and %i\n",
4613 new_bb->index, succ->index);
4615 i = new_bb->index;
4616 new_bb->index = succ->index;
4617 succ->index = i;
4619 SET_BASIC_BLOCK_FOR_FN (cfun, new_bb->index, new_bb);
4620 SET_BASIC_BLOCK_FOR_FN (cfun, succ->index, succ);
4622 memcpy (&gbi, SEL_GLOBAL_BB_INFO (new_bb), sizeof (gbi));
4623 memcpy (SEL_GLOBAL_BB_INFO (new_bb), SEL_GLOBAL_BB_INFO (succ),
4624 sizeof (gbi));
4625 memcpy (SEL_GLOBAL_BB_INFO (succ), &gbi, sizeof (gbi));
4627 memcpy (&rbi, SEL_REGION_BB_INFO (new_bb), sizeof (rbi));
4628 memcpy (SEL_REGION_BB_INFO (new_bb), SEL_REGION_BB_INFO (succ),
4629 sizeof (rbi));
4630 memcpy (SEL_REGION_BB_INFO (succ), &rbi, sizeof (rbi));
4632 i = BLOCK_TO_BB (new_bb->index);
4633 BLOCK_TO_BB (new_bb->index) = BLOCK_TO_BB (succ->index);
4634 BLOCK_TO_BB (succ->index) = i;
4636 i = CONTAINING_RGN (new_bb->index);
4637 CONTAINING_RGN (new_bb->index) = CONTAINING_RGN (succ->index);
4638 CONTAINING_RGN (succ->index) = i;
4640 for (i = 0; i < current_nr_blocks; i++)
4641 if (BB_TO_BLOCK (i) == succ->index)
4642 BB_TO_BLOCK (i) = new_bb->index;
4643 else if (BB_TO_BLOCK (i) == new_bb->index)
4644 BB_TO_BLOCK (i) = succ->index;
4646 FOR_BB_INSNS (new_bb, insn)
4647 if (INSN_P (insn))
4648 EXPR_ORIG_BB_INDEX (INSN_EXPR (insn)) = new_bb->index;
4650 FOR_BB_INSNS (succ, insn)
4651 if (INSN_P (insn))
4652 EXPR_ORIG_BB_INDEX (INSN_EXPR (insn)) = succ->index;
4654 if (bitmap_clear_bit (code_motion_visited_blocks, new_bb->index))
4655 bitmap_set_bit (code_motion_visited_blocks, succ->index);
4657 gcc_assert (LABEL_P (BB_HEAD (new_bb))
4658 && LABEL_P (BB_HEAD (succ)));
4660 if (sched_verbose >= 4)
4661 sel_print ("Swapping code labels %i and %i\n",
4662 CODE_LABEL_NUMBER (BB_HEAD (new_bb)),
4663 CODE_LABEL_NUMBER (BB_HEAD (succ)));
4665 i = CODE_LABEL_NUMBER (BB_HEAD (new_bb));
4666 CODE_LABEL_NUMBER (BB_HEAD (new_bb))
4667 = CODE_LABEL_NUMBER (BB_HEAD (succ));
4668 CODE_LABEL_NUMBER (BB_HEAD (succ)) = i;
4673 return bb;
4676 /* Return insn after which we must insert bookkeeping code for path(s) incoming
4677 into E2->dest, except from E1->src. If the returned insn immediately
4678 precedes a fence, assign that fence to *FENCE_TO_REWIND. */
4679 static insn_t
4680 find_place_for_bookkeeping (edge e1, edge e2, fence_t *fence_to_rewind)
4682 insn_t place_to_insert;
4683 /* Find a basic block that can hold bookkeeping. If it can be found, do not
4684 create new basic block, but insert bookkeeping there. */
4685 basic_block book_block = find_block_for_bookkeeping (e1, e2, FALSE);
4687 if (book_block)
4689 place_to_insert = BB_END (book_block);
4691 /* Don't use a block containing only debug insns for
4692 bookkeeping, this causes scheduling differences between debug
4693 and non-debug compilations, for the block would have been
4694 removed already. */
4695 if (DEBUG_INSN_P (place_to_insert))
4697 rtx_insn *insn = sel_bb_head (book_block);
4699 while (insn != place_to_insert &&
4700 (DEBUG_INSN_P (insn) || NOTE_P (insn)))
4701 insn = NEXT_INSN (insn);
4703 if (insn == place_to_insert)
4704 book_block = NULL;
4708 if (!book_block)
4710 book_block = create_block_for_bookkeeping (e1, e2);
4711 place_to_insert = BB_END (book_block);
4712 if (sched_verbose >= 9)
4713 sel_print ("New block is %i, split from bookkeeping block %i\n",
4714 EDGE_SUCC (book_block, 0)->dest->index, book_block->index);
4716 else
4718 if (sched_verbose >= 9)
4719 sel_print ("Pre-existing bookkeeping block is %i\n", book_block->index);
4722 *fence_to_rewind = NULL;
4723 /* If basic block ends with a jump, insert bookkeeping code right before it.
4724 Notice if we are crossing a fence when taking PREV_INSN. */
4725 if (INSN_P (place_to_insert) && control_flow_insn_p (place_to_insert))
4727 *fence_to_rewind = flist_lookup (fences, place_to_insert);
4728 place_to_insert = PREV_INSN (place_to_insert);
4731 return place_to_insert;
4734 /* Find a proper seqno for bookkeeing insn inserted at PLACE_TO_INSERT
4735 for JOIN_POINT. */
4736 static int
4737 find_seqno_for_bookkeeping (insn_t place_to_insert, insn_t join_point)
4739 int seqno;
4740 rtx next;
4742 /* Check if we are about to insert bookkeeping copy before a jump, and use
4743 jump's seqno for the copy; otherwise, use JOIN_POINT's seqno. */
4744 next = NEXT_INSN (place_to_insert);
4745 if (INSN_P (next)
4746 && JUMP_P (next)
4747 && BLOCK_FOR_INSN (next) == BLOCK_FOR_INSN (place_to_insert))
4749 gcc_assert (INSN_SCHED_TIMES (next) == 0);
4750 seqno = INSN_SEQNO (next);
4752 else if (INSN_SEQNO (join_point) > 0)
4753 seqno = INSN_SEQNO (join_point);
4754 else
4756 seqno = get_seqno_by_preds (place_to_insert);
4758 /* Sometimes the fences can move in such a way that there will be
4759 no instructions with positive seqno around this bookkeeping.
4760 This means that there will be no way to get to it by a regular
4761 fence movement. Never mind because we pick up such pieces for
4762 rescheduling anyways, so any positive value will do for now. */
4763 if (seqno < 0)
4765 gcc_assert (pipelining_p);
4766 seqno = 1;
4770 gcc_assert (seqno > 0);
4771 return seqno;
4774 /* Insert bookkeeping copy of C_EXPS's insn after PLACE_TO_INSERT, assigning
4775 NEW_SEQNO to it. Return created insn. */
4776 static insn_t
4777 emit_bookkeeping_insn (insn_t place_to_insert, expr_t c_expr, int new_seqno)
4779 rtx_insn *new_insn_rtx = create_copy_of_insn_rtx (EXPR_INSN_RTX (c_expr));
4781 vinsn_t new_vinsn
4782 = create_vinsn_from_insn_rtx (new_insn_rtx,
4783 VINSN_UNIQUE_P (EXPR_VINSN (c_expr)));
4785 insn_t new_insn = emit_insn_from_expr_after (c_expr, new_vinsn, new_seqno,
4786 place_to_insert);
4788 INSN_SCHED_TIMES (new_insn) = 0;
4789 bitmap_set_bit (current_copies, INSN_UID (new_insn));
4791 return new_insn;
4794 /* Generate a bookkeeping copy of C_EXPR's insn for path(s) incoming into to
4795 E2->dest, except from E1->src (there may be a sequence of empty blocks
4796 between E1->src and E2->dest). Return block containing the copy.
4797 All scheduler data is initialized for the newly created insn. */
4798 static basic_block
4799 generate_bookkeeping_insn (expr_t c_expr, edge e1, edge e2)
4801 insn_t join_point, place_to_insert, new_insn;
4802 int new_seqno;
4803 bool need_to_exchange_data_sets;
4804 fence_t fence_to_rewind;
4806 if (sched_verbose >= 4)
4807 sel_print ("Generating bookkeeping insn (%d->%d)\n", e1->src->index,
4808 e2->dest->index);
4810 join_point = sel_bb_head (e2->dest);
4811 place_to_insert = find_place_for_bookkeeping (e1, e2, &fence_to_rewind);
4812 new_seqno = find_seqno_for_bookkeeping (place_to_insert, join_point);
4813 need_to_exchange_data_sets
4814 = sel_bb_empty_p (BLOCK_FOR_INSN (place_to_insert));
4816 new_insn = emit_bookkeeping_insn (place_to_insert, c_expr, new_seqno);
4818 if (fence_to_rewind)
4819 FENCE_INSN (fence_to_rewind) = new_insn;
4821 /* When inserting bookkeeping insn in new block, av sets should be
4822 following: old basic block (that now holds bookkeeping) data sets are
4823 the same as was before generation of bookkeeping, and new basic block
4824 (that now hold all other insns of old basic block) data sets are
4825 invalid. So exchange data sets for these basic blocks as sel_split_block
4826 mistakenly exchanges them in this case. Cannot do it earlier because
4827 when single instruction is added to new basic block it should hold NULL
4828 lv_set. */
4829 if (need_to_exchange_data_sets)
4830 exchange_data_sets (BLOCK_FOR_INSN (new_insn),
4831 BLOCK_FOR_INSN (join_point));
4833 stat_bookkeeping_copies++;
4834 return BLOCK_FOR_INSN (new_insn);
4837 /* Remove from AV_PTR all insns that may need bookkeeping when scheduling
4838 on FENCE, but we are unable to copy them. */
4839 static void
4840 remove_insns_that_need_bookkeeping (fence_t fence, av_set_t *av_ptr)
4842 expr_t expr;
4843 av_set_iterator i;
4845 /* An expression does not need bookkeeping if it is available on all paths
4846 from current block to original block and current block dominates
4847 original block. We check availability on all paths by examining
4848 EXPR_SPEC; this is not equivalent, because it may be positive even
4849 if expr is available on all paths (but if expr is not available on
4850 any path, EXPR_SPEC will be positive). */
4852 FOR_EACH_EXPR_1 (expr, i, av_ptr)
4854 if (!control_flow_insn_p (EXPR_INSN_RTX (expr))
4855 && (!bookkeeping_p || VINSN_UNIQUE_P (EXPR_VINSN (expr)))
4856 && (EXPR_SPEC (expr)
4857 || !EXPR_ORIG_BB_INDEX (expr)
4858 || !dominated_by_p (CDI_DOMINATORS,
4859 BASIC_BLOCK_FOR_FN (cfun,
4860 EXPR_ORIG_BB_INDEX (expr)),
4861 BLOCK_FOR_INSN (FENCE_INSN (fence)))))
4863 if (sched_verbose >= 4)
4864 sel_print ("Expr %d removed because it would need bookkeeping, which "
4865 "cannot be created\n", INSN_UID (EXPR_INSN_RTX (expr)));
4866 av_set_iter_remove (&i);
4871 /* Moving conditional jump through some instructions.
4873 Consider example:
4875 ... <- current scheduling point
4876 NOTE BASIC BLOCK: <- bb header
4877 (p8) add r14=r14+0x9;;
4878 (p8) mov [r14]=r23
4879 (!p8) jump L1;;
4880 NOTE BASIC BLOCK:
4883 We can schedule jump one cycle earlier, than mov, because they cannot be
4884 executed together as their predicates are mutually exclusive.
4886 This is done in this way: first, new fallthrough basic block is created
4887 after jump (it is always can be done, because there already should be a
4888 fallthrough block, where control flow goes in case of predicate being true -
4889 in our example; otherwise there should be a dependence between those
4890 instructions and jump and we cannot schedule jump right now);
4891 next, all instructions between jump and current scheduling point are moved
4892 to this new block. And the result is this:
4894 NOTE BASIC BLOCK:
4895 (!p8) jump L1 <- current scheduling point
4896 NOTE BASIC BLOCK: <- bb header
4897 (p8) add r14=r14+0x9;;
4898 (p8) mov [r14]=r23
4899 NOTE BASIC BLOCK:
4902 static void
4903 move_cond_jump (rtx_insn *insn, bnd_t bnd)
4905 edge ft_edge;
4906 basic_block block_from, block_next, block_new, block_bnd, bb;
4907 rtx_insn *next, *prev, *link, *head;
4909 block_from = BLOCK_FOR_INSN (insn);
4910 block_bnd = BLOCK_FOR_INSN (BND_TO (bnd));
4911 prev = BND_TO (bnd);
4913 #ifdef ENABLE_CHECKING
4914 /* Moving of jump should not cross any other jumps or beginnings of new
4915 basic blocks. The only exception is when we move a jump through
4916 mutually exclusive insns along fallthru edges. */
4917 if (block_from != block_bnd)
4919 bb = block_from;
4920 for (link = PREV_INSN (insn); link != PREV_INSN (prev);
4921 link = PREV_INSN (link))
4923 if (INSN_P (link))
4924 gcc_assert (sched_insns_conditions_mutex_p (insn, link));
4925 if (BLOCK_FOR_INSN (link) && BLOCK_FOR_INSN (link) != bb)
4927 gcc_assert (single_pred (bb) == BLOCK_FOR_INSN (link));
4928 bb = BLOCK_FOR_INSN (link);
4932 #endif
4934 /* Jump is moved to the boundary. */
4935 next = PREV_INSN (insn);
4936 BND_TO (bnd) = insn;
4938 ft_edge = find_fallthru_edge_from (block_from);
4939 block_next = ft_edge->dest;
4940 /* There must be a fallthrough block (or where should go
4941 control flow in case of false jump predicate otherwise?). */
4942 gcc_assert (block_next);
4944 /* Create new empty basic block after source block. */
4945 block_new = sel_split_edge (ft_edge);
4946 gcc_assert (block_new->next_bb == block_next
4947 && block_from->next_bb == block_new);
4949 /* Move all instructions except INSN to BLOCK_NEW. */
4950 bb = block_bnd;
4951 head = BB_HEAD (block_new);
4952 while (bb != block_from->next_bb)
4954 rtx_insn *from, *to;
4955 from = bb == block_bnd ? prev : sel_bb_head (bb);
4956 to = bb == block_from ? next : sel_bb_end (bb);
4958 /* The jump being moved can be the first insn in the block.
