* pt.c (lookup_template_class_1): Splice out abi_tag attribute if
[official-gcc.git] / gcc / sel-sched-ir.h
blob90e7283b07e8484e724b9dfc9be640c694bb3aab
1 /* Instruction scheduling pass. This file contains definitions used
2 internally in the scheduler.
3 Copyright (C) 2006-2014 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #ifndef GCC_SEL_SCHED_IR_H
22 #define GCC_SEL_SCHED_IR_H
24 /* For state_t. */
25 #include "insn-attr.h"
26 #include "regset.h"
27 #include "basic-block.h"
28 /* For reg_note. */
29 #include "rtl.h"
30 #include "ggc.h"
31 #include "bitmap.h"
32 #include "sched-int.h"
33 #include "cfgloop.h"
35 /* tc_t is a short for target context. This is a state of the target
36 backend. */
37 typedef void *tc_t;
39 /* List data types used for av sets, fences, paths, and boundaries. */
41 /* Forward declarations for types that are part of some list nodes. */
42 struct _list_node;
44 /* List backend. */
45 typedef struct _list_node *_list_t;
46 #define _LIST_NEXT(L) ((L)->next)
48 /* Instruction data that is part of vinsn type. */
49 struct idata_def;
50 typedef struct idata_def *idata_t;
52 /* A virtual instruction, i.e. an instruction as seen by the scheduler. */
53 struct vinsn_def;
54 typedef struct vinsn_def *vinsn_t;
56 /* RTX list.
57 This type is the backend for ilist. */
58 typedef _list_t _xlist_t;
59 #define _XLIST_X(L) ((L)->u.x)
60 #define _XLIST_NEXT(L) (_LIST_NEXT (L))
62 /* Instruction. */
63 typedef rtx_insn *insn_t;
65 /* List of insns. */
66 typedef _list_t ilist_t;
67 #define ILIST_INSN(L) ((L)->u.insn)
68 #define ILIST_NEXT(L) (_LIST_NEXT (L))
70 /* This lists possible transformations that done locally, i.e. in
71 moveup_expr. */
72 enum local_trans_type
74 TRANS_SUBSTITUTION,
75 TRANS_SPECULATION
78 /* This struct is used to record the history of expression's
79 transformations. */
80 struct expr_history_def_1
82 /* UID of the insn. */
83 unsigned uid;
85 /* How the expression looked like. */
86 vinsn_t old_expr_vinsn;
88 /* How the expression looks after the transformation. */
89 vinsn_t new_expr_vinsn;
91 /* And its speculative status. */
92 ds_t spec_ds;
94 /* Type of the transformation. */
95 enum local_trans_type type;
98 typedef struct expr_history_def_1 expr_history_def;
101 /* Expression information. */
102 struct _expr
104 /* Insn description. */
105 vinsn_t vinsn;
107 /* SPEC is the degree of speculativeness.
108 FIXME: now spec is increased when an rhs is moved through a
109 conditional, thus showing only control speculativeness. In the
110 future we'd like to count data spec separately to allow a better
111 control on scheduling. */
112 int spec;
114 /* Degree of speculativeness measured as probability of executing
115 instruction's original basic block given relative to
116 the current scheduling point. */
117 int usefulness;
119 /* A priority of this expression. */
120 int priority;
122 /* A priority adjustment of this expression. */
123 int priority_adj;
125 /* Number of times the insn was scheduled. */
126 int sched_times;
128 /* A basic block index this was originated from. Zero when there is
129 more than one originator. */
130 int orig_bb_index;
132 /* Instruction should be of SPEC_DONE_DS type in order to be moved to this
133 point. */
134 ds_t spec_done_ds;
136 /* SPEC_TO_CHECK_DS hold speculation types that should be checked
137 (used only during move_op ()). */
138 ds_t spec_to_check_ds;
140 /* Cycle on which original insn was scheduled. Zero when it has not yet
141 been scheduled or more than one originator. */
142 int orig_sched_cycle;
144 /* This vector contains the history of insn's transformations. */
145 vec<expr_history_def> history_of_changes;
147 /* True (1) when original target (register or memory) of this instruction
148 is available for scheduling, false otherwise. -1 means we're not sure;
149 please run find_used_regs to clarify. */
150 signed char target_available;
152 /* True when this expression needs a speculation check to be scheduled.
153 This is used during find_used_regs. */
154 BOOL_BITFIELD needs_spec_check_p : 1;
156 /* True when the expression was substituted. Used for statistical
157 purposes. */
158 BOOL_BITFIELD was_substituted : 1;
160 /* True when the expression was renamed. */
161 BOOL_BITFIELD was_renamed : 1;
163 /* True when expression can't be moved. */
164 BOOL_BITFIELD cant_move : 1;
167 typedef struct _expr expr_def;
168 typedef expr_def *expr_t;
170 #define EXPR_VINSN(EXPR) ((EXPR)->vinsn)
171 #define EXPR_INSN_RTX(EXPR) (VINSN_INSN_RTX (EXPR_VINSN (EXPR)))
172 #define EXPR_PATTERN(EXPR) (VINSN_PATTERN (EXPR_VINSN (EXPR)))
173 #define EXPR_LHS(EXPR) (VINSN_LHS (EXPR_VINSN (EXPR)))
174 #define EXPR_RHS(EXPR) (VINSN_RHS (EXPR_VINSN (EXPR)))
175 #define EXPR_TYPE(EXPR) (VINSN_TYPE (EXPR_VINSN (EXPR)))
176 #define EXPR_SEPARABLE_P(EXPR) (VINSN_SEPARABLE_P (EXPR_VINSN (EXPR)))
178 #define EXPR_SPEC(EXPR) ((EXPR)->spec)
179 #define EXPR_USEFULNESS(EXPR) ((EXPR)->usefulness)
180 #define EXPR_PRIORITY(EXPR) ((EXPR)->priority)
181 #define EXPR_PRIORITY_ADJ(EXPR) ((EXPR)->priority_adj)
182 #define EXPR_SCHED_TIMES(EXPR) ((EXPR)->sched_times)
183 #define EXPR_ORIG_BB_INDEX(EXPR) ((EXPR)->orig_bb_index)
184 #define EXPR_ORIG_SCHED_CYCLE(EXPR) ((EXPR)->orig_sched_cycle)
185 #define EXPR_SPEC_DONE_DS(EXPR) ((EXPR)->spec_done_ds)
186 #define EXPR_SPEC_TO_CHECK_DS(EXPR) ((EXPR)->spec_to_check_ds)
187 #define EXPR_HISTORY_OF_CHANGES(EXPR) ((EXPR)->history_of_changes)
188 #define EXPR_TARGET_AVAILABLE(EXPR) ((EXPR)->target_available)
189 #define EXPR_NEEDS_SPEC_CHECK_P(EXPR) ((EXPR)->needs_spec_check_p)
190 #define EXPR_WAS_SUBSTITUTED(EXPR) ((EXPR)->was_substituted)
191 #define EXPR_WAS_RENAMED(EXPR) ((EXPR)->was_renamed)
192 #define EXPR_CANT_MOVE(EXPR) ((EXPR)->cant_move)
194 /* Insn definition for list of original insns in find_used_regs. */
195 struct _def
197 insn_t orig_insn;
199 /* FIXME: Get rid of CROSSES_CALL in each def, since if we're moving up
200 rhs from two different places, but only one of the code motion paths
201 crosses a call, we can't use any of the call_used_regs, no matter which
202 path or whether all paths crosses a call. Thus we should move CROSSES_CALL
203 to static params. */
204 bool crosses_call;
206 typedef struct _def *def_t;
209 /* Availability sets are sets of expressions we're scheduling. */
210 typedef _list_t av_set_t;
211 #define _AV_SET_EXPR(L) (&(L)->u.expr)
212 #define _AV_SET_NEXT(L) (_LIST_NEXT (L))
215 /* Boundary of the current fence group. */
216 struct _bnd
218 /* The actual boundary instruction. */
219 insn_t to;
221 /* Its path to the fence. */
222 ilist_t ptr;
224 /* Availability set at the boundary. */
225 av_set_t av;
227 /* This set moved to the fence. */
228 av_set_t av1;
230 /* Deps context at this boundary. As long as we have one boundary per fence,
231 this is just a pointer to the same deps context as in the corresponding
232 fence. */
233 deps_t dc;
235 typedef struct _bnd *bnd_t;
236 #define BND_TO(B) ((B)->to)
238 /* PTR stands not for pointer as you might think, but as a Path To Root of the
239 current instruction group from boundary B. */
240 #define BND_PTR(B) ((B)->ptr)
241 #define BND_AV(B) ((B)->av)
242 #define BND_AV1(B) ((B)->av1)
243 #define BND_DC(B) ((B)->dc)
245 /* List of boundaries. */
246 typedef _list_t blist_t;
247 #define BLIST_BND(L) (&(L)->u.bnd)
248 #define BLIST_NEXT(L) (_LIST_NEXT (L))
251 /* Fence information. A fence represents current scheduling point and also
252 blocks code motion through it when pipelining. */
253 struct _fence
255 /* Insn before which we gather an instruction group.*/
256 insn_t insn;
258 /* Modeled state of the processor pipeline. */
259 state_t state;
261 /* Current cycle that is being scheduled on this fence. */
262 int cycle;
264 /* Number of insns that were scheduled on the current cycle.
