2006-03-15 Paul Brook <paul@codesourcery.com>
[official-gcc.git] / gcc / expr.c
blobe3cb784f187a72a3054b05054e9708be7ef8809c
1 /* Convert tree expression to rtl instructions, for GNU compiler.
2 Copyright (C) 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3 2000, 2001, 2002, 2003, 2004, 2005, 2006 Free Software Foundation,
4 Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 2, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to the Free
20 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
21 02110-1301, USA. */
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "machmode.h"
28 #include "real.h"
29 #include "rtl.h"
30 #include "tree.h"
31 #include "flags.h"
32 #include "regs.h"
33 #include "hard-reg-set.h"
34 #include "except.h"
35 #include "function.h"
36 #include "insn-config.h"
37 #include "insn-attr.h"
38 /* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
39 #include "expr.h"
40 #include "optabs.h"
41 #include "libfuncs.h"
42 #include "recog.h"
43 #include "reload.h"
44 #include "output.h"
45 #include "typeclass.h"
46 #include "toplev.h"
47 #include "ggc.h"
48 #include "langhooks.h"
49 #include "intl.h"
50 #include "tm_p.h"
51 #include "tree-iterator.h"
52 #include "tree-pass.h"
53 #include "tree-flow.h"
54 #include "target.h"
55 #include "timevar.h"
57 /* Decide whether a function's arguments should be processed
58 from first to last or from last to first.
60 They should if the stack and args grow in opposite directions, but
61 only if we have push insns. */
63 #ifdef PUSH_ROUNDING
65 #ifndef PUSH_ARGS_REVERSED
66 #if defined (STACK_GROWS_DOWNWARD) != defined (ARGS_GROW_DOWNWARD)
67 #define PUSH_ARGS_REVERSED /* If it's last to first. */
68 #endif
69 #endif
71 #endif
73 #ifndef STACK_PUSH_CODE
74 #ifdef STACK_GROWS_DOWNWARD
75 #define STACK_PUSH_CODE PRE_DEC
76 #else
77 #define STACK_PUSH_CODE PRE_INC
78 #endif
79 #endif
82 /* If this is nonzero, we do not bother generating VOLATILE
83 around volatile memory references, and we are willing to
84 output indirect addresses. If cse is to follow, we reject
85 indirect addresses so a useful potential cse is generated;
86 if it is used only once, instruction combination will produce
87 the same indirect address eventually. */
88 int cse_not_expected;
90 /* This structure is used by move_by_pieces to describe the move to
91 be performed. */
92 struct move_by_pieces
94 rtx to;
95 rtx to_addr;
96 int autinc_to;
97 int explicit_inc_to;
98 rtx from;
99 rtx from_addr;
100 int autinc_from;
101 int explicit_inc_from;
102 unsigned HOST_WIDE_INT len;
103 HOST_WIDE_INT offset;
104 int reverse;
107 /* This structure is used by store_by_pieces to describe the clear to
108 be performed. */
110 struct store_by_pieces
112 rtx to;
113 rtx to_addr;
114 int autinc_to;
115 int explicit_inc_to;
116 unsigned HOST_WIDE_INT len;
117 HOST_WIDE_INT offset;
118 rtx (*constfun) (void *, HOST_WIDE_INT, enum machine_mode);
119 void *constfundata;
120 int reverse;
123 static unsigned HOST_WIDE_INT move_by_pieces_ninsns (unsigned HOST_WIDE_INT,
124 unsigned int,
125 unsigned int);
126 static void move_by_pieces_1 (rtx (*) (rtx, ...), enum machine_mode,
127 struct move_by_pieces *);
128 static bool block_move_libcall_safe_for_call_parm (void);
129 static bool emit_block_move_via_movmem (rtx, rtx, rtx, unsigned);
130 static rtx emit_block_move_via_libcall (rtx, rtx, rtx, bool);
131 static tree emit_block_move_libcall_fn (int);
132 static void emit_block_move_via_loop (rtx, rtx, rtx, unsigned);
133 static rtx clear_by_pieces_1 (void *, HOST_WIDE_INT, enum machine_mode);
134 static void clear_by_pieces (rtx, unsigned HOST_WIDE_INT, unsigned int);
135 static void store_by_pieces_1 (struct store_by_pieces *, unsigned int);
136 static void store_by_pieces_2 (rtx (*) (rtx, ...), enum machine_mode,
137 struct store_by_pieces *);
138 static rtx clear_storage_via_libcall (rtx, rtx, bool);
139 static tree clear_storage_libcall_fn (int);
140 static rtx compress_float_constant (rtx, rtx);
141 static rtx get_subtarget (rtx);
142 static void store_constructor_field (rtx, unsigned HOST_WIDE_INT,
143 HOST_WIDE_INT, enum machine_mode,
144 tree, tree, int, int);
145 static void store_constructor (tree, rtx, int, HOST_WIDE_INT);
146 static rtx store_field (rtx, HOST_WIDE_INT, HOST_WIDE_INT, enum machine_mode,
147 tree, tree, int);
149 static unsigned HOST_WIDE_INT highest_pow2_factor_for_target (tree, tree);
151 static int is_aligning_offset (tree, tree);
152 static void expand_operands (tree, tree, rtx, rtx*, rtx*,
153 enum expand_modifier);
154 static rtx reduce_to_bit_field_precision (rtx, rtx, tree);
155 static rtx do_store_flag (tree, rtx, enum machine_mode, int);
156 #ifdef PUSH_ROUNDING
157 static void emit_single_push_insn (enum machine_mode, rtx, tree);
158 #endif
159 static void do_tablejump (rtx, enum machine_mode, rtx, rtx, rtx);
160 static rtx const_vector_from_tree (tree);
161 static void write_complex_part (rtx, rtx, bool);
163 /* Record for each mode whether we can move a register directly to or
164 from an object of that mode in memory. If we can't, we won't try
165 to use that mode directly when accessing a field of that mode. */
167 static char direct_load[NUM_MACHINE_MODES];
168 static char direct_store[NUM_MACHINE_MODES];
170 /* Record for each mode whether we can float-extend from memory. */
172 static bool float_extend_from_mem[NUM_MACHINE_MODES][NUM_MACHINE_MODES];
174 /* This macro is used to determine whether move_by_pieces should be called
175 to perform a structure copy. */
176 #ifndef MOVE_BY_PIECES_P
177 #define MOVE_BY_PIECES_P(SIZE, ALIGN) \
178 (move_by_pieces_ninsns (SIZE, ALIGN, MOVE_MAX_PIECES + 1) \
179 < (unsigned int) MOVE_RATIO)
180 #endif
182 /* This macro is used to determine whether clear_by_pieces should be
183 called to clear storage. */
184 #ifndef CLEAR_BY_PIECES_P
185 #define CLEAR_BY_PIECES_P(SIZE, ALIGN) \
186 (move_by_pieces_ninsns (SIZE, ALIGN, STORE_MAX_PIECES + 1) \
187 < (unsigned int) CLEAR_RATIO)
188 #endif
190 /* This macro is used to determine whether store_by_pieces should be
191 called to "memset" storage with byte values other than zero, or
192 to "memcpy" storage when the source is a constant string. */
193 #ifndef STORE_BY_PIECES_P
194 #define STORE_BY_PIECES_P(SIZE, ALIGN) \
195 (move_by_pieces_ninsns (SIZE, ALIGN, STORE_MAX_PIECES + 1) \
196 < (unsigned int) MOVE_RATIO)
197 #endif
199 /* This array records the insn_code of insns to perform block moves. */
200 enum insn_code movmem_optab[NUM_MACHINE_MODES];
202 /* This array records the insn_code of insns to perform block sets. */
203 enum insn_code setmem_optab[NUM_MACHINE_MODES];
205 /* These arrays record the insn_code of three different kinds of insns
206 to perform block compares. */
207 enum insn_code cmpstr_optab[NUM_MACHINE_MODES];
208 enum insn_code cmpstrn_optab[NUM_MACHINE_MODES];
209 enum insn_code cmpmem_optab[NUM_MACHINE_MODES];
211 /* Synchronization primitives. */
212 enum insn_code sync_add_optab[NUM_MACHINE_MODES];
213 enum insn_code sync_sub_optab[NUM_MACHINE_MODES];
214 enum insn_code sync_ior_optab[NUM_MACHINE_MODES];
215 enum insn_code sync_and_optab[NUM_MACHINE_MODES];
216 enum insn_code sync_xor_optab[NUM_MACHINE_MODES];
217 enum insn_code sync_nand_optab[NUM_MACHINE_MODES];
218 enum insn_code sync_old_add_optab[NUM_MACHINE_MODES];
219 enum insn_code sync_old_sub_optab[NUM_MACHINE_MODES];
220 enum insn_code sync_old_ior_optab[NUM_MACHINE_MODES];
221 enum insn_code sync_old_and_optab[NUM_MACHINE_MODES];
222 enum insn_code sync_old_xor_optab[NUM_MACHINE_MODES];
223 enum insn_code sync_old_nand_optab[NUM_MACHINE_MODES];
224 enum insn_code sync_new_add_optab[NUM_MACHINE_MODES];
225 enum insn_code sync_new_sub_optab[NUM_MACHINE_MODES];
226 enum insn_code sync_new_ior_optab[NUM_MACHINE_MODES];
227 enum insn_code sync_new_and_optab[NUM_MACHINE_MODES];
228 enum insn_code sync_new_xor_optab[NUM_MACHINE_MODES];
229 enum insn_code sync_new_nand_optab[NUM_MACHINE_MODES];
230 enum insn_code sync_compare_and_swap[NUM_MACHINE_MODES];
231 enum insn_code sync_compare_and_swap_cc[NUM_MACHINE_MODES];
232 enum insn_code sync_lock_test_and_set[NUM_MACHINE_MODES];
233 enum insn_code sync_lock_release[NUM_MACHINE_MODES];
235 /* SLOW_UNALIGNED_ACCESS is nonzero if unaligned accesses are very slow. */
237 #ifndef SLOW_UNALIGNED_ACCESS
238 #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) STRICT_ALIGNMENT
239 #endif
241 /* This is run once per compilation to set up which modes can be used
242 directly in memory and to initialize the block move optab. */
244 void
245 init_expr_once (void)
247 rtx insn, pat;
248 enum machine_mode mode;
249 int num_clobbers;
250 rtx mem, mem1;
251 rtx reg;
253 /* Try indexing by frame ptr and try by stack ptr.