4959 In this case we don't have to move anything in this block. */
4960 if (NEXT_INSN (to) != from)
4962 reorder_insns (from, to, head);
4964 for (link = to; link != head; link = PREV_INSN (link))
4965 EXPR_ORIG_BB_INDEX (INSN_EXPR (link)) = block_new->index;
4966 head = to;
4969 /* Cleanup possibly empty blocks left. */
4970 block_next = bb->next_bb;
4971 if (bb != block_from)
4972 tidy_control_flow (bb, false);
4973 bb = block_next;
4976 /* Assert there is no jump to BLOCK_NEW, only fallthrough edge. */
4977 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (BB_HEAD (block_new)));
4979 gcc_assert (!sel_bb_empty_p (block_from)
4980 && !sel_bb_empty_p (block_new));
4982 /* Update data sets for BLOCK_NEW to represent that INSN and
4983 instructions from the other branch of INSN is no longer
4984 available at BLOCK_NEW. */
4985 BB_AV_LEVEL (block_new) = global_level;
4986 gcc_assert (BB_LV_SET (block_new) == NULL);
4987 BB_LV_SET (block_new) = get_clear_regset_from_pool ();
4988 update_data_sets (sel_bb_head (block_new));
4990 /* INSN is a new basic block header - so prepare its data
4991 structures and update availability and liveness sets. */
4992 update_data_sets (insn);
4994 if (sched_verbose >= 4)
4995 sel_print ("Moving jump %d\n", INSN_UID (insn));
4998 /* Remove nops generated during move_op for preventing removal of empty
4999 basic blocks. */
5000 static void
5001 remove_temp_moveop_nops (bool full_tidying)
5003 int i;
5004 insn_t insn;
5006 FOR_EACH_VEC_ELT (vec_temp_moveop_nops, i, insn)
5008 gcc_assert (INSN_NOP_P (insn));
5009 return_nop_to_pool (insn, full_tidying);
5012 /* Empty the vector. */
5013 if (vec_temp_moveop_nops.length () > 0)
5014 vec_temp_moveop_nops.block_remove (0, vec_temp_moveop_nops.length ());
5017 /* Records the maximal UID before moving up an instruction. Used for
5018 distinguishing between bookkeeping copies and original insns. */
5019 static int max_uid_before_move_op = 0;
5021 /* Remove from AV_VLIW_P all instructions but next when debug counter
5022 tells us so. Next instruction is fetched from BNDS. */
5023 static void
5024 remove_insns_for_debug (blist_t bnds, av_set_t *av_vliw_p)
5026 if (! dbg_cnt (sel_sched_insn_cnt))
5027 /* Leave only the next insn in av_vliw. */
5029 av_set_iterator av_it;
5030 expr_t expr;
5031 bnd_t bnd = BLIST_BND (bnds);
5032 insn_t next = BND_TO (bnd);
5034 gcc_assert (BLIST_NEXT (bnds) == NULL);
5036 FOR_EACH_EXPR_1 (expr, av_it, av_vliw_p)
5037 if (EXPR_INSN_RTX (expr) != next)
5038 av_set_iter_remove (&av_it);
5042 /* Compute available instructions on BNDS. FENCE is the current fence. Write
5043 the computed set to *AV_VLIW_P. */
5044 static void
5045 compute_av_set_on_boundaries (fence_t fence, blist_t bnds, av_set_t *av_vliw_p)
5047 if (sched_verbose >= 2)
5049 sel_print ("Boundaries: ");
5050 dump_blist (bnds);
5051 sel_print ("\n");
5054 for (; bnds; bnds = BLIST_NEXT (bnds))
5056 bnd_t bnd = BLIST_BND (bnds);
5057 av_set_t av1_copy;
5058 insn_t bnd_to = BND_TO (bnd);
5060 /* Rewind BND->TO to the basic block header in case some bookkeeping
5061 instructions were inserted before BND->TO and it needs to be
5062 adjusted. */
5063 if (sel_bb_head_p (bnd_to))
5064 gcc_assert (INSN_SCHED_TIMES (bnd_to) == 0);
5065 else
5066 while (INSN_SCHED_TIMES (PREV_INSN (bnd_to)) == 0)
5068 bnd_to = PREV_INSN (bnd_to);
5069 if (sel_bb_head_p (bnd_to))
5070 break;
5073 if (BND_TO (bnd) != bnd_to)
5075 gcc_assert (FENCE_INSN (fence) == BND_TO (bnd));
5076 FENCE_INSN (fence) = bnd_to;
5077 BND_TO (bnd) = bnd_to;
5080 av_set_clear (&BND_AV (bnd));
5081 BND_AV (bnd) = compute_av_set (BND_TO (bnd), NULL, 0, true);
5083 av_set_clear (&BND_AV1 (bnd));
5084 BND_AV1 (bnd) = av_set_copy (BND_AV (bnd));
5086 moveup_set_inside_insn_group (&BND_AV1 (bnd), NULL);
5088 av1_copy = av_set_copy (BND_AV1 (bnd));
5089 av_set_union_and_clear (av_vliw_p, &av1_copy, NULL);
5092 if (sched_verbose >= 2)
5094 sel_print ("Available exprs (vliw form): ");
5095 dump_av_set (*av_vliw_p);
5096 sel_print ("\n");
5100 /* Calculate the sequential av set on BND corresponding to the EXPR_VLIW
5101 expression. When FOR_MOVEOP is true, also replace the register of
5102 expressions found with the register from EXPR_VLIW. */
5103 static av_set_t
5104 find_sequential_best_exprs (bnd_t bnd, expr_t expr_vliw, bool for_moveop)
5106 av_set_t expr_seq = NULL;
5107 expr_t expr;
5108 av_set_iterator i;
5110 FOR_EACH_EXPR (expr, i, BND_AV (bnd))
5112 if (equal_after_moveup_path_p (expr, NULL, expr_vliw))
5114 if (for_moveop)
5116 /* The sequential expression has the right form to pass
5117 to move_op except when renaming happened. Put the
5118 correct register in EXPR then. */
5119 if (EXPR_SEPARABLE_P (expr) && REG_P (EXPR_LHS (expr)))
5121 if (expr_dest_regno (expr) != expr_dest_regno (expr_vliw))
5123 replace_dest_with_reg_in_expr (expr, EXPR_LHS (expr_vliw));
5124 stat_renamed_scheduled++;
5126 /* Also put the correct TARGET_AVAILABLE bit on the expr.
5127 This is needed when renaming came up with original
5128 register. */
5129 else if (EXPR_TARGET_AVAILABLE (expr)
5130 != EXPR_TARGET_AVAILABLE (expr_vliw))
5132 gcc_assert (EXPR_TARGET_AVAILABLE (expr_vliw) == 1);
5133 EXPR_TARGET_AVAILABLE (expr) = 1;
5136 if (EXPR_WAS_SUBSTITUTED (expr))
5137 stat_substitutions_total++;
5140 av_set_add (&expr_seq, expr);
5142 /* With substitution inside insn group, it is possible
5143 that more than one expression in expr_seq will correspond
5144 to expr_vliw. In this case, choose one as the attempt to
5145 move both leads to miscompiles. */
5146 break;
5150 if (for_moveop && sched_verbose >= 2)
5152 sel_print ("Best expression(s) (sequential form): ");
5153 dump_av_set (expr_seq);
5154 sel_print ("\n");
5157 return expr_seq;
5161 /* Move nop to previous block. */
5162 static void ATTRIBUTE_UNUSED
5163 move_nop_to_previous_block (insn_t nop, basic_block prev_bb)
5165 insn_t prev_insn, next_insn, note;
5167 gcc_assert (sel_bb_head_p (nop)
5168 && prev_bb == BLOCK_FOR_INSN (nop)->prev_bb);
5169 note = bb_note (BLOCK_FOR_INSN (nop));
5170 prev_insn = sel_bb_end (prev_bb);
5171 next_insn = NEXT_INSN (nop);
5172 gcc_assert (prev_insn != NULL_RTX
5173 && PREV_INSN (note) == prev_insn);
5175 SET_NEXT_INSN (prev_insn) = nop;
5176 SET_PREV_INSN (nop) = prev_insn;
5178 SET_PREV_INSN (note) = nop;
5179 SET_NEXT_INSN (note) = next_insn;
5181 SET_NEXT_INSN (nop) = note;
5182 SET_PREV_INSN (next_insn) = note;
5184 BB_END (prev_bb) = nop;
5185 BLOCK_FOR_INSN (nop) = prev_bb;
5188 /* Prepare a place to insert the chosen expression on BND. */
5189 static insn_t
5190 prepare_place_to_insert (bnd_t bnd)
5192 insn_t place_to_insert;
5194 /* Init place_to_insert before calling move_op, as the later
5195 can possibly remove BND_TO (bnd). */
5196 if (/* If this is not the first insn scheduled. */
5197 BND_PTR (bnd))
5199 /* Add it after last scheduled. */
5200 place_to_insert = ILIST_INSN (BND_PTR (bnd));
5201 if (DEBUG_INSN_P (place_to_insert))
5203 ilist_t l = BND_PTR (bnd);
5204 while ((l = ILIST_NEXT (l)) &&
5205 DEBUG_INSN_P (ILIST_INSN (l)))
5207 if (!l)
5208 place_to_insert = NULL;
5211 else
5212 place_to_insert = NULL;
5214 if (!place_to_insert)
5216 /* Add it before BND_TO. The difference is in the
5217 basic block, where INSN will be added. */
5218 place_to_insert = get_nop_from_pool (BND_TO (bnd));
5219 gcc_assert (BLOCK_FOR_INSN (place_to_insert)
5220 == BLOCK_FOR_INSN (BND_TO (bnd)));
5223 return place_to_insert;
5226 /* Find original instructions for EXPR_SEQ and move it to BND boundary.
5227 Return the expression to emit in C_EXPR. */
5228 static bool
5229 move_exprs_to_boundary (bnd_t bnd, expr_t expr_vliw,
5230 av_set_t expr_seq, expr_t c_expr)
5232 bool b, should_move;
5233 unsigned book_uid;
5234 bitmap_iterator bi;
5235 int n_bookkeeping_copies_before_moveop;
5237 /* Make a move. This call will remove the original operation,
5238 insert all necessary bookkeeping instructions and update the
5239 data sets. After that all we have to do is add the operation
5240 at before BND_TO (BND). */
5241 n_bookkeeping_copies_before_moveop = stat_bookkeeping_copies;
5242 max_uid_before_move_op = get_max_uid ();
5243 bitmap_clear (current_copies);
5244 bitmap_clear (current_originators);
5246 b = move_op (BND_TO (bnd), expr_seq, expr_vliw,
5247 get_dest_from_orig_ops (expr_seq), c_expr, &should_move);
5249 /* We should be able to find the expression we've chosen for
5250 scheduling. */
5251 gcc_assert (b);
5253 if (stat_bookkeeping_copies > n_bookkeeping_copies_before_moveop)
5254 stat_insns_needed_bookkeeping++;
5256 EXECUTE_IF_SET_IN_BITMAP (current_copies, 0, book_uid, bi)
5258 unsigned uid;
5259 bitmap_iterator bi;
5261 /* We allocate these bitmaps lazily. */
5262 if (! INSN_ORIGINATORS_BY_UID (book_uid))
5263 INSN_ORIGINATORS_BY_UID (book_uid) = BITMAP_ALLOC (NULL);
5265 bitmap_copy (INSN_ORIGINATORS_BY_UID (book_uid),
5266 current_originators);
5268 /* Transitively add all originators' originators. */
5269 EXECUTE_IF_SET_IN_BITMAP (current_originators, 0, uid, bi)
5270 if (INSN_ORIGINATORS_BY_UID (uid))
5271 bitmap_ior_into (INSN_ORIGINATORS_BY_UID (book_uid),
5272 INSN_ORIGINATORS_BY_UID (uid));
5275 return should_move;
5279 /* Debug a DFA state as an array of bytes. */
5280 static void
5281 debug_state (state_t state)
5283 unsigned char *p;
5284 unsigned int i, size = dfa_state_size;
5286 sel_print ("state (%u):", size);
5287 for (i = 0, p = (unsigned char *) state; i < size; i++)
5288 sel_print (" %d", p[i]);
5289 sel_print ("\n");
5292 /* Advance state on FENCE with INSN. Return true if INSN is
5293 an ASM, and we should advance state once more. */
5294 static bool
5295 advance_state_on_fence (fence_t fence, insn_t insn)
5297 bool asm_p;
5299 if (recog_memoized (insn) >= 0)
5301 int res;
5302 state_t temp_state = alloca (dfa_state_size);
5304 gcc_assert (!INSN_ASM_P (insn));
5305 asm_p = false;
5307 memcpy (temp_state, FENCE_STATE (fence), dfa_state_size);
5308 res = state_transition (FENCE_STATE (fence), insn);
5309 gcc_assert (res < 0);
5311 if (memcmp (temp_state, FENCE_STATE (fence), dfa_state_size))
5313 FENCE_ISSUED_INSNS (fence)++;
5315 /* We should never issue more than issue_rate insns. */
5316 if (FENCE_ISSUED_INSNS (fence) > issue_rate)
5317 gcc_unreachable ();
5320 else
5322 /* This could be an ASM insn which we'd like to schedule
5323 on the next cycle. */
5324 asm_p = INSN_ASM_P (insn);
5325 if (!FENCE_STARTS_CYCLE_P (fence) && asm_p)
5326 advance_one_cycle (fence);
5329 if (sched_verbose >= 2)
5330 debug_state (FENCE_STATE (fence));
5331 if (!DEBUG_INSN_P (insn))
5332 FENCE_STARTS_CYCLE_P (fence) = 0;
5333 FENCE_ISSUE_MORE (fence) = can_issue_more;
5334 return asm_p;
5337 /* Update FENCE on which INSN was scheduled and this INSN, too. NEED_STALL
5338 is nonzero if we need to stall after issuing INSN. */
5339 static void
5340 update_fence_and_insn (fence_t fence, insn_t insn, int need_stall)
5342 bool asm_p;
5344 /* First, reflect that something is scheduled on this fence. */
5345 asm_p = advance_state_on_fence (fence, insn);
5346 FENCE_LAST_SCHEDULED_INSN (fence) = insn;
5347 vec_safe_push (FENCE_EXECUTING_INSNS (fence), insn);
5348 if (SCHED_GROUP_P (insn))
5350 FENCE_SCHED_NEXT (fence) = INSN_SCHED_NEXT (insn);
5351 SCHED_GROUP_P (insn) = 0;
5353 else
5354 FENCE_SCHED_NEXT (fence) = NULL;
5355 if (INSN_UID (insn) < FENCE_READY_TICKS_SIZE (fence))
5356 FENCE_READY_TICKS (fence) [INSN_UID (insn)] = 0;
5358 /* Set instruction scheduling info. This will be used in bundling,