265 This information has to be local to a fence. */
266 int cycle_issued_insns;
268 /* At the end of fill_insns () this field holds the list of the instructions
269 that are inner boundaries of the scheduled parallel group. */
270 ilist_t bnds;
272 /* Deps context at this fence. It is used to model dependencies at the
273 fence so that insn ticks can be properly evaluated. */
274 deps_t dc;
276 /* Target context at this fence. Used to save and load any local target
277 scheduling information when changing fences. */
278 tc_t tc;
280 /* A vector of insns that are scheduled but not yet completed. */
281 vec<rtx_insn *, va_gc> *executing_insns;
283 /* A vector indexed by UIDs that caches the earliest cycle on which
284 an insn can be scheduled on this fence. */
285 int *ready_ticks;
287 /* Its size. */
288 int ready_ticks_size;
290 /* Insn, which has been scheduled last on this fence. */
291 rtx_insn *last_scheduled_insn;
293 /* The last value of can_issue_more variable on this fence. */
294 int issue_more;
296 /* If non-NULL force the next scheduled insn to be SCHED_NEXT. */
297 rtx_insn *sched_next;
299 /* True if fill_insns processed this fence. */
300 BOOL_BITFIELD processed_p : 1;
302 /* True if fill_insns actually scheduled something on this fence. */
303 BOOL_BITFIELD scheduled_p : 1;
305 /* True when the next insn scheduled here would start a cycle. */
306 BOOL_BITFIELD starts_cycle_p : 1;
308 /* True when the next insn scheduled here would be scheduled after a stall. */
309 BOOL_BITFIELD after_stall_p : 1;
311 typedef struct _fence *fence_t;
313 #define FENCE_INSN(F) ((F)->insn)
314 #define FENCE_STATE(F) ((F)->state)
315 #define FENCE_BNDS(F) ((F)->bnds)
316 #define FENCE_PROCESSED_P(F) ((F)->processed_p)
317 #define FENCE_SCHEDULED_P(F) ((F)->scheduled_p)
318 #define FENCE_ISSUED_INSNS(F) ((F)->cycle_issued_insns)
319 #define FENCE_CYCLE(F) ((F)->cycle)
320 #define FENCE_STARTS_CYCLE_P(F) ((F)->starts_cycle_p)
321 #define FENCE_AFTER_STALL_P(F) ((F)->after_stall_p)
322 #define FENCE_DC(F) ((F)->dc)
323 #define FENCE_TC(F) ((F)->tc)
324 #define FENCE_LAST_SCHEDULED_INSN(F) ((F)->last_scheduled_insn)
325 #define FENCE_ISSUE_MORE(F) ((F)->issue_more)
326 #define FENCE_EXECUTING_INSNS(F) ((F)->executing_insns)
327 #define FENCE_READY_TICKS(F) ((F)->ready_ticks)
328 #define FENCE_READY_TICKS_SIZE(F) ((F)->ready_ticks_size)
329 #define FENCE_SCHED_NEXT(F) ((F)->sched_next)
331 /* List of fences. */
332 typedef _list_t flist_t;
333 #define FLIST_FENCE(L) (&(L)->u.fence)
334 #define FLIST_NEXT(L) (_LIST_NEXT (L))
336 /* List of fences with pointer to the tail node. */
337 struct flist_tail_def
339 flist_t head;
340 flist_t *tailp;
343 typedef struct flist_tail_def *flist_tail_t;
344 #define FLIST_TAIL_HEAD(L) ((L)->head)
345 #define FLIST_TAIL_TAILP(L) ((L)->tailp)
347 /* List node information. A list node can be any of the types above. */
348 struct _list_node
350 _list_t next;
352 union
354 rtx x;
355 insn_t insn;
356 struct _bnd bnd;
357 expr_def expr;
358 struct _fence fence;
359 struct _def def;
360 void *data;
361 } u;
365 /* _list_t functions.
