* pt.c (lookup_template_class_1): Splice out abi_tag attribute if
[official-gcc.git] / gcc / ggc-page.c
blob2a9b2d9e7fa4d7cc2aa148f134433dd5098dfdf3
1 /* "Bag-of-pages" garbage collector for the GNU compiler.
2 Copyright (C) 1999-2014 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "tm.h"
24 #include "tree.h"
25 #include "rtl.h"
26 #include "tm_p.h"
27 #include "diagnostic-core.h"
28 #include "flags.h"
29 #include "ggc.h"
30 #include "ggc-internal.h"
31 #include "timevar.h"
32 #include "params.h"
33 #include "cgraph.h"
34 #include "cfgloop.h"
35 #include "plugin.h"
37 /* Prefer MAP_ANON(YMOUS) to /dev/zero, since we don't need to keep a
38 file open. Prefer either to valloc. */
39 #ifdef HAVE_MMAP_ANON
40 # undef HAVE_MMAP_DEV_ZERO
41 # define USING_MMAP
42 #endif
44 #ifdef HAVE_MMAP_DEV_ZERO
45 # define USING_MMAP
46 #endif
48 #ifndef USING_MMAP
49 #define USING_MALLOC_PAGE_GROUPS
50 #endif
52 #if defined(HAVE_MADVISE) && HAVE_DECL_MADVISE && defined(MADV_DONTNEED) \
53 && defined(USING_MMAP)
54 # define USING_MADVISE
55 #endif
57 /* Strategy:
59 This garbage-collecting allocator allocates objects on one of a set
60 of pages. Each page can allocate objects of a single size only;
61 available sizes are powers of two starting at four bytes. The size
62 of an allocation request is rounded up to the next power of two
63 (`order'), and satisfied from the appropriate page.
65 Each page is recorded in a page-entry, which also maintains an
66 in-use bitmap of object positions on the page. This allows the
67 allocation state of a particular object to be flipped without
68 touching the page itself.
70 Each page-entry also has a context depth, which is used to track
71 pushing and popping of allocation contexts. Only objects allocated
72 in the current (highest-numbered) context may be collected.
74 Page entries are arranged in an array of singly-linked lists. The
75 array is indexed by the allocation size, in bits, of the pages on
76 it; i.e. all pages on a list allocate objects of the same size.
77 Pages are ordered on the list such that all non-full pages precede
78 all full pages, with non-full pages arranged in order of decreasing
79 context depth.
81 Empty pages (of all orders) are kept on a single page cache list,
82 and are considered first when new pages are required; they are
83 deallocated at the start of the next collection if they haven't
84 been recycled by then. */
86 /* Define GGC_DEBUG_LEVEL to print debugging information.
87 0: No debugging output.
88 1: GC statistics only.
89 2: Page-entry allocations/deallocations as well.
90 3: Object allocations as well.
91 4: Object marks as well. */
92 #define GGC_DEBUG_LEVEL (0)
94 #ifndef HOST_BITS_PER_PTR
95 #define HOST_BITS_PER_PTR HOST_BITS_PER_LONG
96 #endif
99 /* A two-level tree is used to look up the page-entry for a given
100 pointer. Two chunks of the pointer's bits are extracted to index
101 the first and second levels of the tree, as follows:
103 HOST_PAGE_SIZE_BITS
104 32 | |
105 msb +----------------+----+------+------+ lsb
106 | | |
107 PAGE_L1_BITS |
109 PAGE_L2_BITS
111 The bottommost HOST_PAGE_SIZE_BITS are ignored, since page-entry
112 pages are aligned on system page boundaries. The next most
113 significant PAGE_L2_BITS and PAGE_L1_BITS are the second and first
114 index values in the lookup table, respectively.
116 For 32-bit architectures and the settings below, there are no
117 leftover bits. For architectures with wider pointers, the lookup
118 tree points to a list of pages, which must be scanned to find the
119 correct one. */
121 #define PAGE_L1_BITS (8)
122 #define PAGE_L2_BITS (32 - PAGE_L1_BITS - G.lg_pagesize)
123 #define PAGE_L1_SIZE ((uintptr_t) 1 << PAGE_L1_BITS)
124 #define PAGE_L2_SIZE ((uintptr_t) 1 << PAGE_L2_BITS)
126 #define LOOKUP_L1(p) \
127 (((uintptr_t) (p) >> (32 - PAGE_L1_BITS)) & ((1 << PAGE_L1_BITS) - 1))
129 #define LOOKUP_L2(p) \
130 (((uintptr_t) (p) >> G.lg_pagesize) & ((1 << PAGE_L2_BITS) - 1))
132 /* The number of objects per allocation page, for objects on a page of
133 the indicated ORDER. */
134 #define OBJECTS_PER_PAGE(ORDER) objects_per_page_table[ORDER]
136 /* The number of objects in P. */
137 #define OBJECTS_IN_PAGE(P) ((P)->bytes / OBJECT_SIZE ((P)->order))
139 /* The size of an object on a page of the indicated ORDER. */
140 #define OBJECT_SIZE(ORDER) object_size_table[ORDER]
142 /* For speed, we avoid doing a general integer divide to locate the
143 offset in the allocation bitmap, by precalculating numbers M, S
144 such that (O * M) >> S == O / Z (modulo 2^32), for any offset O
145 within the page which is evenly divisible by the object size Z. */
146 #define DIV_MULT(ORDER) inverse_table[ORDER].mult
147 #define DIV_SHIFT(ORDER) inverse_table[ORDER].shift
148 #define OFFSET_TO_BIT(OFFSET, ORDER) \
149 (((OFFSET) * DIV_MULT (ORDER)) >> DIV_SHIFT (ORDER))
151 /* We use this structure to determine the alignment required for
152 allocations. For power-of-two sized allocations, that's not a
153 problem, but it does matter for odd-sized allocations.
154 We do not care about alignment for floating-point types. */
156 struct max_alignment {
157 char c;
158 union {
159 int64_t i;
160 void *p;
161 } u;
164 /* The biggest alignment required. */
166 #define MAX_ALIGNMENT (offsetof (struct max_alignment, u))
169 /* The number of extra orders, not corresponding to power-of-two sized
170 objects. */
172 #define NUM_EXTRA_ORDERS ARRAY_SIZE (extra_order_size_table)
174 #define RTL_SIZE(NSLOTS) \
175 (RTX_HDR_SIZE + (NSLOTS) * sizeof (rtunion))
177 #define TREE_EXP_SIZE(OPS) \
178 (sizeof (struct tree_exp) + ((OPS) - 1) * sizeof (tree))
180 /* The Ith entry is the maximum size of an object to be stored in the
181 Ith extra order. Adding a new entry to this array is the *only*
182 thing you need to do to add a new special allocation size. */
184 static const size_t extra_order_size_table[] = {
185 /* Extra orders for small non-power-of-two multiples of MAX_ALIGNMENT.
186 There are a lot of structures with these sizes and explicitly
187 listing them risks orders being dropped because they changed size. */
188 MAX_ALIGNMENT * 3,
189 MAX_ALIGNMENT * 5,
190 MAX_ALIGNMENT * 6,
191 MAX_ALIGNMENT * 7,
192 MAX_ALIGNMENT * 9,
193 MAX_ALIGNMENT * 10,
194 MAX_ALIGNMENT * 11,
195 MAX_ALIGNMENT * 12,
196 MAX_ALIGNMENT * 13,
197 MAX_ALIGNMENT * 14,
198 MAX_ALIGNMENT * 15,
199 sizeof (struct tree_decl_non_common),
200 sizeof (struct tree_field_decl),
201 sizeof (struct tree_parm_decl),
202 sizeof (struct tree_var_decl),
203 sizeof (struct tree_type_non_common),
204 sizeof (struct function),
205 sizeof (struct basic_block_def),
206 sizeof (struct cgraph_node),
207 sizeof (struct loop),
210 /* The total number of orders. */
212 #define NUM_ORDERS (HOST_BITS_PER_PTR + NUM_EXTRA_ORDERS)
214 /* Compute the smallest nonnegative number which when added to X gives
215 a multiple of F. */
217 #define ROUND_UP_VALUE(x, f) ((f) - 1 - ((f) - 1 + (x)) % (f))
219 /* Compute the smallest multiple of F that is >= X. */
221 #define ROUND_UP(x, f) (CEIL (x, f) * (f))
223 /* Round X to next multiple of the page size */
225 #define PAGE_ALIGN(x) (((x) + G.pagesize - 1) & ~(G.pagesize - 1))
227 /* The Ith entry is the number of objects on a page or order I. */
229 static unsigned objects_per_page_table[NUM_ORDERS];
231 /* The Ith entry is the size of an object on a page of order I. */
233 static size_t object_size_table[NUM_ORDERS];
235 /* The Ith entry is a pair of numbers (mult, shift) such that
236 ((k * mult) >> shift) mod 2^32 == (k / OBJECT_SIZE(I)) mod 2^32,
237 for all k evenly divisible by OBJECT_SIZE(I). */
239 static struct
241 size_t mult;
242 unsigned int shift;
244 inverse_table[NUM_ORDERS];
246 /* A page_entry records the status of an allocation page. This
247 structure is dynamically sized to fit the bitmap in_use_p. */
248 typedef struct page_entry
250 /* The next page-entry with objects of the same size, or NULL if
251 this is the last page-entry. */
252 struct page_entry *next;
254 /* The previous page-entry with objects of the same size, or NULL if
255 this is the first page-entry. The PREV pointer exists solely to
256 keep the cost of ggc_free manageable. */
257 struct page_entry *prev;
259 /* The number of bytes allocated. (This will always be a multiple
260 of the host system page size.) */
261 size_t bytes;
263 /* The address at which the memory is allocated. */
264 char *page;
266 #ifdef USING_MALLOC_PAGE_GROUPS
267 /* Back pointer to the page group this page came from. */
268 struct page_group *group;
269 #endif
271 /* This is the index in the by_depth varray where this page table
272 can be found. */
273 unsigned long index_by_depth;
275 /* Context depth of this page. */
276 unsigned short context_depth;
278 /* The number of free objects remaining on this page. */
279 unsigned short num_free_objects;
281 /* A likely candidate for the bit position of a free object for the
282 next allocation from this page. */
283 unsigned short next_bit_hint;
285 /* The lg of size of objects allocated from this page. */
286 unsigned char order;
288 /* Discarded page? */
289 bool discarded;
291 /* A bit vector indicating whether or not objects are in use. The
292 Nth bit is one if the Nth object on this page is allocated. This
293 array is dynamically sized. */
294 unsigned long in_use_p[1];
295 } page_entry;
297 #ifdef USING_MALLOC_PAGE_GROUPS
298 /* A page_group describes a large allocation from malloc, from which
299 we parcel out aligned pages. */
300 typedef struct page_group
302 /* A linked list of all extant page groups. */
303 struct page_group *next;
305 /* The address we received from malloc. */
306 char *allocation;
308 /* The size of the block. */
309 size_t alloc_size;
311 /* A bitmask of pages in use. */
312 unsigned int in_use;
313 } page_group;
314 #endif
316 #if HOST_BITS_PER_PTR <= 32
318 /* On 32-bit hosts, we use a two level page table, as pictured above. */
319 typedef page_entry **page_table[PAGE_L1_SIZE];
321 #else
323 /* On 64-bit hosts, we use the same two level page tables plus a linked
324 list that disambiguates the top 32-bits. There will almost always be
325 exactly one entry in the list. */
326 typedef struct page_table_chain
328 struct page_table_chain *next;
329 size_t high_bits;
330 page_entry **table[PAGE_L1_SIZE];
331 } *page_table;
333 #endif
335 class finalizer
337 public:
338 finalizer (void *addr, void (*f)(void *)) : m_addr (addr), m_function (f) {}
340 void *addr () const { return m_addr; }
342 void call () const { m_function (m_addr); }
344 private:
345 void *m_addr;
346 void (*m_function)(void *);
349 class vec_finalizer
351 public:
352 vec_finalizer (uintptr_t addr, void (*f)(void *), size_t s, size_t n) :
353 m_addr (addr), m_function (f), m_object_size (s), m_n_objects (n) {}
355 void call () const
357 for (size_t i = 0; i < m_n_objects; i++)
358 m_function (reinterpret_cast<void *> (m_addr + (i * m_object_size)));
361 void *addr () const { return reinterpret_cast<void *> (m_addr); }
363 private:
364 uintptr_t m_addr;
365 void (*m_function)(void *);
366 size_t m_object_size;
367 size_t m_n_objects;
370 #ifdef ENABLE_GC_ALWAYS_COLLECT
371 /* List of free objects to be verified as actually free on the
372 next collection. */
373 struct free_object
375 void *object;
376 struct free_object *next;
378 #endif
380 /* The rest of the global variables. */
381 static struct globals
383 /* The Nth element in this array is a page with objects of size 2^N.