5359 pipelining, tick computations etc. */
5360 ++INSN_SCHED_TIMES (insn);
5361 EXPR_TARGET_AVAILABLE (INSN_EXPR (insn)) = true;
5362 EXPR_ORIG_SCHED_CYCLE (INSN_EXPR (insn)) = FENCE_CYCLE (fence);
5363 INSN_AFTER_STALL_P (insn) = FENCE_AFTER_STALL_P (fence);
5364 INSN_SCHED_CYCLE (insn) = FENCE_CYCLE (fence);
5366 /* This does not account for adjust_cost hooks, just add the biggest
5367 constant the hook may add to the latency. TODO: make this
5368 a target dependent constant. */
5369 INSN_READY_CYCLE (insn)
5370 = INSN_SCHED_CYCLE (insn) + (INSN_CODE (insn) < 0
5372 : maximal_insn_latency (insn) + 1);
5374 /* Change these fields last, as they're used above. */
5375 FENCE_AFTER_STALL_P (fence) = 0;
5376 if (asm_p || need_stall)
5377 advance_one_cycle (fence);
5379 /* Indicate that we've scheduled something on this fence. */
5380 FENCE_SCHEDULED_P (fence) = true;
5381 scheduled_something_on_previous_fence = true;
5383 /* Print debug information when insn's fields are updated. */
5384 if (sched_verbose >= 2)
5386 sel_print ("Scheduling insn: ");
5387 dump_insn_1 (insn, 1);
5388 sel_print ("\n");
5392 /* Update boundary BND (and, if needed, FENCE) with INSN, remove the
5393 old boundary from BNDSP, add new boundaries to BNDS_TAIL_P and
5394 return it. */
5395 static blist_t *
5396 update_boundaries (fence_t fence, bnd_t bnd, insn_t insn, blist_t *bndsp,
5397 blist_t *bnds_tailp)
5399 succ_iterator si;
5400 insn_t succ;
5402 advance_deps_context (BND_DC (bnd), insn);
5403 FOR_EACH_SUCC_1 (succ, si, insn,
5404 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
5406 ilist_t ptr = ilist_copy (BND_PTR (bnd));
5408 ilist_add (&ptr, insn);
5410 if (DEBUG_INSN_P (insn) && sel_bb_end_p (insn)
5411 && is_ineligible_successor (succ, ptr))
5413 ilist_clear (&ptr);
5414 continue;
5417 if (FENCE_INSN (fence) == insn && !sel_bb_end_p (insn))
5419 if (sched_verbose >= 9)
5420 sel_print ("Updating fence insn from %i to %i\n",
5421 INSN_UID (insn), INSN_UID (succ));
5422 FENCE_INSN (fence) = succ;
5424 blist_add (bnds_tailp, succ, ptr, BND_DC (bnd));
5425 bnds_tailp = &BLIST_NEXT (*bnds_tailp);
5428 blist_remove (bndsp);
5429 return bnds_tailp;
5432 /* Schedule EXPR_VLIW on BND. Return the insn emitted. */
5433 static insn_t
5434 schedule_expr_on_boundary (bnd_t bnd, expr_t expr_vliw, int seqno)
5436 av_set_t expr_seq;
5437 expr_t c_expr = XALLOCA (expr_def);
5438 insn_t place_to_insert;
5439 insn_t insn;
5440 bool should_move;
5442 expr_seq = find_sequential_best_exprs (bnd, expr_vliw, true);
5444 /* In case of scheduling a jump skipping some other instructions,
5445 prepare CFG. After this, jump is at the boundary and can be
5446 scheduled as usual insn by MOVE_OP. */
5447 if (vinsn_cond_branch_p (EXPR_VINSN (expr_vliw)))
5449 insn = EXPR_INSN_RTX (expr_vliw);
5451 /* Speculative jumps are not handled. */
5452 if (insn != BND_TO (bnd)
5453 && !sel_insn_is_speculation_check (insn))
5454 move_cond_jump (insn, bnd);
5457 /* Find a place for C_EXPR to schedule. */
5458 place_to_insert = prepare_place_to_insert (bnd);
5459 should_move = move_exprs_to_boundary (bnd, expr_vliw, expr_seq, c_expr);
5460 clear_expr (c_expr);
5462 /* Add the instruction. The corner case to care about is when
5463 the expr_seq set has more than one expr, and we chose the one that
5464 is not equal to expr_vliw. Then expr_vliw may be insn in stream, and
5465 we can't use it. Generate the new vinsn. */
5466 if (INSN_IN_STREAM_P (EXPR_INSN_RTX (expr_vliw)))
5468 vinsn_t vinsn_new;
5470 vinsn_new = vinsn_copy (EXPR_VINSN (expr_vliw), false);
5471 change_vinsn_in_expr (expr_vliw, vinsn_new);
5472 should_move = false;
5474 if (should_move)
5475 insn = sel_move_insn (expr_vliw, seqno, place_to_insert);
5476 else
5477 insn = emit_insn_from_expr_after (expr_vliw, NULL, seqno,
5478 place_to_insert);
5480 /* Return the nops generated for preserving of data sets back
5481 into pool. */
5482 if (INSN_NOP_P (place_to_insert))
5483 return_nop_to_pool (place_to_insert, !DEBUG_INSN_P (insn));
5484 remove_temp_moveop_nops (!DEBUG_INSN_P (insn));
5486 av_set_clear (&expr_seq);
5488 /* Save the expression scheduled so to reset target availability if we'll
5489 meet it later on the same fence. */
5490 if (EXPR_WAS_RENAMED (expr_vliw))
5491 vinsn_vec_add (&vec_target_unavailable_vinsns, INSN_EXPR (insn));
5493 /* Check that the recent movement didn't destroyed loop
5494 structure. */
5495 gcc_assert (!pipelining_p
5496 || current_loop_nest == NULL
5497 || loop_latch_edge (current_loop_nest));
5498 return insn;
5501 /* Stall for N cycles on FENCE. */
5502 static void
5503 stall_for_cycles (fence_t fence, int n)
5505 int could_more;
5507 could_more = n > 1 || FENCE_ISSUED_INSNS (fence) < issue_rate;
5508 while (n--)
5509 advance_one_cycle (fence);
5510 if (could_more)
5511 FENCE_AFTER_STALL_P (fence) = 1;
5514 /* Gather a parallel group of insns at FENCE and assign their seqno
5515 to SEQNO. All scheduled insns are gathered in SCHEDULED_INSNS_TAILPP
5516 list for later recalculation of seqnos. */
5517 static void
5518 fill_insns (fence_t fence, int seqno, ilist_t **scheduled_insns_tailpp)
5520 blist_t bnds = NULL, *bnds_tailp;
5521 av_set_t av_vliw = NULL;
5522 insn_t insn = FENCE_INSN (fence);
5524 if (sched_verbose >= 2)
5525 sel_print ("Starting fill_insns for insn %d, cycle %d\n",
5526 INSN_UID (insn), FENCE_CYCLE (fence));
5528 blist_add (&bnds, insn, NULL, FENCE_DC (fence));
5529 bnds_tailp = &BLIST_NEXT (bnds);
5530 set_target_context (FENCE_TC (fence));
5531 can_issue_more = FENCE_ISSUE_MORE (fence);
5532 target_bb = INSN_BB (insn);
5534 /* Do while we can add any operation to the current group. */
5537 blist_t *bnds_tailp1, *bndsp;
5538 expr_t expr_vliw;
5539 int need_stall = false;
5540 int was_stall = 0, scheduled_insns = 0;
5541 int max_insns = pipelining_p ? issue_rate : 2 * issue_rate;
5542 int max_stall = pipelining_p ? 1 : 3;
5543 bool last_insn_was_debug = false;
5544 bool was_debug_bb_end_p = false;
5546 compute_av_set_on_boundaries (fence, bnds, &av_vliw);
5547 remove_insns_that_need_bookkeeping (fence, &av_vliw);
5548 remove_insns_for_debug (bnds, &av_vliw);
5550 /* Return early if we have nothing to schedule. */
5551 if (av_vliw == NULL)
5552 break;
5554 /* Choose the best expression and, if needed, destination register
5555 for it. */
5558 expr_vliw = find_best_expr (&av_vliw, bnds, fence, &need_stall);
5559 if (! expr_vliw && need_stall)
5561 /* All expressions required a stall. Do not recompute av sets
5562 as we'll get the same answer (modulo the insns between
5563 the fence and its boundary, which will not be available for
5564 pipelining).
5565 If we are going to stall for too long, break to recompute av
5566 sets and bring more insns for pipelining. */
5567 was_stall++;
5568 if (need_stall <= 3)
5569 stall_for_cycles (fence, need_stall);
5570 else
5572 stall_for_cycles (fence, 1);
5573 break;
5577 while (! expr_vliw && need_stall);
5579 /* Now either we've selected expr_vliw or we have nothing to schedule. */
5580 if (!expr_vliw)
5582 av_set_clear (&av_vliw);
5583 break;
5586 bndsp = &bnds;
5587 bnds_tailp1 = bnds_tailp;
5590 /* This code will be executed only once until we'd have several
5591 boundaries per fence. */
5593 bnd_t bnd = BLIST_BND (*bndsp);
5595 if (!av_set_is_in_p (BND_AV1 (bnd), EXPR_VINSN (expr_vliw)))
5597 bndsp = &BLIST_NEXT (*bndsp);
5598 continue;
5601 insn = schedule_expr_on_boundary (bnd, expr_vliw, seqno);
5602 last_insn_was_debug = DEBUG_INSN_P (insn);
5603 if (last_insn_was_debug)
5604 was_debug_bb_end_p = (insn == BND_TO (bnd) && sel_bb_end_p (insn));
5605 update_fence_and_insn (fence, insn, need_stall);
5606 bnds_tailp = update_boundaries (fence, bnd, insn, bndsp, bnds_tailp);
5608 /* Add insn to the list of scheduled on this cycle instructions. */
5609 ilist_add (*scheduled_insns_tailpp, insn);
5610 *scheduled_insns_tailpp = &ILIST_NEXT (**scheduled_insns_tailpp);
5612 while (*bndsp != *bnds_tailp1);
5614 av_set_clear (&av_vliw);
5615 if (!last_insn_was_debug)
5616 scheduled_insns++;
5618 /* We currently support information about candidate blocks only for
5619 one 'target_bb' block. Hence we can't schedule after jump insn,
5620 as this will bring two boundaries and, hence, necessity to handle
5621 information for two or more blocks concurrently. */
5622 if ((last_insn_was_debug ? was_debug_bb_end_p : sel_bb_end_p (insn))
5623 || (was_stall
5624 && (was_stall >= max_stall
5625 || scheduled_insns >= max_insns)))
5626 break;
5628 while (bnds);
5630 gcc_assert (!FENCE_BNDS (fence));
5632 /* Update boundaries of the FENCE. */
5633 while (bnds)
5635 ilist_t ptr = BND_PTR (BLIST_BND (bnds));
5637 if (ptr)
5639 insn = ILIST_INSN (ptr);
5641 if (!ilist_is_in_p (FENCE_BNDS (fence), insn))
5642 ilist_add (&FENCE_BNDS (fence), insn);
5645 blist_remove (&bnds);
5648 /* Update target context on the fence. */
5649 reset_target_context (FENCE_TC (fence), false);
5652 /* All exprs in ORIG_OPS must have the same destination register or memory.
5653 Return that destination. */
5654 static rtx
5655 get_dest_from_orig_ops (av_set_t orig_ops)
5657 rtx dest = NULL_RTX;
5658 av_set_iterator av_it;
5659 expr_t expr;
5660 bool first_p = true;
5662 FOR_EACH_EXPR (expr, av_it, orig_ops)
5664 rtx x = EXPR_LHS (expr);
5666 if (first_p)
5668 first_p = false;
5669 dest = x;
5671 else
5672 gcc_assert (dest == x
5673 || (dest != NULL_RTX && x != NULL_RTX
5674 && rtx_equal_p (dest, x)));
5677 return dest;
5680 /* Update data sets for the bookkeeping block and record those expressions
5681 which become no longer available after inserting this bookkeeping. */
5682 static void
5683 update_and_record_unavailable_insns (basic_block book_block)
5685 av_set_iterator i;
5686 av_set_t old_av_set = NULL;
5687 expr_t cur_expr;
5688 rtx_insn *bb_end = sel_bb_end (book_block);
5690 /* First, get correct liveness in the bookkeeping block. The problem is
5691 the range between the bookeeping insn and the end of block. */
5692 update_liveness_on_insn (bb_end);
5693 if (control_flow_insn_p (bb_end))
5694 update_liveness_on_insn (PREV_INSN (bb_end));
5696 /* If there's valid av_set on BOOK_BLOCK, then there might exist another
5697 fence above, where we may choose to schedule an insn which is
5698 actually blocked from moving up with the bookkeeping we create here. */
5699 if (AV_SET_VALID_P (sel_bb_head (book_block)))
5701 old_av_set = av_set_copy (BB_AV_SET (book_block));
5702 update_data_sets (sel_bb_head (book_block));
5704 /* Traverse all the expressions in the old av_set and check whether
5705 CUR_EXPR is in new AV_SET. */
5706 FOR_EACH_EXPR (cur_expr, i, old_av_set)
5708 expr_t new_expr = av_set_lookup (BB_AV_SET (book_block),
5709 EXPR_VINSN (cur_expr));
5711 if (! new_expr
5712 /* In this case, we can just turn off the E_T_A bit, but we can't
5713 represent this information with the current vector. */
5714 || EXPR_TARGET_AVAILABLE (new_expr)
5715 != EXPR_TARGET_AVAILABLE (cur_expr))
5716 /* Unfortunately, the below code could be also fired up on
5717 separable insns, e.g. when moving insns through the new
5718 speculation check as in PR 53701. */
5719 vinsn_vec_add (&vec_bookkeeping_blocked_vinsns, cur_expr);
5722 av_set_clear (&old_av_set);
5726 /* The main effect of this function is that sparams->c_expr is merged
5727 with (or copied to) lparams->c_expr_merged. If there's only one successor,
5728 we avoid merging anything by copying sparams->c_expr to lparams->c_expr_merged.
