* pt.c (lookup_template_class_1): Splice out abi_tag attribute if
[official-gcc.git] / gcc / predict.c
blobeb5db2acf8440bb2f408f64d44797580e8abe30e
1 /* Branch prediction routines for the GNU compiler.
2 Copyright (C) 2000-2014 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* References:
22 [1] "Branch Prediction for Free"
23 Ball and Larus; PLDI '93.
24 [2] "Static Branch Frequency and Program Profile Analysis"
25 Wu and Larus; MICRO-27.
26 [3] "Corpus-based Static Branch Prediction"
27 Calder, Grunwald, Lindsay, Martin, Mozer, and Zorn; PLDI '95. */
30 #include "config.h"
31 #include "system.h"
32 #include "coretypes.h"
33 #include "tm.h"
34 #include "tree.h"
35 #include "calls.h"
36 #include "rtl.h"
37 #include "tm_p.h"
38 #include "hard-reg-set.h"
39 #include "basic-block.h"
40 #include "insn-config.h"
41 #include "regs.h"
42 #include "flags.h"
43 #include "function.h"
44 #include "except.h"
45 #include "diagnostic-core.h"
46 #include "recog.h"
47 #include "expr.h"
48 #include "predict.h"
49 #include "coverage.h"
50 #include "sreal.h"
51 #include "params.h"
52 #include "target.h"
53 #include "cfgloop.h"
54 #include "hash-map.h"
55 #include "tree-ssa-alias.h"
56 #include "internal-fn.h"
57 #include "gimple-expr.h"
58 #include "is-a.h"
59 #include "gimple.h"
60 #include "gimple-iterator.h"
61 #include "gimple-ssa.h"
62 #include "cgraph.h"
63 #include "tree-cfg.h"
64 #include "tree-phinodes.h"
65 #include "ssa-iterators.h"
66 #include "tree-ssa-loop-niter.h"
67 #include "tree-ssa-loop.h"
68 #include "tree-pass.h"
69 #include "tree-scalar-evolution.h"
70 #include "cfgloop.h"
72 /* real constants: 0, 1, 1-1/REG_BR_PROB_BASE, REG_BR_PROB_BASE,
73 1/REG_BR_PROB_BASE, 0.5, BB_FREQ_MAX. */
74 static sreal real_zero, real_one, real_almost_one, real_br_prob_base,
75 real_inv_br_prob_base, real_one_half, real_bb_freq_max;
77 static void combine_predictions_for_insn (rtx_insn *, basic_block);
78 static void dump_prediction (FILE *, enum br_predictor, int, basic_block, int);
79 static void predict_paths_leading_to (basic_block, enum br_predictor, enum prediction);
80 static void predict_paths_leading_to_edge (edge, enum br_predictor, enum prediction);
81 static bool can_predict_insn_p (const rtx_insn *);
83 /* Information we hold about each branch predictor.
84 Filled using information from predict.def. */
86 struct predictor_info
88 const char *const name; /* Name used in the debugging dumps. */
89 const int hitrate; /* Expected hitrate used by
90 predict_insn_def call. */
91 const int flags;
94 /* Use given predictor without Dempster-Shaffer theory if it matches
95 using first_match heuristics. */
96 #define PRED_FLAG_FIRST_MATCH 1
98 /* Recompute hitrate in percent to our representation. */
100 #define HITRATE(VAL) ((int) ((VAL) * REG_BR_PROB_BASE + 50) / 100)
102 #define DEF_PREDICTOR(ENUM, NAME, HITRATE, FLAGS) {NAME, HITRATE, FLAGS},
103 static const struct predictor_info predictor_info[]= {
104 #include "predict.def"
106 /* Upper bound on predictors. */
107 {NULL, 0, 0}
109 #undef DEF_PREDICTOR
111 /* Return TRUE if frequency FREQ is considered to be hot. */
113 static inline bool
114 maybe_hot_frequency_p (struct function *fun, int freq)
116 struct cgraph_node *node = cgraph_node::get (fun->decl);
117 if (!profile_info || !flag_branch_probabilities)
119 if (node->frequency == NODE_FREQUENCY_UNLIKELY_EXECUTED)
120 return false;
121 if (node->frequency == NODE_FREQUENCY_HOT)
122 return true;
124 if (profile_status_for_fn (fun) == PROFILE_ABSENT)
125 return true;
126 if (node->frequency == NODE_FREQUENCY_EXECUTED_ONCE
127 && freq < (ENTRY_BLOCK_PTR_FOR_FN (fun)->frequency * 2 / 3))
128 return false;
129 if (PARAM_VALUE (HOT_BB_FREQUENCY_FRACTION) == 0)
130 return false;
131 if (freq < (ENTRY_BLOCK_PTR_FOR_FN (fun)->frequency
132 / PARAM_VALUE (HOT_BB_FREQUENCY_FRACTION)))
133 return false;
134 return true;
137 static gcov_type min_count = -1;
139 /* Determine the threshold for hot BB counts. */
141 gcov_type
142 get_hot_bb_threshold ()
144 gcov_working_set_t *ws;
145 if (min_count == -1)
147 ws = find_working_set (PARAM_VALUE (HOT_BB_COUNT_WS_PERMILLE));
148 gcc_assert (ws);
149 min_count = ws->min_counter;
151 return min_count;
154 /* Set the threshold for hot BB counts. */
156 void
157 set_hot_bb_threshold (gcov_type min)
159 min_count = min;
162 /* Return TRUE if frequency FREQ is considered to be hot. */
164 static inline bool
165 maybe_hot_count_p (struct function *fun, gcov_type count)
167 if (fun && profile_status_for_fn (fun) != PROFILE_READ)
168 return true;
169 /* Code executed at most once is not hot. */
170 if (profile_info->runs >= count)
171 return false;
172 return (count >= get_hot_bb_threshold ());
175 /* Return true in case BB can be CPU intensive and should be optimized
176 for maximal performance. */
178 bool
179 maybe_hot_bb_p (struct function *fun, const_basic_block bb)
181 gcc_checking_assert (fun);
182 if (profile_status_for_fn (fun) == PROFILE_READ)
183 return maybe_hot_count_p (fun, bb->count);
184 return maybe_hot_frequency_p (fun, bb->frequency);
187 /* Return true if the call can be hot. */
189 bool
190 cgraph_edge::maybe_hot_p (void)
192 if (profile_info && flag_branch_probabilities
193 && !maybe_hot_count_p (NULL, count))
194 return false;
195 if (caller->frequency == NODE_FREQUENCY_UNLIKELY_EXECUTED
196 || (callee
197 && callee->frequency == NODE_FREQUENCY_UNLIKELY_EXECUTED))
198 return false;
199 if (caller->frequency > NODE_FREQUENCY_UNLIKELY_EXECUTED
200 && (callee
201 && callee->frequency <= NODE_FREQUENCY_EXECUTED_ONCE))
202 return false;
203 if (optimize_size)
204 return false;
205 if (caller->frequency == NODE_FREQUENCY_HOT)
206 return true;
207 if (caller->frequency == NODE_FREQUENCY_EXECUTED_ONCE
208 && frequency < CGRAPH_FREQ_BASE * 3 / 2)
209 return false;
210 if (flag_guess_branch_prob)
212 if (PARAM_VALUE (HOT_BB_FREQUENCY_FRACTION) == 0
213 || frequency <= (CGRAPH_FREQ_BASE
214 / PARAM_VALUE (HOT_BB_FREQUENCY_FRACTION)))
215 return false;
217 return true;
220 /* Return true in case BB can be CPU intensive and should be optimized
221 for maximal performance. */
223 bool
224 maybe_hot_edge_p (edge e)
226 if (profile_status_for_fn (cfun) == PROFILE_READ)
227 return maybe_hot_count_p (cfun, e->count);
228 return maybe_hot_frequency_p (cfun, EDGE_FREQUENCY (e));
233 /* Return true if profile COUNT and FREQUENCY, or function FUN static
234 node frequency reflects never being executed. */
236 static bool
237 probably_never_executed (struct function *fun,
238 gcov_type count, int frequency)
240 gcc_checking_assert (fun);
241 if (profile_status_for_fn (cfun) == PROFILE_READ)
243 int unlikely_count_fraction = PARAM_VALUE (UNLIKELY_BB_COUNT_FRACTION);
244 if (count * unlikely_count_fraction >= profile_info->runs)
245 return false;
246 if (!frequency)
247 return true;
248 if (!ENTRY_BLOCK_PTR_FOR_FN (cfun)->frequency)
249 return false;
250 if (ENTRY_BLOCK_PTR_FOR_FN (cfun)->count)
252 gcov_type computed_count;
253 /* Check for possibility of overflow, in which case entry bb count
254 is large enough to do the division first without losing much
255 precision. */
256 if (ENTRY_BLOCK_PTR_FOR_FN (cfun)->count < REG_BR_PROB_BASE *
257 REG_BR_PROB_BASE)
259 gcov_type scaled_count
260 = frequency * ENTRY_BLOCK_PTR_FOR_FN (cfun)->count *
261 unlikely_count_fraction;
262 computed_count = RDIV (scaled_count,
263 ENTRY_BLOCK_PTR_FOR_FN (cfun)->frequency);
265 else
267 computed_count = RDIV (ENTRY_BLOCK_PTR_FOR_FN (cfun)->count,
268 ENTRY_BLOCK_PTR_FOR_FN (cfun)->frequency);
269 computed_count *= frequency * unlikely_count_fraction;
271 if (computed_count >= profile_info->runs)
272 return false;
274 return true;
276 if ((!profile_info || !flag_branch_probabilities)
277 && (cgraph_node::get (fun->decl)->frequency
278 == NODE_FREQUENCY_UNLIKELY_EXECUTED))
279 return true;
280 return false;
284 /* Return true in case BB is probably never executed. */
286 bool
287 probably_never_executed_bb_p (struct function *fun, const_basic_block bb)
289 return probably_never_executed (fun, bb->count, bb->frequency);
293 /* Return true in case edge E is probably never executed. */
295 bool
296 probably_never_executed_edge_p (struct function *fun, edge e)
298 return probably_never_executed (fun, e->count, EDGE_FREQUENCY (e));
301 /* Return true if function should be optimized for size. */
303 bool
304 cgraph_node::optimize_for_size_p (void)
306 if (optimize_size)
307 return true;
308 if (frequency == NODE_FREQUENCY_UNLIKELY_EXECUTED)
309 return true;
310 else
311 return false;
314 /* Return true when current function should always be optimized for size. */
316 bool
317 optimize_function_for_size_p (struct function *fun)
319 if (optimize_size)
320 return true;
321 if (!fun || !fun->decl)
322 return false;
324 cgraph_node *n = cgraph_node::get (fun->decl);
325 return n && n->optimize_for_size_p ();
328 /* Return true when current function should always be optimized for speed. */
330 bool
331 optimize_function_for_speed_p (struct function *fun)
333 return !optimize_function_for_size_p (fun);
336 /* Return TRUE when BB should be optimized for size. */
338 bool
339 optimize_bb_for_size_p (const_basic_block bb)
341 return (optimize_function_for_size_p (cfun)
342 || (bb && !maybe_hot_bb_p (cfun, bb)));
345 /* Return TRUE when BB should be optimized for speed. */
347 bool
348 optimize_bb_for_speed_p (const_basic_block bb)
350 return !optimize_bb_for_size_p (bb);
353 /* Return TRUE when BB should be optimized for size. */
355 bool
356 optimize_edge_for_size_p (edge e)
358 return optimize_function_for_size_p (cfun) || !maybe_hot_edge_p (e);
361 /* Return TRUE when BB should be optimized for speed. */
363 bool
364 optimize_edge_for_speed_p (edge e)
366 return !optimize_edge_for_size_p (e);
369 /* Return TRUE when BB should be optimized for size. */
371 bool
372 optimize_insn_for_size_p (void)
374 return optimize_function_for_size_p (cfun) || !crtl->maybe_hot_insn_p;
377 /* Return TRUE when BB should be optimized for speed. */
379 bool
380 optimize_insn_for_speed_p (void)
382 return !optimize_insn_for_size_p ();
385 /* Return TRUE when LOOP should be optimized for size. */
387 bool
388 optimize_loop_for_size_p (struct loop *loop)
390 return optimize_bb_for_size_p (loop->header);
393 /* Return TRUE when LOOP should be optimized for speed. */
395 bool
396 optimize_loop_for_speed_p (struct loop *loop)
398 return optimize_bb_for_speed_p (loop->header);
401 /* Return TRUE when LOOP nest should be optimized for speed. */
403 bool
404 optimize_loop_nest_for_speed_p (struct loop *loop)
406 struct loop *l = loop;
407 if (optimize_loop_for_speed_p (loop))
408 return true;
409 l = loop->inner;
410 while (l && l != loop)
412 if (optimize_loop_for_speed_p (l))
413 return true;
414 if (l->inner)
415 l = l->inner;
416 else if (l->next)
417 l = l->next;
418 else
420 while (l != loop && !l->next)
421 l = loop_outer (l);
422 if (l != loop)
423 l = l->next;
426 return false;
429 /* Return TRUE when LOOP nest should be optimized for size. */
431 bool
432 optimize_loop_nest_for_size_p (struct loop *loop)
434 return !optimize_loop_nest_for_speed_p (loop);
437 /* Return true when edge E is likely to be well predictable by branch
438 predictor. */
440 bool
441 predictable_edge_p (edge e)
443 if (profile_status_for_fn (cfun) == PROFILE_ABSENT)
444 return false;
445 if ((e->probability
446 <= PARAM_VALUE (PARAM_PREDICTABLE_BRANCH_OUTCOME) * REG_BR_PROB_BASE / 100)
447 || (REG_BR_PROB_BASE - e->probability
448 <= PARAM_VALUE (PARAM_PREDICTABLE_BRANCH_OUTCOME) * REG_BR_PROB_BASE / 100))
449 return true;
450 return false;
454 /* Set RTL expansion for BB profile. */
456 void
457 rtl_profile_for_bb (basic_block bb)
459 crtl->maybe_hot_insn_p = maybe_hot_bb_p (cfun, bb);
462 /* Set RTL expansion for edge profile. */
464 void
465 rtl_profile_for_edge (edge e)
467 crtl->maybe_hot_insn_p = maybe_hot_edge_p (e);
470 /* Set RTL expansion to default mode (i.e. when profile info is not known). */
471 void
472 default_rtl_profile (void)
474 crtl->maybe_hot_insn_p = true;
477 /* Return true if the one of outgoing edges is already predicted by
478 PREDICTOR. */
480 bool
481 rtl_predicted_by_p (const_basic_block bb, enum br_predictor predictor)
483 rtx note;
484 if (!INSN_P (BB_END (bb)))
485 return false;
486 for (note = REG_NOTES (BB_END (bb)); note; note = XEXP (note, 1))
487 if (REG_NOTE_KIND (note) == REG_BR_PRED
488 && INTVAL (XEXP (XEXP (note, 0), 0)) == (int)predictor)
489 return true;
490 return false;
493 /* Structure representing predictions in tree level. */
495 struct edge_prediction {
496 struct edge_prediction *ep_next;
497 edge ep_edge;
498 enum br_predictor ep_predictor;
499 int ep_probability;
502 /* This map contains for a basic block the list of predictions for the
503 outgoing edges. */
505 static hash_map<const_basic_block, edge_prediction *> *bb_predictions;
507 /* Return true if the one of outgoing edges is already predicted by
508 PREDICTOR. */
510 bool
511 gimple_predicted_by_p (const_basic_block bb, enum br_predictor predictor)
513 struct edge_prediction *i;
514 edge_prediction **preds = bb_predictions->get (bb);
516 if (!preds)
517 return false;
519 for (i = *preds; i; i = i->ep_next)
520 if (i->ep_predictor == predictor)
521 return true;
522 return false;
525 /* Return true when the probability of edge is reliable.