384 If there are any pages with free objects, they will be at the
385 head of the list. NULL if there are no page-entries for this
386 object size. */
387 page_entry *pages[NUM_ORDERS];
389 /* The Nth element in this array is the last page with objects of
390 size 2^N. NULL if there are no page-entries for this object
391 size. */
392 page_entry *page_tails[NUM_ORDERS];
394 /* Lookup table for associating allocation pages with object addresses. */
395 page_table lookup;
397 /* The system's page size. */
398 size_t pagesize;
399 size_t lg_pagesize;
401 /* Bytes currently allocated. */
402 size_t allocated;
404 /* Bytes currently allocated at the end of the last collection. */
405 size_t allocated_last_gc;
407 /* Total amount of memory mapped. */
408 size_t bytes_mapped;
410 /* Bit N set if any allocations have been done at context depth N. */
411 unsigned long context_depth_allocations;
413 /* Bit N set if any collections have been done at context depth N. */
414 unsigned long context_depth_collections;
416 /* The current depth in the context stack. */
417 unsigned short context_depth;
419 /* A file descriptor open to /dev/zero for reading. */
420 #if defined (HAVE_MMAP_DEV_ZERO)
421 int dev_zero_fd;
422 #endif
424 /* A cache of free system pages. */
425 page_entry *free_pages;
427 #ifdef USING_MALLOC_PAGE_GROUPS
428 page_group *page_groups;
429 #endif
431 /* The file descriptor for debugging output. */
432 FILE *debug_file;
434 /* Current number of elements in use in depth below. */
435 unsigned int depth_in_use;
437 /* Maximum number of elements that can be used before resizing. */
438 unsigned int depth_max;
440 /* Each element of this array is an index in by_depth where the given
441 depth starts. This structure is indexed by that given depth we
442 are interested in. */
443 unsigned int *depth;
445 /* Current number of elements in use in by_depth below. */
446 unsigned int by_depth_in_use;
448 /* Maximum number of elements that can be used before resizing. */
449 unsigned int by_depth_max;
451 /* Each element of this array is a pointer to a page_entry, all
452 page_entries can be found in here by increasing depth.
453 index_by_depth in the page_entry is the index into this data
454 structure where that page_entry can be found. This is used to
455 speed up finding all page_entries at a particular depth. */
456 page_entry **by_depth;
458 /* Each element is a pointer to the saved in_use_p bits, if any,
459 zero otherwise. We allocate them all together, to enable a
460 better runtime data access pattern. */
461 unsigned long **save_in_use;
463 /* Finalizers for single objects. */
464 vec<finalizer> finalizers;
466 /* Finalizers for vectors of objects. */
467 vec<vec_finalizer> vec_finalizers;
469 #ifdef ENABLE_GC_ALWAYS_COLLECT
470 /* List of free objects to be verified as actually free on the
471 next collection. */
472 struct free_object *free_object_list;
473 #endif
475 struct
477 /* Total GC-allocated memory. */
478 unsigned long long total_allocated;
479 /* Total overhead for GC-allocated memory. */
480 unsigned long long total_overhead;
482 /* Total allocations and overhead for sizes less than 32, 64 and 128.
483 These sizes are interesting because they are typical cache line
484 sizes. */
486 unsigned long long total_allocated_under32;
487 unsigned long long total_overhead_under32;
489 unsigned long long total_allocated_under64;
490 unsigned long long total_overhead_under64;
492 unsigned long long total_allocated_under128;
493 unsigned long long total_overhead_under128;
495 /* The allocations for each of the allocation orders. */
496 unsigned long long total_allocated_per_order[NUM_ORDERS];
498 /* The overhead for each of the allocation orders. */
499 unsigned long long total_overhead_per_order[NUM_ORDERS];
500 } stats;
501 } G;
503 /* True if a gc is currently taking place. */
505 static bool in_gc = false;
507 /* The size in bytes required to maintain a bitmap for the objects
508 on a page-entry. */
509 #define BITMAP_SIZE(Num_objects) \
510 (CEIL ((Num_objects), HOST_BITS_PER_LONG) * sizeof (long))
512 /* Allocate pages in chunks of this size, to throttle calls to memory
513 allocation routines. The first page is used, the rest go onto the
514 free list. This cannot be larger than HOST_BITS_PER_INT for the
515 in_use bitmask for page_group. Hosts that need a different value
516 can override this by defining GGC_QUIRE_SIZE explicitly. */
517 #ifndef GGC_QUIRE_SIZE
518 # ifdef USING_MMAP
519 # define GGC_QUIRE_SIZE 512 /* 2MB for 4K pages */
520 # else
521 # define GGC_QUIRE_SIZE 16
522 # endif
523 #endif
525 /* Initial guess as to how many page table entries we might need. */
526 #define INITIAL_PTE_COUNT 128
528 static int ggc_allocated_p (const void *);
529 static page_entry *lookup_page_table_entry (const void *);
530 static void set_page_table_entry (void *, page_entry *);
531 #ifdef USING_MMAP
532 static char *alloc_anon (char *, size_t, bool check);
533 #endif
534 #ifdef USING_MALLOC_PAGE_GROUPS
535 static size_t page_group_index (char *, char *);
536 static void set_page_group_in_use (page_group *, char *);
537 static void clear_page_group_in_use (page_group *, char *);
538 #endif
539 static struct page_entry * alloc_page (unsigned);
540 static void free_page (struct page_entry *);
541 static void release_pages (void);
542 static void clear_marks (void);
543 static void sweep_pages (void);
544 static void ggc_recalculate_in_use_p (page_entry *);
545 static void compute_inverse (unsigned);
546 static inline void adjust_depth (void);
547 static void move_ptes_to_front (int, int);
549 void debug_print_page_list (int);
550 static void push_depth (unsigned int);
551 static void push_by_depth (page_entry *, unsigned long *);
553 /* Push an entry onto G.depth. */
555 inline static void
556 push_depth (unsigned int i)
558 if (G.depth_in_use >= G.depth_max)
560 G.depth_max *= 2;
561 G.depth = XRESIZEVEC (unsigned int, G.depth, G.depth_max);
563 G.depth[G.depth_in_use++] = i;
566 /* Push an entry onto G.by_depth and G.save_in_use. */
568 inline static void
569 push_by_depth (page_entry *p, unsigned long *s)
571 if (G.by_depth_in_use >= G.by_depth_max)
573 G.by_depth_max *= 2;
574 G.by_depth = XRESIZEVEC (page_entry *, G.by_depth, G.by_depth_max);
575 G.save_in_use = XRESIZEVEC (unsigned long *, G.save_in_use,
576 G.by_depth_max);
578 G.by_depth[G.by_depth_in_use] = p;
579 G.save_in_use[G.by_depth_in_use++] = s;
582 #if (GCC_VERSION < 3001)
583 #define prefetch(X) ((void) X)
584 #else
585 #define prefetch(X) __builtin_prefetch (X)
586 #endif
588 #define save_in_use_p_i(__i) \
589 (G.save_in_use[__i])
590 #define save_in_use_p(__p) \
591 (save_in_use_p_i (__p->index_by_depth))
593 /* Returns nonzero if P was allocated in GC'able memory. */
595 static inline int
596 ggc_allocated_p (const void *p)
598 page_entry ***base;
599 size_t L1, L2;
601 #if HOST_BITS_PER_PTR <= 32
602 base = &G.lookup[0];
603 #else
604 page_table table = G.lookup;
605 uintptr_t high_bits = (uintptr_t) p & ~ (uintptr_t) 0xffffffff;
606 while (1)
608 if (table == NULL)
609 return 0;
610 if (table->high_bits == high_bits)
611 break;
612 table = table->next;
614 base = &table->table[0];
615 #endif
617 /* Extract the level 1 and 2 indices. */
618 L1 = LOOKUP_L1 (p);
619 L2 = LOOKUP_L2 (p);
621 return base[L1] && base[L1][L2];
624 /* Traverse the page table and find the entry for a page.