5729 lparams->c_expr_merged is copied back to sparams->c_expr after all
5730 successors has been traversed. lparams->c_expr_local is an expr allocated
5731 on stack in the caller function, and is used if there is more than one
5732 successor.
5734 SUCC is one of the SUCCS_NORMAL successors of INSN,
5735 MOVEOP_DRV_CALL_RES is the result of call code_motion_path_driver on succ,
5736 LPARAMS and STATIC_PARAMS contain the parameters described above. */
5737 static void
5738 move_op_merge_succs (insn_t insn ATTRIBUTE_UNUSED,
5739 insn_t succ ATTRIBUTE_UNUSED,
5740 int moveop_drv_call_res,
5741 cmpd_local_params_p lparams, void *static_params)
5743 moveop_static_params_p sparams = (moveop_static_params_p) static_params;
5745 /* Nothing to do, if original expr wasn't found below. */
5746 if (moveop_drv_call_res != 1)
5747 return;
5749 /* If this is a first successor. */
5750 if (!lparams->c_expr_merged)
5752 lparams->c_expr_merged = sparams->c_expr;
5753 sparams->c_expr = lparams->c_expr_local;
5755 else
5757 /* We must merge all found expressions to get reasonable
5758 EXPR_SPEC_DONE_DS for the resulting insn. If we don't
5759 do so then we can first find the expr with epsilon
5760 speculation success probability and only then with the
5761 good probability. As a result the insn will get epsilon
5762 probability and will never be scheduled because of
5763 weakness_cutoff in find_best_expr.
5765 We call merge_expr_data here instead of merge_expr
5766 because due to speculation C_EXPR and X may have the
5767 same insns with different speculation types. And as of
5768 now such insns are considered non-equal.
5770 However, EXPR_SCHED_TIMES is different -- we must get
5771 SCHED_TIMES from a real insn, not a bookkeeping copy.
5772 We force this here. Instead, we may consider merging
5773 SCHED_TIMES to the maximum instead of minimum in the
5774 below function. */
5775 int old_times = EXPR_SCHED_TIMES (lparams->c_expr_merged);
5777 merge_expr_data (lparams->c_expr_merged, sparams->c_expr, NULL);
5778 if (EXPR_SCHED_TIMES (sparams->c_expr) == 0)
5779 EXPR_SCHED_TIMES (lparams->c_expr_merged) = old_times;
5781 clear_expr (sparams->c_expr);
5785 /* Add used regs for the successor SUCC into SPARAMS->USED_REGS.
5787 SUCC is one of the SUCCS_NORMAL successors of INSN,
5788 MOVEOP_DRV_CALL_RES is the result of call code_motion_path_driver on succ or 0,
5789 if SUCC is one of SUCCS_BACK or SUCCS_OUT.
5790 STATIC_PARAMS contain USED_REGS set. */
5791 static void
5792 fur_merge_succs (insn_t insn ATTRIBUTE_UNUSED, insn_t succ,
5793 int moveop_drv_call_res,
5794 cmpd_local_params_p lparams ATTRIBUTE_UNUSED,
5795 void *static_params)
5797 regset succ_live;
5798 fur_static_params_p sparams = (fur_static_params_p) static_params;
5800 /* Here we compute live regsets only for branches that do not lie
5801 on the code motion paths. These branches correspond to value
5802 MOVEOP_DRV_CALL_RES==0 and include SUCCS_BACK and SUCCS_OUT, though
5803 for such branches code_motion_path_driver is not called. */
5804 if (moveop_drv_call_res != 0)
5805 return;
5807 /* Mark all registers that do not meet the following condition:
5808 (3) not live on the other path of any conditional branch
5809 that is passed by the operation, in case original
5810 operations are not present on both paths of the
5811 conditional branch. */
5812 succ_live = compute_live (succ);
5813 IOR_REG_SET (sparams->used_regs, succ_live);
5816 /* This function is called after the last successor. Copies LP->C_EXPR_MERGED
5817 into SP->CEXPR. */
5818 static void
5819 move_op_after_merge_succs (cmpd_local_params_p lp, void *sparams)
5821 moveop_static_params_p sp = (moveop_static_params_p) sparams;
5823 sp->c_expr = lp->c_expr_merged;
5826 /* Track bookkeeping copies created, insns scheduled, and blocks for
5827 rescheduling when INSN is found by move_op. */
5828 static void
5829 track_scheduled_insns_and_blocks (rtx insn)
5831 /* Even if this insn can be a copy that will be removed during current move_op,
5832 we still need to count it as an originator. */
5833 bitmap_set_bit (current_originators, INSN_UID (insn));
5835 if (!bitmap_clear_bit (current_copies, INSN_UID (insn)))
5837 /* Note that original block needs to be rescheduled, as we pulled an
5838 instruction out of it. */
5839 if (INSN_SCHED_TIMES (insn) > 0)
5840 bitmap_set_bit (blocks_to_reschedule, BLOCK_FOR_INSN (insn)->index);
5841 else if (INSN_UID (insn) < first_emitted_uid && !DEBUG_INSN_P (insn))
5842 num_insns_scheduled++;
5845 /* For instructions we must immediately remove insn from the
5846 stream, so subsequent update_data_sets () won't include this
5847 insn into av_set.
5848 For expr we must make insn look like "INSN_REG (insn) := c_expr". */
5849 if (INSN_UID (insn) > max_uid_before_move_op)
5850 stat_bookkeeping_copies--;
5853 /* Emit a register-register copy for INSN if needed. Return true if
5854 emitted one. PARAMS is the move_op static parameters. */
5855 static bool
5856 maybe_emit_renaming_copy (rtx_insn *insn,
5857 moveop_static_params_p params)
5859 bool insn_emitted = false;
5860 rtx cur_reg;
5862 /* Bail out early when expression can not be renamed at all. */
5863 if (!EXPR_SEPARABLE_P (params->c_expr))
5864 return false;
5866 cur_reg = expr_dest_reg (params->c_expr);
5867 gcc_assert (cur_reg && params->dest && REG_P (params->dest));
5869 /* If original operation has expr and the register chosen for
5870 that expr is not original operation's dest reg, substitute
5871 operation's right hand side with the register chosen. */
5872 if (REGNO (params->dest) != REGNO (cur_reg))
5874 insn_t reg_move_insn, reg_move_insn_rtx;
5876 reg_move_insn_rtx = create_insn_rtx_with_rhs (INSN_VINSN (insn),
5877 params->dest);
5878 reg_move_insn = sel_gen_insn_from_rtx_after (reg_move_insn_rtx,
5879 INSN_EXPR (insn),
5880 INSN_SEQNO (insn),
5881 insn);
5882 EXPR_SPEC_DONE_DS (INSN_EXPR (reg_move_insn)) = 0;
5883 replace_dest_with_reg_in_expr (params->c_expr, params->dest);
5885 insn_emitted = true;
5886 params->was_renamed = true;
5889 return insn_emitted;
5892 /* Emit a speculative check for INSN speculated as EXPR if needed.
5893 Return true if we've emitted one. PARAMS is the move_op static
5894 parameters. */
5895 static bool
5896 maybe_emit_speculative_check (rtx_insn *insn, expr_t expr,
5897 moveop_static_params_p params)
5899 bool insn_emitted = false;
5900 insn_t x;
5901 ds_t check_ds;
5903 check_ds = get_spec_check_type_for_insn (insn, expr);
5904 if (check_ds != 0)
5906 /* A speculation check should be inserted. */
5907 x = create_speculation_check (params->c_expr, check_ds, insn);
5908 insn_emitted = true;
5910 else
5912 EXPR_SPEC_DONE_DS (INSN_EXPR (insn)) = 0;
5913 x = insn;
5916 gcc_assert (EXPR_SPEC_DONE_DS (INSN_EXPR (x)) == 0
5917 && EXPR_SPEC_TO_CHECK_DS (INSN_EXPR (x)) == 0);
5918 return insn_emitted;
5921 /* Handle transformations that leave an insn in place of original
5922 insn such as renaming/speculation. Return true if one of such
5923 transformations actually happened, and we have emitted this insn. */
5924 static bool
5925 handle_emitting_transformations (rtx_insn *insn, expr_t expr,
5926 moveop_static_params_p params)
5928 bool insn_emitted = false;
5930 insn_emitted = maybe_emit_renaming_copy (insn, params);
5931 insn_emitted |= maybe_emit_speculative_check (insn, expr, params);
5933 return insn_emitted;
5936 /* If INSN is the only insn in the basic block (not counting JUMP,
5937 which may be a jump to next insn, and DEBUG_INSNs), we want to
5938 leave a NOP there till the return to fill_insns. */
5940 static bool
5941 need_nop_to_preserve_insn_bb (rtx_insn *insn)
5943 insn_t bb_head, bb_end, bb_next, in_next;
5944 basic_block bb = BLOCK_FOR_INSN (insn);
5946 bb_head = sel_bb_head (bb);
5947 bb_end = sel_bb_end (bb);
5949 if (bb_head == bb_end)
5950 return true;
5952 while (bb_head != bb_end && DEBUG_INSN_P (bb_head))
5953 bb_head = NEXT_INSN (bb_head);
5955 if (bb_head == bb_end)
5956 return true;
5958 while (bb_head != bb_end && DEBUG_INSN_P (bb_end))
5959 bb_end = PREV_INSN (bb_end);
5961 if (bb_head == bb_end)
5962 return true;
5964 bb_next = NEXT_INSN (bb_head);
5965 while (bb_next != bb_end && DEBUG_INSN_P (bb_next))
5966 bb_next = NEXT_INSN (bb_next);
5968 if (bb_next == bb_end && JUMP_P (bb_end))
5969 return true;
5971 in_next = NEXT_INSN (insn);
5972 while (DEBUG_INSN_P (in_next))
5973 in_next = NEXT_INSN (in_next);
5975 if (IN_CURRENT_FENCE_P (in_next))
5976 return true;
5978 return false;
5981 /* Remove INSN from stream. When ONLY_DISCONNECT is true, its data
5982 is not removed but reused when INSN is re-emitted. */
5983 static void
5984 remove_insn_from_stream (rtx_insn *insn, bool only_disconnect)
5986 /* If there's only one insn in the BB, make sure that a nop is
5987 inserted into it, so the basic block won't disappear when we'll
5988 delete INSN below with sel_remove_insn. It should also survive
5989 till the return to fill_insns. */
5990 if (need_nop_to_preserve_insn_bb (insn))
5992 insn_t nop = get_nop_from_pool (insn);
5993 gcc_assert (INSN_NOP_P (nop));
5994 vec_temp_moveop_nops.safe_push (nop);
5997 sel_remove_insn (insn, only_disconnect, false);
6000 /* This function is called when original expr is found.
6001 INSN - current insn traversed, EXPR - the corresponding expr found.
6002 LPARAMS is the local parameters of code modion driver, STATIC_PARAMS
6003 is static parameters of move_op. */
6004 static void
6005 move_op_orig_expr_found (insn_t insn, expr_t expr,
6006 cmpd_local_params_p lparams ATTRIBUTE_UNUSED,
6007 void *static_params)
6009 bool only_disconnect;
6010 moveop_static_params_p params = (moveop_static_params_p) static_params;
6012 copy_expr_onside (params->c_expr, INSN_EXPR (insn));
6013 track_scheduled_insns_and_blocks (insn);
6014 handle_emitting_transformations (insn, expr, params);
6015 only_disconnect = params->uid == INSN_UID (insn);
6017 /* Mark that we've disconnected an insn. */
6018 if (only_disconnect)
6019 params->uid = -1;
6020 remove_insn_from_stream (insn, only_disconnect);
6023 /* The function is called when original expr is found.
6024 INSN - current insn traversed, EXPR - the corresponding expr found,
6025 crosses_call and original_insns in STATIC_PARAMS are updated. */
6026 static void
6027 fur_orig_expr_found (insn_t insn, expr_t expr ATTRIBUTE_UNUSED,
6028 cmpd_local_params_p lparams ATTRIBUTE_UNUSED,
6029 void *static_params)
6031 fur_static_params_p params = (fur_static_params_p) static_params;
6032 regset tmp;
6034 if (CALL_P (insn))
6035 params->crosses_call = true;
6037 def_list_add (params->original_insns, insn, params->crosses_call);
6039 /* Mark the registers that do not meet the following condition:
6040 (2) not among the live registers of the point
6041 immediately following the first original operation on
6042 a given downward path, except for the original target
6043 register of the operation. */
6044 tmp = get_clear_regset_from_pool ();
6045 compute_live_below_insn (insn, tmp);
6046 AND_COMPL_REG_SET (tmp, INSN_REG_SETS (insn));
6047 AND_COMPL_REG_SET (tmp, INSN_REG_CLOBBERS (insn));
6048 IOR_REG_SET (params->used_regs, tmp);
6049 return_regset_to_pool (tmp);
6051 /* (*1) We need to add to USED_REGS registers that are read by
6052 INSN's lhs. This may lead to choosing wrong src register.
6053 E.g. (scheduling const expr enabled):
6055 429: ax=0x0 <- Can't use AX for this expr (0x0)
6056 433: dx=[bp-0x18]
6057 427: [ax+dx+0x1]=ax
6058 REG_DEAD: ax
6059 168: di=dx
6060 REG_DEAD: dx
6062 /* FIXME: see comment above and enable MEM_P
6063 in vinsn_separable_p. */
6064 gcc_assert (!VINSN_SEPARABLE_P (INSN_VINSN (insn))
6065 || !MEM_P (INSN_LHS (insn)));
6068 /* This function is called on the ascending pass, before returning from
6069 current basic block. */
6070 static void
6071 move_op_at_first_insn (insn_t insn, cmpd_local_params_p lparams,
6072 void *static_params)
6074 moveop_static_params_p sparams = (moveop_static_params_p) static_params;
6075 basic_block book_block = NULL;
6077 /* When we have removed the boundary insn for scheduling, which also
6078 happened to be the end insn in its bb, we don't need to update sets. */
6079 if (!lparams->removed_last_insn
6080 && lparams->e1
6081 && sel_bb_head_p (insn))
6083 /* We should generate bookkeeping code only if we are not at the
6084 top level of the move_op. */
6085 if (sel_num_cfg_preds_gt_1 (insn))
6086 book_block = generate_bookkeeping_insn (sparams->c_expr,
6087 lparams->e1, lparams->e2);
6088 /* Update data sets for the current insn. */
6089 update_data_sets (insn);
6092 /* If bookkeeping code was inserted, we need to update av sets of basic
6093 block that received bookkeeping. After generation of bookkeeping insn,
6094 bookkeeping block does not contain valid av set because we are not following
6095 the original algorithm in every detail with regards to e.g. renaming
6096 simple reg-reg copies. Consider example:
6098 bookkeeping block scheduling fence
6100 \ join /
6101 ----------
6103 ----------
6106 r1 := r2 r1 := r3
6108 We try to schedule insn "r1 := r3" on the current
6109 scheduling fence. Also, note that av set of bookkeeping block
6110 contain both insns "r1 := r2" and "r1 := r3". When the insn has
6111 been scheduled, the CFG is as follows:
6113 r1 := r3 r1 := r3
6114 bookkeeping block scheduling fence
6116 \ join /
6117 ----------
6119 ----------
6122 r1 := r2
6124 Here, insn "r1 := r3" was scheduled at the current scheduling point
6125 and bookkeeping code was generated at the bookeeping block. This
6126 way insn "r1 := r2" is no longer available as a whole instruction
6127 (but only as expr) ahead of insn "r1 := r3" in bookkeeping block.