527 The profile guessing code is good at predicting branch outcome (ie.
528 taken/not taken), that is predicted right slightly over 75% of time.
529 It is however notoriously poor on predicting the probability itself.
530 In general the profile appear a lot flatter (with probabilities closer
531 to 50%) than the reality so it is bad idea to use it to drive optimization
532 such as those disabling dynamic branch prediction for well predictable
533 branches.
535 There are two exceptions - edges leading to noreturn edges and edges
536 predicted by number of iterations heuristics are predicted well. This macro
537 should be able to distinguish those, but at the moment it simply check for
538 noreturn heuristic that is only one giving probability over 99% or bellow
539 1%. In future we might want to propagate reliability information across the
540 CFG if we find this information useful on multiple places. */
541 static bool
542 probability_reliable_p (int prob)
544 return (profile_status_for_fn (cfun) == PROFILE_READ
545 || (profile_status_for_fn (cfun) == PROFILE_GUESSED
546 && (prob <= HITRATE (1) || prob >= HITRATE (99))));
549 /* Same predicate as above, working on edges. */
550 bool
551 edge_probability_reliable_p (const_edge e)
553 return probability_reliable_p (e->probability);
556 /* Same predicate as edge_probability_reliable_p, working on notes. */
557 bool
558 br_prob_note_reliable_p (const_rtx note)
560 gcc_assert (REG_NOTE_KIND (note) == REG_BR_PROB);
561 return probability_reliable_p (XINT (note, 0));
564 static void
565 predict_insn (rtx_insn *insn, enum br_predictor predictor, int probability)
567 gcc_assert (any_condjump_p (insn));
568 if (!flag_guess_branch_prob)
569 return;
571 add_reg_note (insn, REG_BR_PRED,
572 gen_rtx_CONCAT (VOIDmode,
573 GEN_INT ((int) predictor),
574 GEN_INT ((int) probability)));
577 /* Predict insn by given predictor. */
579 void
580 predict_insn_def (rtx_insn *insn, enum br_predictor predictor,
581 enum prediction taken)
583 int probability = predictor_info[(int) predictor].hitrate;
585 if (taken != TAKEN)
586 probability = REG_BR_PROB_BASE - probability;
588 predict_insn (insn, predictor, probability);
591 /* Predict edge E with given probability if possible. */
593 void
594 rtl_predict_edge (edge e, enum br_predictor predictor, int probability)
596 rtx_insn *last_insn;
597 last_insn = BB_END (e->src);
599 /* We can store the branch prediction information only about
600 conditional jumps. */
601 if (!any_condjump_p (last_insn))
602 return;
604 /* We always store probability of branching. */
605 if (e->flags & EDGE_FALLTHRU)
606 probability = REG_BR_PROB_BASE - probability;
608 predict_insn (last_insn, predictor, probability);
611 /* Predict edge E with the given PROBABILITY. */
612 void
613 gimple_predict_edge (edge e, enum br_predictor predictor, int probability)
615 gcc_assert (profile_status_for_fn (cfun) != PROFILE_GUESSED);
616 if ((e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun) && EDGE_COUNT (e->src->succs) >
618 && flag_guess_branch_prob && optimize)
620 struct edge_prediction *i = XNEW (struct edge_prediction);
621 edge_prediction *&preds = bb_predictions->get_or_insert (e->src);
623 i->ep_next = preds;
624 preds = i;
625 i->ep_probability = probability;
626 i->ep_predictor = predictor;
627 i->ep_edge = e;
631 /* Remove all predictions on given basic block that are attached
632 to edge E. */
633 void
634 remove_predictions_associated_with_edge (edge e)
636 if (!bb_predictions)
637 return;
639 edge_prediction **preds = bb_predictions->get (e->src);
641 if (preds)
643 struct edge_prediction **prediction = preds;
644 struct edge_prediction *next;
646 while (*prediction)
648 if ((*prediction)->ep_edge == e)
650 next = (*prediction)->ep_next;
651 free (*prediction);
652 *prediction = next;
654 else
655 prediction = &((*prediction)->ep_next);
660 /* Clears the list of predictions stored for BB. */
662 static void
663 clear_bb_predictions (basic_block bb)
665 edge_prediction **preds = bb_predictions->get (bb);
666 struct edge_prediction *pred, *next;
668 if (!preds)
669 return;
671 for (pred = *preds; pred; pred = next)
673 next = pred->ep_next;
674 free (pred);
676 *preds = NULL;
679 /* Return true when we can store prediction on insn INSN.
680 At the moment we represent predictions only on conditional
681 jumps, not at computed jump or other complicated cases. */
682 static bool
683 can_predict_insn_p (const rtx_insn *insn)
685 return (JUMP_P (insn)
686 && any_condjump_p (insn)
687 && EDGE_COUNT (BLOCK_FOR_INSN (insn)->succs) >= 2);
690 /* Predict edge E by given predictor if possible. */
692 void
693 predict_edge_def (edge e, enum br_predictor predictor,
694 enum prediction taken)
696 int probability = predictor_info[(int) predictor].hitrate;
698 if (taken != TAKEN)
699 probability = REG_BR_PROB_BASE - probability;
701 predict_edge (e, predictor, probability);
704 /* Invert all branch predictions or probability notes in the INSN. This needs
705 to be done each time we invert the condition used by the jump. */
707 void
708 invert_br_probabilities (rtx insn)
710 rtx note;
712 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
713 if (REG_NOTE_KIND (note) == REG_BR_PROB)
714 XINT (note, 0) = REG_BR_PROB_BASE - XINT (note, 0);
715 else if (REG_NOTE_KIND (note) == REG_BR_PRED)
716 XEXP (XEXP (note, 0), 1)
717 = GEN_INT (REG_BR_PROB_BASE - INTVAL (XEXP (XEXP (note, 0), 1)));
720 /* Dump information about the branch prediction to the output file. */
722 static void
723 dump_prediction (FILE *file, enum br_predictor predictor, int probability,
724 basic_block bb, int used)
726 edge e;
727 edge_iterator ei;
729 if (!file)
730 return;
732 FOR_EACH_EDGE (e, ei, bb->succs)
733 if (! (e->flags & EDGE_FALLTHRU))
734 break;
736 fprintf (file, " %s heuristics%s: %.1f%%",
737 predictor_info[predictor].name,
738 used ? "" : " (ignored)", probability * 100.0 / REG_BR_PROB_BASE);
740 if (bb->count)
742 fprintf (file, " exec %"PRId64, bb->count);
743 if (e)
745 fprintf (file, " hit %"PRId64, e->count);
746 fprintf (file, " (%.1f%%)", e->count * 100.0 / bb->count);
750 fprintf (file, "\n");
753 /* We can not predict the probabilities of outgoing edges of bb. Set them
754 evenly and hope for the best. */
755 static void
756 set_even_probabilities (basic_block bb)
758 int nedges = 0;
759 edge e;
760 edge_iterator ei;
762 FOR_EACH_EDGE (e, ei, bb->succs)
763 if (!(e->flags & (EDGE_EH | EDGE_FAKE)))
764 nedges ++;
765 FOR_EACH_EDGE (e, ei, bb->succs)
766 if (!(e->flags & (EDGE_EH | EDGE_FAKE)))
767 e->probability = (REG_BR_PROB_BASE + nedges / 2) / nedges;
768 else
769 e->probability = 0;
772 /* Combine all REG_BR_PRED notes into single probability and attach REG_BR_PROB
773 note if not already present. Remove now useless REG_BR_PRED notes. */
775 static void
776 combine_predictions_for_insn (rtx_insn *insn, basic_block bb)
778 rtx prob_note;
779 rtx *pnote;
780 rtx note;
781 int best_probability = PROB_EVEN;
782 enum br_predictor best_predictor = END_PREDICTORS;
783 int combined_probability = REG_BR_PROB_BASE / 2;
784 int d;
785 bool first_match = false;
786 bool found = false;
788 if (!can_predict_insn_p (insn))
790 set_even_probabilities (bb);
791 return;
794 prob_note = find_reg_note (insn, REG_BR_PROB, 0);
795 pnote = &REG_NOTES (insn);
796 if (dump_file)
797 fprintf (dump_file, "Predictions for insn %i bb %i\n", INSN_UID (insn),
798 bb->index);
800 /* We implement "first match" heuristics and use probability guessed
801 by predictor with smallest index. */
802 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
803 if (REG_NOTE_KIND (note) == REG_BR_PRED)
805 enum br_predictor predictor = ((enum br_predictor)
806 INTVAL (XEXP (XEXP (note, 0), 0)));
807 int probability = INTVAL (XEXP (XEXP (note, 0), 1));
809 found = true;
810 if (best_predictor > predictor)
811 best_probability = probability, best_predictor = predictor;
813 d = (combined_probability * probability
814 + (REG_BR_PROB_BASE - combined_probability)
815 * (REG_BR_PROB_BASE - probability));
817 /* Use FP math to avoid overflows of 32bit integers. */
818 if (d == 0)
819 /* If one probability is 0% and one 100%, avoid division by zero. */
820 combined_probability = REG_BR_PROB_BASE / 2;
821 else
822 combined_probability = (((double) combined_probability) * probability
823 * REG_BR_PROB_BASE / d + 0.5);
826 /* Decide which heuristic to use. In case we didn't match anything,
827 use no_prediction heuristic, in case we did match, use either
828 first match or Dempster-Shaffer theory depending on the flags. */
830 if (predictor_info [best_predictor].flags & PRED_FLAG_FIRST_MATCH)
831 first_match = true;
833 if (!found)
834 dump_prediction (dump_file, PRED_NO_PREDICTION,
835 combined_probability, bb, true);
836 else
838 dump_prediction (dump_file, PRED_DS_THEORY, combined_probability,
839 bb, !first_match);
840 dump_prediction (dump_file, PRED_FIRST_MATCH, best_probability,
841 bb, first_match);
844 if (first_match)
845 combined_probability = best_probability;
846 dump_prediction (dump_file, PRED_COMBINED, combined_probability, bb, true);
848 while (*pnote)
850 if (REG_NOTE_KIND (*pnote) == REG_BR_PRED)
852 enum br_predictor predictor = ((enum br_predictor)
853 INTVAL (XEXP (XEXP (*pnote, 0), 0)));
854 int probability = INTVAL (XEXP (XEXP (*pnote, 0), 1));
856 dump_prediction (dump_file, predictor, probability, bb,
857 !first_match || best_predictor == predictor);
858 *pnote = XEXP (*pnote, 1);
860 else
861 pnote = &XEXP (*pnote, 1);
864 if (!prob_note)
866 add_int_reg_note (insn, REG_BR_PROB, combined_probability);
868 /* Save the prediction into CFG in case we are seeing non-degenerated
869 conditional jump. */
870 if (!single_succ_p (bb))
872 BRANCH_EDGE (bb)->probability = combined_probability;
873 FALLTHRU_EDGE (bb)->probability
874 = REG_BR_PROB_BASE - combined_probability;
877 else if (!single_succ_p (bb))
879 int prob = XINT (prob_note, 0);
881 BRANCH_EDGE (bb)->probability = prob;
882 FALLTHRU_EDGE (bb)->probability = REG_BR_PROB_BASE - prob;
884 else
885 single_succ_edge (bb)->probability = REG_BR_PROB_BASE;
888 /* Combine predictions into single probability and store them into CFG.