625 Die (probably) if the object wasn't allocated via GC. */
627 static inline page_entry *
628 lookup_page_table_entry (const void *p)
630 page_entry ***base;
631 size_t L1, L2;
633 #if HOST_BITS_PER_PTR <= 32
634 base = &G.lookup[0];
635 #else
636 page_table table = G.lookup;
637 uintptr_t high_bits = (uintptr_t) p & ~ (uintptr_t) 0xffffffff;
638 while (table->high_bits != high_bits)
639 table = table->next;
640 base = &table->table[0];
641 #endif
643 /* Extract the level 1 and 2 indices. */
644 L1 = LOOKUP_L1 (p);
645 L2 = LOOKUP_L2 (p);
647 return base[L1][L2];
650 /* Set the page table entry for a page. */
652 static void
653 set_page_table_entry (void *p, page_entry *entry)
655 page_entry ***base;
656 size_t L1, L2;
658 #if HOST_BITS_PER_PTR <= 32
659 base = &G.lookup[0];
660 #else
661 page_table table;
662 uintptr_t high_bits = (uintptr_t) p & ~ (uintptr_t) 0xffffffff;
663 for (table = G.lookup; table; table = table->next)
664 if (table->high_bits == high_bits)
665 goto found;
667 /* Not found -- allocate a new table. */
668 table = XCNEW (struct page_table_chain);
669 table->next = G.lookup;
670 table->high_bits = high_bits;
671 G.lookup = table;
672 found:
673 base = &table->table[0];
674 #endif
676 /* Extract the level 1 and 2 indices. */
677 L1 = LOOKUP_L1 (p);
678 L2 = LOOKUP_L2 (p);
680 if (base[L1] == NULL)
681 base[L1] = XCNEWVEC (page_entry *, PAGE_L2_SIZE);
683 base[L1][L2] = entry;
686 /* Prints the page-entry for object size ORDER, for debugging. */
688 DEBUG_FUNCTION void
689 debug_print_page_list (int order)
691 page_entry *p;
692 printf ("Head=%p, Tail=%p:\n", (void *) G.pages[order],
693 (void *) G.page_tails[order]);
694 p = G.pages[order];
695 while (p != NULL)
697 printf ("%p(%1d|%3d) -> ", (void *) p, p->context_depth,
698 p->num_free_objects);
699 p = p->next;
701 printf ("NULL\n");
702 fflush (stdout);
705 #ifdef USING_MMAP
706 /* Allocate SIZE bytes of anonymous memory, preferably near PREF,
707 (if non-null). The ifdef structure here is intended to cause a
708 compile error unless exactly one of the HAVE_* is defined. */
710 static inline char *
711 alloc_anon (char *pref ATTRIBUTE_UNUSED, size_t size, bool check)
713 #ifdef HAVE_MMAP_ANON
714 char *page = (char *) mmap (pref, size, PROT_READ | PROT_WRITE,
715 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
716 #endif
717 #ifdef HAVE_MMAP_DEV_ZERO
718 char *page = (char *) mmap (pref, size, PROT_READ | PROT_WRITE,
719 MAP_PRIVATE, G.dev_zero_fd, 0);
720 #endif
722 if (page == (char *) MAP_FAILED)
724 if (!check)
725 return NULL;
726 perror ("virtual memory exhausted");
727 exit (FATAL_EXIT_CODE);
730 /* Remember that we allocated this memory. */
731 G.bytes_mapped += size;
733 /* Pretend we don't have access to the allocated pages. We'll enable
734 access to smaller pieces of the area in ggc_internal_alloc. Discard the
735 handle to avoid handle leak. */
736 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_NOACCESS (page, size));
738 return page;
740 #endif
741 #ifdef USING_MALLOC_PAGE_GROUPS
742 /* Compute the index for this page into the page group. */
744 static inline size_t
745 page_group_index (char *allocation, char *page)
747 return (size_t) (page - allocation) >> G.lg_pagesize;
750 /* Set and clear the in_use bit for this page in the page group. */
752 static inline void
753 set_page_group_in_use (page_group *group, char *page)
755 group->in_use |= 1 << page_group_index (group->allocation, page);
758 static inline void
759 clear_page_group_in_use (page_group *group, char *page)
761 group->in_use &= ~(1 << page_group_index (group->allocation, page));
763 #endif
765 /* Allocate a new page for allocating objects of size 2^ORDER,
766 and return an entry for it. The entry is not added to the
767 appropriate page_table list. */
769 static inline struct page_entry *
770 alloc_page (unsigned order)
772 struct page_entry *entry, *p, **pp;
773 char *page;
774 size_t num_objects;
775 size_t bitmap_size;
776 size_t page_entry_size;
777 size_t entry_size;
778 #ifdef USING_MALLOC_PAGE_GROUPS
779 page_group *group;
780 #endif
782 num_objects = OBJECTS_PER_PAGE (order);
783 bitmap_size = BITMAP_SIZE (num_objects + 1);
784 page_entry_size = sizeof (page_entry) - sizeof (long) + bitmap_size;
785 entry_size = num_objects * OBJECT_SIZE (order);
786 if (entry_size < G.pagesize)
787 entry_size = G.pagesize;
788 entry_size = PAGE_ALIGN (entry_size);
790 entry = NULL;
791 page = NULL;
793 /* Check the list of free pages for one we can use. */
794 for (pp = &G.free_pages, p = *pp; p; pp = &p->next, p = *pp)
795 if (p->bytes == entry_size)
796 break;
798 if (p != NULL)
800 if (p->discarded)
801 G.bytes_mapped += p->bytes;
802 p->discarded = false;
804 /* Recycle the allocated memory from this page ... */
805 *pp = p->next;
806 page = p->page;
808 #ifdef USING_MALLOC_PAGE_GROUPS
809 group = p->group;
810 #endif
812 /* ... and, if possible, the page entry itself. */
813 if (p->order == order)
815 entry = p;
816 memset (entry, 0, page_entry_size);
818 else
819 free (p);
821 #ifdef USING_MMAP
822 else if (entry_size == G.pagesize)
824 /* We want just one page. Allocate a bunch of them and put the
825 extras on the freelist. (Can only do this optimization with
826 mmap for backing store.) */
827 struct page_entry *e, *f = G.free_pages;
828 int i, entries = GGC_QUIRE_SIZE;
830 page = alloc_anon (NULL, G.pagesize * GGC_QUIRE_SIZE, false);
831 if (page == NULL)
833 page = alloc_anon (NULL, G.pagesize, true);
834 entries = 1;
837 /* This loop counts down so that the chain will be in ascending
838 memory order. */
839 for (i = entries - 1; i >= 1; i--)
841 e = XCNEWVAR (struct page_entry, page_entry_size);
842 e->order = order;
843 e->bytes = G.pagesize;
844 e->page = page + (i << G.lg_pagesize);
845 e->next = f;
846 f = e;
849 G.free_pages = f;
851 else
852 page = alloc_anon (NULL, entry_size, true);
853 #endif
854 #ifdef USING_MALLOC_PAGE_GROUPS
855 else
857 /* Allocate a large block of memory and serve out the aligned
858 pages therein. This results in much less memory wastage
859 than the traditional implementation of valloc. */
861 char *allocation, *a, *enda;
862 size_t alloc_size, head_slop, tail_slop;
863 int multiple_pages = (entry_size == G.pagesize);
865 if (multiple_pages)
866 alloc_size = GGC_QUIRE_SIZE * G.pagesize;
867 else
868 alloc_size = entry_size + G.pagesize - 1;
869 allocation = XNEWVEC (char, alloc_size);
871 page = (char *) (((uintptr_t) allocation + G.pagesize - 1) & -G.pagesize);
872 head_slop = page - allocation;
873 if (multiple_pages)
874 tail_slop = ((size_t) allocation + alloc_size) & (G.pagesize - 1);
875 else
876 tail_slop = alloc_size - entry_size - head_slop;
877 enda = allocation + alloc_size - tail_slop;
879 /* We allocated N pages, which are likely not aligned, leaving
880 us with N-1 usable pages. We plan to place the page_group
881 structure somewhere in the slop. */
882 if (head_slop >= sizeof (page_group))
883 group = (page_group *)page - 1;
884 else
886 /* We magically got an aligned allocation. Too bad, we have
887 to waste a page anyway. */
888 if (tail_slop == 0)
890 enda -= G.pagesize;
891 tail_slop += G.pagesize;
893 gcc_assert (tail_slop >= sizeof (page_group));
894 group = (page_group *)enda;
895 tail_slop -= sizeof (page_group);
898 /* Remember that we allocated this memory. */
899 group->next = G.page_groups;
900 group->allocation = allocation;
901 group->alloc_size = alloc_size;
902 group->in_use = 0;
903 G.page_groups = group;
904 G.bytes_mapped += alloc_size;
906 /* If we allocated multiple pages, put the rest on the free list. */
907 if (multiple_pages)
909 struct page_entry *e, *f = G.free_pages;
910 for (a = enda - G.pagesize; a != page; a -= G.pagesize)
912 e = XCNEWVAR (struct page_entry, page_entry_size);
913 e->order = order;
914 e->bytes = G.pagesize;
915 e->page = a;
916 e->group = group;
917 e->next = f;
918 f = e;
920 G.free_pages = f;
923 #endif
925 if (entry == NULL)
926 entry = XCNEWVAR (struct page_entry, page_entry_size);
928 entry->bytes = entry_size;
929 entry->page = page;
930 entry->context_depth = G.context_depth;
931 entry->order = order;
932 entry->num_free_objects = num_objects;
933 entry->next_bit_hint = 1;
935 G.context_depth_allocations |= (unsigned long)1 << G.context_depth;
937 #ifdef USING_MALLOC_PAGE_GROUPS
938 entry->group = group;
939 set_page_group_in_use (group, page);
940 #endif
942 /* Set the one-past-the-end in-use bit. This acts as a sentry as we
943 increment the hint. */
944 entry->in_use_p[num_objects / HOST_BITS_PER_LONG]
945 = (unsigned long) 1 << (num_objects % HOST_BITS_PER_LONG);
947 set_page_table_entry (page, entry);
949 if (GGC_DEBUG_LEVEL >= 2)
950 fprintf (G.debug_file,
951 "Allocating page at %p, object size=%lu, data %p-%p\n",
952 (void *) entry, (unsigned long) OBJECT_SIZE (order), page,
953 page + entry_size - 1);
955 return entry;
958 /* Adjust the size of G.depth so that no index greater than the one
959 used by the top of the G.by_depth is used. */
961 static inline void
962 adjust_depth (void)
964 page_entry *top;
966 if (G.by_depth_in_use)
968 top = G.by_depth[G.by_depth_in_use-1];
970 /* Peel back indices in depth that index into by_depth, so that
971 as new elements are added to by_depth, we note the indices
972 of those elements, if they are for new context depths. */
973 while (G.depth_in_use > (size_t)top->context_depth+1)
974 --G.depth_in_use;
978 /* For a page that is no longer needed, put it on the free page list. */
980 static void
981 free_page (page_entry *entry)
983 if (GGC_DEBUG_LEVEL >= 2)
984 fprintf (G.debug_file,
985 "Deallocating page at %p, data %p-%p\n", (void *) entry,
986 entry->page, entry->page + entry->bytes - 1);
988 /* Mark the page as inaccessible. Discard the handle to avoid handle
989 leak. */
990 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_NOACCESS (entry->page, entry->bytes));
992 set_page_table_entry (entry->page, NULL);
994 #ifdef USING_MALLOC_PAGE_GROUPS
995 clear_page_group_in_use (entry->group, entry->page);
996 #endif
998 if (G.by_depth_in_use > 1)
1000 page_entry *top = G.by_depth[G.by_depth_in_use-1];
1001 int i = entry->index_by_depth;
1003 /* We cannot free a page from a context deeper than the current
1004 one. */
1005 gcc_assert (entry->context_depth == top->context_depth);
1007 /* Put top element into freed slot. */
1008 G.by_depth[i] = top;
1009 G.save_in_use[i] = G.save_in_use[G.by_depth_in_use-1];
1010 top->index_by_depth = i;
1012 --G.by_depth_in_use;
1014 adjust_depth ();
1016 entry->next = G.free_pages;
1017 G.free_pages = entry;
1020 /* Release the free page cache to the system. */
1022 static void
1023 release_pages (void)
1025 #ifdef USING_MADVISE
1026 page_entry *p, *start_p;
1027 char *start;
1028 size_t len;
1029 size_t mapped_len;
1030 page_entry *next, *prev, *newprev;
1031 size_t free_unit = (GGC_QUIRE_SIZE/2) * G.pagesize;
1033 /* First free larger continuous areas to the OS.