6128 This situation is handled by calling update_data_sets.
6130 Since update_data_sets is called only on the bookkeeping block, and
6131 it also may have predecessors with av_sets, containing instructions that
6132 are no longer available, we save all such expressions that become
6133 unavailable during data sets update on the bookkeeping block in
6134 VEC_BOOKKEEPING_BLOCKED_VINSNS. Later we avoid selecting such
6135 expressions for scheduling. This allows us to avoid recomputation of
6136 av_sets outside the code motion path. */
6138 if (book_block)
6139 update_and_record_unavailable_insns (book_block);
6141 /* If INSN was previously marked for deletion, it's time to do it. */
6142 if (lparams->removed_last_insn)
6143 insn = PREV_INSN (insn);
6145 /* Do not tidy control flow at the topmost moveop, as we can erroneously
6146 kill a block with a single nop in which the insn should be emitted. */
6147 if (lparams->e1)
6148 tidy_control_flow (BLOCK_FOR_INSN (insn), true);
6151 /* This function is called on the ascending pass, before returning from the
6152 current basic block. */
6153 static void
6154 fur_at_first_insn (insn_t insn,
6155 cmpd_local_params_p lparams ATTRIBUTE_UNUSED,
6156 void *static_params ATTRIBUTE_UNUSED)
6158 gcc_assert (!sel_bb_head_p (insn) || AV_SET_VALID_P (insn)
6159 || AV_LEVEL (insn) == -1);
6162 /* Called on the backward stage of recursion to call moveup_expr for insn
6163 and sparams->c_expr. */
6164 static void
6165 move_op_ascend (insn_t insn, void *static_params)
6167 enum MOVEUP_EXPR_CODE res;
6168 moveop_static_params_p sparams = (moveop_static_params_p) static_params;
6170 if (! INSN_NOP_P (insn))
6172 res = moveup_expr_cached (sparams->c_expr, insn, false);
6173 gcc_assert (res != MOVEUP_EXPR_NULL);
6176 /* Update liveness for this insn as it was invalidated. */
6177 update_liveness_on_insn (insn);
6180 /* This function is called on enter to the basic block.
6181 Returns TRUE if this block already have been visited and
6182 code_motion_path_driver should return 1, FALSE otherwise. */
6183 static int
6184 fur_on_enter (insn_t insn ATTRIBUTE_UNUSED, cmpd_local_params_p local_params,
6185 void *static_params, bool visited_p)
6187 fur_static_params_p sparams = (fur_static_params_p) static_params;
6189 if (visited_p)
6191 /* If we have found something below this block, there should be at
6192 least one insn in ORIGINAL_INSNS. */
6193 gcc_assert (*sparams->original_insns);
6195 /* Adjust CROSSES_CALL, since we may have come to this block along
6196 different path. */
6197 DEF_LIST_DEF (*sparams->original_insns)->crosses_call
6198 |= sparams->crosses_call;
6200 else
6201 local_params->old_original_insns = *sparams->original_insns;
6203 return 1;
6206 /* Same as above but for move_op. */
6207 static int
6208 move_op_on_enter (insn_t insn ATTRIBUTE_UNUSED,
6209 cmpd_local_params_p local_params ATTRIBUTE_UNUSED,
6210 void *static_params ATTRIBUTE_UNUSED, bool visited_p)
6212 if (visited_p)
6213 return -1;
6214 return 1;
6217 /* This function is called while descending current basic block if current
6218 insn is not the original EXPR we're searching for.
6220 Return value: FALSE, if code_motion_path_driver should perform a local
6221 cleanup and return 0 itself;
6222 TRUE, if code_motion_path_driver should continue. */
6223 static bool
6224 move_op_orig_expr_not_found (insn_t insn, av_set_t orig_ops ATTRIBUTE_UNUSED,
6225 void *static_params)
6227 moveop_static_params_p sparams = (moveop_static_params_p) static_params;
6229 #ifdef ENABLE_CHECKING
6230 sparams->failed_insn = insn;
6231 #endif
6233 /* If we're scheduling separate expr, in order to generate correct code
6234 we need to stop the search at bookkeeping code generated with the
6235 same destination register or memory. */
6236 if (lhs_of_insn_equals_to_dest_p (insn, sparams->dest))
6237 return false;
6238 return true;
6241 /* This function is called while descending current basic block if current
6242 insn is not the original EXPR we're searching for.
6244 Return value: TRUE (code_motion_path_driver should continue). */
6245 static bool
6246 fur_orig_expr_not_found (insn_t insn, av_set_t orig_ops, void *static_params)
6248 bool mutexed;
6249 expr_t r;
6250 av_set_iterator avi;
6251 fur_static_params_p sparams = (fur_static_params_p) static_params;
6253 if (CALL_P (insn))
6254 sparams->crosses_call = true;
6255 else if (DEBUG_INSN_P (insn))
6256 return true;
6258 /* If current insn we are looking at cannot be executed together
6259 with original insn, then we can skip it safely.
6261 Example: ORIG_OPS = { (p6) r14 = sign_extend (r15); }
6262 INSN = (!p6) r14 = r14 + 1;
6264 Here we can schedule ORIG_OP with lhs = r14, though only
6265 looking at the set of used and set registers of INSN we must
6266 forbid it. So, add set/used in INSN registers to the
6267 untouchable set only if there is an insn in ORIG_OPS that can
6268 affect INSN. */
6269 mutexed = true;
6270 FOR_EACH_EXPR (r, avi, orig_ops)
6271 if (!sched_insns_conditions_mutex_p (insn, EXPR_INSN_RTX (r)))
6273 mutexed = false;
6274 break;
6277 /* Mark all registers that do not meet the following condition:
6278 (1) Not set or read on any path from xi to an instance of the
6279 original operation. */
6280 if (!mutexed)
6282 IOR_REG_SET (sparams->used_regs, INSN_REG_SETS (insn));
6283 IOR_REG_SET (sparams->used_regs, INSN_REG_USES (insn));
6284 IOR_REG_SET (sparams->used_regs, INSN_REG_CLOBBERS (insn));
6287 return true;
6290 /* Hooks and data to perform move_op operations with code_motion_path_driver. */
6291 struct code_motion_path_driver_info_def move_op_hooks = {
6292 move_op_on_enter,
6293 move_op_orig_expr_found,
6294 move_op_orig_expr_not_found,
6295 move_op_merge_succs,
6296 move_op_after_merge_succs,
6297 move_op_ascend,
6298 move_op_at_first_insn,
6299 SUCCS_NORMAL,
6300 "move_op"
6303 /* Hooks and data to perform find_used_regs operations
6304 with code_motion_path_driver. */
6305 struct code_motion_path_driver_info_def fur_hooks = {
6306 fur_on_enter,
6307 fur_orig_expr_found,
6308 fur_orig_expr_not_found,
6309 fur_merge_succs,
6310 NULL, /* fur_after_merge_succs */
6311 NULL, /* fur_ascend */
6312 fur_at_first_insn,
6313 SUCCS_ALL,
6314 "find_used_regs"
6317 /* Traverse all successors of INSN. For each successor that is SUCCS_NORMAL
6318 code_motion_path_driver is called recursively. Original operation
6319 was found at least on one path that is starting with one of INSN's
6320 successors (this fact is asserted). ORIG_OPS is expressions we're looking
6321 for, PATH is the path we've traversed, STATIC_PARAMS is the parameters
6322 of either move_op or find_used_regs depending on the caller.
6324 Return 0 if we haven't found expression, 1 if we found it, -1 if we don't
6325 know for sure at this point. */
6326 static int
6327 code_motion_process_successors (insn_t insn, av_set_t orig_ops,
6328 ilist_t path, void *static_params)
6330 int res = 0;
6331 succ_iterator succ_i;
6332 insn_t succ;
6333 basic_block bb;
6334 int old_index;
6335 unsigned old_succs;
6337 struct cmpd_local_params lparams;
6338 expr_def _x;
6340 lparams.c_expr_local = &_x;
6341 lparams.c_expr_merged = NULL;
6343 /* We need to process only NORMAL succs for move_op, and collect live
6344 registers from ALL branches (including those leading out of the
6345 region) for find_used_regs.
6347 In move_op, there can be a case when insn's bb number has changed
6348 due to created bookkeeping. This happens very rare, as we need to
6349 move expression from the beginning to the end of the same block.
6350 Rescan successors in this case. */
6352 rescan:
6353 bb = BLOCK_FOR_INSN (insn);
6354 old_index = bb->index;
6355 old_succs = EDGE_COUNT (bb->succs);
6357 FOR_EACH_SUCC_1 (succ, succ_i, insn, code_motion_path_driver_info->succ_flags)
6359 int b;
6361 lparams.e1 = succ_i.e1;
6362 lparams.e2 = succ_i.e2;
6364 /* Go deep into recursion only for NORMAL edges (non-backedges within the
6365 current region). */
6366 if (succ_i.current_flags == SUCCS_NORMAL)
6367 b = code_motion_path_driver (succ, orig_ops, path, &lparams,
6368 static_params);
6369 else
6370 b = 0;
6372 /* Merge c_expres found or unify live register sets from different
6373 successors. */
6374 code_motion_path_driver_info->merge_succs (insn, succ, b, &lparams,
6375 static_params);
6376 if (b == 1)
6377 res = b;
6378 else if (b == -1 && res != 1)
6379 res = b;
6381 /* We have simplified the control flow below this point. In this case,
6382 the iterator becomes invalid. We need to try again.
6383 If we have removed the insn itself, it could be only an
6384 unconditional jump. Thus, do not rescan but break immediately --
6385 we have already visited the only successor block. */
6386 if (!BLOCK_FOR_INSN (insn))
6388 if (sched_verbose >= 6)
6389 sel_print ("Not doing rescan: already visited the only successor"
6390 " of block %d\n", old_index);
6391 break;
6393 if (BLOCK_FOR_INSN (insn)->index != old_index
6394 || EDGE_COUNT (bb->succs) != old_succs)
6396 if (sched_verbose >= 6)
6397 sel_print ("Rescan: CFG was simplified below insn %d, block %d\n",
6398 INSN_UID (insn), BLOCK_FOR_INSN (insn)->index);
6399 insn = sel_bb_end (BLOCK_FOR_INSN (insn));
6400 goto rescan;
6404 #ifdef ENABLE_CHECKING
6405 /* Here, RES==1 if original expr was found at least for one of the
6406 successors. After the loop, RES may happen to have zero value
6407 only if at some point the expr searched is present in av_set, but is
6408 not found below. In most cases, this situation is an error.
6409 The exception is when the original operation is blocked by
6410 bookkeeping generated for another fence or for another path in current
6411 move_op. */
6412 gcc_assert (res == 1
6413 || (res == 0
6414 && av_set_could_be_blocked_by_bookkeeping_p (orig_ops,
6415 static_params))
6416 || res == -1);
6417 #endif
6419 /* Merge data, clean up, etc. */
6420 if (res != -1 && code_motion_path_driver_info->after_merge_succs)
6421 code_motion_path_driver_info->after_merge_succs (&lparams, static_params);
6423 return res;
6427 /* Perform a cleanup when the driver is about to terminate. ORIG_OPS_P
6428 is the pointer to the av set with expressions we were looking for,
6429 PATH_P is the pointer to the traversed path. */
6430 static inline void
6431 code_motion_path_driver_cleanup (av_set_t *orig_ops_p, ilist_t *path_p)
6433 ilist_remove (path_p);
6434 av_set_clear (orig_ops_p);
6437 /* The driver function that implements move_op or find_used_regs
6438 functionality dependent whether code_motion_path_driver_INFO is set to
6439 &MOVE_OP_HOOKS or &FUR_HOOKS. This function implements the common parts
6440 of code (CFG traversal etc) that are shared among both functions. INSN
6441 is the insn we're starting the search from, ORIG_OPS are the expressions
6442 we're searching for, PATH is traversed path, LOCAL_PARAMS_IN are local
6443 parameters of the driver, and STATIC_PARAMS are static parameters of
6444 the caller.