889 Remove now useless prediction entries. */
891 static void
892 combine_predictions_for_bb (basic_block bb)
894 int best_probability = PROB_EVEN;
895 enum br_predictor best_predictor = END_PREDICTORS;
896 int combined_probability = REG_BR_PROB_BASE / 2;
897 int d;
898 bool first_match = false;
899 bool found = false;
900 struct edge_prediction *pred;
901 int nedges = 0;
902 edge e, first = NULL, second = NULL;
903 edge_iterator ei;
905 FOR_EACH_EDGE (e, ei, bb->succs)
906 if (!(e->flags & (EDGE_EH | EDGE_FAKE)))
908 nedges ++;
909 if (first && !second)
910 second = e;
911 if (!first)
912 first = e;
915 /* When there is no successor or only one choice, prediction is easy.
917 We are lazy for now and predict only basic blocks with two outgoing
918 edges. It is possible to predict generic case too, but we have to
919 ignore first match heuristics and do more involved combining. Implement
920 this later. */
921 if (nedges != 2)
923 if (!bb->count)
924 set_even_probabilities (bb);
925 clear_bb_predictions (bb);
926 if (dump_file)
927 fprintf (dump_file, "%i edges in bb %i predicted to even probabilities\n",
928 nedges, bb->index);
929 return;
932 if (dump_file)
933 fprintf (dump_file, "Predictions for bb %i\n", bb->index);
935 edge_prediction **preds = bb_predictions->get (bb);
936 if (preds)
938 /* We implement "first match" heuristics and use probability guessed
939 by predictor with smallest index. */
940 for (pred = *preds; pred; pred = pred->ep_next)
942 enum br_predictor predictor = pred->ep_predictor;
943 int probability = pred->ep_probability;
945 if (pred->ep_edge != first)
946 probability = REG_BR_PROB_BASE - probability;
948 found = true;
949 /* First match heuristics would be widly confused if we predicted
950 both directions. */
951 if (best_predictor > predictor)
953 struct edge_prediction *pred2;
954 int prob = probability;
956 for (pred2 = (struct edge_prediction *) *preds;
957 pred2; pred2 = pred2->ep_next)
958 if (pred2 != pred && pred2->ep_predictor == pred->ep_predictor)
960 int probability2 = pred->ep_probability;
962 if (pred2->ep_edge != first)
963 probability2 = REG_BR_PROB_BASE - probability2;
965 if ((probability < REG_BR_PROB_BASE / 2) !=
966 (probability2 < REG_BR_PROB_BASE / 2))
967 break;
969 /* If the same predictor later gave better result, go for it! */
970 if ((probability >= REG_BR_PROB_BASE / 2 && (probability2 > probability))
971 || (probability <= REG_BR_PROB_BASE / 2 && (probability2 < probability)))
972 prob = probability2;
974 if (!pred2)
975 best_probability = prob, best_predictor = predictor;
978 d = (combined_probability * probability
979 + (REG_BR_PROB_BASE - combined_probability)
980 * (REG_BR_PROB_BASE - probability));
982 /* Use FP math to avoid overflows of 32bit integers. */
983 if (d == 0)
984 /* If one probability is 0% and one 100%, avoid division by zero. */
985 combined_probability = REG_BR_PROB_BASE / 2;
986 else
987 combined_probability = (((double) combined_probability)
988 * probability
989 * REG_BR_PROB_BASE / d + 0.5);
993 /* Decide which heuristic to use. In case we didn't match anything,
994 use no_prediction heuristic, in case we did match, use either
995 first match or Dempster-Shaffer theory depending on the flags. */
997 if (predictor_info [best_predictor].flags & PRED_FLAG_FIRST_MATCH)
998 first_match = true;
1000 if (!found)
1001 dump_prediction (dump_file, PRED_NO_PREDICTION, combined_probability, bb, true);
1002 else
1004 dump_prediction (dump_file, PRED_DS_THEORY, combined_probability, bb,
1005 !first_match);
1006 dump_prediction (dump_file, PRED_FIRST_MATCH, best_probability, bb,
1007 first_match);
1010 if (first_match)
1011 combined_probability = best_probability;
1012 dump_prediction (dump_file, PRED_COMBINED, combined_probability, bb, true);
1014 if (preds)
1016 for (pred = (struct edge_prediction *) *preds; pred; pred = pred->ep_next)
1018 enum br_predictor predictor = pred->ep_predictor;
1019 int probability = pred->ep_probability;
1021 if (pred->ep_edge != EDGE_SUCC (bb, 0))
1022 probability = REG_BR_PROB_BASE - probability;
1023 dump_prediction (dump_file, predictor, probability, bb,
1024 !first_match || best_predictor == predictor);
1027 clear_bb_predictions (bb);
1029 if (!bb->count)
1031 first->probability = combined_probability;
1032 second->probability = REG_BR_PROB_BASE - combined_probability;
1036 /* Check if T1 and T2 satisfy the IV_COMPARE condition.
1037 Return the SSA_NAME if the condition satisfies, NULL otherwise.
1039 T1 and T2 should be one of the following cases:
1040 1. T1 is SSA_NAME, T2 is NULL
1041 2. T1 is SSA_NAME, T2 is INTEGER_CST between [-4, 4]
1042 3. T2 is SSA_NAME, T1 is INTEGER_CST between [-4, 4] */
1044 static tree
1045 strips_small_constant (tree t1, tree t2)
1047 tree ret = NULL;
1048 int value = 0;
1050 if (!t1)
1051 return NULL;
1052 else if (TREE_CODE (t1) == SSA_NAME)
1053 ret = t1;
1054 else if (tree_fits_shwi_p (t1))
1055 value = tree_to_shwi (t1);
1056 else
1057 return NULL;
1059 if (!t2)
1060 return ret;
1061 else if (tree_fits_shwi_p (t2))
1062 value = tree_to_shwi (t2);
1063 else if (TREE_CODE (t2) == SSA_NAME)
1065 if (ret)
1066 return NULL;
1067 else
1068 ret = t2;
1071 if (value <= 4 && value >= -4)
1072 return ret;
1073 else
1074 return NULL;
1077 /* Return the SSA_NAME in T or T's operands.
1078 Return NULL if SSA_NAME cannot be found. */
1080 static tree
1081 get_base_value (tree t)
1083 if (TREE_CODE (t) == SSA_NAME)
1084 return t;
1086 if (!BINARY_CLASS_P (t))
1087 return NULL;
1089 switch (TREE_OPERAND_LENGTH (t))
1091 case 1:
1092 return strips_small_constant (TREE_OPERAND (t, 0), NULL);
1093 case 2:
1094 return strips_small_constant (TREE_OPERAND (t, 0),
1095 TREE_OPERAND (t, 1));
1096 default:
1097 return NULL;
1101 /* Check the compare STMT in LOOP. If it compares an induction
1102 variable to a loop invariant, return true, and save
1103 LOOP_INVARIANT, COMPARE_CODE and LOOP_STEP.
1104 Otherwise return false and set LOOP_INVAIANT to NULL. */
1106 static bool
1107 is_comparison_with_loop_invariant_p (gimple stmt, struct loop *loop,
1108 tree *loop_invariant,
1109 enum tree_code *compare_code,
1110 tree *loop_step,
1111 tree *loop_iv_base)
1113 tree op0, op1, bound, base;
1114 affine_iv iv0, iv1;
1115 enum tree_code code;
1116 tree step;
1118 code = gimple_cond_code (stmt);
1119 *loop_invariant = NULL;
1121 switch (code)
1123 case GT_EXPR:
1124 case GE_EXPR:
1125 case NE_EXPR:
1126 case LT_EXPR:
1127 case LE_EXPR:
1128 case EQ_EXPR:
1129 break;
1131 default:
1132 return false;
1135 op0 = gimple_cond_lhs (stmt);
1136 op1 = gimple_cond_rhs (stmt);
1138 if ((TREE_CODE (op0) != SSA_NAME && TREE_CODE (op0) != INTEGER_CST)
1139 || (TREE_CODE (op1) != SSA_NAME && TREE_CODE (op1) != INTEGER_CST))
1140 return false;
1141 if (!simple_iv (loop, loop_containing_stmt (stmt), op0, &iv0, true))
1142 return false;
1143 if (!simple_iv (loop, loop_containing_stmt (stmt), op1, &iv1, true))
1144 return false;
1145 if (TREE_CODE (iv0.step) != INTEGER_CST
1146 || TREE_CODE (iv1.step) != INTEGER_CST)
1147 return false;
1148 if ((integer_zerop (iv0.step) && integer_zerop (iv1.step))
1149 || (!integer_zerop (iv0.step) && !integer_zerop (iv1.step)))
1150 return false;
1152 if (integer_zerop (iv0.step))
1154 if (code != NE_EXPR && code != EQ_EXPR)
1155 code = invert_tree_comparison (code, false);
1156 bound = iv0.base;
1157 base = iv1.base;
1158 if (tree_fits_shwi_p (iv1.step))
1159 step = iv1.step;
1160 else
1161 return false;
1163 else
1165 bound = iv1.base;
1166 base = iv0.base;
1167 if (tree_fits_shwi_p (iv0.step))
1168 step = iv0.step;
1169 else
1170 return false;
1173 if (TREE_CODE (bound) != INTEGER_CST)
1174 bound = get_base_value (bound);
1175 if (!bound)
1176 return false;
1177 if (TREE_CODE (base) != INTEGER_CST)
1178 base = get_base_value (base);
1179 if (!base)
1180 return false;
1182 *loop_invariant = bound;
1183 *compare_code = code;
1184 *loop_step = step;
1185 *loop_iv_base = base;
1186 return true;
1189 /* Compare two SSA_NAMEs: returns TRUE if T1 and T2 are value coherent. */
1191 static bool
1192 expr_coherent_p (tree t1, tree t2)
1194 gimple stmt;
1195 tree ssa_name_1 = NULL;
1196 tree ssa_name_2 = NULL;
1198 gcc_assert (TREE_CODE (t1) == SSA_NAME || TREE_CODE (t1) == INTEGER_CST);
1199 gcc_assert (TREE_CODE (t2) == SSA_NAME || TREE_CODE (t2) == INTEGER_CST);
1201 if (t1 == t2)
1202 return true;
1204 if (TREE_CODE (t1) == INTEGER_CST && TREE_CODE (t2) == INTEGER_CST)
1205 return true;
1206 if (TREE_CODE (t1) == INTEGER_CST || TREE_CODE (t2) == INTEGER_CST)
1207 return false;
1209 /* Check to see if t1 is expressed/defined with t2. */
1210 stmt = SSA_NAME_DEF_STMT (t1);
1211 gcc_assert (stmt != NULL);
1212 if (is_gimple_assign (stmt))
1214 ssa_name_1 = SINGLE_SSA_TREE_OPERAND (stmt, SSA_OP_USE);
1215 if (ssa_name_1 && ssa_name_1 == t2)
1216 return true;
1219 /* Check to see if t2 is expressed/defined with t1. */
1220 stmt = SSA_NAME_DEF_STMT (t2);
1221 gcc_assert (stmt != NULL);
1222 if (is_gimple_assign (stmt))
1224 ssa_name_2 = SINGLE_SSA_TREE_OPERAND (stmt, SSA_OP_USE);
1225 if (ssa_name_2 && ssa_name_2 == t1)
1226 return true;
1229 /* Compare if t1 and t2's def_stmts are identical. */
1230 if (ssa_name_2 != NULL && ssa_name_1 == ssa_name_2)
1231 return true;
1232 else
1233 return false;
1236 /* Predict branch probability of BB when BB contains a branch that compares
1237 an induction variable in LOOP with LOOP_IV_BASE_VAR to LOOP_BOUND_VAR. The
1238 loop exit is compared using LOOP_BOUND_CODE, with step of LOOP_BOUND_STEP.