1034 This allows other allocators to grab these areas if needed.
1035 This is only done on larger chunks to avoid fragmentation.
1036 This does not always work because the free_pages list is only
1037 approximately sorted. */
1039 p = G.free_pages;
1040 prev = NULL;
1041 while (p)
1043 start = p->page;
1044 start_p = p;
1045 len = 0;
1046 mapped_len = 0;
1047 newprev = prev;
1048 while (p && p->page == start + len)
1050 len += p->bytes;
1051 if (!p->discarded)
1052 mapped_len += p->bytes;
1053 newprev = p;
1054 p = p->next;
1056 if (len >= free_unit)
1058 while (start_p != p)
1060 next = start_p->next;
1061 free (start_p);
1062 start_p = next;
1064 munmap (start, len);
1065 if (prev)
1066 prev->next = p;
1067 else
1068 G.free_pages = p;
1069 G.bytes_mapped -= mapped_len;
1070 continue;
1072 prev = newprev;
1075 /* Now give back the fragmented pages to the OS, but keep the address
1076 space to reuse it next time. */
1078 for (p = G.free_pages; p; )
1080 if (p->discarded)
1082 p = p->next;
1083 continue;
1085 start = p->page;
1086 len = p->bytes;
1087 start_p = p;
1088 p = p->next;
1089 while (p && p->page == start + len)
1091 len += p->bytes;
1092 p = p->next;
1094 /* Give the page back to the kernel, but don't free the mapping.
1095 This avoids fragmentation in the virtual memory map of the
1096 process. Next time we can reuse it by just touching it. */
1097 madvise (start, len, MADV_DONTNEED);
1098 /* Don't count those pages as mapped to not touch the garbage collector
1099 unnecessarily. */
1100 G.bytes_mapped -= len;
1101 while (start_p != p)
1103 start_p->discarded = true;
1104 start_p = start_p->next;
1107 #endif
1108 #if defined(USING_MMAP) && !defined(USING_MADVISE)
1109 page_entry *p, *next;
1110 char *start;
1111 size_t len;
1113 /* Gather up adjacent pages so they are unmapped together. */
1114 p = G.free_pages;
1116 while (p)
1118 start = p->page;
1119 next = p->next;
1120 len = p->bytes;
1121 free (p);
1122 p = next;
1124 while (p && p->page == start + len)
1126 next = p->next;
1127 len += p->bytes;
1128 free (p);
1129 p = next;
1132 munmap (start, len);
1133 G.bytes_mapped -= len;
1136 G.free_pages = NULL;
1137 #endif
1138 #ifdef USING_MALLOC_PAGE_GROUPS
1139 page_entry **pp, *p;
1140 page_group **gp, *g;
1142 /* Remove all pages from free page groups from the list. */
1143 pp = &G.free_pages;
1144 while ((p = *pp) != NULL)
1145 if (p->group->in_use == 0)
1147 *pp = p->next;
1148 free (p);
1150 else
1151 pp = &p->next;
1153 /* Remove all free page groups, and release the storage. */
1154 gp = &G.page_groups;
1155 while ((g = *gp) != NULL)
1156 if (g->in_use == 0)
1158 *gp = g->next;
1159 G.bytes_mapped -= g->alloc_size;
1160 free (g->allocation);
1162 else
1163 gp = &g->next;
1164 #endif
1167 /* This table provides a fast way to determine ceil(log_2(size)) for
1168 allocation requests. The minimum allocation size is eight bytes. */
1169 #define NUM_SIZE_LOOKUP 512
1170 static unsigned char size_lookup[NUM_SIZE_LOOKUP] =
1172 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4,
1173 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
1174 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
1175 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
1176 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
1177 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
1178 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
1179 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
1180 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1181 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1182 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1183 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1184 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1185 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1186 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1187 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1188 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1189 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1190 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1191 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1192 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1193 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1194 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1195 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1196 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1197 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1198 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1199 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1200 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1201 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1202 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1203 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9
1206 /* For a given size of memory requested for allocation, return the
1207 actual size that is going to be allocated, as well as the size
1208 order. */
1210 static void
1211 ggc_round_alloc_size_1 (size_t requested_size,
1212 size_t *size_order,
1213 size_t *alloced_size)
1215 size_t order, object_size;
1217 if (requested_size < NUM_SIZE_LOOKUP)
1219 order = size_lookup[requested_size];
1220 object_size = OBJECT_SIZE (order);
1222 else
1224 order = 10;
1225 while (requested_size > (object_size = OBJECT_SIZE (order)))
1226 order++;
1229 if (size_order)
1230 *size_order = order;
1231 if (alloced_size)
1232 *alloced_size = object_size;
1235 /* For a given size of memory requested for allocation, return the
1236 actual size that is going to be allocated. */
1238 size_t
1239 ggc_round_alloc_size (size_t requested_size)
1241 size_t size = 0;
1243 ggc_round_alloc_size_1 (requested_size, NULL, &size);
1244 return size;
1247 /* Allocate a chunk of memory of SIZE bytes. Its contents are undefined. */
1249 void *
1250 ggc_internal_alloc (size_t size, void (*f)(void *), size_t s, size_t n
1251 MEM_STAT_DECL)
1253 size_t order, word, bit, object_offset, object_size;
1254 struct page_entry *entry;
1255 void *result;
1257 ggc_round_alloc_size_1 (size, &order, &object_size);
1259 /* If there are non-full pages for this size allocation, they are at
1260 the head of the list. */
1261 entry = G.pages[order];
1263 /* If there is no page for this object size, or all pages in this
1264 context are full, allocate a new page. */
1265 if (entry == NULL || entry->num_free_objects == 0)
1267 struct page_entry *new_entry;
1268 new_entry = alloc_page (order);
1270 new_entry->index_by_depth = G.by_depth_in_use;
1271 push_by_depth (new_entry, 0);
1273 /* We can skip context depths, if we do, make sure we go all the
1274 way to the new depth. */
1275 while (new_entry->context_depth >= G.depth_in_use)
1276 push_depth (G.by_depth_in_use-1);
1278 /* If this is the only entry, it's also the tail. If it is not
1279 the only entry, then we must update the PREV pointer of the
1280 ENTRY (G.pages[order]) to point to our new page entry. */
1281 if (entry == NULL)
1282 G.page_tails[order] = new_entry;
1283 else
1284 entry->prev = new_entry;
1286 /* Put new pages at the head of the page list. By definition the
1287 entry at the head of the list always has a NULL pointer. */
1288 new_entry->next = entry;
1289 new_entry->prev = NULL;
1290 entry = new_entry;
1291 G.pages[order] = new_entry;
1293 /* For a new page, we know the word and bit positions (in the
1294 in_use bitmap) of the first available object -- they're zero. */
1295 new_entry->next_bit_hint = 1;
1296 word = 0;
1297 bit = 0;
1298 object_offset = 0;
1300 else
1302 /* First try to use the hint left from the previous allocation
1303 to locate a clear bit in the in-use bitmap. We've made sure
1304 that the one-past-the-end bit is always set, so if the hint
1305 has run over, this test will fail. */
1306 unsigned hint = entry->next_bit_hint;
1307 word = hint / HOST_BITS_PER_LONG;
1308 bit = hint % HOST_BITS_PER_LONG;
1310 /* If the hint didn't work, scan the bitmap from the beginning. */
1311 if ((entry->in_use_p[word] >> bit) & 1)
1313 word = bit = 0;
1314 while (~entry->in_use_p[word] == 0)
1315 ++word;
1317 #if GCC_VERSION >= 3004
1318 bit = __builtin_ctzl (~entry->in_use_p[word]);
1319 #else
1320 while ((entry->in_use_p[word] >> bit) & 1)
1321 ++bit;
1322 #endif
1324 hint = word * HOST_BITS_PER_LONG + bit;
1327 /* Next time, try the next bit. */
1328 entry->next_bit_hint = hint + 1;
1330 object_offset = hint * object_size;
1333 /* Set the in-use bit. */
1334 entry->in_use_p[word] |= ((unsigned long) 1 << bit);
1336 /* Keep a running total of the number of free objects. If this page
1337 fills up, we may have to move it to the end of the list if the
1338 next page isn't full. If the next page is full, all subsequent
1339 pages are full, so there's no need to move it. */
1340 if (--entry->num_free_objects == 0
1341 && entry->next != NULL
1342 && entry->next->num_free_objects > 0)
1344 /* We have a new head for the list. */
1345 G.pages[order] = entry->next;
1347 /* We are moving ENTRY to the end of the page table list.