254 It is known that on the Convex the stack ptr isn't a valid index.
255 With luck, one or the other is valid on any machine. */
256 mem = gen_rtx_MEM (VOIDmode, stack_pointer_rtx);
257 mem1 = gen_rtx_MEM (VOIDmode, frame_pointer_rtx);
259 /* A scratch register we can modify in-place below to avoid
260 useless RTL allocations. */
261 reg = gen_rtx_REG (VOIDmode, -1);
263 insn = rtx_alloc (INSN);
264 pat = gen_rtx_SET (0, NULL_RTX, NULL_RTX);
265 PATTERN (insn) = pat;
267 for (mode = VOIDmode; (int) mode < NUM_MACHINE_MODES;
268 mode = (enum machine_mode) ((int) mode + 1))
270 int regno;
272 direct_load[(int) mode] = direct_store[(int) mode] = 0;
273 PUT_MODE (mem, mode);
274 PUT_MODE (mem1, mode);
275 PUT_MODE (reg, mode);
277 /* See if there is some register that can be used in this mode and
278 directly loaded or stored from memory. */
280 if (mode != VOIDmode && mode != BLKmode)
281 for (regno = 0; regno < FIRST_PSEUDO_REGISTER
282 && (direct_load[(int) mode] == 0 || direct_store[(int) mode] == 0);
283 regno++)
285 if (! HARD_REGNO_MODE_OK (regno, mode))
286 continue;
288 REGNO (reg) = regno;
290 SET_SRC (pat) = mem;
291 SET_DEST (pat) = reg;
292 if (recog (pat, insn, &num_clobbers) >= 0)
293 direct_load[(int) mode] = 1;
295 SET_SRC (pat) = mem1;
296 SET_DEST (pat) = reg;
297 if (recog (pat, insn, &num_clobbers) >= 0)
298 direct_load[(int) mode] = 1;
300 SET_SRC (pat) = reg;
301 SET_DEST (pat) = mem;
302 if (recog (pat, insn, &num_clobbers) >= 0)
303 direct_store[(int) mode] = 1;
305 SET_SRC (pat) = reg;
306 SET_DEST (pat) = mem1;
307 if (recog (pat, insn, &num_clobbers) >= 0)
308 direct_store[(int) mode] = 1;
312 mem = gen_rtx_MEM (VOIDmode, gen_rtx_raw_REG (Pmode, 10000));
314 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT); mode != VOIDmode;
315 mode = GET_MODE_WIDER_MODE (mode))
317 enum machine_mode srcmode;
318 for (srcmode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT); srcmode != mode;
319 srcmode = GET_MODE_WIDER_MODE (srcmode))
321 enum insn_code ic;
323 ic = can_extend_p (mode, srcmode, 0);
324 if (ic == CODE_FOR_nothing)
325 continue;
327 PUT_MODE (mem, srcmode);
329 if ((*insn_data[ic].operand[1].predicate) (mem, srcmode))
330 float_extend_from_mem[mode][srcmode] = true;
335 /* This is run at the start of compiling a function. */
337 void
338 init_expr (void)
340 cfun->expr = ggc_alloc_cleared (sizeof (struct expr_status));
343 /* Copy data from FROM to TO, where the machine modes are not the same.
344 Both modes may be integer, or both may be floating.
345 UNSIGNEDP should be nonzero if FROM is an unsigned type.
346 This causes zero-extension instead of sign-extension. */
348 void
349 convert_move (rtx to, rtx from, int unsignedp)
351 enum machine_mode to_mode = GET_MODE (to);
352 enum machine_mode from_mode = GET_MODE (from);
353 int to_real = SCALAR_FLOAT_MODE_P (to_mode);
354 int from_real = SCALAR_FLOAT_MODE_P (from_mode);
355 enum insn_code code;
356 rtx libcall;
358 /* rtx code for making an equivalent value. */
359 enum rtx_code equiv_code = (unsignedp < 0 ? UNKNOWN
360 : (unsignedp ? ZERO_EXTEND : SIGN_EXTEND));
363 gcc_assert (to_real == from_real);
365 /* If the source and destination are already the same, then there's
366 nothing to do. */
367 if (to == from)
368 return;
370 /* If FROM is a SUBREG that indicates that we have already done at least
371 the required extension, strip it. We don't handle such SUBREGs as
372 TO here. */
374 if (GET_CODE (from) == SUBREG && SUBREG_PROMOTED_VAR_P (from)
375 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (from)))
376 >= GET_MODE_SIZE (to_mode))
377 && SUBREG_PROMOTED_UNSIGNED_P (from) == unsignedp)
378 from = gen_lowpart (to_mode, from), from_mode = to_mode;
380 gcc_assert (GET_CODE (to) != SUBREG || !SUBREG_PROMOTED_VAR_P (to));
382 if (to_mode == from_mode
383 || (from_mode == VOIDmode && CONSTANT_P (from)))
385 emit_move_insn (to, from);
386 return;
389 if (VECTOR_MODE_P (to_mode) || VECTOR_MODE_P (from_mode))
391 gcc_assert (GET_MODE_BITSIZE (from_mode) == GET_MODE_BITSIZE (to_mode));
393 if (VECTOR_MODE_P (to_mode))
394 from = simplify_gen_subreg (to_mode, from, GET_MODE (from), 0);
395 else
396 to = simplify_gen_subreg (from_mode, to, GET_MODE (to), 0);
398 emit_move_insn (to, from);
399 return;
402 if (GET_CODE (to) == CONCAT && GET_CODE (from) == CONCAT)
404 convert_move (XEXP (to, 0), XEXP (from, 0), unsignedp);
405 convert_move (XEXP (to, 1), XEXP (from, 1), unsignedp);
406 return;
409 if (to_real)
411 rtx value, insns;
412 convert_optab tab;
414 gcc_assert ((GET_MODE_PRECISION (from_mode)
415 != GET_MODE_PRECISION (to_mode))
416 || (DECIMAL_FLOAT_MODE_P (from_mode)
417 != DECIMAL_FLOAT_MODE_P (to_mode)));
419 if (GET_MODE_PRECISION (from_mode) == GET_MODE_PRECISION (to_mode))
420 /* Conversion between decimal float and binary float, same size. */
421 tab = DECIMAL_FLOAT_MODE_P (from_mode) ? trunc_optab : sext_optab;
422 else if (GET_MODE_PRECISION (from_mode) < GET_MODE_PRECISION (to_mode))
423 tab = sext_optab;
424 else
425 tab = trunc_optab;
427 /* Try converting directly if the insn is supported. */
429 code = tab->handlers[to_mode][from_mode].insn_code;
430 if (code != CODE_FOR_nothing)
432 emit_unop_insn (code, to, from,
433 tab == sext_optab ? FLOAT_EXTEND : FLOAT_TRUNCATE);
434 return;
437 /* Otherwise use a libcall. */
438 libcall = tab->handlers[to_mode][from_mode].libfunc;
440 /* Is this conversion implemented yet? */
441 gcc_assert (libcall);
443 start_sequence ();
444 value = emit_library_call_value (libcall, NULL_RTX, LCT_CONST, to_mode,
445 1, from, from_mode);
446 insns = get_insns ();
447 end_sequence ();
448 emit_libcall_block (insns, to, value,
449 tab == trunc_optab ? gen_rtx_FLOAT_TRUNCATE (to_mode,
450 from)
451 : gen_rtx_FLOAT_EXTEND (to_mode, from));
452 return;
455 /* Handle pointer conversion. */ /* SPEE 900220. */
456 /* Targets are expected to provide conversion insns between PxImode and
457 xImode for all MODE_PARTIAL_INT modes they use, but no others. */
458 if (GET_MODE_CLASS (to_mode) == MODE_PARTIAL_INT)
460 enum machine_mode full_mode
461 = smallest_mode_for_size (GET_MODE_BITSIZE (to_mode), MODE_INT);
463 gcc_assert (trunc_optab->handlers[to_mode][full_mode].insn_code
464 != CODE_FOR_nothing);
466 if (full_mode != from_mode)
467 from = convert_to_mode (full_mode, from, unsignedp);
468 emit_unop_insn (trunc_optab->handlers[to_mode][full_mode].insn_code,
469 to, from, UNKNOWN);
470 return;
472 if (GET_MODE_CLASS (from_mode) == MODE_PARTIAL_INT)
474 rtx new_from;
475 enum machine_mode full_mode
476 = smallest_mode_for_size (GET_MODE_BITSIZE (from_mode), MODE_INT);
478 gcc_assert (sext_optab->handlers[full_mode][from_mode].insn_code
479 != CODE_FOR_nothing);
481 if (to_mode == full_mode)
483 emit_unop_insn (sext_optab->handlers[full_mode][from_mode].insn_code,
484 to, from, UNKNOWN);
485 return;
488 new_from = gen_reg_rtx (full_mode);
489 emit_unop_insn (sext_optab->handlers[full_mode][from_mode].insn_code,
490 new_from, from, UNKNOWN);
492 /* else proceed to integer conversions below. */
493 from_mode = full_mode;
494 from = new_from;
497 /* Now both modes are integers. */
499 /* Handle expanding beyond a word. */
500 if (GET_MODE_BITSIZE (from_mode) < GET_MODE_BITSIZE (to_mode)
501 && GET_MODE_BITSIZE (to_mode) > BITS_PER_WORD)