366 All of _*list_* functions are used through accessor macros, thus
367 we can't move them in sel-sched-ir.c. */
368 extern alloc_pool sched_lists_pool;
370 static inline _list_t
371 _list_alloc (void)
373 return (_list_t) pool_alloc (sched_lists_pool);
376 static inline void
377 _list_add (_list_t *lp)
379 _list_t l = _list_alloc ();
381 _LIST_NEXT (l) = *lp;
382 *lp = l;
385 static inline void
386 _list_remove_nofree (_list_t *lp)
388 _list_t n = *lp;
390 *lp = _LIST_NEXT (n);
393 static inline void
394 _list_remove (_list_t *lp)
396 _list_t n = *lp;
398 *lp = _LIST_NEXT (n);
399 pool_free (sched_lists_pool, n);
402 static inline void
403 _list_clear (_list_t *l)
405 while (*l)
406 _list_remove (l);
410 /* List iterator backend. */
411 struct _list_iterator
413 /* The list we're iterating. */
414 _list_t *lp;
416 /* True when this iterator supprts removing. */
417 bool can_remove_p;
419 /* True when we've actually removed something. */
420 bool removed_p;
423 static inline void
424 _list_iter_start (_list_iterator *ip, _list_t *lp, bool can_remove_p)
426 ip->lp = lp;
427 ip->can_remove_p = can_remove_p;
428 ip->removed_p = false;
431 static inline void
432 _list_iter_next (_list_iterator *ip)
434 if (!ip->removed_p)
435 ip->lp = &_LIST_NEXT (*ip->lp);
436 else
437 ip->removed_p = false;
440 static inline void
441 _list_iter_remove (_list_iterator *ip)
443 gcc_assert (!ip->removed_p && ip->can_remove_p);
444 _list_remove (ip->lp);
445 ip->removed_p = true;
448 static inline void
449 _list_iter_remove_nofree (_list_iterator *ip)
451 gcc_assert (!ip->removed_p && ip->can_remove_p);
452 _list_remove_nofree (ip->lp);
453 ip->removed_p = true;
456 /* General macros to traverse a list. FOR_EACH_* interfaces are
457 implemented using these. */
458 #define _FOR_EACH(TYPE, ELEM, I, L) \
459 for (_list_iter_start (&(I), &(L), false); \
460 _list_iter_cond_##TYPE (*(I).lp, &(ELEM)); \
461 _list_iter_next (&(I)))
463 #define _FOR_EACH_1(TYPE, ELEM, I, LP) \
464 for (_list_iter_start (&(I), (LP), true); \
465 _list_iter_cond_##TYPE (*(I).lp, &(ELEM)); \
466 _list_iter_next (&(I)))
469 /* _xlist_t functions. */
471 static inline void
472 _xlist_add (_xlist_t *lp, rtx x)
474 _list_add (lp);
475 _XLIST_X (*lp) = x;
478 #define _xlist_remove(LP) (_list_remove (LP))
479 #define _xlist_clear(LP) (_list_clear (LP))
481 static inline bool
482 _xlist_is_in_p (_xlist_t l, rtx x)
484 while (l)
486 if (_XLIST_X (l) == x)
487 return true;
488 l = _XLIST_NEXT (l);
491 return false;
494 /* Used through _FOR_EACH. */
495 static inline bool
496 _list_iter_cond_x (_xlist_t l, rtx *xp)
498 if (l)
500 *xp = _XLIST_X (l);
501 return true;
504 return false;
507 #define _xlist_iter_remove(IP) (_list_iter_remove (IP))
509 typedef _list_iterator _xlist_iterator;
510 #define _FOR_EACH_X(X, I, L) _FOR_EACH (x, (X), (I), (L))
511 #define _FOR_EACH_X_1(X, I, LP) _FOR_EACH_1 (x, (X), (I), (LP))
514 /* ilist_t functions. */
516 static inline void
517 ilist_add (ilist_t *lp, insn_t insn)
519 _list_add (lp);
520 ILIST_INSN (*lp) = insn;
522 #define ilist_remove(LP) (_list_remove (LP))
523 #define ilist_clear(LP) (_list_clear (LP))
525 static inline bool
526 ilist_is_in_p (ilist_t l, insn_t insn)
528 while (l)
530 if (ILIST_INSN (l) == insn)
531 return true;
532 l = ILIST_NEXT (l);
535 return false;
538 /* Used through _FOR_EACH. */
539 static inline bool
540 _list_iter_cond_insn (ilist_t l, insn_t *ip)
542 if (l)
544 *ip = ILIST_INSN (l);
545 return true;
548 return false;
551 #define ilist_iter_remove(IP) (_list_iter_remove (IP))
553 typedef _list_iterator ilist_iterator;
554 #define FOR_EACH_INSN(INSN, I, L) _FOR_EACH (insn, (INSN), (I), (L))
555 #define FOR_EACH_INSN_1(INSN, I, LP) _FOR_EACH_1 (insn, (INSN), (I), (LP))
558 /* Av set iterators. */
559 typedef _list_iterator av_set_iterator;
560 #define FOR_EACH_EXPR(EXPR, I, AV) _FOR_EACH (expr, (EXPR), (I), (AV))
561 #define FOR_EACH_EXPR_1(EXPR, I, AV) _FOR_EACH_1 (expr, (EXPR), (I), (AV))
563 inline bool
564 _list_iter_cond_expr (av_set_t av, expr_t *exprp)
566 if (av)
568 *exprp = _AV_SET_EXPR (av);
569 return true;
572 return false;
576 /* Def list iterators. */
577 typedef _list_t def_list_t;
578 typedef _list_iterator def_list_iterator;
580 #define DEF_LIST_NEXT(L) (_LIST_NEXT (L))
581 #define DEF_LIST_DEF(L) (&(L)->u.def)
583 #define FOR_EACH_DEF(DEF, I, DEF_LIST) _FOR_EACH (def, (DEF), (I), (DEF_LIST))
585 static inline bool
586 _list_iter_cond_def (def_list_t def_list, def_t *def)
588 if (def_list)
590 *def = DEF_LIST_DEF (def_list);
591 return true;
594 return false;
598 /* InstructionData. Contains information about insn pattern. */
599 struct idata_def
601 /* Type of the insn.
602 o CALL_INSN - Call insn
603 o JUMP_INSN - Jump insn
604 o INSN - INSN that cannot be cloned
605 o USE - INSN that can be cloned
606 o SET - INSN that can be cloned and separable into lhs and rhs
607 o PC - simplejump. Insns that simply redirect control flow should not
608 have any dependencies. Sched-deps.c, though, might consider them as
609 producers or consumers of certain registers. To avoid that we handle
610 dependency for simple jumps ourselves. */
611 int type;
613 /* If insn is a SET, this is its left hand side. */
614 rtx lhs;
616 /* If insn is a SET, this is its right hand side. */
617 rtx rhs;
619 /* Registers that are set/used by this insn. This info is now gathered
620 via sched-deps.c. The downside of this is that we also use live info
621 from flow that is accumulated in the basic blocks. These two infos
622 can be slightly inconsistent, hence in the beginning we make a pass
623 through CFG and calculating the conservative solution for the info in
624 basic blocks. When this scheduler will be switched to use dataflow,
625 this can be unified as df gives us both per basic block and per
626 instruction info. Actually, we don't do that pass and just hope
627 for the best. */
628 regset reg_sets;
630 regset reg_clobbers;
632 regset reg_uses;
635 #define IDATA_TYPE(ID) ((ID)->type)
636 #define IDATA_LHS(ID) ((ID)->lhs)
637 #define IDATA_RHS(ID) ((ID)->rhs)
638 #define IDATA_REG_SETS(ID) ((ID)->reg_sets)
639 #define IDATA_REG_USES(ID) ((ID)->reg_uses)
640 #define IDATA_REG_CLOBBERS(ID) ((ID)->reg_clobbers)
642 /* Type to represent all needed info to emit an insn.
643 This is a virtual equivalent of the insn.
644 Every insn in the stream has an associated vinsn. This is used
645 to reduce memory consumption basing on the fact that many insns
646 don't change through the scheduler.
648 vinsn can be either normal or unique.
649 * Normal vinsn is the one, that can be cloned multiple times and typically
650 corresponds to normal instruction.