6446 Returns whether original instructions were found. Note that top-level
6447 code_motion_path_driver always returns true. */
6448 static int
6449 code_motion_path_driver (insn_t insn, av_set_t orig_ops, ilist_t path,
6450 cmpd_local_params_p local_params_in,
6451 void *static_params)
6453 expr_t expr = NULL;
6454 basic_block bb = BLOCK_FOR_INSN (insn);
6455 insn_t first_insn, bb_tail, before_first;
6456 bool removed_last_insn = false;
6458 if (sched_verbose >= 6)
6460 sel_print ("%s (", code_motion_path_driver_info->routine_name);
6461 dump_insn (insn);
6462 sel_print (",");
6463 dump_av_set (orig_ops);
6464 sel_print (")\n");
6467 gcc_assert (orig_ops);
6469 /* If no original operations exist below this insn, return immediately. */
6470 if (is_ineligible_successor (insn, path))
6472 if (sched_verbose >= 6)
6473 sel_print ("Insn %d is ineligible successor\n", INSN_UID (insn));
6474 return false;
6477 /* The block can have invalid av set, in which case it was created earlier
6478 during move_op. Return immediately. */
6479 if (sel_bb_head_p (insn))
6481 if (! AV_SET_VALID_P (insn))
6483 if (sched_verbose >= 6)
6484 sel_print ("Returned from block %d as it had invalid av set\n",
6485 bb->index);
6486 return false;
6489 if (bitmap_bit_p (code_motion_visited_blocks, bb->index))
6491 /* We have already found an original operation on this branch, do not
6492 go any further and just return TRUE here. If we don't stop here,
6493 function can have exponential behaviour even on the small code
6494 with many different paths (e.g. with data speculation and
6495 recovery blocks). */
6496 if (sched_verbose >= 6)
6497 sel_print ("Block %d already visited in this traversal\n", bb->index);
6498 if (code_motion_path_driver_info->on_enter)
6499 return code_motion_path_driver_info->on_enter (insn,
6500 local_params_in,
6501 static_params,
6502 true);
6506 if (code_motion_path_driver_info->on_enter)
6507 code_motion_path_driver_info->on_enter (insn, local_params_in,
6508 static_params, false);
6509 orig_ops = av_set_copy (orig_ops);
6511 /* Filter the orig_ops set. */
6512 if (AV_SET_VALID_P (insn))
6513 av_set_code_motion_filter (&orig_ops, AV_SET (insn));
6515 /* If no more original ops, return immediately. */
6516 if (!orig_ops)
6518 if (sched_verbose >= 6)
6519 sel_print ("No intersection with av set of block %d\n", bb->index);
6520 return false;
6523 /* For non-speculative insns we have to leave only one form of the
6524 original operation, because if we don't, we may end up with
6525 different C_EXPRes and, consequently, with bookkeepings for different
6526 expression forms along the same code motion path. That may lead to
6527 generation of incorrect code. So for each code motion we stick to
6528 the single form of the instruction, except for speculative insns
6529 which we need to keep in different forms with all speculation
6530 types. */
6531 av_set_leave_one_nonspec (&orig_ops);
6533 /* It is not possible that all ORIG_OPS are filtered out. */
6534 gcc_assert (orig_ops);
6536 /* It is enough to place only heads and tails of visited basic blocks into
6537 the PATH. */
6538 ilist_add (&path, insn);
6539 first_insn = insn;
6540 bb_tail = sel_bb_end (bb);
6542 /* Descend the basic block in search of the original expr; this part
6543 corresponds to the part of the original move_op procedure executed
6544 before the recursive call. */
6545 for (;;)
6547 /* Look at the insn and decide if it could be an ancestor of currently
6548 scheduling operation. If it is so, then the insn "dest = op" could
6549 either be replaced with "dest = reg", because REG now holds the result
6550 of OP, or just removed, if we've scheduled the insn as a whole.
6552 If this insn doesn't contain currently scheduling OP, then proceed
6553 with searching and look at its successors. Operations we're searching
6554 for could have changed when moving up through this insn via
6555 substituting. In this case, perform unsubstitution on them first.
6557 When traversing the DAG below this insn is finished, insert
6558 bookkeeping code, if the insn is a joint point, and remove
6559 leftovers. */
6561 expr = av_set_lookup (orig_ops, INSN_VINSN (insn));
6562 if (expr)
6564 insn_t last_insn = PREV_INSN (insn);
6566 /* We have found the original operation. */
6567 if (sched_verbose >= 6)
6568 sel_print ("Found original operation at insn %d\n", INSN_UID (insn));
6570 code_motion_path_driver_info->orig_expr_found
6571 (insn, expr, local_params_in, static_params);
6573 /* Step back, so on the way back we'll start traversing from the
6574 previous insn (or we'll see that it's bb_note and skip that
6575 loop). */
6576 if (insn == first_insn)
6578 first_insn = NEXT_INSN (last_insn);
6579 removed_last_insn = sel_bb_end_p (last_insn);
6581 insn = last_insn;
6582 break;
6584 else
6586 /* We haven't found the original expr, continue descending the basic
6587 block. */
6588 if (code_motion_path_driver_info->orig_expr_not_found
6589 (insn, orig_ops, static_params))
6591 /* Av set ops could have been changed when moving through this
6592 insn. To find them below it, we have to un-substitute them. */
6593 undo_transformations (&orig_ops, insn);
6595 else
6597 /* Clean up and return, if the hook tells us to do so. It may
6598 happen if we've encountered the previously created
6599 bookkeeping. */
6600 code_motion_path_driver_cleanup (&orig_ops, &path);
6601 return -1;
6604 gcc_assert (orig_ops);
6607 /* Stop at insn if we got to the end of BB. */
6608 if (insn == bb_tail)
6609 break;
6611 insn = NEXT_INSN (insn);
6614 /* Here INSN either points to the insn before the original insn (may be
6615 bb_note, if original insn was a bb_head) or to the bb_end. */
6616 if (!expr)
6618 int res;
6619 rtx_insn *last_insn = PREV_INSN (insn);
6620 bool added_to_path;
6622 gcc_assert (insn == sel_bb_end (bb));
6624 /* Add bb tail to PATH (but it doesn't make any sense if it's a bb_head -
6625 it's already in PATH then). */
6626 if (insn != first_insn)
6628 ilist_add (&path, insn);
6629 added_to_path = true;
6631 else
6632 added_to_path = false;
6634 /* Process_successors should be able to find at least one
6635 successor for which code_motion_path_driver returns TRUE. */
6636 res = code_motion_process_successors (insn, orig_ops,
6637 path, static_params);
6639 /* Jump in the end of basic block could have been removed or replaced
6640 during code_motion_process_successors, so recompute insn as the
6641 last insn in bb. */
6642 if (NEXT_INSN (last_insn) != insn)
6644 insn = sel_bb_end (bb);
6645 first_insn = sel_bb_head (bb);
6648 /* Remove bb tail from path. */
6649 if (added_to_path)
6650 ilist_remove (&path);
6652 if (res != 1)
6654 /* This is the case when one of the original expr is no longer available
6655 due to bookkeeping created on this branch with the same register.
6656 In the original algorithm, which doesn't have update_data_sets call
6657 on a bookkeeping block, it would simply result in returning
6658 FALSE when we've encountered a previously generated bookkeeping
6659 insn in moveop_orig_expr_not_found. */
6660 code_motion_path_driver_cleanup (&orig_ops, &path);
6661 return res;
6665 /* Don't need it any more. */
6666 av_set_clear (&orig_ops);
6668 /* Backward pass: now, when we have C_EXPR computed, we'll drag it to
6669 the beginning of the basic block. */
6670 before_first = PREV_INSN (first_insn);
6671 while (insn != before_first)
6673 if (code_motion_path_driver_info->ascend)
6674 code_motion_path_driver_info->ascend (insn, static_params);
6676 insn = PREV_INSN (insn);
6679 /* Now we're at the bb head. */
6680 insn = first_insn;
6681 ilist_remove (&path);
6682 local_params_in->removed_last_insn = removed_last_insn;
6683 code_motion_path_driver_info->at_first_insn (insn, local_params_in, static_params);
6685 /* This should be the very last operation as at bb head we could change
6686 the numbering by creating bookkeeping blocks. */
6687 if (removed_last_insn)
6688 insn = PREV_INSN (insn);
6690 /* If we have simplified the control flow and removed the first jump insn,
6691 there's no point in marking this block in the visited blocks bitmap. */
6692 if (BLOCK_FOR_INSN (insn))
6693 bitmap_set_bit (code_motion_visited_blocks, BLOCK_FOR_INSN (insn)->index);
6694 return true;
6697 /* Move up the operations from ORIG_OPS set traversing the dag starting
6698 from INSN. PATH represents the edges traversed so far.
6699 DEST is the register chosen for scheduling the current expr. Insert
6700 bookkeeping code in the join points. EXPR_VLIW is the chosen expression,
6701 C_EXPR is how it looks like at the given cfg point.
6702 Set *SHOULD_MOVE to indicate whether we have only disconnected
6703 one of the insns found.
6705 Returns whether original instructions were found, which is asserted
6706 to be true in the caller. */
6707 static bool
6708 move_op (insn_t insn, av_set_t orig_ops, expr_t expr_vliw,
6709 rtx dest, expr_t c_expr, bool *should_move)
6711 struct moveop_static_params sparams;
6712 struct cmpd_local_params lparams;
6713 int res;
6715 /* Init params for code_motion_path_driver. */
6716 sparams.dest = dest;
6717 sparams.c_expr = c_expr;
6718 sparams.uid = INSN_UID (EXPR_INSN_RTX (expr_vliw));
6719 #ifdef ENABLE_CHECKING
6720 sparams.failed_insn = NULL;
6721 #endif
6722 sparams.was_renamed = false;
6723 lparams.e1 = NULL;
6725 /* We haven't visited any blocks yet. */
6726 bitmap_clear (code_motion_visited_blocks);
6728 /* Set appropriate hooks and data. */
6729 code_motion_path_driver_info = &move_op_hooks;
6730 res = code_motion_path_driver (insn, orig_ops, NULL, &lparams, &sparams);
6732 gcc_assert (res != -1);
6734 if (sparams.was_renamed)
6735 EXPR_WAS_RENAMED (expr_vliw) = true;
6737 *should_move = (sparams.uid == -1);
6739 return res;
6743 /* Functions that work with regions. */
6745 /* Current number of seqno used in init_seqno and init_seqno_1. */
6746 static int cur_seqno;
6748 /* A helper for init_seqno. Traverse the region starting from BB and
6749 compute seqnos for visited insns, marking visited bbs in VISITED_BBS.
6750 Clear visited blocks from BLOCKS_TO_RESCHEDULE. */
6751 static void
6752 init_seqno_1 (basic_block bb, sbitmap visited_bbs, bitmap blocks_to_reschedule)
6754 int bbi = BLOCK_TO_BB (bb->index);
6755 insn_t insn, note = bb_note (bb);
6756 insn_t succ_insn;
6757 succ_iterator si;
6759 bitmap_set_bit (visited_bbs, bbi);
6760 if (blocks_to_reschedule)
6761 bitmap_clear_bit (blocks_to_reschedule, bb->index);
6763 FOR_EACH_SUCC_1 (succ_insn, si, BB_END (bb),
6764 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
6766 basic_block succ = BLOCK_FOR_INSN (succ_insn);
6767 int succ_bbi = BLOCK_TO_BB (succ->index);
6769 gcc_assert (in_current_region_p (succ));
6771 if (!bitmap_bit_p (visited_bbs, succ_bbi))
6773 gcc_assert (succ_bbi > bbi);
6775 init_seqno_1 (succ, visited_bbs, blocks_to_reschedule);
6777 else if (blocks_to_reschedule)
6778 bitmap_set_bit (forced_ebb_heads, succ->index);
6781 for (insn = BB_END (bb); insn != note; insn = PREV_INSN (insn))
6782 INSN_SEQNO (insn) = cur_seqno--;
6785 /* Initialize seqnos for the current region. BLOCKS_TO_RESCHEDULE contains
6786 blocks on which we're rescheduling when pipelining, FROM is the block where
6787 traversing region begins (it may not be the head of the region when
6788 pipelining, but the head of the loop instead).
6790 Returns the maximal seqno found. */
6791 static int
6792 init_seqno (bitmap blocks_to_reschedule, basic_block from)
6794 sbitmap visited_bbs;
6795 bitmap_iterator bi;
6796 unsigned bbi;
6798 visited_bbs = sbitmap_alloc (current_nr_blocks);
6800 if (blocks_to_reschedule)
6802 bitmap_ones (visited_bbs);
6803 EXECUTE_IF_SET_IN_BITMAP (blocks_to_reschedule, 0, bbi, bi)
6805 gcc_assert (BLOCK_TO_BB (bbi) < current_nr_blocks);
6806 bitmap_clear_bit (visited_bbs, BLOCK_TO_BB (bbi));
6809 else
6811 bitmap_clear (visited_bbs);
6812 from = EBB_FIRST_BB (0);
6815 cur_seqno = sched_max_luid - 1;
6816 init_seqno_1 (from, visited_bbs, blocks_to_reschedule);
6818 /* cur_seqno may be positive if the number of instructions is less than
6819 sched_max_luid - 1 (when rescheduling or if some instructions have been
6820 removed by the call to purge_empty_blocks in sel_sched_region_1). */
6821 gcc_assert (cur_seqno >= 0);
6823 sbitmap_free (visited_bbs);
6824 return sched_max_luid - 1;
6827 /* Initialize scheduling parameters for current region. */
6828 static void
6829 sel_setup_region_sched_flags (void)
6831 enable_schedule_as_rhs_p = 1;
6832 bookkeeping_p = 1;
6833 pipelining_p = (bookkeeping_p
6834 && (flag_sel_sched_pipelining != 0)
6835 && current_loop_nest != NULL
6836 && loop_has_exit_edges (current_loop_nest));
6837 max_insns_to_rename = PARAM_VALUE (PARAM_SELSCHED_INSNS_TO_RENAME);
6838 max_ws = MAX_WS;
6841 /* Return true if all basic blocks of current region are empty. */
6842 static bool
6843 current_region_empty_p (void)
6845 int i;
6846 for (i = 0; i < current_nr_blocks; i++)
6847 if (! sel_bb_empty_p (BASIC_BLOCK_FOR_FN (cfun, BB_TO_BLOCK (i))))
6848 return false;
6850 return true;
6853 /* Prepare and verify loop nest for pipelining. */
6854 static void
6855 setup_current_loop_nest (int rgn, bb_vec_t *bbs)
6857 current_loop_nest = get_loop_nest_for_rgn (rgn);
6859 if (!current_loop_nest)
6860 return;
6862 /* If this loop has any saved loop preheaders from nested loops,
6863 add these basic blocks to the current region. */
6864 sel_add_loop_preheaders (bbs);
6866 /* Check that we're starting with a valid information. */
6867 gcc_assert (loop_latch_edge (current_loop_nest));
6868 gcc_assert (LOOP_MARKED_FOR_PIPELINING_P (current_loop_nest));
6871 /* Compute instruction priorities for current region. */
6872 static void
6873 sel_compute_priorities (int rgn)
6875 sched_rgn_compute_dependencies (rgn);
6877 /* Compute insn priorities in haifa style. Then free haifa style
6878 dependencies that we've calculated for this. */
6879 compute_priorities ();
6881 if (sched_verbose >= 5)
6882 debug_rgn_dependencies (0);
6884 free_rgn_deps ();
6887 /* Init scheduling data for RGN. Returns true when this region should not
6888 be scheduled. */
6889 static bool
6890 sel_region_init (int rgn)
6892 int i;
6893 bb_vec_t bbs;
6895 rgn_setup_region (rgn);
6897 /* Even if sched_is_disabled_for_current_region_p() is true, we still
6898 do region initialization here so the region can be bundled correctly,
6899 but we'll skip the scheduling in sel_sched_region (). */
6900 if (current_region_empty_p ())
6901 return true;
6903 bbs.create (current_nr_blocks);
6905 for (i = 0; i < current_nr_blocks; i++)
6906 bbs.quick_push (BASIC_BLOCK_FOR_FN (cfun, BB_TO_BLOCK (i)));
6908 sel_init_bbs (bbs);
6910 if (flag_sel_sched_pipelining)
6911 setup_current_loop_nest (rgn, &bbs);
6913 sel_setup_region_sched_flags ();
6915 /* Initialize luids and dependence analysis which both sel-sched and haifa
6916 need. */
6917 sched_init_luids (bbs);
6918 sched_deps_init (false);
6920 /* Initialize haifa data. */
6921 rgn_setup_sched_infos ();
6922 sel_set_sched_flags ();
6923 haifa_init_h_i_d (bbs);
6925 sel_compute_priorities (rgn);
6926 init_deps_global ();
6928 /* Main initialization. */
6929 sel_setup_sched_infos ();
6930 sel_init_global_and_expr (bbs);
6932 bbs.release ();
6934 blocks_to_reschedule = BITMAP_ALLOC (NULL);
6936 /* Init correct liveness sets on each instruction of a single-block loop.