1240 E.g.
1241 for (int i = 0; i < bound; i++) {
1242 if (i < bound - 2)
1243 computation_1();
1244 else
1245 computation_2();
1248 In this loop, we will predict the branch inside the loop to be taken. */
1250 static void
1251 predict_iv_comparison (struct loop *loop, basic_block bb,
1252 tree loop_bound_var,
1253 tree loop_iv_base_var,
1254 enum tree_code loop_bound_code,
1255 int loop_bound_step)
1257 gimple stmt;
1258 tree compare_var, compare_base;
1259 enum tree_code compare_code;
1260 tree compare_step_var;
1261 edge then_edge;
1262 edge_iterator ei;
1264 if (predicted_by_p (bb, PRED_LOOP_ITERATIONS_GUESSED)
1265 || predicted_by_p (bb, PRED_LOOP_ITERATIONS)
1266 || predicted_by_p (bb, PRED_LOOP_EXIT))
1267 return;
1269 stmt = last_stmt (bb);
1270 if (!stmt || gimple_code (stmt) != GIMPLE_COND)
1271 return;
1272 if (!is_comparison_with_loop_invariant_p (stmt, loop, &compare_var,
1273 &compare_code,
1274 &compare_step_var,
1275 &compare_base))
1276 return;
1278 /* Find the taken edge. */
1279 FOR_EACH_EDGE (then_edge, ei, bb->succs)
1280 if (then_edge->flags & EDGE_TRUE_VALUE)
1281 break;
1283 /* When comparing an IV to a loop invariant, NE is more likely to be
1284 taken while EQ is more likely to be not-taken. */
1285 if (compare_code == NE_EXPR)
1287 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, TAKEN);
1288 return;
1290 else if (compare_code == EQ_EXPR)
1292 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, NOT_TAKEN);
1293 return;
1296 if (!expr_coherent_p (loop_iv_base_var, compare_base))
1297 return;
1299 /* If loop bound, base and compare bound are all constants, we can
1300 calculate the probability directly. */
1301 if (tree_fits_shwi_p (loop_bound_var)
1302 && tree_fits_shwi_p (compare_var)
1303 && tree_fits_shwi_p (compare_base))
1305 int probability;
1306 bool overflow, overall_overflow = false;
1307 widest_int compare_count, tem;
1309 /* (loop_bound - base) / compare_step */
1310 tem = wi::sub (wi::to_widest (loop_bound_var),
1311 wi::to_widest (compare_base), SIGNED, &overflow);
1312 overall_overflow |= overflow;
1313 widest_int loop_count = wi::div_trunc (tem,
1314 wi::to_widest (compare_step_var),
1315 SIGNED, &overflow);
1316 overall_overflow |= overflow;
1318 if (!wi::neg_p (wi::to_widest (compare_step_var))
1319 ^ (compare_code == LT_EXPR || compare_code == LE_EXPR))
1321 /* (loop_bound - compare_bound) / compare_step */
1322 tem = wi::sub (wi::to_widest (loop_bound_var),
1323 wi::to_widest (compare_var), SIGNED, &overflow);
1324 overall_overflow |= overflow;
1325 compare_count = wi::div_trunc (tem, wi::to_widest (compare_step_var),
1326 SIGNED, &overflow);
1327 overall_overflow |= overflow;
1329 else
1331 /* (compare_bound - base) / compare_step */
1332 tem = wi::sub (wi::to_widest (compare_var),
1333 wi::to_widest (compare_base), SIGNED, &overflow);
1334 overall_overflow |= overflow;
1335 compare_count = wi::div_trunc (tem, wi::to_widest (compare_step_var),
1336 SIGNED, &overflow);
1337 overall_overflow |= overflow;
1339 if (compare_code == LE_EXPR || compare_code == GE_EXPR)
1340 ++compare_count;
1341 if (loop_bound_code == LE_EXPR || loop_bound_code == GE_EXPR)
1342 ++loop_count;
1343 if (wi::neg_p (compare_count))
1344 compare_count = 0;
1345 if (wi::neg_p (loop_count))
1346 loop_count = 0;
1347 if (loop_count == 0)
1348 probability = 0;
1349 else if (wi::cmps (compare_count, loop_count) == 1)
1350 probability = REG_BR_PROB_BASE;
1351 else
1353 tem = compare_count * REG_BR_PROB_BASE;
1354 tem = wi::udiv_trunc (tem, loop_count);
1355 probability = tem.to_uhwi ();
1358 if (!overall_overflow)
1359 predict_edge (then_edge, PRED_LOOP_IV_COMPARE, probability);
1361 return;
1364 if (expr_coherent_p (loop_bound_var, compare_var))
1366 if ((loop_bound_code == LT_EXPR || loop_bound_code == LE_EXPR)
1367 && (compare_code == LT_EXPR || compare_code == LE_EXPR))
1368 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, TAKEN);
1369 else if ((loop_bound_code == GT_EXPR || loop_bound_code == GE_EXPR)
1370 && (compare_code == GT_EXPR || compare_code == GE_EXPR))
1371 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, TAKEN);
1372 else if (loop_bound_code == NE_EXPR)
1374 /* If the loop backedge condition is "(i != bound)", we do
1375 the comparison based on the step of IV:
1376 * step < 0 : backedge condition is like (i > bound)
1377 * step > 0 : backedge condition is like (i < bound) */
1378 gcc_assert (loop_bound_step != 0);
1379 if (loop_bound_step > 0
1380 && (compare_code == LT_EXPR
1381 || compare_code == LE_EXPR))
1382 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, TAKEN);
1383 else if (loop_bound_step < 0
1384 && (compare_code == GT_EXPR
1385 || compare_code == GE_EXPR))
1386 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, TAKEN);
1387 else
1388 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, NOT_TAKEN);
1390 else
1391 /* The branch is predicted not-taken if loop_bound_code is
1392 opposite with compare_code. */
1393 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, NOT_TAKEN);
1395 else if (expr_coherent_p (loop_iv_base_var, compare_var))
1397 /* For cases like:
1398 for (i = s; i < h; i++)
1399 if (i > s + 2) ....
1400 The branch should be predicted taken. */
1401 if (loop_bound_step > 0
1402 && (compare_code == GT_EXPR || compare_code == GE_EXPR))
1403 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, TAKEN);
1404 else if (loop_bound_step < 0
1405 && (compare_code == LT_EXPR || compare_code == LE_EXPR))
1406 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, TAKEN);
1407 else
1408 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, NOT_TAKEN);
1412 /* Predict for extra loop exits that will lead to EXIT_EDGE. The extra loop
1413 exits are resulted from short-circuit conditions that will generate an
1414 if_tmp. E.g.:
1416 if (foo() || global > 10)
1417 break;
1419 This will be translated into:
1421 BB3:
1422 loop header...
1423 BB4:
1424 if foo() goto BB6 else goto BB5
1425 BB5:
1426 if global > 10 goto BB6 else goto BB7
1427 BB6:
1428 goto BB7
1429 BB7:
1430 iftmp = (PHI 0(BB5), 1(BB6))
1431 if iftmp == 1 goto BB8 else goto BB3
1432 BB8:
1433 outside of the loop...
1435 The edge BB7->BB8 is loop exit because BB8 is outside of the loop.
1436 From the dataflow, we can infer that BB4->BB6 and BB5->BB6 are also loop
1437 exits. This function takes BB7->BB8 as input, and finds out the extra loop
1438 exits to predict them using PRED_LOOP_EXIT. */
1440 static void
1441 predict_extra_loop_exits (edge exit_edge)
1443 unsigned i;
1444 bool check_value_one;
1445 gimple phi_stmt;
1446 tree cmp_rhs, cmp_lhs;
1447 gimple cmp_stmt = last_stmt (exit_edge->src);
1449 if (!cmp_stmt || gimple_code (cmp_stmt) != GIMPLE_COND)
1450 return;
1451 cmp_rhs = gimple_cond_rhs (cmp_stmt);
1452 cmp_lhs = gimple_cond_lhs (cmp_stmt);
1453 if (!TREE_CONSTANT (cmp_rhs)
1454 || !(integer_zerop (cmp_rhs) || integer_onep (cmp_rhs)))
1455 return;
1456 if (TREE_CODE (cmp_lhs) != SSA_NAME)
1457 return;
1459 /* If check_value_one is true, only the phi_args with value '1' will lead
1460 to loop exit. Otherwise, only the phi_args with value '0' will lead to
1461 loop exit. */
1462 check_value_one = (((integer_onep (cmp_rhs))
1463 ^ (gimple_cond_code (cmp_stmt) == EQ_EXPR))
1464 ^ ((exit_edge->flags & EDGE_TRUE_VALUE) != 0));
1466 phi_stmt = SSA_NAME_DEF_STMT (cmp_lhs);
1467 if (!phi_stmt || gimple_code (phi_stmt) != GIMPLE_PHI)
1468 return;
1470 for (i = 0; i < gimple_phi_num_args (phi_stmt); i++)
1472 edge e1;
1473 edge_iterator ei;
1474 tree val = gimple_phi_arg_def (phi_stmt, i);
1475 edge e = gimple_phi_arg_edge (phi_stmt, i);
1477 if (!TREE_CONSTANT (val) || !(integer_zerop (val) || integer_onep (val)))
1478 continue;
1479 if ((check_value_one ^ integer_onep (val)) == 1)
1480 continue;
1481 if (EDGE_COUNT (e->src->succs) != 1)
1483 predict_paths_leading_to_edge (e, PRED_LOOP_EXIT, NOT_TAKEN);
1484 continue;
1487 FOR_EACH_EDGE (e1, ei, e->src->preds)
1488 predict_paths_leading_to_edge (e1, PRED_LOOP_EXIT, NOT_TAKEN);
1492 /* Predict edge probabilities by exploiting loop structure. */
1494 static void
1495 predict_loops (void)
1497 struct loop *loop;
1499 /* Try to predict out blocks in a loop that are not part of a
1500 natural loop. */
1501 FOR_EACH_LOOP (loop, 0)
1503 basic_block bb, *bbs;
1504 unsigned j, n_exits;
1505 vec<edge> exits;
1506 struct tree_niter_desc niter_desc;
1507 edge ex;
1508 struct nb_iter_bound *nb_iter;
1509 enum tree_code loop_bound_code = ERROR_MARK;
1510 tree loop_bound_step = NULL;
1511 tree loop_bound_var = NULL;
1512 tree loop_iv_base = NULL;
1513 gimple stmt = NULL;
1515 exits = get_loop_exit_edges (loop);
1516 n_exits = exits.length ();
1517 if (!n_exits)
1519 exits.release ();
1520 continue;
1523 FOR_EACH_VEC_ELT (exits, j, ex)
1525 tree niter = NULL;
1526 HOST_WIDE_INT nitercst;
1527 int max = PARAM_VALUE (PARAM_MAX_PREDICTED_ITERATIONS);
1528 int probability;
1529 enum br_predictor predictor;
1531 predict_extra_loop_exits (ex);
1533 if (number_of_iterations_exit (loop, ex, &niter_desc, false, false))
1534 niter = niter_desc.niter;
1535 if (!niter || TREE_CODE (niter_desc.niter) != INTEGER_CST)
1536 niter = loop_niter_by_eval (loop, ex);
1538 if (TREE_CODE (niter) == INTEGER_CST)
1540 if (tree_fits_uhwi_p (niter)
1541 && max
1542 && compare_tree_int (niter, max - 1) == -1)
1543 nitercst = tree_to_uhwi (niter) + 1;
1544 else
1545 nitercst = max;
1546 predictor = PRED_LOOP_ITERATIONS;
1548 /* If we have just one exit and we can derive some information about
1549 the number of iterations of the loop from the statements inside
1550 the loop, use it to predict this exit. */
1551 else if (n_exits == 1)
1553 nitercst = estimated_stmt_executions_int (loop);
1554 if (nitercst < 0)
1555 continue;
1556 if (nitercst > max)
1557 nitercst = max;
1559 predictor = PRED_LOOP_ITERATIONS_GUESSED;
1561 else
1562 continue;
1564 /* If the prediction for number of iterations is zero, do not
1565 predict the exit edges. */
1566 if (nitercst == 0)
1567 continue;
1569 probability = ((REG_BR_PROB_BASE + nitercst / 2) / nitercst);
1570 predict_edge (ex, predictor, probability);
1572 exits.release ();
1574 /* Find information about loop bound variables. */
1575 for (nb_iter = loop->bounds; nb_iter;
1576 nb_iter = nb_iter->next)
1577 if (nb_iter->stmt
1578 && gimple_code (nb_iter->stmt) == GIMPLE_COND)
1580 stmt = nb_iter->stmt;
1581 break;
1583 if (!stmt && last_stmt (loop->header)
1584 && gimple_code (last_stmt (loop->header)) == GIMPLE_COND)
1585 stmt = last_stmt (loop->header);
1586 if (stmt)
1587 is_comparison_with_loop_invariant_p (stmt, loop,
1588 &loop_bound_var,
1589 &loop_bound_code,
1590 &loop_bound_step,
1591 &loop_iv_base);
1593 bbs = get_loop_body (loop);
1595 for (j = 0; j < loop->num_nodes; j++)
1597 int header_found = 0;
1598 edge e;
1599 edge_iterator ei;
1601 bb = bbs[j];
1603 /* Bypass loop heuristics on continue statement. These
1604 statements construct loops via "non-loop" constructs
1605 in the source language and are better to be handled
1606 separately. */
1607 if (predicted_by_p (bb, PRED_CONTINUE))
1608 continue;
1610 /* Loop branch heuristics - predict an edge back to a
1611 loop's head as taken. */
1612 if (bb == loop->latch)
1614 e = find_edge (loop->latch, loop->header);
1615 if (e)
1617 header_found = 1;
1618 predict_edge_def (e, PRED_LOOP_BRANCH, TAKEN);
1622 /* Loop exit heuristics - predict an edge exiting the loop if the
1623 conditional has no loop header successors as not taken. */
1624 if (!header_found
1625 /* If we already used more reliable loop exit predictors, do not
1626 bother with PRED_LOOP_EXIT. */
1627 && !predicted_by_p (bb, PRED_LOOP_ITERATIONS_GUESSED)
1628 && !predicted_by_p (bb, PRED_LOOP_ITERATIONS))
1630 /* For loop with many exits we don't want to predict all exits
1631 with the pretty large probability, because if all exits are
1632 considered in row, the loop would be predicted to iterate
1633 almost never. The code to divide probability by number of
1634 exits is very rough. It should compute the number of exits
1635 taken in each patch through function (not the overall number
1636 of exits that might be a lot higher for loops with wide switch
1637 statements in them) and compute n-th square root.
1639 We limit the minimal probability by 2% to avoid
1640 EDGE_PROBABILITY_RELIABLE from trusting the branch prediction
1641 as this was causing regression in perl benchmark containing such
1642 a wide loop. */
1644 int probability = ((REG_BR_PROB_BASE
1645 - predictor_info [(int) PRED_LOOP_EXIT].hitrate)
1646 / n_exits);
1647 if (probability < HITRATE (2))
1648 probability = HITRATE (2);
1649 FOR_EACH_EDGE (e, ei, bb->succs)
1650 if (e->dest->index < NUM_FIXED_BLOCKS
1651 || !flow_bb_inside_loop_p (loop, e->dest))
1652 predict_edge (e, PRED_LOOP_EXIT, probability);
1654 if (loop_bound_var)
1655 predict_iv_comparison (loop, bb, loop_bound_var, loop_iv_base,
1656 loop_bound_code,
1657 tree_to_shwi (loop_bound_step));
1660 /* Free basic blocks from get_loop_body. */
1661 free (bbs);
1665 /* Attempt to predict probabilities of BB outgoing edges using local
1666 properties. */
1667 static void
1668 bb_estimate_probability_locally (basic_block bb)
1670 rtx_insn *last_insn = BB_END (bb);
1671 rtx cond;
1673 if (! can_predict_insn_p (last_insn))
1674 return;
1675 cond = get_condition (last_insn, NULL, false, false);
1676 if (! cond)
1677 return;
1679 /* Try "pointer heuristic."