652 * Unique vinsn derivates from CALL, ASM, JUMP (for a while) and other
653 unusual stuff. Such a vinsn is described by its INSN field, which is a
654 reference to the original instruction. */
655 struct vinsn_def
657 /* Associated insn. */
658 rtx_insn *insn_rtx;
660 /* Its description. */
661 struct idata_def id;
663 /* Hash of vinsn. It is computed either from pattern or from rhs using
664 hash_rtx. It is not placed in ID for faster compares. */
665 unsigned hash;
667 /* Hash of the insn_rtx pattern. */
668 unsigned hash_rtx;
670 /* Smart pointer counter. */
671 int count;
673 /* Cached cost of the vinsn. To access it please use vinsn_cost (). */
674 int cost;
676 /* Mark insns that may trap so we don't move them through jumps. */
677 bool may_trap_p;
680 #define VINSN_INSN_RTX(VI) ((VI)->insn_rtx)
681 #define VINSN_PATTERN(VI) (PATTERN (VINSN_INSN_RTX (VI)))
683 #define VINSN_ID(VI) (&((VI)->id))
684 #define VINSN_HASH(VI) ((VI)->hash)
685 #define VINSN_HASH_RTX(VI) ((VI)->hash_rtx)
686 #define VINSN_TYPE(VI) (IDATA_TYPE (VINSN_ID (VI)))
687 #define VINSN_SEPARABLE_P(VI) (VINSN_TYPE (VI) == SET)
688 #define VINSN_CLONABLE_P(VI) (VINSN_SEPARABLE_P (VI) || VINSN_TYPE (VI) == USE)
689 #define VINSN_UNIQUE_P(VI) (!VINSN_CLONABLE_P (VI))
690 #define VINSN_LHS(VI) (IDATA_LHS (VINSN_ID (VI)))
691 #define VINSN_RHS(VI) (IDATA_RHS (VINSN_ID (VI)))
692 #define VINSN_REG_SETS(VI) (IDATA_REG_SETS (VINSN_ID (VI)))
693 #define VINSN_REG_USES(VI) (IDATA_REG_USES (VINSN_ID (VI)))
694 #define VINSN_REG_CLOBBERS(VI) (IDATA_REG_CLOBBERS (VINSN_ID (VI)))
695 #define VINSN_COUNT(VI) ((VI)->count)
696 #define VINSN_MAY_TRAP_P(VI) ((VI)->may_trap_p)
699 /* An entry of the hashtable describing transformations happened when
700 moving up through an insn. */
701 struct transformed_insns
703 /* Previous vinsn. Used to find the proper element. */
704 vinsn_t vinsn_old;
706 /* A new vinsn. */
707 vinsn_t vinsn_new;
709 /* Speculative status. */
710 ds_t ds;
712 /* Type of transformation happened. */
713 enum local_trans_type type;
715 /* Whether a conflict on the target register happened. */
716 BOOL_BITFIELD was_target_conflict : 1;
718 /* Whether a check was needed. */
719 BOOL_BITFIELD needs_check : 1;
722 /* Indexed by INSN_LUID, the collection of all data associated with
723 a single instruction that is in the stream. */
724 struct _sel_insn_data
726 /* The expression that contains vinsn for this insn and some
727 flow-sensitive data like priority. */
728 expr_def expr;
730 /* If (WS_LEVEL == GLOBAL_LEVEL) then AV is empty. */
731 int ws_level;
733 /* A number that helps in defining a traversing order for a region. */
734 int seqno;
736 /* A liveness data computed above this insn. */
737 regset live;
739 /* An INSN_UID bit is set when deps analysis result is already known. */
740 bitmap analyzed_deps;
742 /* An INSN_UID bit is set when a hard dep was found, not set when
743 no dependence is found. This is meaningful only when the analyzed_deps
744 bitmap has its bit set. */
745 bitmap found_deps;
747 /* An INSN_UID bit is set when this is a bookkeeping insn generated from
748 a parent with this uid. If a parent is a bookkeeping copy, all its
749 originators are transitively included in this set. */
750 bitmap originators;
752 /* A hashtable caching the result of insn transformations through this one. */
753 htab_t transformed_insns;
755 /* A context incapsulating this insn. */
756 struct deps_desc deps_context;
758 /* This field is initialized at the beginning of scheduling and is used
759 to handle sched group instructions. If it is non-null, then it points
760 to the instruction, which should be forced to schedule next. Such
761 instructions are unique. */
762 insn_t sched_next;
764 /* Cycle at which insn was scheduled. It is greater than zero if insn was
765 scheduled. This is used for bundling. */
766 int sched_cycle;
768 /* Cycle at which insn's data will be fully ready. */
769 int ready_cycle;
771 /* Speculations that are being checked by this insn. */
772 ds_t spec_checked_ds;
774 /* Whether the live set valid or not. */
775 BOOL_BITFIELD live_valid_p : 1;
776 /* Insn is an ASM. */
777 BOOL_BITFIELD asm_p : 1;
779 /* True when an insn is scheduled after we've determined that a stall is
780 required.
781 This is used when emulating the Haifa scheduler for bundling. */
782 BOOL_BITFIELD after_stall_p : 1;
785 typedef struct _sel_insn_data sel_insn_data_def;
786 typedef sel_insn_data_def *sel_insn_data_t;
788 extern vec<sel_insn_data_def> s_i_d;
790 /* Accessor macros for s_i_d. */
791 #define SID(INSN) (&s_i_d[INSN_LUID (INSN)])
792 #define SID_BY_UID(UID) (&s_i_d[LUID_BY_UID (UID)])
794 extern sel_insn_data_def insn_sid (insn_t);
796 #define INSN_ASM_P(INSN) (SID (INSN)->asm_p)
797 #define INSN_SCHED_NEXT(INSN) (SID (INSN)->sched_next)
798 #define INSN_ANALYZED_DEPS(INSN) (SID (INSN)->analyzed_deps)
799 #define INSN_FOUND_DEPS(INSN) (SID (INSN)->found_deps)
800 #define INSN_DEPS_CONTEXT(INSN) (SID (INSN)->deps_context)
801 #define INSN_ORIGINATORS(INSN) (SID (INSN)->originators)
802 #define INSN_ORIGINATORS_BY_UID(UID) (SID_BY_UID (UID)->originators)
803 #define INSN_TRANSFORMED_INSNS(INSN) (SID (INSN)->transformed_insns)
805 #define INSN_EXPR(INSN) (&SID (INSN)->expr)
806 #define INSN_LIVE(INSN) (SID (INSN)->live)
807 #define INSN_LIVE_VALID_P(INSN) (SID (INSN)->live_valid_p)
808 #define INSN_VINSN(INSN) (EXPR_VINSN (INSN_EXPR (INSN)))
809 #define INSN_TYPE(INSN) (VINSN_TYPE (INSN_VINSN (INSN)))
810 #define INSN_SIMPLEJUMP_P(INSN) (INSN_TYPE (INSN) == PC)
811 #define INSN_LHS(INSN) (VINSN_LHS (INSN_VINSN (INSN)))
812 #define INSN_RHS(INSN) (VINSN_RHS (INSN_VINSN (INSN)))
813 #define INSN_REG_SETS(INSN) (VINSN_REG_SETS (INSN_VINSN (INSN)))
814 #define INSN_REG_CLOBBERS(INSN) (VINSN_REG_CLOBBERS (INSN_VINSN (INSN)))
815 #define INSN_REG_USES(INSN) (VINSN_REG_USES (INSN_VINSN (INSN)))
816 #define INSN_SCHED_TIMES(INSN) (EXPR_SCHED_TIMES (INSN_EXPR (INSN)))
817 #define INSN_SEQNO(INSN) (SID (INSN)->seqno)
818 #define INSN_AFTER_STALL_P(INSN) (SID (INSN)->after_stall_p)
819 #define INSN_SCHED_CYCLE(INSN) (SID (INSN)->sched_cycle)
820 #define INSN_READY_CYCLE(INSN) (SID (INSN)->ready_cycle)
821 #define INSN_SPEC_CHECKED_DS(INSN) (SID (INSN)->spec_checked_ds)
823 /* A global level shows whether an insn is valid or not. */
824 extern int global_level;
826 #define INSN_WS_LEVEL(INSN) (SID (INSN)->ws_level)
828 extern av_set_t get_av_set (insn_t);
829 extern int get_av_level (insn_t);
831 #define AV_SET(INSN) (get_av_set (INSN))
832 #define AV_LEVEL(INSN) (get_av_level (INSN))
833 #define AV_SET_VALID_P(INSN) (AV_LEVEL (INSN) == global_level)
835 /* A list of fences currently in the works. */
836 extern flist_t fences;
838 /* A NOP pattern used as a placeholder for real insns. */
839 extern rtx nop_pattern;
841 /* An insn that 'contained' in EXIT block. */
842 extern rtx_insn *exit_insn;
844 /* Provide a separate luid for the insn. */
845 #define INSN_INIT_TODO_LUID (1)
847 /* Initialize s_s_i_d. */
848 #define INSN_INIT_TODO_SSID (2)
850 /* Initialize data for simplejump. */
851 #define INSN_INIT_TODO_SIMPLEJUMP (4)
853 /* Return true if INSN is a local NOP. The nop is local in the sense that
854 it was emitted by the scheduler as a temporary insn and will soon be
855 deleted. These nops are identified by their pattern. */
856 #define INSN_NOP_P(INSN) (PATTERN (INSN) == nop_pattern)
858 /* Return true if INSN is linked into instruction stream.
