* pt.c (lookup_template_class_1): Splice out abi_tag attribute if
[official-gcc.git] / gcc / reload1.c
blob22d3e8e1e5917974d15d27ca6fb35a825f55ca41
1 /* Reload pseudo regs into hard regs for insns that require hard regs.
2 Copyright (C) 1987-2014 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "tm.h"
25 #include "machmode.h"
26 #include "hard-reg-set.h"
27 #include "rtl-error.h"
28 #include "tm_p.h"
29 #include "obstack.h"
30 #include "insn-config.h"
31 #include "ggc.h"
32 #include "flags.h"
33 #include "function.h"
34 #include "expr.h"
35 #include "optabs.h"
36 #include "regs.h"
37 #include "addresses.h"
38 #include "basic-block.h"
39 #include "df.h"
40 #include "reload.h"
41 #include "recog.h"
42 #include "except.h"
43 #include "tree.h"
44 #include "ira.h"
45 #include "target.h"
46 #include "emit-rtl.h"
47 #include "dumpfile.h"
48 #include "rtl-iter.h"
50 /* This file contains the reload pass of the compiler, which is
51 run after register allocation has been done. It checks that
52 each insn is valid (operands required to be in registers really
53 are in registers of the proper class) and fixes up invalid ones
54 by copying values temporarily into registers for the insns
55 that need them.
57 The results of register allocation are described by the vector
58 reg_renumber; the insns still contain pseudo regs, but reg_renumber
59 can be used to find which hard reg, if any, a pseudo reg is in.
61 The technique we always use is to free up a few hard regs that are
62 called ``reload regs'', and for each place where a pseudo reg
63 must be in a hard reg, copy it temporarily into one of the reload regs.
65 Reload regs are allocated locally for every instruction that needs
66 reloads. When there are pseudos which are allocated to a register that
67 has been chosen as a reload reg, such pseudos must be ``spilled''.
68 This means that they go to other hard regs, or to stack slots if no other
69 available hard regs can be found. Spilling can invalidate more
70 insns, requiring additional need for reloads, so we must keep checking
71 until the process stabilizes.
73 For machines with different classes of registers, we must keep track
74 of the register class needed for each reload, and make sure that
75 we allocate enough reload registers of each class.
77 The file reload.c contains the code that checks one insn for
78 validity and reports the reloads that it needs. This file
79 is in charge of scanning the entire rtl code, accumulating the
80 reload needs, spilling, assigning reload registers to use for
81 fixing up each insn, and generating the new insns to copy values
82 into the reload registers. */
84 struct target_reload default_target_reload;
85 #if SWITCHABLE_TARGET
86 struct target_reload *this_target_reload = &default_target_reload;
87 #endif
89 #define spill_indirect_levels \
90 (this_target_reload->x_spill_indirect_levels)
92 /* During reload_as_needed, element N contains a REG rtx for the hard reg
93 into which reg N has been reloaded (perhaps for a previous insn). */
94 static rtx *reg_last_reload_reg;
96 /* Elt N nonzero if reg_last_reload_reg[N] has been set in this insn
97 for an output reload that stores into reg N. */
98 static regset_head reg_has_output_reload;
100 /* Indicates which hard regs are reload-registers for an output reload
101 in the current insn. */
102 static HARD_REG_SET reg_is_output_reload;
104 /* Widest width in which each pseudo reg is referred to (via subreg). */
105 static unsigned int *reg_max_ref_width;
107 /* Vector to remember old contents of reg_renumber before spilling. */
108 static short *reg_old_renumber;
110 /* During reload_as_needed, element N contains the last pseudo regno reloaded
111 into hard register N. If that pseudo reg occupied more than one register,
112 reg_reloaded_contents points to that pseudo for each spill register in
113 use; all of these must remain set for an inheritance to occur. */
114 static int reg_reloaded_contents[FIRST_PSEUDO_REGISTER];
116 /* During reload_as_needed, element N contains the insn for which
117 hard register N was last used. Its contents are significant only
118 when reg_reloaded_valid is set for this register. */
119 static rtx_insn *reg_reloaded_insn[FIRST_PSEUDO_REGISTER];
121 /* Indicate if reg_reloaded_insn / reg_reloaded_contents is valid. */
122 static HARD_REG_SET reg_reloaded_valid;
123 /* Indicate if the register was dead at the end of the reload.
124 This is only valid if reg_reloaded_contents is set and valid. */
125 static HARD_REG_SET reg_reloaded_dead;
127 /* Indicate whether the register's current value is one that is not
128 safe to retain across a call, even for registers that are normally
129 call-saved. This is only meaningful for members of reg_reloaded_valid. */
130 static HARD_REG_SET reg_reloaded_call_part_clobbered;
132 /* Number of spill-regs so far; number of valid elements of spill_regs. */
133 static int n_spills;
135 /* In parallel with spill_regs, contains REG rtx's for those regs.
136 Holds the last rtx used for any given reg, or 0 if it has never
137 been used for spilling yet. This rtx is reused, provided it has
138 the proper mode. */
139 static rtx spill_reg_rtx[FIRST_PSEUDO_REGISTER];
141 /* In parallel with spill_regs, contains nonzero for a spill reg
142 that was stored after the last time it was used.
143 The precise value is the insn generated to do the store. */
144 static rtx_insn *spill_reg_store[FIRST_PSEUDO_REGISTER];
146 /* This is the register that was stored with spill_reg_store. This is a
147 copy of reload_out / reload_out_reg when the value was stored; if
148 reload_out is a MEM, spill_reg_stored_to will be set to reload_out_reg. */
149 static rtx spill_reg_stored_to[FIRST_PSEUDO_REGISTER];
151 /* This table is the inverse mapping of spill_regs:
152 indexed by hard reg number,
153 it contains the position of that reg in spill_regs,
154 or -1 for something that is not in spill_regs.
156 ?!? This is no longer accurate. */
157 static short spill_reg_order[FIRST_PSEUDO_REGISTER];
159 /* This reg set indicates registers that can't be used as spill registers for
160 the currently processed insn. These are the hard registers which are live
161 during the insn, but not allocated to pseudos, as well as fixed
162 registers. */
163 static HARD_REG_SET bad_spill_regs;
165 /* These are the hard registers that can't be used as spill register for any
166 insn. This includes registers used for user variables and registers that
167 we can't eliminate. A register that appears in this set also can't be used
168 to retry register allocation. */
169 static HARD_REG_SET bad_spill_regs_global;
171 /* Describes order of use of registers for reloading
172 of spilled pseudo-registers. `n_spills' is the number of
173 elements that are actually valid; new ones are added at the end.
175 Both spill_regs and spill_reg_order are used on two occasions:
176 once during find_reload_regs, where they keep track of the spill registers
177 for a single insn, but also during reload_as_needed where they show all
178 the registers ever used by reload. For the latter case, the information
179 is calculated during finish_spills. */
180 static short spill_regs[FIRST_PSEUDO_REGISTER];
182 /* This vector of reg sets indicates, for each pseudo, which hard registers
183 may not be used for retrying global allocation because the register was
184 formerly spilled from one of them. If we allowed reallocating a pseudo to
185 a register that it was already allocated to, reload might not
186 terminate. */
187 static HARD_REG_SET *pseudo_previous_regs;
189 /* This vector of reg sets indicates, for each pseudo, which hard
190 registers may not be used for retrying global allocation because they
191 are used as spill registers during one of the insns in which the
192 pseudo is live. */
193 static HARD_REG_SET *pseudo_forbidden_regs;
195 /* All hard regs that have been used as spill registers for any insn are
196 marked in this set. */
197 static HARD_REG_SET used_spill_regs;
199 /* Index of last register assigned as a spill register. We allocate in
200 a round-robin fashion. */
201 static int last_spill_reg;
203 /* Record the stack slot for each spilled hard register. */
204 static rtx spill_stack_slot[FIRST_PSEUDO_REGISTER];
206 /* Width allocated so far for that stack slot. */
207 static unsigned int spill_stack_slot_width[FIRST_PSEUDO_REGISTER];
209 /* Record which pseudos needed to be spilled. */
210 static regset_head spilled_pseudos;
212 /* Record which pseudos changed their allocation in finish_spills. */
213 static regset_head changed_allocation_pseudos;
215 /* Used for communication between order_regs_for_reload and count_pseudo.
216 Used to avoid counting one pseudo twice. */
217 static regset_head pseudos_counted;
219 /* First uid used by insns created by reload in this function.
220 Used in find_equiv_reg. */
221 int reload_first_uid;
223 /* Flag set by local-alloc or global-alloc if anything is live in
224 a call-clobbered reg across calls. */
225 int caller_save_needed;
227 /* Set to 1 while reload_as_needed is operating.
228 Required by some machines to handle any generated moves differently. */
229 int reload_in_progress = 0;
231 /* This obstack is used for allocation of rtl during register elimination.
232 The allocated storage can be freed once find_reloads has processed the
233 insn. */
234 static struct obstack reload_obstack;
236 /* Points to the beginning of the reload_obstack. All insn_chain structures
237 are allocated first. */
238 static char *reload_startobj;
240 /* The point after all insn_chain structures. Used to quickly deallocate
241 memory allocated in copy_reloads during calculate_needs_all_insns. */
242 static char *reload_firstobj;
244 /* This points before all local rtl generated by register elimination.
245 Used to quickly free all memory after processing one insn. */
246 static char *reload_insn_firstobj;
248 /* List of insn_chain instructions, one for every insn that reload needs to
249 examine. */
250 struct insn_chain *reload_insn_chain;
252 /* TRUE if we potentially left dead insns in the insn stream and want to
253 run DCE immediately after reload, FALSE otherwise. */
254 static bool need_dce;
256 /* List of all insns needing reloads. */
257 static struct insn_chain *insns_need_reload;
259 /* This structure is used to record information about register eliminations.
260 Each array entry describes one possible way of eliminating a register
261 in favor of another. If there is more than one way of eliminating a
262 particular register, the most preferred should be specified first. */
264 struct elim_table
266 int from; /* Register number to be eliminated. */
267 int to; /* Register number used as replacement. */
268 HOST_WIDE_INT initial_offset; /* Initial difference between values. */
269 int can_eliminate; /* Nonzero if this elimination can be done. */
270 int can_eliminate_previous; /* Value returned by TARGET_CAN_ELIMINATE
271 target hook in previous scan over insns
272 made by reload. */
273 HOST_WIDE_INT offset; /* Current offset between the two regs. */
274 HOST_WIDE_INT previous_offset;/* Offset at end of previous insn. */
275 int ref_outside_mem; /* "to" has been referenced outside a MEM. */
276 rtx from_rtx; /* REG rtx for the register to be eliminated.
277 We cannot simply compare the number since
278 we might then spuriously replace a hard
279 register corresponding to a pseudo
280 assigned to the reg to be eliminated. */
281 rtx to_rtx; /* REG rtx for the replacement. */
284 static struct elim_table *reg_eliminate = 0;
286 /* This is an intermediate structure to initialize the table. It has
287 exactly the members provided by ELIMINABLE_REGS. */
288 static const struct elim_table_1
290 const int from;
291 const int to;
292 } reg_eliminate_1[] =
294 /* If a set of eliminable registers was specified, define the table from it.
295 Otherwise, default to the normal case of the frame pointer being
296 replaced by the stack pointer. */
298 #ifdef ELIMINABLE_REGS
299 ELIMINABLE_REGS;
300 #else
301 {{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}};
302 #endif
304 #define NUM_ELIMINABLE_REGS ARRAY_SIZE (reg_eliminate_1)
306 /* Record the number of pending eliminations that have an offset not equal
307 to their initial offset. If nonzero, we use a new copy of each
308 replacement result in any insns encountered. */
309 int num_not_at_initial_offset;
311 /* Count the number of registers that we may be able to eliminate. */
312 static int num_eliminable;
313 /* And the number of registers that are equivalent to a constant that
314 can be eliminated to frame_pointer / arg_pointer + constant. */
315 static int num_eliminable_invariants;
317 /* For each label, we record the offset of each elimination. If we reach
318 a label by more than one path and an offset differs, we cannot do the
319 elimination. This information is indexed by the difference of the
320 number of the label and the first label number. We can't offset the
321 pointer itself as this can cause problems on machines with segmented
322 memory. The first table is an array of flags that records whether we
323 have yet encountered a label and the second table is an array of arrays,
324 one entry in the latter array for each elimination. */
326 static int first_label_num;
327 static char *offsets_known_at;
328 static HOST_WIDE_INT (*offsets_at)[NUM_ELIMINABLE_REGS];
330 vec<reg_equivs_t, va_gc> *reg_equivs;
332 /* Stack of addresses where an rtx has been changed. We can undo the
333 changes by popping items off the stack and restoring the original
334 value at each location.
336 We use this simplistic undo capability rather than copy_rtx as copy_rtx
337 will not make a deep copy of a normally sharable rtx, such as
338 (const (plus (symbol_ref) (const_int))). If such an expression appears
339 as R1 in gen_reload_chain_without_interm_reg_p, then a shared
340 rtx expression would be changed. See PR 42431. */
342 typedef rtx *rtx_p;
343 static vec<rtx_p> substitute_stack;
345 /* Number of labels in the current function. */
347 static int num_labels;
349 static void replace_pseudos_in (rtx *, enum machine_mode, rtx);
350 static void maybe_fix_stack_asms (void);
351 static void copy_reloads (struct insn_chain *);
352 static void calculate_needs_all_insns (int);
353 static int find_reg (struct insn_chain *, int);
354 static void find_reload_regs (struct insn_chain *);
355 static void select_reload_regs (void);
356 static void delete_caller_save_insns (void);
358 static void spill_failure (rtx_insn *, enum reg_class);
359 static void count_spilled_pseudo (int, int, int);
360 static void delete_dead_insn (rtx_insn *);
361 static void alter_reg (int, int, bool);
362 static void set_label_offsets (rtx, rtx_insn *, int);
363 static void check_eliminable_occurrences (rtx);
364 static void elimination_effects (rtx, enum machine_mode);
365 static rtx eliminate_regs_1 (rtx, enum machine_mode, rtx, bool, bool);
366 static int eliminate_regs_in_insn (rtx_insn *, int);
367 static void update_eliminable_offsets (void);
368 static void mark_not_eliminable (rtx, const_rtx, void *);
369 static void set_initial_elim_offsets (void);
370 static bool verify_initial_elim_offsets (void);
371 static void set_initial_label_offsets (void);
372 static void set_offsets_for_label (rtx_insn *);
373 static void init_eliminable_invariants (rtx_insn *, bool);
374 static void init_elim_table (void);
375 static void free_reg_equiv (void);
376 static void update_eliminables (HARD_REG_SET *);
377 static bool update_eliminables_and_spill (void);
378 static void elimination_costs_in_insn (rtx_insn *);
379 static void spill_hard_reg (unsigned int, int);
380 static int finish_spills (int);
381 static void scan_paradoxical_subregs (rtx);
382 static void count_pseudo (int);
383 static void order_regs_for_reload (struct insn_chain *);
384 static void reload_as_needed (int);
385 static void forget_old_reloads_1 (rtx, const_rtx, void *);
386 static void forget_marked_reloads (regset);
387 static int reload_reg_class_lower (const void *, const void *);
388 static void mark_reload_reg_in_use (unsigned int, int, enum reload_type,
389 enum machine_mode);
390 static void clear_reload_reg_in_use (unsigned int, int, enum reload_type,
391 enum machine_mode);
392 static int reload_reg_free_p (unsigned int, int, enum reload_type);
393 static int reload_reg_free_for_value_p (int, int, int, enum reload_type,
394 rtx, rtx, int, int);
395 static int free_for_value_p (int, enum machine_mode, int, enum reload_type,
396 rtx, rtx, int, int);
397 static int allocate_reload_reg (struct insn_chain *, int, int);
398 static int conflicts_with_override (rtx);
399 static void failed_reload (rtx_insn *, int);
400 static int set_reload_reg (int, int);
401 static void choose_reload_regs_init (struct insn_chain *, rtx *);
402 static void choose_reload_regs (struct insn_chain *);
403 static void emit_input_reload_insns (struct insn_chain *, struct reload *,
404 rtx, int);
405 static void emit_output_reload_insns (struct insn_chain *, struct reload *,
406 int);
407 static void do_input_reload (struct insn_chain *, struct reload *, int);
408 static void do_output_reload (struct insn_chain *, struct reload *, int);
409 static void emit_reload_insns (struct insn_chain *);
410 static void delete_output_reload (rtx_insn *, int, int, rtx);
411 static void delete_address_reloads (rtx_insn *, rtx_insn *);
412 static void delete_address_reloads_1 (rtx_insn *, rtx, rtx_insn *);
413 static void inc_for_reload (rtx, rtx, rtx, int);
414 #ifdef AUTO_INC_DEC
415 static void add_auto_inc_notes (rtx_insn *, rtx);
416 #endif
417 static void substitute (rtx *, const_rtx, rtx);
418 static bool gen_reload_chain_without_interm_reg_p (int, int);
419 static int reloads_conflict (int, int);
420 static rtx_insn *gen_reload (rtx, rtx, int, enum reload_type);
421 static rtx_insn *emit_insn_if_valid_for_reload (rtx);
423 /* Initialize the reload pass. This is called at the beginning of compilation
424 and may be called again if the target is reinitialized. */
426 void
427 init_reload (void)
429 int i;
431 /* Often (MEM (REG n)) is still valid even if (REG n) is put on the stack.
432 Set spill_indirect_levels to the number of levels such addressing is
433 permitted, zero if it is not permitted at all. */
435 rtx tem
436 = gen_rtx_MEM (Pmode,
437 gen_rtx_PLUS (Pmode,
438 gen_rtx_REG (Pmode,
439 LAST_VIRTUAL_REGISTER + 1),
440 gen_int_mode (4, Pmode)));
441 spill_indirect_levels = 0;
443 while (memory_address_p (QImode, tem))
445 spill_indirect_levels++;
446 tem = gen_rtx_MEM (Pmode, tem);
449 /* See if indirect addressing is valid for (MEM (SYMBOL_REF ...)). */
451 tem = gen_rtx_MEM (Pmode, gen_rtx_SYMBOL_REF (Pmode, "foo"));
452 indirect_symref_ok = memory_address_p (QImode, tem);
454 /* See if reg+reg is a valid (and offsettable) address. */
456 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
458 tem = gen_rtx_PLUS (Pmode,
459 gen_rtx_REG (Pmode, HARD_FRAME_POINTER_REGNUM),
460 gen_rtx_REG (Pmode, i));
462 /* This way, we make sure that reg+reg is an offsettable address. */
463 tem = plus_constant (Pmode, tem, 4);
465 if (memory_address_p (QImode, tem))
467 double_reg_address_ok = 1;
468 break;
472 /* Initialize obstack for our rtl allocation. */
473 if (reload_startobj == NULL)
475 gcc_obstack_init (&reload_obstack);
476 reload_startobj = XOBNEWVAR (&reload_obstack, char, 0);
479 INIT_REG_SET (&spilled_pseudos);
480 INIT_REG_SET (&changed_allocation_pseudos);
481 INIT_REG_SET (&pseudos_counted);
484 /* List of insn chains that are currently unused. */
485 static struct insn_chain *unused_insn_chains = 0;
487 /* Allocate an empty insn_chain structure. */
488 struct insn_chain *
489 new_insn_chain (void)
491 struct insn_chain *c;
493 if (unused_insn_chains == 0)
495 c = XOBNEW (&reload_obstack, struct insn_chain);
496 INIT_REG_SET (&c->live_throughout);
497 INIT_REG_SET (&c->dead_or_set);
499 else
501 c = unused_insn_chains;
502 unused_insn_chains = c->next;
504 c->is_caller_save_insn = 0;
505 c->need_operand_change = 0;
506 c->need_reload = 0;
507 c->need_elim = 0;
508 return c;
511 /* Small utility function to set all regs in hard reg set TO which are
512 allocated to pseudos in regset FROM. */
514 void
515 compute_use_by_pseudos (HARD_REG_SET *to, regset from)
517 unsigned int regno;
518 reg_set_iterator rsi;
520 EXECUTE_IF_SET_IN_REG_SET (from, FIRST_PSEUDO_REGISTER, regno, rsi)
522 int r = reg_renumber[regno];
524 if (r < 0)
526 /* reload_combine uses the information from DF_LIVE_IN,
527 which might still contain registers that have not
528 actually been allocated since they have an
529 equivalence. */
530 gcc_assert (ira_conflicts_p || reload_completed);
532 else
533 add_to_hard_reg_set (to, PSEUDO_REGNO_MODE (regno), r);
537 /* Replace all pseudos found in LOC with their corresponding
538 equivalences. */
540 static void
541 replace_pseudos_in (rtx *loc, enum machine_mode mem_mode, rtx usage)
543 rtx x = *loc;
544 enum rtx_code code;
545 const char *fmt;
546 int i, j;
548 if (! x)
549 return;
551 code = GET_CODE (x);
552 if (code == REG)
554 unsigned int regno = REGNO (x);
556 if (regno < FIRST_PSEUDO_REGISTER)
557 return;
559 x = eliminate_regs_1 (x, mem_mode, usage, true, false);
560 if (x != *loc)
562 *loc = x;
563 replace_pseudos_in (loc, mem_mode, usage);
564 return;
567 if (reg_equiv_constant (regno))
568 *loc = reg_equiv_constant (regno);
569 else if (reg_equiv_invariant (regno))
570 *loc = reg_equiv_invariant (regno);
571 else if (reg_equiv_mem (regno))
572 *loc = reg_equiv_mem (regno);
573 else if (reg_equiv_address (regno))
574 *loc = gen_rtx_MEM (GET_MODE (x), reg_equiv_address (regno));
575 else
577 gcc_assert (!REG_P (regno_reg_rtx[regno])
578 || REGNO (regno_reg_rtx[regno]) != regno);
579 *loc = regno_reg_rtx[regno];
582 return;
584 else if (code == MEM)
586 replace_pseudos_in (& XEXP (x, 0), GET_MODE (x), usage);
587 return;
590 /* Process each of our operands recursively. */
591 fmt = GET_RTX_FORMAT (code);
592 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
593 if (*fmt == 'e')
594 replace_pseudos_in (&XEXP (x, i), mem_mode, usage);
595 else if (*fmt == 'E')
596 for (j = 0; j < XVECLEN (x, i); j++)
597 replace_pseudos_in (& XVECEXP (x, i, j), mem_mode, usage);
600 /* Determine if the current function has an exception receiver block
601 that reaches the exit block via non-exceptional edges */
603 static bool
604 has_nonexceptional_receiver (void)
606 edge e;
607 edge_iterator ei;
608 basic_block *tos, *worklist, bb;
610 /* If we're not optimizing, then just err on the safe side. */
611 if (!optimize)
612 return true;
614 /* First determine which blocks can reach exit via normal paths. */
615 tos = worklist = XNEWVEC (basic_block, n_basic_blocks_for_fn (cfun) + 1);
617 FOR_EACH_BB_FN (bb, cfun)
618 bb->flags &= ~BB_REACHABLE;
620 /* Place the exit block on our worklist. */
621 EXIT_BLOCK_PTR_FOR_FN (cfun)->flags |= BB_REACHABLE;
622 *tos++ = EXIT_BLOCK_PTR_FOR_FN (cfun);
624 /* Iterate: find everything reachable from what we've already seen. */
625 while (tos != worklist)
627 bb = *--tos;
629 FOR_EACH_EDGE (e, ei, bb->preds)
630 if (!(e->flags & EDGE_ABNORMAL))
632 basic_block src = e->src;
634 if (!(src->flags & BB_REACHABLE))
636 src->flags |= BB_REACHABLE;
637 *tos++ = src;
641 free (worklist);
643 /* Now see if there's a reachable block with an exceptional incoming
644 edge. */
645 FOR_EACH_BB_FN (bb, cfun)
646 if (bb->flags & BB_REACHABLE && bb_has_abnormal_pred (bb))
647 return true;
649 /* No exceptional block reached exit unexceptionally. */
650 return false;
653 /* Grow (or allocate) the REG_EQUIVS array from its current size (which may be
654 zero elements) to MAX_REG_NUM elements.
656 Initialize all new fields to NULL and update REG_EQUIVS_SIZE. */
657 void
658 grow_reg_equivs (void)
660 int old_size = vec_safe_length (reg_equivs);
661 int max_regno = max_reg_num ();
662 int i;
663 reg_equivs_t ze;
665 memset (&ze, 0, sizeof (reg_equivs_t));
666 vec_safe_reserve (reg_equivs, max_regno);
667 for (i = old_size; i < max_regno; i++)
668 reg_equivs->quick_insert (i, ze);
672 /* Global variables used by reload and its subroutines. */
674 /* The current basic block while in calculate_elim_costs_all_insns. */
675 static basic_block elim_bb;
677 /* Set during calculate_needs if an insn needs register elimination. */
678 static int something_needs_elimination;
679 /* Set during calculate_needs if an insn needs an operand changed. */
680 static int something_needs_operands_changed;
681 /* Set by alter_regs if we spilled a register to the stack. */
682 static bool something_was_spilled;
684 /* Nonzero means we couldn't get enough spill regs. */
685 static int failure;
687 /* Temporary array of pseudo-register number. */
688 static int *temp_pseudo_reg_arr;
690 /* If a pseudo has no hard reg, delete the insns that made the equivalence.
691 If that insn didn't set the register (i.e., it copied the register to
692 memory), just delete that insn instead of the equivalencing insn plus
693 anything now dead. If we call delete_dead_insn on that insn, we may
694 delete the insn that actually sets the register if the register dies
695 there and that is incorrect. */
696 static void
697 remove_init_insns ()
699 for (int i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
701 if (reg_renumber[i] < 0 && reg_equiv_init (i) != 0)
703 rtx list;
704 for (list = reg_equiv_init (i); list; list = XEXP (list, 1))
706 rtx_insn *equiv_insn = as_a <rtx_insn *> (XEXP (list, 0));
708 /* If we already deleted the insn or if it may trap, we can't
709 delete it. The latter case shouldn't happen, but can
710 if an insn has a variable address, gets a REG_EH_REGION
711 note added to it, and then gets converted into a load
712 from a constant address. */
713 if (NOTE_P (equiv_insn)
714 || can_throw_internal (equiv_insn))
716 else if (reg_set_p (regno_reg_rtx[i], PATTERN (equiv_insn)))
717 delete_dead_insn (equiv_insn);
718 else
719 SET_INSN_DELETED (equiv_insn);
725 /* Return true if remove_init_insns will delete INSN. */
726 static bool
727 will_delete_init_insn_p (rtx_insn *insn)
729 rtx set = single_set (insn);
730 if (!set || !REG_P (SET_DEST (set)))
731 return false;
732 unsigned regno = REGNO (SET_DEST (set));
734 if (can_throw_internal (insn))
735 return false;
737 if (regno < FIRST_PSEUDO_REGISTER || reg_renumber[regno] >= 0)
738 return false;
740 for (rtx list = reg_equiv_init (regno); list; list = XEXP (list, 1))
742 rtx equiv_insn = XEXP (list, 0);
743 if (equiv_insn == insn)
744 return true;
746 return false;
749 /* Main entry point for the reload pass.
751 FIRST is the first insn of the function being compiled.
753 GLOBAL nonzero means we were called from global_alloc
754 and should attempt to reallocate any pseudoregs that we
755 displace from hard regs we will use for reloads.
756 If GLOBAL is zero, we do not have enough information to do that,
757 so any pseudo reg that is spilled must go to the stack.
759 Return value is TRUE if reload likely left dead insns in the
760 stream and a DCE pass should be run to elimiante them. Else the
761 return value is FALSE. */
763 bool
764 reload (rtx_insn *first, int global)
766 int i, n;
767 rtx_insn *insn;
768 struct elim_table *ep;
769 basic_block bb;
770 bool inserted;
772 /* Make sure even insns with volatile mem refs are recognizable. */
773 init_recog ();
775 failure = 0;
777 reload_firstobj = XOBNEWVAR (&reload_obstack, char, 0);
779 /* Make sure that the last insn in the chain
780 is not something that needs reloading. */
781 emit_note (NOTE_INSN_DELETED);
783 /* Enable find_equiv_reg to distinguish insns made by reload. */
784 reload_first_uid = get_max_uid ();
786 #ifdef SECONDARY_MEMORY_NEEDED
787 /* Initialize the secondary memory table. */
788 clear_secondary_mem ();
789 #endif
791 /* We don't have a stack slot for any spill reg yet. */
792 memset (spill_stack_slot, 0, sizeof spill_stack_slot);
793 memset (spill_stack_slot_width, 0, sizeof spill_stack_slot_width);
795 /* Initialize the save area information for caller-save, in case some
796 are needed. */
797 init_save_areas ();
799 /* Compute which hard registers are now in use
800 as homes for pseudo registers.
801 This is done here rather than (eg) in global_alloc
802 because this point is reached even if not optimizing. */
803 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
804 mark_home_live (i);
806 /* A function that has a nonlocal label that can reach the exit
807 block via non-exceptional paths must save all call-saved
808 registers. */
809 if (cfun->has_nonlocal_label
810 && has_nonexceptional_receiver ())
811 crtl->saves_all_registers = 1;
813 if (crtl->saves_all_registers)
814 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
815 if (! call_used_regs[i] && ! fixed_regs[i] && ! LOCAL_REGNO (i))
816 df_set_regs_ever_live (i, true);
818 /* Find all the pseudo registers that didn't get hard regs
819 but do have known equivalent constants or memory slots.
820 These include parameters (known equivalent to parameter slots)
821 and cse'd or loop-moved constant memory addresses.
823 Record constant equivalents in reg_equiv_constant
824 so they will be substituted by find_reloads.
825 Record memory equivalents in reg_mem_equiv so they can
826 be substituted eventually by altering the REG-rtx's. */
828 grow_reg_equivs ();
829 reg_old_renumber = XCNEWVEC (short, max_regno);
830 memcpy (reg_old_renumber, reg_renumber, max_regno * sizeof (short));
831 pseudo_forbidden_regs = XNEWVEC (HARD_REG_SET, max_regno);
832 pseudo_previous_regs = XCNEWVEC (HARD_REG_SET, max_regno);
834 CLEAR_HARD_REG_SET (bad_spill_regs_global);
836 init_eliminable_invariants (first, true);
837 init_elim_table ();
839 /* Alter each pseudo-reg rtx to contain its hard reg number. Assign
840 stack slots to the pseudos that lack hard regs or equivalents.
841 Do not touch virtual registers. */
843 temp_pseudo_reg_arr = XNEWVEC (int, max_regno - LAST_VIRTUAL_REGISTER - 1);
844 for (n = 0, i = LAST_VIRTUAL_REGISTER + 1; i < max_regno; i++)
845 temp_pseudo_reg_arr[n++] = i;
847 if (ira_conflicts_p)
848 /* Ask IRA to order pseudo-registers for better stack slot
849 sharing. */
850 ira_sort_regnos_for_alter_reg (temp_pseudo_reg_arr, n, reg_max_ref_width);
852 for (i = 0; i < n; i++)
853 alter_reg (temp_pseudo_reg_arr[i], -1, false);
855 /* If we have some registers we think can be eliminated, scan all insns to
856 see if there is an insn that sets one of these registers to something
857 other than itself plus a constant. If so, the register cannot be
858 eliminated. Doing this scan here eliminates an extra pass through the
859 main reload loop in the most common case where register elimination
860 cannot be done. */
861 for (insn = first; insn && num_eliminable; insn = NEXT_INSN (insn))
862 if (INSN_P (insn))
863 note_stores (PATTERN (insn), mark_not_eliminable, NULL);
865 maybe_fix_stack_asms ();
867 insns_need_reload = 0;
868 something_needs_elimination = 0;
870 /* Initialize to -1, which means take the first spill register. */
871 last_spill_reg = -1;
873 /* Spill any hard regs that we know we can't eliminate. */
874 CLEAR_HARD_REG_SET (used_spill_regs);
875 /* There can be multiple ways to eliminate a register;
876 they should be listed adjacently.
877 Elimination for any register fails only if all possible ways fail. */
878 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; )
880 int from = ep->from;
881 int can_eliminate = 0;
884 can_eliminate |= ep->can_eliminate;
885 ep++;
887 while (ep < &reg_eliminate[NUM_ELIMINABLE_REGS] && ep->from == from);
888 if (! can_eliminate)
889 spill_hard_reg (from, 1);
892 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
893 if (frame_pointer_needed)
894 spill_hard_reg (HARD_FRAME_POINTER_REGNUM, 1);
895 #endif
896 finish_spills (global);
898 /* From now on, we may need to generate moves differently. We may also
899 allow modifications of insns which cause them to not be recognized.
900 Any such modifications will be cleaned up during reload itself. */
901 reload_in_progress = 1;
903 /* This loop scans the entire function each go-round
904 and repeats until one repetition spills no additional hard regs. */
905 for (;;)
907 int something_changed;
908 int did_spill;
909 HOST_WIDE_INT starting_frame_size;
911 starting_frame_size = get_frame_size ();
912 something_was_spilled = false;
914 set_initial_elim_offsets ();
915 set_initial_label_offsets ();
917 /* For each pseudo register that has an equivalent location defined,
918 try to eliminate any eliminable registers (such as the frame pointer)
919 assuming initial offsets for the replacement register, which
920 is the normal case.
922 If the resulting location is directly addressable, substitute
923 the MEM we just got directly for the old REG.
925 If it is not addressable but is a constant or the sum of a hard reg
926 and constant, it is probably not addressable because the constant is
927 out of range, in that case record the address; we will generate
928 hairy code to compute the address in a register each time it is
929 needed. Similarly if it is a hard register, but one that is not
930 valid as an address register.
932 If the location is not addressable, but does not have one of the
933 above forms, assign a stack slot. We have to do this to avoid the
934 potential of producing lots of reloads if, e.g., a location involves
935 a pseudo that didn't get a hard register and has an equivalent memory
936 location that also involves a pseudo that didn't get a hard register.
938 Perhaps at some point we will improve reload_when_needed handling
939 so this problem goes away. But that's very hairy. */
941 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
942 if (reg_renumber[i] < 0 && reg_equiv_memory_loc (i))
944 rtx x = eliminate_regs (reg_equiv_memory_loc (i), VOIDmode,
945 NULL_RTX);
947 if (strict_memory_address_addr_space_p
948 (GET_MODE (regno_reg_rtx[i]), XEXP (x, 0),
949 MEM_ADDR_SPACE (x)))
950 reg_equiv_mem (i) = x, reg_equiv_address (i) = 0;
951 else if (CONSTANT_P (XEXP (x, 0))
952 || (REG_P (XEXP (x, 0))
953 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
954 || (GET_CODE (XEXP (x, 0)) == PLUS
955 && REG_P (XEXP (XEXP (x, 0), 0))
956 && (REGNO (XEXP (XEXP (x, 0), 0))
957 < FIRST_PSEUDO_REGISTER)
958 && CONSTANT_P (XEXP (XEXP (x, 0), 1))))
959 reg_equiv_address (i) = XEXP (x, 0), reg_equiv_mem (i) = 0;
960 else
962 /* Make a new stack slot. Then indicate that something
963 changed so we go back and recompute offsets for
964 eliminable registers because the allocation of memory
965 below might change some offset. reg_equiv_{mem,address}
966 will be set up for this pseudo on the next pass around
967 the loop. */
968 reg_equiv_memory_loc (i) = 0;
969 reg_equiv_init (i) = 0;
970 alter_reg (i, -1, true);
974 if (caller_save_needed)
975 setup_save_areas ();
977 if (starting_frame_size && crtl->stack_alignment_needed)
979 /* If we have a stack frame, we must align it now. The
980 stack size may be a part of the offset computation for
981 register elimination. So if this changes the stack size,
982 then repeat the elimination bookkeeping. We don't
983 realign when there is no stack, as that will cause a
984 stack frame when none is needed should
985 STARTING_FRAME_OFFSET not be already aligned to
986 STACK_BOUNDARY. */
987 assign_stack_local (BLKmode, 0, crtl->stack_alignment_needed);
989 /* If we allocated another stack slot, redo elimination bookkeeping. */
990 if (something_was_spilled || starting_frame_size != get_frame_size ())
992 update_eliminables_and_spill ();
993 continue;
996 if (caller_save_needed)
998 save_call_clobbered_regs ();
999 /* That might have allocated new insn_chain structures. */
1000 reload_firstobj = XOBNEWVAR (&reload_obstack, char, 0);
1003 calculate_needs_all_insns (global);
1005 if (! ira_conflicts_p)
1006 /* Don't do it for IRA. We need this info because we don't
1007 change live_throughout and dead_or_set for chains when IRA
1008 is used. */
1009 CLEAR_REG_SET (&spilled_pseudos);
1011 did_spill = 0;
1013 something_changed = 0;
1015 /* If we allocated any new memory locations, make another pass
1016 since it might have changed elimination offsets. */
1017 if (something_was_spilled || starting_frame_size != get_frame_size ())
1018 something_changed = 1;
1020 /* Even if the frame size remained the same, we might still have
1021 changed elimination offsets, e.g. if find_reloads called
1022 force_const_mem requiring the back end to allocate a constant
1023 pool base register that needs to be saved on the stack. */
1024 else if (!verify_initial_elim_offsets ())
1025 something_changed = 1;
1027 if (update_eliminables_and_spill ())
1029 did_spill = 1;
1030 something_changed = 1;
1033 select_reload_regs ();
1034 if (failure)
1035 goto failed;
1037 if (insns_need_reload != 0 || did_spill)
1038 something_changed |= finish_spills (global);
1040 if (! something_changed)
1041 break;
1043 if (caller_save_needed)
1044 delete_caller_save_insns ();
1046 obstack_free (&reload_obstack, reload_firstobj);
1049 /* If global-alloc was run, notify it of any register eliminations we have
1050 done. */
1051 if (global)
1052 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
1053 if (ep->can_eliminate)
1054 mark_elimination (ep->from, ep->to);
1056 remove_init_insns ();
1058 /* Use the reload registers where necessary
1059 by generating move instructions to move the must-be-register
1060 values into or out of the reload registers. */
1062 if (insns_need_reload != 0 || something_needs_elimination
1063 || something_needs_operands_changed)
1065 HOST_WIDE_INT old_frame_size = get_frame_size ();
1067 reload_as_needed (global);
1069 gcc_assert (old_frame_size == get_frame_size ());
1071 gcc_assert (verify_initial_elim_offsets ());
1074 /* If we were able to eliminate the frame pointer, show that it is no
1075 longer live at the start of any basic block. If it ls live by
1076 virtue of being in a pseudo, that pseudo will be marked live
1077 and hence the frame pointer will be known to be live via that
1078 pseudo. */
1080 if (! frame_pointer_needed)
1081 FOR_EACH_BB_FN (bb, cfun)
1082 bitmap_clear_bit (df_get_live_in (bb), HARD_FRAME_POINTER_REGNUM);
1084 /* Come here (with failure set nonzero) if we can't get enough spill
1085 regs. */
1086 failed:
1088 CLEAR_REG_SET (&changed_allocation_pseudos);
1089 CLEAR_REG_SET (&spilled_pseudos);
1090 reload_in_progress = 0;
1092 /* Now eliminate all pseudo regs by modifying them into
1093 their equivalent memory references.
1094 The REG-rtx's for the pseudos are modified in place,
1095 so all insns that used to refer to them now refer to memory.
1097 For a reg that has a reg_equiv_address, all those insns
1098 were changed by reloading so that no insns refer to it any longer;
1099 but the DECL_RTL of a variable decl may refer to it,
1100 and if so this causes the debugging info to mention the variable. */
1102 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
1104 rtx addr = 0;
1106 if (reg_equiv_mem (i))
1107 addr = XEXP (reg_equiv_mem (i), 0);
1109 if (reg_equiv_address (i))
1110 addr = reg_equiv_address (i);
1112 if (addr)
1114 if (reg_renumber[i] < 0)
1116 rtx reg = regno_reg_rtx[i];
1118 REG_USERVAR_P (reg) = 0;
1119 PUT_CODE (reg, MEM);
1120 XEXP (reg, 0) = addr;
1121 if (reg_equiv_memory_loc (i))
1122 MEM_COPY_ATTRIBUTES (reg, reg_equiv_memory_loc (i));
1123 else
1124 MEM_ATTRS (reg) = 0;
1125 MEM_NOTRAP_P (reg) = 1;
1127 else if (reg_equiv_mem (i))
1128 XEXP (reg_equiv_mem (i), 0) = addr;
1131 /* We don't want complex addressing modes in debug insns
1132 if simpler ones will do, so delegitimize equivalences
1133 in debug insns. */
1134 if (MAY_HAVE_DEBUG_INSNS && reg_renumber[i] < 0)
1136 rtx reg = regno_reg_rtx[i];
1137 rtx equiv = 0;
1138 df_ref use, next;
1140 if (reg_equiv_constant (i))
1141 equiv = reg_equiv_constant (i);
1142 else if (reg_equiv_invariant (i))
1143 equiv = reg_equiv_invariant (i);
1144 else if (reg && MEM_P (reg))
1145 equiv = targetm.delegitimize_address (reg);
1146 else if (reg && REG_P (reg) && (int)REGNO (reg) != i)
1147 equiv = reg;
1149 if (equiv == reg)
1150 continue;
1152 for (use = DF_REG_USE_CHAIN (i); use; use = next)
1154 insn = DF_REF_INSN (use);
1156 /* Make sure the next ref is for a different instruction,
1157 so that we're not affected by the rescan. */
1158 next = DF_REF_NEXT_REG (use);
1159 while (next && DF_REF_INSN (next) == insn)
1160 next = DF_REF_NEXT_REG (next);
1162 if (DEBUG_INSN_P (insn))
1164 if (!equiv)
1166 INSN_VAR_LOCATION_LOC (insn) = gen_rtx_UNKNOWN_VAR_LOC ();
1167 df_insn_rescan_debug_internal (insn);
1169 else
1170 INSN_VAR_LOCATION_LOC (insn)
1171 = simplify_replace_rtx (INSN_VAR_LOCATION_LOC (insn),
1172 reg, equiv);
1178 /* We must set reload_completed now since the cleanup_subreg_operands call
1179 below will re-recognize each insn and reload may have generated insns
1180 which are only valid during and after reload. */
1181 reload_completed = 1;
1183 /* Make a pass over all the insns and delete all USEs which we inserted
1184 only to tag a REG_EQUAL note on them. Remove all REG_DEAD and REG_UNUSED
1185 notes. Delete all CLOBBER insns, except those that refer to the return
1186 value and the special mem:BLK CLOBBERs added to prevent the scheduler
1187 from misarranging variable-array code, and simplify (subreg (reg))
1188 operands. Strip and regenerate REG_INC notes that may have been moved
1189 around. */
1191 for (insn = first; insn; insn = NEXT_INSN (insn))
1192 if (INSN_P (insn))
1194 rtx *pnote;
1196 if (CALL_P (insn))
1197 replace_pseudos_in (& CALL_INSN_FUNCTION_USAGE (insn),
1198 VOIDmode, CALL_INSN_FUNCTION_USAGE (insn));
1200 if ((GET_CODE (PATTERN (insn)) == USE
1201 /* We mark with QImode USEs introduced by reload itself. */
1202 && (GET_MODE (insn) == QImode
1203 || find_reg_note (insn, REG_EQUAL, NULL_RTX)))
1204 || (GET_CODE (PATTERN (insn)) == CLOBBER
1205 && (!MEM_P (XEXP (PATTERN (insn), 0))
1206 || GET_MODE (XEXP (PATTERN (insn), 0)) != BLKmode
1207 || (GET_CODE (XEXP (XEXP (PATTERN (insn), 0), 0)) != SCRATCH
1208 && XEXP (XEXP (PATTERN (insn), 0), 0)
1209 != stack_pointer_rtx))
1210 && (!REG_P (XEXP (PATTERN (insn), 0))
1211 || ! REG_FUNCTION_VALUE_P (XEXP (PATTERN (insn), 0)))))
1213 delete_insn (insn);
1214 continue;
1217 /* Some CLOBBERs may survive until here and still reference unassigned
1218 pseudos with const equivalent, which may in turn cause ICE in later
1219 passes if the reference remains in place. */
1220 if (GET_CODE (PATTERN (insn)) == CLOBBER)
1221 replace_pseudos_in (& XEXP (PATTERN (insn), 0),
1222 VOIDmode, PATTERN (insn));
1224 /* Discard obvious no-ops, even without -O. This optimization
1225 is fast and doesn't interfere with debugging. */
1226 if (NONJUMP_INSN_P (insn)
1227 && GET_CODE (PATTERN (insn)) == SET
1228 && REG_P (SET_SRC (PATTERN (insn)))
1229 && REG_P (SET_DEST (PATTERN (insn)))
1230 && (REGNO (SET_SRC (PATTERN (insn)))
1231 == REGNO (SET_DEST (PATTERN (insn)))))
1233 delete_insn (insn);
1234 continue;
1237 pnote = &REG_NOTES (insn);
1238 while (*pnote != 0)
1240 if (REG_NOTE_KIND (*pnote) == REG_DEAD
1241 || REG_NOTE_KIND (*pnote) == REG_UNUSED
1242 || REG_NOTE_KIND (*pnote) == REG_INC)
1243 *pnote = XEXP (*pnote, 1);
1244 else
1245 pnote = &XEXP (*pnote, 1);
1248 #ifdef AUTO_INC_DEC
1249 add_auto_inc_notes (insn, PATTERN (insn));
1250 #endif
1252 /* Simplify (subreg (reg)) if it appears as an operand. */
1253 cleanup_subreg_operands (insn);
1255 /* Clean up invalid ASMs so that they don't confuse later passes.