1348 The new page at the head of the list will have NULL in
1349 its PREV field and ENTRY will have NULL in its NEXT field. */
1350 entry->next->prev = NULL;
1351 entry->next = NULL;
1353 /* Append ENTRY to the tail of the list. */
1354 entry->prev = G.page_tails[order];
1355 G.page_tails[order]->next = entry;
1356 G.page_tails[order] = entry;
1359 /* Calculate the object's address. */
1360 result = entry->page + object_offset;
1361 if (GATHER_STATISTICS)
1362 ggc_record_overhead (OBJECT_SIZE (order), OBJECT_SIZE (order) - size,
1363 result FINAL_PASS_MEM_STAT);
1365 #ifdef ENABLE_GC_CHECKING
1366 /* Keep poisoning-by-writing-0xaf the object, in an attempt to keep the
1367 exact same semantics in presence of memory bugs, regardless of
1368 ENABLE_VALGRIND_CHECKING. We override this request below. Drop the
1369 handle to avoid handle leak. */
1370 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_UNDEFINED (result, object_size));
1372 /* `Poison' the entire allocated object, including any padding at
1373 the end. */
1374 memset (result, 0xaf, object_size);
1376 /* Make the bytes after the end of the object unaccessible. Discard the
1377 handle to avoid handle leak. */
1378 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_NOACCESS ((char *) result + size,
1379 object_size - size));
1380 #endif
1382 /* Tell Valgrind that the memory is there, but its content isn't
1383 defined. The bytes at the end of the object are still marked
1384 unaccessible. */
1385 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_UNDEFINED (result, size));
1387 /* Keep track of how many bytes are being allocated. This
1388 information is used in deciding when to collect. */
1389 G.allocated += object_size;
1391 /* For timevar statistics. */
1392 timevar_ggc_mem_total += object_size;
1394 if (f && n == 1)
1395 G.finalizers.safe_push (finalizer (result, f));
1396 else if (f)
1397 G.vec_finalizers.safe_push
1398 (vec_finalizer (reinterpret_cast<uintptr_t> (result), f, s, n));
1400 if (GATHER_STATISTICS)
1402 size_t overhead = object_size - size;
1404 G.stats.total_overhead += overhead;
1405 G.stats.total_allocated += object_size;
1406 G.stats.total_overhead_per_order[order] += overhead;
1407 G.stats.total_allocated_per_order[order] += object_size;
1409 if (size <= 32)
1411 G.stats.total_overhead_under32 += overhead;
1412 G.stats.total_allocated_under32 += object_size;
1414 if (size <= 64)
1416 G.stats.total_overhead_under64 += overhead;
1417 G.stats.total_allocated_under64 += object_size;
1419 if (size <= 128)
1421 G.stats.total_overhead_under128 += overhead;
1422 G.stats.total_allocated_under128 += object_size;
1426 if (GGC_DEBUG_LEVEL >= 3)
1427 fprintf (G.debug_file,
1428 "Allocating object, requested size=%lu, actual=%lu at %p on %p\n",
1429 (unsigned long) size, (unsigned long) object_size, result,
1430 (void *) entry);
1432 return result;
1435 /* Mark function for strings. */
1437 void
1438 gt_ggc_m_S (const void *p)
1440 page_entry *entry;
1441 unsigned bit, word;
1442 unsigned long mask;
1443 unsigned long offset;
1445 if (!p || !ggc_allocated_p (p))
1446 return;
1448 /* Look up the page on which the object is alloced. . */
1449 entry = lookup_page_table_entry (p);
1450 gcc_assert (entry);
1452 /* Calculate the index of the object on the page; this is its bit
1453 position in the in_use_p bitmap. Note that because a char* might
1454 point to the middle of an object, we need special code here to
1455 make sure P points to the start of an object. */
1456 offset = ((const char *) p - entry->page) % object_size_table[entry->order];
1457 if (offset)
1459 /* Here we've seen a char* which does not point to the beginning
1460 of an allocated object. We assume it points to the middle of
1461 a STRING_CST. */
1462 gcc_assert (offset == offsetof (struct tree_string, str));
1463 p = ((const char *) p) - offset;
1464 gt_ggc_mx_lang_tree_node (CONST_CAST (void *, p));
1465 return;
1468 bit = OFFSET_TO_BIT (((const char *) p) - entry->page, entry->order);
1469 word = bit / HOST_BITS_PER_LONG;
1470 mask = (unsigned long) 1 << (bit % HOST_BITS_PER_LONG);
1472 /* If the bit was previously set, skip it. */
1473 if (entry->in_use_p[word] & mask)
1474 return;
1476 /* Otherwise set it, and decrement the free object count. */
1477 entry->in_use_p[word] |= mask;
1478 entry->num_free_objects -= 1;
1480 if (GGC_DEBUG_LEVEL >= 4)
1481 fprintf (G.debug_file, "Marking %p\n", p);
1483 return;
1487 /* User-callable entry points for marking string X. */
1489 void
1490 gt_ggc_mx (const char *& x)
1492 gt_ggc_m_S (x);
1495 void
1496 gt_ggc_mx (unsigned char *& x)
1498 gt_ggc_m_S (x);
1501 void
1502 gt_ggc_mx (unsigned char& x ATTRIBUTE_UNUSED)
1506 /* If P is not marked, marks it and return false. Otherwise return true.
1507 P must have been allocated by the GC allocator; it mustn't point to
1508 static objects, stack variables, or memory allocated with malloc. */
1511 ggc_set_mark (const void *p)
1513 page_entry *entry;
1514 unsigned bit, word;
1515 unsigned long mask;
1517 /* Look up the page on which the object is alloced. If the object
1518 wasn't allocated by the collector, we'll probably die. */
1519 entry = lookup_page_table_entry (p);
1520 gcc_assert (entry);
1522 /* Calculate the index of the object on the page; this is its bit
1523 position in the in_use_p bitmap. */
1524 bit = OFFSET_TO_BIT (((const char *) p) - entry->page, entry->order);
1525 word = bit / HOST_BITS_PER_LONG;
1526 mask = (unsigned long) 1 << (bit % HOST_BITS_PER_LONG);
1528 /* If the bit was previously set, skip it. */
1529 if (entry->in_use_p[word] & mask)
1530 return 1;
1532 /* Otherwise set it, and decrement the free object count. */
1533 entry->in_use_p[word] |= mask;
1534 entry->num_free_objects -= 1;
1536 if (GGC_DEBUG_LEVEL >= 4)
1537 fprintf (G.debug_file, "Marking %p\n", p);
1539 return 0;
1542 /* Return 1 if P has been marked, zero otherwise.
1543 P must have been allocated by the GC allocator; it mustn't point to
1544 static objects, stack variables, or memory allocated with malloc. */
1547 ggc_marked_p (const void *p)
1549 page_entry *entry;
1550 unsigned bit, word;
1551 unsigned long mask;
1553 /* Look up the page on which the object is alloced. If the object
1554 wasn't allocated by the collector, we'll probably die. */
1555 entry = lookup_page_table_entry (p);
1556 gcc_assert (entry);
1558 /* Calculate the index of the object on the page; this is its bit
1559 position in the in_use_p bitmap. */
1560 bit = OFFSET_TO_BIT (((const char *) p) - entry->page, entry->order);
1561 word = bit / HOST_BITS_PER_LONG;
1562 mask = (unsigned long) 1 << (bit % HOST_BITS_PER_LONG);
1564 return (entry->in_use_p[word] & mask) != 0;
1567 /* Return the size of the gc-able object P. */
1569 size_t
1570 ggc_get_size (const void *p)
1572 page_entry *pe = lookup_page_table_entry (p);
1573 return OBJECT_SIZE (pe->order);
1576 /* Release the memory for object P. */
1578 void
1579 ggc_free (void *p)
1581 if (in_gc)
1582 return;
1584 page_entry *pe = lookup_page_table_entry (p);
1585 size_t order = pe->order;
1586 size_t size = OBJECT_SIZE (order);
1588 if (GATHER_STATISTICS)
1589 ggc_free_overhead (p);
1591 if (GGC_DEBUG_LEVEL >= 3)
1592 fprintf (G.debug_file,
1593 "Freeing object, actual size=%lu, at %p on %p\n",
1594 (unsigned long) size, p, (void *) pe);
1596 #ifdef ENABLE_GC_CHECKING
1597 /* Poison the data, to indicate the data is garbage. */
1598 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_UNDEFINED (p, size));
1599 memset (p, 0xa5, size);
1600 #endif
1601 /* Let valgrind know the object is free. */
1602 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_NOACCESS (p, size));
1604 #ifdef ENABLE_GC_ALWAYS_COLLECT
1605 /* In the completely-anal-checking mode, we do *not* immediately free
1606 the data, but instead verify that the data is *actually* not
1607 reachable the next time we collect. */
1609 struct free_object *fo = XNEW (struct free_object);
1610 fo->object = p;
1611 fo->next = G.free_object_list;
1612 G.free_object_list = fo;
1614 #else
1616 unsigned int bit_offset, word, bit;
1618 G.allocated -= size;
1620 /* Mark the object not-in-use. */
1621 bit_offset = OFFSET_TO_BIT (((const char *) p) - pe->page, order);
1622 word = bit_offset / HOST_BITS_PER_LONG;
1623 bit = bit_offset % HOST_BITS_PER_LONG;
1624 pe->in_use_p[word] &= ~(1UL << bit);
1626 if (pe->num_free_objects++ == 0)
1628 page_entry *p, *q;
1630 /* If the page is completely full, then it's supposed to
1631 be after all pages that aren't. Since we've freed one
1632 object from a page that was full, we need to move the
1633 page to the head of the list.
1635 PE is the node we want to move. Q is the previous node
1636 and P is the next node in the list. */
1637 q = pe->prev;
1638 if (q && q->num_free_objects == 0)
1640 p = pe->next;
1642 q->next = p;
1644 /* If PE was at the end of the list, then Q becomes the
1645 new end of the list. If PE was not the end of the
1646 list, then we need to update the PREV field for P. */
1647 if (!p)
1648 G.page_tails[order] = q;
1649 else
1650 p->prev = q;
1652 /* Move PE to the head of the list. */
1653 pe->next = G.pages[order];
1654 pe->prev = NULL;
1655 G.pages[order]->prev = pe;
1656 G.pages[order] = pe;
1659 /* Reset the hint bit to point to the only free object. */
1660 pe->next_bit_hint = bit_offset;
1663 #endif
1666 /* Subroutine of init_ggc which computes the pair of numbers used to
1667 perform division by OBJECT_SIZE (order) and fills in inverse_table[].