1680 A comparison ptr == 0 is predicted as false.
1681 Similarly, a comparison ptr1 == ptr2 is predicted as false. */
1682 if (COMPARISON_P (cond)
1683 && ((REG_P (XEXP (cond, 0)) && REG_POINTER (XEXP (cond, 0)))
1684 || (REG_P (XEXP (cond, 1)) && REG_POINTER (XEXP (cond, 1)))))
1686 if (GET_CODE (cond) == EQ)
1687 predict_insn_def (last_insn, PRED_POINTER, NOT_TAKEN);
1688 else if (GET_CODE (cond) == NE)
1689 predict_insn_def (last_insn, PRED_POINTER, TAKEN);
1691 else
1693 /* Try "opcode heuristic."
1694 EQ tests are usually false and NE tests are usually true. Also,
1695 most quantities are positive, so we can make the appropriate guesses
1696 about signed comparisons against zero. */
1697 switch (GET_CODE (cond))
1699 case CONST_INT:
1700 /* Unconditional branch. */
1701 predict_insn_def (last_insn, PRED_UNCONDITIONAL,
1702 cond == const0_rtx ? NOT_TAKEN : TAKEN);
1703 break;
1705 case EQ:
1706 case UNEQ:
1707 /* Floating point comparisons appears to behave in a very
1708 unpredictable way because of special role of = tests in
1709 FP code. */
1710 if (FLOAT_MODE_P (GET_MODE (XEXP (cond, 0))))
1712 /* Comparisons with 0 are often used for booleans and there is
1713 nothing useful to predict about them. */
1714 else if (XEXP (cond, 1) == const0_rtx
1715 || XEXP (cond, 0) == const0_rtx)
1717 else
1718 predict_insn_def (last_insn, PRED_OPCODE_NONEQUAL, NOT_TAKEN);
1719 break;
1721 case NE:
1722 case LTGT:
1723 /* Floating point comparisons appears to behave in a very
1724 unpredictable way because of special role of = tests in
1725 FP code. */
1726 if (FLOAT_MODE_P (GET_MODE (XEXP (cond, 0))))
1728 /* Comparisons with 0 are often used for booleans and there is
1729 nothing useful to predict about them. */
1730 else if (XEXP (cond, 1) == const0_rtx
1731 || XEXP (cond, 0) == const0_rtx)
1733 else
1734 predict_insn_def (last_insn, PRED_OPCODE_NONEQUAL, TAKEN);
1735 break;
1737 case ORDERED:
1738 predict_insn_def (last_insn, PRED_FPOPCODE, TAKEN);
1739 break;
1741 case UNORDERED:
1742 predict_insn_def (last_insn, PRED_FPOPCODE, NOT_TAKEN);
1743 break;
1745 case LE:
1746 case LT:
1747 if (XEXP (cond, 1) == const0_rtx || XEXP (cond, 1) == const1_rtx
1748 || XEXP (cond, 1) == constm1_rtx)
1749 predict_insn_def (last_insn, PRED_OPCODE_POSITIVE, NOT_TAKEN);
1750 break;
1752 case GE:
1753 case GT:
1754 if (XEXP (cond, 1) == const0_rtx || XEXP (cond, 1) == const1_rtx
1755 || XEXP (cond, 1) == constm1_rtx)
1756 predict_insn_def (last_insn, PRED_OPCODE_POSITIVE, TAKEN);
1757 break;
1759 default:
1760 break;
1764 /* Set edge->probability for each successor edge of BB. */
1765 void
1766 guess_outgoing_edge_probabilities (basic_block bb)
1768 bb_estimate_probability_locally (bb);
1769 combine_predictions_for_insn (BB_END (bb), bb);
1772 static tree expr_expected_value (tree, bitmap, enum br_predictor *predictor);
1774 /* Helper function for expr_expected_value. */
1776 static tree
1777 expr_expected_value_1 (tree type, tree op0, enum tree_code code,
1778 tree op1, bitmap visited, enum br_predictor *predictor)
1780 gimple def;
1782 if (predictor)
1783 *predictor = PRED_UNCONDITIONAL;
1785 if (get_gimple_rhs_class (code) == GIMPLE_SINGLE_RHS)
1787 if (TREE_CONSTANT (op0))
1788 return op0;
1790 if (code != SSA_NAME)
1791 return NULL_TREE;
1793 def = SSA_NAME_DEF_STMT (op0);
1795 /* If we were already here, break the infinite cycle. */
1796 if (!bitmap_set_bit (visited, SSA_NAME_VERSION (op0)))
1797 return NULL;
1799 if (gimple_code (def) == GIMPLE_PHI)
1801 /* All the arguments of the PHI node must have the same constant
1802 length. */
1803 int i, n = gimple_phi_num_args (def);
1804 tree val = NULL, new_val;
1806 for (i = 0; i < n; i++)
1808 tree arg = PHI_ARG_DEF (def, i);
1809 enum br_predictor predictor2;
1811 /* If this PHI has itself as an argument, we cannot
1812 determine the string length of this argument. However,
1813 if we can find an expected constant value for the other
1814 PHI args then we can still be sure that this is
1815 likely a constant. So be optimistic and just
1816 continue with the next argument. */
1817 if (arg == PHI_RESULT (def))
1818 continue;
1820 new_val = expr_expected_value (arg, visited, &predictor2);
1822 /* It is difficult to combine value predictors. Simply assume
1823 that later predictor is weaker and take its prediction. */
1824 if (predictor && *predictor < predictor2)
1825 *predictor = predictor2;
1826 if (!new_val)
1827 return NULL;
1828 if (!val)
1829 val = new_val;
1830 else if (!operand_equal_p (val, new_val, false))
1831 return NULL;
1833 return val;
1835 if (is_gimple_assign (def))
1837 if (gimple_assign_lhs (def) != op0)
1838 return NULL;
1840 return expr_expected_value_1 (TREE_TYPE (gimple_assign_lhs (def)),
1841 gimple_assign_rhs1 (def),
1842 gimple_assign_rhs_code (def),
1843 gimple_assign_rhs2 (def),
1844 visited, predictor);
1847 if (is_gimple_call (def))
1849 tree decl = gimple_call_fndecl (def);
1850 if (!decl)
1852 if (gimple_call_internal_p (def)
1853 && gimple_call_internal_fn (def) == IFN_BUILTIN_EXPECT)
1855 gcc_assert (gimple_call_num_args (def) == 3);
1856 tree val = gimple_call_arg (def, 0);
1857 if (TREE_CONSTANT (val))
1858 return val;
1859 if (predictor)
1861 tree val2 = gimple_call_arg (def, 2);
1862 gcc_assert (TREE_CODE (val2) == INTEGER_CST
1863 && tree_fits_uhwi_p (val2)
1864 && tree_to_uhwi (val2) < END_PREDICTORS);
1865 *predictor = (enum br_predictor) tree_to_uhwi (val2);
1867 return gimple_call_arg (def, 1);
1869 return NULL;
1871 if (DECL_BUILT_IN_CLASS (decl) == BUILT_IN_NORMAL)
1872 switch (DECL_FUNCTION_CODE (decl))
1874 case BUILT_IN_EXPECT:
1876 tree val;
1877 if (gimple_call_num_args (def) != 2)
1878 return NULL;
1879 val = gimple_call_arg (def, 0);
1880 if (TREE_CONSTANT (val))
1881 return val;
1882 if (predictor)
1883 *predictor = PRED_BUILTIN_EXPECT;
1884 return gimple_call_arg (def, 1);
1887 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_N:
1888 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_1:
1889 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_2:
1890 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_4:
1891 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_8:
1892 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_16:
1893 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE:
1894 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_N:
1895 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_1:
1896 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_2:
1897 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_4:
1898 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_8:
1899 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_16:
1900 /* Assume that any given atomic operation has low contention,
1901 and thus the compare-and-swap operation succeeds. */
1902 if (predictor)
1903 *predictor = PRED_COMPARE_AND_SWAP;
1904 return boolean_true_node;
1908 return NULL;
1911 if (get_gimple_rhs_class (code) == GIMPLE_BINARY_RHS)
1913 tree res;
1914 enum br_predictor predictor2;
1915 op0 = expr_expected_value (op0, visited, predictor);
1916 if (!op0)
1917 return NULL;
1918 op1 = expr_expected_value (op1, visited, &predictor2);
1919 if (predictor && *predictor < predictor2)
1920 *predictor = predictor2;
1921 if (!op1)
1922 return NULL;
1923 res = fold_build2 (code, type, op0, op1);
1924 if (TREE_CONSTANT (res))
1925 return res;
1926 return NULL;
1928 if (get_gimple_rhs_class (code) == GIMPLE_UNARY_RHS)
1930 tree res;
1931 op0 = expr_expected_value (op0, visited, predictor);
1932 if (!op0)
1933 return NULL;
1934 res = fold_build1 (code, type, op0);
1935 if (TREE_CONSTANT (res))
1936 return res;
1937 return NULL;
1939 return NULL;
1942 /* Return constant EXPR will likely have at execution time, NULL if unknown.
1943 The function is used by builtin_expect branch predictor so the evidence
1944 must come from this construct and additional possible constant folding.
1946 We may want to implement more involved value guess (such as value range
1947 propagation based prediction), but such tricks shall go to new
1948 implementation. */
1950 static tree
1951 expr_expected_value (tree expr, bitmap visited,
1952 enum br_predictor *predictor)
1954 enum tree_code code;
1955 tree op0, op1;
1957 if (TREE_CONSTANT (expr))
1959 if (predictor)
1960 *predictor = PRED_UNCONDITIONAL;
1961 return expr;
1964 extract_ops_from_tree (expr, &code, &op0, &op1);
1965 return expr_expected_value_1 (TREE_TYPE (expr),
1966 op0, code, op1, visited, predictor);
1969 /* Predict using opcode of the last statement in basic block. */
1970 static void
1971 tree_predict_by_opcode (basic_block bb)
1973 gimple stmt = last_stmt (bb);
1974 edge then_edge;
1975 tree op0, op1;
1976 tree type;
1977 tree val;
1978 enum tree_code cmp;
1979 bitmap visited;
1980 edge_iterator ei;
1981 enum br_predictor predictor;
1983 if (!stmt || gimple_code (stmt) != GIMPLE_COND)
1984 return;
1985 FOR_EACH_EDGE (then_edge, ei, bb->succs)
1986 if (then_edge->flags & EDGE_TRUE_VALUE)
1987 break;
1988 op0 = gimple_cond_lhs (stmt);
1989 op1 = gimple_cond_rhs (stmt);
1990 cmp = gimple_cond_code (stmt);
1991 type = TREE_TYPE (op0);
1992 visited = BITMAP_ALLOC (NULL);
1993 val = expr_expected_value_1 (boolean_type_node, op0, cmp, op1, visited,
1994 &predictor);
1995 BITMAP_FREE (visited);
1996 if (val && TREE_CODE (val) == INTEGER_CST)
1998 if (predictor == PRED_BUILTIN_EXPECT)
2000 int percent = PARAM_VALUE (BUILTIN_EXPECT_PROBABILITY);
2002 gcc_assert (percent >= 0 && percent <= 100);
2003 if (integer_zerop (val))
2004 percent = 100 - percent;
2005 predict_edge (then_edge, PRED_BUILTIN_EXPECT, HITRATE (percent));
2007 else
2008 predict_edge (then_edge, predictor,
2009 integer_zerop (val) ? NOT_TAKEN : TAKEN);
2011 /* Try "pointer heuristic."
2012 A comparison ptr == 0 is predicted as false.
2013 Similarly, a comparison ptr1 == ptr2 is predicted as false. */
2014 if (POINTER_TYPE_P (type))
2016 if (cmp == EQ_EXPR)
2017 predict_edge_def (then_edge, PRED_TREE_POINTER, NOT_TAKEN);
2018 else if (cmp == NE_EXPR)
2019 predict_edge_def (then_edge, PRED_TREE_POINTER, TAKEN);
2021 else
2023 /* Try "opcode heuristic."