503 rtx insns;
504 rtx lowpart;
505 rtx fill_value;
506 rtx lowfrom;
507 int i;
508 enum machine_mode lowpart_mode;
509 int nwords = CEIL (GET_MODE_SIZE (to_mode), UNITS_PER_WORD);
511 /* Try converting directly if the insn is supported. */
512 if ((code = can_extend_p (to_mode, from_mode, unsignedp))
513 != CODE_FOR_nothing)
515 /* If FROM is a SUBREG, put it into a register. Do this
516 so that we always generate the same set of insns for
517 better cse'ing; if an intermediate assignment occurred,
518 we won't be doing the operation directly on the SUBREG. */
519 if (optimize > 0 && GET_CODE (from) == SUBREG)
520 from = force_reg (from_mode, from);
521 emit_unop_insn (code, to, from, equiv_code);
522 return;
524 /* Next, try converting via full word. */
525 else if (GET_MODE_BITSIZE (from_mode) < BITS_PER_WORD
526 && ((code = can_extend_p (to_mode, word_mode, unsignedp))
527 != CODE_FOR_nothing))
529 if (REG_P (to))
531 if (reg_overlap_mentioned_p (to, from))
532 from = force_reg (from_mode, from);
533 emit_insn (gen_rtx_CLOBBER (VOIDmode, to));
535 convert_move (gen_lowpart (word_mode, to), from, unsignedp);
536 emit_unop_insn (code, to,
537 gen_lowpart (word_mode, to), equiv_code);
538 return;
541 /* No special multiword conversion insn; do it by hand. */
542 start_sequence ();
544 /* Since we will turn this into a no conflict block, we must ensure
545 that the source does not overlap the target. */
547 if (reg_overlap_mentioned_p (to, from))
548 from = force_reg (from_mode, from);
550 /* Get a copy of FROM widened to a word, if necessary. */
551 if (GET_MODE_BITSIZE (from_mode) < BITS_PER_WORD)
552 lowpart_mode = word_mode;
553 else
554 lowpart_mode = from_mode;
556 lowfrom = convert_to_mode (lowpart_mode, from, unsignedp);
558 lowpart = gen_lowpart (lowpart_mode, to);
559 emit_move_insn (lowpart, lowfrom);
561 /* Compute the value to put in each remaining word. */
562 if (unsignedp)
563 fill_value = const0_rtx;
564 else
566 #ifdef HAVE_slt
567 if (HAVE_slt
568 && insn_data[(int) CODE_FOR_slt].operand[0].mode == word_mode
569 && STORE_FLAG_VALUE == -1)
571 emit_cmp_insn (lowfrom, const0_rtx, NE, NULL_RTX,
572 lowpart_mode, 0);
573 fill_value = gen_reg_rtx (word_mode);
574 emit_insn (gen_slt (fill_value));
576 else
577 #endif
579 fill_value
580 = expand_shift (RSHIFT_EXPR, lowpart_mode, lowfrom,
581 size_int (GET_MODE_BITSIZE (lowpart_mode) - 1),
582 NULL_RTX, 0);
583 fill_value = convert_to_mode (word_mode, fill_value, 1);
587 /* Fill the remaining words. */
588 for (i = GET_MODE_SIZE (lowpart_mode) / UNITS_PER_WORD; i < nwords; i++)
590 int index = (WORDS_BIG_ENDIAN ? nwords - i - 1 : i);
591 rtx subword = operand_subword (to, index, 1, to_mode);
593 gcc_assert (subword);
595 if (fill_value != subword)
596 emit_move_insn (subword, fill_value);
599 insns = get_insns ();
600 end_sequence ();
602 emit_no_conflict_block (insns, to, from, NULL_RTX,
603 gen_rtx_fmt_e (equiv_code, to_mode, copy_rtx (from)));
604 return;
607 /* Truncating multi-word to a word or less. */
608 if (GET_MODE_BITSIZE (from_mode) > BITS_PER_WORD
609 && GET_MODE_BITSIZE (to_mode) <= BITS_PER_WORD)
611 if (!((MEM_P (from)
612 && ! MEM_VOLATILE_P (from)
613 && direct_load[(int) to_mode]
614 && ! mode_dependent_address_p (XEXP (from, 0)))
615 || REG_P (from)
616 || GET_CODE (from) == SUBREG))
617 from = force_reg (from_mode, from);
618 convert_move (to, gen_lowpart (word_mode, from), 0);
619 return;
622 /* Now follow all the conversions between integers
623 no more than a word long. */
625 /* For truncation, usually we can just refer to FROM in a narrower mode. */
626 if (GET_MODE_BITSIZE (to_mode) < GET_MODE_BITSIZE (from_mode)
627 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (to_mode),
628 GET_MODE_BITSIZE (from_mode)))
630 if (!((MEM_P (from)
631 && ! MEM_VOLATILE_P (from)
632 && direct_load[(int) to_mode]
633 && ! mode_dependent_address_p (XEXP (from, 0)))
634 || REG_P (from)
635 || GET_CODE (from) == SUBREG))
636 from = force_reg (from_mode, from);
637 if (REG_P (from) && REGNO (from) < FIRST_PSEUDO_REGISTER
638 && ! HARD_REGNO_MODE_OK (REGNO (from), to_mode))
639 from = copy_to_reg (from);
640 emit_move_insn (to, gen_lowpart (to_mode, from));
641 return;
644 /* Handle extension. */
645 if (GET_MODE_BITSIZE (to_mode) > GET_MODE_BITSIZE (from_mode))
647 /* Convert directly if that works. */
648 if ((code = can_extend_p (to_mode, from_mode, unsignedp))
649 != CODE_FOR_nothing)
651 emit_unop_insn (code, to, from, equiv_code);
652 return;
654 else
656 enum machine_mode intermediate;
657 rtx tmp;
658 tree shift_amount;
660 /* Search for a mode to convert via. */
661 for (intermediate = from_mode; intermediate != VOIDmode;
662 intermediate = GET_MODE_WIDER_MODE (intermediate))
663 if (((can_extend_p (to_mode, intermediate, unsignedp)
664 != CODE_FOR_nothing)
665 || (GET_MODE_SIZE (to_mode) < GET_MODE_SIZE (intermediate)
666 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (to_mode),
667 GET_MODE_BITSIZE (intermediate))))
668 && (can_extend_p (intermediate, from_mode, unsignedp)
669 != CODE_FOR_nothing))
671 convert_move (to, convert_to_mode (intermediate, from,
672 unsignedp), unsignedp);
673 return;
676 /* No suitable intermediate mode.
677 Generate what we need with shifts. */
678 shift_amount = build_int_cst (NULL_TREE,
679 GET_MODE_BITSIZE (to_mode)
680 - GET_MODE_BITSIZE (from_mode));
681 from = gen_lowpart (to_mode, force_reg (from_mode, from));
682 tmp = expand_shift (LSHIFT_EXPR, to_mode, from, shift_amount,
683 to, unsignedp);
684 tmp = expand_shift (RSHIFT_EXPR, to_mode, tmp, shift_amount,
685 to, unsignedp);
686 if (tmp != to)
687 emit_move_insn (to, tmp);
688 return;
692 /* Support special truncate insns for certain modes. */
693 if (trunc_optab->handlers[to_mode][from_mode].insn_code != CODE_FOR_nothing)
695 emit_unop_insn (trunc_optab->handlers[to_mode][from_mode].insn_code,
696 to, from, UNKNOWN);
697 return;
700 /* Handle truncation of volatile memrefs, and so on;
701 the things that couldn't be truncated directly,
702 and for which there was no special instruction.
704 ??? Code above formerly short-circuited this, for most integer
705 mode pairs, with a force_reg in from_mode followed by a recursive
706 call to this routine. Appears always to have been wrong. */
707 if (GET_MODE_BITSIZE (to_mode) < GET_MODE_BITSIZE (from_mode))
709 rtx temp = force_reg (to_mode, gen_lowpart (to_mode, from));
710 emit_move_insn (to, temp);
711 return;
714 /* Mode combination is not recognized. */
715 gcc_unreachable ();
718 /* Return an rtx for a value that would result
719 from converting X to mode MODE.
720 Both X and MODE may be floating, or both integer.
721 UNSIGNEDP is nonzero if X is an unsigned value.
722 This can be done by referring to a part of X in place
723 or by copying to a new temporary with conversion. */
726 convert_to_mode (enum machine_mode mode, rtx x, int unsignedp)
728 return convert_modes (mode, VOIDmode, x, unsignedp);
731 /* Return an rtx for a value that would result
732 from converting X from mode OLDMODE to mode MODE.
733 Both modes may be floating, or both integer.
734 UNSIGNEDP is nonzero if X is an unsigned value.
736 This can be done by referring to a part of X in place
737 or by copying to a new temporary with conversion.