1256 See PR 21299. */
1257 if (asm_noperands (PATTERN (insn)) >= 0)
1259 extract_insn (insn);
1260 if (!constrain_operands (1))
1262 error_for_asm (insn,
1263 "%<asm%> operand has impossible constraints");
1264 delete_insn (insn);
1265 continue;
1270 /* If we are doing generic stack checking, give a warning if this
1271 function's frame size is larger than we expect. */
1272 if (flag_stack_check == GENERIC_STACK_CHECK)
1274 HOST_WIDE_INT size = get_frame_size () + STACK_CHECK_FIXED_FRAME_SIZE;
1275 static int verbose_warned = 0;
1277 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1278 if (df_regs_ever_live_p (i) && ! fixed_regs[i] && call_used_regs[i])
1279 size += UNITS_PER_WORD;
1281 if (size > STACK_CHECK_MAX_FRAME_SIZE)
1283 warning (0, "frame size too large for reliable stack checking");
1284 if (! verbose_warned)
1286 warning (0, "try reducing the number of local variables");
1287 verbose_warned = 1;
1292 free (temp_pseudo_reg_arr);
1294 /* Indicate that we no longer have known memory locations or constants. */
1295 free_reg_equiv ();
1297 free (reg_max_ref_width);
1298 free (reg_old_renumber);
1299 free (pseudo_previous_regs);
1300 free (pseudo_forbidden_regs);
1302 CLEAR_HARD_REG_SET (used_spill_regs);
1303 for (i = 0; i < n_spills; i++)
1304 SET_HARD_REG_BIT (used_spill_regs, spill_regs[i]);
1306 /* Free all the insn_chain structures at once. */
1307 obstack_free (&reload_obstack, reload_startobj);
1308 unused_insn_chains = 0;
1310 inserted = fixup_abnormal_edges ();
1312 /* We've possibly turned single trapping insn into multiple ones. */
1313 if (cfun->can_throw_non_call_exceptions)
1315 sbitmap blocks;
1316 blocks = sbitmap_alloc (last_basic_block_for_fn (cfun));
1317 bitmap_ones (blocks);
1318 find_many_sub_basic_blocks (blocks);
1319 sbitmap_free (blocks);
1322 if (inserted)
1323 commit_edge_insertions ();
1325 /* Replacing pseudos with their memory equivalents might have
1326 created shared rtx. Subsequent passes would get confused
1327 by this, so unshare everything here. */
1328 unshare_all_rtl_again (first);
1330 #ifdef STACK_BOUNDARY
1331 /* init_emit has set the alignment of the hard frame pointer
1332 to STACK_BOUNDARY. It is very likely no longer valid if
1333 the hard frame pointer was used for register allocation. */
1334 if (!frame_pointer_needed)
1335 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = BITS_PER_UNIT;
1336 #endif
1338 substitute_stack.release ();
1340 gcc_assert (bitmap_empty_p (&spilled_pseudos));
1342 reload_completed = !failure;
1344 return need_dce;
1347 /* Yet another special case. Unfortunately, reg-stack forces people to
1348 write incorrect clobbers in asm statements. These clobbers must not
1349 cause the register to appear in bad_spill_regs, otherwise we'll call
1350 fatal_insn later. We clear the corresponding regnos in the live
1351 register sets to avoid this.
1352 The whole thing is rather sick, I'm afraid. */
1354 static void
1355 maybe_fix_stack_asms (void)
1357 #ifdef STACK_REGS
1358 const char *constraints[MAX_RECOG_OPERANDS];
1359 enum machine_mode operand_mode[MAX_RECOG_OPERANDS];
1360 struct insn_chain *chain;
1362 for (chain = reload_insn_chain; chain != 0; chain = chain->next)
1364 int i, noperands;
1365 HARD_REG_SET clobbered, allowed;
1366 rtx pat;
1368 if (! INSN_P (chain->insn)
1369 || (noperands = asm_noperands (PATTERN (chain->insn))) < 0)
1370 continue;
1371 pat = PATTERN (chain->insn);
1372 if (GET_CODE (pat) != PARALLEL)
1373 continue;
1375 CLEAR_HARD_REG_SET (clobbered);
1376 CLEAR_HARD_REG_SET (allowed);
1378 /* First, make a mask of all stack regs that are clobbered. */
1379 for (i = 0; i < XVECLEN (pat, 0); i++)
1381 rtx t = XVECEXP (pat, 0, i);
1382 if (GET_CODE (t) == CLOBBER && STACK_REG_P (XEXP (t, 0)))
1383 SET_HARD_REG_BIT (clobbered, REGNO (XEXP (t, 0)));
1386 /* Get the operand values and constraints out of the insn. */
1387 decode_asm_operands (pat, recog_data.operand, recog_data.operand_loc,
1388 constraints, operand_mode, NULL);
1390 /* For every operand, see what registers are allowed. */
1391 for (i = 0; i < noperands; i++)
1393 const char *p = constraints[i];
1394 /* For every alternative, we compute the class of registers allowed
1395 for reloading in CLS, and merge its contents into the reg set
1396 ALLOWED. */
1397 int cls = (int) NO_REGS;
1399 for (;;)
1401 char c = *p;
1403 if (c == '\0' || c == ',' || c == '#')
1405 /* End of one alternative - mark the regs in the current
1406 class, and reset the class. */
1407 IOR_HARD_REG_SET (allowed, reg_class_contents[cls]);
1408 cls = NO_REGS;
1409 p++;
1410 if (c == '#')
1411 do {
1412 c = *p++;
1413 } while (c != '\0' && c != ',');
1414 if (c == '\0')
1415 break;
1416 continue;
1419 switch (c)
1421 case 'g':
1422 cls = (int) reg_class_subunion[cls][(int) GENERAL_REGS];
1423 break;
1425 default:
1426 enum constraint_num cn = lookup_constraint (p);
1427 if (insn_extra_address_constraint (cn))
1428 cls = (int) reg_class_subunion[cls]
1429 [(int) base_reg_class (VOIDmode, ADDR_SPACE_GENERIC,
1430 ADDRESS, SCRATCH)];
1431 else
1432 cls = (int) reg_class_subunion[cls]
1433 [reg_class_for_constraint (cn)];
1434 break;
1436 p += CONSTRAINT_LEN (c, p);
1439 /* Those of the registers which are clobbered, but allowed by the
1440 constraints, must be usable as reload registers. So clear them
1441 out of the life information. */
1442 AND_HARD_REG_SET (allowed, clobbered);
1443 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1444 if (TEST_HARD_REG_BIT (allowed, i))
1446 CLEAR_REGNO_REG_SET (&chain->live_throughout, i);
1447 CLEAR_REGNO_REG_SET (&chain->dead_or_set, i);
1451 #endif
1454 /* Copy the global variables n_reloads and rld into the corresponding elts
1455 of CHAIN. */
1456 static void
1457 copy_reloads (struct insn_chain *chain)
1459 chain->n_reloads = n_reloads;
1460 chain->rld = XOBNEWVEC (&reload_obstack, struct reload, n_reloads);
1461 memcpy (chain->rld, rld, n_reloads * sizeof (struct reload));
1462 reload_insn_firstobj = XOBNEWVAR (&reload_obstack, char, 0);
1465 /* Walk the chain of insns, and determine for each whether it needs reloads
1466 and/or eliminations. Build the corresponding insns_need_reload list, and
1467 set something_needs_elimination as appropriate. */
1468 static void
1469 calculate_needs_all_insns (int global)
1471 struct insn_chain **pprev_reload = &insns_need_reload;
1472 struct insn_chain *chain, *next = 0;
1474 something_needs_elimination = 0;
1476 reload_insn_firstobj = XOBNEWVAR (&reload_obstack, char, 0);
1477 for (chain = reload_insn_chain; chain != 0; chain = next)
1479 rtx_insn *insn = chain->insn;
1481 next = chain->next;
1483 /* Clear out the shortcuts. */
1484 chain->n_reloads = 0;
1485 chain->need_elim = 0;
1486 chain->need_reload = 0;
1487 chain->need_operand_change = 0;
1489 /* If this is a label, a JUMP_INSN, or has REG_NOTES (which might
1490 include REG_LABEL_OPERAND and REG_LABEL_TARGET), we need to see
1491 what effects this has on the known offsets at labels. */
1493 if (LABEL_P (insn) || JUMP_P (insn) || JUMP_TABLE_DATA_P (insn)
1494 || (INSN_P (insn) && REG_NOTES (insn) != 0))
1495 set_label_offsets (insn, insn, 0);
1497 if (INSN_P (insn))
1499 rtx old_body = PATTERN (insn);
1500 int old_code = INSN_CODE (insn);
1501 rtx old_notes = REG_NOTES (insn);
1502 int did_elimination = 0;
1503 int operands_changed = 0;
1505 /* Skip insns that only set an equivalence. */
1506 if (will_delete_init_insn_p (insn))
1507 continue;
1509 /* If needed, eliminate any eliminable registers. */
1510 if (num_eliminable || num_eliminable_invariants)
1511 did_elimination = eliminate_regs_in_insn (insn, 0);
1513 /* Analyze the instruction. */
1514 operands_changed = find_reloads (insn, 0, spill_indirect_levels,
1515 global, spill_reg_order);
1517 /* If a no-op set needs more than one reload, this is likely
1518 to be something that needs input address reloads. We
1519 can't get rid of this cleanly later, and it is of no use
1520 anyway, so discard it now.
1521 We only do this when expensive_optimizations is enabled,
1522 since this complements reload inheritance / output
1523 reload deletion, and it can make debugging harder. */
1524 if (flag_expensive_optimizations && n_reloads > 1)
1526 rtx set = single_set (insn);
1527 if (set
1529 ((SET_SRC (set) == SET_DEST (set)
1530 && REG_P (SET_SRC (set))
1531 && REGNO (SET_SRC (set)) >= FIRST_PSEUDO_REGISTER)
1532 || (REG_P (SET_SRC (set)) && REG_P (SET_DEST (set))
1533 && reg_renumber[REGNO (SET_SRC (set))] < 0
1534 && reg_renumber[REGNO (SET_DEST (set))] < 0
1535 && reg_equiv_memory_loc (REGNO (SET_SRC (set))) != NULL
1536 && reg_equiv_memory_loc (REGNO (SET_DEST (set))) != NULL
1537 && rtx_equal_p (reg_equiv_memory_loc (REGNO (SET_SRC (set))),
1538 reg_equiv_memory_loc (REGNO (SET_DEST (set)))))))
1540 if (ira_conflicts_p)
1541 /* Inform IRA about the insn deletion. */
1542 ira_mark_memory_move_deletion (REGNO (SET_DEST (set)),
1543 REGNO (SET_SRC (set)));
1544 delete_insn (insn);
1545 /* Delete it from the reload chain. */
1546 if (chain->prev)
1547 chain->prev->next = next;
1548 else
1549 reload_insn_chain = next;
1550 if (next)
1551 next->prev = chain->prev;
1552 chain->next = unused_insn_chains;
1553 unused_insn_chains = chain;
1554 continue;
1557 if (num_eliminable)
1558 update_eliminable_offsets ();
1560 /* Remember for later shortcuts which insns had any reloads or
1561 register eliminations. */
1562 chain->need_elim = did_elimination;
1563 chain->need_reload = n_reloads > 0;
1564 chain->need_operand_change = operands_changed;
1566 /* Discard any register replacements done. */
1567 if (did_elimination)
1569 obstack_free (&reload_obstack, reload_insn_firstobj);
1570 PATTERN (insn) = old_body;
1571 INSN_CODE (insn) = old_code;
1572 REG_NOTES (insn) = old_notes;
1573 something_needs_elimination = 1;
1576 something_needs_operands_changed |= operands_changed;
1578 if (n_reloads != 0)
1580 copy_reloads (chain);
1581 *pprev_reload = chain;
1582 pprev_reload = &chain->next_need_reload;
1586 *pprev_reload = 0;
1589 /* This function is called from the register allocator to set up estimates
1590 for the cost of eliminating pseudos which have REG_EQUIV equivalences to
1591 an invariant. The structure is similar to calculate_needs_all_insns. */
1593 void
1594 calculate_elim_costs_all_insns (void)
1596 int *reg_equiv_init_cost;
1597 basic_block bb;
1598 int i;
1600 reg_equiv_init_cost = XCNEWVEC (int, max_regno);
1601 init_elim_table ();
1602 init_eliminable_invariants (get_insns (), false);
1604 set_initial_elim_offsets ();
1605 set_initial_label_offsets ();
1607 FOR_EACH_BB_FN (bb, cfun)
1609 rtx_insn *insn;
1610 elim_bb = bb;
1612 FOR_BB_INSNS (bb, insn)
1614 /* If this is a label, a JUMP_INSN, or has REG_NOTES (which might
1615 include REG_LABEL_OPERAND and REG_LABEL_TARGET), we need to see
1616 what effects this has on the known offsets at labels. */
1618 if (LABEL_P (insn) || JUMP_P (insn) || JUMP_TABLE_DATA_P (insn)
1619 || (INSN_P (insn) && REG_NOTES (insn) != 0))
1620 set_label_offsets (insn, insn, 0);
1622 if (INSN_P (insn))
1624 rtx set = single_set (insn);
1626 /* Skip insns that only set an equivalence. */
1627 if (set && REG_P (SET_DEST (set))
1628 && reg_renumber[REGNO (SET_DEST (set))] < 0
1629 && (reg_equiv_constant (REGNO (SET_DEST (set)))
1630 || reg_equiv_invariant (REGNO (SET_DEST (set)))))
1632 unsigned regno = REGNO (SET_DEST (set));
1633 rtx init = reg_equiv_init (regno);
1634 if (init)
1636 rtx t = eliminate_regs_1 (SET_SRC (set), VOIDmode, insn,
1637 false, true);
1638 int cost = set_src_cost (t, optimize_bb_for_speed_p (bb));
1639 int freq = REG_FREQ_FROM_BB (bb);
1641 reg_equiv_init_cost[regno] = cost * freq;
1642 continue;
1645 /* If needed, eliminate any eliminable registers. */
1646 if (num_eliminable || num_eliminable_invariants)
1647 elimination_costs_in_insn (insn);
1649 if (num_eliminable)
1650 update_eliminable_offsets ();
1654 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
1656 if (reg_equiv_invariant (i))
1658 if (reg_equiv_init (i))
1660 int cost = reg_equiv_init_cost[i];
1661 if (dump_file)
1662 fprintf (dump_file,
1663 "Reg %d has equivalence, initial gains %d\n", i, cost);
1664 if (cost != 0)
1665 ira_adjust_equiv_reg_cost (i, cost);
1667 else
1669 if (dump_file)
1670 fprintf (dump_file,
1671 "Reg %d had equivalence, but can't be eliminated\n",
1673 ira_adjust_equiv_reg_cost (i, 0);
1678 free (reg_equiv_init_cost);
1679 free (offsets_known_at);
1680 free (offsets_at);
1681 offsets_at = NULL;
1682 offsets_known_at = NULL;
1685 /* Comparison function for qsort to decide which of two reloads
1686 should be handled first. *P1 and *P2 are the reload numbers. */
1688 static int
1689 reload_reg_class_lower (const void *r1p, const void *r2p)
1691 int r1 = *(const short *) r1p, r2 = *(const short *) r2p;
1692 int t;
1694 /* Consider required reloads before optional ones. */
1695 t = rld[r1].optional - rld[r2].optional;
1696 if (t != 0)
1697 return t;
1699 /* Count all solitary classes before non-solitary ones. */
1700 t = ((reg_class_size[(int) rld[r2].rclass] == 1)
1701 - (reg_class_size[(int) rld[r1].rclass] == 1));
1702 if (t != 0)
1703 return t;
1705 /* Aside from solitaires, consider all multi-reg groups first. */
1706 t = rld[r2].nregs - rld[r1].nregs;
1707 if (t != 0)
1708 return t;
1710 /* Consider reloads in order of increasing reg-class number. */
1711 t = (int) rld[r1].rclass - (int) rld[r2].rclass;
1712 if (t != 0)
1713 return t;
1715 /* If reloads are equally urgent, sort by reload number,
1716 so that the results of qsort leave nothing to chance. */
1717 return r1 - r2;
1720 /* The cost of spilling each hard reg. */
1721 static int spill_cost[FIRST_PSEUDO_REGISTER];
1723 /* When spilling multiple hard registers, we use SPILL_COST for the first
1724 spilled hard reg and SPILL_ADD_COST for subsequent regs. SPILL_ADD_COST
1725 only the first hard reg for a multi-reg pseudo. */
1726 static int spill_add_cost[FIRST_PSEUDO_REGISTER];
1728 /* Map of hard regno to pseudo regno currently occupying the hard
1729 reg. */
1730 static int hard_regno_to_pseudo_regno[FIRST_PSEUDO_REGISTER];
1732 /* Update the spill cost arrays, considering that pseudo REG is live. */
1734 static void
1735 count_pseudo (int reg)
1737 int freq = REG_FREQ (reg);
1738 int r = reg_renumber[reg];
1739 int nregs;
1741 /* Ignore spilled pseudo-registers which can be here only if IRA is used. */
1742 if (ira_conflicts_p && r < 0)
1743 return;
1745 if (REGNO_REG_SET_P (&pseudos_counted, reg)
1746 || REGNO_REG_SET_P (&spilled_pseudos, reg))
1747 return;
1749 SET_REGNO_REG_SET (&pseudos_counted, reg);
1751 gcc_assert (r >= 0);
1753 spill_add_cost[r] += freq;
1754 nregs = hard_regno_nregs[r][PSEUDO_REGNO_MODE (reg)];
1755 while (nregs-- > 0)
1757 hard_regno_to_pseudo_regno[r + nregs] = reg;
1758 spill_cost[r + nregs] += freq;
1762 /* Calculate the SPILL_COST and SPILL_ADD_COST arrays and determine the
1763 contents of BAD_SPILL_REGS for the insn described by CHAIN. */
1765 static void
1766 order_regs_for_reload (struct insn_chain *chain)
1768 unsigned i;
1769 HARD_REG_SET used_by_pseudos;
1770 HARD_REG_SET used_by_pseudos2;
1771 reg_set_iterator rsi;
1773 COPY_HARD_REG_SET (bad_spill_regs, fixed_reg_set);
1775 memset (spill_cost, 0, sizeof spill_cost);
1776 memset (spill_add_cost, 0, sizeof spill_add_cost);
1777 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1778 hard_regno_to_pseudo_regno[i] = -1;
1780 /* Count number of uses of each hard reg by pseudo regs allocated to it
1781 and then order them by decreasing use. First exclude hard registers
1782 that are live in or across this insn. */
1784 REG_SET_TO_HARD_REG_SET (used_by_pseudos, &chain->live_throughout);
1785 REG_SET_TO_HARD_REG_SET (used_by_pseudos2, &chain->dead_or_set);
1786 IOR_HARD_REG_SET (bad_spill_regs, used_by_pseudos);
1787 IOR_HARD_REG_SET (bad_spill_regs, used_by_pseudos2);
1789 /* Now find out which pseudos are allocated to it, and update
1790 hard_reg_n_uses. */
1791 CLEAR_REG_SET (&pseudos_counted);
1793 EXECUTE_IF_SET_IN_REG_SET
1794 (&chain->live_throughout, FIRST_PSEUDO_REGISTER, i, rsi)
1796 count_pseudo (i);
1798 EXECUTE_IF_SET_IN_REG_SET
1799 (&chain->dead_or_set, FIRST_PSEUDO_REGISTER, i, rsi)
1801 count_pseudo (i);
1803 CLEAR_REG_SET (&pseudos_counted);
1806 /* Vector of reload-numbers showing the order in which the reloads should
1807 be processed. */
1808 static short reload_order[MAX_RELOADS];
1810 /* This is used to keep track of the spill regs used in one insn. */
1811 static HARD_REG_SET used_spill_regs_local;
1813 /* We decided to spill hard register SPILLED, which has a size of
1814 SPILLED_NREGS. Determine how pseudo REG, which is live during the insn,
1815 is affected. We will add it to SPILLED_PSEUDOS if necessary, and we will
1816 update SPILL_COST/SPILL_ADD_COST. */
1818 static void
1819 count_spilled_pseudo (int spilled, int spilled_nregs, int reg)
1821 int freq = REG_FREQ (reg);
1822 int r = reg_renumber[reg];
1823 int nregs;
1825 /* Ignore spilled pseudo-registers which can be here only if IRA is used. */
1826 if (ira_conflicts_p && r < 0)
1827 return;
1829 gcc_assert (r >= 0);
1831 nregs = hard_regno_nregs[r][PSEUDO_REGNO_MODE (reg)];
1833 if (REGNO_REG_SET_P (&spilled_pseudos, reg)
1834 || spilled + spilled_nregs <= r || r + nregs <= spilled)
1835 return;
1837 SET_REGNO_REG_SET (&spilled_pseudos, reg);
1839 spill_add_cost[r] -= freq;
1840 while (nregs-- > 0)
1842 hard_regno_to_pseudo_regno[r + nregs] = -1;
1843 spill_cost[r + nregs] -= freq;
1847 /* Find reload register to use for reload number ORDER. */
1849 static int
1850 find_reg (struct insn_chain *chain, int order)
1852 int rnum = reload_order[order];
1853 struct reload *rl = rld + rnum;
1854 int best_cost = INT_MAX;
1855 int best_reg = -1;
1856 unsigned int i, j, n;
1857 int k;
1858 HARD_REG_SET not_usable;
1859 HARD_REG_SET used_by_other_reload;
1860 reg_set_iterator rsi;
1861 static int regno_pseudo_regs[FIRST_PSEUDO_REGISTER];
1862 static int best_regno_pseudo_regs[FIRST_PSEUDO_REGISTER];
1864 COPY_HARD_REG_SET (not_usable, bad_spill_regs);
1865 IOR_HARD_REG_SET (not_usable, bad_spill_regs_global);
1866 IOR_COMPL_HARD_REG_SET (not_usable, reg_class_contents[rl->rclass]);
1868 CLEAR_HARD_REG_SET (used_by_other_reload);
1869 for (k = 0; k < order; k++)
1871 int other = reload_order[k];
1873 if (rld[other].regno >= 0 && reloads_conflict (other, rnum))
1874 for (j = 0; j < rld[other].nregs; j++)
1875 SET_HARD_REG_BIT (used_by_other_reload, rld[other].regno + j);
1878 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1880 #ifdef REG_ALLOC_ORDER
1881 unsigned int regno = reg_alloc_order[i];
1882 #else
1883 unsigned int regno = i;
1884 #endif
1886 if (! TEST_HARD_REG_BIT (not_usable, regno)
1887 && ! TEST_HARD_REG_BIT (used_by_other_reload, regno)
1888 && HARD_REGNO_MODE_OK (regno, rl->mode))
1890 int this_cost = spill_cost[regno];
1891 int ok = 1;
1892 unsigned int this_nregs = hard_regno_nregs[regno][rl->mode];
1894 for (j = 1; j < this_nregs; j++)
1896 this_cost += spill_add_cost[regno + j];
1897 if ((TEST_HARD_REG_BIT (not_usable, regno + j))
1898 || TEST_HARD_REG_BIT (used_by_other_reload, regno + j))
1899 ok = 0;
1901 if (! ok)
1902 continue;
1904 if (ira_conflicts_p)
1906 /* Ask IRA to find a better pseudo-register for
1907 spilling. */
1908 for (n = j = 0; j < this_nregs; j++)
1910 int r = hard_regno_to_pseudo_regno[regno + j];
1912 if (r < 0)
1913 continue;
1914 if (n == 0 || regno_pseudo_regs[n - 1] != r)
1915 regno_pseudo_regs[n++] = r;
1917 regno_pseudo_regs[n++] = -1;
1918 if (best_reg < 0
1919 || ira_better_spill_reload_regno_p (regno_pseudo_regs,
1920 best_regno_pseudo_regs,
1921 rl->in, rl->out,
1922 chain->insn))
1924 best_reg = regno;
1925 for (j = 0;; j++)
1927 best_regno_pseudo_regs[j] = regno_pseudo_regs[j];
1928 if (regno_pseudo_regs[j] < 0)
1929 break;
1932 continue;
1935 if (rl->in && REG_P (rl->in) && REGNO (rl->in) == regno)
1936 this_cost--;
1937 if (rl->out && REG_P (rl->out) && REGNO (rl->out) == regno)
1938 this_cost--;
1939 if (this_cost < best_cost
1940 /* Among registers with equal cost, prefer caller-saved ones, or
1941 use REG_ALLOC_ORDER if it is defined. */
1942 || (this_cost == best_cost
1943 #ifdef REG_ALLOC_ORDER
1944 && (inv_reg_alloc_order[regno]
1945 < inv_reg_alloc_order[best_reg])
1946 #else
1947 && call_used_regs[regno]
1948 && ! call_used_regs[best_reg]
1949 #endif
1952 best_reg = regno;
1953 best_cost = this_cost;
1957 if (best_reg == -1)
1958 return 0;
1960 if (dump_file)
1961 fprintf (dump_file, "Using reg %d for reload %d\n", best_reg, rnum);
1963 rl->nregs = hard_regno_nregs[best_reg][rl->mode];
1964 rl->regno = best_reg;
1966 EXECUTE_IF_SET_IN_REG_SET
1967 (&chain->live_throughout, FIRST_PSEUDO_REGISTER, j, rsi)
1969 count_spilled_pseudo (best_reg, rl->nregs, j);
1972 EXECUTE_IF_SET_IN_REG_SET
1973 (&chain->dead_or_set, FIRST_PSEUDO_REGISTER, j, rsi)
1975 count_spilled_pseudo (best_reg, rl->nregs, j);
1978 for (i = 0; i < rl->nregs; i++)
1980 gcc_assert (spill_cost[best_reg + i] == 0);
1981 gcc_assert (spill_add_cost[best_reg + i] == 0);
1982 gcc_assert (hard_regno_to_pseudo_regno[best_reg + i] == -1);
1983 SET_HARD_REG_BIT (used_spill_regs_local, best_reg + i);
1985 return 1;
1988 /* Find more reload regs to satisfy the remaining need of an insn, which
1989 is given by CHAIN.
1990 Do it by ascending class number, since otherwise a reg
1991 might be spilled for a big class and might fail to count
1992 for a smaller class even though it belongs to that class. */
1994 static void
1995 find_reload_regs (struct insn_chain *chain)
1997 int i;
1999 /* In order to be certain of getting the registers we need,
2000 we must sort the reloads into order of increasing register class.
2001 Then our grabbing of reload registers will parallel the process
2002 that provided the reload registers. */
2003 for (i = 0; i < chain->n_reloads; i++)
2005 /* Show whether this reload already has a hard reg. */
2006 if (chain->rld[i].reg_rtx)
2008 int regno = REGNO (chain->rld[i].reg_rtx);
2009 chain->rld[i].regno = regno;
2010 chain->rld[i].nregs
2011 = hard_regno_nregs[regno][GET_MODE (chain->rld[i].reg_rtx)];
2013 else
2014 chain->rld[i].regno = -1;
2015 reload_order[i] = i;
2018 n_reloads = chain->n_reloads;
2019 memcpy (rld, chain->rld, n_reloads * sizeof (struct reload));
2021 CLEAR_HARD_REG_SET (used_spill_regs_local);
2023 if (dump_file)
2024 fprintf (dump_file, "Spilling for insn %d.\n", INSN_UID (chain->insn));
2026 qsort (reload_order, n_reloads, sizeof (short), reload_reg_class_lower);
2028 /* Compute the order of preference for hard registers to spill. */
2030 order_regs_for_reload (chain);
2032 for (i = 0; i < n_reloads; i++)
2034 int r = reload_order[i];
2036 /* Ignore reloads that got marked inoperative. */
2037 if ((rld[r].out != 0 || rld[r].in != 0 || rld[r].secondary_p)
2038 && ! rld[r].optional
2039 && rld[r].regno == -1)
2040 if (! find_reg (chain, i))
2042 if (dump_file)
2043 fprintf (dump_file, "reload failure for reload %d\n", r);
2044 spill_failure (chain->insn, rld[r].rclass);
2045 failure = 1;
2046 return;
2050 COPY_HARD_REG_SET (chain->used_spill_regs, used_spill_regs_local);
2051 IOR_HARD_REG_SET (used_spill_regs, used_spill_regs_local);
2053 memcpy (chain->rld, rld, n_reloads * sizeof (struct reload));
2056 static void
2057 select_reload_regs (void)
2059 struct insn_chain *chain;
2061 /* Try to satisfy the needs for each insn. */
2062 for (chain = insns_need_reload; chain != 0;
2063 chain = chain->next_need_reload)
2064 find_reload_regs (chain);
2067 /* Delete all insns that were inserted by emit_caller_save_insns during
2068 this iteration. */
2069 static void
2070 delete_caller_save_insns (void)
2072 struct insn_chain *c = reload_insn_chain;
2074 while (c != 0)
2076 while (c != 0 && c->is_caller_save_insn)
2078 struct insn_chain *next = c->next;
2079 rtx_insn *insn = c->insn;
2081 if (c == reload_insn_chain)
2082 reload_insn_chain = next;
2083 delete_insn (insn);
2085 if (next)
2086 next->prev = c->prev;
2087 if (c->prev)
2088 c->prev->next = next;
2089 c->next = unused_insn_chains;
2090 unused_insn_chains = c;
2091 c = next;
2093 if (c != 0)
2094 c = c->next;
2098 /* Handle the failure to find a register to spill.
2099 INSN should be one of the insns which needed this particular spill reg. */
2101 static void
2102 spill_failure (rtx_insn *insn, enum reg_class rclass)
2104 if (asm_noperands (PATTERN (insn)) >= 0)
2105 error_for_asm (insn, "can%'t find a register in class %qs while "
2106 "reloading %<asm%>",
2107 reg_class_names[rclass]);
2108 else
2110 error ("unable to find a register to spill in class %qs",
2111 reg_class_names[rclass]);
2113 if (dump_file)
2115 fprintf (dump_file, "\nReloads for insn # %d\n", INSN_UID (insn));
2116 debug_reload_to_stream (dump_file);
2118 fatal_insn ("this is the insn:", insn);
2122 /* Delete an unneeded INSN and any previous insns who sole purpose is loading
2123 data that is dead in INSN. */
2125 static void
2126 delete_dead_insn (rtx_insn *insn)
2128 rtx_insn *prev = prev_active_insn (insn);
2129 rtx prev_dest;
2131 /* If the previous insn sets a register that dies in our insn make
2132 a note that we want to run DCE immediately after reload.
2134 We used to delete the previous insn & recurse, but that's wrong for
2135 block local equivalences. Instead of trying to figure out the exact
2136 circumstances where we can delete the potentially dead insns, just
2137 let DCE do the job. */
2138 if (prev && BLOCK_FOR_INSN (prev) == BLOCK_FOR_INSN (insn)
2139 && GET_CODE (PATTERN (prev)) == SET
2140 && (prev_dest = SET_DEST (PATTERN (prev)), REG_P (prev_dest))
2141 && reg_mentioned_p (prev_dest, PATTERN (insn))
2142 && find_regno_note (insn, REG_DEAD, REGNO (prev_dest))
2143 && ! side_effects_p (SET_SRC (PATTERN (prev))))
2144 need_dce = 1;
2146 SET_INSN_DELETED (insn);
2149 /* Modify the home of pseudo-reg I.
2150 The new home is present in reg_renumber[I].
2152 FROM_REG may be the hard reg that the pseudo-reg is being spilled from;
2153 or it may be -1, meaning there is none or it is not relevant.
2154 This is used so that all pseudos spilled from a given hard reg
2155 can share one stack slot. */
2157 static void
2158 alter_reg (int i, int from_reg, bool dont_share_p)
2160 /* When outputting an inline function, this can happen
2161 for a reg that isn't actually used. */
2162 if (regno_reg_rtx[i] == 0)
2163 return;
2165 /* If the reg got changed to a MEM at rtl-generation time,
2166 ignore it. */
2167 if (!REG_P (regno_reg_rtx[i]))
2168 return;
2170 /* Modify the reg-rtx to contain the new hard reg
2171 number or else to contain its pseudo reg number. */
2172 SET_REGNO (regno_reg_rtx[i],
2173 reg_renumber[i] >= 0 ? reg_renumber[i] : i);
2175 /* If we have a pseudo that is needed but has no hard reg or equivalent,
2176 allocate a stack slot for it. */
2178 if (reg_renumber[i] < 0
2179 && REG_N_REFS (i) > 0
2180 && reg_equiv_constant (i) == 0
2181 && (reg_equiv_invariant (i) == 0
2182 || reg_equiv_init (i) == 0)
2183 && reg_equiv_memory_loc (i) == 0)
2185 rtx x = NULL_RTX;
2186 enum machine_mode mode = GET_MODE (regno_reg_rtx[i]);
2187 unsigned int inherent_size = PSEUDO_REGNO_BYTES (i);
2188 unsigned int inherent_align = GET_MODE_ALIGNMENT (mode);
2189 unsigned int total_size = MAX (inherent_size, reg_max_ref_width[i]);
2190 unsigned int min_align = reg_max_ref_width[i] * BITS_PER_UNIT;
2191 int adjust = 0;
2193 something_was_spilled = true;
2195 if (ira_conflicts_p)
2197 /* Mark the spill for IRA. */
2198 SET_REGNO_REG_SET (&spilled_pseudos, i);
2199 if (!dont_share_p)
2200 x = ira_reuse_stack_slot (i, inherent_size, total_size);
2203 if (x)
2206 /* Each pseudo reg has an inherent size which comes from its own mode,
2207 and a total size which provides room for paradoxical subregs
2208 which refer to the pseudo reg in wider modes.
2210 We can use a slot already allocated if it provides both
2211 enough inherent space and enough total space.
2212 Otherwise, we allocate a new slot, making sure that it has no less
2213 inherent space, and no less total space, then the previous slot. */
2214 else if (from_reg == -1 || (!dont_share_p && ira_conflicts_p))
2216 rtx stack_slot;
2218 /* No known place to spill from => no slot to reuse. */
2219 x = assign_stack_local (mode, total_size,
2220 min_align > inherent_align
2221 || total_size > inherent_size ? -1 : 0);
2223 stack_slot = x;
2225 /* Cancel the big-endian correction done in assign_stack_local.
2226 Get the address of the beginning of the slot. This is so we
2227 can do a big-endian correction unconditionally below. */
2228 if (BYTES_BIG_ENDIAN)
2230 adjust = inherent_size - total_size;
2231 if (adjust)
2232 stack_slot
2233 = adjust_address_nv (x, mode_for_size (total_size
2234 * BITS_PER_UNIT,
2235 MODE_INT, 1),
2236 adjust);
2239 if (! dont_share_p && ira_conflicts_p)
2240 /* Inform IRA about allocation a new stack slot. */
2241 ira_mark_new_stack_slot (stack_slot, i, total_size);
2244 /* Reuse a stack slot if possible. */
2245 else if (spill_stack_slot[from_reg] != 0
2246 && spill_stack_slot_width[from_reg] >= total_size
2247 && (GET_MODE_SIZE (GET_MODE (spill_stack_slot[from_reg]))
2248 >= inherent_size)
2249 && MEM_ALIGN (spill_stack_slot[from_reg]) >= min_align)
2250 x = spill_stack_slot[from_reg];
2252 /* Allocate a bigger slot. */
2253 else
2255 /* Compute maximum size needed, both for inherent size
2256 and for total size. */
2257 rtx stack_slot;
2259 if (spill_stack_slot[from_reg])
2261 if (GET_MODE_SIZE (GET_MODE (spill_stack_slot[from_reg]))
2262 > inherent_size)
2263 mode = GET_MODE (spill_stack_slot[from_reg]);
2264 if (spill_stack_slot_width[from_reg] > total_size)
2265 total_size = spill_stack_slot_width[from_reg];
2266 if (MEM_ALIGN (spill_stack_slot[from_reg]) > min_align)
2267 min_align = MEM_ALIGN (spill_stack_slot[from_reg]);
2270 /* Make a slot with that size. */
2271 x = assign_stack_local (mode, total_size,
2272 min_align > inherent_align
2273 || total_size > inherent_size ? -1 : 0);
2274 stack_slot = x;
2276 /* Cancel the big-endian correction done in assign_stack_local.
2277 Get the address of the beginning of the slot. This is so we
2278 can do a big-endian correction unconditionally below. */
2279 if (BYTES_BIG_ENDIAN)
2281 adjust = GET_MODE_SIZE (mode) - total_size;
2282 if (adjust)
2283 stack_slot
2284 = adjust_address_nv (x, mode_for_size (total_size
2285 * BITS_PER_UNIT,
2286 MODE_INT, 1),
2287 adjust);
2290 spill_stack_slot[from_reg] = stack_slot;
2291 spill_stack_slot_width[from_reg] = total_size;
2294 /* On a big endian machine, the "address" of the slot
2295 is the address of the low part that fits its inherent mode. */
2296 if (BYTES_BIG_ENDIAN && inherent_size < total_size)
2297 adjust += (total_size - inherent_size);
2299 /* If we have any adjustment to make, or if the stack slot is the
2300 wrong mode, make a new stack slot. */
2301 x = adjust_address_nv (x, GET_MODE (regno_reg_rtx[i]), adjust);
2303 /* Set all of the memory attributes as appropriate for a spill. */
2304 set_mem_attrs_for_spill (x);
2306 /* Save the stack slot for later. */
2307 reg_equiv_memory_loc (i) = x;
2311 /* Mark the slots in regs_ever_live for the hard regs used by
2312 pseudo-reg number REGNO, accessed in MODE. */
2314 static void
2315 mark_home_live_1 (int regno, enum machine_mode mode)
2317 int i, lim;
2319 i = reg_renumber[regno];
2320 if (i < 0)
2321 return;
2322 lim = end_hard_regno (mode, i);
2323 while (i < lim)
2324 df_set_regs_ever_live (i++, true);
2327 /* Mark the slots in regs_ever_live for the hard regs
2328 used by pseudo-reg number REGNO. */
2330 void
2331 mark_home_live (int regno)
2333 if (reg_renumber[regno] >= 0)
2334 mark_home_live_1 (regno, PSEUDO_REGNO_MODE (regno));
2337 /* This function handles the tracking of elimination offsets around branches.
2339 X is a piece of RTL being scanned.
2341 INSN is the insn that it came from, if any.
2343 INITIAL_P is nonzero if we are to set the offset to be the initial
2344 offset and zero if we are setting the offset of the label to be the
2345 current offset. */
2347 static void
2348 set_label_offsets (rtx x, rtx_insn *insn, int initial_p)
2350 enum rtx_code code = GET_CODE (x);
2351 rtx tem;
2352 unsigned int i;
2353 struct elim_table *p;
2355 switch (code)
2357 case LABEL_REF:
2358 if (LABEL_REF_NONLOCAL_P (x))
2359 return;
2361 x = LABEL_REF_LABEL (x);
2363 /* ... fall through ... */
2365 case CODE_LABEL:
2366 /* If we know nothing about this label, set the desired offsets. Note
2367 that this sets the offset at a label to be the offset before a label
2368 if we don't know anything about the label. This is not correct for
2369 the label after a BARRIER, but is the best guess we can make. If
2370 we guessed wrong, we will suppress an elimination that might have
2371 been possible had we been able to guess correctly. */
2373 if (! offsets_known_at[CODE_LABEL_NUMBER (x) - first_label_num])
2375 for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
2376 offsets_at[CODE_LABEL_NUMBER (x) - first_label_num][i]
2377 = (initial_p ? reg_eliminate[i].initial_offset
2378 : reg_eliminate[i].offset);
2379 offsets_known_at[CODE_LABEL_NUMBER (x) - first_label_num] = 1;
2382 /* Otherwise, if this is the definition of a label and it is
2383 preceded by a BARRIER, set our offsets to the known offset of
2384 that label. */
2386 else if (x == insn
2387 && (tem = prev_nonnote_insn (insn)) != 0
2388 && BARRIER_P (tem))
2389 set_offsets_for_label (insn);
2390 else
2391 /* If neither of the above cases is true, compare each offset
2392 with those previously recorded and suppress any eliminations
2393 where the offsets disagree. */
2395 for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
2396 if (offsets_at[CODE_LABEL_NUMBER (x) - first_label_num][i]
2397 != (initial_p ? reg_eliminate[i].initial_offset
2398 : reg_eliminate[i].offset))
2399 reg_eliminate[i].can_eliminate = 0;
2401 return;
2403 case JUMP_TABLE_DATA:
2404 set_label_offsets (PATTERN (insn), insn, initial_p);
2405 return;
2407 case JUMP_INSN:
2408 set_label_offsets (PATTERN (insn), insn, initial_p);
2410 /* ... fall through ... */
2412 case INSN:
2413 case CALL_INSN:
2414 /* Any labels mentioned in REG_LABEL_OPERAND notes can be branched
2415 to indirectly and hence must have all eliminations at their
2416 initial offsets. */
2417 for (tem = REG_NOTES (x); tem; tem = XEXP (tem, 1))
2418 if (REG_NOTE_KIND (tem) == REG_LABEL_OPERAND)
2419 set_label_offsets (XEXP (tem, 0), insn, 1);
2420 return;
2422 case PARALLEL:
2423 case ADDR_VEC:
2424 case ADDR_DIFF_VEC:
2425 /* Each of the labels in the parallel or address vector must be
2426 at their initial offsets. We want the first field for PARALLEL
2427 and ADDR_VEC and the second field for ADDR_DIFF_VEC. */
2429 for (i = 0; i < (unsigned) XVECLEN (x, code == ADDR_DIFF_VEC); i++)
2430 set_label_offsets (XVECEXP (x, code == ADDR_DIFF_VEC, i),
2431 insn, initial_p);
2432 return;
2434 case SET:
2435 /* We only care about setting PC. If the source is not RETURN,
2436 IF_THEN_ELSE, or a label, disable any eliminations not at
2437 their initial offsets. Similarly if any arm of the IF_THEN_ELSE
2438 isn't one of those possibilities. For branches to a label,
2439 call ourselves recursively.