859 NB: It is impossible for INSN to have one field null and the other not
860 null: gcc_assert ((PREV_INSN (INSN) == NULL_RTX)
861 == (NEXT_INSN (INSN) == NULL_RTX)) is valid. */
862 #define INSN_IN_STREAM_P(INSN) (PREV_INSN (INSN) && NEXT_INSN (INSN))
864 /* Return true if INSN is in current fence. */
865 #define IN_CURRENT_FENCE_P(INSN) (flist_lookup (fences, INSN) != NULL)
867 /* Marks loop as being considered for pipelining. */
868 #define MARK_LOOP_FOR_PIPELINING(LOOP) ((LOOP)->aux = (void *)(size_t)(1))
869 #define LOOP_MARKED_FOR_PIPELINING_P(LOOP) ((size_t)((LOOP)->aux))
871 /* Saved loop preheader to transfer when scheduling the loop. */
872 #define LOOP_PREHEADER_BLOCKS(LOOP) ((size_t)((LOOP)->aux) == 1 \
873 ? NULL \
874 : ((vec<basic_block> *) (LOOP)->aux))
875 #define SET_LOOP_PREHEADER_BLOCKS(LOOP,BLOCKS) ((LOOP)->aux \
876 = (BLOCKS != NULL \
877 ? BLOCKS \
878 : (LOOP)->aux))
880 extern bitmap blocks_to_reschedule;
883 /* A variable to track which part of rtx we are scanning in
884 sched-deps.c: sched_analyze_insn (). */
885 enum deps_where_t
887 DEPS_IN_INSN,
888 DEPS_IN_LHS,
889 DEPS_IN_RHS,
890 DEPS_IN_NOWHERE
894 /* Per basic block data for the whole CFG. */
895 struct sel_global_bb_info_def
897 /* For each bb header this field contains a set of live registers.
898 For all other insns this field has a NULL.
899 We also need to know LV sets for the instructions, that are immediately
900 after the border of the region. */
901 regset lv_set;
903 /* Status of LV_SET.
904 true - block has usable LV_SET.
905 false - block's LV_SET should be recomputed. */
906 bool lv_set_valid_p;
909 typedef sel_global_bb_info_def *sel_global_bb_info_t;
912 /* Per basic block data. This array is indexed by basic block index. */
913 extern vec<sel_global_bb_info_def> sel_global_bb_info;
915 extern void sel_extend_global_bb_info (void);
916 extern void sel_finish_global_bb_info (void);
918 /* Get data for BB. */
919 #define SEL_GLOBAL_BB_INFO(BB) \
920 (&sel_global_bb_info[(BB)->index])
922 /* Access macros. */
923 #define BB_LV_SET(BB) (SEL_GLOBAL_BB_INFO (BB)->lv_set)
924 #define BB_LV_SET_VALID_P(BB) (SEL_GLOBAL_BB_INFO (BB)->lv_set_valid_p)
926 /* Per basic block data for the region. */
927 struct sel_region_bb_info_def
929 /* This insn stream is constructed in such a way that it should be
930 traversed by PREV_INSN field - (*not* NEXT_INSN). */
931 rtx_insn *note_list;
933 /* Cached availability set at the beginning of a block.
934 See also AV_LEVEL () for conditions when this av_set can be used. */
935 av_set_t av_set;
937 /* If (AV_LEVEL == GLOBAL_LEVEL) then AV is valid. */
938 int av_level;
941 typedef sel_region_bb_info_def *sel_region_bb_info_t;
944 /* Per basic block data. This array is indexed by basic block index. */
945 extern vec<sel_region_bb_info_def> sel_region_bb_info;
947 /* Get data for BB. */
948 #define SEL_REGION_BB_INFO(BB) (&sel_region_bb_info[(BB)->index])
950 /* Get BB's note_list.
951 A note_list is a list of various notes that was scattered across BB
952 before scheduling, and will be appended at the beginning of BB after
953 scheduling is finished. */
954 #define BB_NOTE_LIST(BB) (SEL_REGION_BB_INFO (BB)->note_list)
956 #define BB_AV_SET(BB) (SEL_REGION_BB_INFO (BB)->av_set)
957 #define BB_AV_LEVEL(BB) (SEL_REGION_BB_INFO (BB)->av_level)
958 #define BB_AV_SET_VALID_P(BB) (BB_AV_LEVEL (BB) == global_level)
960 /* Used in bb_in_ebb_p. */
961 extern bitmap_head *forced_ebb_heads;
963 /* The loop nest being pipelined. */
964 extern struct loop *current_loop_nest;
966 /* Saves pipelined blocks. Bitmap is indexed by bb->index. */
967 extern sbitmap bbs_pipelined;
969 /* Various flags. */
970 extern bool enable_moveup_set_path_p;
971 extern bool pipelining_p;
972 extern bool bookkeeping_p;
973 extern int max_insns_to_rename;
974 extern bool preheader_removed;
976 /* Software lookahead window size.