739 You can give VOIDmode for OLDMODE, if you are sure X has a nonvoid mode. */
742 convert_modes (enum machine_mode mode, enum machine_mode oldmode, rtx x, int unsignedp)
744 rtx temp;
746 /* If FROM is a SUBREG that indicates that we have already done at least
747 the required extension, strip it. */
749 if (GET_CODE (x) == SUBREG && SUBREG_PROMOTED_VAR_P (x)
750 && GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))) >= GET_MODE_SIZE (mode)
751 && SUBREG_PROMOTED_UNSIGNED_P (x) == unsignedp)
752 x = gen_lowpart (mode, x);
754 if (GET_MODE (x) != VOIDmode)
755 oldmode = GET_MODE (x);
757 if (mode == oldmode)
758 return x;
760 /* There is one case that we must handle specially: If we are converting
761 a CONST_INT into a mode whose size is twice HOST_BITS_PER_WIDE_INT and
762 we are to interpret the constant as unsigned, gen_lowpart will do
763 the wrong if the constant appears negative. What we want to do is
764 make the high-order word of the constant zero, not all ones. */
766 if (unsignedp && GET_MODE_CLASS (mode) == MODE_INT
767 && GET_MODE_BITSIZE (mode) == 2 * HOST_BITS_PER_WIDE_INT
768 && GET_CODE (x) == CONST_INT && INTVAL (x) < 0)
770 HOST_WIDE_INT val = INTVAL (x);
772 if (oldmode != VOIDmode
773 && HOST_BITS_PER_WIDE_INT > GET_MODE_BITSIZE (oldmode))
775 int width = GET_MODE_BITSIZE (oldmode);
777 /* We need to zero extend VAL. */
778 val &= ((HOST_WIDE_INT) 1 << width) - 1;
781 return immed_double_const (val, (HOST_WIDE_INT) 0, mode);
784 /* We can do this with a gen_lowpart if both desired and current modes
785 are integer, and this is either a constant integer, a register, or a
786 non-volatile MEM. Except for the constant case where MODE is no
787 wider than HOST_BITS_PER_WIDE_INT, we must be narrowing the operand. */
789 if ((GET_CODE (x) == CONST_INT
790 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
791 || (GET_MODE_CLASS (mode) == MODE_INT
792 && GET_MODE_CLASS (oldmode) == MODE_INT
793 && (GET_CODE (x) == CONST_DOUBLE
794 || (GET_MODE_SIZE (mode) <= GET_MODE_SIZE (oldmode)
795 && ((MEM_P (x) && ! MEM_VOLATILE_P (x)
796 && direct_load[(int) mode])
797 || (REG_P (x)
798 && (! HARD_REGISTER_P (x)
799 || HARD_REGNO_MODE_OK (REGNO (x), mode))
800 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
801 GET_MODE_BITSIZE (GET_MODE (x)))))))))
803 /* ?? If we don't know OLDMODE, we have to assume here that
804 X does not need sign- or zero-extension. This may not be
805 the case, but it's the best we can do. */
806 if (GET_CODE (x) == CONST_INT && oldmode != VOIDmode
807 && GET_MODE_SIZE (mode) > GET_MODE_SIZE (oldmode))
809 HOST_WIDE_INT val = INTVAL (x);
810 int width = GET_MODE_BITSIZE (oldmode);
812 /* We must sign or zero-extend in this case. Start by
813 zero-extending, then sign extend if we need to. */
814 val &= ((HOST_WIDE_INT) 1 << width) - 1;
815 if (! unsignedp
816 && (val & ((HOST_WIDE_INT) 1 << (width - 1))))
817 val |= (HOST_WIDE_INT) (-1) << width;
819 return gen_int_mode (val, mode);
822 return gen_lowpart (mode, x);
825 /* Converting from integer constant into mode is always equivalent to an
826 subreg operation. */
827 if (VECTOR_MODE_P (mode) && GET_MODE (x) == VOIDmode)
829 gcc_assert (GET_MODE_BITSIZE (mode) == GET_MODE_BITSIZE (oldmode));
830 return simplify_gen_subreg (mode, x, oldmode, 0);
833 temp = gen_reg_rtx (mode);
834 convert_move (temp, x, unsignedp);
835 return temp;
838 /* STORE_MAX_PIECES is the number of bytes at a time that we can
839 store efficiently. Due to internal GCC limitations, this is
840 MOVE_MAX_PIECES limited by the number of bytes GCC can represent
841 for an immediate constant. */
843 #define STORE_MAX_PIECES MIN (MOVE_MAX_PIECES, 2 * sizeof (HOST_WIDE_INT))
845 /* Determine whether the LEN bytes can be moved by using several move
846 instructions. Return nonzero if a call to move_by_pieces should
847 succeed. */
850 can_move_by_pieces (unsigned HOST_WIDE_INT len,
851 unsigned int align ATTRIBUTE_UNUSED)
853 return MOVE_BY_PIECES_P (len, align);
856 /* Generate several move instructions to copy LEN bytes from block FROM to
857 block TO. (These are MEM rtx's with BLKmode).
859 If PUSH_ROUNDING is defined and TO is NULL, emit_single_push_insn is
860 used to push FROM to the stack.
862 ALIGN is maximum stack alignment we can assume.
864 If ENDP is 0 return to, if ENDP is 1 return memory at the end ala
865 mempcpy, and if ENDP is 2 return memory the end minus one byte ala
866 stpcpy. */
869 move_by_pieces (rtx to, rtx from, unsigned HOST_WIDE_INT len,
870 unsigned int align, int endp)
872 struct move_by_pieces data;
873 rtx to_addr, from_addr = XEXP (from, 0);
874 unsigned int max_size = MOVE_MAX_PIECES + 1;
875 enum machine_mode mode = VOIDmode, tmode;
876 enum insn_code icode;
878 align = MIN (to ? MEM_ALIGN (to) : align, MEM_ALIGN (from));
880 data.offset = 0;
881 data.from_addr = from_addr;
882 if (to)
884 to_addr = XEXP (to, 0);
885 data.to = to;
886 data.autinc_to
887 = (GET_CODE (to_addr) == PRE_INC || GET_CODE (to_addr) == PRE_DEC
888 || GET_CODE (to_addr) == POST_INC || GET_CODE (to_addr) == POST_DEC);
889 data.reverse
890 = (GET_CODE (to_addr) == PRE_DEC || GET_CODE (to_addr) == POST_DEC);
892 else
894 to_addr = NULL_RTX;
895 data.to = NULL_RTX;
896 data.autinc_to = 1;
897 #ifdef STACK_GROWS_DOWNWARD
898 data.reverse = 1;
899 #else
900 data.reverse = 0;
901 #endif
903 data.to_addr = to_addr;
904 data.from = from;
905 data.autinc_from
906 = (GET_CODE (from_addr) == PRE_INC || GET_CODE (from_addr) == PRE_DEC
907 || GET_CODE (from_addr) == POST_INC
908 || GET_CODE (from_addr) == POST_DEC);
910 data.explicit_inc_from = 0;
911 data.explicit_inc_to = 0;
912 if (data.reverse) data.offset = len;
913 data.len = len;
915 /* If copying requires more than two move insns,
916 copy addresses to registers (to make displacements shorter)
917 and use post-increment if available. */
918 if (!(data.autinc_from && data.autinc_to)
919 && move_by_pieces_ninsns (len, align, max_size) > 2)
921 /* Find the mode of the largest move... */
922 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
923 tmode != VOIDmode; tmode = GET_MODE_WIDER_MODE (tmode))
924 if (GET_MODE_SIZE (tmode) < max_size)
925 mode = tmode;
927 if (USE_LOAD_PRE_DECREMENT (mode) && data.reverse && ! data.autinc_from)
929 data.from_addr = copy_addr_to_reg (plus_constant (from_addr, len));
930 data.autinc_from = 1;
931 data.explicit_inc_from = -1;
933 if (USE_LOAD_POST_INCREMENT (mode) && ! data.autinc_from)
935 data.from_addr = copy_addr_to_reg (from_addr);
936 data.autinc_from = 1;
937 data.explicit_inc_from = 1;
939 if (!data.autinc_from && CONSTANT_P (from_addr))
940 data.from_addr = copy_addr_to_reg (from_addr);
941 if (USE_STORE_PRE_DECREMENT (mode) && data.reverse && ! data.autinc_to)
943 data.to_addr = copy_addr_to_reg (plus_constant (to_addr, len));
944 data.autinc_to = 1;
945 data.explicit_inc_to = -1;
947 if (USE_STORE_POST_INCREMENT (mode) && ! data.reverse && ! data.autinc_to)
949 data.to_addr = copy_addr_to_reg (to_addr);
950 data.autinc_to = 1;
951 data.explicit_inc_to = 1;
953 if (!data.autinc_to && CONSTANT_P (to_addr))
954 data.to_addr = copy_addr_to_reg (to_addr);
957 tmode = mode_for_size (MOVE_MAX_PIECES * BITS_PER_UNIT, MODE_INT, 1);
958 if (align >= GET_MODE_ALIGNMENT (tmode))
959 align = GET_MODE_ALIGNMENT (tmode);
960 else
962 enum machine_mode xmode;
964 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT), xmode = tmode;
965 tmode != VOIDmode;
966 xmode = tmode, tmode = GET_MODE_WIDER_MODE (tmode))
967 if (GET_MODE_SIZE (tmode) > MOVE_MAX_PIECES
968 || SLOW_UNALIGNED_ACCESS (tmode, align))
969 break;
971 align = MAX (align, GET_MODE_ALIGNMENT (xmode));
974 /* First move what we can in the largest integer mode, then go to
975 successively smaller modes. */
977 while (max_size > 1)
979 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
980 tmode != VOIDmode; tmode = GET_MODE_WIDER_MODE (tmode))
981 if (GET_MODE_SIZE (tmode) < max_size)
982 mode = tmode;
984 if (mode == VOIDmode)
985 break;
987 icode = mov_optab->handlers[(int) mode].insn_code;
988 if (icode != CODE_FOR_nothing && align >= GET_MODE_ALIGNMENT (mode))
989 move_by_pieces_1 (GEN_FCN (icode), mode, &data);
991 max_size = GET_MODE_SIZE (mode);
994 /* The code above should have handled everything. */
995 gcc_assert (!data.len);
997 if (endp)
999 rtx to1;
1001 gcc_assert (!data.reverse);
1002 if (data.autinc_to)
1004 if (endp == 2)
1006 if (HAVE_POST_INCREMENT && data.explicit_inc_to > 0)
1007 emit_insn (gen_add2_insn (data.to_addr, constm1_rtx));
1008 else
1009 data.to_addr = copy_addr_to_reg (plus_constant (data.to_addr,
1010 -1));
1012 to1 = adjust_automodify_address (data.to, QImode, data.to_addr,
1013 data.offset);
1015 else
1017 if (endp == 2)
1018 --data.offset;
1019 to1 = adjust_address (data.to, QImode, data.offset);
1021 return to1;
1023 else
1024 return data.to;
1027 /* Return number of insns required to move L bytes by pieces.