2441 Note that this can disable elimination unnecessarily when we have
2442 a non-local goto since it will look like a non-constant jump to
2443 someplace in the current function. This isn't a significant
2444 problem since such jumps will normally be when all elimination
2445 pairs are back to their initial offsets. */
2447 if (SET_DEST (x) != pc_rtx)
2448 return;
2450 switch (GET_CODE (SET_SRC (x)))
2452 case PC:
2453 case RETURN:
2454 return;
2456 case LABEL_REF:
2457 set_label_offsets (SET_SRC (x), insn, initial_p);
2458 return;
2460 case IF_THEN_ELSE:
2461 tem = XEXP (SET_SRC (x), 1);
2462 if (GET_CODE (tem) == LABEL_REF)
2463 set_label_offsets (LABEL_REF_LABEL (tem), insn, initial_p);
2464 else if (GET_CODE (tem) != PC && GET_CODE (tem) != RETURN)
2465 break;
2467 tem = XEXP (SET_SRC (x), 2);
2468 if (GET_CODE (tem) == LABEL_REF)
2469 set_label_offsets (LABEL_REF_LABEL (tem), insn, initial_p);
2470 else if (GET_CODE (tem) != PC && GET_CODE (tem) != RETURN)
2471 break;
2472 return;
2474 default:
2475 break;
2478 /* If we reach here, all eliminations must be at their initial
2479 offset because we are doing a jump to a variable address. */
2480 for (p = reg_eliminate; p < &reg_eliminate[NUM_ELIMINABLE_REGS]; p++)
2481 if (p->offset != p->initial_offset)
2482 p->can_eliminate = 0;
2483 break;
2485 default:
2486 break;
2490 /* This function examines every reg that occurs in X and adjusts the
2491 costs for its elimination which are gathered by IRA. INSN is the
2492 insn in which X occurs. We do not recurse into MEM expressions. */
2494 static void
2495 note_reg_elim_costly (const_rtx x, rtx insn)
2497 subrtx_iterator::array_type array;
2498 FOR_EACH_SUBRTX (iter, array, x, NONCONST)
2500 const_rtx x = *iter;
2501 if (MEM_P (x))
2502 iter.skip_subrtxes ();
2503 else if (REG_P (x)
2504 && REGNO (x) >= FIRST_PSEUDO_REGISTER
2505 && reg_equiv_init (REGNO (x))
2506 && reg_equiv_invariant (REGNO (x)))
2508 rtx t = reg_equiv_invariant (REGNO (x));
2509 rtx new_rtx = eliminate_regs_1 (t, Pmode, insn, true, true);
2510 int cost = set_src_cost (new_rtx, optimize_bb_for_speed_p (elim_bb));
2511 int freq = REG_FREQ_FROM_BB (elim_bb);
2513 if (cost != 0)
2514 ira_adjust_equiv_reg_cost (REGNO (x), -cost * freq);
2519 /* Scan X and replace any eliminable registers (such as fp) with a
2520 replacement (such as sp), plus an offset.
2522 MEM_MODE is the mode of an enclosing MEM. We need this to know how
2523 much to adjust a register for, e.g., PRE_DEC. Also, if we are inside a
2524 MEM, we are allowed to replace a sum of a register and the constant zero
2525 with the register, which we cannot do outside a MEM. In addition, we need
2526 to record the fact that a register is referenced outside a MEM.
2528 If INSN is an insn, it is the insn containing X. If we replace a REG
2529 in a SET_DEST with an equivalent MEM and INSN is nonzero, write a
2530 CLOBBER of the pseudo after INSN so find_equiv_regs will know that
2531 the REG is being modified.
2533 Alternatively, INSN may be a note (an EXPR_LIST or INSN_LIST).
2534 That's used when we eliminate in expressions stored in notes.
2535 This means, do not set ref_outside_mem even if the reference
2536 is outside of MEMs.
2538 If FOR_COSTS is true, we are being called before reload in order to
2539 estimate the costs of keeping registers with an equivalence unallocated.
2541 REG_EQUIV_MEM and REG_EQUIV_ADDRESS contain address that have had
2542 replacements done assuming all offsets are at their initial values. If
2543 they are not, or if REG_EQUIV_ADDRESS is nonzero for a pseudo we
2544 encounter, return the actual location so that find_reloads will do
2545 the proper thing. */
2547 static rtx
2548 eliminate_regs_1 (rtx x, enum machine_mode mem_mode, rtx insn,
2549 bool may_use_invariant, bool for_costs)
2551 enum rtx_code code = GET_CODE (x);
2552 struct elim_table *ep;
2553 int regno;
2554 rtx new_rtx;
2555 int i, j;
2556 const char *fmt;
2557 int copied = 0;
2559 if (! current_function_decl)
2560 return x;
2562 switch (code)
2564 CASE_CONST_ANY:
2565 case CONST:
2566 case SYMBOL_REF:
2567 case CODE_LABEL:
2568 case PC:
2569 case CC0:
2570 case ASM_INPUT:
2571 case ADDR_VEC:
2572 case ADDR_DIFF_VEC:
2573 case RETURN:
2574 return x;
2576 case REG:
2577 regno = REGNO (x);
2579 /* First handle the case where we encounter a bare register that
2580 is eliminable. Replace it with a PLUS. */
2581 if (regno < FIRST_PSEUDO_REGISTER)
2583 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2584 ep++)
2585 if (ep->from_rtx == x && ep->can_eliminate)
2586 return plus_constant (Pmode, ep->to_rtx, ep->previous_offset);
2589 else if (reg_renumber && reg_renumber[regno] < 0
2590 && reg_equivs
2591 && reg_equiv_invariant (regno))
2593 if (may_use_invariant || (insn && DEBUG_INSN_P (insn)))
2594 return eliminate_regs_1 (copy_rtx (reg_equiv_invariant (regno)),
2595 mem_mode, insn, true, for_costs);
2596 /* There exists at least one use of REGNO that cannot be
2597 eliminated. Prevent the defining insn from being deleted. */
2598 reg_equiv_init (regno) = NULL_RTX;
2599 if (!for_costs)
2600 alter_reg (regno, -1, true);
2602 return x;
2604 /* You might think handling MINUS in a manner similar to PLUS is a
2605 good idea. It is not. It has been tried multiple times and every
2606 time the change has had to have been reverted.
2608 Other parts of reload know a PLUS is special (gen_reload for example)
2609 and require special code to handle code a reloaded PLUS operand.
2611 Also consider backends where the flags register is clobbered by a
2612 MINUS, but we can emit a PLUS that does not clobber flags (IA-32,
2613 lea instruction comes to mind). If we try to reload a MINUS, we
2614 may kill the flags register that was holding a useful value.
2616 So, please before trying to handle MINUS, consider reload as a
2617 whole instead of this little section as well as the backend issues. */
2618 case PLUS:
2619 /* If this is the sum of an eliminable register and a constant, rework
2620 the sum. */
2621 if (REG_P (XEXP (x, 0))
2622 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER
2623 && CONSTANT_P (XEXP (x, 1)))
2625 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2626 ep++)
2627 if (ep->from_rtx == XEXP (x, 0) && ep->can_eliminate)
2629 /* The only time we want to replace a PLUS with a REG (this
2630 occurs when the constant operand of the PLUS is the negative
2631 of the offset) is when we are inside a MEM. We won't want
2632 to do so at other times because that would change the
2633 structure of the insn in a way that reload can't handle.
2634 We special-case the commonest situation in
2635 eliminate_regs_in_insn, so just replace a PLUS with a
2636 PLUS here, unless inside a MEM. */
2637 if (mem_mode != 0 && CONST_INT_P (XEXP (x, 1))
2638 && INTVAL (XEXP (x, 1)) == - ep->previous_offset)
2639 return ep->to_rtx;
2640 else
2641 return gen_rtx_PLUS (Pmode, ep->to_rtx,
2642 plus_constant (Pmode, XEXP (x, 1),
2643 ep->previous_offset));
2646 /* If the register is not eliminable, we are done since the other
2647 operand is a constant. */
2648 return x;
2651 /* If this is part of an address, we want to bring any constant to the
2652 outermost PLUS. We will do this by doing register replacement in
2653 our operands and seeing if a constant shows up in one of them.
2655 Note that there is no risk of modifying the structure of the insn,
2656 since we only get called for its operands, thus we are either
2657 modifying the address inside a MEM, or something like an address
2658 operand of a load-address insn. */
2661 rtx new0 = eliminate_regs_1 (XEXP (x, 0), mem_mode, insn, true,
2662 for_costs);
2663 rtx new1 = eliminate_regs_1 (XEXP (x, 1), mem_mode, insn, true,
2664 for_costs);
2666 if (reg_renumber && (new0 != XEXP (x, 0) || new1 != XEXP (x, 1)))
2668 /* If one side is a PLUS and the other side is a pseudo that
2669 didn't get a hard register but has a reg_equiv_constant,
2670 we must replace the constant here since it may no longer
2671 be in the position of any operand. */
2672 if (GET_CODE (new0) == PLUS && REG_P (new1)
2673 && REGNO (new1) >= FIRST_PSEUDO_REGISTER
2674 && reg_renumber[REGNO (new1)] < 0
2675 && reg_equivs
2676 && reg_equiv_constant (REGNO (new1)) != 0)
2677 new1 = reg_equiv_constant (REGNO (new1));
2678 else if (GET_CODE (new1) == PLUS && REG_P (new0)
2679 && REGNO (new0) >= FIRST_PSEUDO_REGISTER
2680 && reg_renumber[REGNO (new0)] < 0
2681 && reg_equiv_constant (REGNO (new0)) != 0)
2682 new0 = reg_equiv_constant (REGNO (new0));
2684 new_rtx = form_sum (GET_MODE (x), new0, new1);
2686 /* As above, if we are not inside a MEM we do not want to
2687 turn a PLUS into something else. We might try to do so here
2688 for an addition of 0 if we aren't optimizing. */
2689 if (! mem_mode && GET_CODE (new_rtx) != PLUS)
2690 return gen_rtx_PLUS (GET_MODE (x), new_rtx, const0_rtx);
2691 else
2692 return new_rtx;
2695 return x;
2697 case MULT:
2698 /* If this is the product of an eliminable register and a
2699 constant, apply the distribute law and move the constant out
2700 so that we have (plus (mult ..) ..). This is needed in order
2701 to keep load-address insns valid. This case is pathological.
2702 We ignore the possibility of overflow here. */
2703 if (REG_P (XEXP (x, 0))
2704 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER
2705 && CONST_INT_P (XEXP (x, 1)))
2706 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2707 ep++)
2708 if (ep->from_rtx == XEXP (x, 0) && ep->can_eliminate)
2710 if (! mem_mode
2711 /* Refs inside notes or in DEBUG_INSNs don't count for
2712 this purpose. */
2713 && ! (insn != 0 && (GET_CODE (insn) == EXPR_LIST
2714 || GET_CODE (insn) == INSN_LIST
2715 || DEBUG_INSN_P (insn))))
2716 ep->ref_outside_mem = 1;
2718 return
2719 plus_constant (Pmode,
2720 gen_rtx_MULT (Pmode, ep->to_rtx, XEXP (x, 1)),
2721 ep->previous_offset * INTVAL (XEXP (x, 1)));
2724 /* ... fall through ... */
2726 case CALL:
2727 case COMPARE:
2728 /* See comments before PLUS about handling MINUS. */
2729 case MINUS:
2730 case DIV: case UDIV:
2731 case MOD: case UMOD:
2732 case AND: case IOR: case XOR:
2733 case ROTATERT: case ROTATE:
2734 case ASHIFTRT: case LSHIFTRT: case ASHIFT:
2735 case NE: case EQ:
2736 case GE: case GT: case GEU: case GTU:
2737 case LE: case LT: case LEU: case LTU:
2739 rtx new0 = eliminate_regs_1 (XEXP (x, 0), mem_mode, insn, false,
2740 for_costs);
2741 rtx new1 = XEXP (x, 1)
2742 ? eliminate_regs_1 (XEXP (x, 1), mem_mode, insn, false,
2743 for_costs) : 0;
2745 if (new0 != XEXP (x, 0) || new1 != XEXP (x, 1))
2746 return gen_rtx_fmt_ee (code, GET_MODE (x), new0, new1);
2748 return x;
2750 case EXPR_LIST:
2751 /* If we have something in XEXP (x, 0), the usual case, eliminate it. */
2752 if (XEXP (x, 0))
2754 new_rtx = eliminate_regs_1 (XEXP (x, 0), mem_mode, insn, true,
2755 for_costs);
2756 if (new_rtx != XEXP (x, 0))
2758 /* If this is a REG_DEAD note, it is not valid anymore.
2759 Using the eliminated version could result in creating a
2760 REG_DEAD note for the stack or frame pointer. */
2761 if (REG_NOTE_KIND (x) == REG_DEAD)
2762 return (XEXP (x, 1)
2763 ? eliminate_regs_1 (XEXP (x, 1), mem_mode, insn, true,
2764 for_costs)
2765 : NULL_RTX);
2767 x = alloc_reg_note (REG_NOTE_KIND (x), new_rtx, XEXP (x, 1));
2771 /* ... fall through ... */
2773 case INSN_LIST:
2774 case INT_LIST:
2775 /* Now do eliminations in the rest of the chain. If this was
2776 an EXPR_LIST, this might result in allocating more memory than is
2777 strictly needed, but it simplifies the code. */
2778 if (XEXP (x, 1))
2780 new_rtx = eliminate_regs_1 (XEXP (x, 1), mem_mode, insn, true,
2781 for_costs);
2782 if (new_rtx != XEXP (x, 1))
2783 return
2784 gen_rtx_fmt_ee (GET_CODE (x), GET_MODE (x), XEXP (x, 0), new_rtx);
2786 return x;
2788 case PRE_INC:
2789 case POST_INC:
2790 case PRE_DEC:
2791 case POST_DEC:
2792 /* We do not support elimination of a register that is modified.
2793 elimination_effects has already make sure that this does not
2794 happen. */
2795 return x;
2797 case PRE_MODIFY:
2798 case POST_MODIFY:
2799 /* We do not support elimination of a register that is modified.
2800 elimination_effects has already make sure that this does not
2801 happen. The only remaining case we need to consider here is
2802 that the increment value may be an eliminable register. */
2803 if (GET_CODE (XEXP (x, 1)) == PLUS
2804 && XEXP (XEXP (x, 1), 0) == XEXP (x, 0))
2806 rtx new_rtx = eliminate_regs_1 (XEXP (XEXP (x, 1), 1), mem_mode,
2807 insn, true, for_costs);
2809 if (new_rtx != XEXP (XEXP (x, 1), 1))
2810 return gen_rtx_fmt_ee (code, GET_MODE (x), XEXP (x, 0),
2811 gen_rtx_PLUS (GET_MODE (x),
2812 XEXP (x, 0), new_rtx));
2814 return x;
2816 case STRICT_LOW_PART:
2817 case NEG: case NOT:
2818 case SIGN_EXTEND: case ZERO_EXTEND:
2819 case TRUNCATE: case FLOAT_EXTEND: case FLOAT_TRUNCATE:
2820 case FLOAT: case FIX:
2821 case UNSIGNED_FIX: case UNSIGNED_FLOAT:
2822 case ABS:
2823 case SQRT:
2824 case FFS:
2825 case CLZ:
2826 case CTZ:
2827 case POPCOUNT:
2828 case PARITY:
2829 case BSWAP:
2830 new_rtx = eliminate_regs_1 (XEXP (x, 0), mem_mode, insn, false,
2831 for_costs);
2832 if (new_rtx != XEXP (x, 0))
2833 return gen_rtx_fmt_e (code, GET_MODE (x), new_rtx);
2834 return x;
2836 case SUBREG:
2837 /* Similar to above processing, but preserve SUBREG_BYTE.
2838 Convert (subreg (mem)) to (mem) if not paradoxical.
2839 Also, if we have a non-paradoxical (subreg (pseudo)) and the
2840 pseudo didn't get a hard reg, we must replace this with the
2841 eliminated version of the memory location because push_reload
2842 may do the replacement in certain circumstances. */
2843 if (REG_P (SUBREG_REG (x))
2844 && !paradoxical_subreg_p (x)
2845 && reg_equivs
2846 && reg_equiv_memory_loc (REGNO (SUBREG_REG (x))) != 0)
2848 new_rtx = SUBREG_REG (x);
2850 else
2851 new_rtx = eliminate_regs_1 (SUBREG_REG (x), mem_mode, insn, false, for_costs);
2853 if (new_rtx != SUBREG_REG (x))
2855 int x_size = GET_MODE_SIZE (GET_MODE (x));
2856 int new_size = GET_MODE_SIZE (GET_MODE (new_rtx));
2858 if (MEM_P (new_rtx)
2859 && ((x_size < new_size
2860 #ifdef WORD_REGISTER_OPERATIONS
2861 /* On these machines, combine can create rtl of the form
2862 (set (subreg:m1 (reg:m2 R) 0) ...)
2863 where m1 < m2, and expects something interesting to
2864 happen to the entire word. Moreover, it will use the
2865 (reg:m2 R) later, expecting all bits to be preserved.
2866 So if the number of words is the same, preserve the
2867 subreg so that push_reload can see it. */
2868 && ! ((x_size - 1) / UNITS_PER_WORD
2869 == (new_size -1 ) / UNITS_PER_WORD)
2870 #endif
2872 || x_size == new_size)
2874 return adjust_address_nv (new_rtx, GET_MODE (x), SUBREG_BYTE (x));
2875 else
2876 return gen_rtx_SUBREG (GET_MODE (x), new_rtx, SUBREG_BYTE (x));
2879 return x;
2881 case MEM:
2882 /* Our only special processing is to pass the mode of the MEM to our
2883 recursive call and copy the flags. While we are here, handle this
2884 case more efficiently. */
2886 new_rtx = eliminate_regs_1 (XEXP (x, 0), GET_MODE (x), insn, true,
2887 for_costs);
2888 if (for_costs
2889 && memory_address_p (GET_MODE (x), XEXP (x, 0))
2890 && !memory_address_p (GET_MODE (x), new_rtx))
2891 note_reg_elim_costly (XEXP (x, 0), insn);
2893 return replace_equiv_address_nv (x, new_rtx);
2895 case USE:
2896 /* Handle insn_list USE that a call to a pure function may generate. */
2897 new_rtx = eliminate_regs_1 (XEXP (x, 0), VOIDmode, insn, false,
2898 for_costs);
2899 if (new_rtx != XEXP (x, 0))
2900 return gen_rtx_USE (GET_MODE (x), new_rtx);
2901 return x;
2903 case CLOBBER:
2904 case ASM_OPERANDS:
2905 gcc_assert (insn && DEBUG_INSN_P (insn));
2906 break;
2908 case SET:
2909 gcc_unreachable ();
2911 default:
2912 break;
2915 /* Process each of our operands recursively. If any have changed, make a
2916 copy of the rtx. */
2917 fmt = GET_RTX_FORMAT (code);
2918 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
2920 if (*fmt == 'e')
2922 new_rtx = eliminate_regs_1 (XEXP (x, i), mem_mode, insn, false,
2923 for_costs);
2924 if (new_rtx != XEXP (x, i) && ! copied)
2926 x = shallow_copy_rtx (x);
2927 copied = 1;
2929 XEXP (x, i) = new_rtx;
2931 else if (*fmt == 'E')
2933 int copied_vec = 0;
2934 for (j = 0; j < XVECLEN (x, i); j++)
2936 new_rtx = eliminate_regs_1 (XVECEXP (x, i, j), mem_mode, insn, false,
2937 for_costs);
2938 if (new_rtx != XVECEXP (x, i, j) && ! copied_vec)
2940 rtvec new_v = gen_rtvec_v (XVECLEN (x, i),
2941 XVEC (x, i)->elem);
2942 if (! copied)
2944 x = shallow_copy_rtx (x);
2945 copied = 1;
2947 XVEC (x, i) = new_v;
2948 copied_vec = 1;
2950 XVECEXP (x, i, j) = new_rtx;
2955 return x;
2959 eliminate_regs (rtx x, enum machine_mode mem_mode, rtx insn)
2961 return eliminate_regs_1 (x, mem_mode, insn, false, false);
2964 /* Scan rtx X for modifications of elimination target registers. Update
2965 the table of eliminables to reflect the changed state. MEM_MODE is
2966 the mode of an enclosing MEM rtx, or VOIDmode if not within a MEM. */
2968 static void
2969 elimination_effects (rtx x, enum machine_mode mem_mode)
2971 enum rtx_code code = GET_CODE (x);
2972 struct elim_table *ep;
2973 int regno;
2974 int i, j;
2975 const char *fmt;
2977 switch (code)
2979 CASE_CONST_ANY:
2980 case CONST:
2981 case SYMBOL_REF:
2982 case CODE_LABEL:
2983 case PC:
2984 case CC0:
2985 case ASM_INPUT:
2986 case ADDR_VEC:
2987 case ADDR_DIFF_VEC:
2988 case RETURN:
2989 return;
2991 case REG:
2992 regno = REGNO (x);
2994 /* First handle the case where we encounter a bare register that
2995 is eliminable. Replace it with a PLUS. */
2996 if (regno < FIRST_PSEUDO_REGISTER)
2998 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2999 ep++)
3000 if (ep->from_rtx == x && ep->can_eliminate)
3002 if (! mem_mode)
3003 ep->ref_outside_mem = 1;
3004 return;
3008 else if (reg_renumber[regno] < 0
3009 && reg_equivs
3010 && reg_equiv_constant (regno)
3011 && ! function_invariant_p (reg_equiv_constant (regno)))
3012 elimination_effects (reg_equiv_constant (regno), mem_mode);
3013 return;
3015 case PRE_INC:
3016 case POST_INC:
3017 case PRE_DEC:
3018 case POST_DEC:
3019 case POST_MODIFY:
3020 case PRE_MODIFY:
3021 /* If we modify the source of an elimination rule, disable it. */
3022 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3023 if (ep->from_rtx == XEXP (x, 0))
3024 ep->can_eliminate = 0;
3026 /* If we modify the target of an elimination rule by adding a constant,
3027 update its offset. If we modify the target in any other way, we'll
3028 have to disable the rule as well. */
3029 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3030 if (ep->to_rtx == XEXP (x, 0))
3032 int size = GET_MODE_SIZE (mem_mode);
3034 /* If more bytes than MEM_MODE are pushed, account for them. */
3035 #ifdef PUSH_ROUNDING
3036 if (ep->to_rtx == stack_pointer_rtx)
3037 size = PUSH_ROUNDING (size);
3038 #endif
3039 if (code == PRE_DEC || code == POST_DEC)
3040 ep->offset += size;
3041 else if (code == PRE_INC || code == POST_INC)
3042 ep->offset -= size;
3043 else if (code == PRE_MODIFY || code == POST_MODIFY)
3045 if (GET_CODE (XEXP (x, 1)) == PLUS
3046 && XEXP (x, 0) == XEXP (XEXP (x, 1), 0)
3047 && CONST_INT_P (XEXP (XEXP (x, 1), 1)))
3048 ep->offset -= INTVAL (XEXP (XEXP (x, 1), 1));
3049 else
3050 ep->can_eliminate = 0;
3054 /* These two aren't unary operators. */
3055 if (code == POST_MODIFY || code == PRE_MODIFY)
3056 break;
3058 /* Fall through to generic unary operation case. */
3059 case STRICT_LOW_PART:
3060 case NEG: case NOT:
3061 case SIGN_EXTEND: case ZERO_EXTEND:
3062 case TRUNCATE: case FLOAT_EXTEND: case FLOAT_TRUNCATE:
3063 case FLOAT: case FIX:
3064 case UNSIGNED_FIX: case UNSIGNED_FLOAT:
3065 case ABS:
3066 case SQRT:
3067 case FFS:
3068 case CLZ:
3069 case CTZ:
3070 case POPCOUNT:
3071 case PARITY:
3072 case BSWAP:
3073 elimination_effects (XEXP (x, 0), mem_mode);
3074 return;
3076 case SUBREG:
3077 if (REG_P (SUBREG_REG (x))
3078 && (GET_MODE_SIZE (GET_MODE (x))
3079 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
3080 && reg_equivs
3081 && reg_equiv_memory_loc (REGNO (SUBREG_REG (x))) != 0)
3082 return;
3084 elimination_effects (SUBREG_REG (x), mem_mode);
3085 return;
3087 case USE:
3088 /* If using a register that is the source of an eliminate we still
3089 think can be performed, note it cannot be performed since we don't
3090 know how this register is used. */
3091 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3092 if (ep->from_rtx == XEXP (x, 0))
3093 ep->can_eliminate = 0;
3095 elimination_effects (XEXP (x, 0), mem_mode);
3096 return;
3098 case CLOBBER:
3099 /* If clobbering a register that is the replacement register for an
3100 elimination we still think can be performed, note that it cannot
3101 be performed. Otherwise, we need not be concerned about it. */
3102 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3103 if (ep->to_rtx == XEXP (x, 0))
3104 ep->can_eliminate = 0;
3106 elimination_effects (XEXP (x, 0), mem_mode);
3107 return;
3109 case SET:
3110 /* Check for setting a register that we know about. */
3111 if (REG_P (SET_DEST (x)))
3113 /* See if this is setting the replacement register for an
3114 elimination.
3116 If DEST is the hard frame pointer, we do nothing because we
3117 assume that all assignments to the frame pointer are for
3118 non-local gotos and are being done at a time when they are valid
3119 and do not disturb anything else. Some machines want to
3120 eliminate a fake argument pointer (or even a fake frame pointer)
3121 with either the real frame or the stack pointer. Assignments to
3122 the hard frame pointer must not prevent this elimination. */
3124 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
3125 ep++)
3126 if (ep->to_rtx == SET_DEST (x)
3127 && SET_DEST (x) != hard_frame_pointer_rtx)
3129 /* If it is being incremented, adjust the offset. Otherwise,
3130 this elimination can't be done. */
3131 rtx src = SET_SRC (x);
3133 if (GET_CODE (src) == PLUS
3134 && XEXP (src, 0) == SET_DEST (x)
3135 && CONST_INT_P (XEXP (src, 1)))
3136 ep->offset -= INTVAL (XEXP (src, 1));
3137 else
3138 ep->can_eliminate = 0;
3142 elimination_effects (SET_DEST (x), VOIDmode);
3143 elimination_effects (SET_SRC (x), VOIDmode);
3144 return;
3146 case MEM:
3147 /* Our only special processing is to pass the mode of the MEM to our
3148 recursive call. */
3149 elimination_effects (XEXP (x, 0), GET_MODE (x));
3150 return;
3152 default:
3153 break;
3156 fmt = GET_RTX_FORMAT (code);
3157 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
3159 if (*fmt == 'e')
3160 elimination_effects (XEXP (x, i), mem_mode);
3161 else if (*fmt == 'E')
3162 for (j = 0; j < XVECLEN (x, i); j++)
3163 elimination_effects (XVECEXP (x, i, j), mem_mode);
3167 /* Descend through rtx X and verify that no references to eliminable registers
3168 remain. If any do remain, mark the involved register as not
3169 eliminable. */
3171 static void
3172 check_eliminable_occurrences (rtx x)
3174 const char *fmt;
3175 int i;
3176 enum rtx_code code;
3178 if (x == 0)
3179 return;
3181 code = GET_CODE (x);
3183 if (code == REG && REGNO (x) < FIRST_PSEUDO_REGISTER)
3185 struct elim_table *ep;
3187 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3188 if (ep->from_rtx == x)
3189 ep->can_eliminate = 0;
3190 return;
3193 fmt = GET_RTX_FORMAT (code);
3194 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
3196 if (*fmt == 'e')
3197 check_eliminable_occurrences (XEXP (x, i));
3198 else if (*fmt == 'E')
3200 int j;
3201 for (j = 0; j < XVECLEN (x, i); j++)
3202 check_eliminable_occurrences (XVECEXP (x, i, j));
3207 /* Scan INSN and eliminate all eliminable registers in it.
3209 If REPLACE is nonzero, do the replacement destructively. Also
3210 delete the insn as dead it if it is setting an eliminable register.
3212 If REPLACE is zero, do all our allocations in reload_obstack.
3214 If no eliminations were done and this insn doesn't require any elimination
3215 processing (these are not identical conditions: it might be updating sp,
3216 but not referencing fp; this needs to be seen during reload_as_needed so
3217 that the offset between fp and sp can be taken into consideration), zero
3218 is returned. Otherwise, 1 is returned. */
3220 static int
3221 eliminate_regs_in_insn (rtx_insn *insn, int replace)
3223 int icode = recog_memoized (insn);
3224 rtx old_body = PATTERN (insn);
3225 int insn_is_asm = asm_noperands (old_body) >= 0;
3226 rtx old_set = single_set (insn);
3227 rtx new_body;
3228 int val = 0;
3229 int i;
3230 rtx substed_operand[MAX_RECOG_OPERANDS];
3231 rtx orig_operand[MAX_RECOG_OPERANDS];
3232 struct elim_table *ep;
3233 rtx plus_src, plus_cst_src;
3235 if (! insn_is_asm && icode < 0)
3237 gcc_assert (DEBUG_INSN_P (insn)
3238 || GET_CODE (PATTERN (insn)) == USE
3239 || GET_CODE (PATTERN (insn)) == CLOBBER
3240 || GET_CODE (PATTERN (insn)) == ASM_INPUT);
3241 if (DEBUG_INSN_P (insn))
3242 INSN_VAR_LOCATION_LOC (insn)
3243 = eliminate_regs (INSN_VAR_LOCATION_LOC (insn), VOIDmode, insn);
3244 return 0;
3247 if (old_set != 0 && REG_P (SET_DEST (old_set))
3248 && REGNO (SET_DEST (old_set)) < FIRST_PSEUDO_REGISTER)
3250 /* Check for setting an eliminable register. */
3251 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3252 if (ep->from_rtx == SET_DEST (old_set) && ep->can_eliminate)
3254 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
3255 /* If this is setting the frame pointer register to the
3256 hardware frame pointer register and this is an elimination
3257 that will be done (tested above), this insn is really
3258 adjusting the frame pointer downward to compensate for
3259 the adjustment done before a nonlocal goto. */
3260 if (ep->from == FRAME_POINTER_REGNUM
3261 && ep->to == HARD_FRAME_POINTER_REGNUM)
3263 rtx base = SET_SRC (old_set);
3264 rtx_insn *base_insn = insn;
3265 HOST_WIDE_INT offset = 0;
3267 while (base != ep->to_rtx)
3269 rtx_insn *prev_insn;
3270 rtx prev_set;
3272 if (GET_CODE (base) == PLUS
3273 && CONST_INT_P (XEXP (base, 1)))
3275 offset += INTVAL (XEXP (base, 1));
3276 base = XEXP (base, 0);
3278 else if ((prev_insn = prev_nonnote_insn (base_insn)) != 0
3279 && (prev_set = single_set (prev_insn)) != 0
3280 && rtx_equal_p (SET_DEST (prev_set), base))
3282 base = SET_SRC (prev_set);
3283 base_insn = prev_insn;
3285 else
3286 break;
3289 if (base == ep->to_rtx)
3291 rtx src = plus_constant (Pmode, ep->to_rtx,
3292 offset - ep->offset);
3294 new_body = old_body;
3295 if (! replace)
3297 new_body = copy_insn (old_body);
3298 if (REG_NOTES (insn))
3299 REG_NOTES (insn) = copy_insn_1 (REG_NOTES (insn));
3301 PATTERN (insn) = new_body;
3302 old_set = single_set (insn);
3304 /* First see if this insn remains valid when we
3305 make the change. If not, keep the INSN_CODE
3306 the same and let reload fit it up. */
3307 validate_change (insn, &SET_SRC (old_set), src, 1);
3308 validate_change (insn, &SET_DEST (old_set),
3309 ep->to_rtx, 1);
3310 if (! apply_change_group ())
3312 SET_SRC (old_set) = src;
3313 SET_DEST (old_set) = ep->to_rtx;
3316 val = 1;
3317 goto done;
3320 #endif
3322 /* In this case this insn isn't serving a useful purpose. We
3323 will delete it in reload_as_needed once we know that this
3324 elimination is, in fact, being done.
3326 If REPLACE isn't set, we can't delete this insn, but needn't
3327 process it since it won't be used unless something changes. */
3328 if (replace)
3330 delete_dead_insn (insn);
3331 return 1;
3333 val = 1;
3334 goto done;
3338 /* We allow one special case which happens to work on all machines we
3339 currently support: a single set with the source or a REG_EQUAL
3340 note being a PLUS of an eliminable register and a constant. */
3341 plus_src = plus_cst_src = 0;
3342 if (old_set && REG_P (SET_DEST (old_set)))
3344 if (GET_CODE (SET_SRC (old_set)) == PLUS)
3345 plus_src = SET_SRC (old_set);
3346 /* First see if the source is of the form (plus (...) CST). */
3347 if (plus_src
3348 && CONST_INT_P (XEXP (plus_src, 1)))
3349 plus_cst_src = plus_src;
3350 else if (REG_P (SET_SRC (old_set))
3351 || plus_src)
3353 /* Otherwise, see if we have a REG_EQUAL note of the form
3354 (plus (...) CST). */
3355 rtx links;
3356 for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
3358 if ((REG_NOTE_KIND (links) == REG_EQUAL
3359 || REG_NOTE_KIND (links) == REG_EQUIV)
3360 && GET_CODE (XEXP (links, 0)) == PLUS
3361 && CONST_INT_P (XEXP (XEXP (links, 0), 1)))
3363 plus_cst_src = XEXP (links, 0);
3364 break;
3369 /* Check that the first operand of the PLUS is a hard reg or
3370 the lowpart subreg of one. */
3371 if (plus_cst_src)
3373 rtx reg = XEXP (plus_cst_src, 0);
3374 if (GET_CODE (reg) == SUBREG && subreg_lowpart_p (reg))
3375 reg = SUBREG_REG (reg);
3377 if (!REG_P (reg) || REGNO (reg) >= FIRST_PSEUDO_REGISTER)
3378 plus_cst_src = 0;
3381 if (plus_cst_src)
3383 rtx reg = XEXP (plus_cst_src, 0);
3384 HOST_WIDE_INT offset = INTVAL (XEXP (plus_cst_src, 1));
3386 if (GET_CODE (reg) == SUBREG)
3387 reg = SUBREG_REG (reg);
3389 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3390 if (ep->from_rtx == reg && ep->can_eliminate)
3392 rtx to_rtx = ep->to_rtx;
3393 offset += ep->offset;
3394 offset = trunc_int_for_mode (offset, GET_MODE (plus_cst_src));
3396 if (GET_CODE (XEXP (plus_cst_src, 0)) == SUBREG)
3397 to_rtx = gen_lowpart (GET_MODE (XEXP (plus_cst_src, 0)),
3398 to_rtx);
3399 /* If we have a nonzero offset, and the source is already
3400 a simple REG, the following transformation would
3401 increase the cost of the insn by replacing a simple REG
3402 with (plus (reg sp) CST). So try only when we already
3403 had a PLUS before. */
3404 if (offset == 0 || plus_src)
3406 rtx new_src = plus_constant (GET_MODE (to_rtx),
3407 to_rtx, offset);
3409 new_body = old_body;
3410 if (! replace)
3412 new_body = copy_insn (old_body);
3413 if (REG_NOTES (insn))
3414 REG_NOTES (insn) = copy_insn_1 (REG_NOTES (insn));
3416 PATTERN (insn) = new_body;
3417 old_set = single_set (insn);
3419 /* First see if this insn remains valid when we make the
3420 change. If not, try to replace the whole pattern with
3421 a simple set (this may help if the original insn was a
3422 PARALLEL that was only recognized as single_set due to
3423 REG_UNUSED notes). If this isn't valid either, keep
3424 the INSN_CODE the same and let reload fix it up. */
3425 if (!validate_change (insn, &SET_SRC (old_set), new_src, 0))
3427 rtx new_pat = gen_rtx_SET (VOIDmode,
3428 SET_DEST (old_set), new_src);
3430 if (!validate_change (insn, &PATTERN (insn), new_pat, 0))
3431 SET_SRC (old_set) = new_src;
3434 else
3435 break;
3437 val = 1;
3438 /* This can't have an effect on elimination offsets, so skip right
3439 to the end. */
3440 goto done;
3444 /* Determine the effects of this insn on elimination offsets. */
3445 elimination_effects (old_body, VOIDmode);
3447 /* Eliminate all eliminable registers occurring in operands that
3448 can be handled by reload. */
3449 extract_insn (insn);
3450 for (i = 0; i < recog_data.n_operands; i++)
3452 orig_operand[i] = recog_data.operand[i];
3453 substed_operand[i] = recog_data.operand[i];
3455 /* For an asm statement, every operand is eliminable. */
3456 if (insn_is_asm || insn_data[icode].operand[i].eliminable)
3458 bool is_set_src, in_plus;
3460 /* Check for setting a register that we know about. */
3461 if (recog_data.operand_type[i] != OP_IN
3462 && REG_P (orig_operand[i]))
3464 /* If we are assigning to a register that can be eliminated, it
3465 must be as part of a PARALLEL, since the code above handles
3466 single SETs. We must indicate that we can no longer
3467 eliminate this reg. */
3468 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
3469 ep++)
3470 if (ep->from_rtx == orig_operand[i])
3471 ep->can_eliminate = 0;
3474 /* Companion to the above plus substitution, we can allow
3475 invariants as the source of a plain move. */
3476 is_set_src = false;
3477 if (old_set
3478 && recog_data.operand_loc[i] == &SET_SRC (old_set))
3479 is_set_src = true;
3480 in_plus = false;
3481 if (plus_src
3482 && (recog_data.operand_loc[i] == &XEXP (plus_src, 0)
3483 || recog_data.operand_loc[i] == &XEXP (plus_src, 1)))
3484 in_plus = true;
3486 substed_operand[i]
3487 = eliminate_regs_1 (recog_data.operand[i], VOIDmode,
3488 replace ? insn : NULL_RTX,
3489 is_set_src || in_plus, false);
3490 if (substed_operand[i] != orig_operand[i])
3491 val = 1;
3492 /* Terminate the search in check_eliminable_occurrences at
3493 this point. */
3494 *recog_data.operand_loc[i] = 0;
3496 /* If an output operand changed from a REG to a MEM and INSN is an
3497 insn, write a CLOBBER insn. */
3498 if (recog_data.operand_type[i] != OP_IN
3499 && REG_P (orig_operand[i])
3500 && MEM_P (substed_operand[i])
3501 && replace)
3502 emit_insn_after (gen_clobber (orig_operand[i]), insn);
3506 for (i = 0; i < recog_data.n_dups; i++)
3507 *recog_data.dup_loc[i]
3508 = *recog_data.operand_loc[(int) recog_data.dup_num[i]];
3510 /* If any eliminable remain, they aren't eliminable anymore. */
3511 check_eliminable_occurrences (old_body);
3513 /* Substitute the operands; the new values are in the substed_operand
3514 array. */
3515 for (i = 0; i < recog_data.n_operands; i++)
3516 *recog_data.operand_loc[i] = substed_operand[i];
3517 for (i = 0; i < recog_data.n_dups; i++)
3518 *recog_data.dup_loc[i] = substed_operand[(int) recog_data.dup_num[i]];
3520 /* If we are replacing a body that was a (set X (plus Y Z)), try to
3521 re-recognize the insn. We do this in case we had a simple addition
3522 but now can do this as a load-address. This saves an insn in this
3523 common case.
3524 If re-recognition fails, the old insn code number will still be used,
3525 and some register operands may have changed into PLUS expressions.
3526 These will be handled by find_reloads by loading them into a register
3527 again. */
3529 if (val)
3531 /* If we aren't replacing things permanently and we changed something,
3532 make another copy to ensure that all the RTL is new. Otherwise
3533 things can go wrong if find_reload swaps commutative operands
3534 and one is inside RTL that has been copied while the other is not. */
3535 new_body = old_body;
3536 if (! replace)
3538 new_body = copy_insn (old_body);
3539 if (REG_NOTES (insn))
3540 REG_NOTES (insn) = copy_insn_1 (REG_NOTES (insn));
3542 PATTERN (insn) = new_body;
3544 /* If we had a move insn but now we don't, rerecognize it. This will
3545 cause spurious re-recognition if the old move had a PARALLEL since
3546 the new one still will, but we can't call single_set without
3547 having put NEW_BODY into the insn and the re-recognition won't
3548 hurt in this rare case. */
3549 /* ??? Why this huge if statement - why don't we just rerecognize the
3550 thing always? */
3551 if (! insn_is_asm
3552 && old_set != 0
3553 && ((REG_P (SET_SRC (old_set))
3554 && (GET_CODE (new_body) != SET
3555 || !REG_P (SET_SRC (new_body))))
3556 /* If this was a load from or store to memory, compare
3557 the MEM in recog_data.operand to the one in the insn.
3558 If they are not equal, then rerecognize the insn. */
3559 || (old_set != 0
3560 && ((MEM_P (SET_SRC (old_set))
3561 && SET_SRC (old_set) != recog_data.operand[1])
3562 || (MEM_P (SET_DEST (old_set))
3563 && SET_DEST (old_set) != recog_data.operand[0])))
3564 /* If this was an add insn before, rerecognize. */
3565 || GET_CODE (SET_SRC (old_set)) == PLUS))
3567 int new_icode = recog (PATTERN (insn), insn, 0);
3568 if (new_icode >= 0)
3569 INSN_CODE (insn) = new_icode;
3573 /* Restore the old body. If there were any changes to it, we made a copy
3574 of it while the changes were still in place, so we'll correctly return
3575 a modified insn below. */
3576 if (! replace)
3578 /* Restore the old body. */
3579 for (i = 0; i < recog_data.n_operands; i++)
3580 /* Restoring a top-level match_parallel would clobber the new_body
3581 we installed in the insn. */
3582 if (recog_data.operand_loc[i] != &PATTERN (insn))
3583 *recog_data.operand_loc[i] = orig_operand[i];
3584 for (i = 0; i < recog_data.n_dups; i++)
3585 *recog_data.dup_loc[i] = orig_operand[(int) recog_data.dup_num[i]];
3588 /* Update all elimination pairs to reflect the status after the current
3589 insn. The changes we make were determined by the earlier call to
3590 elimination_effects.