977 According to the results in Nakatani and Ebcioglu [1993], window size of 16
978 is enough to extract most ILP in integer code. */
979 #define MAX_WS (PARAM_VALUE (PARAM_SELSCHED_MAX_LOOKAHEAD))
981 extern regset sel_all_regs;
984 /* Successor iterator backend. */
985 struct succ_iterator
987 /* True if we're at BB end. */
988 bool bb_end;
990 /* An edge on which we're iterating. */
991 edge e1;
993 /* The previous edge saved after skipping empty blocks. */
994 edge e2;
996 /* Edge iterator used when there are successors in other basic blocks. */
997 edge_iterator ei;
999 /* Successor block we're traversing. */
1000 basic_block bb;
1002 /* Flags that are passed to the iterator. We return only successors
1003 that comply to these flags. */
1004 short flags;
1006 /* When flags include SUCCS_ALL, this will be set to the exact type
1007 of the successor we're traversing now. */
1008 short current_flags;
1010 /* If skip to loop exits, save here information about loop exits. */
1011 int current_exit;
1012 vec<edge> loop_exits;
1015 /* A structure returning all successor's information. */
1016 struct succs_info
1018 /* Flags that these succcessors were computed with. */
1019 short flags;
1021 /* Successors that correspond to the flags. */
1022 insn_vec_t succs_ok;
1024 /* Their probabilities. As of now, we don't need this for other
1025 successors. */
1026 vec<int> probs_ok;
1028 /* Other successors. */
1029 insn_vec_t succs_other;
1031 /* Probability of all successors. */
1032 int all_prob;
1034 /* The number of all successors. */
1035 int all_succs_n;
1037 /* The number of good successors. */
1038 int succs_ok_n;
1041 /* Some needed definitions. */
1042 extern basic_block after_recovery;
1044 extern rtx_insn *sel_bb_head (basic_block);
1045 extern rtx_insn *sel_bb_end (basic_block);
1046 extern bool sel_bb_empty_p (basic_block);
1047 extern bool in_current_region_p (basic_block);
1049 /* True when BB is a header of the inner loop. */
1050 static inline bool
1051 inner_loop_header_p (basic_block bb)
1053 struct loop *inner_loop;
1055 if (!current_loop_nest)
1056 return false;
1058 if (bb == EXIT_BLOCK_PTR_FOR_FN (cfun))
1059 return false;
1061 inner_loop = bb->loop_father;
1062 if (inner_loop == current_loop_nest)
1063 return false;
1065 /* If successor belongs to another loop. */
1066 if (bb == inner_loop->header
1067 && flow_bb_inside_loop_p (current_loop_nest, bb))
1069 /* Could be '=' here because of wrong loop depths. */
1070 gcc_assert (loop_depth (inner_loop) >= loop_depth (current_loop_nest));
1071 return true;
1074 return false;
1077 /* Return exit edges of LOOP, filtering out edges with the same dest bb. */
1078 static inline vec<edge>
1079 get_loop_exit_edges_unique_dests (const struct loop *loop)
1081 vec<edge> edges = vNULL;
1082 struct loop_exit *exit;
1084 gcc_assert (loop->latch != EXIT_BLOCK_PTR_FOR_FN (cfun)
1085 && current_loops->state & LOOPS_HAVE_RECORDED_EXITS);
1087 for (exit = loop->exits->next; exit->e; exit = exit->next)
1089 int i;
1090 edge e;
1091 bool was_dest = false;
1093 for (i = 0; edges.iterate (i, &e); i++)
1094 if (e->dest == exit->e->dest)
1096 was_dest = true;
1097 break;
1100 if (!was_dest)
1101 edges.safe_push (exit->e);
1103 return edges;
1106 static bool
1107 sel_bb_empty_or_nop_p (basic_block bb)
1109 insn_t first = sel_bb_head (bb), last;
1111 if (first == NULL_RTX)
1112 return true;
1114 if (!INSN_NOP_P (first))
1115 return false;
1117 if (bb == EXIT_BLOCK_PTR_FOR_FN (cfun))
1118 return false;
1120 last = sel_bb_end (bb);
1121 if (first != last)
1122 return false;
1124 return true;
1127 /* Collect all loop exits recursively, skipping empty BBs between them.
1128 E.g. if BB is a loop header which has several loop exits,
1129 traverse all of them and if any of them turns out to be another loop header
1130 (after skipping empty BBs), add its loop exits to the resulting vector
1131 as well. */
1132 static inline vec<edge>
1133 get_all_loop_exits (basic_block bb)
1135 vec<edge> exits = vNULL;
1137 /* If bb is empty, and we're skipping to loop exits, then
1138 consider bb as a possible gate to the inner loop now. */
1139 while (sel_bb_empty_or_nop_p (bb)
1140 && in_current_region_p (bb)
1141 && EDGE_COUNT (bb->succs) > 0)
1143 bb = single_succ (bb);
1145 /* This empty block could only lead outside the region. */
1146 gcc_assert (! in_current_region_p (bb));
1149 /* And now check whether we should skip over inner loop. */
1150 if (inner_loop_header_p (bb))
1152 struct loop *this_loop;
1153 struct loop *pred_loop = NULL;
1154 int i;
1155 edge e;
1157 for (this_loop = bb->loop_father;
1158 this_loop && this_loop != current_loop_nest;
1159 this_loop = loop_outer (this_loop))
1160 pred_loop = this_loop;
1162 this_loop = pred_loop;
1163 gcc_assert (this_loop != NULL);
1165 exits = get_loop_exit_edges_unique_dests (this_loop);
1167 /* Traverse all loop headers. */
1168 for (i = 0; exits.iterate (i, &e); i++)
1169 if (in_current_region_p (e->dest)
1170 || inner_loop_header_p (e->dest))
1172 vec<edge> next_exits = get_all_loop_exits (e->dest);
1174 if (next_exits.exists ())
1176 int j;
1177 edge ne;
1179 /* Add all loop exits for the current edge into the
1180 resulting vector. */
1181 for (j = 0; next_exits.iterate (j, &ne); j++)
1182 exits.safe_push (ne);
1184 /* Remove the original edge. */
1185 exits.ordered_remove (i);
1187 /* Decrease the loop counter so we won't skip anything. */
1188 i--;
1189 continue;
1194 return exits;
1197 /* Flags to pass to compute_succs_info and FOR_EACH_SUCC.
1198 Any successor will fall into exactly one category. */
1200 /* Include normal successors. */
1201 #define SUCCS_NORMAL (1)
1203 /* Include back-edge successors. */
1204 #define SUCCS_BACK (2)
1206 /* Include successors that are outside of the current region. */
1207 #define SUCCS_OUT (4)
1209 /* When pipelining of the outer loops is enabled, skip innermost loops
1210 to their exits. */
1211 #define SUCCS_SKIP_TO_LOOP_EXITS (8)
1213 /* Include all successors. */
1214 #define SUCCS_ALL (SUCCS_NORMAL | SUCCS_BACK | SUCCS_OUT)
1216 /* We need to return a succ_iterator to avoid 'unitialized' warning
1217 during bootstrap. */
1218 static inline succ_iterator
1219 _succ_iter_start (insn_t *succp, insn_t insn, int flags)
1221 succ_iterator i;
1223 basic_block bb = BLOCK_FOR_INSN (insn);
1225 gcc_assert (INSN_P (insn) || NOTE_INSN_BASIC_BLOCK_P (insn));
1227 i.flags = flags;
1229 /* Avoid 'uninitialized' warning. */
1230 *succp = NULL;
1231 i.e1 = NULL;
1232 i.e2 = NULL;
1233 i.bb = bb;
1234 i.current_flags = 0;
1235 i.current_exit = -1;
1236 i.loop_exits.create (0);
1238 if (bb != EXIT_BLOCK_PTR_FOR_FN (cfun) && BB_END (bb) != insn)
1240 i.bb_end = false;
1242 /* Avoid 'uninitialized' warning. */
1243 i.ei.index = 0;
1244 i.ei.container = 0;
1246 else
1248 i.ei = ei_start (bb->succs);
1249 i.bb_end = true;
1252 return i;
1255 static inline bool
1256 _succ_iter_cond (succ_iterator *ip, insn_t *succp, insn_t insn,
1257 bool check (edge, succ_iterator *))
1259 if (!ip->bb_end)
1261 /* When we're in a middle of a basic block, return
1262 the next insn immediately, but only when SUCCS_NORMAL is set. */
1263 if (*succp != NULL || (ip->flags & SUCCS_NORMAL) == 0)
1264 return false;
1266 *succp = NEXT_INSN (insn);
1267 ip->current_flags = SUCCS_NORMAL;
1268 return true;
1270 else
1272 while (1)
1274 edge e_tmp = NULL;
1276 /* First, try loop exits, if we have them. */
1277 if (ip->loop_exits.exists ())
1281 ip->loop_exits.iterate (ip->current_exit, &e_tmp);
1282 ip->current_exit++;
1284 while (e_tmp && !check (e_tmp, ip));
1286 if (!e_tmp)
1287 ip->loop_exits.release ();
1290 /* If we have found a successor, then great. */
1291 if (e_tmp)
1293 ip->e1 = e_tmp;
1294 break;
1297 /* If not, then try the next edge. */
1298 while (ei_cond (ip->ei, &(ip->e1)))
1300 basic_block bb = ip->e1->dest;
1302 /* Consider bb as a possible loop header. */
1303 if ((ip->flags & SUCCS_SKIP_TO_LOOP_EXITS)
1304 && flag_sel_sched_pipelining_outer_loops
1305 && (!in_current_region_p (bb)
1306 || BLOCK_TO_BB (ip->bb->index)
1307 < BLOCK_TO_BB (bb->index)))
1309 /* Get all loop exits recursively. */
1310 ip->loop_exits = get_all_loop_exits (bb);
1312 if (ip->loop_exits.exists ())
1314 ip->current_exit = 0;
1315 /* Move the iterator now, because we won't do
1316 succ_iter_next until loop exits will end. */
1317 ei_next (&(ip->ei));
1318 break;
1322 /* bb is not a loop header, check as usual. */
1323 if (check (ip->e1, ip))
1324 break;
1326 ei_next (&(ip->ei));
1329 /* If loop_exits are non null, we have found an inner loop;
1330 do one more iteration to fetch an edge from these exits. */
1331 if (ip->loop_exits.exists ())
1332 continue;
1334 /* Otherwise, we've found an edge in a usual way. Break now. */
1335 break;
1338 if (ip->e1)
1340 basic_block bb = ip->e2->dest;
1342 if (bb == EXIT_BLOCK_PTR_FOR_FN (cfun) || bb == after_recovery)
1343 *succp = exit_insn;
1344 else
1346 *succp = sel_bb_head (bb);
1348 gcc_assert (ip->flags != SUCCS_NORMAL
1349 || *succp == NEXT_INSN (bb_note (bb)));
1350 gcc_assert (BLOCK_FOR_INSN (*succp) == bb);
1353 return true;
1355 else
1356 return false;
1360 static inline void
1361 _succ_iter_next (succ_iterator *ip)
1363 gcc_assert (!ip->e2 || ip->e1);
1365 if (ip->bb_end && ip->e1 && !ip->loop_exits.exists ())
1366 ei_next (&(ip->ei));
1369 /* Returns true when E1 is an eligible successor edge, possibly skipping
1370 empty blocks. When E2P is not null, the resulting edge is written there.