2024 EQ tests are usually false and NE tests are usually true. Also,
2025 most quantities are positive, so we can make the appropriate guesses
2026 about signed comparisons against zero. */
2027 switch (cmp)
2029 case EQ_EXPR:
2030 case UNEQ_EXPR:
2031 /* Floating point comparisons appears to behave in a very
2032 unpredictable way because of special role of = tests in
2033 FP code. */
2034 if (FLOAT_TYPE_P (type))
2036 /* Comparisons with 0 are often used for booleans and there is
2037 nothing useful to predict about them. */
2038 else if (integer_zerop (op0) || integer_zerop (op1))
2040 else
2041 predict_edge_def (then_edge, PRED_TREE_OPCODE_NONEQUAL, NOT_TAKEN);
2042 break;
2044 case NE_EXPR:
2045 case LTGT_EXPR:
2046 /* Floating point comparisons appears to behave in a very
2047 unpredictable way because of special role of = tests in
2048 FP code. */
2049 if (FLOAT_TYPE_P (type))
2051 /* Comparisons with 0 are often used for booleans and there is
2052 nothing useful to predict about them. */
2053 else if (integer_zerop (op0)
2054 || integer_zerop (op1))
2056 else
2057 predict_edge_def (then_edge, PRED_TREE_OPCODE_NONEQUAL, TAKEN);
2058 break;
2060 case ORDERED_EXPR:
2061 predict_edge_def (then_edge, PRED_TREE_FPOPCODE, TAKEN);
2062 break;
2064 case UNORDERED_EXPR:
2065 predict_edge_def (then_edge, PRED_TREE_FPOPCODE, NOT_TAKEN);
2066 break;
2068 case LE_EXPR:
2069 case LT_EXPR:
2070 if (integer_zerop (op1)
2071 || integer_onep (op1)
2072 || integer_all_onesp (op1)
2073 || real_zerop (op1)
2074 || real_onep (op1)
2075 || real_minus_onep (op1))
2076 predict_edge_def (then_edge, PRED_TREE_OPCODE_POSITIVE, NOT_TAKEN);
2077 break;
2079 case GE_EXPR:
2080 case GT_EXPR:
2081 if (integer_zerop (op1)
2082 || integer_onep (op1)
2083 || integer_all_onesp (op1)
2084 || real_zerop (op1)
2085 || real_onep (op1)
2086 || real_minus_onep (op1))
2087 predict_edge_def (then_edge, PRED_TREE_OPCODE_POSITIVE, TAKEN);
2088 break;
2090 default:
2091 break;
2095 /* Try to guess whether the value of return means error code. */
2097 static enum br_predictor
2098 return_prediction (tree val, enum prediction *prediction)
2100 /* VOID. */
2101 if (!val)
2102 return PRED_NO_PREDICTION;
2103 /* Different heuristics for pointers and scalars. */
2104 if (POINTER_TYPE_P (TREE_TYPE (val)))
2106 /* NULL is usually not returned. */
2107 if (integer_zerop (val))
2109 *prediction = NOT_TAKEN;
2110 return PRED_NULL_RETURN;
2113 else if (INTEGRAL_TYPE_P (TREE_TYPE (val)))
2115 /* Negative return values are often used to indicate
2116 errors. */
2117 if (TREE_CODE (val) == INTEGER_CST
2118 && tree_int_cst_sgn (val) < 0)
2120 *prediction = NOT_TAKEN;
2121 return PRED_NEGATIVE_RETURN;
2123 /* Constant return values seems to be commonly taken.
2124 Zero/one often represent booleans so exclude them from the
2125 heuristics. */
2126 if (TREE_CONSTANT (val)
2127 && (!integer_zerop (val) && !integer_onep (val)))
2129 *prediction = TAKEN;
2130 return PRED_CONST_RETURN;
2133 return PRED_NO_PREDICTION;
2136 /* Find the basic block with return expression and look up for possible
2137 return value trying to apply RETURN_PREDICTION heuristics. */
2138 static void
2139 apply_return_prediction (void)
2141 gimple return_stmt = NULL;
2142 tree return_val;
2143 edge e;
2144 gimple phi;
2145 int phi_num_args, i;
2146 enum br_predictor pred;
2147 enum prediction direction;
2148 edge_iterator ei;
2150 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
2152 return_stmt = last_stmt (e->src);
2153 if (return_stmt
2154 && gimple_code (return_stmt) == GIMPLE_RETURN)
2155 break;
2157 if (!e)
2158 return;
2159 return_val = gimple_return_retval (return_stmt);
2160 if (!return_val)
2161 return;
2162 if (TREE_CODE (return_val) != SSA_NAME
2163 || !SSA_NAME_DEF_STMT (return_val)
2164 || gimple_code (SSA_NAME_DEF_STMT (return_val)) != GIMPLE_PHI)
2165 return;
2166 phi = SSA_NAME_DEF_STMT (return_val);
2167 phi_num_args = gimple_phi_num_args (phi);
2168 pred = return_prediction (PHI_ARG_DEF (phi, 0), &direction);
2170 /* Avoid the degenerate case where all return values form the function
2171 belongs to same category (ie they are all positive constants)
2172 so we can hardly say something about them. */
2173 for (i = 1; i < phi_num_args; i++)
2174 if (pred != return_prediction (PHI_ARG_DEF (phi, i), &direction))
2175 break;
2176 if (i != phi_num_args)
2177 for (i = 0; i < phi_num_args; i++)
2179 pred = return_prediction (PHI_ARG_DEF (phi, i), &direction);
2180 if (pred != PRED_NO_PREDICTION)
2181 predict_paths_leading_to_edge (gimple_phi_arg_edge (phi, i), pred,
2182 direction);
2186 /* Look for basic block that contains unlikely to happen events
2187 (such as noreturn calls) and mark all paths leading to execution
2188 of this basic blocks as unlikely. */
2190 static void
2191 tree_bb_level_predictions (void)
2193 basic_block bb;
2194 bool has_return_edges = false;
2195 edge e;
2196 edge_iterator ei;
2198 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
2199 if (!(e->flags & (EDGE_ABNORMAL | EDGE_FAKE | EDGE_EH)))
2201 has_return_edges = true;
2202 break;
2205 apply_return_prediction ();
2207 FOR_EACH_BB_FN (bb, cfun)
2209 gimple_stmt_iterator gsi;
2211 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
2213 gimple stmt = gsi_stmt (gsi);
2214 tree decl;
2216 if (is_gimple_call (stmt))
2218 if ((gimple_call_flags (stmt) & ECF_NORETURN)
2219 && has_return_edges)
2220 predict_paths_leading_to (bb, PRED_NORETURN,
2221 NOT_TAKEN);
2222 decl = gimple_call_fndecl (stmt);
2223 if (decl
2224 && lookup_attribute ("cold",
2225 DECL_ATTRIBUTES (decl)))
2226 predict_paths_leading_to (bb, PRED_COLD_FUNCTION,
2227 NOT_TAKEN);
2229 else if (gimple_code (stmt) == GIMPLE_PREDICT)
2231 predict_paths_leading_to (bb, gimple_predict_predictor (stmt),
2232 gimple_predict_outcome (stmt));
2233 /* Keep GIMPLE_PREDICT around so early inlining will propagate
2234 hints to callers. */
2240 #ifdef ENABLE_CHECKING
2242 /* Callback for hash_map::traverse, asserts that the pointer map is
2243 empty. */
2245 bool
2246 assert_is_empty (const_basic_block const &, edge_prediction *const &value,
2247 void *)
2249 gcc_assert (!value);
2250 return false;
2252 #endif
2254 /* Predict branch probabilities and estimate profile for basic block BB. */
2256 static void
2257 tree_estimate_probability_bb (basic_block bb)
2259 edge e;
2260 edge_iterator ei;
2261 gimple last;
2263 FOR_EACH_EDGE (e, ei, bb->succs)
2265 /* Predict edges to user labels with attributes. */
2266 if (e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
2268 gimple_stmt_iterator gi;
2269 for (gi = gsi_start_bb (e->dest); !gsi_end_p (gi); gsi_next (&gi))
2271 gimple stmt = gsi_stmt (gi);
2272 tree decl;
2274 if (gimple_code (stmt) != GIMPLE_LABEL)
2275 break;
2276 decl = gimple_label_label (stmt);
2277 if (DECL_ARTIFICIAL (decl))
2278 continue;
2280 /* Finally, we have a user-defined label. */
2281 if (lookup_attribute ("cold", DECL_ATTRIBUTES (decl)))
2282 predict_edge_def (e, PRED_COLD_LABEL, NOT_TAKEN);
2283 else if (lookup_attribute ("hot", DECL_ATTRIBUTES (decl)))
2284 predict_edge_def (e, PRED_HOT_LABEL, TAKEN);
2288 /* Predict early returns to be probable, as we've already taken
2289 care for error returns and other cases are often used for
2290 fast paths through function.
2292 Since we've already removed the return statements, we are
2293 looking for CFG like:
2295 if (conditional)
2298 goto return_block
2300 some other blocks
2301 return_block:
2302 return_stmt. */
2303 if (e->dest != bb->next_bb
2304 && e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
2305 && single_succ_p (e->dest)
2306 && single_succ_edge (e->dest)->dest == EXIT_BLOCK_PTR_FOR_FN (cfun)
2307 && (last = last_stmt (e->dest)) != NULL
2308 && gimple_code (last) == GIMPLE_RETURN)
2310 edge e1;
2311 edge_iterator ei1;
2313 if (single_succ_p (bb))
2315 FOR_EACH_EDGE (e1, ei1, bb->preds)
2316 if (!predicted_by_p (e1->src, PRED_NULL_RETURN)
2317 && !predicted_by_p (e1->src, PRED_CONST_RETURN)
2318 && !predicted_by_p (e1->src, PRED_NEGATIVE_RETURN))
2319 predict_edge_def (e1, PRED_TREE_EARLY_RETURN, NOT_TAKEN);
2321 else
2322 if (!predicted_by_p (e->src, PRED_NULL_RETURN)
2323 && !predicted_by_p (e->src, PRED_CONST_RETURN)
2324 && !predicted_by_p (e->src, PRED_NEGATIVE_RETURN))
2325 predict_edge_def (e, PRED_TREE_EARLY_RETURN, NOT_TAKEN);
2328 /* Look for block we are guarding (ie we dominate it,
2329 but it doesn't postdominate us). */
2330 if (e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun) && e->dest != bb
2331 && dominated_by_p (CDI_DOMINATORS, e->dest, e->src)
2332 && !dominated_by_p (CDI_POST_DOMINATORS, e->src, e->dest))
2334 gimple_stmt_iterator bi;
2336 /* The call heuristic claims that a guarded function call
2337 is improbable. This is because such calls are often used
2338 to signal exceptional situations such as printing error
2339 messages. */
2340 for (bi = gsi_start_bb (e->dest); !gsi_end_p (bi);
2341 gsi_next (&bi))
2343 gimple stmt = gsi_stmt (bi);
2344 if (is_gimple_call (stmt)
2345 /* Constant and pure calls are hardly used to signalize
2346 something exceptional. */
2347 && gimple_has_side_effects (stmt))
2349 predict_edge_def (e, PRED_CALL, NOT_TAKEN);
2350 break;
2355 tree_predict_by_opcode (bb);
2358 /* Predict branch probabilities and estimate profile of the tree CFG.
2359 This function can be called from the loop optimizers to recompute
2360 the profile information. */
2362 void
2363 tree_estimate_probability (void)
2365 basic_block bb;
2367 add_noreturn_fake_exit_edges ();
2368 connect_infinite_loops_to_exit ();
2369 /* We use loop_niter_by_eval, which requires that the loops have
2370 preheaders. */
2371 create_preheaders (CP_SIMPLE_PREHEADERS);
2372 calculate_dominance_info (CDI_POST_DOMINATORS);
2374 bb_predictions = new hash_map<const_basic_block, edge_prediction *>;
2375 tree_bb_level_predictions ();
2376 record_loop_exits ();
2378 if (number_of_loops (cfun) > 1)
2379 predict_loops ();
2381 FOR_EACH_BB_FN (bb, cfun)
2382 tree_estimate_probability_bb (bb);
2384 FOR_EACH_BB_FN (bb, cfun)
2385 combine_predictions_for_bb (bb);
2387 #ifdef ENABLE_CHECKING
2388 bb_predictions->traverse<void *, assert_is_empty> (NULL);
2389 #endif
2390 delete bb_predictions;
2391 bb_predictions = NULL;
2393 estimate_bb_frequencies (false);
2394 free_dominance_info (CDI_POST_DOMINATORS);
2395 remove_fake_exit_edges ();
2398 /* Predict edges to successors of CUR whose sources are not postdominated by
2399 BB by PRED and recurse to all postdominators. */
2401 static void
2402 predict_paths_for_bb (basic_block cur, basic_block bb,
2403 enum br_predictor pred,
2404 enum prediction taken,
2405 bitmap visited)
2407 edge e;
2408 edge_iterator ei;
2409 basic_block son;
2411 /* We are looking for all edges forming edge cut induced by
2412 set of all blocks postdominated by BB. */
2413 FOR_EACH_EDGE (e, ei, cur->preds)
2414 if (e->src->index >= NUM_FIXED_BLOCKS
2415 && !dominated_by_p (CDI_POST_DOMINATORS, e->src, bb))
2417 edge e2;
2418 edge_iterator ei2;
2419 bool found = false;
2421 /* Ignore fake edges and eh, we predict them as not taken anyway. */
2422 if (e->flags & (EDGE_EH | EDGE_FAKE))
2423 continue;
2424 gcc_assert (bb == cur || dominated_by_p (CDI_POST_DOMINATORS, cur, bb));
2426 /* See if there is an edge from e->src that is not abnormal
2427 and does not lead to BB. */
2428 FOR_EACH_EDGE (e2, ei2, e->src->succs)
2429 if (e2 != e
2430 && !(e2->flags & (EDGE_EH | EDGE_FAKE))
2431 && !dominated_by_p (CDI_POST_DOMINATORS, e2->dest, bb))
2433 found = true;
2434 break;
2437 /* If there is non-abnormal path leaving e->src, predict edge
2438 using predictor. Otherwise we need to look for paths
2439 leading to e->src.