3592 We also detect cases where register elimination cannot be done,
3593 namely, if a register would be both changed and referenced outside a MEM
3594 in the resulting insn since such an insn is often undefined and, even if
3595 not, we cannot know what meaning will be given to it. Note that it is
3596 valid to have a register used in an address in an insn that changes it
3597 (presumably with a pre- or post-increment or decrement).
3599 If anything changes, return nonzero. */
3601 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3603 if (ep->previous_offset != ep->offset && ep->ref_outside_mem)
3604 ep->can_eliminate = 0;
3606 ep->ref_outside_mem = 0;
3608 if (ep->previous_offset != ep->offset)
3609 val = 1;
3612 done:
3613 /* If we changed something, perform elimination in REG_NOTES. This is
3614 needed even when REPLACE is zero because a REG_DEAD note might refer
3615 to a register that we eliminate and could cause a different number
3616 of spill registers to be needed in the final reload pass than in
3617 the pre-passes. */
3618 if (val && REG_NOTES (insn) != 0)
3619 REG_NOTES (insn)
3620 = eliminate_regs_1 (REG_NOTES (insn), VOIDmode, REG_NOTES (insn), true,
3621 false);
3623 return val;
3626 /* Like eliminate_regs_in_insn, but only estimate costs for the use of the
3627 register allocator. INSN is the instruction we need to examine, we perform
3628 eliminations in its operands and record cases where eliminating a reg with
3629 an invariant equivalence would add extra cost. */
3631 static void
3632 elimination_costs_in_insn (rtx_insn *insn)
3634 int icode = recog_memoized (insn);
3635 rtx old_body = PATTERN (insn);
3636 int insn_is_asm = asm_noperands (old_body) >= 0;
3637 rtx old_set = single_set (insn);
3638 int i;
3639 rtx orig_operand[MAX_RECOG_OPERANDS];
3640 rtx orig_dup[MAX_RECOG_OPERANDS];
3641 struct elim_table *ep;
3642 rtx plus_src, plus_cst_src;
3643 bool sets_reg_p;
3645 if (! insn_is_asm && icode < 0)
3647 gcc_assert (DEBUG_INSN_P (insn)
3648 || GET_CODE (PATTERN (insn)) == USE
3649 || GET_CODE (PATTERN (insn)) == CLOBBER
3650 || GET_CODE (PATTERN (insn)) == ASM_INPUT);
3651 return;
3654 if (old_set != 0 && REG_P (SET_DEST (old_set))
3655 && REGNO (SET_DEST (old_set)) < FIRST_PSEUDO_REGISTER)
3657 /* Check for setting an eliminable register. */
3658 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3659 if (ep->from_rtx == SET_DEST (old_set) && ep->can_eliminate)
3660 return;
3663 /* We allow one special case which happens to work on all machines we
3664 currently support: a single set with the source or a REG_EQUAL
3665 note being a PLUS of an eliminable register and a constant. */
3666 plus_src = plus_cst_src = 0;
3667 sets_reg_p = false;
3668 if (old_set && REG_P (SET_DEST (old_set)))
3670 sets_reg_p = true;
3671 if (GET_CODE (SET_SRC (old_set)) == PLUS)
3672 plus_src = SET_SRC (old_set);
3673 /* First see if the source is of the form (plus (...) CST). */
3674 if (plus_src
3675 && CONST_INT_P (XEXP (plus_src, 1)))
3676 plus_cst_src = plus_src;
3677 else if (REG_P (SET_SRC (old_set))
3678 || plus_src)
3680 /* Otherwise, see if we have a REG_EQUAL note of the form
3681 (plus (...) CST). */
3682 rtx links;
3683 for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
3685 if ((REG_NOTE_KIND (links) == REG_EQUAL
3686 || REG_NOTE_KIND (links) == REG_EQUIV)
3687 && GET_CODE (XEXP (links, 0)) == PLUS
3688 && CONST_INT_P (XEXP (XEXP (links, 0), 1)))
3690 plus_cst_src = XEXP (links, 0);
3691 break;
3697 /* Determine the effects of this insn on elimination offsets. */
3698 elimination_effects (old_body, VOIDmode);
3700 /* Eliminate all eliminable registers occurring in operands that
3701 can be handled by reload. */
3702 extract_insn (insn);
3703 for (i = 0; i < recog_data.n_dups; i++)
3704 orig_dup[i] = *recog_data.dup_loc[i];
3706 for (i = 0; i < recog_data.n_operands; i++)
3708 orig_operand[i] = recog_data.operand[i];
3710 /* For an asm statement, every operand is eliminable. */
3711 if (insn_is_asm || insn_data[icode].operand[i].eliminable)
3713 bool is_set_src, in_plus;
3715 /* Check for setting a register that we know about. */
3716 if (recog_data.operand_type[i] != OP_IN
3717 && REG_P (orig_operand[i]))
3719 /* If we are assigning to a register that can be eliminated, it
3720 must be as part of a PARALLEL, since the code above handles
3721 single SETs. We must indicate that we can no longer
3722 eliminate this reg. */
3723 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
3724 ep++)
3725 if (ep->from_rtx == orig_operand[i])
3726 ep->can_eliminate = 0;
3729 /* Companion to the above plus substitution, we can allow
3730 invariants as the source of a plain move. */
3731 is_set_src = false;
3732 if (old_set && recog_data.operand_loc[i] == &SET_SRC (old_set))
3733 is_set_src = true;
3734 if (is_set_src && !sets_reg_p)
3735 note_reg_elim_costly (SET_SRC (old_set), insn);
3736 in_plus = false;
3737 if (plus_src && sets_reg_p
3738 && (recog_data.operand_loc[i] == &XEXP (plus_src, 0)
3739 || recog_data.operand_loc[i] == &XEXP (plus_src, 1)))
3740 in_plus = true;
3742 eliminate_regs_1 (recog_data.operand[i], VOIDmode,
3743 NULL_RTX,
3744 is_set_src || in_plus, true);
3745 /* Terminate the search in check_eliminable_occurrences at
3746 this point. */
3747 *recog_data.operand_loc[i] = 0;
3751 for (i = 0; i < recog_data.n_dups; i++)
3752 *recog_data.dup_loc[i]
3753 = *recog_data.operand_loc[(int) recog_data.dup_num[i]];
3755 /* If any eliminable remain, they aren't eliminable anymore. */
3756 check_eliminable_occurrences (old_body);
3758 /* Restore the old body. */
3759 for (i = 0; i < recog_data.n_operands; i++)
3760 *recog_data.operand_loc[i] = orig_operand[i];
3761 for (i = 0; i < recog_data.n_dups; i++)
3762 *recog_data.dup_loc[i] = orig_dup[i];
3764 /* Update all elimination pairs to reflect the status after the current
3765 insn. The changes we make were determined by the earlier call to
3766 elimination_effects. */
3768 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3770 if (ep->previous_offset != ep->offset && ep->ref_outside_mem)
3771 ep->can_eliminate = 0;
3773 ep->ref_outside_mem = 0;
3776 return;
3779 /* Loop through all elimination pairs.
3780 Recalculate the number not at initial offset.
3782 Compute the maximum offset (minimum offset if the stack does not
3783 grow downward) for each elimination pair. */
3785 static void
3786 update_eliminable_offsets (void)
3788 struct elim_table *ep;
3790 num_not_at_initial_offset = 0;
3791 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3793 ep->previous_offset = ep->offset;
3794 if (ep->can_eliminate && ep->offset != ep->initial_offset)
3795 num_not_at_initial_offset++;
3799 /* Given X, a SET or CLOBBER of DEST, if DEST is the target of a register
3800 replacement we currently believe is valid, mark it as not eliminable if X
3801 modifies DEST in any way other than by adding a constant integer to it.
3803 If DEST is the frame pointer, we do nothing because we assume that
3804 all assignments to the hard frame pointer are nonlocal gotos and are being
3805 done at a time when they are valid and do not disturb anything else.
3806 Some machines want to eliminate a fake argument pointer with either the
3807 frame or stack pointer. Assignments to the hard frame pointer must not
3808 prevent this elimination.
3810 Called via note_stores from reload before starting its passes to scan
3811 the insns of the function. */
3813 static void
3814 mark_not_eliminable (rtx dest, const_rtx x, void *data ATTRIBUTE_UNUSED)
3816 unsigned int i;
3818 /* A SUBREG of a hard register here is just changing its mode. We should
3819 not see a SUBREG of an eliminable hard register, but check just in
3820 case. */
3821 if (GET_CODE (dest) == SUBREG)
3822 dest = SUBREG_REG (dest);
3824 if (dest == hard_frame_pointer_rtx)
3825 return;
3827 for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
3828 if (reg_eliminate[i].can_eliminate && dest == reg_eliminate[i].to_rtx
3829 && (GET_CODE (x) != SET
3830 || GET_CODE (SET_SRC (x)) != PLUS
3831 || XEXP (SET_SRC (x), 0) != dest
3832 || !CONST_INT_P (XEXP (SET_SRC (x), 1))))
3834 reg_eliminate[i].can_eliminate_previous
3835 = reg_eliminate[i].can_eliminate = 0;
3836 num_eliminable--;
3840 /* Verify that the initial elimination offsets did not change since the
3841 last call to set_initial_elim_offsets. This is used to catch cases
3842 where something illegal happened during reload_as_needed that could
3843 cause incorrect code to be generated if we did not check for it. */
3845 static bool
3846 verify_initial_elim_offsets (void)
3848 HOST_WIDE_INT t;
3850 if (!num_eliminable)
3851 return true;
3853 #ifdef ELIMINABLE_REGS
3855 struct elim_table *ep;
3857 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3859 INITIAL_ELIMINATION_OFFSET (ep->from, ep->to, t);
3860 if (t != ep->initial_offset)
3861 return false;
3864 #else
3865 INITIAL_FRAME_POINTER_OFFSET (t);
3866 if (t != reg_eliminate[0].initial_offset)
3867 return false;
3868 #endif
3870 return true;
3873 /* Reset all offsets on eliminable registers to their initial values. */
3875 static void
3876 set_initial_elim_offsets (void)
3878 struct elim_table *ep = reg_eliminate;
3880 #ifdef ELIMINABLE_REGS
3881 for (; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3883 INITIAL_ELIMINATION_OFFSET (ep->from, ep->to, ep->initial_offset);
3884 ep->previous_offset = ep->offset = ep->initial_offset;
3886 #else
3887 INITIAL_FRAME_POINTER_OFFSET (ep->initial_offset);
3888 ep->previous_offset = ep->offset = ep->initial_offset;
3889 #endif
3891 num_not_at_initial_offset = 0;
3894 /* Subroutine of set_initial_label_offsets called via for_each_eh_label. */
3896 static void
3897 set_initial_eh_label_offset (rtx label)
3899 set_label_offsets (label, NULL, 1);
3902 /* Initialize the known label offsets.
3903 Set a known offset for each forced label to be at the initial offset
3904 of each elimination. We do this because we assume that all
3905 computed jumps occur from a location where each elimination is
3906 at its initial offset.
3907 For all other labels, show that we don't know the offsets. */
3909 static void
3910 set_initial_label_offsets (void)
3912 memset (offsets_known_at, 0, num_labels);
3914 for (rtx_insn_list *x = forced_labels; x; x = x->next ())
3915 if (x->insn ())
3916 set_label_offsets (x->insn (), NULL, 1);
3918 for (rtx_insn_list *x = nonlocal_goto_handler_labels; x; x = x->next ())
3919 if (x->insn ())
3920 set_label_offsets (x->insn (), NULL, 1);
3922 for_each_eh_label (set_initial_eh_label_offset);
3925 /* Set all elimination offsets to the known values for the code label given
3926 by INSN. */
3928 static void
3929 set_offsets_for_label (rtx_insn *insn)
3931 unsigned int i;
3932 int label_nr = CODE_LABEL_NUMBER (insn);
3933 struct elim_table *ep;
3935 num_not_at_initial_offset = 0;
3936 for (i = 0, ep = reg_eliminate; i < NUM_ELIMINABLE_REGS; ep++, i++)
3938 ep->offset = ep->previous_offset
3939 = offsets_at[label_nr - first_label_num][i];
3940 if (ep->can_eliminate && ep->offset != ep->initial_offset)
3941 num_not_at_initial_offset++;
3945 /* See if anything that happened changes which eliminations are valid.
3946 For example, on the SPARC, whether or not the frame pointer can
3947 be eliminated can depend on what registers have been used. We need
3948 not check some conditions again (such as flag_omit_frame_pointer)
3949 since they can't have changed. */
3951 static void
3952 update_eliminables (HARD_REG_SET *pset)
3954 int previous_frame_pointer_needed = frame_pointer_needed;
3955 struct elim_table *ep;
3957 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3958 if ((ep->from == HARD_FRAME_POINTER_REGNUM
3959 && targetm.frame_pointer_required ())
3960 #ifdef ELIMINABLE_REGS
3961 || ! targetm.can_eliminate (ep->from, ep->to)
3962 #endif
3964 ep->can_eliminate = 0;
3966 /* Look for the case where we have discovered that we can't replace
3967 register A with register B and that means that we will now be
3968 trying to replace register A with register C. This means we can
3969 no longer replace register C with register B and we need to disable
3970 such an elimination, if it exists. This occurs often with A == ap,
3971 B == sp, and C == fp. */
3973 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3975 struct elim_table *op;
3976 int new_to = -1;
3978 if (! ep->can_eliminate && ep->can_eliminate_previous)
3980 /* Find the current elimination for ep->from, if there is a
3981 new one. */
3982 for (op = reg_eliminate;
3983 op < &reg_eliminate[NUM_ELIMINABLE_REGS]; op++)
3984 if (op->from == ep->from && op->can_eliminate)
3986 new_to = op->to;
3987 break;
3990 /* See if there is an elimination of NEW_TO -> EP->TO. If so,
3991 disable it. */
3992 for (op = reg_eliminate;
3993 op < &reg_eliminate[NUM_ELIMINABLE_REGS]; op++)
3994 if (op->from == new_to && op->to == ep->to)
3995 op->can_eliminate = 0;
3999 /* See if any registers that we thought we could eliminate the previous
4000 time are no longer eliminable. If so, something has changed and we
4001 must spill the register. Also, recompute the number of eliminable
4002 registers and see if the frame pointer is needed; it is if there is
4003 no elimination of the frame pointer that we can perform. */
4005 frame_pointer_needed = 1;
4006 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
4008 if (ep->can_eliminate
4009 && ep->from == FRAME_POINTER_REGNUM
4010 && ep->to != HARD_FRAME_POINTER_REGNUM
4011 && (! SUPPORTS_STACK_ALIGNMENT
4012 || ! crtl->stack_realign_needed))
4013 frame_pointer_needed = 0;
4015 if (! ep->can_eliminate && ep->can_eliminate_previous)
4017 ep->can_eliminate_previous = 0;
4018 SET_HARD_REG_BIT (*pset, ep->from);
4019 num_eliminable--;
4023 /* If we didn't need a frame pointer last time, but we do now, spill
4024 the hard frame pointer. */
4025 if (frame_pointer_needed && ! previous_frame_pointer_needed)
4026 SET_HARD_REG_BIT (*pset, HARD_FRAME_POINTER_REGNUM);
4029 /* Call update_eliminables an spill any registers we can't eliminate anymore.
4030 Return true iff a register was spilled. */
4032 static bool
4033 update_eliminables_and_spill (void)
4035 int i;
4036 bool did_spill = false;
4037 HARD_REG_SET to_spill;
4038 CLEAR_HARD_REG_SET (to_spill);
4039 update_eliminables (&to_spill);
4040 AND_COMPL_HARD_REG_SET (used_spill_regs, to_spill);
4042 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4043 if (TEST_HARD_REG_BIT (to_spill, i))
4045 spill_hard_reg (i, 1);
4046 did_spill = true;
4048 /* Regardless of the state of spills, if we previously had
4049 a register that we thought we could eliminate, but now can
4050 not eliminate, we must run another pass.
4052 Consider pseudos which have an entry in reg_equiv_* which
4053 reference an eliminable register. We must make another pass
4054 to update reg_equiv_* so that we do not substitute in the
4055 old value from when we thought the elimination could be
4056 performed. */
4058 return did_spill;
4061 /* Return true if X is used as the target register of an elimination. */
4063 bool
4064 elimination_target_reg_p (rtx x)
4066 struct elim_table *ep;
4068 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
4069 if (ep->to_rtx == x && ep->can_eliminate)
4070 return true;
4072 return false;
4075 /* Initialize the table of registers to eliminate.
4076 Pre-condition: global flag frame_pointer_needed has been set before
4077 calling this function. */
4079 static void
4080 init_elim_table (void)
4082 struct elim_table *ep;
4083 #ifdef ELIMINABLE_REGS
4084 const struct elim_table_1 *ep1;
4085 #endif
4087 if (!reg_eliminate)
4088 reg_eliminate = XCNEWVEC (struct elim_table, NUM_ELIMINABLE_REGS);
4090 num_eliminable = 0;
4092 #ifdef ELIMINABLE_REGS
4093 for (ep = reg_eliminate, ep1 = reg_eliminate_1;
4094 ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++, ep1++)
4096 ep->from = ep1->from;
4097 ep->to = ep1->to;
4098 ep->can_eliminate = ep->can_eliminate_previous
4099 = (targetm.can_eliminate (ep->from, ep->to)
4100 && ! (ep->to == STACK_POINTER_REGNUM
4101 && frame_pointer_needed
4102 && (! SUPPORTS_STACK_ALIGNMENT
4103 || ! stack_realign_fp)));
4105 #else
4106 reg_eliminate[0].from = reg_eliminate_1[0].from;
4107 reg_eliminate[0].to = reg_eliminate_1[0].to;
4108 reg_eliminate[0].can_eliminate = reg_eliminate[0].can_eliminate_previous
4109 = ! frame_pointer_needed;
4110 #endif
4112 /* Count the number of eliminable registers and build the FROM and TO
4113 REG rtx's. Note that code in gen_rtx_REG will cause, e.g.,
4114 gen_rtx_REG (Pmode, STACK_POINTER_REGNUM) to equal stack_pointer_rtx.
4115 We depend on this. */
4116 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
4118 num_eliminable += ep->can_eliminate;
4119 ep->from_rtx = gen_rtx_REG (Pmode, ep->from);
4120 ep->to_rtx = gen_rtx_REG (Pmode, ep->to);
4124 /* Find all the pseudo registers that didn't get hard regs
4125 but do have known equivalent constants or memory slots.
4126 These include parameters (known equivalent to parameter slots)
4127 and cse'd or loop-moved constant memory addresses.
4129 Record constant equivalents in reg_equiv_constant
4130 so they will be substituted by find_reloads.
4131 Record memory equivalents in reg_mem_equiv so they can
4132 be substituted eventually by altering the REG-rtx's. */
4134 static void
4135 init_eliminable_invariants (rtx_insn *first, bool do_subregs)
4137 int i;
4138 rtx_insn *insn;
4140 grow_reg_equivs ();
4141 if (do_subregs)
4142 reg_max_ref_width = XCNEWVEC (unsigned int, max_regno);
4143 else
4144 reg_max_ref_width = NULL;
4146 num_eliminable_invariants = 0;
4148 first_label_num = get_first_label_num ();
4149 num_labels = max_label_num () - first_label_num;
4151 /* Allocate the tables used to store offset information at labels. */
4152 offsets_known_at = XNEWVEC (char, num_labels);
4153 offsets_at = (HOST_WIDE_INT (*)[NUM_ELIMINABLE_REGS]) xmalloc (num_labels * NUM_ELIMINABLE_REGS * sizeof (HOST_WIDE_INT));
4155 /* Look for REG_EQUIV notes; record what each pseudo is equivalent
4156 to. If DO_SUBREGS is true, also find all paradoxical subregs and
4157 find largest such for each pseudo. FIRST is the head of the insn
4158 list. */
4160 for (insn = first; insn; insn = NEXT_INSN (insn))
4162 rtx set = single_set (insn);
4164 /* We may introduce USEs that we want to remove at the end, so
4165 we'll mark them with QImode. Make sure there are no
4166 previously-marked insns left by say regmove. */
4167 if (INSN_P (insn) && GET_CODE (PATTERN (insn)) == USE
4168 && GET_MODE (insn) != VOIDmode)
4169 PUT_MODE (insn, VOIDmode);
4171 if (do_subregs && NONDEBUG_INSN_P (insn))
4172 scan_paradoxical_subregs (PATTERN (insn));
4174 if (set != 0 && REG_P (SET_DEST (set)))
4176 rtx note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
4177 rtx x;
4179 if (! note)
4180 continue;
4182 i = REGNO (SET_DEST (set));
4183 x = XEXP (note, 0);
4185 if (i <= LAST_VIRTUAL_REGISTER)
4186 continue;
4188 /* If flag_pic and we have constant, verify it's legitimate. */
4189 if (!CONSTANT_P (x)
4190 || !flag_pic || LEGITIMATE_PIC_OPERAND_P (x))
4192 /* It can happen that a REG_EQUIV note contains a MEM
4193 that is not a legitimate memory operand. As later
4194 stages of reload assume that all addresses found
4195 in the reg_equiv_* arrays were originally legitimate,
4196 we ignore such REG_EQUIV notes. */
4197 if (memory_operand (x, VOIDmode))
4199 /* Always unshare the equivalence, so we can
4200 substitute into this insn without touching the
4201 equivalence. */
4202 reg_equiv_memory_loc (i) = copy_rtx (x);
4204 else if (function_invariant_p (x))
4206 enum machine_mode mode;
4208 mode = GET_MODE (SET_DEST (set));
4209 if (GET_CODE (x) == PLUS)
4211 /* This is PLUS of frame pointer and a constant,
4212 and might be shared. Unshare it. */
4213 reg_equiv_invariant (i) = copy_rtx (x);
4214 num_eliminable_invariants++;
4216 else if (x == frame_pointer_rtx || x == arg_pointer_rtx)
4218 reg_equiv_invariant (i) = x;
4219 num_eliminable_invariants++;
4221 else if (targetm.legitimate_constant_p (mode, x))
4222 reg_equiv_constant (i) = x;
4223 else
4225 reg_equiv_memory_loc (i) = force_const_mem (mode, x);
4226 if (! reg_equiv_memory_loc (i))
4227 reg_equiv_init (i) = NULL_RTX;
4230 else
4232 reg_equiv_init (i) = NULL_RTX;
4233 continue;
4236 else
4237 reg_equiv_init (i) = NULL_RTX;
4241 if (dump_file)
4242 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
4243 if (reg_equiv_init (i))
4245 fprintf (dump_file, "init_insns for %u: ", i);
4246 print_inline_rtx (dump_file, reg_equiv_init (i), 20);
4247 fprintf (dump_file, "\n");
4251 /* Indicate that we no longer have known memory locations or constants.
4252 Free all data involved in tracking these. */
4254 static void
4255 free_reg_equiv (void)
4257 int i;
4259 free (offsets_known_at);
4260 free (offsets_at);
4261 offsets_at = 0;
4262 offsets_known_at = 0;
4264 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4265 if (reg_equiv_alt_mem_list (i))
4266 free_EXPR_LIST_list (&reg_equiv_alt_mem_list (i));
4267 vec_free (reg_equivs);
4270 /* Kick all pseudos out of hard register REGNO.
4272 If CANT_ELIMINATE is nonzero, it means that we are doing this spill
4273 because we found we can't eliminate some register. In the case, no pseudos
4274 are allowed to be in the register, even if they are only in a block that
4275 doesn't require spill registers, unlike the case when we are spilling this
4276 hard reg to produce another spill register.
4278 Return nonzero if any pseudos needed to be kicked out. */
4280 static void
4281 spill_hard_reg (unsigned int regno, int cant_eliminate)
4283 int i;
4285 if (cant_eliminate)
4287 SET_HARD_REG_BIT (bad_spill_regs_global, regno);
4288 df_set_regs_ever_live (regno, true);
4291 /* Spill every pseudo reg that was allocated to this reg
4292 or to something that overlaps this reg. */
4294 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
4295 if (reg_renumber[i] >= 0
4296 && (unsigned int) reg_renumber[i] <= regno
4297 && end_hard_regno (PSEUDO_REGNO_MODE (i), reg_renumber[i]) > regno)
4298 SET_REGNO_REG_SET (&spilled_pseudos, i);
4301 /* After find_reload_regs has been run for all insn that need reloads,
4302 and/or spill_hard_regs was called, this function is used to actually
4303 spill pseudo registers and try to reallocate them. It also sets up the
4304 spill_regs array for use by choose_reload_regs. */
4306 static int
4307 finish_spills (int global)
4309 struct insn_chain *chain;
4310 int something_changed = 0;
4311 unsigned i;
4312 reg_set_iterator rsi;
4314 /* Build the spill_regs array for the function. */
4315 /* If there are some registers still to eliminate and one of the spill regs
4316 wasn't ever used before, additional stack space may have to be
4317 allocated to store this register. Thus, we may have changed the offset
4318 between the stack and frame pointers, so mark that something has changed.
4320 One might think that we need only set VAL to 1 if this is a call-used
4321 register. However, the set of registers that must be saved by the
4322 prologue is not identical to the call-used set. For example, the
4323 register used by the call insn for the return PC is a call-used register,
4324 but must be saved by the prologue. */
4326 n_spills = 0;
4327 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4328 if (TEST_HARD_REG_BIT (used_spill_regs, i))
4330 spill_reg_order[i] = n_spills;
4331 spill_regs[n_spills++] = i;
4332 if (num_eliminable && ! df_regs_ever_live_p (i))
4333 something_changed = 1;
4334 df_set_regs_ever_live (i, true);
4336 else
4337 spill_reg_order[i] = -1;
4339 EXECUTE_IF_SET_IN_REG_SET (&spilled_pseudos, FIRST_PSEUDO_REGISTER, i, rsi)
4340 if (! ira_conflicts_p || reg_renumber[i] >= 0)
4342 /* Record the current hard register the pseudo is allocated to
4343 in pseudo_previous_regs so we avoid reallocating it to the
4344 same hard reg in a later pass. */
4345 gcc_assert (reg_renumber[i] >= 0);
4347 SET_HARD_REG_BIT (pseudo_previous_regs[i], reg_renumber[i]);
4348 /* Mark it as no longer having a hard register home. */
4349 reg_renumber[i] = -1;
4350 if (ira_conflicts_p)
4351 /* Inform IRA about the change. */
4352 ira_mark_allocation_change (i);
4353 /* We will need to scan everything again. */
4354 something_changed = 1;
4357 /* Retry global register allocation if possible. */
4358 if (global && ira_conflicts_p)
4360 unsigned int n;
4362 memset (pseudo_forbidden_regs, 0, max_regno * sizeof (HARD_REG_SET));
4363 /* For every insn that needs reloads, set the registers used as spill
4364 regs in pseudo_forbidden_regs for every pseudo live across the
4365 insn. */
4366 for (chain = insns_need_reload; chain; chain = chain->next_need_reload)
4368 EXECUTE_IF_SET_IN_REG_SET
4369 (&chain->live_throughout, FIRST_PSEUDO_REGISTER, i, rsi)
4371 IOR_HARD_REG_SET (pseudo_forbidden_regs[i],
4372 chain->used_spill_regs);
4374 EXECUTE_IF_SET_IN_REG_SET
4375 (&chain->dead_or_set, FIRST_PSEUDO_REGISTER, i, rsi)
4377 IOR_HARD_REG_SET (pseudo_forbidden_regs[i],
4378 chain->used_spill_regs);
4382 /* Retry allocating the pseudos spilled in IRA and the
4383 reload. For each reg, merge the various reg sets that
4384 indicate which hard regs can't be used, and call
4385 ira_reassign_pseudos. */
4386 for (n = 0, i = FIRST_PSEUDO_REGISTER; i < (unsigned) max_regno; i++)
4387 if (reg_old_renumber[i] != reg_renumber[i])
4389 if (reg_renumber[i] < 0)
4390 temp_pseudo_reg_arr[n++] = i;
4391 else
4392 CLEAR_REGNO_REG_SET (&spilled_pseudos, i);
4394 if (ira_reassign_pseudos (temp_pseudo_reg_arr, n,
4395 bad_spill_regs_global,
4396 pseudo_forbidden_regs, pseudo_previous_regs,
4397 &spilled_pseudos))
4398 something_changed = 1;
4400 /* Fix up the register information in the insn chain.
4401 This involves deleting those of the spilled pseudos which did not get
4402 a new hard register home from the live_{before,after} sets. */
4403 for (chain = reload_insn_chain; chain; chain = chain->next)
4405 HARD_REG_SET used_by_pseudos;
4406 HARD_REG_SET used_by_pseudos2;
4408 if (! ira_conflicts_p)
4410 /* Don't do it for IRA because IRA and the reload still can
4411 assign hard registers to the spilled pseudos on next
4412 reload iterations. */
4413 AND_COMPL_REG_SET (&chain->live_throughout, &spilled_pseudos);
4414 AND_COMPL_REG_SET (&chain->dead_or_set, &spilled_pseudos);
4416 /* Mark any unallocated hard regs as available for spills. That
4417 makes inheritance work somewhat better. */
4418 if (chain->need_reload)
4420 REG_SET_TO_HARD_REG_SET (used_by_pseudos, &chain->live_throughout);
4421 REG_SET_TO_HARD_REG_SET (used_by_pseudos2, &chain->dead_or_set);
4422 IOR_HARD_REG_SET (used_by_pseudos, used_by_pseudos2);
4424 compute_use_by_pseudos (&used_by_pseudos, &chain->live_throughout);
4425 compute_use_by_pseudos (&used_by_pseudos, &chain->dead_or_set);
4426 /* Value of chain->used_spill_regs from previous iteration
4427 may be not included in the value calculated here because
4428 of possible removing caller-saves insns (see function
4429 delete_caller_save_insns. */
4430 COMPL_HARD_REG_SET (chain->used_spill_regs, used_by_pseudos);
4431 AND_HARD_REG_SET (chain->used_spill_regs, used_spill_regs);
4435 CLEAR_REG_SET (&changed_allocation_pseudos);
4436 /* Let alter_reg modify the reg rtx's for the modified pseudos. */
4437 for (i = FIRST_PSEUDO_REGISTER; i < (unsigned)max_regno; i++)
4439 int regno = reg_renumber[i];
4440 if (reg_old_renumber[i] == regno)
4441 continue;
4443 SET_REGNO_REG_SET (&changed_allocation_pseudos, i);
4445 alter_reg (i, reg_old_renumber[i], false);
4446 reg_old_renumber[i] = regno;
4447 if (dump_file)
4449 if (regno == -1)
4450 fprintf (dump_file, " Register %d now on stack.\n\n", i);
4451 else
4452 fprintf (dump_file, " Register %d now in %d.\n\n",
4453 i, reg_renumber[i]);
4457 return something_changed;
4460 /* Find all paradoxical subregs within X and update reg_max_ref_width. */
4462 static void
4463 scan_paradoxical_subregs (rtx x)
4465 int i;
4466 const char *fmt;
4467 enum rtx_code code = GET_CODE (x);
4469 switch (code)
4471 case REG:
4472 case CONST:
4473 case SYMBOL_REF:
4474 case LABEL_REF:
4475 CASE_CONST_ANY:
4476 case CC0:
4477 case PC:
4478 case USE:
4479 case CLOBBER:
4480 return;
4482 case SUBREG:
4483 if (REG_P (SUBREG_REG (x))
4484 && (GET_MODE_SIZE (GET_MODE (x))
4485 > reg_max_ref_width[REGNO (SUBREG_REG (x))]))
4487 reg_max_ref_width[REGNO (SUBREG_REG (x))]
4488 = GET_MODE_SIZE (GET_MODE (x));
4489 mark_home_live_1 (REGNO (SUBREG_REG (x)), GET_MODE (x));
4491 return;
4493 default:
4494 break;
4497 fmt = GET_RTX_FORMAT (code);
4498 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4500 if (fmt[i] == 'e')
4501 scan_paradoxical_subregs (XEXP (x, i));
4502 else if (fmt[i] == 'E')
4504 int j;
4505 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
4506 scan_paradoxical_subregs (XVECEXP (x, i, j));
4511 /* *OP_PTR and *OTHER_PTR are two operands to a conceptual reload.
4512 If *OP_PTR is a paradoxical subreg, try to remove that subreg
4513 and apply the corresponding narrowing subreg to *OTHER_PTR.
4514 Return true if the operands were changed, false otherwise. */
4516 static bool
4517 strip_paradoxical_subreg (rtx *op_ptr, rtx *other_ptr)
4519 rtx op, inner, other, tem;
4521 op = *op_ptr;
4522 if (!paradoxical_subreg_p (op))
4523 return false;
4524 inner = SUBREG_REG (op);
4526 other = *other_ptr;
4527 tem = gen_lowpart_common (GET_MODE (inner), other);
4528 if (!tem)
4529 return false;
4531 /* If the lowpart operation turned a hard register into a subreg,
4532 rather than simplifying it to another hard register, then the
4533 mode change cannot be properly represented. For example, OTHER
4534 might be valid in its current mode, but not in the new one. */
4535 if (GET_CODE (tem) == SUBREG
4536 && REG_P (other)
4537 && HARD_REGISTER_P (other))
4538 return false;
4540 *op_ptr = inner;
4541 *other_ptr = tem;
4542 return true;
4545 /* A subroutine of reload_as_needed. If INSN has a REG_EH_REGION note,
4546 examine all of the reload insns between PREV and NEXT exclusive, and
4547 annotate all that may trap. */
4549 static void
4550 fixup_eh_region_note (rtx_insn *insn, rtx_insn *prev, rtx_insn *next)
4552 rtx note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
4553 if (note == NULL)
4554 return;
4555 if (!insn_could_throw_p (insn))
4556 remove_note (insn, note);
4557 copy_reg_eh_region_note_forward (note, NEXT_INSN (prev), next);
4560 /* Reload pseudo-registers into hard regs around each insn as needed.
4561 Additional register load insns are output before the insn that needs it
4562 and perhaps store insns after insns that modify the reloaded pseudo reg.
4564 reg_last_reload_reg and reg_reloaded_contents keep track of
4565 which registers are already available in reload registers.
4566 We update these for the reloads that we perform,
4567 as the insns are scanned. */
4569 static void
4570 reload_as_needed (int live_known)
4572 struct insn_chain *chain;
4573 #if defined (AUTO_INC_DEC)
4574 int i;
4575 #endif
4576 rtx_note *marker;
4578 memset (spill_reg_rtx, 0, sizeof spill_reg_rtx);
4579 memset (spill_reg_store, 0, sizeof spill_reg_store);
4580 reg_last_reload_reg = XCNEWVEC (rtx, max_regno);
4581 INIT_REG_SET (&reg_has_output_reload);
4582 CLEAR_HARD_REG_SET (reg_reloaded_valid);
4583 CLEAR_HARD_REG_SET (reg_reloaded_call_part_clobbered);
4585 set_initial_elim_offsets ();
4587 /* Generate a marker insn that we will move around. */
4588 marker = emit_note (NOTE_INSN_DELETED);
4589 unlink_insn_chain (marker, marker);
4591 for (chain = reload_insn_chain; chain; chain = chain->next)
4593 rtx_insn *prev = 0;
4594 rtx_insn *insn = chain->insn;
4595 rtx_insn *old_next = NEXT_INSN (insn);
4596 #ifdef AUTO_INC_DEC
4597 rtx_insn *old_prev = PREV_INSN (insn);
4598 #endif
4600 if (will_delete_init_insn_p (insn))
4601 continue;
4603 /* If we pass a label, copy the offsets from the label information
4604 into the current offsets of each elimination. */
4605 if (LABEL_P (insn))
4606 set_offsets_for_label (insn);
4608 else if (INSN_P (insn))
4610 regset_head regs_to_forget;
4611 INIT_REG_SET (&regs_to_forget);
4612 note_stores (PATTERN (insn), forget_old_reloads_1, &regs_to_forget);
4614 /* If this is a USE and CLOBBER of a MEM, ensure that any
4615 references to eliminable registers have been removed. */
4617 if ((GET_CODE (PATTERN (insn)) == USE
4618 || GET_CODE (PATTERN (insn)) == CLOBBER)
4619 && MEM_P (XEXP (PATTERN (insn), 0)))
4620 XEXP (XEXP (PATTERN (insn), 0), 0)
4621 = eliminate_regs (XEXP (XEXP (PATTERN (insn), 0), 0),
4622 GET_MODE (XEXP (PATTERN (insn), 0)),
4623 NULL_RTX);
4625 /* If we need to do register elimination processing, do so.
4626 This might delete the insn, in which case we are done. */
4627 if ((num_eliminable || num_eliminable_invariants) && chain->need_elim)
4629 eliminate_regs_in_insn (insn, 1);
4630 if (NOTE_P (insn))
4632 update_eliminable_offsets ();
4633 CLEAR_REG_SET (&regs_to_forget);
4634 continue;
4638 /* If need_elim is nonzero but need_reload is zero, one might think
4639 that we could simply set n_reloads to 0. However, find_reloads
4640 could have done some manipulation of the insn (such as swapping
4641 commutative operands), and these manipulations are lost during
4642 the first pass for every insn that needs register elimination.
4643 So the actions of find_reloads must be redone here. */
4645 if (! chain->need_elim && ! chain->need_reload
4646 && ! chain->need_operand_change)
4647 n_reloads = 0;
4648 /* First find the pseudo regs that must be reloaded for this insn.
4649 This info is returned in the tables reload_... (see reload.h).
4650 Also modify the body of INSN by substituting RELOAD
4651 rtx's for those pseudo regs. */
4652 else
4654 CLEAR_REG_SET (&reg_has_output_reload);
4655 CLEAR_HARD_REG_SET (reg_is_output_reload);
4657 find_reloads (insn, 1, spill_indirect_levels, live_known,
4658 spill_reg_order);
4661 if (n_reloads > 0)
4663 rtx_insn *next = NEXT_INSN (insn);
4665 /* ??? PREV can get deleted by reload inheritance.
4666 Work around this by emitting a marker note. */
4667 prev = PREV_INSN (insn);
4668 reorder_insns_nobb (marker, marker, prev);
4670 /* Now compute which reload regs to reload them into. Perhaps
4671 reusing reload regs from previous insns, or else output
4672 load insns to reload them. Maybe output store insns too.
4673 Record the choices of reload reg in reload_reg_rtx. */
4674 choose_reload_regs (chain);
4676 /* Generate the insns to reload operands into or out of
4677 their reload regs. */
4678 emit_reload_insns (chain);
4680 /* Substitute the chosen reload regs from reload_reg_rtx
4681 into the insn's body (or perhaps into the bodies of other
4682 load and store insn that we just made for reloading
4683 and that we moved the structure into). */
4684 subst_reloads (insn);
4686 prev = PREV_INSN (marker);
4687 unlink_insn_chain (marker, marker);
4689 /* Adjust the exception region notes for loads and stores. */
4690 if (cfun->can_throw_non_call_exceptions && !CALL_P (insn))
4691 fixup_eh_region_note (insn, prev, next);
4693 /* Adjust the location of REG_ARGS_SIZE. */
4694 rtx p = find_reg_note (insn, REG_ARGS_SIZE, NULL_RTX);
4695 if (p)
4697 remove_note (insn, p);
4698 fixup_args_size_notes (prev, PREV_INSN (next),
4699 INTVAL (XEXP (p, 0)));
4702 /* If this was an ASM, make sure that all the reload insns
4703 we have generated are valid. If not, give an error
4704 and delete them. */
4705 if (asm_noperands (PATTERN (insn)) >= 0)
4706 for (rtx_insn *p = NEXT_INSN (prev);
4707 p != next;
4708 p = NEXT_INSN (p))
4709 if (p != insn && INSN_P (p)
4710 && GET_CODE (PATTERN (p)) != USE
4711 && (recog_memoized (p) < 0
4712 || (extract_insn (p), ! constrain_operands (1))))
4714 error_for_asm (insn,
4715 "%<asm%> operand requires "
4716 "impossible reload");
4717 delete_insn (p);
4721 if (num_eliminable && chain->need_elim)
4722 update_eliminable_offsets ();
4724 /* Any previously reloaded spilled pseudo reg, stored in this insn,
4725 is no longer validly lying around to save a future reload.
4726 Note that this does not detect pseudos that were reloaded
4727 for this insn in order to be stored in
4728 (obeying register constraints). That is correct; such reload
4729 registers ARE still valid. */
4730 forget_marked_reloads (&regs_to_forget);
4731 CLEAR_REG_SET (&regs_to_forget);
4733 /* There may have been CLOBBER insns placed after INSN. So scan
4734 between INSN and NEXT and use them to forget old reloads. */
4735 for (rtx_insn *x = NEXT_INSN (insn); x != old_next; x = NEXT_INSN (x))
4736 if (NONJUMP_INSN_P (x) && GET_CODE (PATTERN (x)) == CLOBBER)
4737 note_stores (PATTERN (x), forget_old_reloads_1, NULL);
4739 #ifdef AUTO_INC_DEC
4740 /* Likewise for regs altered by auto-increment in this insn.