1371 FLAGS are used to specify whether back edges and out-of-region edges
1372 should be considered. */
1373 static inline bool
1374 _eligible_successor_edge_p (edge e1, succ_iterator *ip)
1376 edge e2 = e1;
1377 basic_block bb;
1378 int flags = ip->flags;
1379 bool src_outside_rgn = !in_current_region_p (e1->src);
1381 gcc_assert (flags != 0);
1383 if (src_outside_rgn)
1385 /* Any successor of the block that is outside current region is
1386 ineligible, except when we're skipping to loop exits. */
1387 gcc_assert (flags & (SUCCS_OUT | SUCCS_SKIP_TO_LOOP_EXITS));
1389 if (flags & SUCCS_OUT)
1390 return false;
1393 bb = e2->dest;
1395 /* Skip empty blocks, but be careful not to leave the region. */
1396 while (1)
1398 if (!sel_bb_empty_p (bb))
1400 edge ne;
1401 basic_block nbb;
1403 if (!sel_bb_empty_or_nop_p (bb))
1404 break;
1406 ne = EDGE_SUCC (bb, 0);
1407 nbb = ne->dest;
1409 if (!in_current_region_p (nbb)
1410 && !(flags & SUCCS_OUT))
1411 break;
1413 e2 = ne;
1414 bb = nbb;
1415 continue;
1418 if (!in_current_region_p (bb)
1419 && !(flags & SUCCS_OUT))
1420 return false;
1422 if (EDGE_COUNT (bb->succs) == 0)
1423 return false;
1425 e2 = EDGE_SUCC (bb, 0);
1426 bb = e2->dest;
1429 /* Save the second edge for later checks. */
1430 ip->e2 = e2;
1432 if (in_current_region_p (bb))
1434 /* BLOCK_TO_BB sets topological order of the region here.
1435 It is important to use real predecessor here, which is ip->bb,
1436 as we may well have e1->src outside current region,
1437 when skipping to loop exits. */
1438 bool succeeds_in_top_order = (BLOCK_TO_BB (ip->bb->index)
1439 < BLOCK_TO_BB (bb->index));
1441 /* This is true for the all cases except the last one. */
1442 ip->current_flags = SUCCS_NORMAL;
1444 /* We are advancing forward in the region, as usual. */
1445 if (succeeds_in_top_order)
1447 /* We are skipping to loop exits here. */
1448 gcc_assert (!src_outside_rgn
1449 || flag_sel_sched_pipelining_outer_loops);
1450 return !!(flags & SUCCS_NORMAL);
1453 /* This is a back edge. During pipelining we ignore back edges,
1454 but only when it leads to the same loop. It can lead to the header
1455 of the outer loop, which will also be the preheader of
1456 the current loop. */
1457 if (pipelining_p
1458 && e1->src->loop_father == bb->loop_father)
1459 return !!(flags & SUCCS_NORMAL);
1461 /* A back edge should be requested explicitly. */
1462 ip->current_flags = SUCCS_BACK;
1463 return !!(flags & SUCCS_BACK);
1466 ip->current_flags = SUCCS_OUT;
1467 return !!(flags & SUCCS_OUT);
1470 #define FOR_EACH_SUCC_1(SUCC, ITER, INSN, FLAGS) \
1471 for ((ITER) = _succ_iter_start (&(SUCC), (INSN), (FLAGS)); \
1472 _succ_iter_cond (&(ITER), &(SUCC), (INSN), _eligible_successor_edge_p); \
1473 _succ_iter_next (&(ITER)))
1475 #define FOR_EACH_SUCC(SUCC, ITER, INSN) \
1476 FOR_EACH_SUCC_1 (SUCC, ITER, INSN, SUCCS_NORMAL)
1478 /* Return the current edge along which a successor was built. */
1479 #define SUCC_ITER_EDGE(ITER) ((ITER)->e1)
1481 /* Return the next block of BB not running into inconsistencies. */
1482 static inline basic_block
1483 bb_next_bb (basic_block bb)
1485 switch (EDGE_COUNT (bb->succs))
1487 case 0:
1488 return bb->next_bb;
1490 case 1:
1491 return single_succ (bb);
1493 case 2:
1494 return FALLTHRU_EDGE (bb)->dest;
1496 default:
1497 return bb->next_bb;
1500 gcc_unreachable ();
1505 /* Functions that are used in sel-sched.c. */
1507 /* List functions. */
1508 extern ilist_t ilist_copy (ilist_t);
1509 extern ilist_t ilist_invert (ilist_t);
1510 extern void blist_add (blist_t *, insn_t, ilist_t, deps_t);
1511 extern void blist_remove (blist_t *);
1512 extern void flist_tail_init (flist_tail_t);
1514 extern fence_t flist_lookup (flist_t, insn_t);
1515 extern void flist_clear (flist_t *);
1516 extern void def_list_add (def_list_t *, insn_t, bool);
1518 /* Target context functions. */
1519 extern tc_t create_target_context (bool);
1520 extern void set_target_context (tc_t);
1521 extern void reset_target_context (tc_t, bool);
1523 /* Deps context functions. */
1524 extern void advance_deps_context (deps_t, insn_t);
1526 /* Fences functions. */
1527 extern void init_fences (insn_t);
1528 extern void add_clean_fence_to_fences (flist_tail_t, insn_t, fence_t);
1529 extern void add_dirty_fence_to_fences (flist_tail_t, insn_t, fence_t);
1530 extern void move_fence_to_fences (flist_t, flist_tail_t);
1532 /* Pool functions. */
1533 extern regset get_regset_from_pool (void);
1534 extern regset get_clear_regset_from_pool (void);
1535 extern void return_regset_to_pool (regset);
1536 extern void free_regset_pool (void);
1538 extern insn_t get_nop_from_pool (insn_t);
1539 extern void return_nop_to_pool (insn_t, bool);
1540 extern void free_nop_pool (void);
1542 /* Vinsns functions. */
1543 extern bool vinsn_separable_p (vinsn_t);
1544 extern bool vinsn_cond_branch_p (vinsn_t);
1545 extern void recompute_vinsn_lhs_rhs (vinsn_t);
1546 extern int sel_vinsn_cost (vinsn_t);
1547 extern insn_t sel_gen_insn_from_rtx_after (rtx, expr_t, int, insn_t);
1548 extern insn_t sel_gen_recovery_insn_from_rtx_after (rtx, expr_t, int, insn_t);
1549 extern insn_t sel_gen_insn_from_expr_after (expr_t, vinsn_t, int, insn_t);
1550 extern insn_t sel_move_insn (expr_t, int, insn_t);
1551 extern void vinsn_attach (vinsn_t);
1552 extern void vinsn_detach (vinsn_t);
1553 extern vinsn_t vinsn_copy (vinsn_t, bool);
1554 extern bool vinsn_equal_p (vinsn_t, vinsn_t);