6937 This is the only situation when we can't update liveness when calling
6938 compute_live for the first insn of the loop. */
6939 if (current_loop_nest)
6941 int header =
6942 (sel_is_loop_preheader_p (BASIC_BLOCK_FOR_FN (cfun, BB_TO_BLOCK (0)))
6944 : 0);
6946 if (current_nr_blocks == header + 1)
6947 update_liveness_on_insn
6948 (sel_bb_head (BASIC_BLOCK_FOR_FN (cfun, BB_TO_BLOCK (header))));
6951 /* Set hooks so that no newly generated insn will go out unnoticed. */
6952 sel_register_cfg_hooks ();
6954 /* !!! We call target.sched.init () for the whole region, but we invoke
6955 targetm.sched.finish () for every ebb. */
6956 if (targetm.sched.init)
6957 /* None of the arguments are actually used in any target. */
6958 targetm.sched.init (sched_dump, sched_verbose, -1);
6960 first_emitted_uid = get_max_uid () + 1;
6961 preheader_removed = false;
6963 /* Reset register allocation ticks array. */
6964 memset (reg_rename_tick, 0, sizeof reg_rename_tick);
6965 reg_rename_this_tick = 0;
6967 bitmap_initialize (forced_ebb_heads, 0);
6968 bitmap_clear (forced_ebb_heads);
6970 setup_nop_vinsn ();
6971 current_copies = BITMAP_ALLOC (NULL);
6972 current_originators = BITMAP_ALLOC (NULL);
6973 code_motion_visited_blocks = BITMAP_ALLOC (NULL);
6975 return false;
6978 /* Simplify insns after the scheduling. */
6979 static void
6980 simplify_changed_insns (void)
6982 int i;
6984 for (i = 0; i < current_nr_blocks; i++)
6986 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, BB_TO_BLOCK (i));
6987 rtx_insn *insn;
6989 FOR_BB_INSNS (bb, insn)
6990 if (INSN_P (insn))
6992 expr_t expr = INSN_EXPR (insn);
6994 if (EXPR_WAS_SUBSTITUTED (expr))
6995 validate_simplify_insn (insn);
7000 /* Find boundaries of the EBB starting from basic block BB, marking blocks of
7001 this EBB in SCHEDULED_BLOCKS and appropriately filling in HEAD, TAIL,
7002 PREV_HEAD, and NEXT_TAIL fields of CURRENT_SCHED_INFO structure. */
7003 static void
7004 find_ebb_boundaries (basic_block bb, bitmap scheduled_blocks)
7006 rtx_insn *head, *tail;
7007 basic_block bb1 = bb;
7008 if (sched_verbose >= 2)
7009 sel_print ("Finishing schedule in bbs: ");
7013 bitmap_set_bit (scheduled_blocks, BLOCK_TO_BB (bb1->index));
7015 if (sched_verbose >= 2)
7016 sel_print ("%d; ", bb1->index);
7018 while (!bb_ends_ebb_p (bb1) && (bb1 = bb_next_bb (bb1)));
7020 if (sched_verbose >= 2)
7021 sel_print ("\n");
7023 get_ebb_head_tail (bb, bb1, &head, &tail);
7025 current_sched_info->head = head;
7026 current_sched_info->tail = tail;
7027 current_sched_info->prev_head = PREV_INSN (head);
7028 current_sched_info->next_tail = NEXT_INSN (tail);
7031 /* Regenerate INSN_SCHED_CYCLEs for insns of current EBB. */
7032 static void
7033 reset_sched_cycles_in_current_ebb (void)
7035 int last_clock = 0;
7036 int haifa_last_clock = -1;
7037 int haifa_clock = 0;
7038 int issued_insns = 0;
7039 insn_t insn;
7041 if (targetm.sched.init)
7043 /* None of the arguments are actually used in any target.
7044 NB: We should have md_reset () hook for cases like this. */
7045 targetm.sched.init (sched_dump, sched_verbose, -1);
7048 state_reset (curr_state);
7049 advance_state (curr_state);
7051 for (insn = current_sched_info->head;
7052 insn != current_sched_info->next_tail;
7053 insn = NEXT_INSN (insn))
7055 int cost, haifa_cost;
7056 int sort_p;
7057 bool asm_p, real_insn, after_stall, all_issued;
7058 int clock;
7060 if (!INSN_P (insn))
7061 continue;
7063 asm_p = false;
7064 real_insn = recog_memoized (insn) >= 0;
7065 clock = INSN_SCHED_CYCLE (insn);
7067 cost = clock - last_clock;
7069 /* Initialize HAIFA_COST. */
7070 if (! real_insn)
7072 asm_p = INSN_ASM_P (insn);
7074 if (asm_p)
7075 /* This is asm insn which *had* to be scheduled first
7076 on the cycle. */
7077 haifa_cost = 1;
7078 else
7079 /* This is a use/clobber insn. It should not change
7080 cost. */
7081 haifa_cost = 0;
7083 else
7084 haifa_cost = estimate_insn_cost (insn, curr_state);
7086 /* Stall for whatever cycles we've stalled before. */
7087 after_stall = 0;
7088 if (INSN_AFTER_STALL_P (insn) && cost > haifa_cost)
7090 haifa_cost = cost;
7091 after_stall = 1;
7093 all_issued = issued_insns == issue_rate;
7094 if (haifa_cost == 0 && all_issued)
7095 haifa_cost = 1;
7096 if (haifa_cost > 0)
7098 int i = 0;
7100 while (haifa_cost--)
7102 advance_state (curr_state);
7103 issued_insns = 0;
7104 i++;
7106 if (sched_verbose >= 2)
7108 sel_print ("advance_state (state_transition)\n");
7109 debug_state (curr_state);
7112 /* The DFA may report that e.g. insn requires 2 cycles to be
7113 issued, but on the next cycle it says that insn is ready
7114 to go. Check this here. */
7115 if (!after_stall
7116 && real_insn
7117 && haifa_cost > 0
7118 && estimate_insn_cost (insn, curr_state) == 0)
7119 break;
7121 /* When the data dependency stall is longer than the DFA stall,
7122 and when we have issued exactly issue_rate insns and stalled,
7123 it could be that after this longer stall the insn will again
7124 become unavailable to the DFA restrictions. Looks strange
7125 but happens e.g. on x86-64. So recheck DFA on the last
7126 iteration. */
7127 if ((after_stall || all_issued)
7128 && real_insn
7129 && haifa_cost == 0)
7130 haifa_cost = estimate_insn_cost (insn, curr_state);
7133 haifa_clock += i;
7134 if (sched_verbose >= 2)
7135 sel_print ("haifa clock: %d\n", haifa_clock);
7137 else
7138 gcc_assert (haifa_cost == 0);
7140 if (sched_verbose >= 2)
7141 sel_print ("Haifa cost for insn %d: %d\n", INSN_UID (insn), haifa_cost);
7143 if (targetm.sched.dfa_new_cycle)
7144 while (targetm.sched.dfa_new_cycle (sched_dump, sched_verbose, insn,
7145 haifa_last_clock, haifa_clock,
7146 &sort_p))
7148 advance_state (curr_state);
7149 issued_insns = 0;
7150 haifa_clock++;
7151 if (sched_verbose >= 2)
7153 sel_print ("advance_state (dfa_new_cycle)\n");
7154 debug_state (curr_state);
7155 sel_print ("haifa clock: %d\n", haifa_clock + 1);
7159 if (real_insn)
7161 static state_t temp = NULL;
7163 if (!temp)
7164 temp = xmalloc (dfa_state_size);
7165 memcpy (temp, curr_state, dfa_state_size);
7167 cost = state_transition (curr_state, insn);
7168 if (memcmp (temp, curr_state, dfa_state_size))
7169 issued_insns++;
7171 if (sched_verbose >= 2)
7173 sel_print ("scheduled insn %d, clock %d\n", INSN_UID (insn),
7174 haifa_clock + 1);
7175 debug_state (curr_state);
7177 gcc_assert (cost < 0);
7180 if (targetm.sched.variable_issue)
7181 targetm.sched.variable_issue (sched_dump, sched_verbose, insn, 0);
7183 INSN_SCHED_CYCLE (insn) = haifa_clock;
7185 last_clock = clock;
7186 haifa_last_clock = haifa_clock;
7190 /* Put TImode markers on insns starting a new issue group. */
7191 static void
7192 put_TImodes (void)
7194 int last_clock = -1;
7195 insn_t insn;
7197 for (insn = current_sched_info->head; insn != current_sched_info->next_tail;
7198 insn = NEXT_INSN (insn))
7200 int cost, clock;
7202 if (!INSN_P (insn))
7203 continue;
7205 clock = INSN_SCHED_CYCLE (insn);
7206 cost = (last_clock == -1) ? 1 : clock - last_clock;
7208 gcc_assert (cost >= 0);
7210 if (issue_rate > 1
7211 && GET_CODE (PATTERN (insn)) != USE
7212 && GET_CODE (PATTERN (insn)) != CLOBBER)
7214 if (reload_completed && cost > 0)
7215 PUT_MODE (insn, TImode);
7217 last_clock = clock;
7220 if (sched_verbose >= 2)
7221 sel_print ("Cost for insn %d is %d\n", INSN_UID (insn), cost);
7225 /* Perform MD_FINISH on EBBs comprising current region. When
7226 RESET_SCHED_CYCLES_P is true, run a pass emulating the scheduler
7227 to produce correct sched cycles on insns. */
7228 static void
7229 sel_region_target_finish (bool reset_sched_cycles_p)
7231 int i;
7232 bitmap scheduled_blocks = BITMAP_ALLOC (NULL);
7234 for (i = 0; i < current_nr_blocks; i++)
7236 if (bitmap_bit_p (scheduled_blocks, i))
7237 continue;
7239 /* While pipelining outer loops, skip bundling for loop
7240 preheaders. Those will be rescheduled in the outer loop. */
7241 if (sel_is_loop_preheader_p (EBB_FIRST_BB (i)))
7242 continue;
7244 find_ebb_boundaries (EBB_FIRST_BB (i), scheduled_blocks);
7246 if (no_real_insns_p (current_sched_info->head, current_sched_info->tail))
7247 continue;
7249 if (reset_sched_cycles_p)
7250 reset_sched_cycles_in_current_ebb ();
7252 if (targetm.sched.init)
7253 targetm.sched.init (sched_dump, sched_verbose, -1);
7255 put_TImodes ();
7257 if (targetm.sched.finish)
7259 targetm.sched.finish (sched_dump, sched_verbose);
7261 /* Extend luids so that insns generated by the target will
7262 get zero luid. */
7263 sched_extend_luids ();
7267 BITMAP_FREE (scheduled_blocks);
7270 /* Free the scheduling data for the current region. When RESET_SCHED_CYCLES_P
7271 is true, make an additional pass emulating scheduler to get correct insn
7272 cycles for md_finish calls. */
7273 static void
7274 sel_region_finish (bool reset_sched_cycles_p)
7276 simplify_changed_insns ();
7277 sched_finish_ready_list ();
7278 free_nop_pool ();
7280 /* Free the vectors. */
7281 vec_av_set.release ();
7282 BITMAP_FREE (current_copies);
7283 BITMAP_FREE (current_originators);
7284 BITMAP_FREE (code_motion_visited_blocks);
7285 vinsn_vec_free (vec_bookkeeping_blocked_vinsns);
7286 vinsn_vec_free (vec_target_unavailable_vinsns);
7288 /* If LV_SET of the region head should be updated, do it now because
7289 there will be no other chance. */
7291 succ_iterator si;
7292 insn_t insn;
7294 FOR_EACH_SUCC_1 (insn, si, bb_note (EBB_FIRST_BB (0)),
7295 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
7297 basic_block bb = BLOCK_FOR_INSN (insn);
7299 if (!BB_LV_SET_VALID_P (bb))
7300 compute_live (insn);
7304 /* Emulate the Haifa scheduler for bundling. */
7305 if (reload_completed)
7306 sel_region_target_finish (reset_sched_cycles_p);
7308 sel_finish_global_and_expr ();
7310 bitmap_clear (forced_ebb_heads);
7312 free_nop_vinsn ();
7314 finish_deps_global ();
7315 sched_finish_luids ();
7316 h_d_i_d.release ();
7318 sel_finish_bbs ();
7319 BITMAP_FREE (blocks_to_reschedule);
7321 sel_unregister_cfg_hooks ();
7323 max_issue_size = 0;
7327 /* Functions that implement the scheduler driver. */
7329 /* Schedule a parallel instruction group on each of FENCES. MAX_SEQNO
7330 is the current maximum seqno. SCHEDULED_INSNS_TAILPP is the list
7331 of insns scheduled -- these would be postprocessed later. */
7332 static void
7333 schedule_on_fences (flist_t fences, int max_seqno,
7334 ilist_t **scheduled_insns_tailpp)
7336 flist_t old_fences = fences;
7338 if (sched_verbose >= 1)
7340 sel_print ("\nScheduling on fences: ");
7341 dump_flist (fences);
7342 sel_print ("\n");
7345 scheduled_something_on_previous_fence = false;
7346 for (; fences; fences = FLIST_NEXT (fences))
7348 fence_t fence = NULL;
7349 int seqno = 0;
7350 flist_t fences2;
7351 bool first_p = true;
7353 /* Choose the next fence group to schedule.