4741 REG_INC notes have been changed by reloading:
4742 find_reloads_address_1 records substitutions for them,
4743 which have been performed by subst_reloads above. */
4744 for (i = n_reloads - 1; i >= 0; i--)
4746 rtx in_reg = rld[i].in_reg;
4747 if (in_reg)
4749 enum rtx_code code = GET_CODE (in_reg);
4750 /* PRE_INC / PRE_DEC will have the reload register ending up
4751 with the same value as the stack slot, but that doesn't
4752 hold true for POST_INC / POST_DEC. Either we have to
4753 convert the memory access to a true POST_INC / POST_DEC,
4754 or we can't use the reload register for inheritance. */
4755 if ((code == POST_INC || code == POST_DEC)
4756 && TEST_HARD_REG_BIT (reg_reloaded_valid,
4757 REGNO (rld[i].reg_rtx))
4758 /* Make sure it is the inc/dec pseudo, and not
4759 some other (e.g. output operand) pseudo. */
4760 && ((unsigned) reg_reloaded_contents[REGNO (rld[i].reg_rtx)]
4761 == REGNO (XEXP (in_reg, 0))))
4764 rtx reload_reg = rld[i].reg_rtx;
4765 enum machine_mode mode = GET_MODE (reload_reg);
4766 int n = 0;
4767 rtx_insn *p;
4769 for (p = PREV_INSN (old_next); p != prev; p = PREV_INSN (p))
4771 /* We really want to ignore REG_INC notes here, so
4772 use PATTERN (p) as argument to reg_set_p . */
4773 if (reg_set_p (reload_reg, PATTERN (p)))
4774 break;
4775 n = count_occurrences (PATTERN (p), reload_reg, 0);
4776 if (! n)
4777 continue;
4778 if (n == 1)
4780 rtx replace_reg
4781 = gen_rtx_fmt_e (code, mode, reload_reg);
4783 validate_replace_rtx_group (reload_reg,
4784 replace_reg, p);
4785 n = verify_changes (0);
4787 /* We must also verify that the constraints
4788 are met after the replacement. Make sure
4789 extract_insn is only called for an insn
4790 where the replacements were found to be
4791 valid so far. */
4792 if (n)
4794 extract_insn (p);
4795 n = constrain_operands (1);
4798 /* If the constraints were not met, then
4799 undo the replacement, else confirm it. */
4800 if (!n)
4801 cancel_changes (0);
4802 else
4803 confirm_change_group ();
4805 break;
4807 if (n == 1)
4809 add_reg_note (p, REG_INC, reload_reg);
4810 /* Mark this as having an output reload so that the
4811 REG_INC processing code below won't invalidate
4812 the reload for inheritance. */
4813 SET_HARD_REG_BIT (reg_is_output_reload,
4814 REGNO (reload_reg));
4815 SET_REGNO_REG_SET (&reg_has_output_reload,
4816 REGNO (XEXP (in_reg, 0)));
4818 else
4819 forget_old_reloads_1 (XEXP (in_reg, 0), NULL_RTX,
4820 NULL);
4822 else if ((code == PRE_INC || code == PRE_DEC)
4823 && TEST_HARD_REG_BIT (reg_reloaded_valid,
4824 REGNO (rld[i].reg_rtx))
4825 /* Make sure it is the inc/dec pseudo, and not
4826 some other (e.g. output operand) pseudo. */
4827 && ((unsigned) reg_reloaded_contents[REGNO (rld[i].reg_rtx)]
4828 == REGNO (XEXP (in_reg, 0))))
4830 SET_HARD_REG_BIT (reg_is_output_reload,
4831 REGNO (rld[i].reg_rtx));
4832 SET_REGNO_REG_SET (&reg_has_output_reload,
4833 REGNO (XEXP (in_reg, 0)));
4835 else if (code == PRE_INC || code == PRE_DEC
4836 || code == POST_INC || code == POST_DEC)
4838 int in_regno = REGNO (XEXP (in_reg, 0));
4840 if (reg_last_reload_reg[in_regno] != NULL_RTX)
4842 int in_hard_regno;
4843 bool forget_p = true;
4845 in_hard_regno = REGNO (reg_last_reload_reg[in_regno]);
4846 if (TEST_HARD_REG_BIT (reg_reloaded_valid,
4847 in_hard_regno))
4849 for (rtx_insn *x = (old_prev ?
4850 NEXT_INSN (old_prev) : insn);
4851 x != old_next;
4852 x = NEXT_INSN (x))
4853 if (x == reg_reloaded_insn[in_hard_regno])
4855 forget_p = false;
4856 break;
4859 /* If for some reasons, we didn't set up
4860 reg_last_reload_reg in this insn,
4861 invalidate inheritance from previous
4862 insns for the incremented/decremented
4863 register. Such registers will be not in
4864 reg_has_output_reload. Invalidate it
4865 also if the corresponding element in
4866 reg_reloaded_insn is also
4867 invalidated. */
4868 if (forget_p)
4869 forget_old_reloads_1 (XEXP (in_reg, 0),
4870 NULL_RTX, NULL);
4875 /* If a pseudo that got a hard register is auto-incremented,
4876 we must purge records of copying it into pseudos without
4877 hard registers. */
4878 for (rtx x = REG_NOTES (insn); x; x = XEXP (x, 1))
4879 if (REG_NOTE_KIND (x) == REG_INC)
4881 /* See if this pseudo reg was reloaded in this insn.
4882 If so, its last-reload info is still valid
4883 because it is based on this insn's reload. */
4884 for (i = 0; i < n_reloads; i++)
4885 if (rld[i].out == XEXP (x, 0))
4886 break;
4888 if (i == n_reloads)
4889 forget_old_reloads_1 (XEXP (x, 0), NULL_RTX, NULL);
4891 #endif
4893 /* A reload reg's contents are unknown after a label. */
4894 if (LABEL_P (insn))
4895 CLEAR_HARD_REG_SET (reg_reloaded_valid);
4897 /* Don't assume a reload reg is still good after a call insn
4898 if it is a call-used reg, or if it contains a value that will
4899 be partially clobbered by the call. */
4900 else if (CALL_P (insn))
4902 AND_COMPL_HARD_REG_SET (reg_reloaded_valid, call_used_reg_set);
4903 AND_COMPL_HARD_REG_SET (reg_reloaded_valid, reg_reloaded_call_part_clobbered);
4905 /* If this is a call to a setjmp-type function, we must not
4906 reuse any reload reg contents across the call; that will
4907 just be clobbered by other uses of the register in later
4908 code, before the longjmp. */
4909 if (find_reg_note (insn, REG_SETJMP, NULL_RTX))
4910 CLEAR_HARD_REG_SET (reg_reloaded_valid);
4914 /* Clean up. */
4915 free (reg_last_reload_reg);
4916 CLEAR_REG_SET (&reg_has_output_reload);
4919 /* Discard all record of any value reloaded from X,
4920 or reloaded in X from someplace else;
4921 unless X is an output reload reg of the current insn.
4923 X may be a hard reg (the reload reg)
4924 or it may be a pseudo reg that was reloaded from.
4926 When DATA is non-NULL just mark the registers in regset
4927 to be forgotten later. */
4929 static void
4930 forget_old_reloads_1 (rtx x, const_rtx ignored ATTRIBUTE_UNUSED,
4931 void *data)
4933 unsigned int regno;
4934 unsigned int nr;
4935 regset regs = (regset) data;
4937 /* note_stores does give us subregs of hard regs,
4938 subreg_regno_offset requires a hard reg. */
4939 while (GET_CODE (x) == SUBREG)
4941 /* We ignore the subreg offset when calculating the regno,
4942 because we are using the entire underlying hard register
4943 below. */
4944 x = SUBREG_REG (x);
4947 if (!REG_P (x))
4948 return;
4950 regno = REGNO (x);
4952 if (regno >= FIRST_PSEUDO_REGISTER)
4953 nr = 1;
4954 else
4956 unsigned int i;
4958 nr = hard_regno_nregs[regno][GET_MODE (x)];
4959 /* Storing into a spilled-reg invalidates its contents.
4960 This can happen if a block-local pseudo is allocated to that reg
4961 and it wasn't spilled because this block's total need is 0.
4962 Then some insn might have an optional reload and use this reg. */
4963 if (!regs)
4964 for (i = 0; i < nr; i++)
4965 /* But don't do this if the reg actually serves as an output
4966 reload reg in the current instruction. */
4967 if (n_reloads == 0
4968 || ! TEST_HARD_REG_BIT (reg_is_output_reload, regno + i))
4970 CLEAR_HARD_REG_BIT (reg_reloaded_valid, regno + i);
4971 spill_reg_store[regno + i] = 0;
4975 if (regs)
4976 while (nr-- > 0)
4977 SET_REGNO_REG_SET (regs, regno + nr);
4978 else
4980 /* Since value of X has changed,
4981 forget any value previously copied from it. */
4983 while (nr-- > 0)
4984 /* But don't forget a copy if this is the output reload
4985 that establishes the copy's validity. */
4986 if (n_reloads == 0
4987 || !REGNO_REG_SET_P (&reg_has_output_reload, regno + nr))
4988 reg_last_reload_reg[regno + nr] = 0;
4992 /* Forget the reloads marked in regset by previous function. */
4993 static void
4994 forget_marked_reloads (regset regs)
4996 unsigned int reg;
4997 reg_set_iterator rsi;
4998 EXECUTE_IF_SET_IN_REG_SET (regs, 0, reg, rsi)
5000 if (reg < FIRST_PSEUDO_REGISTER
5001 /* But don't do this if the reg actually serves as an output
5002 reload reg in the current instruction. */
5003 && (n_reloads == 0
5004 || ! TEST_HARD_REG_BIT (reg_is_output_reload, reg)))
5006 CLEAR_HARD_REG_BIT (reg_reloaded_valid, reg);
5007 spill_reg_store[reg] = 0;
5009 if (n_reloads == 0
5010 || !REGNO_REG_SET_P (&reg_has_output_reload, reg))
5011 reg_last_reload_reg[reg] = 0;
5015 /* The following HARD_REG_SETs indicate when each hard register is
5016 used for a reload of various parts of the current insn. */
5018 /* If reg is unavailable for all reloads. */
5019 static HARD_REG_SET reload_reg_unavailable;
5020 /* If reg is in use as a reload reg for a RELOAD_OTHER reload. */
5021 static HARD_REG_SET reload_reg_used;
5022 /* If reg is in use for a RELOAD_FOR_INPUT_ADDRESS reload for operand I. */
5023 static HARD_REG_SET reload_reg_used_in_input_addr[MAX_RECOG_OPERANDS];
5024 /* If reg is in use for a RELOAD_FOR_INPADDR_ADDRESS reload for operand I. */
5025 static HARD_REG_SET reload_reg_used_in_inpaddr_addr[MAX_RECOG_OPERANDS];
5026 /* If reg is in use for a RELOAD_FOR_OUTPUT_ADDRESS reload for operand I. */
5027 static HARD_REG_SET reload_reg_used_in_output_addr[MAX_RECOG_OPERANDS];
5028 /* If reg is in use for a RELOAD_FOR_OUTADDR_ADDRESS reload for operand I. */
5029 static HARD_REG_SET reload_reg_used_in_outaddr_addr[MAX_RECOG_OPERANDS];
5030 /* If reg is in use for a RELOAD_FOR_INPUT reload for operand I. */
5031 static HARD_REG_SET reload_reg_used_in_input[MAX_RECOG_OPERANDS];
5032 /* If reg is in use for a RELOAD_FOR_OUTPUT reload for operand I. */
5033 static HARD_REG_SET reload_reg_used_in_output[MAX_RECOG_OPERANDS];
5034 /* If reg is in use for a RELOAD_FOR_OPERAND_ADDRESS reload. */
5035 static HARD_REG_SET reload_reg_used_in_op_addr;
5036 /* If reg is in use for a RELOAD_FOR_OPADDR_ADDR reload. */
5037 static HARD_REG_SET reload_reg_used_in_op_addr_reload;
5038 /* If reg is in use for a RELOAD_FOR_INSN reload. */
5039 static HARD_REG_SET reload_reg_used_in_insn;
5040 /* If reg is in use for a RELOAD_FOR_OTHER_ADDRESS reload. */
5041 static HARD_REG_SET reload_reg_used_in_other_addr;
5043 /* If reg is in use as a reload reg for any sort of reload. */
5044 static HARD_REG_SET reload_reg_used_at_all;
5046 /* If reg is use as an inherited reload. We just mark the first register
5047 in the group. */
5048 static HARD_REG_SET reload_reg_used_for_inherit;
5050 /* Records which hard regs are used in any way, either as explicit use or
5051 by being allocated to a pseudo during any point of the current insn. */
5052 static HARD_REG_SET reg_used_in_insn;
5054 /* Mark reg REGNO as in use for a reload of the sort spec'd by OPNUM and
5055 TYPE. MODE is used to indicate how many consecutive regs are
5056 actually used. */
5058 static void
5059 mark_reload_reg_in_use (unsigned int regno, int opnum, enum reload_type type,
5060 enum machine_mode mode)
5062 switch (type)
5064 case RELOAD_OTHER:
5065 add_to_hard_reg_set (&reload_reg_used, mode, regno);
5066 break;
5068 case RELOAD_FOR_INPUT_ADDRESS:
5069 add_to_hard_reg_set (&reload_reg_used_in_input_addr[opnum], mode, regno);
5070 break;
5072 case RELOAD_FOR_INPADDR_ADDRESS:
5073 add_to_hard_reg_set (&reload_reg_used_in_inpaddr_addr[opnum], mode, regno);
5074 break;
5076 case RELOAD_FOR_OUTPUT_ADDRESS:
5077 add_to_hard_reg_set (&reload_reg_used_in_output_addr[opnum], mode, regno);
5078 break;
5080 case RELOAD_FOR_OUTADDR_ADDRESS:
5081 add_to_hard_reg_set (&reload_reg_used_in_outaddr_addr[opnum], mode, regno);
5082 break;
5084 case RELOAD_FOR_OPERAND_ADDRESS:
5085 add_to_hard_reg_set (&reload_reg_used_in_op_addr, mode, regno);
5086 break;
5088 case RELOAD_FOR_OPADDR_ADDR:
5089 add_to_hard_reg_set (&reload_reg_used_in_op_addr_reload, mode, regno);
5090 break;
5092 case RELOAD_FOR_OTHER_ADDRESS:
5093 add_to_hard_reg_set (&reload_reg_used_in_other_addr, mode, regno);
5094 break;
5096 case RELOAD_FOR_INPUT:
5097 add_to_hard_reg_set (&reload_reg_used_in_input[opnum], mode, regno);
5098 break;
5100 case RELOAD_FOR_OUTPUT:
5101 add_to_hard_reg_set (&reload_reg_used_in_output[opnum], mode, regno);
5102 break;
5104 case RELOAD_FOR_INSN:
5105 add_to_hard_reg_set (&reload_reg_used_in_insn, mode, regno);
5106 break;
5109 add_to_hard_reg_set (&reload_reg_used_at_all, mode, regno);
5112 /* Similarly, but show REGNO is no longer in use for a reload. */
5114 static void
5115 clear_reload_reg_in_use (unsigned int regno, int opnum,
5116 enum reload_type type, enum machine_mode mode)
5118 unsigned int nregs = hard_regno_nregs[regno][mode];
5119 unsigned int start_regno, end_regno, r;
5120 int i;
5121 /* A complication is that for some reload types, inheritance might
5122 allow multiple reloads of the same types to share a reload register.
5123 We set check_opnum if we have to check only reloads with the same
5124 operand number, and check_any if we have to check all reloads. */
5125 int check_opnum = 0;
5126 int check_any = 0;
5127 HARD_REG_SET *used_in_set;
5129 switch (type)
5131 case RELOAD_OTHER:
5132 used_in_set = &reload_reg_used;
5133 break;
5135 case RELOAD_FOR_INPUT_ADDRESS:
5136 used_in_set = &reload_reg_used_in_input_addr[opnum];
5137 break;
5139 case RELOAD_FOR_INPADDR_ADDRESS:
5140 check_opnum = 1;
5141 used_in_set = &reload_reg_used_in_inpaddr_addr[opnum];
5142 break;
5144 case RELOAD_FOR_OUTPUT_ADDRESS:
5145 used_in_set = &reload_reg_used_in_output_addr[opnum];
5146 break;
5148 case RELOAD_FOR_OUTADDR_ADDRESS:
5149 check_opnum = 1;
5150 used_in_set = &reload_reg_used_in_outaddr_addr[opnum];
5151 break;
5153 case RELOAD_FOR_OPERAND_ADDRESS:
5154 used_in_set = &reload_reg_used_in_op_addr;
5155 break;
5157 case RELOAD_FOR_OPADDR_ADDR:
5158 check_any = 1;
5159 used_in_set = &reload_reg_used_in_op_addr_reload;
5160 break;
5162 case RELOAD_FOR_OTHER_ADDRESS:
5163 used_in_set = &reload_reg_used_in_other_addr;
5164 check_any = 1;
5165 break;
5167 case RELOAD_FOR_INPUT:
5168 used_in_set = &reload_reg_used_in_input[opnum];
5169 break;
5171 case RELOAD_FOR_OUTPUT:
5172 used_in_set = &reload_reg_used_in_output[opnum];
5173 break;
5175 case RELOAD_FOR_INSN:
5176 used_in_set = &reload_reg_used_in_insn;
5177 break;
5178 default:
5179 gcc_unreachable ();
5181 /* We resolve conflicts with remaining reloads of the same type by
5182 excluding the intervals of reload registers by them from the
5183 interval of freed reload registers. Since we only keep track of
5184 one set of interval bounds, we might have to exclude somewhat
5185 more than what would be necessary if we used a HARD_REG_SET here.
5186 But this should only happen very infrequently, so there should
5187 be no reason to worry about it. */
5189 start_regno = regno;
5190 end_regno = regno + nregs;
5191 if (check_opnum || check_any)
5193 for (i = n_reloads - 1; i >= 0; i--)
5195 if (rld[i].when_needed == type
5196 && (check_any || rld[i].opnum == opnum)
5197 && rld[i].reg_rtx)
5199 unsigned int conflict_start = true_regnum (rld[i].reg_rtx);
5200 unsigned int conflict_end
5201 = end_hard_regno (rld[i].mode, conflict_start);
5203 /* If there is an overlap with the first to-be-freed register,
5204 adjust the interval start. */
5205 if (conflict_start <= start_regno && conflict_end > start_regno)
5206 start_regno = conflict_end;
5207 /* Otherwise, if there is a conflict with one of the other
5208 to-be-freed registers, adjust the interval end. */
5209 if (conflict_start > start_regno && conflict_start < end_regno)
5210 end_regno = conflict_start;
5215 for (r = start_regno; r < end_regno; r++)
5216 CLEAR_HARD_REG_BIT (*used_in_set, r);
5219 /* 1 if reg REGNO is free as a reload reg for a reload of the sort
5220 specified by OPNUM and TYPE. */
5222 static int
5223 reload_reg_free_p (unsigned int regno, int opnum, enum reload_type type)
5225 int i;
5227 /* In use for a RELOAD_OTHER means it's not available for anything. */
5228 if (TEST_HARD_REG_BIT (reload_reg_used, regno)
5229 || TEST_HARD_REG_BIT (reload_reg_unavailable, regno))
5230 return 0;
5232 switch (type)
5234 case RELOAD_OTHER:
5235 /* In use for anything means we can't use it for RELOAD_OTHER. */
5236 if (TEST_HARD_REG_BIT (reload_reg_used_in_other_addr, regno)
5237 || TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
5238 || TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno)
5239 || TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno))
5240 return 0;
5242 for (i = 0; i < reload_n_operands; i++)
5243 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
5244 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
5245 || TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5246 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
5247 || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno)
5248 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5249 return 0;
5251 return 1;
5253 case RELOAD_FOR_INPUT:
5254 if (TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
5255 || TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno))
5256 return 0;
5258 if (TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno))
5259 return 0;
5261 /* If it is used for some other input, can't use it. */
5262 for (i = 0; i < reload_n_operands; i++)
5263 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5264 return 0;
5266 /* If it is used in a later operand's address, can't use it. */
5267 for (i = opnum + 1; i < reload_n_operands; i++)
5268 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
5269 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno))
5270 return 0;
5272 return 1;
5274 case RELOAD_FOR_INPUT_ADDRESS:
5275 /* Can't use a register if it is used for an input address for this
5276 operand or used as an input in an earlier one. */
5277 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[opnum], regno)
5278 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[opnum], regno))
5279 return 0;
5281 for (i = 0; i < opnum; i++)
5282 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5283 return 0;
5285 return 1;
5287 case RELOAD_FOR_INPADDR_ADDRESS:
5288 /* Can't use a register if it is used for an input address
5289 for this operand or used as an input in an earlier
5290 one. */
5291 if (TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[opnum], regno))
5292 return 0;
5294 for (i = 0; i < opnum; i++)
5295 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5296 return 0;
5298 return 1;
5300 case RELOAD_FOR_OUTPUT_ADDRESS:
5301 /* Can't use a register if it is used for an output address for this
5302 operand or used as an output in this or a later operand. Note
5303 that multiple output operands are emitted in reverse order, so
5304 the conflicting ones are those with lower indices. */
5305 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[opnum], regno))
5306 return 0;
5308 for (i = 0; i <= opnum; i++)
5309 if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5310 return 0;
5312 return 1;
5314 case RELOAD_FOR_OUTADDR_ADDRESS:
5315 /* Can't use a register if it is used for an output address
5316 for this operand or used as an output in this or a
5317 later operand. Note that multiple output operands are
5318 emitted in reverse order, so the conflicting ones are
5319 those with lower indices. */
5320 if (TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[opnum], regno))
5321 return 0;
5323 for (i = 0; i <= opnum; i++)
5324 if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5325 return 0;
5327 return 1;
5329 case RELOAD_FOR_OPERAND_ADDRESS:
5330 for (i = 0; i < reload_n_operands; i++)
5331 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5332 return 0;
5334 return (! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
5335 && ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno));
5337 case RELOAD_FOR_OPADDR_ADDR:
5338 for (i = 0; i < reload_n_operands; i++)
5339 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5340 return 0;
5342 return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno));
5344 case RELOAD_FOR_OUTPUT:
5345 /* This cannot share a register with RELOAD_FOR_INSN reloads, other
5346 outputs, or an operand address for this or an earlier output.
5347 Note that multiple output operands are emitted in reverse order,
5348 so the conflicting ones are those with higher indices. */
5349 if (TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno))
5350 return 0;
5352 for (i = 0; i < reload_n_operands; i++)
5353 if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5354 return 0;
5356 for (i = opnum; i < reload_n_operands; i++)
5357 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5358 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno))
5359 return 0;
5361 return 1;
5363 case RELOAD_FOR_INSN:
5364 for (i = 0; i < reload_n_operands; i++)
5365 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno)
5366 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5367 return 0;
5369 return (! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
5370 && ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno));
5372 case RELOAD_FOR_OTHER_ADDRESS:
5373 return ! TEST_HARD_REG_BIT (reload_reg_used_in_other_addr, regno);
5375 default:
5376 gcc_unreachable ();
5380 /* Return 1 if the value in reload reg REGNO, as used by the reload with
5381 the number RELOADNUM, is still available in REGNO at the end of the insn.
5383 We can assume that the reload reg was already tested for availability
5384 at the time it is needed, and we should not check this again,
5385 in case the reg has already been marked in use. */
5387 static int
5388 reload_reg_reaches_end_p (unsigned int regno, int reloadnum)
5390 int opnum = rld[reloadnum].opnum;
5391 enum reload_type type = rld[reloadnum].when_needed;
5392 int i;
5394 /* See if there is a reload with the same type for this operand, using
5395 the same register. This case is not handled by the code below. */
5396 for (i = reloadnum + 1; i < n_reloads; i++)
5398 rtx reg;
5399 int nregs;
5401 if (rld[i].opnum != opnum || rld[i].when_needed != type)
5402 continue;
5403 reg = rld[i].reg_rtx;
5404 if (reg == NULL_RTX)
5405 continue;
5406 nregs = hard_regno_nregs[REGNO (reg)][GET_MODE (reg)];
5407 if (regno >= REGNO (reg) && regno < REGNO (reg) + nregs)
5408 return 0;
5411 switch (type)
5413 case RELOAD_OTHER:
5414 /* Since a RELOAD_OTHER reload claims the reg for the entire insn,
5415 its value must reach the end. */
5416 return 1;
5418 /* If this use is for part of the insn,
5419 its value reaches if no subsequent part uses the same register.
5420 Just like the above function, don't try to do this with lots
5421 of fallthroughs. */
5423 case RELOAD_FOR_OTHER_ADDRESS:
5424 /* Here we check for everything else, since these don't conflict
5425 with anything else and everything comes later. */
5427 for (i = 0; i < reload_n_operands; i++)
5428 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5429 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
5430 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno)
5431 || TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
5432 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
5433 || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5434 return 0;
5436 return (! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
5437 && ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno)
5438 && ! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
5439 && ! TEST_HARD_REG_BIT (reload_reg_used, regno));
5441 case RELOAD_FOR_INPUT_ADDRESS:
5442 case RELOAD_FOR_INPADDR_ADDRESS:
5443 /* Similar, except that we check only for this and subsequent inputs
5444 and the address of only subsequent inputs and we do not need
5445 to check for RELOAD_OTHER objects since they are known not to
5446 conflict. */
5448 for (i = opnum; i < reload_n_operands; i++)
5449 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5450 return 0;
5452 /* Reload register of reload with type RELOAD_FOR_INPADDR_ADDRESS
5453 could be killed if the register is also used by reload with type
5454 RELOAD_FOR_INPUT_ADDRESS, so check it. */
5455 if (type == RELOAD_FOR_INPADDR_ADDRESS
5456 && TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[opnum], regno))
5457 return 0;
5459 for (i = opnum + 1; i < reload_n_operands; i++)
5460 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
5461 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno))
5462 return 0;
5464 for (i = 0; i < reload_n_operands; i++)
5465 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5466 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
5467 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5468 return 0;
5470 if (TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno))
5471 return 0;
5473 return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
5474 && !TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
5475 && !TEST_HARD_REG_BIT (reload_reg_used, regno));
5477 case RELOAD_FOR_INPUT:
5478 /* Similar to input address, except we start at the next operand for
5479 both input and input address and we do not check for
5480 RELOAD_FOR_OPERAND_ADDRESS and RELOAD_FOR_INSN since these
5481 would conflict. */
5483 for (i = opnum + 1; i < reload_n_operands; i++)
5484 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
5485 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
5486 || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5487 return 0;
5489 /* ... fall through ... */
5491 case RELOAD_FOR_OPERAND_ADDRESS:
5492 /* Check outputs and their addresses. */
5494 for (i = 0; i < reload_n_operands; i++)
5495 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5496 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
5497 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5498 return 0;
5500 return (!TEST_HARD_REG_BIT (reload_reg_used, regno));
5502 case RELOAD_FOR_OPADDR_ADDR:
5503 for (i = 0; i < reload_n_operands; i++)
5504 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5505 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
5506 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5507 return 0;
5509 return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
5510 && !TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
5511 && !TEST_HARD_REG_BIT (reload_reg_used, regno));
5513 case RELOAD_FOR_INSN:
5514 /* These conflict with other outputs with RELOAD_OTHER. So
5515 we need only check for output addresses. */
5517 opnum = reload_n_operands;
5519 /* ... fall through ... */
5521 case RELOAD_FOR_OUTPUT:
5522 case RELOAD_FOR_OUTPUT_ADDRESS:
5523 case RELOAD_FOR_OUTADDR_ADDRESS:
5524 /* We already know these can't conflict with a later output. So the
5525 only thing to check are later output addresses.
5526 Note that multiple output operands are emitted in reverse order,
5527 so the conflicting ones are those with lower indices. */
5528 for (i = 0; i < opnum; i++)
5529 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5530 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno))
5531 return 0;
5533 /* Reload register of reload with type RELOAD_FOR_OUTADDR_ADDRESS
5534 could be killed if the register is also used by reload with type
5535 RELOAD_FOR_OUTPUT_ADDRESS, so check it. */
5536 if (type == RELOAD_FOR_OUTADDR_ADDRESS
5537 && TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[opnum], regno))
5538 return 0;
5540 return 1;
5542 default:
5543 gcc_unreachable ();
5547 /* Like reload_reg_reaches_end_p, but check that the condition holds for
5548 every register in REG. */
5550 static bool
5551 reload_reg_rtx_reaches_end_p (rtx reg, int reloadnum)
5553 unsigned int i;
5555 for (i = REGNO (reg); i < END_REGNO (reg); i++)
5556 if (!reload_reg_reaches_end_p (i, reloadnum))
5557 return false;
5558 return true;
5562 /* Returns whether R1 and R2 are uniquely chained: the value of one
5563 is used by the other, and that value is not used by any other
5564 reload for this insn. This is used to partially undo the decision
5565 made in find_reloads when in the case of multiple
5566 RELOAD_FOR_OPERAND_ADDRESS reloads it converts all
5567 RELOAD_FOR_OPADDR_ADDR reloads into RELOAD_FOR_OPERAND_ADDRESS
5568 reloads. This code tries to avoid the conflict created by that
5569 change. It might be cleaner to explicitly keep track of which
5570 RELOAD_FOR_OPADDR_ADDR reload is associated with which
5571 RELOAD_FOR_OPERAND_ADDRESS reload, rather than to try to detect
5572 this after the fact. */
5573 static bool
5574 reloads_unique_chain_p (int r1, int r2)
5576 int i;
5578 /* We only check input reloads. */
5579 if (! rld[r1].in || ! rld[r2].in)
5580 return false;
5582 /* Avoid anything with output reloads. */
5583 if (rld[r1].out || rld[r2].out)
5584 return false;
5586 /* "chained" means one reload is a component of the other reload,
5587 not the same as the other reload. */
5588 if (rld[r1].opnum != rld[r2].opnum
5589 || rtx_equal_p (rld[r1].in, rld[r2].in)
5590 || rld[r1].optional || rld[r2].optional
5591 || ! (reg_mentioned_p (rld[r1].in, rld[r2].in)
5592 || reg_mentioned_p (rld[r2].in, rld[r1].in)))
5593 return false;
5595 /* The following loop assumes that r1 is the reload that feeds r2. */
5596 if (r1 > r2)
5598 int tmp = r2;
5599 r2 = r1;
5600 r1 = tmp;
5603 for (i = 0; i < n_reloads; i ++)
5604 /* Look for input reloads that aren't our two */
5605 if (i != r1 && i != r2 && rld[i].in)
5607 /* If our reload is mentioned at all, it isn't a simple chain. */
5608 if (reg_mentioned_p (rld[r1].in, rld[i].in))
5609 return false;
5611 return true;
5614 /* The recursive function change all occurrences of WHAT in *WHERE
5615 to REPL. */
5616 static void
5617 substitute (rtx *where, const_rtx what, rtx repl)
5619 const char *fmt;
5620 int i;
5621 enum rtx_code code;
5623 if (*where == 0)
5624 return;
5626 if (*where == what || rtx_equal_p (*where, what))
5628 /* Record the location of the changed rtx. */
5629 substitute_stack.safe_push (where);
5630 *where = repl;
5631 return;
5634 code = GET_CODE (*where);
5635 fmt = GET_RTX_FORMAT (code);
5636 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
5638 if (fmt[i] == 'E')
5640 int j;
5642 for (j = XVECLEN (*where, i) - 1; j >= 0; j--)
5643 substitute (&XVECEXP (*where, i, j), what, repl);
5645 else if (fmt[i] == 'e')
5646 substitute (&XEXP (*where, i), what, repl);
5650 /* The function returns TRUE if chain of reload R1 and R2 (in any
5651 order) can be evaluated without usage of intermediate register for
5652 the reload containing another reload. It is important to see
5653 gen_reload to understand what the function is trying to do. As an
5654 example, let us have reload chain
5656 r2: const
5657 r1: <something> + const
5659 and reload R2 got reload reg HR. The function returns true if
5660 there is a correct insn HR = HR + <something>. Otherwise,
5661 gen_reload will use intermediate register (and this is the reload
5662 reg for R1) to reload <something>.
5664 We need this function to find a conflict for chain reloads. In our
5665 example, if HR = HR + <something> is incorrect insn, then we cannot
5666 use HR as a reload register for R2. If we do use it then we get a
5667 wrong code:
5669 HR = const
5670 HR = <something>
5671 HR = HR + HR
5674 static bool
5675 gen_reload_chain_without_interm_reg_p (int r1, int r2)
5677 /* Assume other cases in gen_reload are not possible for
5678 chain reloads or do need an intermediate hard registers. */
5679 bool result = true;
5680 int regno, n, code;
5681 rtx out, in;
5682 rtx_insn *insn;
5683 rtx_insn *last = get_last_insn ();
5685 /* Make r2 a component of r1. */
5686 if (reg_mentioned_p (rld[r1].in, rld[r2].in))
5688 n = r1;
5689 r1 = r2;
5690 r2 = n;
5692 gcc_assert (reg_mentioned_p (rld[r2].in, rld[r1].in));
5693 regno = rld[r1].regno >= 0 ? rld[r1].regno : rld[r2].regno;
5694 gcc_assert (regno >= 0);
5695 out = gen_rtx_REG (rld[r1].mode, regno);
5696 in = rld[r1].in;
5697 substitute (&in, rld[r2].in, gen_rtx_REG (rld[r2].mode, regno));
5699 /* If IN is a paradoxical SUBREG, remove it and try to put the
5700 opposite SUBREG on OUT. Likewise for a paradoxical SUBREG on OUT. */
5701 strip_paradoxical_subreg (&in, &out);
5703 if (GET_CODE (in) == PLUS
5704 && (REG_P (XEXP (in, 0))
5705 || GET_CODE (XEXP (in, 0)) == SUBREG
5706 || MEM_P (XEXP (in, 0)))
5707 && (REG_P (XEXP (in, 1))
5708 || GET_CODE (XEXP (in, 1)) == SUBREG
5709 || CONSTANT_P (XEXP (in, 1))
5710 || MEM_P (XEXP (in, 1))))
5712 insn = emit_insn (gen_rtx_SET (VOIDmode, out, in));
5713 code = recog_memoized (insn);
5714 result = false;
5716 if (code >= 0)
5718 extract_insn (insn);
5719 /* We want constrain operands to treat this insn strictly in
5720 its validity determination, i.e., the way it would after
5721 reload has completed. */
5722 result = constrain_operands (1);
5725 delete_insns_since (last);
5728 /* Restore the original value at each changed address within R1. */
5729 while (!substitute_stack.is_empty ())
5731 rtx *where = substitute_stack.pop ();
5732 *where = rld[r2].in;
5735 return result;
5738 /* Return 1 if the reloads denoted by R1 and R2 cannot share a register.
5739 Return 0 otherwise.
5741 This function uses the same algorithm as reload_reg_free_p above. */
5743 static int
5744 reloads_conflict (int r1, int r2)
5746 enum reload_type r1_type = rld[r1].when_needed;
5747 enum reload_type r2_type = rld[r2].when_needed;
5748 int r1_opnum = rld[r1].opnum;
5749 int r2_opnum = rld[r2].opnum;
5751 /* RELOAD_OTHER conflicts with everything. */
5752 if (r2_type == RELOAD_OTHER)
5753 return 1;
5755 /* Otherwise, check conflicts differently for each type. */
5757 switch (r1_type)
5759 case RELOAD_FOR_INPUT:
5760 return (r2_type == RELOAD_FOR_INSN
5761 || r2_type == RELOAD_FOR_OPERAND_ADDRESS
5762 || r2_type == RELOAD_FOR_OPADDR_ADDR
5763 || r2_type == RELOAD_FOR_INPUT
5764 || ((r2_type == RELOAD_FOR_INPUT_ADDRESS
5765 || r2_type == RELOAD_FOR_INPADDR_ADDRESS)
5766 && r2_opnum > r1_opnum));
5768 case RELOAD_FOR_INPUT_ADDRESS:
5769 return ((r2_type == RELOAD_FOR_INPUT_ADDRESS && r1_opnum == r2_opnum)
5770 || (r2_type == RELOAD_FOR_INPUT && r2_opnum < r1_opnum));
5772 case RELOAD_FOR_INPADDR_ADDRESS:
5773 return ((r2_type == RELOAD_FOR_INPADDR_ADDRESS && r1_opnum == r2_opnum)
5774 || (r2_type == RELOAD_FOR_INPUT && r2_opnum < r1_opnum));
5776 case RELOAD_FOR_OUTPUT_ADDRESS:
5777 return ((r2_type == RELOAD_FOR_OUTPUT_ADDRESS && r2_opnum == r1_opnum)
5778 || (r2_type == RELOAD_FOR_OUTPUT && r2_opnum <= r1_opnum));
5780 case RELOAD_FOR_OUTADDR_ADDRESS:
5781 return ((r2_type == RELOAD_FOR_OUTADDR_ADDRESS && r2_opnum == r1_opnum)
5782 || (r2_type == RELOAD_FOR_OUTPUT && r2_opnum <= r1_opnum));
5784 case RELOAD_FOR_OPERAND_ADDRESS:
5785 return (r2_type == RELOAD_FOR_INPUT || r2_type == RELOAD_FOR_INSN
5786 || (r2_type == RELOAD_FOR_OPERAND_ADDRESS
5787 && (!reloads_unique_chain_p (r1, r2)
5788 || !gen_reload_chain_without_interm_reg_p (r1, r2))));
5790 case RELOAD_FOR_OPADDR_ADDR:
5791 return (r2_type == RELOAD_FOR_INPUT
5792 || r2_type == RELOAD_FOR_OPADDR_ADDR);
5794 case RELOAD_FOR_OUTPUT:
5795 return (r2_type == RELOAD_FOR_INSN || r2_type == RELOAD_FOR_OUTPUT
5796 || ((r2_type == RELOAD_FOR_OUTPUT_ADDRESS
5797 || r2_type == RELOAD_FOR_OUTADDR_ADDRESS)
5798 && r2_opnum >= r1_opnum));
5800 case RELOAD_FOR_INSN:
5801 return (r2_type == RELOAD_FOR_INPUT || r2_type == RELOAD_FOR_OUTPUT
5802 || r2_type == RELOAD_FOR_INSN
5803 || r2_type == RELOAD_FOR_OPERAND_ADDRESS);
5805 case RELOAD_FOR_OTHER_ADDRESS:
5806 return r2_type == RELOAD_FOR_OTHER_ADDRESS;
5808 case RELOAD_OTHER:
5809 return 1;
5811 default:
5812 gcc_unreachable ();
5816 /* Indexed by reload number, 1 if incoming value
5817 inherited from previous insns. */
5818 static char reload_inherited[MAX_RELOADS];
5820 /* For an inherited reload, this is the insn the reload was inherited from,
5821 if we know it. Otherwise, this is 0. */
5822 static rtx_insn *reload_inheritance_insn[MAX_RELOADS];
5824 /* If nonzero, this is a place to get the value of the reload,
5825 rather than using reload_in. */
5826 static rtx reload_override_in[MAX_RELOADS];
5828 /* For each reload, the hard register number of the register used,
5829 or -1 if we did not need a register for this reload. */
5830 static int reload_spill_index[MAX_RELOADS];
5832 /* Index X is the value of rld[X].reg_rtx, adjusted for the input mode. */
5833 static rtx reload_reg_rtx_for_input[MAX_RELOADS];
5835 /* Index X is the value of rld[X].reg_rtx, adjusted for the output mode. */
5836 static rtx reload_reg_rtx_for_output[MAX_RELOADS];
5838 /* Subroutine of free_for_value_p, used to check a single register.
5839 START_REGNO is the starting regno of the full reload register
5840 (possibly comprising multiple hard registers) that we are considering. */
5842 static int
5843 reload_reg_free_for_value_p (int start_regno, int regno, int opnum,
5844 enum reload_type type, rtx value, rtx out,
5845 int reloadnum, int ignore_address_reloads)
5847 int time1;
5848 /* Set if we see an input reload that must not share its reload register
5849 with any new earlyclobber, but might otherwise share the reload
5850 register with an output or input-output reload. */
5851 int check_earlyclobber = 0;
5852 int i;
5853 int copy = 0;
5855 if (TEST_HARD_REG_BIT (reload_reg_unavailable, regno))
5856 return 0;
5858 if (out == const0_rtx)
5860 copy = 1;
5861 out = NULL_RTX;
5864 /* We use some pseudo 'time' value to check if the lifetimes of the
5865 new register use would overlap with the one of a previous reload
5866 that is not read-only or uses a different value.
5867 The 'time' used doesn't have to be linear in any shape or form, just
5868 monotonic.
5869 Some reload types use different 'buckets' for each operand.
5870 So there are MAX_RECOG_OPERANDS different time values for each
5871 such reload type.
5872 We compute TIME1 as the time when the register for the prospective
5873 new reload ceases to be live, and TIME2 for each existing
5874 reload as the time when that the reload register of that reload
5875 becomes live.
5876 Where there is little to be gained by exact lifetime calculations,
5877 we just make conservative assumptions, i.e. a longer lifetime;
5878 this is done in the 'default:' cases. */
5879 switch (type)
5881 case RELOAD_FOR_OTHER_ADDRESS:
5882 /* RELOAD_FOR_OTHER_ADDRESS conflicts with RELOAD_OTHER reloads. */
5883 time1 = copy ? 0 : 1;
5884 break;
5885 case RELOAD_OTHER:
5886 time1 = copy ? 1 : MAX_RECOG_OPERANDS * 5 + 5;
5887 break;
5888 /* For each input, we may have a sequence of RELOAD_FOR_INPADDR_ADDRESS,
5889 RELOAD_FOR_INPUT_ADDRESS and RELOAD_FOR_INPUT. By adding 0 / 1 / 2 ,
5890 respectively, to the time values for these, we get distinct time
5891 values. To get distinct time values for each operand, we have to
5892 multiply opnum by at least three. We round that up to four because
5893 multiply by four is often cheaper. */
5894 case RELOAD_FOR_INPADDR_ADDRESS:
5895 time1 = opnum * 4 + 2;
5896 break;
5897 case RELOAD_FOR_INPUT_ADDRESS:
5898 time1 = opnum * 4 + 3;
5899 break;
5900 case RELOAD_FOR_INPUT:
5901 /* All RELOAD_FOR_INPUT reloads remain live till the instruction
5902 executes (inclusive). */
5903 time1 = copy ? opnum * 4 + 4 : MAX_RECOG_OPERANDS * 4 + 3;
5904 break;
5905 case RELOAD_FOR_OPADDR_ADDR:
5906 /* opnum * 4 + 4
5907 <= (MAX_RECOG_OPERANDS - 1) * 4 + 4 == MAX_RECOG_OPERANDS * 4 */
5908 time1 = MAX_RECOG_OPERANDS * 4 + 1;
5909 break;
5910 case RELOAD_FOR_OPERAND_ADDRESS:
5911 /* RELOAD_FOR_OPERAND_ADDRESS reloads are live even while the insn
5912 is executed. */
5913 time1 = copy ? MAX_RECOG_OPERANDS * 4 + 2 : MAX_RECOG_OPERANDS * 4 + 3;
5914 break;
5915 case RELOAD_FOR_OUTADDR_ADDRESS:
5916 time1 = MAX_RECOG_OPERANDS * 4 + 4 + opnum;
5917 break;
5918 case RELOAD_FOR_OUTPUT_ADDRESS:
5919 time1 = MAX_RECOG_OPERANDS * 4 + 5 + opnum;
5920 break;
5921 default:
5922 time1 = MAX_RECOG_OPERANDS * 5 + 5;
5925 for (i = 0; i < n_reloads; i++)
5927 rtx reg = rld[i].reg_rtx;
5928 if (reg && REG_P (reg)
5929 && ((unsigned) regno - true_regnum (reg)
5930 <= hard_regno_nregs[REGNO (reg)][GET_MODE (reg)] - (unsigned) 1)
5931 && i != reloadnum)
5933 rtx other_input = rld[i].in;
5935 /* If the other reload loads the same input value, that
5936 will not cause a conflict only if it's loading it into
5937 the same register. */
5938 if (true_regnum (reg) != start_regno)
5939 other_input = NULL_RTX;
5940 if (! other_input || ! rtx_equal_p (other_input, value)
5941 || rld[i].out || out)
5943 int time2;
5944 switch (rld[i].when_needed)
5946 case RELOAD_FOR_OTHER_ADDRESS:
5947 time2 = 0;
5948 break;
5949 case RELOAD_FOR_INPADDR_ADDRESS:
5950 /* find_reloads makes sure that a
5951 RELOAD_FOR_{INP,OP,OUT}ADDR_ADDRESS reload is only used
5952 by at most one - the first -
5953 RELOAD_FOR_{INPUT,OPERAND,OUTPUT}_ADDRESS . If the
5954 address reload is inherited, the address address reload
5955 goes away, so we can ignore this conflict. */
5956 if (type == RELOAD_FOR_INPUT_ADDRESS && reloadnum == i + 1
5957 && ignore_address_reloads
5958 /* Unless the RELOAD_FOR_INPUT is an auto_inc expression.