1669 This algorithm is taken from Granlund and Montgomery's paper
1670 "Division by Invariant Integers using Multiplication"
1671 (Proc. SIGPLAN PLDI, 1994), section 9 (Exact division by
1672 constants). */
1674 static void
1675 compute_inverse (unsigned order)
1677 size_t size, inv;
1678 unsigned int e;
1680 size = OBJECT_SIZE (order);
1681 e = 0;
1682 while (size % 2 == 0)
1684 e++;
1685 size >>= 1;
1688 inv = size;
1689 while (inv * size != 1)
1690 inv = inv * (2 - inv*size);
1692 DIV_MULT (order) = inv;
1693 DIV_SHIFT (order) = e;
1696 /* Initialize the ggc-mmap allocator. */
1697 void
1698 init_ggc (void)
1700 unsigned order;
1702 G.pagesize = getpagesize ();
1703 G.lg_pagesize = exact_log2 (G.pagesize);
1705 #ifdef HAVE_MMAP_DEV_ZERO
1706 G.dev_zero_fd = open ("/dev/zero", O_RDONLY);
1707 if (G.dev_zero_fd == -1)
1708 internal_error ("open /dev/zero: %m");
1709 #endif
1711 #if 0
1712 G.debug_file = fopen ("ggc-mmap.debug", "w");
1713 #else
1714 G.debug_file = stdout;
1715 #endif
1717 #ifdef USING_MMAP
1718 /* StunOS has an amazing off-by-one error for the first mmap allocation
1719 after fiddling with RLIMIT_STACK. The result, as hard as it is to
1720 believe, is an unaligned page allocation, which would cause us to
1721 hork badly if we tried to use it. */
1723 char *p = alloc_anon (NULL, G.pagesize, true);
1724 struct page_entry *e;
1725 if ((uintptr_t)p & (G.pagesize - 1))
1727 /* How losing. Discard this one and try another. If we still
1728 can't get something useful, give up. */
1730 p = alloc_anon (NULL, G.pagesize, true);
1731 gcc_assert (!((uintptr_t)p & (G.pagesize - 1)));
1734 /* We have a good page, might as well hold onto it... */
1735 e = XCNEW (struct page_entry);
1736 e->bytes = G.pagesize;
1737 e->page = p;
1738 e->next = G.free_pages;
1739 G.free_pages = e;
1741 #endif
1743 /* Initialize the object size table. */
1744 for (order = 0; order < HOST_BITS_PER_PTR; ++order)
1745 object_size_table[order] = (size_t) 1 << order;
1746 for (order = HOST_BITS_PER_PTR; order < NUM_ORDERS; ++order)
1748 size_t s = extra_order_size_table[order - HOST_BITS_PER_PTR];
1750 /* If S is not a multiple of the MAX_ALIGNMENT, then round it up
1751 so that we're sure of getting aligned memory. */
1752 s = ROUND_UP (s, MAX_ALIGNMENT);
1753 object_size_table[order] = s;
1756 /* Initialize the objects-per-page and inverse tables. */
1757 for (order = 0; order < NUM_ORDERS; ++order)
1759 objects_per_page_table[order] = G.pagesize / OBJECT_SIZE (order);
1760 if (objects_per_page_table[order] == 0)
1761 objects_per_page_table[order] = 1;
1762 compute_inverse (order);
1765 /* Reset the size_lookup array to put appropriately sized objects in
1766 the special orders. All objects bigger than the previous power
1767 of two, but no greater than the special size, should go in the
1768 new order. */
1769 for (order = HOST_BITS_PER_PTR; order < NUM_ORDERS; ++order)
1771 int o;
1772 int i;
1774 i = OBJECT_SIZE (order);
1775 if (i >= NUM_SIZE_LOOKUP)
1776 continue;
1778 for (o = size_lookup[i]; o == size_lookup [i]; --i)
1779 size_lookup[i] = order;
1782 G.depth_in_use = 0;
1783 G.depth_max = 10;
1784 G.depth = XNEWVEC (unsigned int, G.depth_max);
1786 G.by_depth_in_use = 0;
1787 G.by_depth_max = INITIAL_PTE_COUNT;
1788 G.by_depth = XNEWVEC (page_entry *, G.by_depth_max);
1789 G.save_in_use = XNEWVEC (unsigned long *, G.by_depth_max);
1792 /* Merge the SAVE_IN_USE_P and IN_USE_P arrays in P so that IN_USE_P
1793 reflects reality. Recalculate NUM_FREE_OBJECTS as well. */
1795 static void
1796 ggc_recalculate_in_use_p (page_entry *p)
1798 unsigned int i;
1799 size_t num_objects;
1801 /* Because the past-the-end bit in in_use_p is always set, we
1802 pretend there is one additional object. */
1803 num_objects = OBJECTS_IN_PAGE (p) + 1;
1805 /* Reset the free object count. */
1806 p->num_free_objects = num_objects;
1808 /* Combine the IN_USE_P and SAVE_IN_USE_P arrays. */
1809 for (i = 0;
1810 i < CEIL (BITMAP_SIZE (num_objects),
1811 sizeof (*p->in_use_p));
1812 ++i)
1814 unsigned long j;
1816 /* Something is in use if it is marked, or if it was in use in a
1817 context further down the context stack. */
1818 p->in_use_p[i] |= save_in_use_p (p)[i];
1820 /* Decrement the free object count for every object allocated. */
1821 for (j = p->in_use_p[i]; j; j >>= 1)
1822 p->num_free_objects -= (j & 1);
1825 gcc_assert (p->num_free_objects < num_objects);
1828 /* Unmark all objects. */
1830 static void
1831 clear_marks (void)
1833 unsigned order;
1835 for (order = 2; order < NUM_ORDERS; order++)
1837 page_entry *p;
1839 for (p = G.pages[order]; p != NULL; p = p->next)
1841 size_t num_objects = OBJECTS_IN_PAGE (p);
1842 size_t bitmap_size = BITMAP_SIZE (num_objects + 1);
1844 /* The data should be page-aligned. */
1845 gcc_assert (!((uintptr_t) p->page & (G.pagesize - 1)));
1847 /* Pages that aren't in the topmost context are not collected;
1848 nevertheless, we need their in-use bit vectors to store GC
1849 marks. So, back them up first. */
1850 if (p->context_depth < G.context_depth)
1852 if (! save_in_use_p (p))
1853 save_in_use_p (p) = XNEWVAR (unsigned long, bitmap_size);
1854 memcpy (save_in_use_p (p), p->in_use_p, bitmap_size);
1857 /* Reset reset the number of free objects and clear the
1858 in-use bits. These will be adjusted by mark_obj. */
1859 p->num_free_objects = num_objects;
1860 memset (p->in_use_p, 0, bitmap_size);
1862 /* Make sure the one-past-the-end bit is always set. */
1863 p->in_use_p[num_objects / HOST_BITS_PER_LONG]
1864 = ((unsigned long) 1 << (num_objects % HOST_BITS_PER_LONG));
1869 /* Check if any blocks with a registered finalizer have become unmarked. If so
1870 run the finalizer and unregister it because the block is about to be freed.
1871 Note that no garantee is made about what order finalizers will run in so
1872 touching other objects in gc memory is extremely unwise. */
1874 static void
1875 ggc_handle_finalizers ()
1877 if (G.context_depth != 0)
1878 return;
1880 unsigned length = G.finalizers.length ();
1881 for (unsigned int i = 0; i < length;)
1883 finalizer &f = G.finalizers[i];
1884 if (!ggc_marked_p (f.addr ()))
1886 f.call ();
1887 G.finalizers.unordered_remove (i);
1888 length--;
1890 else
1891 i++;
1895 length = G.vec_finalizers.length ();
1896 for (unsigned int i = 0; i < length;)
1898 vec_finalizer &f = G.vec_finalizers[i];
1899 if (!ggc_marked_p (f.addr ()))
1901 f.call ();
1902 G.vec_finalizers.unordered_remove (i);
1903 length--;
1905 else
1906 i++;
1910 /* Free all empty pages. Partially empty pages need no attention
1911 because the `mark' bit doubles as an `unused' bit. */
1913 static void
1914 sweep_pages (void)
1916 unsigned order;
1918 for (order = 2; order < NUM_ORDERS; order++)
1920 /* The last page-entry to consider, regardless of entries
1921 placed at the end of the list. */
1922 page_entry * const last = G.page_tails[order];
1924 size_t num_objects;
1925 size_t live_objects;
1926 page_entry *p, *previous;
1927 int done;
1929 p = G.pages[order];
1930 if (p == NULL)
1931 continue;
1933 previous = NULL;
1936 page_entry *next = p->next;
1938 /* Loop until all entries have been examined. */
1939 done = (p == last);
1941 num_objects = OBJECTS_IN_PAGE (p);
1943 /* Add all live objects on this page to the count of
1944 allocated memory. */
1945 live_objects = num_objects - p->num_free_objects;
1947 G.allocated += OBJECT_SIZE (order) * live_objects;
1949 /* Only objects on pages in the topmost context should get
1950 collected. */
1951 if (p->context_depth < G.context_depth)
1954 /* Remove the page if it's empty. */
1955 else if (live_objects == 0)
1957 /* If P was the first page in the list, then NEXT
1958 becomes the new first page in the list, otherwise
1959 splice P out of the forward pointers. */
1960 if (! previous)
1961 G.pages[order] = next;
1962 else
1963 previous->next = next;
1965 /* Splice P out of the back pointers too. */
1966 if (next)
1967 next->prev = previous;
1969 /* Are we removing the last element? */
1970 if (p == G.page_tails[order])
1971 G.page_tails[order] = previous;
1972 free_page (p);
1973 p = previous;
1976 /* If the page is full, move it to the end. */
1977 else if (p->num_free_objects == 0)
1979 /* Don't move it if it's already at the end. */
1980 if (p != G.page_tails[order])
1982 /* Move p to the end of the list. */
1983 p->next = NULL;
1984 p->prev = G.page_tails[order];
1985 G.page_tails[order]->next = p;
1987 /* Update the tail pointer... */
1988 G.page_tails[order] = p;
1990 /* ... and the head pointer, if necessary. */
1991 if (! previous)
1992 G.pages[order] = next;
1993 else
1994 previous->next = next;