1028 ALIGN (in bits) is maximum alignment we can assume. */
1030 static unsigned HOST_WIDE_INT
1031 move_by_pieces_ninsns (unsigned HOST_WIDE_INT l, unsigned int align,
1032 unsigned int max_size)
1034 unsigned HOST_WIDE_INT n_insns = 0;
1035 enum machine_mode tmode;
1037 tmode = mode_for_size (MOVE_MAX_PIECES * BITS_PER_UNIT, MODE_INT, 1);
1038 if (align >= GET_MODE_ALIGNMENT (tmode))
1039 align = GET_MODE_ALIGNMENT (tmode);
1040 else
1042 enum machine_mode tmode, xmode;
1044 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT), xmode = tmode;
1045 tmode != VOIDmode;
1046 xmode = tmode, tmode = GET_MODE_WIDER_MODE (tmode))
1047 if (GET_MODE_SIZE (tmode) > MOVE_MAX_PIECES
1048 || SLOW_UNALIGNED_ACCESS (tmode, align))
1049 break;
1051 align = MAX (align, GET_MODE_ALIGNMENT (xmode));
1054 while (max_size > 1)
1056 enum machine_mode mode = VOIDmode;
1057 enum insn_code icode;
1059 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
1060 tmode != VOIDmode; tmode = GET_MODE_WIDER_MODE (tmode))
1061 if (GET_MODE_SIZE (tmode) < max_size)
1062 mode = tmode;
1064 if (mode == VOIDmode)
1065 break;
1067 icode = mov_optab->handlers[(int) mode].insn_code;
1068 if (icode != CODE_FOR_nothing && align >= GET_MODE_ALIGNMENT (mode))
1069 n_insns += l / GET_MODE_SIZE (mode), l %= GET_MODE_SIZE (mode);
1071 max_size = GET_MODE_SIZE (mode);
1074 gcc_assert (!l);
1075 return n_insns;
1078 /* Subroutine of move_by_pieces. Move as many bytes as appropriate
1079 with move instructions for mode MODE. GENFUN is the gen_... function
1080 to make a move insn for that mode. DATA has all the other info. */
1082 static void
1083 move_by_pieces_1 (rtx (*genfun) (rtx, ...), enum machine_mode mode,
1084 struct move_by_pieces *data)
1086 unsigned int size = GET_MODE_SIZE (mode);
1087 rtx to1 = NULL_RTX, from1;
1089 while (data->len >= size)
1091 if (data->reverse)
1092 data->offset -= size;
1094 if (data->to)
1096 if (data->autinc_to)
1097 to1 = adjust_automodify_address (data->to, mode, data->to_addr,
1098 data->offset);
1099 else
1100 to1 = adjust_address (data->to, mode, data->offset);
1103 if (data->autinc_from)
1104 from1 = adjust_automodify_address (data->from, mode, data->from_addr,
1105 data->offset);
1106 else
1107 from1 = adjust_address (data->from, mode, data->offset);
1109 if (HAVE_PRE_DECREMENT && data->explicit_inc_to < 0)
1110 emit_insn (gen_add2_insn (data->to_addr,
1111 GEN_INT (-(HOST_WIDE_INT)size)));
1112 if (HAVE_PRE_DECREMENT && data->explicit_inc_from < 0)
1113 emit_insn (gen_add2_insn (data->from_addr,
1114 GEN_INT (-(HOST_WIDE_INT)size)));
1116 if (data->to)
1117 emit_insn ((*genfun) (to1, from1));
1118 else
1120 #ifdef PUSH_ROUNDING
1121 emit_single_push_insn (mode, from1, NULL);
1122 #else
1123 gcc_unreachable ();
1124 #endif
1127 if (HAVE_POST_INCREMENT && data->explicit_inc_to > 0)
1128 emit_insn (gen_add2_insn (data->to_addr, GEN_INT (size)));
1129 if (HAVE_POST_INCREMENT && data->explicit_inc_from > 0)
1130 emit_insn (gen_add2_insn (data->from_addr, GEN_INT (size)));
1132 if (! data->reverse)
1133 data->offset += size;
1135 data->len -= size;
1139 /* Emit code to move a block Y to a block X. This may be done with
1140 string-move instructions, with multiple scalar move instructions,
1141 or with a library call.
1143 Both X and Y must be MEM rtx's (perhaps inside VOLATILE) with mode BLKmode.
1144 SIZE is an rtx that says how long they are.
1145 ALIGN is the maximum alignment we can assume they have.
1146 METHOD describes what kind of copy this is, and what mechanisms may be used.
1148 Return the address of the new block, if memcpy is called and returns it,
1149 0 otherwise. */
1152 emit_block_move (rtx x, rtx y, rtx size, enum block_op_methods method)
1154 bool may_use_call;
1155 rtx retval = 0;
1156 unsigned int align;
1158 switch (method)
1160 case BLOCK_OP_NORMAL:
1161 case BLOCK_OP_TAILCALL:
1162 may_use_call = true;
1163 break;
1165 case BLOCK_OP_CALL_PARM:
1166 may_use_call = block_move_libcall_safe_for_call_parm ();
1168 /* Make inhibit_defer_pop nonzero around the library call
1169 to force it to pop the arguments right away. */
1170 NO_DEFER_POP;
1171 break;
1173 case BLOCK_OP_NO_LIBCALL:
1174 may_use_call = false;
1175 break;
1177 default:
1178 gcc_unreachable ();
1181 align = MIN (MEM_ALIGN (x), MEM_ALIGN (y));
1183 gcc_assert (MEM_P (x));
1184 gcc_assert (MEM_P (y));
1185 gcc_assert (size);
1187 /* Make sure we've got BLKmode addresses; store_one_arg can decide that
1188 block copy is more efficient for other large modes, e.g. DCmode. */
1189 x = adjust_address (x, BLKmode, 0);
1190 y = adjust_address (y, BLKmode, 0);
1192 /* Set MEM_SIZE as appropriate for this block copy. The main place this
1193 can be incorrect is coming from __builtin_memcpy. */
1194 if (GET_CODE (size) == CONST_INT)
1196 if (INTVAL (size) == 0)
1197 return 0;
1199 x = shallow_copy_rtx (x);
1200 y = shallow_copy_rtx (y);
1201 set_mem_size (x, size);
1202 set_mem_size (y, size);
1205 if (GET_CODE (size) == CONST_INT && MOVE_BY_PIECES_P (INTVAL (size), align))
1206 move_by_pieces (x, y, INTVAL (size), align, 0);
1207 else if (emit_block_move_via_movmem (x, y, size, align))
1209 else if (may_use_call)
1210 retval = emit_block_move_via_libcall (x, y, size,
1211 method == BLOCK_OP_TAILCALL);
1212 else
1213 emit_block_move_via_loop (x, y, size, align);
1215 if (method == BLOCK_OP_CALL_PARM)
1216 OK_DEFER_POP;
1218 return retval;
1221 /* A subroutine of emit_block_move. Returns true if calling the
1222 block move libcall will not clobber any parameters which may have
1223 already been placed on the stack. */
1225 static bool
1226 block_move_libcall_safe_for_call_parm (void)
1228 /* If arguments are pushed on the stack, then they're safe. */
1229 if (PUSH_ARGS)
1230 return true;
1232 /* If registers go on the stack anyway, any argument is sure to clobber
1233 an outgoing argument. */
1234 #if defined (REG_PARM_STACK_SPACE) && defined (OUTGOING_REG_PARM_STACK_SPACE)
1236 tree fn = emit_block_move_libcall_fn (false);
1237 (void) fn;
1238 if (REG_PARM_STACK_SPACE (fn) != 0)
1239 return false;
1241 #endif
1243 /* If any argument goes in memory, then it might clobber an outgoing
1244 argument. */
1246 CUMULATIVE_ARGS args_so_far;
1247 tree fn, arg;
1249 fn = emit_block_move_libcall_fn (false);
1250 INIT_CUMULATIVE_ARGS (args_so_far, TREE_TYPE (fn), NULL_RTX, 0, 3);
1252 arg = TYPE_ARG_TYPES (TREE_TYPE (fn));
1253 for ( ; arg != void_list_node ; arg = TREE_CHAIN (arg))
1255 enum machine_mode mode = TYPE_MODE (TREE_VALUE (arg));
1256 rtx tmp = FUNCTION_ARG (args_so_far, mode, NULL_TREE, 1);
1257 if (!tmp || !REG_P (tmp))
1258 return false;
1259 if (targetm.calls.arg_partial_bytes (&args_so_far, mode, NULL, 1))
1260 return false;
1261 FUNCTION_ARG_ADVANCE (args_so_far, mode, NULL_TREE, 1);
1264 return true;
1267 /* A subroutine of emit_block_move. Expand a movmem pattern;
1268 return true if successful. */
1270 static bool
1271 emit_block_move_via_movmem (rtx x, rtx y, rtx size, unsigned int align)
1273 rtx opalign = GEN_INT (align / BITS_PER_UNIT);
1274 int save_volatile_ok = volatile_ok;
1275 enum machine_mode mode;
1277 /* Since this is a move insn, we don't care about volatility. */
1278 volatile_ok = 1;
1280 /* Try the most limited insn first, because there's no point
1281 including more than one in the machine description unless
1282 the more limited one has some advantage. */
1284 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
1285 mode = GET_MODE_WIDER_MODE (mode))
1287 enum insn_code code = movmem_optab[(int) mode];
1288 insn_operand_predicate_fn pred;
1290 if (code != CODE_FOR_nothing
1291 /* We don't need MODE to be narrower than BITS_PER_HOST_WIDE_INT
1292 here because if SIZE is less than the mode mask, as it is
1293 returned by the macro, it will definitely be less than the
1294 actual mode mask. */
1295 && ((GET_CODE (size) == CONST_INT
1296 && ((unsigned HOST_WIDE_INT) INTVAL (size)
1297 <= (GET_MODE_MASK (mode) >> 1)))
1298 || GET_MODE_BITSIZE (mode) >= BITS_PER_WORD)
1299 && ((pred = insn_data[(int) code].operand[0].predicate) == 0
1300 || (*pred) (x, BLKmode))
1301 && ((pred = insn_data[(int) code].operand[1].predicate) == 0
1302 || (*pred) (y, BLKmode))
1303 && ((pred = insn_data[(int) code].operand[3].predicate) == 0
1304 || (*pred) (opalign, VOIDmode)))
1306 rtx op2;
1307 rtx last = get_last_insn ();
1308 rtx pat;
1310 op2 = convert_to_mode (mode, size, 1);
1311 pred = insn_data[(int) code].operand[2].predicate;
1312 if (pred != 0 && ! (*pred) (op2, mode))
1313 op2 = copy_to_mode_reg (mode, op2);
1315 /* ??? When called via emit_block_move_for_call, it'd be
1316 nice if there were some way to inform the backend, so
1317 that it doesn't fail the expansion because it thinks
1318 emitting the libcall would be more efficient. */
1320 pat = GEN_FCN ((int) code) (x, y, op2, opalign);
1321 if (pat)
1323 emit_insn (pat);
1324 volatile_ok = save_volatile_ok;
1325 return true;
1327 else
1328 delete_insns_since (last);
1332 volatile_ok = save_volatile_ok;
1333 return false;
1336 /* A subroutine of emit_block_move. Expand a call to memcpy.