7354 The fact that insn can be scheduled only once
7355 on the cycle is guaranteed by two properties:
7356 1. seqnos of parallel groups decrease with each iteration.
7357 2. If is_ineligible_successor () sees the larger seqno, it
7358 checks if candidate insn is_in_current_fence_p (). */
7359 for (fences2 = old_fences; fences2; fences2 = FLIST_NEXT (fences2))
7361 fence_t f = FLIST_FENCE (fences2);
7363 if (!FENCE_PROCESSED_P (f))
7365 int i = INSN_SEQNO (FENCE_INSN (f));
7367 if (first_p || i > seqno)
7369 seqno = i;
7370 fence = f;
7371 first_p = false;
7373 else
7374 /* ??? Seqnos of different groups should be different. */
7375 gcc_assert (1 || i != seqno);
7379 gcc_assert (fence);
7381 /* As FENCE is nonnull, SEQNO is initialized. */
7382 seqno -= max_seqno + 1;
7383 fill_insns (fence, seqno, scheduled_insns_tailpp);
7384 FENCE_PROCESSED_P (fence) = true;
7387 /* All av_sets are invalidated by GLOBAL_LEVEL increase, thus we
7388 don't need to keep bookkeeping-invalidated and target-unavailable
7389 vinsns any more. */
7390 vinsn_vec_clear (&vec_bookkeeping_blocked_vinsns);
7391 vinsn_vec_clear (&vec_target_unavailable_vinsns);
7394 /* Calculate MIN_SEQNO and MAX_SEQNO. */
7395 static void
7396 find_min_max_seqno (flist_t fences, int *min_seqno, int *max_seqno)
7398 *min_seqno = *max_seqno = INSN_SEQNO (FENCE_INSN (FLIST_FENCE (fences)));
7400 /* The first element is already processed. */
7401 while ((fences = FLIST_NEXT (fences)))
7403 int seqno = INSN_SEQNO (FENCE_INSN (FLIST_FENCE (fences)));
7405 if (*min_seqno > seqno)
7406 *min_seqno = seqno;
7407 else if (*max_seqno < seqno)
7408 *max_seqno = seqno;
7412 /* Calculate new fences from FENCES. Write the current time to PTIME. */
7413 static flist_t
7414 calculate_new_fences (flist_t fences, int orig_max_seqno, int *ptime)
7416 flist_t old_fences = fences;
7417 struct flist_tail_def _new_fences, *new_fences = &_new_fences;
7418 int max_time = 0;
7420 flist_tail_init (new_fences);
7421 for (; fences; fences = FLIST_NEXT (fences))
7423 fence_t fence = FLIST_FENCE (fences);
7424 insn_t insn;
7426 if (!FENCE_BNDS (fence))
7428 /* This fence doesn't have any successors. */
7429 if (!FENCE_SCHEDULED_P (fence))
7431 /* Nothing was scheduled on this fence. */
7432 int seqno;
7434 insn = FENCE_INSN (fence);
7435 seqno = INSN_SEQNO (insn);
7436 gcc_assert (seqno > 0 && seqno <= orig_max_seqno);
7438 if (sched_verbose >= 1)
7439 sel_print ("Fence %d[%d] has not changed\n",
7440 INSN_UID (insn),
7441 BLOCK_NUM (insn));
7442 move_fence_to_fences (fences, new_fences);
7445 else
7446 extract_new_fences_from (fences, new_fences, orig_max_seqno);
7447 max_time = MAX (max_time, FENCE_CYCLE (fence));
7450 flist_clear (&old_fences);
7451 *ptime = max_time;
7452 return FLIST_TAIL_HEAD (new_fences);
7455 /* Update seqnos of insns given by PSCHEDULED_INSNS. MIN_SEQNO and MAX_SEQNO
7456 are the miminum and maximum seqnos of the group, HIGHEST_SEQNO_IN_USE is
7457 the highest seqno used in a region. Return the updated highest seqno. */
7458 static int
7459 update_seqnos_and_stage (int min_seqno, int max_seqno,
7460 int highest_seqno_in_use,
7461 ilist_t *pscheduled_insns)
7463 int new_hs;
7464 ilist_iterator ii;
7465 insn_t insn;
7467 /* Actually, new_hs is the seqno of the instruction, that was
7468 scheduled first (i.e. it is the first one in SCHEDULED_INSNS). */
7469 if (*pscheduled_insns)
7471 new_hs = (INSN_SEQNO (ILIST_INSN (*pscheduled_insns))
7472 + highest_seqno_in_use + max_seqno - min_seqno + 2);
7473 gcc_assert (new_hs > highest_seqno_in_use);
7475 else
7476 new_hs = highest_seqno_in_use;
7478 FOR_EACH_INSN (insn, ii, *pscheduled_insns)
7480 gcc_assert (INSN_SEQNO (insn) < 0);
7481 INSN_SEQNO (insn) += highest_seqno_in_use + max_seqno - min_seqno + 2;
7482 gcc_assert (INSN_SEQNO (insn) <= new_hs);
7484 /* When not pipelining, purge unneeded insn info on the scheduled insns.
7485 For example, having reg_last array of INSN_DEPS_CONTEXT in memory may
7486 require > 1GB of memory e.g. on limit-fnargs.c. */
7487 if (! pipelining_p)
7488 free_data_for_scheduled_insn (insn);
7491 ilist_clear (pscheduled_insns);
7492 global_level++;
7494 return new_hs;
7497 /* The main driver for scheduling a region. This function is responsible
7498 for correct propagation of fences (i.e. scheduling points) and creating
7499 a group of parallel insns at each of them. It also supports
7500 pipelining. ORIG_MAX_SEQNO is the maximal seqno before this pass
7501 of scheduling. */
7502 static void
7503 sel_sched_region_2 (int orig_max_seqno)
7505 int highest_seqno_in_use = orig_max_seqno;
7506 int max_time = 0;
7508 stat_bookkeeping_copies = 0;
7509 stat_insns_needed_bookkeeping = 0;
7510 stat_renamed_scheduled = 0;
7511 stat_substitutions_total = 0;
7512 num_insns_scheduled = 0;
7514 while (fences)
7516 int min_seqno, max_seqno;
7517 ilist_t scheduled_insns = NULL;
7518 ilist_t *scheduled_insns_tailp = &scheduled_insns;
7520 find_min_max_seqno (fences, &min_seqno, &max_seqno);
7521 schedule_on_fences (fences, max_seqno, &scheduled_insns_tailp);
7522 fences = calculate_new_fences (fences, orig_max_seqno, &max_time);
7523 highest_seqno_in_use = update_seqnos_and_stage (min_seqno, max_seqno,
7524 highest_seqno_in_use,
7525 &scheduled_insns);
7528 if (sched_verbose >= 1)
7530 sel_print ("Total scheduling time: %d cycles\n", max_time);
7531 sel_print ("Scheduled %d bookkeeping copies, %d insns needed "
7532 "bookkeeping, %d insns renamed, %d insns substituted\n",
7533 stat_bookkeeping_copies,
7534 stat_insns_needed_bookkeeping,
7535 stat_renamed_scheduled,
7536 stat_substitutions_total);
7540 /* Schedule a region. When pipelining, search for possibly never scheduled
7541 bookkeeping code and schedule it. Reschedule pipelined code without
7542 pipelining after. */
7543 static void
7544 sel_sched_region_1 (void)
7546 int orig_max_seqno;
7548 /* Remove empty blocks that might be in the region from the beginning. */
7549 purge_empty_blocks ();
7551 orig_max_seqno = init_seqno (NULL, NULL);
7552 gcc_assert (orig_max_seqno >= 1);
7554 /* When pipelining outer loops, create fences on the loop header,
7555 not preheader. */
7556 fences = NULL;
7557 if (current_loop_nest)
7558 init_fences (BB_END (EBB_FIRST_BB (0)));
7559 else
7560 init_fences (bb_note (EBB_FIRST_BB (0)));
7561 global_level = 1;
7563 sel_sched_region_2 (orig_max_seqno);
7565 gcc_assert (fences == NULL);
7567 if (pipelining_p)
7569 int i;
7570 basic_block bb;
7571 struct flist_tail_def _new_fences;
7572 flist_tail_t new_fences = &_new_fences;
7573 bool do_p = true;
7575 pipelining_p = false;
7576 max_ws = MIN (max_ws, issue_rate * 3 / 2);
7577 bookkeeping_p = false;
7578 enable_schedule_as_rhs_p = false;
7580 /* Schedule newly created code, that has not been scheduled yet. */
7581 do_p = true;
7583 while (do_p)
7585 do_p = false;
7587 for (i = 0; i < current_nr_blocks; i++)
7589 basic_block bb = EBB_FIRST_BB (i);
7591 if (bitmap_bit_p (blocks_to_reschedule, bb->index))
7593 if (! bb_ends_ebb_p (bb))
7594 bitmap_set_bit (blocks_to_reschedule, bb_next_bb (bb)->index);
7595 if (sel_bb_empty_p (bb))
7597 bitmap_clear_bit (blocks_to_reschedule, bb->index);
7598 continue;
7600 clear_outdated_rtx_info (bb);
7601 if (sel_insn_is_speculation_check (BB_END (bb))
7602 && JUMP_P (BB_END (bb)))
7603 bitmap_set_bit (blocks_to_reschedule,
7604 BRANCH_EDGE (bb)->dest->index);
7606 else if (! sel_bb_empty_p (bb)
7607 && INSN_SCHED_TIMES (sel_bb_head (bb)) <= 0)
7608 bitmap_set_bit (blocks_to_reschedule, bb->index);
7611 for (i = 0; i < current_nr_blocks; i++)
7613 bb = EBB_FIRST_BB (i);
7615 /* While pipelining outer loops, skip bundling for loop
7616 preheaders. Those will be rescheduled in the outer
7617 loop. */
7618 if (sel_is_loop_preheader_p (bb))
7620 clear_outdated_rtx_info (bb);
7621 continue;
7624 if (bitmap_bit_p (blocks_to_reschedule, bb->index))
7626 flist_tail_init (new_fences);
7628 orig_max_seqno = init_seqno (blocks_to_reschedule, bb);
7630 /* Mark BB as head of the new ebb. */
7631 bitmap_set_bit (forced_ebb_heads, bb->index);
7633 gcc_assert (fences == NULL);
7635 init_fences (bb_note (bb));
7637 sel_sched_region_2 (orig_max_seqno);
7639 do_p = true;
7640 break;
7647 /* Schedule the RGN region. */
7648 void
7649 sel_sched_region (int rgn)
7651 bool schedule_p;
7652 bool reset_sched_cycles_p;
7654 if (sel_region_init (rgn))
7655 return;
7657 if (sched_verbose >= 1)
7658 sel_print ("Scheduling region %d\n", rgn);
7660 schedule_p = (!sched_is_disabled_for_current_region_p ()
7661 && dbg_cnt (sel_sched_region_cnt));
7662 reset_sched_cycles_p = pipelining_p;
7663 if (schedule_p)
7664 sel_sched_region_1 ();
7665 else
7666 /* Force initialization of INSN_SCHED_CYCLEs for correct bundling. */
7667 reset_sched_cycles_p = true;
7669 sel_region_finish (reset_sched_cycles_p);
7672 /* Perform global init for the scheduler. */
7673 static void
7674 sel_global_init (void)
7676 calculate_dominance_info (CDI_DOMINATORS);
7677 alloc_sched_pools ();
7679 /* Setup the infos for sched_init. */
7680 sel_setup_sched_infos ();
7681 setup_sched_dump ();
7683 sched_rgn_init (false);
7684 sched_init ();
7686 sched_init_bbs ();
7687 /* Reset AFTER_RECOVERY if it has been set by the 1st scheduler pass. */
7688 after_recovery = 0;
7689 can_issue_more = issue_rate;
7691 sched_extend_target ();
7692 sched_deps_init (true);
7693 setup_nop_and_exit_insns ();
7694 sel_extend_global_bb_info ();
7695 init_lv_sets ();
7696 init_hard_regs_data ();
7699 /* Free the global data of the scheduler. */
7700 static void
7701 sel_global_finish (void)
7703 free_bb_note_pool ();
7704 free_lv_sets ();
7705 sel_finish_global_bb_info ();
7707 free_regset_pool ();
7708 free_nop_and_exit_insns ();
7710 sched_rgn_finish ();
7711 sched_deps_finish ();
7712 sched_finish ();
7714 if (current_loops)
7715 sel_finish_pipelining ();
7717 free_sched_pools ();
7718 free_dominance_info (CDI_DOMINATORS);
7721 /* Return true when we need to skip selective scheduling. Used for debugging. */
7722 bool
7723 maybe_skip_selective_scheduling (void)
7725 return ! dbg_cnt (sel_sched_cnt);
7728 /* The entry point. */
7729 void
7730 run_selective_scheduling (void)
7732 int rgn;
7734 if (n_basic_blocks_for_fn (cfun) == NUM_FIXED_BLOCKS)
7735 return;
7737 sel_global_init ();
7739 for (rgn = 0; rgn < nr_regions; rgn++)
7740 sel_sched_region (rgn);
7742 sel_global_finish ();
7745 #endif