5959 Then the address address is still needed to store
5960 back the new address. */
5961 && ! rld[reloadnum].out)
5962 continue;
5963 /* Likewise, if a RELOAD_FOR_INPUT can inherit a value, its
5964 RELOAD_FOR_INPUT_ADDRESS / RELOAD_FOR_INPADDR_ADDRESS
5965 reloads go away. */
5966 if (type == RELOAD_FOR_INPUT && opnum == rld[i].opnum
5967 && ignore_address_reloads
5968 /* Unless we are reloading an auto_inc expression. */
5969 && ! rld[reloadnum].out)
5970 continue;
5971 time2 = rld[i].opnum * 4 + 2;
5972 break;
5973 case RELOAD_FOR_INPUT_ADDRESS:
5974 if (type == RELOAD_FOR_INPUT && opnum == rld[i].opnum
5975 && ignore_address_reloads
5976 && ! rld[reloadnum].out)
5977 continue;
5978 time2 = rld[i].opnum * 4 + 3;
5979 break;
5980 case RELOAD_FOR_INPUT:
5981 time2 = rld[i].opnum * 4 + 4;
5982 check_earlyclobber = 1;
5983 break;
5984 /* rld[i].opnum * 4 + 4 <= (MAX_RECOG_OPERAND - 1) * 4 + 4
5985 == MAX_RECOG_OPERAND * 4 */
5986 case RELOAD_FOR_OPADDR_ADDR:
5987 if (type == RELOAD_FOR_OPERAND_ADDRESS && reloadnum == i + 1
5988 && ignore_address_reloads
5989 && ! rld[reloadnum].out)
5990 continue;
5991 time2 = MAX_RECOG_OPERANDS * 4 + 1;
5992 break;
5993 case RELOAD_FOR_OPERAND_ADDRESS:
5994 time2 = MAX_RECOG_OPERANDS * 4 + 2;
5995 check_earlyclobber = 1;
5996 break;
5997 case RELOAD_FOR_INSN:
5998 time2 = MAX_RECOG_OPERANDS * 4 + 3;
5999 break;
6000 case RELOAD_FOR_OUTPUT:
6001 /* All RELOAD_FOR_OUTPUT reloads become live just after the
6002 instruction is executed. */
6003 time2 = MAX_RECOG_OPERANDS * 4 + 4;
6004 break;
6005 /* The first RELOAD_FOR_OUTADDR_ADDRESS reload conflicts with
6006 the RELOAD_FOR_OUTPUT reloads, so assign it the same time
6007 value. */
6008 case RELOAD_FOR_OUTADDR_ADDRESS:
6009 if (type == RELOAD_FOR_OUTPUT_ADDRESS && reloadnum == i + 1
6010 && ignore_address_reloads
6011 && ! rld[reloadnum].out)
6012 continue;
6013 time2 = MAX_RECOG_OPERANDS * 4 + 4 + rld[i].opnum;
6014 break;
6015 case RELOAD_FOR_OUTPUT_ADDRESS:
6016 time2 = MAX_RECOG_OPERANDS * 4 + 5 + rld[i].opnum;
6017 break;
6018 case RELOAD_OTHER:
6019 /* If there is no conflict in the input part, handle this
6020 like an output reload. */
6021 if (! rld[i].in || rtx_equal_p (other_input, value))
6023 time2 = MAX_RECOG_OPERANDS * 4 + 4;
6024 /* Earlyclobbered outputs must conflict with inputs. */
6025 if (earlyclobber_operand_p (rld[i].out))
6026 time2 = MAX_RECOG_OPERANDS * 4 + 3;
6028 break;
6030 time2 = 1;
6031 /* RELOAD_OTHER might be live beyond instruction execution,
6032 but this is not obvious when we set time2 = 1. So check
6033 here if there might be a problem with the new reload
6034 clobbering the register used by the RELOAD_OTHER. */
6035 if (out)
6036 return 0;
6037 break;
6038 default:
6039 return 0;
6041 if ((time1 >= time2
6042 && (! rld[i].in || rld[i].out
6043 || ! rtx_equal_p (other_input, value)))
6044 || (out && rld[reloadnum].out_reg
6045 && time2 >= MAX_RECOG_OPERANDS * 4 + 3))
6046 return 0;
6051 /* Earlyclobbered outputs must conflict with inputs. */
6052 if (check_earlyclobber && out && earlyclobber_operand_p (out))
6053 return 0;
6055 return 1;
6058 /* Return 1 if the value in reload reg REGNO, as used by a reload
6059 needed for the part of the insn specified by OPNUM and TYPE,
6060 may be used to load VALUE into it.
6062 MODE is the mode in which the register is used, this is needed to
6063 determine how many hard regs to test.
6065 Other read-only reloads with the same value do not conflict
6066 unless OUT is nonzero and these other reloads have to live while
6067 output reloads live.
6068 If OUT is CONST0_RTX, this is a special case: it means that the
6069 test should not be for using register REGNO as reload register, but
6070 for copying from register REGNO into the reload register.
6072 RELOADNUM is the number of the reload we want to load this value for;
6073 a reload does not conflict with itself.
6075 When IGNORE_ADDRESS_RELOADS is set, we can not have conflicts with
6076 reloads that load an address for the very reload we are considering.
6078 The caller has to make sure that there is no conflict with the return
6079 register. */
6081 static int
6082 free_for_value_p (int regno, enum machine_mode mode, int opnum,
6083 enum reload_type type, rtx value, rtx out, int reloadnum,
6084 int ignore_address_reloads)
6086 int nregs = hard_regno_nregs[regno][mode];
6087 while (nregs-- > 0)
6088 if (! reload_reg_free_for_value_p (regno, regno + nregs, opnum, type,
6089 value, out, reloadnum,
6090 ignore_address_reloads))
6091 return 0;
6092 return 1;
6095 /* Return nonzero if the rtx X is invariant over the current function. */
6096 /* ??? Actually, the places where we use this expect exactly what is
6097 tested here, and not everything that is function invariant. In
6098 particular, the frame pointer and arg pointer are special cased;
6099 pic_offset_table_rtx is not, and we must not spill these things to
6100 memory. */
6103 function_invariant_p (const_rtx x)
6105 if (CONSTANT_P (x))
6106 return 1;
6107 if (x == frame_pointer_rtx || x == arg_pointer_rtx)
6108 return 1;
6109 if (GET_CODE (x) == PLUS
6110 && (XEXP (x, 0) == frame_pointer_rtx || XEXP (x, 0) == arg_pointer_rtx)
6111 && GET_CODE (XEXP (x, 1)) == CONST_INT)
6112 return 1;
6113 return 0;
6116 /* Determine whether the reload reg X overlaps any rtx'es used for
6117 overriding inheritance. Return nonzero if so. */
6119 static int
6120 conflicts_with_override (rtx x)
6122 int i;
6123 for (i = 0; i < n_reloads; i++)
6124 if (reload_override_in[i]
6125 && reg_overlap_mentioned_p (x, reload_override_in[i]))
6126 return 1;
6127 return 0;
6130 /* Give an error message saying we failed to find a reload for INSN,
6131 and clear out reload R. */
6132 static void
6133 failed_reload (rtx_insn *insn, int r)
6135 if (asm_noperands (PATTERN (insn)) < 0)
6136 /* It's the compiler's fault. */
6137 fatal_insn ("could not find a spill register", insn);
6139 /* It's the user's fault; the operand's mode and constraint
6140 don't match. Disable this reload so we don't crash in final. */
6141 error_for_asm (insn,
6142 "%<asm%> operand constraint incompatible with operand size");
6143 rld[r].in = 0;
6144 rld[r].out = 0;
6145 rld[r].reg_rtx = 0;
6146 rld[r].optional = 1;
6147 rld[r].secondary_p = 1;
6150 /* I is the index in SPILL_REG_RTX of the reload register we are to allocate
6151 for reload R. If it's valid, get an rtx for it. Return nonzero if
6152 successful. */
6153 static int
6154 set_reload_reg (int i, int r)
6156 /* regno is 'set but not used' if HARD_REGNO_MODE_OK doesn't use its first
6157 parameter. */
6158 int regno ATTRIBUTE_UNUSED;
6159 rtx reg = spill_reg_rtx[i];
6161 if (reg == 0 || GET_MODE (reg) != rld[r].mode)
6162 spill_reg_rtx[i] = reg
6163 = gen_rtx_REG (rld[r].mode, spill_regs[i]);
6165 regno = true_regnum (reg);
6167 /* Detect when the reload reg can't hold the reload mode.
6168 This used to be one `if', but Sequent compiler can't handle that. */
6169 if (HARD_REGNO_MODE_OK (regno, rld[r].mode))
6171 enum machine_mode test_mode = VOIDmode;
6172 if (rld[r].in)
6173 test_mode = GET_MODE (rld[r].in);
6174 /* If rld[r].in has VOIDmode, it means we will load it
6175 in whatever mode the reload reg has: to wit, rld[r].mode.
6176 We have already tested that for validity. */
6177 /* Aside from that, we need to test that the expressions
6178 to reload from or into have modes which are valid for this
6179 reload register. Otherwise the reload insns would be invalid. */
6180 if (! (rld[r].in != 0 && test_mode != VOIDmode
6181 && ! HARD_REGNO_MODE_OK (regno, test_mode)))
6182 if (! (rld[r].out != 0
6183 && ! HARD_REGNO_MODE_OK (regno, GET_MODE (rld[r].out))))
6185 /* The reg is OK. */
6186 last_spill_reg = i;
6188 /* Mark as in use for this insn the reload regs we use
6189 for this. */
6190 mark_reload_reg_in_use (spill_regs[i], rld[r].opnum,
6191 rld[r].when_needed, rld[r].mode);
6193 rld[r].reg_rtx = reg;
6194 reload_spill_index[r] = spill_regs[i];
6195 return 1;
6198 return 0;
6201 /* Find a spill register to use as a reload register for reload R.
6202 LAST_RELOAD is nonzero if this is the last reload for the insn being
6203 processed.
6205 Set rld[R].reg_rtx to the register allocated.
6207 We return 1 if successful, or 0 if we couldn't find a spill reg and
6208 we didn't change anything. */
6210 static int
6211 allocate_reload_reg (struct insn_chain *chain ATTRIBUTE_UNUSED, int r,
6212 int last_reload)
6214 int i, pass, count;
6216 /* If we put this reload ahead, thinking it is a group,
6217 then insist on finding a group. Otherwise we can grab a
6218 reg that some other reload needs.
6219 (That can happen when we have a 68000 DATA_OR_FP_REG
6220 which is a group of data regs or one fp reg.)
6221 We need not be so restrictive if there are no more reloads
6222 for this insn.
6224 ??? Really it would be nicer to have smarter handling
6225 for that kind of reg class, where a problem like this is normal.
6226 Perhaps those classes should be avoided for reloading
6227 by use of more alternatives. */
6229 int force_group = rld[r].nregs > 1 && ! last_reload;
6231 /* If we want a single register and haven't yet found one,
6232 take any reg in the right class and not in use.
6233 If we want a consecutive group, here is where we look for it.
6235 We use three passes so we can first look for reload regs to
6236 reuse, which are already in use for other reloads in this insn,
6237 and only then use additional registers which are not "bad", then
6238 finally any register.
6240 I think that maximizing reuse is needed to make sure we don't
6241 run out of reload regs. Suppose we have three reloads, and
6242 reloads A and B can share regs. These need two regs.
6243 Suppose A and B are given different regs.
6244 That leaves none for C. */
6245 for (pass = 0; pass < 3; pass++)
6247 /* I is the index in spill_regs.
6248 We advance it round-robin between insns to use all spill regs
6249 equally, so that inherited reloads have a chance
6250 of leapfrogging each other. */
6252 i = last_spill_reg;
6254 for (count = 0; count < n_spills; count++)
6256 int rclass = (int) rld[r].rclass;
6257 int regnum;
6259 i++;
6260 if (i >= n_spills)
6261 i -= n_spills;
6262 regnum = spill_regs[i];
6264 if ((reload_reg_free_p (regnum, rld[r].opnum,
6265 rld[r].when_needed)
6266 || (rld[r].in
6267 /* We check reload_reg_used to make sure we
6268 don't clobber the return register. */
6269 && ! TEST_HARD_REG_BIT (reload_reg_used, regnum)
6270 && free_for_value_p (regnum, rld[r].mode, rld[r].opnum,
6271 rld[r].when_needed, rld[r].in,
6272 rld[r].out, r, 1)))
6273 && TEST_HARD_REG_BIT (reg_class_contents[rclass], regnum)
6274 && HARD_REGNO_MODE_OK (regnum, rld[r].mode)
6275 /* Look first for regs to share, then for unshared. But
6276 don't share regs used for inherited reloads; they are
6277 the ones we want to preserve. */
6278 && (pass
6279 || (TEST_HARD_REG_BIT (reload_reg_used_at_all,
6280 regnum)
6281 && ! TEST_HARD_REG_BIT (reload_reg_used_for_inherit,
6282 regnum))))
6284 int nr = hard_regno_nregs[regnum][rld[r].mode];
6286 /* During the second pass we want to avoid reload registers
6287 which are "bad" for this reload. */
6288 if (pass == 1
6289 && ira_bad_reload_regno (regnum, rld[r].in, rld[r].out))
6290 continue;
6292 /* Avoid the problem where spilling a GENERAL_OR_FP_REG
6293 (on 68000) got us two FP regs. If NR is 1,
6294 we would reject both of them. */
6295 if (force_group)
6296 nr = rld[r].nregs;
6297 /* If we need only one reg, we have already won. */
6298 if (nr == 1)
6300 /* But reject a single reg if we demand a group. */
6301 if (force_group)
6302 continue;
6303 break;
6305 /* Otherwise check that as many consecutive regs as we need
6306 are available here. */
6307 while (nr > 1)
6309 int regno = regnum + nr - 1;
6310 if (!(TEST_HARD_REG_BIT (reg_class_contents[rclass], regno)
6311 && spill_reg_order[regno] >= 0
6312 && reload_reg_free_p (regno, rld[r].opnum,
6313 rld[r].when_needed)))
6314 break;
6315 nr--;
6317 if (nr == 1)
6318 break;
6322 /* If we found something on the current pass, omit later passes. */
6323 if (count < n_spills)
6324 break;
6327 /* We should have found a spill register by now. */
6328 if (count >= n_spills)
6329 return 0;
6331 /* I is the index in SPILL_REG_RTX of the reload register we are to
6332 allocate. Get an rtx for it and find its register number. */
6334 return set_reload_reg (i, r);
6337 /* Initialize all the tables needed to allocate reload registers.
6338 CHAIN is the insn currently being processed; SAVE_RELOAD_REG_RTX
6339 is the array we use to restore the reg_rtx field for every reload. */
6341 static void
6342 choose_reload_regs_init (struct insn_chain *chain, rtx *save_reload_reg_rtx)
6344 int i;
6346 for (i = 0; i < n_reloads; i++)
6347 rld[i].reg_rtx = save_reload_reg_rtx[i];
6349 memset (reload_inherited, 0, MAX_RELOADS);
6350 memset (reload_inheritance_insn, 0, MAX_RELOADS * sizeof (rtx));
6351 memset (reload_override_in, 0, MAX_RELOADS * sizeof (rtx));
6353 CLEAR_HARD_REG_SET (reload_reg_used);
6354 CLEAR_HARD_REG_SET (reload_reg_used_at_all);
6355 CLEAR_HARD_REG_SET (reload_reg_used_in_op_addr);
6356 CLEAR_HARD_REG_SET (reload_reg_used_in_op_addr_reload);
6357 CLEAR_HARD_REG_SET (reload_reg_used_in_insn);
6358 CLEAR_HARD_REG_SET (reload_reg_used_in_other_addr);
6360 CLEAR_HARD_REG_SET (reg_used_in_insn);
6362 HARD_REG_SET tmp;
6363 REG_SET_TO_HARD_REG_SET (tmp, &chain->live_throughout);
6364 IOR_HARD_REG_SET (reg_used_in_insn, tmp);
6365 REG_SET_TO_HARD_REG_SET (tmp, &chain->dead_or_set);
6366 IOR_HARD_REG_SET (reg_used_in_insn, tmp);
6367 compute_use_by_pseudos (&reg_used_in_insn, &chain->live_throughout);
6368 compute_use_by_pseudos (&reg_used_in_insn, &chain->dead_or_set);
6371 for (i = 0; i < reload_n_operands; i++)
6373 CLEAR_HARD_REG_SET (reload_reg_used_in_output[i]);
6374 CLEAR_HARD_REG_SET (reload_reg_used_in_input[i]);
6375 CLEAR_HARD_REG_SET (reload_reg_used_in_input_addr[i]);
6376 CLEAR_HARD_REG_SET (reload_reg_used_in_inpaddr_addr[i]);
6377 CLEAR_HARD_REG_SET (reload_reg_used_in_output_addr[i]);
6378 CLEAR_HARD_REG_SET (reload_reg_used_in_outaddr_addr[i]);
6381 COMPL_HARD_REG_SET (reload_reg_unavailable, chain->used_spill_regs);
6383 CLEAR_HARD_REG_SET (reload_reg_used_for_inherit);
6385 for (i = 0; i < n_reloads; i++)
6386 /* If we have already decided to use a certain register,
6387 don't use it in another way. */
6388 if (rld[i].reg_rtx)
6389 mark_reload_reg_in_use (REGNO (rld[i].reg_rtx), rld[i].opnum,
6390 rld[i].when_needed, rld[i].mode);
6393 #ifdef SECONDARY_MEMORY_NEEDED
6394 /* If X is not a subreg, return it unmodified. If it is a subreg,
6395 look up whether we made a replacement for the SUBREG_REG. Return
6396 either the replacement or the SUBREG_REG. */
6398 static rtx
6399 replaced_subreg (rtx x)
6401 if (GET_CODE (x) == SUBREG)
6402 return find_replacement (&SUBREG_REG (x));
6403 return x;
6405 #endif
6407 /* Compute the offset to pass to subreg_regno_offset, for a pseudo of
6408 mode OUTERMODE that is available in a hard reg of mode INNERMODE.
6409 SUBREG is non-NULL if the pseudo is a subreg whose reg is a pseudo,
6410 otherwise it is NULL. */
6412 static int
6413 compute_reload_subreg_offset (enum machine_mode outermode,
6414 rtx subreg,
6415 enum machine_mode innermode)
6417 int outer_offset;
6418 enum machine_mode middlemode;
6420 if (!subreg)
6421 return subreg_lowpart_offset (outermode, innermode);
6423 outer_offset = SUBREG_BYTE (subreg);
6424 middlemode = GET_MODE (SUBREG_REG (subreg));
6426 /* If SUBREG is paradoxical then return the normal lowpart offset
6427 for OUTERMODE and INNERMODE. Our caller has already checked
6428 that OUTERMODE fits in INNERMODE. */
6429 if (outer_offset == 0
6430 && GET_MODE_SIZE (outermode) > GET_MODE_SIZE (middlemode))
6431 return subreg_lowpart_offset (outermode, innermode);
6433 /* SUBREG is normal, but may not be lowpart; return OUTER_OFFSET
6434 plus the normal lowpart offset for MIDDLEMODE and INNERMODE. */
6435 return outer_offset + subreg_lowpart_offset (middlemode, innermode);
6438 /* Assign hard reg targets for the pseudo-registers we must reload
6439 into hard regs for this insn.
6440 Also output the instructions to copy them in and out of the hard regs.
6442 For machines with register classes, we are responsible for
6443 finding a reload reg in the proper class. */
6445 static void
6446 choose_reload_regs (struct insn_chain *chain)
6448 rtx_insn *insn = chain->insn;
6449 int i, j;
6450 unsigned int max_group_size = 1;
6451 enum reg_class group_class = NO_REGS;
6452 int pass, win, inheritance;
6454 rtx save_reload_reg_rtx[MAX_RELOADS];
6456 /* In order to be certain of getting the registers we need,
6457 we must sort the reloads into order of increasing register class.
6458 Then our grabbing of reload registers will parallel the process
6459 that provided the reload registers.
6461 Also note whether any of the reloads wants a consecutive group of regs.
6462 If so, record the maximum size of the group desired and what
6463 register class contains all the groups needed by this insn. */
6465 for (j = 0; j < n_reloads; j++)
6467 reload_order[j] = j;
6468 if (rld[j].reg_rtx != NULL_RTX)
6470 gcc_assert (REG_P (rld[j].reg_rtx)
6471 && HARD_REGISTER_P (rld[j].reg_rtx));
6472 reload_spill_index[j] = REGNO (rld[j].reg_rtx);
6474 else
6475 reload_spill_index[j] = -1;
6477 if (rld[j].nregs > 1)
6479 max_group_size = MAX (rld[j].nregs, max_group_size);
6480 group_class
6481 = reg_class_superunion[(int) rld[j].rclass][(int) group_class];
6484 save_reload_reg_rtx[j] = rld[j].reg_rtx;
6487 if (n_reloads > 1)
6488 qsort (reload_order, n_reloads, sizeof (short), reload_reg_class_lower);
6490 /* If -O, try first with inheritance, then turning it off.
6491 If not -O, don't do inheritance.
6492 Using inheritance when not optimizing leads to paradoxes
6493 with fp on the 68k: fp numbers (not NaNs) fail to be equal to themselves
6494 because one side of the comparison might be inherited. */
6495 win = 0;
6496 for (inheritance = optimize > 0; inheritance >= 0; inheritance--)
6498 choose_reload_regs_init (chain, save_reload_reg_rtx);
6500 /* Process the reloads in order of preference just found.
6501 Beyond this point, subregs can be found in reload_reg_rtx.
6503 This used to look for an existing reloaded home for all of the
6504 reloads, and only then perform any new reloads. But that could lose
6505 if the reloads were done out of reg-class order because a later
6506 reload with a looser constraint might have an old home in a register
6507 needed by an earlier reload with a tighter constraint.
6509 To solve this, we make two passes over the reloads, in the order
6510 described above. In the first pass we try to inherit a reload
6511 from a previous insn. If there is a later reload that needs a
6512 class that is a proper subset of the class being processed, we must
6513 also allocate a spill register during the first pass.
6515 Then make a second pass over the reloads to allocate any reloads
6516 that haven't been given registers yet. */
6518 for (j = 0; j < n_reloads; j++)
6520 int r = reload_order[j];
6521 rtx search_equiv = NULL_RTX;
6523 /* Ignore reloads that got marked inoperative. */
6524 if (rld[r].out == 0 && rld[r].in == 0
6525 && ! rld[r].secondary_p)
6526 continue;
6528 /* If find_reloads chose to use reload_in or reload_out as a reload
6529 register, we don't need to chose one. Otherwise, try even if it
6530 found one since we might save an insn if we find the value lying
6531 around.
6532 Try also when reload_in is a pseudo without a hard reg. */
6533 if (rld[r].in != 0 && rld[r].reg_rtx != 0
6534 && (rtx_equal_p (rld[r].in, rld[r].reg_rtx)
6535 || (rtx_equal_p (rld[r].out, rld[r].reg_rtx)
6536 && !MEM_P (rld[r].in)
6537 && true_regnum (rld[r].in) < FIRST_PSEUDO_REGISTER)))
6538 continue;
6540 #if 0 /* No longer needed for correct operation.
6541 It might give better code, or might not; worth an experiment? */
6542 /* If this is an optional reload, we can't inherit from earlier insns
6543 until we are sure that any non-optional reloads have been allocated.
6544 The following code takes advantage of the fact that optional reloads
6545 are at the end of reload_order. */
6546 if (rld[r].optional != 0)
6547 for (i = 0; i < j; i++)
6548 if ((rld[reload_order[i]].out != 0
6549 || rld[reload_order[i]].in != 0
6550 || rld[reload_order[i]].secondary_p)
6551 && ! rld[reload_order[i]].optional
6552 && rld[reload_order[i]].reg_rtx == 0)
6553 allocate_reload_reg (chain, reload_order[i], 0);
6554 #endif
6556 /* First see if this pseudo is already available as reloaded
6557 for a previous insn. We cannot try to inherit for reloads
6558 that are smaller than the maximum number of registers needed
6559 for groups unless the register we would allocate cannot be used
6560 for the groups.
6562 We could check here to see if this is a secondary reload for
6563 an object that is already in a register of the desired class.
6564 This would avoid the need for the secondary reload register.
6565 But this is complex because we can't easily determine what
6566 objects might want to be loaded via this reload. So let a
6567 register be allocated here. In `emit_reload_insns' we suppress
6568 one of the loads in the case described above. */
6570 if (inheritance)
6572 int byte = 0;
6573 int regno = -1;
6574 enum machine_mode mode = VOIDmode;
6575 rtx subreg = NULL_RTX;
6577 if (rld[r].in == 0)
6579 else if (REG_P (rld[r].in))
6581 regno = REGNO (rld[r].in);
6582 mode = GET_MODE (rld[r].in);
6584 else if (REG_P (rld[r].in_reg))
6586 regno = REGNO (rld[r].in_reg);
6587 mode = GET_MODE (rld[r].in_reg);
6589 else if (GET_CODE (rld[r].in_reg) == SUBREG
6590 && REG_P (SUBREG_REG (rld[r].in_reg)))
6592 regno = REGNO (SUBREG_REG (rld[r].in_reg));
6593 if (regno < FIRST_PSEUDO_REGISTER)
6594 regno = subreg_regno (rld[r].in_reg);
6595 else
6597 subreg = rld[r].in_reg;
6598 byte = SUBREG_BYTE (subreg);
6600 mode = GET_MODE (rld[r].in_reg);
6602 #ifdef AUTO_INC_DEC
6603 else if (GET_RTX_CLASS (GET_CODE (rld[r].in_reg)) == RTX_AUTOINC
6604 && REG_P (XEXP (rld[r].in_reg, 0)))
6606 regno = REGNO (XEXP (rld[r].in_reg, 0));
6607 mode = GET_MODE (XEXP (rld[r].in_reg, 0));
6608 rld[r].out = rld[r].in;
6610 #endif
6611 #if 0
6612 /* This won't work, since REGNO can be a pseudo reg number.
6613 Also, it takes much more hair to keep track of all the things
6614 that can invalidate an inherited reload of part of a pseudoreg. */
6615 else if (GET_CODE (rld[r].in) == SUBREG
6616 && REG_P (SUBREG_REG (rld[r].in)))
6617 regno = subreg_regno (rld[r].in);
6618 #endif
6620 if (regno >= 0
6621 && reg_last_reload_reg[regno] != 0
6622 && (GET_MODE_SIZE (GET_MODE (reg_last_reload_reg[regno]))
6623 >= GET_MODE_SIZE (mode) + byte)
6624 #ifdef CANNOT_CHANGE_MODE_CLASS
6625 /* Verify that the register it's in can be used in
6626 mode MODE. */
6627 && !REG_CANNOT_CHANGE_MODE_P (REGNO (reg_last_reload_reg[regno]),
6628 GET_MODE (reg_last_reload_reg[regno]),
6629 mode)
6630 #endif
6633 enum reg_class rclass = rld[r].rclass, last_class;
6634 rtx last_reg = reg_last_reload_reg[regno];
6636 i = REGNO (last_reg);
6637 byte = compute_reload_subreg_offset (mode,
6638 subreg,
6639 GET_MODE (last_reg));
6640 i += subreg_regno_offset (i, GET_MODE (last_reg), byte, mode);
6641 last_class = REGNO_REG_CLASS (i);
6643 if (reg_reloaded_contents[i] == regno
6644 && TEST_HARD_REG_BIT (reg_reloaded_valid, i)
6645 && HARD_REGNO_MODE_OK (i, rld[r].mode)
6646 && (TEST_HARD_REG_BIT (reg_class_contents[(int) rclass], i)
6647 /* Even if we can't use this register as a reload
6648 register, we might use it for reload_override_in,
6649 if copying it to the desired class is cheap
6650 enough. */
6651 || ((register_move_cost (mode, last_class, rclass)
6652 < memory_move_cost (mode, rclass, true))
6653 && (secondary_reload_class (1, rclass, mode,
6654 last_reg)
6655 == NO_REGS)
6656 #ifdef SECONDARY_MEMORY_NEEDED
6657 && ! SECONDARY_MEMORY_NEEDED (last_class, rclass,
6658 mode)
6659 #endif
6662 && (rld[r].nregs == max_group_size
6663 || ! TEST_HARD_REG_BIT (reg_class_contents[(int) group_class],
6665 && free_for_value_p (i, rld[r].mode, rld[r].opnum,
6666 rld[r].when_needed, rld[r].in,
6667 const0_rtx, r, 1))
6669 /* If a group is needed, verify that all the subsequent
6670 registers still have their values intact. */
6671 int nr = hard_regno_nregs[i][rld[r].mode];
6672 int k;
6674 for (k = 1; k < nr; k++)
6675 if (reg_reloaded_contents[i + k] != regno
6676 || ! TEST_HARD_REG_BIT (reg_reloaded_valid, i + k))
6677 break;
6679 if (k == nr)
6681 int i1;
6682 int bad_for_class;
6684 last_reg = (GET_MODE (last_reg) == mode
6685 ? last_reg : gen_rtx_REG (mode, i));
6687 bad_for_class = 0;
6688 for (k = 0; k < nr; k++)
6689 bad_for_class |= ! TEST_HARD_REG_BIT (reg_class_contents[(int) rld[r].rclass],
6690 i+k);
6692 /* We found a register that contains the
6693 value we need. If this register is the
6694 same as an `earlyclobber' operand of the
6695 current insn, just mark it as a place to
6696 reload from since we can't use it as the
6697 reload register itself. */
6699 for (i1 = 0; i1 < n_earlyclobbers; i1++)
6700 if (reg_overlap_mentioned_for_reload_p
6701 (reg_last_reload_reg[regno],
6702 reload_earlyclobbers[i1]))
6703 break;
6705 if (i1 != n_earlyclobbers
6706 || ! (free_for_value_p (i, rld[r].mode,
6707 rld[r].opnum,
6708 rld[r].when_needed, rld[r].in,
6709 rld[r].out, r, 1))
6710 /* Don't use it if we'd clobber a pseudo reg. */
6711 || (TEST_HARD_REG_BIT (reg_used_in_insn, i)
6712 && rld[r].out
6713 && ! TEST_HARD_REG_BIT (reg_reloaded_dead, i))
6714 /* Don't clobber the frame pointer. */
6715 || (i == HARD_FRAME_POINTER_REGNUM
6716 && frame_pointer_needed
6717 && rld[r].out)
6718 /* Don't really use the inherited spill reg
6719 if we need it wider than we've got it. */
6720 || (GET_MODE_SIZE (rld[r].mode)
6721 > GET_MODE_SIZE (mode))
6722 || bad_for_class
6724 /* If find_reloads chose reload_out as reload
6725 register, stay with it - that leaves the
6726 inherited register for subsequent reloads. */
6727 || (rld[r].out && rld[r].reg_rtx
6728 && rtx_equal_p (rld[r].out, rld[r].reg_rtx)))
6730 if (! rld[r].optional)
6732 reload_override_in[r] = last_reg;
6733 reload_inheritance_insn[r]
6734 = reg_reloaded_insn[i];
6737 else
6739 int k;
6740 /* We can use this as a reload reg. */
6741 /* Mark the register as in use for this part of
6742 the insn. */
6743 mark_reload_reg_in_use (i,
6744 rld[r].opnum,
6745 rld[r].when_needed,
6746 rld[r].mode);
6747 rld[r].reg_rtx = last_reg;
6748 reload_inherited[r] = 1;
6749 reload_inheritance_insn[r]
6750 = reg_reloaded_insn[i];
6751 reload_spill_index[r] = i;
6752 for (k = 0; k < nr; k++)
6753 SET_HARD_REG_BIT (reload_reg_used_for_inherit,
6754 i + k);
6761 /* Here's another way to see if the value is already lying around. */
6762 if (inheritance
6763 && rld[r].in != 0
6764 && ! reload_inherited[r]
6765 && rld[r].out == 0
6766 && (CONSTANT_P (rld[r].in)
6767 || GET_CODE (rld[r].in) == PLUS
6768 || REG_P (rld[r].in)
6769 || MEM_P (rld[r].in))
6770 && (rld[r].nregs == max_group_size
6771 || ! reg_classes_intersect_p (rld[r].rclass, group_class)))
6772 search_equiv = rld[r].in;
6774 if (search_equiv)
6776 rtx equiv
6777 = find_equiv_reg (search_equiv, insn, rld[r].rclass,
6778 -1, NULL, 0, rld[r].mode);
6779 int regno = 0;
6781 if (equiv != 0)
6783 if (REG_P (equiv))
6784 regno = REGNO (equiv);
6785 else
6787 /* This must be a SUBREG of a hard register.
6788 Make a new REG since this might be used in an
6789 address and not all machines support SUBREGs
6790 there. */
6791 gcc_assert (GET_CODE (equiv) == SUBREG);
6792 regno = subreg_regno (equiv);
6793 equiv = gen_rtx_REG (rld[r].mode, regno);
6794 /* If we choose EQUIV as the reload register, but the
6795 loop below decides to cancel the inheritance, we'll
6796 end up reloading EQUIV in rld[r].mode, not the mode
6797 it had originally. That isn't safe when EQUIV isn't
6798 available as a spill register since its value might
6799 still be live at this point. */
6800 for (i = regno; i < regno + (int) rld[r].nregs; i++)
6801 if (TEST_HARD_REG_BIT (reload_reg_unavailable, i))
6802 equiv = 0;
6806 /* If we found a spill reg, reject it unless it is free
6807 and of the desired class. */
6808 if (equiv != 0)
6810 int regs_used = 0;
6811 int bad_for_class = 0;
6812 int max_regno = regno + rld[r].nregs;
6814 for (i = regno; i < max_regno; i++)
6816 regs_used |= TEST_HARD_REG_BIT (reload_reg_used_at_all,
6818 bad_for_class |= ! TEST_HARD_REG_BIT (reg_class_contents[(int) rld[r].rclass],
6822 if ((regs_used
6823 && ! free_for_value_p (regno, rld[r].mode,
6824 rld[r].opnum, rld[r].when_needed,
6825 rld[r].in, rld[r].out, r, 1))
6826 || bad_for_class)
6827 equiv = 0;
6830 if (equiv != 0 && ! HARD_REGNO_MODE_OK (regno, rld[r].mode))
6831 equiv = 0;
6833 /* We found a register that contains the value we need.
6834 If this register is the same as an `earlyclobber' operand
6835 of the current insn, just mark it as a place to reload from
6836 since we can't use it as the reload register itself. */
6838 if (equiv != 0)
6839 for (i = 0; i < n_earlyclobbers; i++)
6840 if (reg_overlap_mentioned_for_reload_p (equiv,
6841 reload_earlyclobbers[i]))
6843 if (! rld[r].optional)
6844 reload_override_in[r] = equiv;
6845 equiv = 0;
6846 break;
6849 /* If the equiv register we have found is explicitly clobbered
6850 in the current insn, it depends on the reload type if we
6851 can use it, use it for reload_override_in, or not at all.
6852 In particular, we then can't use EQUIV for a
6853 RELOAD_FOR_OUTPUT_ADDRESS reload. */
6855 if (equiv != 0)
6857 if (regno_clobbered_p (regno, insn, rld[r].mode, 2))
6858 switch (rld[r].when_needed)
6860 case RELOAD_FOR_OTHER_ADDRESS:
6861 case RELOAD_FOR_INPADDR_ADDRESS:
6862 case RELOAD_FOR_INPUT_ADDRESS:
6863 case RELOAD_FOR_OPADDR_ADDR:
6864 break;
6865 case RELOAD_OTHER:
6866 case RELOAD_FOR_INPUT:
6867 case RELOAD_FOR_OPERAND_ADDRESS:
6868 if (! rld[r].optional)
6869 reload_override_in[r] = equiv;
6870 /* Fall through. */
6871 default:
6872 equiv = 0;
6873 break;
6875 else if (regno_clobbered_p (regno, insn, rld[r].mode, 1))
6876 switch (rld[r].when_needed)
6878 case RELOAD_FOR_OTHER_ADDRESS:
6879 case RELOAD_FOR_INPADDR_ADDRESS:
6880 case RELOAD_FOR_INPUT_ADDRESS:
6881 case RELOAD_FOR_OPADDR_ADDR:
6882 case RELOAD_FOR_OPERAND_ADDRESS:
6883 case RELOAD_FOR_INPUT:
6884 break;
6885 case RELOAD_OTHER:
6886 if (! rld[r].optional)
6887 reload_override_in[r] = equiv;
6888 /* Fall through. */
6889 default:
6890 equiv = 0;
6891 break;
6895 /* If we found an equivalent reg, say no code need be generated
6896 to load it, and use it as our reload reg. */
6897 if (equiv != 0
6898 && (regno != HARD_FRAME_POINTER_REGNUM
6899 || !frame_pointer_needed))
6901 int nr = hard_regno_nregs[regno][rld[r].mode];
6902 int k;
6903 rld[r].reg_rtx = equiv;
6904 reload_spill_index[r] = regno;
6905 reload_inherited[r] = 1;
6907 /* If reg_reloaded_valid is not set for this register,
6908 there might be a stale spill_reg_store lying around.
6909 We must clear it, since otherwise emit_reload_insns
6910 might delete the store. */
6911 if (! TEST_HARD_REG_BIT (reg_reloaded_valid, regno))
6912 spill_reg_store[regno] = NULL;
6913 /* If any of the hard registers in EQUIV are spill
6914 registers, mark them as in use for this insn. */
6915 for (k = 0; k < nr; k++)
6917 i = spill_reg_order[regno + k];
6918 if (i >= 0)
6920 mark_reload_reg_in_use (regno, rld[r].opnum,
6921 rld[r].when_needed,
6922 rld[r].mode);
6923 SET_HARD_REG_BIT (reload_reg_used_for_inherit,
6924 regno + k);
6930 /* If we found a register to use already, or if this is an optional
6931 reload, we are done. */
6932 if (rld[r].reg_rtx != 0 || rld[r].optional != 0)
6933 continue;
6935 #if 0
6936 /* No longer needed for correct operation. Might or might
6937 not give better code on the average. Want to experiment? */
6939 /* See if there is a later reload that has a class different from our
6940 class that intersects our class or that requires less register
6941 than our reload. If so, we must allocate a register to this
6942 reload now, since that reload might inherit a previous reload
6943 and take the only available register in our class. Don't do this
6944 for optional reloads since they will force all previous reloads
6945 to be allocated. Also don't do this for reloads that have been
6946 turned off. */
6948 for (i = j + 1; i < n_reloads; i++)
6950 int s = reload_order[i];
6952 if ((rld[s].in == 0 && rld[s].out == 0
6953 && ! rld[s].secondary_p)
6954 || rld[s].optional)
6955 continue;
6957 if ((rld[s].rclass != rld[r].rclass
6958 && reg_classes_intersect_p (rld[r].rclass,
6959 rld[s].rclass))
6960 || rld[s].nregs < rld[r].nregs)
6961 break;
6964 if (i == n_reloads)
6965 continue;
6967 allocate_reload_reg (chain, r, j == n_reloads - 1);
6968 #endif
6971 /* Now allocate reload registers for anything non-optional that
6972 didn't get one yet. */
6973 for (j = 0; j < n_reloads; j++)
6975 int r = reload_order[j];
6977 /* Ignore reloads that got marked inoperative. */
6978 if (rld[r].out == 0 && rld[r].in == 0 && ! rld[r].secondary_p)
6979 continue;
6981 /* Skip reloads that already have a register allocated or are
6982 optional. */
6983 if (rld[r].reg_rtx != 0 || rld[r].optional)
6984 continue;
6986 if (! allocate_reload_reg (chain, r, j == n_reloads - 1))
6987 break;
6990 /* If that loop got all the way, we have won. */
6991 if (j == n_reloads)
6993 win = 1;
6994 break;
6997 /* Loop around and try without any inheritance. */
7000 if (! win)
7002 /* First undo everything done by the failed attempt
7003 to allocate with inheritance. */
7004 choose_reload_regs_init (chain, save_reload_reg_rtx);
7006 /* Some sanity tests to verify that the reloads found in the first
7007 pass are identical to the ones we have now. */
7008 gcc_assert (chain->n_reloads == n_reloads);
7010 for (i = 0; i < n_reloads; i++)
7012 if (chain->rld[i].regno < 0 || chain->rld[i].reg_rtx != 0)
7013 continue;
7014 gcc_assert (chain->rld[i].when_needed == rld[i].when_needed);
7015 for (j = 0; j < n_spills; j++)
7016 if (spill_regs[j] == chain->rld[i].regno)
7017 if (! set_reload_reg (j, i))
7018 failed_reload (chain->insn, i);
7022 /* If we thought we could inherit a reload, because it seemed that
7023 nothing else wanted the same reload register earlier in the insn,
7024 verify that assumption, now that all reloads have been assigned.
7025 Likewise for reloads where reload_override_in has been set. */
7027 /* If doing expensive optimizations, do one preliminary pass that doesn't
7028 cancel any inheritance, but removes reloads that have been needed only
7029 for reloads that we know can be inherited. */
7030 for (pass = flag_expensive_optimizations; pass >= 0; pass--)
7032 for (j = 0; j < n_reloads; j++)
7034 int r = reload_order[j];
7035 rtx check_reg;
7036 #ifdef SECONDARY_MEMORY_NEEDED
7037 rtx tem;
7038 #endif
7039 if (reload_inherited[r] && rld[r].reg_rtx)
7040 check_reg = rld[r].reg_rtx;
7041 else if (reload_override_in[r]
7042 && (REG_P (reload_override_in[r])
7043 || GET_CODE (reload_override_in[r]) == SUBREG))
7044 check_reg = reload_override_in[r];
7045 else
7046 continue;
7047 if (! free_for_value_p (true_regnum (check_reg), rld[r].mode,
7048 rld[r].opnum, rld[r].when_needed, rld[r].in,
7049 (reload_inherited[r]
7050 ? rld[r].out : const0_rtx),
7051 r, 1))
7053 if (pass)
7054 continue;
7055 reload_inherited[r] = 0;
7056 reload_override_in[r] = 0;
7058 /* If we can inherit a RELOAD_FOR_INPUT, or can use a
7059 reload_override_in, then we do not need its related
7060 RELOAD_FOR_INPUT_ADDRESS / RELOAD_FOR_INPADDR_ADDRESS reloads;
7061 likewise for other reload types.
7062 We handle this by removing a reload when its only replacement
7063 is mentioned in reload_in of the reload we are going to inherit.
7064 A special case are auto_inc expressions; even if the input is
7065 inherited, we still need the address for the output. We can
7066 recognize them because they have RELOAD_OUT set to RELOAD_IN.