1337 Return the return value from memcpy, 0 otherwise. */
1339 static rtx
1340 emit_block_move_via_libcall (rtx dst, rtx src, rtx size, bool tailcall)
1342 rtx dst_addr, src_addr;
1343 tree call_expr, arg_list, fn, src_tree, dst_tree, size_tree;
1344 enum machine_mode size_mode;
1345 rtx retval;
1347 /* Emit code to copy the addresses of DST and SRC and SIZE into new
1348 pseudos. We can then place those new pseudos into a VAR_DECL and
1349 use them later. */
1351 dst_addr = copy_to_mode_reg (Pmode, XEXP (dst, 0));
1352 src_addr = copy_to_mode_reg (Pmode, XEXP (src, 0));
1354 dst_addr = convert_memory_address (ptr_mode, dst_addr);
1355 src_addr = convert_memory_address (ptr_mode, src_addr);
1357 dst_tree = make_tree (ptr_type_node, dst_addr);
1358 src_tree = make_tree (ptr_type_node, src_addr);
1360 size_mode = TYPE_MODE (sizetype);
1362 size = convert_to_mode (size_mode, size, 1);
1363 size = copy_to_mode_reg (size_mode, size);
1365 /* It is incorrect to use the libcall calling conventions to call
1366 memcpy in this context. This could be a user call to memcpy and
1367 the user may wish to examine the return value from memcpy. For
1368 targets where libcalls and normal calls have different conventions
1369 for returning pointers, we could end up generating incorrect code. */
1371 size_tree = make_tree (sizetype, size);
1373 fn = emit_block_move_libcall_fn (true);
1374 arg_list = tree_cons (NULL_TREE, size_tree, NULL_TREE);
1375 arg_list = tree_cons (NULL_TREE, src_tree, arg_list);
1376 arg_list = tree_cons (NULL_TREE, dst_tree, arg_list);
1378 /* Now we have to build up the CALL_EXPR itself. */
1379 call_expr = build1 (ADDR_EXPR, build_pointer_type (TREE_TYPE (fn)), fn);
1380 call_expr = build3 (CALL_EXPR, TREE_TYPE (TREE_TYPE (fn)),
1381 call_expr, arg_list, NULL_TREE);
1382 CALL_EXPR_TAILCALL (call_expr) = tailcall;
1384 retval = expand_normal (call_expr);
1386 return retval;
1389 /* A subroutine of emit_block_move_via_libcall. Create the tree node
1390 for the function we use for block copies. The first time FOR_CALL
1391 is true, we call assemble_external. */
1393 static GTY(()) tree block_move_fn;
1395 void
1396 init_block_move_fn (const char *asmspec)
1398 if (!block_move_fn)
1400 tree args, fn;
1402 fn = get_identifier ("memcpy");
1403 args = build_function_type_list (ptr_type_node, ptr_type_node,
1404 const_ptr_type_node, sizetype,
1405 NULL_TREE);
1407 fn = build_decl (FUNCTION_DECL, fn, args);
1408 DECL_EXTERNAL (fn) = 1;
1409 TREE_PUBLIC (fn) = 1;
1410 DECL_ARTIFICIAL (fn) = 1;
1411 TREE_NOTHROW (fn) = 1;
1413 block_move_fn = fn;
1416 if (asmspec)
1417 set_user_assembler_name (block_move_fn, asmspec);
1420 static tree
1421 emit_block_move_libcall_fn (int for_call)
1423 static bool emitted_extern;
1425 if (!block_move_fn)
1426 init_block_move_fn (NULL);
1428 if (for_call && !emitted_extern)
1430 emitted_extern = true;
1431 make_decl_rtl (block_move_fn);
1432 assemble_external (block_move_fn);
1435 return block_move_fn;
1438 /* A subroutine of emit_block_move. Copy the data via an explicit
1439 loop. This is used only when libcalls are forbidden. */
1440 /* ??? It'd be nice to copy in hunks larger than QImode. */
1442 static void
1443 emit_block_move_via_loop (rtx x, rtx y, rtx size,
1444 unsigned int align ATTRIBUTE_UNUSED)
1446 rtx cmp_label, top_label, iter, x_addr, y_addr, tmp;
1447 enum machine_mode iter_mode;
1449 iter_mode = GET_MODE (size);
1450 if (iter_mode == VOIDmode)
1451 iter_mode = word_mode;
1453 top_label = gen_label_rtx ();
1454 cmp_label = gen_label_rtx ();
1455 iter = gen_reg_rtx (iter_mode);
1457 emit_move_insn (iter, const0_rtx);
1459 x_addr = force_operand (XEXP (x, 0), NULL_RTX);
1460 y_addr = force_operand (XEXP (y, 0), NULL_RTX);
1461 do_pending_stack_adjust ();
1463 emit_jump (cmp_label);
1464 emit_label (top_label);
1466 tmp = convert_modes (Pmode, iter_mode, iter, true);
1467 x_addr = gen_rtx_PLUS (Pmode, x_addr, tmp);
1468 y_addr = gen_rtx_PLUS (Pmode, y_addr, tmp);
1469 x = change_address (x, QImode, x_addr);
1470 y = change_address (y, QImode, y_addr);
1472 emit_move_insn (x, y);
1474 tmp = expand_simple_binop (iter_mode, PLUS, iter, const1_rtx, iter,
1475 true, OPTAB_LIB_WIDEN);
1476 if (tmp != iter)
1477 emit_move_insn (iter, tmp);
1479 emit_label (cmp_label);
1481 emit_cmp_and_jump_insns (iter, size, LT, NULL_RTX, iter_mode,
1482 true, top_label);
1485 /* Copy all or part of a value X into registers starting at REGNO.
1486 The number of registers to be filled is NREGS. */
1488 void
1489 move_block_to_reg (int regno, rtx x, int nregs, enum machine_mode mode)
1491 int i;
1492 #ifdef HAVE_load_multiple
1493 rtx pat;
1494 rtx last;
1495 #endif
1497 if (nregs == 0)
1498 return;
1500 if (CONSTANT_P (x) && ! LEGITIMATE_CONSTANT_P (x))
1501 x = validize_mem (force_const_mem (mode, x));
1503 /* See if the machine can do this with a load multiple insn. */
1504 #ifdef HAVE_load_multiple
1505 if (HAVE_load_multiple)
1507 last = get_last_insn ();
1508 pat = gen_load_multiple (gen_rtx_REG (word_mode, regno), x,
1509 GEN_INT (nregs));
1510 if (pat)
1512 emit_insn (pat);
1513 return;
1515 else
1516 delete_insns_since (last);
1518 #endif
1520 for (i = 0; i < nregs; i++)
1521 emit_move_insn (gen_rtx_REG (word_mode, regno + i),
1522 operand_subword_force (x, i, mode));
1525 /* Copy all or part of a BLKmode value X out of registers starting at REGNO.
1526 The number of registers to be filled is NREGS. */
1528 void
1529 move_block_from_reg (int regno, rtx x, int nregs)
1531 int i;
1533 if (nregs == 0)
1534 return;
1536 /* See if the machine can do this with a store multiple insn. */
1537 #ifdef HAVE_store_multiple
1538 if (HAVE_store_multiple)
1540 rtx last = get_last_insn ();
1541 rtx pat = gen_store_multiple (x, gen_rtx_REG (word_mode, regno),
1542 GEN_INT (nregs));
1543 if (pat)
1545 emit_insn (pat);
1546 return;
1548 else
1549 delete_insns_since (last);
1551 #endif
1553 for (i = 0; i < nregs; i++)
1555 rtx tem = operand_subword (x, i, 1, BLKmode);
1557 gcc_assert (tem);
1559 emit_move_insn (tem, gen_rtx_REG (word_mode, regno + i));
1563 /* Generate a PARALLEL rtx for a new non-consecutive group of registers from
1564 ORIG, where ORIG is a non-consecutive group of registers represented by
1565 a PARALLEL. The clone is identical to the original except in that the
1566 original set of registers is replaced by a new set of pseudo registers.