2441 The second may lead to infinite loop in the case we are predicitng
2442 regions that are only reachable by abnormal edges. We simply
2443 prevent visiting given BB twice. */
2444 if (found)
2445 predict_edge_def (e, pred, taken);
2446 else if (bitmap_set_bit (visited, e->src->index))
2447 predict_paths_for_bb (e->src, e->src, pred, taken, visited);
2449 for (son = first_dom_son (CDI_POST_DOMINATORS, cur);
2450 son;
2451 son = next_dom_son (CDI_POST_DOMINATORS, son))
2452 predict_paths_for_bb (son, bb, pred, taken, visited);
2455 /* Sets branch probabilities according to PREDiction and
2456 FLAGS. */
2458 static void
2459 predict_paths_leading_to (basic_block bb, enum br_predictor pred,
2460 enum prediction taken)
2462 bitmap visited = BITMAP_ALLOC (NULL);
2463 predict_paths_for_bb (bb, bb, pred, taken, visited);
2464 BITMAP_FREE (visited);
2467 /* Like predict_paths_leading_to but take edge instead of basic block. */
2469 static void
2470 predict_paths_leading_to_edge (edge e, enum br_predictor pred,
2471 enum prediction taken)
2473 bool has_nonloop_edge = false;
2474 edge_iterator ei;
2475 edge e2;
2477 basic_block bb = e->src;
2478 FOR_EACH_EDGE (e2, ei, bb->succs)
2479 if (e2->dest != e->src && e2->dest != e->dest
2480 && !(e->flags & (EDGE_EH | EDGE_FAKE))
2481 && !dominated_by_p (CDI_POST_DOMINATORS, e->src, e2->dest))
2483 has_nonloop_edge = true;
2484 break;
2486 if (!has_nonloop_edge)
2488 bitmap visited = BITMAP_ALLOC (NULL);
2489 predict_paths_for_bb (bb, bb, pred, taken, visited);
2490 BITMAP_FREE (visited);
2492 else
2493 predict_edge_def (e, pred, taken);
2496 /* This is used to carry information about basic blocks. It is
2497 attached to the AUX field of the standard CFG block. */
2499 typedef struct block_info_def
2501 /* Estimated frequency of execution of basic_block. */
2502 sreal frequency;
2504 /* To keep queue of basic blocks to process. */
2505 basic_block next;
2507 /* Number of predecessors we need to visit first. */
2508 int npredecessors;
2509 } *block_info;
2511 /* Similar information for edges. */
2512 typedef struct edge_info_def
2514 /* In case edge is a loopback edge, the probability edge will be reached
2515 in case header is. Estimated number of iterations of the loop can be
2516 then computed as 1 / (1 - back_edge_prob). */
2517 sreal back_edge_prob;
2518 /* True if the edge is a loopback edge in the natural loop. */
2519 unsigned int back_edge:1;
2520 } *edge_info;
2522 #define BLOCK_INFO(B) ((block_info) (B)->aux)
2523 #define EDGE_INFO(E) ((edge_info) (E)->aux)
2525 /* Helper function for estimate_bb_frequencies.
2526 Propagate the frequencies in blocks marked in
2527 TOVISIT, starting in HEAD. */
2529 static void
2530 propagate_freq (basic_block head, bitmap tovisit)
2532 basic_block bb;
2533 basic_block last;
2534 unsigned i;
2535 edge e;
2536 basic_block nextbb;
2537 bitmap_iterator bi;
2539 /* For each basic block we need to visit count number of his predecessors
2540 we need to visit first. */
2541 EXECUTE_IF_SET_IN_BITMAP (tovisit, 0, i, bi)
2543 edge_iterator ei;
2544 int count = 0;
2546 bb = BASIC_BLOCK_FOR_FN (cfun, i);
2548 FOR_EACH_EDGE (e, ei, bb->preds)
2550 bool visit = bitmap_bit_p (tovisit, e->src->index);
2552 if (visit && !(e->flags & EDGE_DFS_BACK))
2553 count++;
2554 else if (visit && dump_file && !EDGE_INFO (e)->back_edge)
2555 fprintf (dump_file,
2556 "Irreducible region hit, ignoring edge to %i->%i\n",
2557 e->src->index, bb->index);
2559 BLOCK_INFO (bb)->npredecessors = count;
2560 /* When function never returns, we will never process exit block. */
2561 if (!count && bb == EXIT_BLOCK_PTR_FOR_FN (cfun))
2562 bb->count = bb->frequency = 0;
2565 memcpy (&BLOCK_INFO (head)->frequency, &real_one, sizeof (real_one));
2566 last = head;
2567 for (bb = head; bb; bb = nextbb)
2569 edge_iterator ei;
2570 sreal cyclic_probability, frequency;
2572 memcpy (&cyclic_probability, &real_zero, sizeof (real_zero));
2573 memcpy (&frequency, &real_zero, sizeof (real_zero));
2575 nextbb = BLOCK_INFO (bb)->next;
2576 BLOCK_INFO (bb)->next = NULL;
2578 /* Compute frequency of basic block. */
2579 if (bb != head)
2581 #ifdef ENABLE_CHECKING
2582 FOR_EACH_EDGE (e, ei, bb->preds)
2583 gcc_assert (!bitmap_bit_p (tovisit, e->src->index)
2584 || (e->flags & EDGE_DFS_BACK));
2585 #endif
2587 FOR_EACH_EDGE (e, ei, bb->preds)
2588 if (EDGE_INFO (e)->back_edge)
2590 sreal_add (&cyclic_probability, &cyclic_probability,
2591 &EDGE_INFO (e)->back_edge_prob);
2593 else if (!(e->flags & EDGE_DFS_BACK))
2595 sreal tmp;
2597 /* frequency += (e->probability
2598 * BLOCK_INFO (e->src)->frequency /
2599 REG_BR_PROB_BASE); */
2601 sreal_init (&tmp, e->probability, 0);
2602 sreal_mul (&tmp, &tmp, &BLOCK_INFO (e->src)->frequency);
2603 sreal_mul (&tmp, &tmp, &real_inv_br_prob_base);
2604 sreal_add (&frequency, &frequency, &tmp);
2607 if (sreal_compare (&cyclic_probability, &real_zero) == 0)
2609 memcpy (&BLOCK_INFO (bb)->frequency, &frequency,
2610 sizeof (frequency));
2612 else
2614 if (sreal_compare (&cyclic_probability, &real_almost_one) > 0)
2616 memcpy (&cyclic_probability, &real_almost_one,
2617 sizeof (real_almost_one));
2620 /* BLOCK_INFO (bb)->frequency = frequency
2621 / (1 - cyclic_probability) */
2623 sreal_sub (&cyclic_probability, &real_one, &cyclic_probability);
2624 sreal_div (&BLOCK_INFO (bb)->frequency,
2625 &frequency, &cyclic_probability);
2629 bitmap_clear_bit (tovisit, bb->index);
2631 e = find_edge (bb, head);
2632 if (e)
2634 sreal tmp;
2636 /* EDGE_INFO (e)->back_edge_prob
2637 = ((e->probability * BLOCK_INFO (bb)->frequency)
2638 / REG_BR_PROB_BASE); */
2640 sreal_init (&tmp, e->probability, 0);
2641 sreal_mul (&tmp, &tmp, &BLOCK_INFO (bb)->frequency);
2642 sreal_mul (&EDGE_INFO (e)->back_edge_prob,
2643 &tmp, &real_inv_br_prob_base);
2646 /* Propagate to successor blocks. */
2647 FOR_EACH_EDGE (e, ei, bb->succs)
2648 if (!(e->flags & EDGE_DFS_BACK)
2649 && BLOCK_INFO (e->dest)->npredecessors)
2651 BLOCK_INFO (e->dest)->npredecessors--;
2652 if (!BLOCK_INFO (e->dest)->npredecessors)
2654 if (!nextbb)
2655 nextbb = e->dest;
2656 else
2657 BLOCK_INFO (last)->next = e->dest;
2659 last = e->dest;
2665 /* Estimate frequencies in loops at same nest level. */
2667 static void
2668 estimate_loops_at_level (struct loop *first_loop)
2670 struct loop *loop;
2672 for (loop = first_loop; loop; loop = loop->next)
2674 edge e;
2675 basic_block *bbs;
2676 unsigned i;
2677 bitmap tovisit = BITMAP_ALLOC (NULL);
2679 estimate_loops_at_level (loop->inner);
2681 /* Find current loop back edge and mark it. */
2682 e = loop_latch_edge (loop);
2683 EDGE_INFO (e)->back_edge = 1;
2685 bbs = get_loop_body (loop);
2686 for (i = 0; i < loop->num_nodes; i++)
2687 bitmap_set_bit (tovisit, bbs[i]->index);
2688 free (bbs);
2689 propagate_freq (loop->header, tovisit);
2690 BITMAP_FREE (tovisit);
2694 /* Propagates frequencies through structure of loops. */
2696 static void
2697 estimate_loops (void)
2699 bitmap tovisit = BITMAP_ALLOC (NULL);
2700 basic_block bb;
2702 /* Start by estimating the frequencies in the loops. */
2703 if (number_of_loops (cfun) > 1)
2704 estimate_loops_at_level (current_loops->tree_root->inner);
2706 /* Now propagate the frequencies through all the blocks. */
2707 FOR_ALL_BB_FN (bb, cfun)
2709 bitmap_set_bit (tovisit, bb->index);
2711 propagate_freq (ENTRY_BLOCK_PTR_FOR_FN (cfun), tovisit);
2712 BITMAP_FREE (tovisit);
2715 /* Drop the profile for NODE to guessed, and update its frequency based on
2716 whether it is expected to be hot given the CALL_COUNT. */
2718 static void
2719 drop_profile (struct cgraph_node *node, gcov_type call_count)
2721 struct function *fn = DECL_STRUCT_FUNCTION (node->decl);
2722 /* In the case where this was called by another function with a
2723 dropped profile, call_count will be 0. Since there are no
2724 non-zero call counts to this function, we don't know for sure
2725 whether it is hot, and therefore it will be marked normal below. */
2726 bool hot = maybe_hot_count_p (NULL, call_count);
2728 if (dump_file)
2729 fprintf (dump_file,
2730 "Dropping 0 profile for %s/%i. %s based on calls.\n",
2731 node->name (), node->order,
2732 hot ? "Function is hot" : "Function is normal");
2733 /* We only expect to miss profiles for functions that are reached
2734 via non-zero call edges in cases where the function may have
2735 been linked from another module or library (COMDATs and extern
2736 templates). See the comments below for handle_missing_profiles.
2737 Also, only warn in cases where the missing counts exceed the
2738 number of training runs. In certain cases with an execv followed
2739 by a no-return call the profile for the no-return call is not
2740 dumped and there can be a mismatch. */
2741 if (!DECL_COMDAT (node->decl) && !DECL_EXTERNAL (node->decl)
2742 && call_count > profile_info->runs)
2744 if (flag_profile_correction)
2746 if (dump_file)
2747 fprintf (dump_file,
2748 "Missing counts for called function %s/%i\n",
2749 node->name (), node->order);
2751 else
2752 warning (0, "Missing counts for called function %s/%i",
2753 node->name (), node->order);
2756 profile_status_for_fn (fn)
2757 = (flag_guess_branch_prob ? PROFILE_GUESSED : PROFILE_ABSENT);
2758 node->frequency
2759 = hot ? NODE_FREQUENCY_HOT : NODE_FREQUENCY_NORMAL;
2762 /* In the case of COMDAT routines, multiple object files will contain the same
2763 function and the linker will select one for the binary. In that case
2764 all the other copies from the profile instrument binary will be missing
2765 profile counts. Look for cases where this happened, due to non-zero
2766 call counts going to 0-count functions, and drop the profile to guessed
2767 so that we can use the estimated probabilities and avoid optimizing only
2768 for size.
2770 The other case where the profile may be missing is when the routine
2771 is not going to be emitted to the object file, e.g. for "extern template"
2772 class methods. Those will be marked DECL_EXTERNAL. Emit a warning in
2773 all other cases of non-zero calls to 0-count functions. */
2775 void
2776 handle_missing_profiles (void)
2778 struct cgraph_node *node;
2779 int unlikely_count_fraction = PARAM_VALUE (UNLIKELY_BB_COUNT_FRACTION);
2780 vec<struct cgraph_node *> worklist;
2781 worklist.create (64);
2783 /* See if 0 count function has non-0 count callers. In this case we
2784 lost some profile. Drop its function profile to PROFILE_GUESSED. */
2785 FOR_EACH_DEFINED_FUNCTION (node)
2787 struct cgraph_edge *e;
2788 gcov_type call_count = 0;
2789 gcov_type max_tp_first_run = 0;
2790 struct function *fn = DECL_STRUCT_FUNCTION (node->decl);
2792 if (node->count)
2793 continue;
2794 for (e = node->callers; e; e = e->next_caller)
2796 call_count += e->count;
2798 if (e->caller->tp_first_run > max_tp_first_run)
2799 max_tp_first_run = e->caller->tp_first_run;
2802 /* If time profile is missing, let assign the maximum that comes from
2803 caller functions. */
2804 if (!node->tp_first_run && max_tp_first_run)
2805 node->tp_first_run = max_tp_first_run + 1;
2807 if (call_count
2808 && fn && fn->cfg
2809 && (call_count * unlikely_count_fraction >= profile_info->runs))
2811 drop_profile (node, call_count);
2812 worklist.safe_push (node);
2816 /* Propagate the profile dropping to other 0-count COMDATs that are
2817 potentially called by COMDATs we already dropped the profile on. */
2818 while (worklist.length () > 0)
2820 struct cgraph_edge *e;
2822 node = worklist.pop ();
2823 for (e = node->callees; e; e = e->next_caller)
2825 struct cgraph_node *callee = e->callee;
2826 struct function *fn = DECL_STRUCT_FUNCTION (callee->decl);
2828 if (callee->count > 0)
2829 continue;
2830 if (DECL_COMDAT (callee->decl) && fn && fn->cfg
2831 && profile_status_for_fn (fn) == PROFILE_READ)
2833 drop_profile (node, 0);
2834 worklist.safe_push (callee);
2838 worklist.release ();
2841 /* Convert counts measured by profile driven feedback to frequencies.