7067 If we succeeded removing some reload and we are doing a preliminary
7068 pass just to remove such reloads, make another pass, since the
7069 removal of one reload might allow us to inherit another one. */
7070 else if (rld[r].in
7071 && rld[r].out != rld[r].in
7072 && remove_address_replacements (rld[r].in))
7074 if (pass)
7075 pass = 2;
7077 #ifdef SECONDARY_MEMORY_NEEDED
7078 /* If we needed a memory location for the reload, we also have to
7079 remove its related reloads. */
7080 else if (rld[r].in
7081 && rld[r].out != rld[r].in
7082 && (tem = replaced_subreg (rld[r].in), REG_P (tem))
7083 && REGNO (tem) < FIRST_PSEUDO_REGISTER
7084 && SECONDARY_MEMORY_NEEDED (REGNO_REG_CLASS (REGNO (tem)),
7085 rld[r].rclass, rld[r].inmode)
7086 && remove_address_replacements
7087 (get_secondary_mem (tem, rld[r].inmode, rld[r].opnum,
7088 rld[r].when_needed)))
7090 if (pass)
7091 pass = 2;
7093 #endif
7097 /* Now that reload_override_in is known valid,
7098 actually override reload_in. */
7099 for (j = 0; j < n_reloads; j++)
7100 if (reload_override_in[j])
7101 rld[j].in = reload_override_in[j];
7103 /* If this reload won't be done because it has been canceled or is
7104 optional and not inherited, clear reload_reg_rtx so other
7105 routines (such as subst_reloads) don't get confused. */
7106 for (j = 0; j < n_reloads; j++)
7107 if (rld[j].reg_rtx != 0
7108 && ((rld[j].optional && ! reload_inherited[j])
7109 || (rld[j].in == 0 && rld[j].out == 0
7110 && ! rld[j].secondary_p)))
7112 int regno = true_regnum (rld[j].reg_rtx);
7114 if (spill_reg_order[regno] >= 0)
7115 clear_reload_reg_in_use (regno, rld[j].opnum,
7116 rld[j].when_needed, rld[j].mode);
7117 rld[j].reg_rtx = 0;
7118 reload_spill_index[j] = -1;
7121 /* Record which pseudos and which spill regs have output reloads. */
7122 for (j = 0; j < n_reloads; j++)
7124 int r = reload_order[j];
7126 i = reload_spill_index[r];
7128 /* I is nonneg if this reload uses a register.
7129 If rld[r].reg_rtx is 0, this is an optional reload
7130 that we opted to ignore. */
7131 if (rld[r].out_reg != 0 && REG_P (rld[r].out_reg)
7132 && rld[r].reg_rtx != 0)
7134 int nregno = REGNO (rld[r].out_reg);
7135 int nr = 1;
7137 if (nregno < FIRST_PSEUDO_REGISTER)
7138 nr = hard_regno_nregs[nregno][rld[r].mode];
7140 while (--nr >= 0)
7141 SET_REGNO_REG_SET (&reg_has_output_reload,
7142 nregno + nr);
7144 if (i >= 0)
7145 add_to_hard_reg_set (&reg_is_output_reload, rld[r].mode, i);
7147 gcc_assert (rld[r].when_needed == RELOAD_OTHER
7148 || rld[r].when_needed == RELOAD_FOR_OUTPUT
7149 || rld[r].when_needed == RELOAD_FOR_INSN);
7154 /* Deallocate the reload register for reload R. This is called from
7155 remove_address_replacements. */
7157 void
7158 deallocate_reload_reg (int r)
7160 int regno;
7162 if (! rld[r].reg_rtx)
7163 return;
7164 regno = true_regnum (rld[r].reg_rtx);
7165 rld[r].reg_rtx = 0;
7166 if (spill_reg_order[regno] >= 0)
7167 clear_reload_reg_in_use (regno, rld[r].opnum, rld[r].when_needed,
7168 rld[r].mode);
7169 reload_spill_index[r] = -1;
7172 /* These arrays are filled by emit_reload_insns and its subroutines. */
7173 static rtx_insn *input_reload_insns[MAX_RECOG_OPERANDS];
7174 static rtx_insn *other_input_address_reload_insns = 0;
7175 static rtx_insn *other_input_reload_insns = 0;
7176 static rtx_insn *input_address_reload_insns[MAX_RECOG_OPERANDS];
7177 static rtx_insn *inpaddr_address_reload_insns[MAX_RECOG_OPERANDS];
7178 static rtx_insn *output_reload_insns[MAX_RECOG_OPERANDS];
7179 static rtx_insn *output_address_reload_insns[MAX_RECOG_OPERANDS];
7180 static rtx_insn *outaddr_address_reload_insns[MAX_RECOG_OPERANDS];
7181 static rtx_insn *operand_reload_insns = 0;
7182 static rtx_insn *other_operand_reload_insns = 0;
7183 static rtx_insn *other_output_reload_insns[MAX_RECOG_OPERANDS];
7185 /* Values to be put in spill_reg_store are put here first. Instructions
7186 must only be placed here if the associated reload register reaches
7187 the end of the instruction's reload sequence. */
7188 static rtx_insn *new_spill_reg_store[FIRST_PSEUDO_REGISTER];
7189 static HARD_REG_SET reg_reloaded_died;
7191 /* Check if *RELOAD_REG is suitable as an intermediate or scratch register
7192 of class NEW_CLASS with mode NEW_MODE. Or alternatively, if alt_reload_reg
7193 is nonzero, if that is suitable. On success, change *RELOAD_REG to the
7194 adjusted register, and return true. Otherwise, return false. */
7195 static bool
7196 reload_adjust_reg_for_temp (rtx *reload_reg, rtx alt_reload_reg,
7197 enum reg_class new_class,
7198 enum machine_mode new_mode)
7201 rtx reg;
7203 for (reg = *reload_reg; reg; reg = alt_reload_reg, alt_reload_reg = 0)
7205 unsigned regno = REGNO (reg);
7207 if (!TEST_HARD_REG_BIT (reg_class_contents[(int) new_class], regno))
7208 continue;
7209 if (GET_MODE (reg) != new_mode)
7211 if (!HARD_REGNO_MODE_OK (regno, new_mode))
7212 continue;
7213 if (hard_regno_nregs[regno][new_mode]
7214 > hard_regno_nregs[regno][GET_MODE (reg)])
7215 continue;
7216 reg = reload_adjust_reg_for_mode (reg, new_mode);
7218 *reload_reg = reg;
7219 return true;
7221 return false;
7224 /* Check if *RELOAD_REG is suitable as a scratch register for the reload
7225 pattern with insn_code ICODE, or alternatively, if alt_reload_reg is
7226 nonzero, if that is suitable. On success, change *RELOAD_REG to the
7227 adjusted register, and return true. Otherwise, return false. */
7228 static bool
7229 reload_adjust_reg_for_icode (rtx *reload_reg, rtx alt_reload_reg,
7230 enum insn_code icode)
7233 enum reg_class new_class = scratch_reload_class (icode);
7234 enum machine_mode new_mode = insn_data[(int) icode].operand[2].mode;
7236 return reload_adjust_reg_for_temp (reload_reg, alt_reload_reg,
7237 new_class, new_mode);
7240 /* Generate insns to perform reload RL, which is for the insn in CHAIN and
7241 has the number J. OLD contains the value to be used as input. */
7243 static void
7244 emit_input_reload_insns (struct insn_chain *chain, struct reload *rl,
7245 rtx old, int j)
7247 rtx_insn *insn = chain->insn;
7248 rtx reloadreg;
7249 rtx oldequiv_reg = 0;
7250 rtx oldequiv = 0;
7251 int special = 0;
7252 enum machine_mode mode;
7253 rtx_insn **where;
7255 /* delete_output_reload is only invoked properly if old contains
7256 the original pseudo register. Since this is replaced with a
7257 hard reg when RELOAD_OVERRIDE_IN is set, see if we can
7258 find the pseudo in RELOAD_IN_REG. This is also used to
7259 determine whether a secondary reload is needed. */
7260 if (reload_override_in[j]
7261 && (REG_P (rl->in_reg)
7262 || (GET_CODE (rl->in_reg) == SUBREG
7263 && REG_P (SUBREG_REG (rl->in_reg)))))
7265 oldequiv = old;
7266 old = rl->in_reg;
7268 if (oldequiv == 0)
7269 oldequiv = old;
7270 else if (REG_P (oldequiv))
7271 oldequiv_reg = oldequiv;
7272 else if (GET_CODE (oldequiv) == SUBREG)
7273 oldequiv_reg = SUBREG_REG (oldequiv);
7275 reloadreg = reload_reg_rtx_for_input[j];
7276 mode = GET_MODE (reloadreg);
7278 /* If we are reloading from a register that was recently stored in
7279 with an output-reload, see if we can prove there was
7280 actually no need to store the old value in it. */
7282 if (optimize && REG_P (oldequiv)
7283 && REGNO (oldequiv) < FIRST_PSEUDO_REGISTER
7284 && spill_reg_store[REGNO (oldequiv)]
7285 && REG_P (old)
7286 && (dead_or_set_p (insn, spill_reg_stored_to[REGNO (oldequiv)])
7287 || rtx_equal_p (spill_reg_stored_to[REGNO (oldequiv)],
7288 rl->out_reg)))
7289 delete_output_reload (insn, j, REGNO (oldequiv), reloadreg);
7291 /* Encapsulate OLDEQUIV into the reload mode, then load RELOADREG from
7292 OLDEQUIV. */
7294 while (GET_CODE (oldequiv) == SUBREG && GET_MODE (oldequiv) != mode)
7295 oldequiv = SUBREG_REG (oldequiv);
7296 if (GET_MODE (oldequiv) != VOIDmode
7297 && mode != GET_MODE (oldequiv))
7298 oldequiv = gen_lowpart_SUBREG (mode, oldequiv);
7300 /* Switch to the right place to emit the reload insns. */
7301 switch (rl->when_needed)
7303 case RELOAD_OTHER:
7304 where = &other_input_reload_insns;
7305 break;
7306 case RELOAD_FOR_INPUT:
7307 where = &input_reload_insns[rl->opnum];
7308 break;
7309 case RELOAD_FOR_INPUT_ADDRESS:
7310 where = &input_address_reload_insns[rl->opnum];
7311 break;
7312 case RELOAD_FOR_INPADDR_ADDRESS:
7313 where = &inpaddr_address_reload_insns[rl->opnum];
7314 break;
7315 case RELOAD_FOR_OUTPUT_ADDRESS:
7316 where = &output_address_reload_insns[rl->opnum];
7317 break;
7318 case RELOAD_FOR_OUTADDR_ADDRESS:
7319 where = &outaddr_address_reload_insns[rl->opnum];
7320 break;
7321 case RELOAD_FOR_OPERAND_ADDRESS:
7322 where = &operand_reload_insns;
7323 break;
7324 case RELOAD_FOR_OPADDR_ADDR:
7325 where = &other_operand_reload_insns;
7326 break;
7327 case RELOAD_FOR_OTHER_ADDRESS:
7328 where = &other_input_address_reload_insns;
7329 break;
7330 default:
7331 gcc_unreachable ();
7334 push_to_sequence (*where);
7336 /* Auto-increment addresses must be reloaded in a special way. */
7337 if (rl->out && ! rl->out_reg)
7339 /* We are not going to bother supporting the case where a
7340 incremented register can't be copied directly from
7341 OLDEQUIV since this seems highly unlikely. */
7342 gcc_assert (rl->secondary_in_reload < 0);
7344 if (reload_inherited[j])
7345 oldequiv = reloadreg;
7347 old = XEXP (rl->in_reg, 0);
7349 /* Prevent normal processing of this reload. */
7350 special = 1;
7351 /* Output a special code sequence for this case. */
7352 inc_for_reload (reloadreg, oldequiv, rl->out, rl->inc);
7355 /* If we are reloading a pseudo-register that was set by the previous
7356 insn, see if we can get rid of that pseudo-register entirely
7357 by redirecting the previous insn into our reload register. */
7359 else if (optimize && REG_P (old)
7360 && REGNO (old) >= FIRST_PSEUDO_REGISTER
7361 && dead_or_set_p (insn, old)
7362 /* This is unsafe if some other reload
7363 uses the same reg first. */
7364 && ! conflicts_with_override (reloadreg)
7365 && free_for_value_p (REGNO (reloadreg), rl->mode, rl->opnum,
7366 rl->when_needed, old, rl->out, j, 0))
7368 rtx_insn *temp = PREV_INSN (insn);
7369 while (temp && (NOTE_P (temp) || DEBUG_INSN_P (temp)))
7370 temp = PREV_INSN (temp);
7371 if (temp
7372 && NONJUMP_INSN_P (temp)
7373 && GET_CODE (PATTERN (temp)) == SET
7374 && SET_DEST (PATTERN (temp)) == old
7375 /* Make sure we can access insn_operand_constraint. */
7376 && asm_noperands (PATTERN (temp)) < 0
7377 /* This is unsafe if operand occurs more than once in current
7378 insn. Perhaps some occurrences aren't reloaded. */
7379 && count_occurrences (PATTERN (insn), old, 0) == 1)
7381 rtx old = SET_DEST (PATTERN (temp));
7382 /* Store into the reload register instead of the pseudo. */
7383 SET_DEST (PATTERN (temp)) = reloadreg;
7385 /* Verify that resulting insn is valid.
7387 Note that we have replaced the destination of TEMP with
7388 RELOADREG. If TEMP references RELOADREG within an
7389 autoincrement addressing mode, then the resulting insn
7390 is ill-formed and we must reject this optimization. */
7391 extract_insn (temp);
7392 if (constrain_operands (1)
7393 #ifdef AUTO_INC_DEC
7394 && ! find_reg_note (temp, REG_INC, reloadreg)
7395 #endif
7398 /* If the previous insn is an output reload, the source is
7399 a reload register, and its spill_reg_store entry will
7400 contain the previous destination. This is now
7401 invalid. */
7402 if (REG_P (SET_SRC (PATTERN (temp)))
7403 && REGNO (SET_SRC (PATTERN (temp))) < FIRST_PSEUDO_REGISTER)
7405 spill_reg_store[REGNO (SET_SRC (PATTERN (temp)))] = 0;
7406 spill_reg_stored_to[REGNO (SET_SRC (PATTERN (temp)))] = 0;
7409 /* If these are the only uses of the pseudo reg,
7410 pretend for GDB it lives in the reload reg we used. */
7411 if (REG_N_DEATHS (REGNO (old)) == 1
7412 && REG_N_SETS (REGNO (old)) == 1)
7414 reg_renumber[REGNO (old)] = REGNO (reloadreg);
7415 if (ira_conflicts_p)
7416 /* Inform IRA about the change. */
7417 ira_mark_allocation_change (REGNO (old));
7418 alter_reg (REGNO (old), -1, false);
7420 special = 1;
7422 /* Adjust any debug insns between temp and insn. */
7423 while ((temp = NEXT_INSN (temp)) != insn)
7424 if (DEBUG_INSN_P (temp))
7425 replace_rtx (PATTERN (temp), old, reloadreg);
7426 else
7427 gcc_assert (NOTE_P (temp));
7429 else
7431 SET_DEST (PATTERN (temp)) = old;
7436 /* We can't do that, so output an insn to load RELOADREG. */
7438 /* If we have a secondary reload, pick up the secondary register
7439 and icode, if any. If OLDEQUIV and OLD are different or
7440 if this is an in-out reload, recompute whether or not we
7441 still need a secondary register and what the icode should
7442 be. If we still need a secondary register and the class or
7443 icode is different, go back to reloading from OLD if using
7444 OLDEQUIV means that we got the wrong type of register. We
7445 cannot have different class or icode due to an in-out reload
7446 because we don't make such reloads when both the input and
7447 output need secondary reload registers. */
7449 if (! special && rl->secondary_in_reload >= 0)
7451 rtx second_reload_reg = 0;
7452 rtx third_reload_reg = 0;
7453 int secondary_reload = rl->secondary_in_reload;
7454 rtx real_oldequiv = oldequiv;
7455 rtx real_old = old;
7456 rtx tmp;
7457 enum insn_code icode;
7458 enum insn_code tertiary_icode = CODE_FOR_nothing;
7460 /* If OLDEQUIV is a pseudo with a MEM, get the real MEM
7461 and similarly for OLD.
7462 See comments in get_secondary_reload in reload.c. */
7463 /* If it is a pseudo that cannot be replaced with its
7464 equivalent MEM, we must fall back to reload_in, which
7465 will have all the necessary substitutions registered.
7466 Likewise for a pseudo that can't be replaced with its
7467 equivalent constant.
7469 Take extra care for subregs of such pseudos. Note that
7470 we cannot use reg_equiv_mem in this case because it is
7471 not in the right mode. */
7473 tmp = oldequiv;
7474 if (GET_CODE (tmp) == SUBREG)
7475 tmp = SUBREG_REG (tmp);
7476 if (REG_P (tmp)
7477 && REGNO (tmp) >= FIRST_PSEUDO_REGISTER
7478 && (reg_equiv_memory_loc (REGNO (tmp)) != 0
7479 || reg_equiv_constant (REGNO (tmp)) != 0))
7481 if (! reg_equiv_mem (REGNO (tmp))
7482 || num_not_at_initial_offset
7483 || GET_CODE (oldequiv) == SUBREG)
7484 real_oldequiv = rl->in;
7485 else
7486 real_oldequiv = reg_equiv_mem (REGNO (tmp));
7489 tmp = old;
7490 if (GET_CODE (tmp) == SUBREG)
7491 tmp = SUBREG_REG (tmp);
7492 if (REG_P (tmp)
7493 && REGNO (tmp) >= FIRST_PSEUDO_REGISTER
7494 && (reg_equiv_memory_loc (REGNO (tmp)) != 0
7495 || reg_equiv_constant (REGNO (tmp)) != 0))
7497 if (! reg_equiv_mem (REGNO (tmp))
7498 || num_not_at_initial_offset
7499 || GET_CODE (old) == SUBREG)
7500 real_old = rl->in;
7501 else
7502 real_old = reg_equiv_mem (REGNO (tmp));
7505 second_reload_reg = rld[secondary_reload].reg_rtx;
7506 if (rld[secondary_reload].secondary_in_reload >= 0)
7508 int tertiary_reload = rld[secondary_reload].secondary_in_reload;
7510 third_reload_reg = rld[tertiary_reload].reg_rtx;
7511 tertiary_icode = rld[secondary_reload].secondary_in_icode;
7512 /* We'd have to add more code for quartary reloads. */
7513 gcc_assert (rld[tertiary_reload].secondary_in_reload < 0);
7515 icode = rl->secondary_in_icode;
7517 if ((old != oldequiv && ! rtx_equal_p (old, oldequiv))
7518 || (rl->in != 0 && rl->out != 0))
7520 secondary_reload_info sri, sri2;
7521 enum reg_class new_class, new_t_class;
7523 sri.icode = CODE_FOR_nothing;
7524 sri.prev_sri = NULL;
7525 new_class
7526 = (enum reg_class) targetm.secondary_reload (1, real_oldequiv,
7527 rl->rclass, mode,
7528 &sri);
7530 if (new_class == NO_REGS && sri.icode == CODE_FOR_nothing)
7531 second_reload_reg = 0;
7532 else if (new_class == NO_REGS)
7534 if (reload_adjust_reg_for_icode (&second_reload_reg,
7535 third_reload_reg,
7536 (enum insn_code) sri.icode))
7538 icode = (enum insn_code) sri.icode;
7539 third_reload_reg = 0;
7541 else
7543 oldequiv = old;
7544 real_oldequiv = real_old;
7547 else if (sri.icode != CODE_FOR_nothing)
7548 /* We currently lack a way to express this in reloads. */
7549 gcc_unreachable ();
7550 else
7552 sri2.icode = CODE_FOR_nothing;
7553 sri2.prev_sri = &sri;
7554 new_t_class
7555 = (enum reg_class) targetm.secondary_reload (1, real_oldequiv,
7556 new_class, mode,
7557 &sri);
7558 if (new_t_class == NO_REGS && sri2.icode == CODE_FOR_nothing)
7560 if (reload_adjust_reg_for_temp (&second_reload_reg,
7561 third_reload_reg,
7562 new_class, mode))
7564 third_reload_reg = 0;
7565 tertiary_icode = (enum insn_code) sri2.icode;
7567 else
7569 oldequiv = old;
7570 real_oldequiv = real_old;
7573 else if (new_t_class == NO_REGS && sri2.icode != CODE_FOR_nothing)
7575 rtx intermediate = second_reload_reg;
7577 if (reload_adjust_reg_for_temp (&intermediate, NULL,
7578 new_class, mode)
7579 && reload_adjust_reg_for_icode (&third_reload_reg, NULL,
7580 ((enum insn_code)
7581 sri2.icode)))
7583 second_reload_reg = intermediate;
7584 tertiary_icode = (enum insn_code) sri2.icode;
7586 else
7588 oldequiv = old;
7589 real_oldequiv = real_old;
7592 else if (new_t_class != NO_REGS && sri2.icode == CODE_FOR_nothing)
7594 rtx intermediate = second_reload_reg;
7596 if (reload_adjust_reg_for_temp (&intermediate, NULL,
7597 new_class, mode)
7598 && reload_adjust_reg_for_temp (&third_reload_reg, NULL,
7599 new_t_class, mode))
7601 second_reload_reg = intermediate;
7602 tertiary_icode = (enum insn_code) sri2.icode;
7604 else
7606 oldequiv = old;
7607 real_oldequiv = real_old;
7610 else
7612 /* This could be handled more intelligently too. */
7613 oldequiv = old;
7614 real_oldequiv = real_old;
7619 /* If we still need a secondary reload register, check
7620 to see if it is being used as a scratch or intermediate
7621 register and generate code appropriately. If we need
7622 a scratch register, use REAL_OLDEQUIV since the form of
7623 the insn may depend on the actual address if it is
7624 a MEM. */
7626 if (second_reload_reg)
7628 if (icode != CODE_FOR_nothing)
7630 /* We'd have to add extra code to handle this case. */
7631 gcc_assert (!third_reload_reg);
7633 emit_insn (GEN_FCN (icode) (reloadreg, real_oldequiv,
7634 second_reload_reg));
7635 special = 1;
7637 else
7639 /* See if we need a scratch register to load the
7640 intermediate register (a tertiary reload). */
7641 if (tertiary_icode != CODE_FOR_nothing)
7643 emit_insn ((GEN_FCN (tertiary_icode)
7644 (second_reload_reg, real_oldequiv,
7645 third_reload_reg)));
7647 else if (third_reload_reg)
7649 gen_reload (third_reload_reg, real_oldequiv,
7650 rl->opnum,
7651 rl->when_needed);
7652 gen_reload (second_reload_reg, third_reload_reg,
7653 rl->opnum,
7654 rl->when_needed);
7656 else
7657 gen_reload (second_reload_reg, real_oldequiv,
7658 rl->opnum,
7659 rl->when_needed);
7661 oldequiv = second_reload_reg;
7666 if (! special && ! rtx_equal_p (reloadreg, oldequiv))
7668 rtx real_oldequiv = oldequiv;
7670 if ((REG_P (oldequiv)
7671 && REGNO (oldequiv) >= FIRST_PSEUDO_REGISTER
7672 && (reg_equiv_memory_loc (REGNO (oldequiv)) != 0
7673 || reg_equiv_constant (REGNO (oldequiv)) != 0))
7674 || (GET_CODE (oldequiv) == SUBREG
7675 && REG_P (SUBREG_REG (oldequiv))
7676 && (REGNO (SUBREG_REG (oldequiv))
7677 >= FIRST_PSEUDO_REGISTER)
7678 && ((reg_equiv_memory_loc (REGNO (SUBREG_REG (oldequiv))) != 0)
7679 || (reg_equiv_constant (REGNO (SUBREG_REG (oldequiv))) != 0)))
7680 || (CONSTANT_P (oldequiv)
7681 && (targetm.preferred_reload_class (oldequiv,
7682 REGNO_REG_CLASS (REGNO (reloadreg)))
7683 == NO_REGS)))
7684 real_oldequiv = rl->in;
7685 gen_reload (reloadreg, real_oldequiv, rl->opnum,
7686 rl->when_needed);
7689 if (cfun->can_throw_non_call_exceptions)
7690 copy_reg_eh_region_note_forward (insn, get_insns (), NULL);
7692 /* End this sequence. */
7693 *where = get_insns ();
7694 end_sequence ();
7696 /* Update reload_override_in so that delete_address_reloads_1
7697 can see the actual register usage. */
7698 if (oldequiv_reg)
7699 reload_override_in[j] = oldequiv;
7702 /* Generate insns to for the output reload RL, which is for the insn described
7703 by CHAIN and has the number J. */
7704 static void
7705 emit_output_reload_insns (struct insn_chain *chain, struct reload *rl,
7706 int j)
7708 rtx reloadreg;
7709 rtx_insn *insn = chain->insn;
7710 int special = 0;
7711 rtx old = rl->out;
7712 enum machine_mode mode;
7713 rtx_insn *p;
7714 rtx rl_reg_rtx;
7716 if (rl->when_needed == RELOAD_OTHER)
7717 start_sequence ();
7718 else
7719 push_to_sequence (output_reload_insns[rl->opnum]);
7721 rl_reg_rtx = reload_reg_rtx_for_output[j];
7722 mode = GET_MODE (rl_reg_rtx);
7724 reloadreg = rl_reg_rtx;
7726 /* If we need two reload regs, set RELOADREG to the intermediate
7727 one, since it will be stored into OLD. We might need a secondary
7728 register only for an input reload, so check again here. */
7730 if (rl->secondary_out_reload >= 0)
7732 rtx real_old = old;
7733 int secondary_reload = rl->secondary_out_reload;
7734 int tertiary_reload = rld[secondary_reload].secondary_out_reload;
7736 if (REG_P (old) && REGNO (old) >= FIRST_PSEUDO_REGISTER
7737 && reg_equiv_mem (REGNO (old)) != 0)
7738 real_old = reg_equiv_mem (REGNO (old));
7740 if (secondary_reload_class (0, rl->rclass, mode, real_old) != NO_REGS)
7742 rtx second_reloadreg = reloadreg;
7743 reloadreg = rld[secondary_reload].reg_rtx;
7745 /* See if RELOADREG is to be used as a scratch register
7746 or as an intermediate register. */
7747 if (rl->secondary_out_icode != CODE_FOR_nothing)
7749 /* We'd have to add extra code to handle this case. */
7750 gcc_assert (tertiary_reload < 0);
7752 emit_insn ((GEN_FCN (rl->secondary_out_icode)
7753 (real_old, second_reloadreg, reloadreg)));
7754 special = 1;
7756 else
7758 /* See if we need both a scratch and intermediate reload
7759 register. */
7761 enum insn_code tertiary_icode
7762 = rld[secondary_reload].secondary_out_icode;
7764 /* We'd have to add more code for quartary reloads. */
7765 gcc_assert (tertiary_reload < 0
7766 || rld[tertiary_reload].secondary_out_reload < 0);
7768 if (GET_MODE (reloadreg) != mode)
7769 reloadreg = reload_adjust_reg_for_mode (reloadreg, mode);
7771 if (tertiary_icode != CODE_FOR_nothing)
7773 rtx third_reloadreg = rld[tertiary_reload].reg_rtx;
7775 /* Copy primary reload reg to secondary reload reg.
7776 (Note that these have been swapped above, then
7777 secondary reload reg to OLD using our insn.) */
7779 /* If REAL_OLD is a paradoxical SUBREG, remove it
7780 and try to put the opposite SUBREG on
7781 RELOADREG. */
7782 strip_paradoxical_subreg (&real_old, &reloadreg);
7784 gen_reload (reloadreg, second_reloadreg,
7785 rl->opnum, rl->when_needed);
7786 emit_insn ((GEN_FCN (tertiary_icode)
7787 (real_old, reloadreg, third_reloadreg)));
7788 special = 1;
7791 else
7793 /* Copy between the reload regs here and then to
7794 OUT later. */
7796 gen_reload (reloadreg, second_reloadreg,
7797 rl->opnum, rl->when_needed);
7798 if (tertiary_reload >= 0)
7800 rtx third_reloadreg = rld[tertiary_reload].reg_rtx;
7802 gen_reload (third_reloadreg, reloadreg,
7803 rl->opnum, rl->when_needed);
7804 reloadreg = third_reloadreg;
7811 /* Output the last reload insn. */
7812 if (! special)
7814 rtx set;
7816 /* Don't output the last reload if OLD is not the dest of
7817 INSN and is in the src and is clobbered by INSN. */
7818 if (! flag_expensive_optimizations
7819 || !REG_P (old)
7820 || !(set = single_set (insn))
7821 || rtx_equal_p (old, SET_DEST (set))
7822 || !reg_mentioned_p (old, SET_SRC (set))
7823 || !((REGNO (old) < FIRST_PSEUDO_REGISTER)
7824 && regno_clobbered_p (REGNO (old), insn, rl->mode, 0)))
7825 gen_reload (old, reloadreg, rl->opnum,
7826 rl->when_needed);
7829 /* Look at all insns we emitted, just to be safe. */
7830 for (p = get_insns (); p; p = NEXT_INSN (p))
7831 if (INSN_P (p))
7833 rtx pat = PATTERN (p);
7835 /* If this output reload doesn't come from a spill reg,
7836 clear any memory of reloaded copies of the pseudo reg.
7837 If this output reload comes from a spill reg,
7838 reg_has_output_reload will make this do nothing. */
7839 note_stores (pat, forget_old_reloads_1, NULL);
7841 if (reg_mentioned_p (rl_reg_rtx, pat))
7843 rtx set = single_set (insn);
7844 if (reload_spill_index[j] < 0
7845 && set
7846 && SET_SRC (set) == rl_reg_rtx)
7848 int src = REGNO (SET_SRC (set));
7850 reload_spill_index[j] = src;
7851 SET_HARD_REG_BIT (reg_is_output_reload, src);
7852 if (find_regno_note (insn, REG_DEAD, src))
7853 SET_HARD_REG_BIT (reg_reloaded_died, src);
7855 if (HARD_REGISTER_P (rl_reg_rtx))
7857 int s = rl->secondary_out_reload;
7858 set = single_set (p);
7859 /* If this reload copies only to the secondary reload
7860 register, the secondary reload does the actual
7861 store. */
7862 if (s >= 0 && set == NULL_RTX)
7863 /* We can't tell what function the secondary reload
7864 has and where the actual store to the pseudo is
7865 made; leave new_spill_reg_store alone. */
7867 else if (s >= 0
7868 && SET_SRC (set) == rl_reg_rtx
7869 && SET_DEST (set) == rld[s].reg_rtx)
7871 /* Usually the next instruction will be the
7872 secondary reload insn; if we can confirm
7873 that it is, setting new_spill_reg_store to
7874 that insn will allow an extra optimization. */
7875 rtx s_reg = rld[s].reg_rtx;
7876 rtx_insn *next = NEXT_INSN (p);
7877 rld[s].out = rl->out;
7878 rld[s].out_reg = rl->out_reg;
7879 set = single_set (next);
7880 if (set && SET_SRC (set) == s_reg
7881 && reload_reg_rtx_reaches_end_p (s_reg, s))
7883 SET_HARD_REG_BIT (reg_is_output_reload,
7884 REGNO (s_reg));
7885 new_spill_reg_store[REGNO (s_reg)] = next;
7888 else if (reload_reg_rtx_reaches_end_p (rl_reg_rtx, j))
7889 new_spill_reg_store[REGNO (rl_reg_rtx)] = p;
7894 if (rl->when_needed == RELOAD_OTHER)
7896 emit_insn (other_output_reload_insns[rl->opnum]);
7897 other_output_reload_insns[rl->opnum] = get_insns ();
7899 else
7900 output_reload_insns[rl->opnum] = get_insns ();
7902 if (cfun->can_throw_non_call_exceptions)
7903 copy_reg_eh_region_note_forward (insn, get_insns (), NULL);
7905 end_sequence ();
7908 /* Do input reloading for reload RL, which is for the insn described by CHAIN
7909 and has the number J. */
7910 static void
7911 do_input_reload (struct insn_chain *chain, struct reload *rl, int j)
7913 rtx_insn *insn = chain->insn;
7914 rtx old = (rl->in && MEM_P (rl->in)
7915 ? rl->in_reg : rl->in);
7916 rtx reg_rtx = rl->reg_rtx;
7918 if (old && reg_rtx)
7920 enum machine_mode mode;
7922 /* Determine the mode to reload in.
7923 This is very tricky because we have three to choose from.
7924 There is the mode the insn operand wants (rl->inmode).
7925 There is the mode of the reload register RELOADREG.
7926 There is the intrinsic mode of the operand, which we could find
7927 by stripping some SUBREGs.
7928 It turns out that RELOADREG's mode is irrelevant:
7929 we can change that arbitrarily.
7931 Consider (SUBREG:SI foo:QI) as an operand that must be SImode;
7932 then the reload reg may not support QImode moves, so use SImode.
7933 If foo is in memory due to spilling a pseudo reg, this is safe,
7934 because the QImode value is in the least significant part of a
7935 slot big enough for a SImode. If foo is some other sort of
7936 memory reference, then it is impossible to reload this case,
7937 so previous passes had better make sure this never happens.
7939 Then consider a one-word union which has SImode and one of its
7940 members is a float, being fetched as (SUBREG:SF union:SI).
7941 We must fetch that as SFmode because we could be loading into
7942 a float-only register. In this case OLD's mode is correct.
7944 Consider an immediate integer: it has VOIDmode. Here we need
7945 to get a mode from something else.
7947 In some cases, there is a fourth mode, the operand's
7948 containing mode. If the insn specifies a containing mode for
7949 this operand, it overrides all others.
7951 I am not sure whether the algorithm here is always right,
7952 but it does the right things in those cases. */
7954 mode = GET_MODE (old);
7955 if (mode == VOIDmode)
7956 mode = rl->inmode;
7958 /* We cannot use gen_lowpart_common since it can do the wrong thing
7959 when REG_RTX has a multi-word mode. Note that REG_RTX must
7960 always be a REG here. */
7961 if (GET_MODE (reg_rtx) != mode)
7962 reg_rtx = reload_adjust_reg_for_mode (reg_rtx, mode);
7964 reload_reg_rtx_for_input[j] = reg_rtx;
7966 if (old != 0
7967 /* AUTO_INC reloads need to be handled even if inherited. We got an
7968 AUTO_INC reload if reload_out is set but reload_out_reg isn't. */
7969 && (! reload_inherited[j] || (rl->out && ! rl->out_reg))
7970 && ! rtx_equal_p (reg_rtx, old)
7971 && reg_rtx != 0)
7972 emit_input_reload_insns (chain, rld + j, old, j);
7974 /* When inheriting a wider reload, we have a MEM in rl->in,
7975 e.g. inheriting a SImode output reload for
7976 (mem:HI (plus:SI (reg:SI 14 fp) (const_int 10))) */
7977 if (optimize && reload_inherited[j] && rl->in
7978 && MEM_P (rl->in)
7979 && MEM_P (rl->in_reg)
7980 && reload_spill_index[j] >= 0
7981 && TEST_HARD_REG_BIT (reg_reloaded_valid, reload_spill_index[j]))
7982 rl->in = regno_reg_rtx[reg_reloaded_contents[reload_spill_index[j]]];
7984 /* If we are reloading a register that was recently stored in with an
7985 output-reload, see if we can prove there was
7986 actually no need to store the old value in it. */
7988 if (optimize
7989 && (reload_inherited[j] || reload_override_in[j])
7990 && reg_rtx
7991 && REG_P (reg_rtx)
7992 && spill_reg_store[REGNO (reg_rtx)] != 0
7993 #if 0
7994 /* There doesn't seem to be any reason to restrict this to pseudos
7995 and doing so loses in the case where we are copying from a
7996 register of the wrong class. */
7997 && !HARD_REGISTER_P (spill_reg_stored_to[REGNO (reg_rtx)])
7998 #endif
7999 /* The insn might have already some references to stackslots
8000 replaced by MEMs, while reload_out_reg still names the
8001 original pseudo. */
8002 && (dead_or_set_p (insn, spill_reg_stored_to[REGNO (reg_rtx)])
8003 || rtx_equal_p (spill_reg_stored_to[REGNO (reg_rtx)], rl->out_reg)))
8004 delete_output_reload (insn, j, REGNO (reg_rtx), reg_rtx);
8007 /* Do output reloading for reload RL, which is for the insn described by
8008 CHAIN and has the number J.
8009 ??? At some point we need to support handling output reloads of
8010 JUMP_INSNs or insns that set cc0. */
8011 static void
8012 do_output_reload (struct insn_chain *chain, struct reload *rl, int j)
8014 rtx note, old;
8015 rtx_insn *insn = chain->insn;
8016 /* If this is an output reload that stores something that is
8017 not loaded in this same reload, see if we can eliminate a previous
8018 store. */
8019 rtx pseudo = rl->out_reg;
8020 rtx reg_rtx = rl->reg_rtx;
8022 if (rl->out && reg_rtx)
8024 enum machine_mode mode;
8026 /* Determine the mode to reload in.
8027 See comments above (for input reloading). */
8028 mode = GET_MODE (rl->out);
8029 if (mode == VOIDmode)
8031 /* VOIDmode should never happen for an output. */
8032 if (asm_noperands (PATTERN (insn)) < 0)
8033 /* It's the compiler's fault. */
8034 fatal_insn ("VOIDmode on an output", insn);
8035 error_for_asm (insn, "output operand is constant in %<asm%>");
8036 /* Prevent crash--use something we know is valid. */
8037 mode = word_mode;
8038 rl->out = gen_rtx_REG (mode, REGNO (reg_rtx));
8040 if (GET_MODE (reg_rtx) != mode)
8041 reg_rtx = reload_adjust_reg_for_mode (reg_rtx, mode);
8043 reload_reg_rtx_for_output[j] = reg_rtx;
8045 if (pseudo
8046 && optimize
8047 && REG_P (pseudo)
8048 && ! rtx_equal_p (rl->in_reg, pseudo)
8049 && REGNO (pseudo) >= FIRST_PSEUDO_REGISTER
8050 && reg_last_reload_reg[REGNO (pseudo)])
8052 int pseudo_no = REGNO (pseudo);
8053 int last_regno = REGNO (reg_last_reload_reg[pseudo_no]);
8055 /* We don't need to test full validity of last_regno for
8056 inherit here; we only want to know if the store actually
8057 matches the pseudo. */
8058 if (TEST_HARD_REG_BIT (reg_reloaded_valid, last_regno)
8059 && reg_reloaded_contents[last_regno] == pseudo_no
8060 && spill_reg_store[last_regno]
8061 && rtx_equal_p (pseudo, spill_reg_stored_to[last_regno]))
8062 delete_output_reload (insn, j, last_regno, reg_rtx);
8065 old = rl->out_reg;
8066 if (old == 0
8067 || reg_rtx == 0
8068 || rtx_equal_p (old, reg_rtx))
8069 return;
8071 /* An output operand that dies right away does need a reload,
8072 but need not be copied from it. Show the new location in the
8073 REG_UNUSED note. */
8074 if ((REG_P (old) || GET_CODE (old) == SCRATCH)
8075 && (note = find_reg_note (insn, REG_UNUSED, old)) != 0)
8077 XEXP (note, 0) = reg_rtx;
8078 return;
8080 /* Likewise for a SUBREG of an operand that dies. */
8081 else if (GET_CODE (old) == SUBREG
8082 && REG_P (SUBREG_REG (old))
8083 && 0 != (note = find_reg_note (insn, REG_UNUSED,
8084 SUBREG_REG (old))))
8086 XEXP (note, 0) = gen_lowpart_common (GET_MODE (old), reg_rtx);
8087 return;
8089 else if (GET_CODE (old) == SCRATCH)
8090 /* If we aren't optimizing, there won't be a REG_UNUSED note,
8091 but we don't want to make an output reload. */
8092 return;
8094 /* If is a JUMP_INSN, we can't support output reloads yet. */
8095 gcc_assert (NONJUMP_INSN_P (insn));
8097 emit_output_reload_insns (chain, rld + j, j);
8100 /* A reload copies values of MODE from register SRC to register DEST.
8101 Return true if it can be treated for inheritance purposes like a
8102 group of reloads, each one reloading a single hard register. The
8103 caller has already checked that (reg:MODE SRC) and (reg:MODE DEST)
8104 occupy the same number of hard registers. */
8106 static bool
8107 inherit_piecemeal_p (int dest ATTRIBUTE_UNUSED,
8108 int src ATTRIBUTE_UNUSED,
8109 enum machine_mode mode ATTRIBUTE_UNUSED)
8111 #ifdef CANNOT_CHANGE_MODE_CLASS
8112 return (!REG_CANNOT_CHANGE_MODE_P (dest, mode, reg_raw_mode[dest])
8113 && !REG_CANNOT_CHANGE_MODE_P (src, mode, reg_raw_mode[src]));
8114 #else
8115 return true;
8116 #endif
8119 /* Output insns to reload values in and out of the chosen reload regs. */
8121 static void
8122 emit_reload_insns (struct insn_chain *chain)
8124 rtx_insn *insn = chain->insn;
8126 int j;
8128 CLEAR_HARD_REG_SET (reg_reloaded_died);
8130 for (j = 0; j < reload_n_operands; j++)
8131 input_reload_insns[j] = input_address_reload_insns[j]
8132 = inpaddr_address_reload_insns[j]
8133 = output_reload_insns[j] = output_address_reload_insns[j]
8134 = outaddr_address_reload_insns[j]
8135 = other_output_reload_insns[j] = 0;
8136 other_input_address_reload_insns = 0;
8137 other_input_reload_insns = 0;
8138 operand_reload_insns = 0;
8139 other_operand_reload_insns = 0;
8141 /* Dump reloads into the dump file. */
8142 if (dump_file)
8144 fprintf (dump_file, "\nReloads for insn # %d\n", INSN_UID (insn));
8145 debug_reload_to_stream (dump_file);
8148 for (j = 0; j < n_reloads; j++)
8149 if (rld[j].reg_rtx && HARD_REGISTER_P (rld[j].reg_rtx))
8151 unsigned int i;
8153 for (i = REGNO (rld[j].reg_rtx); i < END_REGNO (rld[j].reg_rtx); i++)
8154 new_spill_reg_store[i] = 0;
8157 /* Now output the instructions to copy the data into and out of the
8158 reload registers. Do these in the order that the reloads were reported,
8159 since reloads of base and index registers precede reloads of operands
8160 and the operands may need the base and index registers reloaded. */
8162 for (j = 0; j < n_reloads; j++)
8164 do_input_reload (chain, rld + j, j);
8165 do_output_reload (chain, rld + j, j);
8168 /* Now write all the insns we made for reloads in the order expected by
8169 the allocation functions. Prior to the insn being reloaded, we write
8170 the following reloads:
8172 RELOAD_FOR_OTHER_ADDRESS reloads for input addresses.
8174 RELOAD_OTHER reloads.
8176 For each operand, any RELOAD_FOR_INPADDR_ADDRESS reloads followed
8177 by any RELOAD_FOR_INPUT_ADDRESS reloads followed by the
8178 RELOAD_FOR_INPUT reload for the operand.
8180 RELOAD_FOR_OPADDR_ADDRS reloads.
8182 RELOAD_FOR_OPERAND_ADDRESS reloads.
8184 After the insn being reloaded, we write the following:
8186 For each operand, any RELOAD_FOR_OUTADDR_ADDRESS reloads followed
8187 by any RELOAD_FOR_OUTPUT_ADDRESS reload followed by the
8188 RELOAD_FOR_OUTPUT reload, followed by any RELOAD_OTHER output
8189 reloads for the operand. The RELOAD_OTHER output reloads are
8190 output in descending order by reload number. */
8192 emit_insn_before (other_input_address_reload_insns, insn);
8193 emit_insn_before (other_input_reload_insns, insn);
8195 for (j = 0; j < reload_n_operands; j++)
8197 emit_insn_before (inpaddr_address_reload_insns[j], insn);
8198 emit_insn_before (input_address_reload_insns[j], insn);
8199 emit_insn_before (input_reload_insns[j], insn);
8202 emit_insn_before (other_operand_reload_insns, insn);
8203 emit_insn_before (operand_reload_insns, insn);
8205 for (j = 0; j < reload_n_operands; j++)
8207 rtx x = emit_insn_after (outaddr_address_reload_insns[j], insn);
8208 x = emit_insn_after (output_address_reload_insns[j], x);
8209 x = emit_insn_after (output_reload_insns[j], x);
8210 emit_insn_after (other_output_reload_insns[j], x);
8213 /* For all the spill regs newly reloaded in this instruction,
8214 record what they were reloaded from, so subsequent instructions
8215 can inherit the reloads.