1567 The new set has the same modes as the original set. */
1570 gen_group_rtx (rtx orig)
1572 int i, length;
1573 rtx *tmps;
1575 gcc_assert (GET_CODE (orig) == PARALLEL);
1577 length = XVECLEN (orig, 0);
1578 tmps = alloca (sizeof (rtx) * length);
1580 /* Skip a NULL entry in first slot. */
1581 i = XEXP (XVECEXP (orig, 0, 0), 0) ? 0 : 1;
1583 if (i)
1584 tmps[0] = 0;
1586 for (; i < length; i++)
1588 enum machine_mode mode = GET_MODE (XEXP (XVECEXP (orig, 0, i), 0));
1589 rtx offset = XEXP (XVECEXP (orig, 0, i), 1);
1591 tmps[i] = gen_rtx_EXPR_LIST (VOIDmode, gen_reg_rtx (mode), offset);
1594 return gen_rtx_PARALLEL (GET_MODE (orig), gen_rtvec_v (length, tmps));
1597 /* A subroutine of emit_group_load. Arguments as for emit_group_load,
1598 except that values are placed in TMPS[i], and must later be moved
1599 into corresponding XEXP (XVECEXP (DST, 0, i), 0) element. */
1601 static void
1602 emit_group_load_1 (rtx *tmps, rtx dst, rtx orig_src, tree type, int ssize)
1604 rtx src;
1605 int start, i;
1606 enum machine_mode m = GET_MODE (orig_src);
1608 gcc_assert (GET_CODE (dst) == PARALLEL);
1610 if (m != VOIDmode
1611 && !SCALAR_INT_MODE_P (m)
1612 && !MEM_P (orig_src)
1613 && GET_CODE (orig_src) != CONCAT)
1615 enum machine_mode imode = int_mode_for_mode (GET_MODE (orig_src));
1616 if (imode == BLKmode)
1617 src = assign_stack_temp (GET_MODE (orig_src), ssize, 0);
1618 else
1619 src = gen_reg_rtx (imode);
1620 if (imode != BLKmode)
1621 src = gen_lowpart (GET_MODE (orig_src), src);
1622 emit_move_insn (src, orig_src);
1623 /* ...and back again. */
1624 if (imode != BLKmode)
1625 src = gen_lowpart (imode, src);
1626 emit_group_load_1 (tmps, dst, src, type, ssize);
1627 return;
1630 /* Check for a NULL entry, used to indicate that the parameter goes
1631 both on the stack and in registers. */
1632 if (XEXP (XVECEXP (dst, 0, 0), 0))
1633 start = 0;
1634 else
1635 start = 1;
1637 /* Process the pieces. */
1638 for (i = start; i < XVECLEN (dst, 0); i++)
1640 enum machine_mode mode = GET_MODE (XEXP (XVECEXP (dst, 0, i), 0));
1641 HOST_WIDE_INT bytepos = INTVAL (XEXP (XVECEXP (dst, 0, i), 1));
1642 unsigned int bytelen = GET_MODE_SIZE (mode);
1643 int shift = 0;
1645 /* Handle trailing fragments that run over the size of the struct. */
1646 if (ssize >= 0 && bytepos + (HOST_WIDE_INT) bytelen > ssize)
1648 /* Arrange to shift the fragment to where it belongs.
1649 extract_bit_field loads to the lsb of the reg. */
1650 if (
1651 #ifdef BLOCK_REG_PADDING
1652 BLOCK_REG_PADDING (GET_MODE (orig_src), type, i == start)
1653 == (BYTES_BIG_ENDIAN ? upward : downward)
1654 #else
1655 BYTES_BIG_ENDIAN
1656 #endif
1658 shift = (bytelen - (ssize - bytepos)) * BITS_PER_UNIT;
1659 bytelen = ssize - bytepos;
1660 gcc_assert (bytelen > 0);
1663 /* If we won't be loading directly from memory, protect the real source
1664 from strange tricks we might play; but make sure that the source can
1665 be loaded directly into the destination. */
1666 src = orig_src;
1667 if (!MEM_P (orig_src)
1668 && (!CONSTANT_P (orig_src)
1669 || (GET_MODE (orig_src) != mode
1670 && GET_MODE (orig_src) != VOIDmode)))
1672 if (GET_MODE (orig_src) == VOIDmode)
1673 src = gen_reg_rtx (mode);
1674 else
1675 src = gen_reg_rtx (GET_MODE (orig_src));
1677 emit_move_insn (src, orig_src);
1680 /* Optimize the access just a bit. */
1681 if (MEM_P (src)
1682 && (! SLOW_UNALIGNED_ACCESS (mode, MEM_ALIGN (src))
1683 || MEM_ALIGN (src) >= GET_MODE_ALIGNMENT (mode))
1684 && bytepos * BITS_PER_UNIT % GET_MODE_ALIGNMENT (mode) == 0
1685 && bytelen == GET_MODE_SIZE (mode))
1687 tmps[i] = gen_reg_rtx (mode);
1688 emit_move_insn (tmps[i], adjust_address (src, mode, bytepos));
1690 else if (COMPLEX_MODE_P (mode)
1691 && GET_MODE (src) == mode
1692 && bytelen == GET_MODE_SIZE (mode))
1693 /* Let emit_move_complex do the bulk of the work. */
1694 tmps[i] = src;
1695 else if (GET_CODE (src) == CONCAT)
1697 unsigned int slen = GET_MODE_SIZE (GET_MODE (src));
1698 unsigned int slen0 = GET_MODE_SIZE (GET_MODE (XEXP (src, 0)));
1700 if ((bytepos == 0 && bytelen == slen0)
1701 || (bytepos != 0 && bytepos + bytelen <= slen))
1703 /* The following assumes that the concatenated objects all
1704 have the same size. In this case, a simple calculation
1705 can be used to determine the object and the bit field
1706 to be extracted. */
1707 tmps[i] = XEXP (src, bytepos / slen0);
1708 if (! CONSTANT_P (tmps[i])
1709 && (!REG_P (tmps[i]) || GET_MODE (tmps[i]) != mode))
1710 tmps[i] = extract_bit_field (tmps[i], bytelen * BITS_PER_UNIT,
1711 (bytepos % slen0) * BITS_PER_UNIT,
1712 1, NULL_RTX, mode, mode);
1714 else
1716 rtx mem;
1718 gcc_assert (!bytepos);
1719 mem = assign_stack_temp (GET_MODE (src), slen, 0);
1720 emit_move_insn (mem, src);
1721 tmps[i] = extract_bit_field (mem, bytelen * BITS_PER_UNIT,
1722 0, 1, NULL_RTX, mode, mode);
1725 /* FIXME: A SIMD parallel will eventually lead to a subreg of a
1726 SIMD register, which is currently broken. While we get GCC
1727 to emit proper RTL for these cases, let's dump to memory. */
1728 else if (VECTOR_MODE_P (GET_MODE (dst))
1729 && REG_P (src))
1731 int slen = GET_MODE_SIZE (GET_MODE (src));
1732 rtx mem;
1734 mem = assign_stack_temp (GET_MODE (src), slen, 0);
1735 emit_move_insn (mem, src);
1736 tmps[i] = adjust_address (mem, mode, (int) bytepos);
1738 else if (CONSTANT_P (src) && GET_MODE (dst) != BLKmode
1739 && XVECLEN (dst, 0) > 1)
1740 tmps[i] = simplify_gen_subreg (mode, src, GET_MODE(dst), bytepos);
1741 else if (CONSTANT_P (src)
1742 || (REG_P (src) && GET_MODE (src) == mode))
1743 tmps[i] = src;
1744 else
1745 tmps[i] = extract_bit_field (src, bytelen * BITS_PER_UNIT,
1746 bytepos * BITS_PER_UNIT, 1, NULL_RTX,
1747 mode, mode);
1749 if (shift)
1750 tmps[i] = expand_shift (LSHIFT_EXPR, mode, tmps[i],
1751 build_int_cst (NULL_TREE, shift), tmps[i], 0);
1755 /* Emit code to move a block SRC of type TYPE to a block DST,
1756 where DST is non-consecutive registers represented by a PARALLEL.
1757 SSIZE represents the total size of block ORIG_SRC in bytes, or -1
1758 if not known. */
1760 void
1761 emit_group_load (rtx dst, rtx src, tree type, int ssize)
1763 rtx *tmps;
1764 int i;
1766 tmps = alloca (sizeof (rtx) * XVECLEN (dst, 0));
1767 emit_group_load_1 (tmps, dst, src, type, ssize);
1769 /* Copy the extracted pieces into the proper (probable) hard regs. */
1770 for (i = 0; i < XVECLEN (dst, 0); i++)
1772 rtx d = XEXP (XVECEXP (dst, 0, i), 0);
1773 if (d == NULL)
1774 continue;
1775 emit_move_insn (d, tmps[i]);
1779 /* Similar, but load SRC into new pseudos in a format that looks like
1780 PARALLEL. This can later be fed to emit_group_move to get things
1781 in the right place. */
1784 emit_group_load_into_temps (rtx parallel, rtx src, tree type, int ssize)
1786 rtvec vec;
1787 int i;
1789 vec = rtvec_alloc (XVECLEN (parallel, 0));
1790 emit_group_load_1 (&RTVEC_ELT (vec, 0), parallel, src, type, ssize);
1792 /* Convert the vector to look just like the original PARALLEL, except
1793 with the computed values. */
1794 for (i = 0; i < XVECLEN (parallel, 0); i++)
1796 rtx e = XVECEXP (parallel, 0, i);
1797 rtx d = XEXP (e, 0);
1799 if (d)
1801 d = force_reg (GET_MODE (d), RTVEC_ELT (vec, i));
1802 e = alloc_EXPR_LIST (REG_NOTE_KIND (e), d, XEXP (e, 1));
1804 RTVEC_ELT (vec, i) = e;
1807 return gen_rtx_PARALLEL (GET_MODE (parallel), vec);
1810 /* Emit code to move a block SRC to block DST, where SRC and DST are
1811 non-consecutive groups of registers, each represented by a PARALLEL. */
1813 void
1814 emit_group_move (rtx dst, rtx src)
1816 int i;
1818 gcc_assert (GET_CODE (src) == PARALLEL
1819 && GET_CODE (dst) == PARALLEL
1820 && XVECLEN (src, 0) == XVECLEN (dst, 0));
1822 /* Skip first entry if NULL. */
1823 for (i = XEXP (XVECEXP (src, 0, 0), 0) ? 0 : 1; i < XVECLEN (src, 0); i++)
1824 emit_move_insn (XEXP (XVECEXP (dst, 0, i), 0),
1825 XEXP (XVECEXP (src, 0, i), 0));
1828 /* Move a group of registers represented by a PARALLEL into pseudos. */
1831 emit_group_move_into_temps (rtx src)
1833 rtvec vec = rtvec_alloc (XVECLEN (src, 0));
1834 int i;
1836 for (i = 0; i < XVECLEN (src, 0); i++)
1838 rtx e = XVECEXP (src, 0, i);
1839 rtx d = XEXP (e, 0);
1841 if (d)
1842 e = alloc_EXPR_LIST (REG_NOTE_KIND (e), copy_to_reg (d), XEXP (e, 1));
1843 RTVEC_ELT (vec, i) = e;
1846 return gen_rtx_PARALLEL (GET_MODE (src), vec);
1849 /* Emit code to move a block SRC to a block ORIG_DST of type TYPE,
1850 where SRC is non-consecutive registers represented by a PARALLEL.