1996 /* And update the backpointer in NEXT if necessary. */
1997 if (next)
1998 next->prev = previous;
2000 p = previous;
2004 /* If we've fallen through to here, it's a page in the
2005 topmost context that is neither full nor empty. Such a
2006 page must precede pages at lesser context depth in the
2007 list, so move it to the head. */
2008 else if (p != G.pages[order])
2010 previous->next = p->next;
2012 /* Update the backchain in the next node if it exists. */
2013 if (p->next)
2014 p->next->prev = previous;
2016 /* Move P to the head of the list. */
2017 p->next = G.pages[order];
2018 p->prev = NULL;
2019 G.pages[order]->prev = p;
2021 /* Update the head pointer. */
2022 G.pages[order] = p;
2024 /* Are we moving the last element? */
2025 if (G.page_tails[order] == p)
2026 G.page_tails[order] = previous;
2027 p = previous;
2030 previous = p;
2031 p = next;
2033 while (! done);
2035 /* Now, restore the in_use_p vectors for any pages from contexts
2036 other than the current one. */
2037 for (p = G.pages[order]; p; p = p->next)
2038 if (p->context_depth != G.context_depth)
2039 ggc_recalculate_in_use_p (p);
2043 #ifdef ENABLE_GC_CHECKING
2044 /* Clobber all free objects. */
2046 static void
2047 poison_pages (void)
2049 unsigned order;
2051 for (order = 2; order < NUM_ORDERS; order++)
2053 size_t size = OBJECT_SIZE (order);
2054 page_entry *p;
2056 for (p = G.pages[order]; p != NULL; p = p->next)
2058 size_t num_objects;
2059 size_t i;
2061 if (p->context_depth != G.context_depth)
2062 /* Since we don't do any collection for pages in pushed
2063 contexts, there's no need to do any poisoning. And
2064 besides, the IN_USE_P array isn't valid until we pop
2065 contexts. */
2066 continue;
2068 num_objects = OBJECTS_IN_PAGE (p);
2069 for (i = 0; i < num_objects; i++)
2071 size_t word, bit;
2072 word = i / HOST_BITS_PER_LONG;
2073 bit = i % HOST_BITS_PER_LONG;
2074 if (((p->in_use_p[word] >> bit) & 1) == 0)
2076 char *object = p->page + i * size;
2078 /* Keep poison-by-write when we expect to use Valgrind,
2079 so the exact same memory semantics is kept, in case
2080 there are memory errors. We override this request
2081 below. */
2082 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_UNDEFINED (object,
2083 size));
2084 memset (object, 0xa5, size);
2086 /* Drop the handle to avoid handle leak. */
2087 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_NOACCESS (object, size));
2093 #else
2094 #define poison_pages()
2095 #endif
2097 #ifdef ENABLE_GC_ALWAYS_COLLECT
2098 /* Validate that the reportedly free objects actually are. */
2100 static void
2101 validate_free_objects (void)
2103 struct free_object *f, *next, *still_free = NULL;
2105 for (f = G.free_object_list; f ; f = next)
2107 page_entry *pe = lookup_page_table_entry (f->object);
2108 size_t bit, word;
2110 bit = OFFSET_TO_BIT ((char *)f->object - pe->page, pe->order);
2111 word = bit / HOST_BITS_PER_LONG;
2112 bit = bit % HOST_BITS_PER_LONG;
2113 next = f->next;
2115 /* Make certain it isn't visible from any root. Notice that we
2116 do this check before sweep_pages merges save_in_use_p. */
2117 gcc_assert (!(pe->in_use_p[word] & (1UL << bit)));
2119 /* If the object comes from an outer context, then retain the
2120 free_object entry, so that we can verify that the address
2121 isn't live on the stack in some outer context. */
2122 if (pe->context_depth != G.context_depth)
2124 f->next = still_free;
2125 still_free = f;
2127 else
2128 free (f);
2131 G.free_object_list = still_free;
2133 #else
2134 #define validate_free_objects()
2135 #endif
2137 /* Top level mark-and-sweep routine. */
2139 void
2140 ggc_collect (void)
2142 /* Avoid frequent unnecessary work by skipping collection if the
2143 total allocations haven't expanded much since the last
2144 collection. */
2145 float allocated_last_gc =
2146 MAX (G.allocated_last_gc, (size_t)PARAM_VALUE (GGC_MIN_HEAPSIZE) * 1024);
2148 float min_expand = allocated_last_gc * PARAM_VALUE (GGC_MIN_EXPAND) / 100;
2149 if (G.allocated < allocated_last_gc + min_expand && !ggc_force_collect)
2150 return;
2152 timevar_push (TV_GC);
2153 if (!quiet_flag)
2154 fprintf (stderr, " {GC %luk -> ", (unsigned long) G.allocated / 1024);
2155 if (GGC_DEBUG_LEVEL >= 2)
2156 fprintf (G.debug_file, "BEGIN COLLECTING\n");
2158 /* Zero the total allocated bytes. This will be recalculated in the
2159 sweep phase. */
2160 G.allocated = 0;
2162 /* Release the pages we freed the last time we collected, but didn't
2163 reuse in the interim. */
2164 release_pages ();
2166 /* Indicate that we've seen collections at this context depth. */
2167 G.context_depth_collections = ((unsigned long)1 << (G.context_depth + 1)) - 1;
2169 invoke_plugin_callbacks (PLUGIN_GGC_START, NULL);
2171 in_gc = true;
2172 clear_marks ();
2173 ggc_mark_roots ();
2174 ggc_handle_finalizers ();
2176 if (GATHER_STATISTICS)
2177 ggc_prune_overhead_list ();
2179 poison_pages ();
2180 validate_free_objects ();
2181 sweep_pages ();
2183 in_gc = false;
2184 G.allocated_last_gc = G.allocated;
2186 invoke_plugin_callbacks (PLUGIN_GGC_END, NULL);
2188 timevar_pop (TV_GC);
2190 if (!quiet_flag)
2191 fprintf (stderr, "%luk}", (unsigned long) G.allocated / 1024);
2192 if (GGC_DEBUG_LEVEL >= 2)
2193 fprintf (G.debug_file, "END COLLECTING\n");
2196 /* Assume that all GGC memory is reachable and grow the limits for next collection.
2197 With checking, trigger GGC so -Q compilation outputs how much of memory really is
2198 reachable. */
2200 void
2201 ggc_grow (void)
2203 #ifndef ENABLE_CHECKING
2204 G.allocated_last_gc = MAX (G.allocated_last_gc,
2205 G.allocated);
2206 #else
2207 ggc_collect ();
2208 #endif
2209 if (!quiet_flag)
2210 fprintf (stderr, " {GC start %luk} ", (unsigned long) G.allocated / 1024);
2213 /* Print allocation statistics. */
2214 #define SCALE(x) ((unsigned long) ((x) < 1024*10 \
2215 ? (x) \
2216 : ((x) < 1024*1024*10 \
2217 ? (x) / 1024 \
2218 : (x) / (1024*1024))))
2219 #define STAT_LABEL(x) ((x) < 1024*10 ? ' ' : ((x) < 1024*1024*10 ? 'k' : 'M'))
2221 void
2222 ggc_print_statistics (void)
2224 struct ggc_statistics stats;
2225 unsigned int i;
2226 size_t total_overhead = 0;
2228 /* Clear the statistics. */
2229 memset (&stats, 0, sizeof (stats));
2231 /* Make sure collection will really occur. */
2232 G.allocated_last_gc = 0;
2234 /* Collect and print the statistics common across collectors. */
2235 ggc_print_common_statistics (stderr, &stats);
2237 /* Release free pages so that we will not count the bytes allocated
2238 there as part of the total allocated memory. */
2239 release_pages ();
2241 /* Collect some information about the various sizes of
2242 allocation. */
2243 fprintf (stderr,
2244 "Memory still allocated at the end of the compilation process\n");
2245 fprintf (stderr, "%-5s %10s %10s %10s\n",
2246 "Size", "Allocated", "Used", "Overhead");
2247 for (i = 0; i < NUM_ORDERS; ++i)
2249 page_entry *p;
2250 size_t allocated;
2251 size_t in_use;
2252 size_t overhead;
2254 /* Skip empty entries. */
2255 if (!G.pages[i])
2256 continue;
2258 overhead = allocated = in_use = 0;
2260 /* Figure out the total number of bytes allocated for objects of
2261 this size, and how many of them are actually in use. Also figure
2262 out how much memory the page table is using. */
2263 for (p = G.pages[i]; p; p = p->next)
2265 allocated += p->bytes;
2266 in_use +=
2267 (OBJECTS_IN_PAGE (p) - p->num_free_objects) * OBJECT_SIZE (i);
2269 overhead += (sizeof (page_entry) - sizeof (long)
2270 + BITMAP_SIZE (OBJECTS_IN_PAGE (p) + 1));
2272 fprintf (stderr, "%-5lu %10lu%c %10lu%c %10lu%c\n",
2273 (unsigned long) OBJECT_SIZE (i),
2274 SCALE (allocated), STAT_LABEL (allocated),
2275 SCALE (in_use), STAT_LABEL (in_use),
2276 SCALE (overhead), STAT_LABEL (overhead));
2277 total_overhead += overhead;
2279 fprintf (stderr, "%-5s %10lu%c %10lu%c %10lu%c\n", "Total",
2280 SCALE (G.bytes_mapped), STAT_LABEL (G.bytes_mapped),
2281 SCALE (G.allocated), STAT_LABEL (G.allocated),
2282 SCALE (total_overhead), STAT_LABEL (total_overhead));
2284 if (GATHER_STATISTICS)
2286 fprintf (stderr, "\nTotal allocations and overheads during the compilation process\n");
2288 fprintf (stderr, "Total Overhead: %10" HOST_LONG_LONG_FORMAT "d\n",
2289 G.stats.total_overhead);
2290 fprintf (stderr, "Total Allocated: %10" HOST_LONG_LONG_FORMAT "d\n",
2291 G.stats.total_allocated);
2293 fprintf (stderr, "Total Overhead under 32B: %10" HOST_LONG_LONG_FORMAT "d\n",
2294 G.stats.total_overhead_under32);
2295 fprintf (stderr, "Total Allocated under 32B: %10" HOST_LONG_LONG_FORMAT "d\n",
2296 G.stats.total_allocated_under32);
2297 fprintf (stderr, "Total Overhead under 64B: %10" HOST_LONG_LONG_FORMAT "d\n",