8217 Update spill_reg_store for the reloads of this insn.
8218 Copy the elements that were updated in the loop above. */
8220 for (j = 0; j < n_reloads; j++)
8222 int r = reload_order[j];
8223 int i = reload_spill_index[r];
8225 /* If this is a non-inherited input reload from a pseudo, we must
8226 clear any memory of a previous store to the same pseudo. Only do
8227 something if there will not be an output reload for the pseudo
8228 being reloaded. */
8229 if (rld[r].in_reg != 0
8230 && ! (reload_inherited[r] || reload_override_in[r]))
8232 rtx reg = rld[r].in_reg;
8234 if (GET_CODE (reg) == SUBREG)
8235 reg = SUBREG_REG (reg);
8237 if (REG_P (reg)
8238 && REGNO (reg) >= FIRST_PSEUDO_REGISTER
8239 && !REGNO_REG_SET_P (&reg_has_output_reload, REGNO (reg)))
8241 int nregno = REGNO (reg);
8243 if (reg_last_reload_reg[nregno])
8245 int last_regno = REGNO (reg_last_reload_reg[nregno]);
8247 if (reg_reloaded_contents[last_regno] == nregno)
8248 spill_reg_store[last_regno] = 0;
8253 /* I is nonneg if this reload used a register.
8254 If rld[r].reg_rtx is 0, this is an optional reload
8255 that we opted to ignore. */
8257 if (i >= 0 && rld[r].reg_rtx != 0)
8259 int nr = hard_regno_nregs[i][GET_MODE (rld[r].reg_rtx)];
8260 int k;
8262 /* For a multi register reload, we need to check if all or part
8263 of the value lives to the end. */
8264 for (k = 0; k < nr; k++)
8265 if (reload_reg_reaches_end_p (i + k, r))
8266 CLEAR_HARD_REG_BIT (reg_reloaded_valid, i + k);
8268 /* Maybe the spill reg contains a copy of reload_out. */
8269 if (rld[r].out != 0
8270 && (REG_P (rld[r].out)
8271 || (rld[r].out_reg
8272 ? REG_P (rld[r].out_reg)
8273 /* The reload value is an auto-modification of
8274 some kind. For PRE_INC, POST_INC, PRE_DEC
8275 and POST_DEC, we record an equivalence
8276 between the reload register and the operand
8277 on the optimistic assumption that we can make
8278 the equivalence hold. reload_as_needed must
8279 then either make it hold or invalidate the
8280 equivalence.
8282 PRE_MODIFY and POST_MODIFY addresses are reloaded
8283 somewhat differently, and allowing them here leads
8284 to problems. */
8285 : (GET_CODE (rld[r].out) != POST_MODIFY
8286 && GET_CODE (rld[r].out) != PRE_MODIFY))))
8288 rtx reg;
8290 reg = reload_reg_rtx_for_output[r];
8291 if (reload_reg_rtx_reaches_end_p (reg, r))
8293 enum machine_mode mode = GET_MODE (reg);
8294 int regno = REGNO (reg);
8295 int nregs = hard_regno_nregs[regno][mode];
8296 rtx out = (REG_P (rld[r].out)
8297 ? rld[r].out
8298 : rld[r].out_reg
8299 ? rld[r].out_reg
8300 /* AUTO_INC */ : XEXP (rld[r].in_reg, 0));
8301 int out_regno = REGNO (out);
8302 int out_nregs = (!HARD_REGISTER_NUM_P (out_regno) ? 1
8303 : hard_regno_nregs[out_regno][mode]);
8304 bool piecemeal;
8306 spill_reg_store[regno] = new_spill_reg_store[regno];
8307 spill_reg_stored_to[regno] = out;
8308 reg_last_reload_reg[out_regno] = reg;
8310 piecemeal = (HARD_REGISTER_NUM_P (out_regno)
8311 && nregs == out_nregs
8312 && inherit_piecemeal_p (out_regno, regno, mode));
8314 /* If OUT_REGNO is a hard register, it may occupy more than
8315 one register. If it does, say what is in the
8316 rest of the registers assuming that both registers
8317 agree on how many words the object takes. If not,
8318 invalidate the subsequent registers. */
8320 if (HARD_REGISTER_NUM_P (out_regno))
8321 for (k = 1; k < out_nregs; k++)
8322 reg_last_reload_reg[out_regno + k]
8323 = (piecemeal ? regno_reg_rtx[regno + k] : 0);
8325 /* Now do the inverse operation. */
8326 for (k = 0; k < nregs; k++)
8328 CLEAR_HARD_REG_BIT (reg_reloaded_dead, regno + k);
8329 reg_reloaded_contents[regno + k]
8330 = (!HARD_REGISTER_NUM_P (out_regno) || !piecemeal
8331 ? out_regno
8332 : out_regno + k);
8333 reg_reloaded_insn[regno + k] = insn;
8334 SET_HARD_REG_BIT (reg_reloaded_valid, regno + k);
8335 if (HARD_REGNO_CALL_PART_CLOBBERED (regno + k, mode))
8336 SET_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
8337 regno + k);
8338 else
8339 CLEAR_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
8340 regno + k);
8344 /* Maybe the spill reg contains a copy of reload_in. Only do
8345 something if there will not be an output reload for
8346 the register being reloaded. */
8347 else if (rld[r].out_reg == 0
8348 && rld[r].in != 0
8349 && ((REG_P (rld[r].in)
8350 && !HARD_REGISTER_P (rld[r].in)
8351 && !REGNO_REG_SET_P (&reg_has_output_reload,
8352 REGNO (rld[r].in)))
8353 || (REG_P (rld[r].in_reg)
8354 && !REGNO_REG_SET_P (&reg_has_output_reload,
8355 REGNO (rld[r].in_reg))))
8356 && !reg_set_p (reload_reg_rtx_for_input[r], PATTERN (insn)))
8358 rtx reg;
8360 reg = reload_reg_rtx_for_input[r];
8361 if (reload_reg_rtx_reaches_end_p (reg, r))
8363 enum machine_mode mode;
8364 int regno;
8365 int nregs;
8366 int in_regno;
8367 int in_nregs;
8368 rtx in;
8369 bool piecemeal;
8371 mode = GET_MODE (reg);
8372 regno = REGNO (reg);
8373 nregs = hard_regno_nregs[regno][mode];
8374 if (REG_P (rld[r].in)
8375 && REGNO (rld[r].in) >= FIRST_PSEUDO_REGISTER)
8376 in = rld[r].in;
8377 else if (REG_P (rld[r].in_reg))
8378 in = rld[r].in_reg;
8379 else
8380 in = XEXP (rld[r].in_reg, 0);
8381 in_regno = REGNO (in);
8383 in_nregs = (!HARD_REGISTER_NUM_P (in_regno) ? 1
8384 : hard_regno_nregs[in_regno][mode]);
8386 reg_last_reload_reg[in_regno] = reg;
8388 piecemeal = (HARD_REGISTER_NUM_P (in_regno)
8389 && nregs == in_nregs
8390 && inherit_piecemeal_p (regno, in_regno, mode));
8392 if (HARD_REGISTER_NUM_P (in_regno))
8393 for (k = 1; k < in_nregs; k++)
8394 reg_last_reload_reg[in_regno + k]
8395 = (piecemeal ? regno_reg_rtx[regno + k] : 0);
8397 /* Unless we inherited this reload, show we haven't
8398 recently done a store.
8399 Previous stores of inherited auto_inc expressions
8400 also have to be discarded. */
8401 if (! reload_inherited[r]
8402 || (rld[r].out && ! rld[r].out_reg))
8403 spill_reg_store[regno] = 0;
8405 for (k = 0; k < nregs; k++)
8407 CLEAR_HARD_REG_BIT (reg_reloaded_dead, regno + k);
8408 reg_reloaded_contents[regno + k]
8409 = (!HARD_REGISTER_NUM_P (in_regno) || !piecemeal
8410 ? in_regno
8411 : in_regno + k);
8412 reg_reloaded_insn[regno + k] = insn;
8413 SET_HARD_REG_BIT (reg_reloaded_valid, regno + k);
8414 if (HARD_REGNO_CALL_PART_CLOBBERED (regno + k, mode))
8415 SET_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
8416 regno + k);
8417 else
8418 CLEAR_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
8419 regno + k);
8425 /* The following if-statement was #if 0'd in 1.34 (or before...).
8426 It's reenabled in 1.35 because supposedly nothing else
8427 deals with this problem. */
8429 /* If a register gets output-reloaded from a non-spill register,
8430 that invalidates any previous reloaded copy of it.
8431 But forget_old_reloads_1 won't get to see it, because
8432 it thinks only about the original insn. So invalidate it here.
8433 Also do the same thing for RELOAD_OTHER constraints where the
8434 output is discarded. */
8435 if (i < 0
8436 && ((rld[r].out != 0
8437 && (REG_P (rld[r].out)
8438 || (MEM_P (rld[r].out)
8439 && REG_P (rld[r].out_reg))))
8440 || (rld[r].out == 0 && rld[r].out_reg
8441 && REG_P (rld[r].out_reg))))
8443 rtx out = ((rld[r].out && REG_P (rld[r].out))
8444 ? rld[r].out : rld[r].out_reg);
8445 int out_regno = REGNO (out);
8446 enum machine_mode mode = GET_MODE (out);
8448 /* REG_RTX is now set or clobbered by the main instruction.
8449 As the comment above explains, forget_old_reloads_1 only
8450 sees the original instruction, and there is no guarantee
8451 that the original instruction also clobbered REG_RTX.
8452 For example, if find_reloads sees that the input side of
8453 a matched operand pair dies in this instruction, it may
8454 use the input register as the reload register.
8456 Calling forget_old_reloads_1 is a waste of effort if
8457 REG_RTX is also the output register.
8459 If we know that REG_RTX holds the value of a pseudo
8460 register, the code after the call will record that fact. */
8461 if (rld[r].reg_rtx && rld[r].reg_rtx != out)
8462 forget_old_reloads_1 (rld[r].reg_rtx, NULL_RTX, NULL);
8464 if (!HARD_REGISTER_NUM_P (out_regno))
8466 rtx src_reg;
8467 rtx_insn *store_insn = NULL;
8469 reg_last_reload_reg[out_regno] = 0;
8471 /* If we can find a hard register that is stored, record
8472 the storing insn so that we may delete this insn with
8473 delete_output_reload. */
8474 src_reg = reload_reg_rtx_for_output[r];
8476 if (src_reg)
8478 if (reload_reg_rtx_reaches_end_p (src_reg, r))
8479 store_insn = new_spill_reg_store[REGNO (src_reg)];
8480 else
8481 src_reg = NULL_RTX;
8483 else
8485 /* If this is an optional reload, try to find the
8486 source reg from an input reload. */
8487 rtx set = single_set (insn);
8488 if (set && SET_DEST (set) == rld[r].out)
8490 int k;
8492 src_reg = SET_SRC (set);
8493 store_insn = insn;
8494 for (k = 0; k < n_reloads; k++)
8496 if (rld[k].in == src_reg)
8498 src_reg = reload_reg_rtx_for_input[k];
8499 break;
8504 if (src_reg && REG_P (src_reg)
8505 && REGNO (src_reg) < FIRST_PSEUDO_REGISTER)
8507 int src_regno, src_nregs, k;
8508 rtx note;
8510 gcc_assert (GET_MODE (src_reg) == mode);
8511 src_regno = REGNO (src_reg);
8512 src_nregs = hard_regno_nregs[src_regno][mode];
8513 /* The place where to find a death note varies with
8514 PRESERVE_DEATH_INFO_REGNO_P . The condition is not
8515 necessarily checked exactly in the code that moves
8516 notes, so just check both locations. */
8517 note = find_regno_note (insn, REG_DEAD, src_regno);
8518 if (! note && store_insn)
8519 note = find_regno_note (store_insn, REG_DEAD, src_regno);
8520 for (k = 0; k < src_nregs; k++)
8522 spill_reg_store[src_regno + k] = store_insn;
8523 spill_reg_stored_to[src_regno + k] = out;
8524 reg_reloaded_contents[src_regno + k] = out_regno;
8525 reg_reloaded_insn[src_regno + k] = store_insn;
8526 CLEAR_HARD_REG_BIT (reg_reloaded_dead, src_regno + k);
8527 SET_HARD_REG_BIT (reg_reloaded_valid, src_regno + k);
8528 if (HARD_REGNO_CALL_PART_CLOBBERED (src_regno + k,
8529 mode))
8530 SET_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
8531 src_regno + k);
8532 else
8533 CLEAR_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
8534 src_regno + k);
8535 SET_HARD_REG_BIT (reg_is_output_reload, src_regno + k);
8536 if (note)
8537 SET_HARD_REG_BIT (reg_reloaded_died, src_regno);
8538 else
8539 CLEAR_HARD_REG_BIT (reg_reloaded_died, src_regno);
8541 reg_last_reload_reg[out_regno] = src_reg;
8542 /* We have to set reg_has_output_reload here, or else
8543 forget_old_reloads_1 will clear reg_last_reload_reg
8544 right away. */
8545 SET_REGNO_REG_SET (&reg_has_output_reload,
8546 out_regno);
8549 else
8551 int k, out_nregs = hard_regno_nregs[out_regno][mode];
8553 for (k = 0; k < out_nregs; k++)
8554 reg_last_reload_reg[out_regno + k] = 0;
8558 IOR_HARD_REG_SET (reg_reloaded_dead, reg_reloaded_died);
8561 /* Go through the motions to emit INSN and test if it is strictly valid.
8562 Return the emitted insn if valid, else return NULL. */
8564 static rtx_insn *
8565 emit_insn_if_valid_for_reload (rtx pat)
8567 rtx_insn *last = get_last_insn ();
8568 int code;
8570 rtx_insn *insn = emit_insn (pat);
8571 code = recog_memoized (insn);
8573 if (code >= 0)
8575 extract_insn (insn);
8576 /* We want constrain operands to treat this insn strictly in its
8577 validity determination, i.e., the way it would after reload has
8578 completed. */
8579 if (constrain_operands (1))
8580 return insn;
8583 delete_insns_since (last);
8584 return NULL;
8587 /* Emit code to perform a reload from IN (which may be a reload register) to
8588 OUT (which may also be a reload register). IN or OUT is from operand
8589 OPNUM with reload type TYPE.
8591 Returns first insn emitted. */
8593 static rtx_insn *
8594 gen_reload (rtx out, rtx in, int opnum, enum reload_type type)
8596 rtx_insn *last = get_last_insn ();
8597 rtx_insn *tem;
8598 #ifdef SECONDARY_MEMORY_NEEDED
8599 rtx tem1, tem2;
8600 #endif
8602 /* If IN is a paradoxical SUBREG, remove it and try to put the
8603 opposite SUBREG on OUT. Likewise for a paradoxical SUBREG on OUT. */
8604 if (!strip_paradoxical_subreg (&in, &out))
8605 strip_paradoxical_subreg (&out, &in);
8607 /* How to do this reload can get quite tricky. Normally, we are being
8608 asked to reload a simple operand, such as a MEM, a constant, or a pseudo
8609 register that didn't get a hard register. In that case we can just
8610 call emit_move_insn.
8612 We can also be asked to reload a PLUS that adds a register or a MEM to
8613 another register, constant or MEM. This can occur during frame pointer
8614 elimination and while reloading addresses. This case is handled by
8615 trying to emit a single insn to perform the add. If it is not valid,
8616 we use a two insn sequence.
8618 Or we can be asked to reload an unary operand that was a fragment of
8619 an addressing mode, into a register. If it isn't recognized as-is,
8620 we try making the unop operand and the reload-register the same:
8621 (set reg:X (unop:X expr:Y))
8622 -> (set reg:Y expr:Y) (set reg:X (unop:X reg:Y)).
8624 Finally, we could be called to handle an 'o' constraint by putting
8625 an address into a register. In that case, we first try to do this
8626 with a named pattern of "reload_load_address". If no such pattern
8627 exists, we just emit a SET insn and hope for the best (it will normally
8628 be valid on machines that use 'o').
8630 This entire process is made complex because reload will never
8631 process the insns we generate here and so we must ensure that
8632 they will fit their constraints and also by the fact that parts of
8633 IN might be being reloaded separately and replaced with spill registers.
8634 Because of this, we are, in some sense, just guessing the right approach
8635 here. The one listed above seems to work.
8637 ??? At some point, this whole thing needs to be rethought. */
8639 if (GET_CODE (in) == PLUS
8640 && (REG_P (XEXP (in, 0))
8641 || GET_CODE (XEXP (in, 0)) == SUBREG
8642 || MEM_P (XEXP (in, 0)))
8643 && (REG_P (XEXP (in, 1))
8644 || GET_CODE (XEXP (in, 1)) == SUBREG
8645 || CONSTANT_P (XEXP (in, 1))
8646 || MEM_P (XEXP (in, 1))))
8648 /* We need to compute the sum of a register or a MEM and another
8649 register, constant, or MEM, and put it into the reload
8650 register. The best possible way of doing this is if the machine
8651 has a three-operand ADD insn that accepts the required operands.
8653 The simplest approach is to try to generate such an insn and see if it
8654 is recognized and matches its constraints. If so, it can be used.
8656 It might be better not to actually emit the insn unless it is valid,
8657 but we need to pass the insn as an operand to `recog' and
8658 `extract_insn' and it is simpler to emit and then delete the insn if
8659 not valid than to dummy things up. */
8661 rtx op0, op1, tem;
8662 rtx_insn *insn;
8663 enum insn_code code;
8665 op0 = find_replacement (&XEXP (in, 0));
8666 op1 = find_replacement (&XEXP (in, 1));
8668 /* Since constraint checking is strict, commutativity won't be
8669 checked, so we need to do that here to avoid spurious failure
8670 if the add instruction is two-address and the second operand
8671 of the add is the same as the reload reg, which is frequently
8672 the case. If the insn would be A = B + A, rearrange it so
8673 it will be A = A + B as constrain_operands expects. */
8675 if (REG_P (XEXP (in, 1))
8676 && REGNO (out) == REGNO (XEXP (in, 1)))
8677 tem = op0, op0 = op1, op1 = tem;
8679 if (op0 != XEXP (in, 0) || op1 != XEXP (in, 1))
8680 in = gen_rtx_PLUS (GET_MODE (in), op0, op1);
8682 insn = emit_insn_if_valid_for_reload (gen_rtx_SET (VOIDmode, out, in));
8683 if (insn)
8684 return insn;
8686 /* If that failed, we must use a conservative two-insn sequence.
8688 Use a move to copy one operand into the reload register. Prefer
8689 to reload a constant, MEM or pseudo since the move patterns can
8690 handle an arbitrary operand. If OP1 is not a constant, MEM or
8691 pseudo and OP1 is not a valid operand for an add instruction, then
8692 reload OP1.
8694 After reloading one of the operands into the reload register, add
8695 the reload register to the output register.
8697 If there is another way to do this for a specific machine, a
8698 DEFINE_PEEPHOLE should be specified that recognizes the sequence
8699 we emit below. */
8701 code = optab_handler (add_optab, GET_MODE (out));
8703 if (CONSTANT_P (op1) || MEM_P (op1) || GET_CODE (op1) == SUBREG
8704 || (REG_P (op1)
8705 && REGNO (op1) >= FIRST_PSEUDO_REGISTER)
8706 || (code != CODE_FOR_nothing
8707 && !insn_operand_matches (code, 2, op1)))
8708 tem = op0, op0 = op1, op1 = tem;
8710 gen_reload (out, op0, opnum, type);
8712 /* If OP0 and OP1 are the same, we can use OUT for OP1.
8713 This fixes a problem on the 32K where the stack pointer cannot
8714 be used as an operand of an add insn. */
8716 if (rtx_equal_p (op0, op1))
8717 op1 = out;
8719 insn = emit_insn_if_valid_for_reload (gen_add2_insn (out, op1));
8720 if (insn)
8722 /* Add a REG_EQUIV note so that find_equiv_reg can find it. */
8723 set_dst_reg_note (insn, REG_EQUIV, in, out);
8724 return insn;
8727 /* If that failed, copy the address register to the reload register.
8728 Then add the constant to the reload register. */
8730 gcc_assert (!reg_overlap_mentioned_p (out, op0));
8731 gen_reload (out, op1, opnum, type);
8732 insn = emit_insn (gen_add2_insn (out, op0));
8733 set_dst_reg_note (insn, REG_EQUIV, in, out);
8736 #ifdef SECONDARY_MEMORY_NEEDED
8737 /* If we need a memory location to do the move, do it that way. */
8738 else if ((tem1 = replaced_subreg (in), tem2 = replaced_subreg (out),
8739 (REG_P (tem1) && REG_P (tem2)))
8740 && REGNO (tem1) < FIRST_PSEUDO_REGISTER
8741 && REGNO (tem2) < FIRST_PSEUDO_REGISTER
8742 && SECONDARY_MEMORY_NEEDED (REGNO_REG_CLASS (REGNO (tem1)),
8743 REGNO_REG_CLASS (REGNO (tem2)),
8744 GET_MODE (out)))
8746 /* Get the memory to use and rewrite both registers to its mode. */
8747 rtx loc = get_secondary_mem (in, GET_MODE (out), opnum, type);
8749 if (GET_MODE (loc) != GET_MODE (out))
8750 out = gen_rtx_REG (GET_MODE (loc), reg_or_subregno (out));
8752 if (GET_MODE (loc) != GET_MODE (in))
8753 in = gen_rtx_REG (GET_MODE (loc), reg_or_subregno (in));
8755 gen_reload (loc, in, opnum, type);
8756 gen_reload (out, loc, opnum, type);
8758 #endif
8759 else if (REG_P (out) && UNARY_P (in))
8761 rtx insn;
8762 rtx op1;
8763 rtx out_moded;
8764 rtx_insn *set;
8766 op1 = find_replacement (&XEXP (in, 0));
8767 if (op1 != XEXP (in, 0))
8768 in = gen_rtx_fmt_e (GET_CODE (in), GET_MODE (in), op1);
8770 /* First, try a plain SET. */
8771 set = emit_insn_if_valid_for_reload (gen_rtx_SET (VOIDmode, out, in));
8772 if (set)
8773 return set;
8775 /* If that failed, move the inner operand to the reload
8776 register, and try the same unop with the inner expression
8777 replaced with the reload register. */
8779 if (GET_MODE (op1) != GET_MODE (out))
8780 out_moded = gen_rtx_REG (GET_MODE (op1), REGNO (out));
8781 else
8782 out_moded = out;
8784 gen_reload (out_moded, op1, opnum, type);
8786 insn
8787 = gen_rtx_SET (VOIDmode, out,
8788 gen_rtx_fmt_e (GET_CODE (in), GET_MODE (in),
8789 out_moded));
8790 insn = emit_insn_if_valid_for_reload (insn);
8791 if (insn)
8793 set_unique_reg_note (insn, REG_EQUIV, in);
8794 return as_a <rtx_insn *> (insn);
8797 fatal_insn ("failure trying to reload:", set);
8799 /* If IN is a simple operand, use gen_move_insn. */
8800 else if (OBJECT_P (in) || GET_CODE (in) == SUBREG)
8802 tem = emit_insn (gen_move_insn (out, in));
8803 /* IN may contain a LABEL_REF, if so add a REG_LABEL_OPERAND note. */
8804 mark_jump_label (in, tem, 0);
8807 #ifdef HAVE_reload_load_address
8808 else if (HAVE_reload_load_address)
8809 emit_insn (gen_reload_load_address (out, in));
8810 #endif
8812 /* Otherwise, just write (set OUT IN) and hope for the best. */
8813 else
8814 emit_insn (gen_rtx_SET (VOIDmode, out, in));
8816 /* Return the first insn emitted.
8817 We can not just return get_last_insn, because there may have
8818 been multiple instructions emitted. Also note that gen_move_insn may
8819 emit more than one insn itself, so we can not assume that there is one
8820 insn emitted per emit_insn_before call. */
8822 return last ? NEXT_INSN (last) : get_insns ();
8825 /* Delete a previously made output-reload whose result we now believe
8826 is not needed. First we double-check.
8828 INSN is the insn now being processed.
8829 LAST_RELOAD_REG is the hard register number for which we want to delete
8830 the last output reload.
8831 J is the reload-number that originally used REG. The caller has made
8832 certain that reload J doesn't use REG any longer for input.
8833 NEW_RELOAD_REG is reload register that reload J is using for REG. */
8835 static void
8836 delete_output_reload (rtx_insn *insn, int j, int last_reload_reg,
8837 rtx new_reload_reg)
8839 rtx_insn *output_reload_insn = spill_reg_store[last_reload_reg];
8840 rtx reg = spill_reg_stored_to[last_reload_reg];
8841 int k;
8842 int n_occurrences;
8843 int n_inherited = 0;
8844 rtx substed;
8845 unsigned regno;
8846 int nregs;
8848 /* It is possible that this reload has been only used to set another reload
8849 we eliminated earlier and thus deleted this instruction too. */
8850 if (output_reload_insn->deleted ())
8851 return;
8853 /* Get the raw pseudo-register referred to. */
8855 while (GET_CODE (reg) == SUBREG)
8856 reg = SUBREG_REG (reg);
8857 substed = reg_equiv_memory_loc (REGNO (reg));
8859 /* This is unsafe if the operand occurs more often in the current
8860 insn than it is inherited. */
8861 for (k = n_reloads - 1; k >= 0; k--)
8863 rtx reg2 = rld[k].in;
8864 if (! reg2)
8865 continue;
8866 if (MEM_P (reg2) || reload_override_in[k])
8867 reg2 = rld[k].in_reg;
8868 #ifdef AUTO_INC_DEC
8869 if (rld[k].out && ! rld[k].out_reg)
8870 reg2 = XEXP (rld[k].in_reg, 0);
8871 #endif
8872 while (GET_CODE (reg2) == SUBREG)
8873 reg2 = SUBREG_REG (reg2);
8874 if (rtx_equal_p (reg2, reg))
8876 if (reload_inherited[k] || reload_override_in[k] || k == j)
8877 n_inherited++;
8878 else
8879 return;
8882 n_occurrences = count_occurrences (PATTERN (insn), reg, 0);
8883 if (CALL_P (insn) && CALL_INSN_FUNCTION_USAGE (insn))
8884 n_occurrences += count_occurrences (CALL_INSN_FUNCTION_USAGE (insn),
8885 reg, 0);
8886 if (substed)
8887 n_occurrences += count_occurrences (PATTERN (insn),
8888 eliminate_regs (substed, VOIDmode,
8889 NULL_RTX), 0);
8890 for (rtx i1 = reg_equiv_alt_mem_list (REGNO (reg)); i1; i1 = XEXP (i1, 1))
8892 gcc_assert (!rtx_equal_p (XEXP (i1, 0), substed));
8893 n_occurrences += count_occurrences (PATTERN (insn), XEXP (i1, 0), 0);
8895 if (n_occurrences > n_inherited)
8896 return;
8898 regno = REGNO (reg);
8899 if (regno >= FIRST_PSEUDO_REGISTER)
8900 nregs = 1;
8901 else
8902 nregs = hard_regno_nregs[regno][GET_MODE (reg)];
8904 /* If the pseudo-reg we are reloading is no longer referenced
8905 anywhere between the store into it and here,
8906 and we're within the same basic block, then the value can only
8907 pass through the reload reg and end up here.
8908 Otherwise, give up--return. */
8909 for (rtx_insn *i1 = NEXT_INSN (output_reload_insn);
8910 i1 != insn; i1 = NEXT_INSN (i1))
8912 if (NOTE_INSN_BASIC_BLOCK_P (i1))
8913 return;
8914 if ((NONJUMP_INSN_P (i1) || CALL_P (i1))
8915 && refers_to_regno_p (regno, regno + nregs, PATTERN (i1), NULL))
8917 /* If this is USE in front of INSN, we only have to check that
8918 there are no more references than accounted for by inheritance. */
8919 while (NONJUMP_INSN_P (i1) && GET_CODE (PATTERN (i1)) == USE)
8921 n_occurrences += rtx_equal_p (reg, XEXP (PATTERN (i1), 0)) != 0;
8922 i1 = NEXT_INSN (i1);
8924 if (n_occurrences <= n_inherited && i1 == insn)
8925 break;
8926 return;
8930 /* We will be deleting the insn. Remove the spill reg information. */
8931 for (k = hard_regno_nregs[last_reload_reg][GET_MODE (reg)]; k-- > 0; )
8933 spill_reg_store[last_reload_reg + k] = 0;
8934 spill_reg_stored_to[last_reload_reg + k] = 0;
8937 /* The caller has already checked that REG dies or is set in INSN.
8938 It has also checked that we are optimizing, and thus some
8939 inaccuracies in the debugging information are acceptable.
8940 So we could just delete output_reload_insn. But in some cases
8941 we can improve the debugging information without sacrificing
8942 optimization - maybe even improving the code: See if the pseudo
8943 reg has been completely replaced with reload regs. If so, delete
8944 the store insn and forget we had a stack slot for the pseudo. */
8945 if (rld[j].out != rld[j].in
8946 && REG_N_DEATHS (REGNO (reg)) == 1
8947 && REG_N_SETS (REGNO (reg)) == 1
8948 && REG_BASIC_BLOCK (REGNO (reg)) >= NUM_FIXED_BLOCKS
8949 && find_regno_note (insn, REG_DEAD, REGNO (reg)))
8951 rtx_insn *i2;
8953 /* We know that it was used only between here and the beginning of
8954 the current basic block. (We also know that the last use before
8955 INSN was the output reload we are thinking of deleting, but never
8956 mind that.) Search that range; see if any ref remains. */
8957 for (i2 = PREV_INSN (insn); i2; i2 = PREV_INSN (i2))
8959 rtx set = single_set (i2);
8961 /* Uses which just store in the pseudo don't count,
8962 since if they are the only uses, they are dead. */
8963 if (set != 0 && SET_DEST (set) == reg)
8964 continue;
8965 if (LABEL_P (i2) || JUMP_P (i2))
8966 break;
8967 if ((NONJUMP_INSN_P (i2) || CALL_P (i2))
8968 && reg_mentioned_p (reg, PATTERN (i2)))
8970 /* Some other ref remains; just delete the output reload we
8971 know to be dead. */
8972 delete_address_reloads (output_reload_insn, insn);
8973 delete_insn (output_reload_insn);
8974 return;
8978 /* Delete the now-dead stores into this pseudo. Note that this
8979 loop also takes care of deleting output_reload_insn. */
8980 for (i2 = PREV_INSN (insn); i2; i2 = PREV_INSN (i2))
8982 rtx set = single_set (i2);
8984 if (set != 0 && SET_DEST (set) == reg)
8986 delete_address_reloads (i2, insn);
8987 delete_insn (i2);
8989 if (LABEL_P (i2) || JUMP_P (i2))
8990 break;
8993 /* For the debugging info, say the pseudo lives in this reload reg. */
8994 reg_renumber[REGNO (reg)] = REGNO (new_reload_reg);
8995 if (ira_conflicts_p)
8996 /* Inform IRA about the change. */
8997 ira_mark_allocation_change (REGNO (reg));
8998 alter_reg (REGNO (reg), -1, false);
9000 else
9002 delete_address_reloads (output_reload_insn, insn);
9003 delete_insn (output_reload_insn);
9007 /* We are going to delete DEAD_INSN. Recursively delete loads of
9008 reload registers used in DEAD_INSN that are not used till CURRENT_INSN.
9009 CURRENT_INSN is being reloaded, so we have to check its reloads too. */
9010 static void
9011 delete_address_reloads (rtx_insn *dead_insn, rtx_insn *current_insn)
9013 rtx set = single_set (dead_insn);
9014 rtx set2, dst;
9015 rtx_insn *prev, *next;
9016 if (set)
9018 rtx dst = SET_DEST (set);
9019 if (MEM_P (dst))
9020 delete_address_reloads_1 (dead_insn, XEXP (dst, 0), current_insn);
9022 /* If we deleted the store from a reloaded post_{in,de}c expression,
9023 we can delete the matching adds. */
9024 prev = PREV_INSN (dead_insn);
9025 next = NEXT_INSN (dead_insn);
9026 if (! prev || ! next)
9027 return;
9028 set = single_set (next);
9029 set2 = single_set (prev);
9030 if (! set || ! set2
9031 || GET_CODE (SET_SRC (set)) != PLUS || GET_CODE (SET_SRC (set2)) != PLUS
9032 || !CONST_INT_P (XEXP (SET_SRC (set), 1))
9033 || !CONST_INT_P (XEXP (SET_SRC (set2), 1)))
9034 return;
9035 dst = SET_DEST (set);
9036 if (! rtx_equal_p (dst, SET_DEST (set2))
9037 || ! rtx_equal_p (dst, XEXP (SET_SRC (set), 0))
9038 || ! rtx_equal_p (dst, XEXP (SET_SRC (set2), 0))
9039 || (INTVAL (XEXP (SET_SRC (set), 1))
9040 != -INTVAL (XEXP (SET_SRC (set2), 1))))
9041 return;
9042 delete_related_insns (prev);
9043 delete_related_insns (next);
9046 /* Subfunction of delete_address_reloads: process registers found in X. */
9047 static void
9048 delete_address_reloads_1 (rtx_insn *dead_insn, rtx x, rtx_insn *current_insn)
9050 rtx_insn *prev, *i2;
9051 rtx set, dst;
9052 int i, j;
9053 enum rtx_code code = GET_CODE (x);
9055 if (code != REG)
9057 const char *fmt = GET_RTX_FORMAT (code);
9058 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
9060 if (fmt[i] == 'e')
9061 delete_address_reloads_1 (dead_insn, XEXP (x, i), current_insn);
9062 else if (fmt[i] == 'E')
9064 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
9065 delete_address_reloads_1 (dead_insn, XVECEXP (x, i, j),
9066 current_insn);
9069 return;
9072 if (spill_reg_order[REGNO (x)] < 0)
9073 return;
9075 /* Scan backwards for the insn that sets x. This might be a way back due
9076 to inheritance. */
9077 for (prev = PREV_INSN (dead_insn); prev; prev = PREV_INSN (prev))
9079 code = GET_CODE (prev);
9080 if (code == CODE_LABEL || code == JUMP_INSN)
9081 return;
9082 if (!INSN_P (prev))
9083 continue;
9084 if (reg_set_p (x, PATTERN (prev)))
9085 break;
9086 if (reg_referenced_p (x, PATTERN (prev)))
9087 return;
9089 if (! prev || INSN_UID (prev) < reload_first_uid)
9090 return;
9091 /* Check that PREV only sets the reload register. */
9092 set = single_set (prev);
9093 if (! set)
9094 return;
9095 dst = SET_DEST (set);
9096 if (!REG_P (dst)
9097 || ! rtx_equal_p (dst, x))
9098 return;
9099 if (! reg_set_p (dst, PATTERN (dead_insn)))
9101 /* Check if DST was used in a later insn -
9102 it might have been inherited. */
9103 for (i2 = NEXT_INSN (dead_insn); i2; i2 = NEXT_INSN (i2))
9105 if (LABEL_P (i2))
9106 break;
9107 if (! INSN_P (i2))
9108 continue;
9109 if (reg_referenced_p (dst, PATTERN (i2)))
9111 /* If there is a reference to the register in the current insn,
9112 it might be loaded in a non-inherited reload. If no other
9113 reload uses it, that means the register is set before
9114 referenced. */
9115 if (i2 == current_insn)
9117 for (j = n_reloads - 1; j >= 0; j--)
9118 if ((rld[j].reg_rtx == dst && reload_inherited[j])
9119 || reload_override_in[j] == dst)
9120 return;
9121 for (j = n_reloads - 1; j >= 0; j--)
9122 if (rld[j].in && rld[j].reg_rtx == dst)
9123 break;
9124 if (j >= 0)
9125 break;
9127 return;
9129 if (JUMP_P (i2))
9130 break;
9131 /* If DST is still live at CURRENT_INSN, check if it is used for
9132 any reload. Note that even if CURRENT_INSN sets DST, we still
9133 have to check the reloads. */
9134 if (i2 == current_insn)
9136 for (j = n_reloads - 1; j >= 0; j--)
9137 if ((rld[j].reg_rtx == dst && reload_inherited[j])
9138 || reload_override_in[j] == dst)
9139 return;
9140 /* ??? We can't finish the loop here, because dst might be
9141 allocated to a pseudo in this block if no reload in this
9142 block needs any of the classes containing DST - see
9143 spill_hard_reg. There is no easy way to tell this, so we
9144 have to scan till the end of the basic block. */
9146 if (reg_set_p (dst, PATTERN (i2)))
9147 break;
9150 delete_address_reloads_1 (prev, SET_SRC (set), current_insn);
9151 reg_reloaded_contents[REGNO (dst)] = -1;
9152 delete_insn (prev);
9155 /* Output reload-insns to reload VALUE into RELOADREG.
9156 VALUE is an autoincrement or autodecrement RTX whose operand
9157 is a register or memory location;
9158 so reloading involves incrementing that location.
9159 IN is either identical to VALUE, or some cheaper place to reload from.
9161 INC_AMOUNT is the number to increment or decrement by (always positive).
9162 This cannot be deduced from VALUE. */
9164 static void
9165 inc_for_reload (rtx reloadreg, rtx in, rtx value, int inc_amount)
9167 /* REG or MEM to be copied and incremented. */
9168 rtx incloc = find_replacement (&XEXP (value, 0));
9169 /* Nonzero if increment after copying. */
9170 int post = (GET_CODE (value) == POST_DEC || GET_CODE (value) == POST_INC
9171 || GET_CODE (value) == POST_MODIFY);
9172 rtx_insn *last;
9173 rtx inc;
9174 rtx_insn *add_insn;
9175 int code;
9176 rtx real_in = in == value ? incloc : in;
9178 /* No hard register is equivalent to this register after
9179 inc/dec operation. If REG_LAST_RELOAD_REG were nonzero,
9180 we could inc/dec that register as well (maybe even using it for
9181 the source), but I'm not sure it's worth worrying about. */
9182 if (REG_P (incloc))
9183 reg_last_reload_reg[REGNO (incloc)] = 0;
9185 if (GET_CODE (value) == PRE_MODIFY || GET_CODE (value) == POST_MODIFY)
9187 gcc_assert (GET_CODE (XEXP (value, 1)) == PLUS);
9188 inc = find_replacement (&XEXP (XEXP (value, 1), 1));
9190 else
9192 if (GET_CODE (value) == PRE_DEC || GET_CODE (value) == POST_DEC)
9193 inc_amount = -inc_amount;
9195 inc = GEN_INT (inc_amount);
9198 /* If this is post-increment, first copy the location to the reload reg. */
9199 if (post && real_in != reloadreg)
9200 emit_insn (gen_move_insn (reloadreg, real_in));
9202 if (in == value)
9204 /* See if we can directly increment INCLOC. Use a method similar to
9205 that in gen_reload. */
9207 last = get_last_insn ();
9208 add_insn = emit_insn (gen_rtx_SET (VOIDmode, incloc,
9209 gen_rtx_PLUS (GET_MODE (incloc),
9210 incloc, inc)));
9212 code = recog_memoized (add_insn);
9213 if (code >= 0)
9215 extract_insn (add_insn);
9216 if (constrain_operands (1))
9218 /* If this is a pre-increment and we have incremented the value
9219 where it lives, copy the incremented value to RELOADREG to
9220 be used as an address. */
9222 if (! post)
9223 emit_insn (gen_move_insn (reloadreg, incloc));
9224 return;
9227 delete_insns_since (last);
9230 /* If couldn't do the increment directly, must increment in RELOADREG.
9231 The way we do this depends on whether this is pre- or post-increment.
9232 For pre-increment, copy INCLOC to the reload register, increment it
9233 there, then save back. */
9235 if (! post)
9237 if (in != reloadreg)
9238 emit_insn (gen_move_insn (reloadreg, real_in));
9239 emit_insn (gen_add2_insn (reloadreg, inc));
9240 emit_insn (gen_move_insn (incloc, reloadreg));
9242 else
9244 /* Postincrement.
9245 Because this might be a jump insn or a compare, and because RELOADREG
9246 may not be available after the insn in an input reload, we must do
9247 the incrementation before the insn being reloaded for.
9249 We have already copied IN to RELOADREG. Increment the copy in
9250 RELOADREG, save that back, then decrement RELOADREG so it has
9251 the original value. */
9253 emit_insn (gen_add2_insn (reloadreg, inc));
9254 emit_insn (gen_move_insn (incloc, reloadreg));
9255 if (CONST_INT_P (inc))
9256 emit_insn (gen_add2_insn (reloadreg,
9257 gen_int_mode (-INTVAL (inc),
9258 GET_MODE (reloadreg))));
9259 else
9260 emit_insn (gen_sub2_insn (reloadreg, inc));
9264 #ifdef AUTO_INC_DEC
9265 static void
9266 add_auto_inc_notes (rtx_insn *insn, rtx x)
9268 enum rtx_code code = GET_CODE (x);
9269 const char *fmt;
9270 int i, j;
9272 if (code == MEM && auto_inc_p (XEXP (x, 0)))
9274 add_reg_note (insn, REG_INC, XEXP (XEXP (x, 0), 0));
9275 return;
9278 /* Scan all the operand sub-expressions. */
9279 fmt = GET_RTX_FORMAT (code);
9280 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
9282 if (fmt[i] == 'e')
9283 add_auto_inc_notes (insn, XEXP (x, i));
9284 else if (fmt[i] == 'E')
9285 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
9286 add_auto_inc_notes (insn, XVECEXP (x, i, j));
9289 #endif