2842 Return nonzero iff there was any nonzero execution count. */
2845 counts_to_freqs (void)
2847 gcov_type count_max, true_count_max = 0;
2848 basic_block bb;
2850 /* Don't overwrite the estimated frequencies when the profile for
2851 the function is missing. We may drop this function PROFILE_GUESSED
2852 later in drop_profile (). */
2853 if (!ENTRY_BLOCK_PTR_FOR_FN (cfun)->count)
2854 return 0;
2856 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun), NULL, next_bb)
2857 true_count_max = MAX (bb->count, true_count_max);
2859 count_max = MAX (true_count_max, 1);
2860 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun), NULL, next_bb)
2861 bb->frequency = (bb->count * BB_FREQ_MAX + count_max / 2) / count_max;
2863 return true_count_max;
2866 /* Return true if function is likely to be expensive, so there is no point to
2867 optimize performance of prologue, epilogue or do inlining at the expense
2868 of code size growth. THRESHOLD is the limit of number of instructions
2869 function can execute at average to be still considered not expensive. */
2871 bool
2872 expensive_function_p (int threshold)
2874 unsigned int sum = 0;
2875 basic_block bb;
2876 unsigned int limit;
2878 /* We can not compute accurately for large thresholds due to scaled
2879 frequencies. */
2880 gcc_assert (threshold <= BB_FREQ_MAX);
2882 /* Frequencies are out of range. This either means that function contains
2883 internal loop executing more than BB_FREQ_MAX times or profile feedback
2884 is available and function has not been executed at all. */
2885 if (ENTRY_BLOCK_PTR_FOR_FN (cfun)->frequency == 0)
2886 return true;
2888 /* Maximally BB_FREQ_MAX^2 so overflow won't happen. */
2889 limit = ENTRY_BLOCK_PTR_FOR_FN (cfun)->frequency * threshold;
2890 FOR_EACH_BB_FN (bb, cfun)
2892 rtx_insn *insn;
2894 FOR_BB_INSNS (bb, insn)
2895 if (active_insn_p (insn))
2897 sum += bb->frequency;
2898 if (sum > limit)
2899 return true;
2903 return false;
2906 /* Estimate and propagate basic block frequencies using the given branch
2907 probabilities. If FORCE is true, the frequencies are used to estimate
2908 the counts even when there are already non-zero profile counts. */
2910 void
2911 estimate_bb_frequencies (bool force)
2913 basic_block bb;
2914 sreal freq_max;
2916 if (force || profile_status_for_fn (cfun) != PROFILE_READ || !counts_to_freqs ())
2918 static int real_values_initialized = 0;
2920 if (!real_values_initialized)
2922 real_values_initialized = 1;
2923 sreal_init (&real_zero, 0, 0);
2924 sreal_init (&real_one, 1, 0);
2925 sreal_init (&real_br_prob_base, REG_BR_PROB_BASE, 0);
2926 sreal_init (&real_bb_freq_max, BB_FREQ_MAX, 0);
2927 sreal_init (&real_one_half, 1, -1);
2928 sreal_div (&real_inv_br_prob_base, &real_one, &real_br_prob_base);
2929 sreal_sub (&real_almost_one, &real_one, &real_inv_br_prob_base);
2932 mark_dfs_back_edges ();
2934 single_succ_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun))->probability =
2935 REG_BR_PROB_BASE;
2937 /* Set up block info for each basic block. */
2938 alloc_aux_for_blocks (sizeof (struct block_info_def));
2939 alloc_aux_for_edges (sizeof (struct edge_info_def));
2940 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun), NULL, next_bb)
2942 edge e;
2943 edge_iterator ei;
2945 FOR_EACH_EDGE (e, ei, bb->succs)
2947 sreal_init (&EDGE_INFO (e)->back_edge_prob, e->probability, 0);
2948 sreal_mul (&EDGE_INFO (e)->back_edge_prob,
2949 &EDGE_INFO (e)->back_edge_prob,
2950 &real_inv_br_prob_base);
2954 /* First compute frequencies locally for each loop from innermost
2955 to outermost to examine frequencies for back edges. */
2956 estimate_loops ();
2958 memcpy (&freq_max, &real_zero, sizeof (real_zero));
2959 FOR_EACH_BB_FN (bb, cfun)
2960 if (sreal_compare (&freq_max, &BLOCK_INFO (bb)->frequency) < 0)
2961 memcpy (&freq_max, &BLOCK_INFO (bb)->frequency, sizeof (freq_max));
2963 sreal_div (&freq_max, &real_bb_freq_max, &freq_max);
2964 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun), NULL, next_bb)
2966 sreal tmp;
2968 sreal_mul (&tmp, &BLOCK_INFO (bb)->frequency, &freq_max);
2969 sreal_add (&tmp, &tmp, &real_one_half);
2970 bb->frequency = sreal_to_int (&tmp);
2973 free_aux_for_blocks ();
2974 free_aux_for_edges ();
2976 compute_function_frequency ();
2979 /* Decide whether function is hot, cold or unlikely executed. */
2980 void
2981 compute_function_frequency (void)
2983 basic_block bb;
2984 struct cgraph_node *node = cgraph_node::get (current_function_decl);
2986 if (DECL_STATIC_CONSTRUCTOR (current_function_decl)
2987 || MAIN_NAME_P (DECL_NAME (current_function_decl)))
2988 node->only_called_at_startup = true;
2989 if (DECL_STATIC_DESTRUCTOR (current_function_decl))
2990 node->only_called_at_exit = true;
2992 if (profile_status_for_fn (cfun) != PROFILE_READ)
2994 int flags = flags_from_decl_or_type (current_function_decl);
2995 if (lookup_attribute ("cold", DECL_ATTRIBUTES (current_function_decl))
2996 != NULL)
2997 node->frequency = NODE_FREQUENCY_UNLIKELY_EXECUTED;
2998 else if (lookup_attribute ("hot", DECL_ATTRIBUTES (current_function_decl))
2999 != NULL)
3000 node->frequency = NODE_FREQUENCY_HOT;
3001 else if (flags & ECF_NORETURN)
3002 node->frequency = NODE_FREQUENCY_EXECUTED_ONCE;
3003 else if (MAIN_NAME_P (DECL_NAME (current_function_decl)))
3004 node->frequency = NODE_FREQUENCY_EXECUTED_ONCE;
3005 else if (DECL_STATIC_CONSTRUCTOR (current_function_decl)
3006 || DECL_STATIC_DESTRUCTOR (current_function_decl))
3007 node->frequency = NODE_FREQUENCY_EXECUTED_ONCE;
3008 return;
3011 /* Only first time try to drop function into unlikely executed.
3012 After inlining the roundoff errors may confuse us.
3013 Ipa-profile pass will drop functions only called from unlikely
3014 functions to unlikely and that is most of what we care about. */
3015 if (!cfun->after_inlining)
3016 node->frequency = NODE_FREQUENCY_UNLIKELY_EXECUTED;
3017 FOR_EACH_BB_FN (bb, cfun)
3019 if (maybe_hot_bb_p (cfun, bb))
3021 node->frequency = NODE_FREQUENCY_HOT;
3022 return;
3024 if (!probably_never_executed_bb_p (cfun, bb))
3025 node->frequency = NODE_FREQUENCY_NORMAL;
3029 /* Build PREDICT_EXPR. */
3030 tree
3031 build_predict_expr (enum br_predictor predictor, enum prediction taken)
3033 tree t = build1 (PREDICT_EXPR, void_type_node,
3034 build_int_cst (integer_type_node, predictor));
3035 SET_PREDICT_EXPR_OUTCOME (t, taken);
3036 return t;
3039 const char *
3040 predictor_name (enum br_predictor predictor)
3042 return predictor_info[predictor].name;
3045 /* Predict branch probabilities and estimate profile of the tree CFG. */
3047 namespace {
3049 const pass_data pass_data_profile =
3051 GIMPLE_PASS, /* type */
3052 "profile_estimate", /* name */
3053 OPTGROUP_NONE, /* optinfo_flags */
3054 TV_BRANCH_PROB, /* tv_id */
3055 PROP_cfg, /* properties_required */
3056 0, /* properties_provided */
3057 0, /* properties_destroyed */
3058 0, /* todo_flags_start */
3059 0, /* todo_flags_finish */
3062 class pass_profile : public gimple_opt_pass
3064 public:
3065 pass_profile (gcc::context *ctxt)
3066 : gimple_opt_pass (pass_data_profile, ctxt)
3069 /* opt_pass methods: */
3070 virtual bool gate (function *) { return flag_guess_branch_prob; }
3071 virtual unsigned int execute (function *);
3073 }; // class pass_profile
3075 unsigned int
3076 pass_profile::execute (function *fun)
3078 unsigned nb_loops;
3080 loop_optimizer_init (LOOPS_NORMAL);
3081 if (dump_file && (dump_flags & TDF_DETAILS))
3082 flow_loops_dump (dump_file, NULL, 0);
3084 mark_irreducible_loops ();
3086 nb_loops = number_of_loops (fun);
3087 if (nb_loops > 1)
3088 scev_initialize ();
3090 tree_estimate_probability ();
3092 if (nb_loops > 1)
3093 scev_finalize ();
3095 loop_optimizer_finalize ();
3096 if (dump_file && (dump_flags & TDF_DETAILS))
3097 gimple_dump_cfg (dump_file, dump_flags);
3098 if (profile_status_for_fn (fun) == PROFILE_ABSENT)
3099 profile_status_for_fn (fun) = PROFILE_GUESSED;
3100 return 0;
3103 } // anon namespace
3105 gimple_opt_pass *
3106 make_pass_profile (gcc::context *ctxt)
3108 return new pass_profile (ctxt);
3111 namespace {
3113 const pass_data pass_data_strip_predict_hints =
3115 GIMPLE_PASS, /* type */
3116 "*strip_predict_hints", /* name */
3117 OPTGROUP_NONE, /* optinfo_flags */
3118 TV_BRANCH_PROB, /* tv_id */
3119 PROP_cfg, /* properties_required */
3120 0, /* properties_provided */
3121 0, /* properties_destroyed */
3122 0, /* todo_flags_start */
3123 0, /* todo_flags_finish */
3126 class pass_strip_predict_hints : public gimple_opt_pass
3128 public:
3129 pass_strip_predict_hints (gcc::context *ctxt)
3130 : gimple_opt_pass (pass_data_strip_predict_hints, ctxt)
3133 /* opt_pass methods: */
3134 opt_pass * clone () { return new pass_strip_predict_hints (m_ctxt); }
3135 virtual unsigned int execute (function *);
3137 }; // class pass_strip_predict_hints
3139 /* Get rid of all builtin_expect calls and GIMPLE_PREDICT statements
3140 we no longer need. */
3141 unsigned int
3142 pass_strip_predict_hints::execute (function *fun)
3144 basic_block bb;
3145 gimple ass_stmt;
3146 tree var;
3148 FOR_EACH_BB_FN (bb, fun)
3150 gimple_stmt_iterator bi;
3151 for (bi = gsi_start_bb (bb); !gsi_end_p (bi);)
3153 gimple stmt = gsi_stmt (bi);
3155 if (gimple_code (stmt) == GIMPLE_PREDICT)
3157 gsi_remove (&bi, true);
3158 continue;
3160 else if (is_gimple_call (stmt))
3162 tree fndecl = gimple_call_fndecl (stmt);
3164 if ((fndecl
3165 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
3166 && DECL_FUNCTION_CODE (fndecl) == BUILT_IN_EXPECT
3167 && gimple_call_num_args (stmt) == 2)
3168 || (gimple_call_internal_p (stmt)
3169 && gimple_call_internal_fn (stmt) == IFN_BUILTIN_EXPECT))
3171 var = gimple_call_lhs (stmt);
3172 if (var)
3174 ass_stmt
3175 = gimple_build_assign (var, gimple_call_arg (stmt, 0));
3176 gsi_replace (&bi, ass_stmt, true);
3178 else
3180 gsi_remove (&bi, true);
3181 continue;
3185 gsi_next (&bi);
3188 return 0;
3191 } // anon namespace
3193 gimple_opt_pass *
3194 make_pass_strip_predict_hints (gcc::context *ctxt)
3196 return new pass_strip_predict_hints (ctxt);
3199 /* Rebuild function frequencies. Passes are in general expected to
3200 maintain profile by hand, however in some cases this is not possible:
3201 for example when inlining several functions with loops freuqencies might run
3202 out of scale and thus needs to be recomputed. */
3204 void
3205 rebuild_frequencies (void)
3207 timevar_push (TV_REBUILD_FREQUENCIES);
3209 /* When the max bb count in the function is small, there is a higher
3210 chance that there were truncation errors in the integer scaling
3211 of counts by inlining and other optimizations. This could lead
3212 to incorrect classification of code as being cold when it isn't.
3213 In that case, force the estimation of bb counts/frequencies from the
3214 branch probabilities, rather than computing frequencies from counts,
3215 which may also lead to frequencies incorrectly reduced to 0. There
3216 is less precision in the probabilities, so we only do this for small
3217 max counts. */
3218 gcov_type count_max = 0;
3219 basic_block bb;
3220 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun), NULL, next_bb)
3221 count_max = MAX (bb->count, count_max);
3223 if (profile_status_for_fn (cfun) == PROFILE_GUESSED
3224 || (profile_status_for_fn (cfun) == PROFILE_READ && count_max < REG_BR_PROB_BASE/10))
3226 loop_optimizer_init (0);
3227 add_noreturn_fake_exit_edges ();
3228 mark_irreducible_loops ();
3229 connect_infinite_loops_to_exit ();
3230 estimate_bb_frequencies (true);
3231 remove_fake_exit_edges ();
3232 loop_optimizer_finalize ();
3234 else if (profile_status_for_fn (cfun) == PROFILE_READ)
3235 counts_to_freqs ();
3236 else
3237 gcc_unreachable ();
3238 timevar_pop (TV_REBUILD_FREQUENCIES);