2298 G.stats.total_overhead_under64);
2299 fprintf (stderr, "Total Allocated under 64B: %10" HOST_LONG_LONG_FORMAT "d\n",
2300 G.stats.total_allocated_under64);
2301 fprintf (stderr, "Total Overhead under 128B: %10" HOST_LONG_LONG_FORMAT "d\n",
2302 G.stats.total_overhead_under128);
2303 fprintf (stderr, "Total Allocated under 128B: %10" HOST_LONG_LONG_FORMAT "d\n",
2304 G.stats.total_allocated_under128);
2306 for (i = 0; i < NUM_ORDERS; i++)
2307 if (G.stats.total_allocated_per_order[i])
2309 fprintf (stderr, "Total Overhead page size %7lu: %10" HOST_LONG_LONG_FORMAT "d\n",
2310 (unsigned long) OBJECT_SIZE (i),
2311 G.stats.total_overhead_per_order[i]);
2312 fprintf (stderr, "Total Allocated page size %7lu: %10" HOST_LONG_LONG_FORMAT "d\n",
2313 (unsigned long) OBJECT_SIZE (i),
2314 G.stats.total_allocated_per_order[i]);
2319 struct ggc_pch_ondisk
2321 unsigned totals[NUM_ORDERS];
2324 struct ggc_pch_data
2326 struct ggc_pch_ondisk d;
2327 uintptr_t base[NUM_ORDERS];
2328 size_t written[NUM_ORDERS];
2331 struct ggc_pch_data *
2332 init_ggc_pch (void)
2334 return XCNEW (struct ggc_pch_data);
2337 void
2338 ggc_pch_count_object (struct ggc_pch_data *d, void *x ATTRIBUTE_UNUSED,
2339 size_t size, bool is_string ATTRIBUTE_UNUSED)
2341 unsigned order;
2343 if (size < NUM_SIZE_LOOKUP)
2344 order = size_lookup[size];
2345 else
2347 order = 10;
2348 while (size > OBJECT_SIZE (order))
2349 order++;
2352 d->d.totals[order]++;
2355 size_t
2356 ggc_pch_total_size (struct ggc_pch_data *d)
2358 size_t a = 0;
2359 unsigned i;
2361 for (i = 0; i < NUM_ORDERS; i++)
2362 a += PAGE_ALIGN (d->d.totals[i] * OBJECT_SIZE (i));
2363 return a;
2366 void
2367 ggc_pch_this_base (struct ggc_pch_data *d, void *base)
2369 uintptr_t a = (uintptr_t) base;
2370 unsigned i;
2372 for (i = 0; i < NUM_ORDERS; i++)
2374 d->base[i] = a;
2375 a += PAGE_ALIGN (d->d.totals[i] * OBJECT_SIZE (i));
2380 char *
2381 ggc_pch_alloc_object (struct ggc_pch_data *d, void *x ATTRIBUTE_UNUSED,
2382 size_t size, bool is_string ATTRIBUTE_UNUSED)
2384 unsigned order;
2385 char *result;
2387 if (size < NUM_SIZE_LOOKUP)
2388 order = size_lookup[size];
2389 else
2391 order = 10;
2392 while (size > OBJECT_SIZE (order))
2393 order++;
2396 result = (char *) d->base[order];
2397 d->base[order] += OBJECT_SIZE (order);
2398 return result;
2401 void
2402 ggc_pch_prepare_write (struct ggc_pch_data *d ATTRIBUTE_UNUSED,
2403 FILE *f ATTRIBUTE_UNUSED)
2405 /* Nothing to do. */
2408 void
2409 ggc_pch_write_object (struct ggc_pch_data *d,
2410 FILE *f, void *x, void *newx ATTRIBUTE_UNUSED,
2411 size_t size, bool is_string ATTRIBUTE_UNUSED)
2413 unsigned order;
2414 static const char emptyBytes[256] = { 0 };
2416 if (size < NUM_SIZE_LOOKUP)
2417 order = size_lookup[size];
2418 else
2420 order = 10;
2421 while (size > OBJECT_SIZE (order))
2422 order++;
2425 if (fwrite (x, size, 1, f) != 1)
2426 fatal_error ("can%'t write PCH file: %m");
2428 /* If SIZE is not the same as OBJECT_SIZE(order), then we need to pad the
2429 object out to OBJECT_SIZE(order). This happens for strings. */
2431 if (size != OBJECT_SIZE (order))
2433 unsigned padding = OBJECT_SIZE (order) - size;
2435 /* To speed small writes, we use a nulled-out array that's larger
2436 than most padding requests as the source for our null bytes. This
2437 permits us to do the padding with fwrite() rather than fseek(), and
2438 limits the chance the OS may try to flush any outstanding writes. */
2439 if (padding <= sizeof (emptyBytes))
2441 if (fwrite (emptyBytes, 1, padding, f) != padding)
2442 fatal_error ("can%'t write PCH file");
2444 else
2446 /* Larger than our buffer? Just default to fseek. */
2447 if (fseek (f, padding, SEEK_CUR) != 0)
2448 fatal_error ("can%'t write PCH file");
2452 d->written[order]++;
2453 if (d->written[order] == d->d.totals[order]
2454 && fseek (f, ROUND_UP_VALUE (d->d.totals[order] * OBJECT_SIZE (order),
2455 G.pagesize),
2456 SEEK_CUR) != 0)
2457 fatal_error ("can%'t write PCH file: %m");
2460 void
2461 ggc_pch_finish (struct ggc_pch_data *d, FILE *f)
2463 if (fwrite (&d->d, sizeof (d->d), 1, f) != 1)
2464 fatal_error ("can%'t write PCH file: %m");
2465 free (d);
2468 /* Move the PCH PTE entries just added to the end of by_depth, to the
2469 front. */
2471 static void
2472 move_ptes_to_front (int count_old_page_tables, int count_new_page_tables)
2474 unsigned i;
2476 /* First, we swap the new entries to the front of the varrays. */
2477 page_entry **new_by_depth;
2478 unsigned long **new_save_in_use;
2480 new_by_depth = XNEWVEC (page_entry *, G.by_depth_max);
2481 new_save_in_use = XNEWVEC (unsigned long *, G.by_depth_max);
2483 memcpy (&new_by_depth[0],
2484 &G.by_depth[count_old_page_tables],
2485 count_new_page_tables * sizeof (void *));
2486 memcpy (&new_by_depth[count_new_page_tables],
2487 &G.by_depth[0],
2488 count_old_page_tables * sizeof (void *));
2489 memcpy (&new_save_in_use[0],
2490 &G.save_in_use[count_old_page_tables],
2491 count_new_page_tables * sizeof (void *));
2492 memcpy (&new_save_in_use[count_new_page_tables],
2493 &G.save_in_use[0],
2494 count_old_page_tables * sizeof (void *));
2496 free (G.by_depth);
2497 free (G.save_in_use);
2499 G.by_depth = new_by_depth;
2500 G.save_in_use = new_save_in_use;
2502 /* Now update all the index_by_depth fields. */
2503 for (i = G.by_depth_in_use; i > 0; --i)
2505 page_entry *p = G.by_depth[i-1];
2506 p->index_by_depth = i-1;
2509 /* And last, we update the depth pointers in G.depth. The first
2510 entry is already 0, and context 0 entries always start at index
2511 0, so there is nothing to update in the first slot. We need a
2512 second slot, only if we have old ptes, and if we do, they start
2513 at index count_new_page_tables. */
2514 if (count_old_page_tables)
2515 push_depth (count_new_page_tables);
2518 void
2519 ggc_pch_read (FILE *f, void *addr)
2521 struct ggc_pch_ondisk d;
2522 unsigned i;
2523 char *offs = (char *) addr;
2524 unsigned long count_old_page_tables;
2525 unsigned long count_new_page_tables;
2527 count_old_page_tables = G.by_depth_in_use;
2529 /* We've just read in a PCH file. So, every object that used to be
2530 allocated is now free. */
2531 clear_marks ();
2532 #ifdef ENABLE_GC_CHECKING
2533 poison_pages ();
2534 #endif
2535 /* Since we free all the allocated objects, the free list becomes
2536 useless. Validate it now, which will also clear it. */
2537 validate_free_objects ();
2539 /* No object read from a PCH file should ever be freed. So, set the
2540 context depth to 1, and set the depth of all the currently-allocated
2541 pages to be 1 too. PCH pages will have depth 0. */
2542 gcc_assert (!G.context_depth);
2543 G.context_depth = 1;
2544 for (i = 0; i < NUM_ORDERS; i++)
2546 page_entry *p;
2547 for (p = G.pages[i]; p != NULL; p = p->next)
2548 p->context_depth = G.context_depth;
2551 /* Allocate the appropriate page-table entries for the pages read from
2552 the PCH file. */
2553 if (fread (&d, sizeof (d), 1, f) != 1)
2554 fatal_error ("can%'t read PCH file: %m");
2556 for (i = 0; i < NUM_ORDERS; i++)
2558 struct page_entry *entry;
2559 char *pte;
2560 size_t bytes;
2561 size_t num_objs;
2562 size_t j;
2564 if (d.totals[i] == 0)
2565 continue;
2567 bytes = PAGE_ALIGN (d.totals[i] * OBJECT_SIZE (i));
2568 num_objs = bytes / OBJECT_SIZE (i);
2569 entry = XCNEWVAR (struct page_entry, (sizeof (struct page_entry)
2570 - sizeof (long)
2571 + BITMAP_SIZE (num_objs + 1)));
2572 entry->bytes = bytes;
2573 entry->page = offs;
2574 entry->context_depth = 0;
2575 offs += bytes;
2576 entry->num_free_objects = 0;
2577 entry->order = i;
2579 for (j = 0;
2580 j + HOST_BITS_PER_LONG <= num_objs + 1;
2581 j += HOST_BITS_PER_LONG)
2582 entry->in_use_p[j / HOST_BITS_PER_LONG] = -1;
2583 for (; j < num_objs + 1; j++)
2584 entry->in_use_p[j / HOST_BITS_PER_LONG]
2585 |= 1L << (j % HOST_BITS_PER_LONG);
2587 for (pte = entry->page;
2588 pte < entry->page + entry->bytes;
2589 pte += G.pagesize)
2590 set_page_table_entry (pte, entry);
2592 if (G.page_tails[i] != NULL)
2593 G.page_tails[i]->next = entry;
2594 else
2595 G.pages[i] = entry;
2596 G.page_tails[i] = entry;
2598 /* We start off by just adding all the new information to the
2599 end of the varrays, later, we will move the new information
2600 to the front of the varrays, as the PCH page tables are at
2601 context 0. */
2602 push_by_depth (entry, 0);
2605 /* Now, we update the various data structures that speed page table
2606 handling. */
2607 count_new_page_tables = G.by_depth_in_use - count_old_page_tables;
2609 move_ptes_to_front (count_old_page_tables, count_new_page_tables);
2611 /* Update the statistics. */
2612 G.allocated = G.allocated_last_gc = offs - (char *)addr;