1556 /* EXPR functions. */
1557 extern void copy_expr (expr_t, expr_t);
1558 extern void copy_expr_onside (expr_t, expr_t);
1559 extern void merge_expr_data (expr_t, expr_t, insn_t);
1560 extern void merge_expr (expr_t, expr_t, insn_t);
1561 extern void clear_expr (expr_t);
1562 extern unsigned expr_dest_regno (expr_t);
1563 extern rtx expr_dest_reg (expr_t);
1564 extern int find_in_history_vect (vec<expr_history_def> ,
1565 rtx, vinsn_t, bool);
1566 extern void insert_in_history_vect (vec<expr_history_def> *,
1567 unsigned, enum local_trans_type,
1568 vinsn_t, vinsn_t, ds_t);
1569 extern void mark_unavailable_targets (av_set_t, av_set_t, regset);
1570 extern int speculate_expr (expr_t, ds_t);
1572 /* Av set functions. */
1573 extern void av_set_add (av_set_t *, expr_t);
1574 extern void av_set_iter_remove (av_set_iterator *);
1575 extern expr_t av_set_lookup (av_set_t, vinsn_t);
1576 extern expr_t merge_with_other_exprs (av_set_t *, av_set_iterator *, expr_t);
1577 extern bool av_set_is_in_p (av_set_t, vinsn_t);
1578 extern av_set_t av_set_copy (av_set_t);
1579 extern void av_set_union_and_clear (av_set_t *, av_set_t *, insn_t);
1580 extern void av_set_union_and_live (av_set_t *, av_set_t *, regset, regset, insn_t);
1581 extern void av_set_clear (av_set_t *);
1582 extern void av_set_leave_one_nonspec (av_set_t *);
1583 extern expr_t av_set_element (av_set_t, int);
1584 extern void av_set_substract_cond_branches (av_set_t *);
1585 extern void av_set_split_usefulness (av_set_t, int, int);
1586 extern void av_set_code_motion_filter (av_set_t *, av_set_t);
1588 extern void sel_save_haifa_priorities (void);
1590 extern void sel_init_global_and_expr (bb_vec_t);
1591 extern void sel_finish_global_and_expr (void);
1593 extern regset compute_live (insn_t);
1594 extern bool register_unavailable_p (regset, rtx);
1596 /* Dependence analysis functions. */
1597 extern void sel_clear_has_dependence (void);
1598 extern ds_t has_dependence_p (expr_t, insn_t, ds_t **);
1600 extern int tick_check_p (expr_t, deps_t, fence_t);
1602 /* Functions to work with insns. */
1603 extern bool lhs_of_insn_equals_to_dest_p (insn_t, rtx);
1604 extern bool insn_eligible_for_subst_p (insn_t);
1605 extern void get_dest_and_mode (rtx, rtx *, enum machine_mode *);
1607 extern bool bookkeeping_can_be_created_if_moved_through_p (insn_t);
1608 extern bool sel_remove_insn (insn_t, bool, bool);
1609 extern bool bb_header_p (insn_t);
1610 extern void sel_init_invalid_data_sets (insn_t);
1611 extern bool insn_at_boundary_p (insn_t);
1613 /* Basic block and CFG functions. */
1615 extern rtx_insn *sel_bb_head (basic_block);
1616 extern bool sel_bb_head_p (insn_t);
1617 extern rtx_insn *sel_bb_end (basic_block);
1618 extern bool sel_bb_end_p (insn_t);
1619 extern bool sel_bb_empty_p (basic_block);
1621 extern bool in_current_region_p (basic_block);
1622 extern basic_block fallthru_bb_of_jump (const rtx_insn *);
1624 extern void sel_init_bbs (bb_vec_t);
1625 extern void sel_finish_bbs (void);
1627 extern struct succs_info * compute_succs_info (insn_t, short);
1628 extern void free_succs_info (struct succs_info *);
1629 extern bool sel_insn_has_single_succ_p (insn_t, int);
1630 extern bool sel_num_cfg_preds_gt_1 (insn_t);
1631 extern int get_seqno_by_preds (rtx_insn *);
1633 extern bool bb_ends_ebb_p (basic_block);
1634 extern bool in_same_ebb_p (insn_t, insn_t);
1636 extern bool tidy_control_flow (basic_block, bool);
1637 extern void free_bb_note_pool (void);
1639 extern void purge_empty_blocks (void);
1640 extern basic_block sel_split_edge (edge);
1641 extern basic_block sel_create_recovery_block (insn_t);
1642 extern bool sel_redirect_edge_and_branch (edge, basic_block);
1643 extern void sel_redirect_edge_and_branch_force (edge, basic_block);
1644 extern void sel_init_pipelining (void);
1645 extern void sel_finish_pipelining (void);
1646 extern void sel_sched_region (int);
1647 extern loop_p get_loop_nest_for_rgn (unsigned int);
1648 extern bool considered_for_pipelining_p (struct loop *);
1649 extern void make_region_from_loop_preheader (vec<basic_block> *&);
1650 extern void sel_add_loop_preheaders (bb_vec_t *);
1651 extern bool sel_is_loop_preheader_p (basic_block);
1652 extern void clear_outdated_rtx_info (basic_block);
1653 extern void free_data_sets (basic_block);
1654 extern void exchange_data_sets (basic_block, basic_block);
1655 extern void copy_data_sets (basic_block, basic_block);
1657 extern void sel_register_cfg_hooks (void);
1658 extern void sel_unregister_cfg_hooks (void);
1660 /* Expression transformation routines. */
1661 extern rtx_insn *create_insn_rtx_from_pattern (rtx, rtx);
1662 extern vinsn_t create_vinsn_from_insn_rtx (rtx_insn *, bool);
1663 extern rtx_insn *create_copy_of_insn_rtx (rtx);
1664 extern void change_vinsn_in_expr (expr_t, vinsn_t);
1666 /* Various initialization functions. */
1667 extern void init_lv_sets (void);
1668 extern void free_lv_sets (void);
1669 extern void setup_nop_and_exit_insns (void);
1670 extern void free_nop_and_exit_insns (void);
1671 extern void free_data_for_scheduled_insn (insn_t);
1672 extern void setup_nop_vinsn (void);
1673 extern void free_nop_vinsn (void);
1674 extern void sel_set_sched_flags (void);
1675 extern void sel_setup_sched_infos (void);
1676 extern void alloc_sched_pools (void);
1677 extern void free_sched_pools (void);
1679 #endif /* GCC_SEL_SCHED_IR_H */