1851 SSIZE represents the total size of block ORIG_DST, or -1 if not
1852 known. */
1854 void
1855 emit_group_store (rtx orig_dst, rtx src, tree type ATTRIBUTE_UNUSED, int ssize)
1857 rtx *tmps, dst;
1858 int start, i;
1859 enum machine_mode m = GET_MODE (orig_dst);
1861 gcc_assert (GET_CODE (src) == PARALLEL);
1863 if (!SCALAR_INT_MODE_P (m)
1864 && !MEM_P (orig_dst) && GET_CODE (orig_dst) != CONCAT)
1866 enum machine_mode imode = int_mode_for_mode (GET_MODE (orig_dst));
1867 if (imode == BLKmode)
1868 dst = assign_stack_temp (GET_MODE (orig_dst), ssize, 0);
1869 else
1870 dst = gen_reg_rtx (imode);
1871 emit_group_store (dst, src, type, ssize);
1872 if (imode != BLKmode)
1873 dst = gen_lowpart (GET_MODE (orig_dst), dst);
1874 emit_move_insn (orig_dst, dst);
1875 return;
1878 /* Check for a NULL entry, used to indicate that the parameter goes
1879 both on the stack and in registers. */
1880 if (XEXP (XVECEXP (src, 0, 0), 0))
1881 start = 0;
1882 else
1883 start = 1;
1885 tmps = alloca (sizeof (rtx) * XVECLEN (src, 0));
1887 /* Copy the (probable) hard regs into pseudos. */
1888 for (i = start; i < XVECLEN (src, 0); i++)
1890 rtx reg = XEXP (XVECEXP (src, 0, i), 0);
1891 tmps[i] = gen_reg_rtx (GET_MODE (reg));
1892 emit_move_insn (tmps[i], reg);
1895 /* If we won't be storing directly into memory, protect the real destination
1896 from strange tricks we might play. */
1897 dst = orig_dst;
1898 if (GET_CODE (dst) == PARALLEL)
1900 rtx temp;
1902 /* We can get a PARALLEL dst if there is a conditional expression in
1903 a return statement. In that case, the dst and src are the same,
1904 so no action is necessary. */
1905 if (rtx_equal_p (dst, src))
1906 return;
1908 /* It is unclear if we can ever reach here, but we may as well handle
1909 it. Allocate a temporary, and split this into a store/load to/from
1910 the temporary. */
1912 temp = assign_stack_temp (GET_MODE (dst), ssize, 0);
1913 emit_group_store (temp, src, type, ssize);
1914 emit_group_load (dst, temp, type, ssize);
1915 return;
1917 else if (!MEM_P (dst) && GET_CODE (dst) != CONCAT)
1919 dst = gen_reg_rtx (GET_MODE (orig_dst));
1920 /* Make life a bit easier for combine. */
1921 emit_move_insn (dst, CONST0_RTX (GET_MODE (orig_dst)));
1924 /* Process the pieces. */
1925 for (i = start; i < XVECLEN (src, 0); i++)
1927 HOST_WIDE_INT bytepos = INTVAL (XEXP (XVECEXP (src, 0, i), 1));
1928 enum machine_mode mode = GET_MODE (tmps[i]);
1929 unsigned int bytelen = GET_MODE_SIZE (mode);
1930 rtx dest = dst;
1932 /* Handle trailing fragments that run over the size of the struct. */
1933 if (ssize >= 0 && bytepos + (HOST_WIDE_INT) bytelen > ssize)
1935 /* store_bit_field always takes its value from the lsb.
1936 Move the fragment to the lsb if it's not already there. */
1937 if (
1938 #ifdef BLOCK_REG_PADDING
1939 BLOCK_REG_PADDING (GET_MODE (orig_dst), type, i == start)
1940 == (BYTES_BIG_ENDIAN ? upward : downward)
1941 #else
1942 BYTES_BIG_ENDIAN
1943 #endif
1946 int shift = (bytelen - (ssize - bytepos)) * BITS_PER_UNIT;
1947 tmps[i] = expand_shift (RSHIFT_EXPR, mode, tmps[i],
1948 build_int_cst (NULL_TREE, shift),
1949 tmps[i], 0);
1951 bytelen = ssize - bytepos;
1954 if (GET_CODE (dst) == CONCAT)
1956 if (bytepos + bytelen <= GET_MODE_SIZE (GET_MODE (XEXP (dst, 0))))
1957 dest = XEXP (dst, 0);
1958 else if (bytepos >= GET_MODE_SIZE (GET_MODE (XEXP (dst, 0))))
1960 bytepos -= GET_MODE_SIZE (GET_MODE (XEXP (dst, 0)));
1961 dest = XEXP (dst, 1);
1963 else
1965 gcc_assert (bytepos == 0 && XVECLEN (src, 0));
1966 dest = assign_stack_temp (GET_MODE (dest),
1967 GET_MODE_SIZE (GET_MODE (dest)), 0);
1968 emit_move_insn (adjust_address (dest, GET_MODE (tmps[i]), bytepos),
1969 tmps[i]);
1970 dst = dest;
1971 break;
1975 /* Optimize the access just a bit. */
1976 if (MEM_P (dest)
1977 && (! SLOW_UNALIGNED_ACCESS (mode, MEM_ALIGN (dest))
1978 || MEM_ALIGN (dest) >= GET_MODE_ALIGNMENT (mode))
1979 && bytepos * BITS_PER_UNIT % GET_MODE_ALIGNMENT (mode) == 0
1980 && bytelen == GET_MODE_SIZE (mode))
1981 emit_move_insn (adjust_address (dest, mode, bytepos), tmps[i]);
1982 else
1983 store_bit_field (dest, bytelen * BITS_PER_UNIT, bytepos * BITS_PER_UNIT,
1984 mode, tmps[i]);
1987 /* Copy from the pseudo into the (probable) hard reg. */
1988 if (orig_dst != dst)
1989 emit_move_insn (orig_dst, dst);
1992 /* Generate code to copy a BLKmode object of TYPE out of a
1993 set of registers starting with SRCREG into TGTBLK. If TGTBLK
1994 is null, a stack temporary is created. TGTBLK is returned.
1996 The purpose of this routine is to handle functions that return
1997 BLKmode structures in registers. Some machines (the PA for example)
1998 want to return all small structures in registers regardless of the
1999 structure's alignment. */
2002 copy_blkmode_from_reg (rtx tgtblk, rtx srcreg, tree type)
2004 unsigned HOST_WIDE_INT bytes = int_size_in_bytes (type);
2005 rtx src = NULL, dst = NULL;
2006 unsigned HOST_WIDE_INT bitsize = MIN (TYPE_ALIGN (type), BITS_PER_WORD);
2007 unsigned HOST_WIDE_INT bitpos, xbitpos, padding_correction = 0;
2009 if (tgtblk == 0)
2011 tgtblk = assign_temp (build_qualified_type (type,
2012 (TYPE_QUALS (type)
2013 | TYPE_QUAL_CONST)),
2014 0, 1, 1);
2015 preserve_temp_slots (tgtblk);
2018 /* This code assumes srcreg is at least a full word. If it isn't, copy it
2019 into a new pseudo which is a full word. */
2021 if (GET_MODE (srcreg) != BLKmode
2022 && GET_MODE_SIZE (GET_MODE (srcreg)) < UNITS_PER_WORD)
2023 srcreg = convert_to_mode (word_mode, srcreg, TYPE_UNSIGNED (type));
2025 /* If the structure doesn't take up a whole number of words, see whether
2026 SRCREG is padded on the left or on the right. If it's on the left,
2027 set PADDING_CORRECTION to the number of bits to skip.
2029 In most ABIs, the structure will be returned at the least end of
2030 the register, which translates to right padding on little-endian
2031 targets and left padding on big-endian targets. The opposite
2032 holds if the structure is returned at the most significant
2033 end of the register. */
2034 if (bytes % UNITS_PER_WORD != 0
2035 && (targetm.calls.return_in_msb (type)
2036 ? !BYTES_BIG_ENDIAN
2037 : BYTES_BIG_ENDIAN))
2038 padding_correction
2039 = (BITS_PER_WORD - ((bytes % UNITS_PER_WORD) * BITS_PER_UNIT));
2041 /* Copy the structure BITSIZE bites at a time.
2043 We could probably emit more efficient code for machines which do not use
2044 strict alignment, but it doesn't seem worth the effort at the current
2045 time. */
2046 for (bitpos = 0, xbitpos = padding_correction;
2047 bitpos < bytes * BITS_PER_UNIT;
2048 bitpos += bitsize, xbitpos += bitsize)
2050 /* We need a new source operand each time xbitpos is on a
2051 word boundary and when xbitpos == padding_correction
2052 (the first time through). */
2053 if (xbitpos % BITS_PER_WORD == 0
2054 || xbitpos == padding_correction)
2055 src = operand_subword_force (srcreg, xbitpos / BITS_PER_WORD,
2056 GET_MODE (srcreg));
2058 /* We need a new destination operand each time bitpos is on
2059 a word boundary. */
2060 if (bitpos % BITS_PER_WORD == 0)
2061 dst = operand_subword (tgtblk, bitpos / BITS_PER_WORD, 1, BLKmode);
2063 /* Use xbitpos for the source extraction (right justified) and
2064 xbitpos for the destination store (left justified). */
2065 store_bit_field (dst, bitsize, bitpos % BITS_PER_WORD, word_mode,
2066 extract_bit_field (src, bitsize,
2067 xbitpos % BITS_PER_WORD, 1,
2068 NULL_RTX, word_mode, word_mode));
2071 return tgtblk;
2074 /* Add a USE expression for REG to the (possibly empty) list pointed
2075 to by CALL_FUSAGE. REG must denote a hard register. */
2077 void
2078 use_reg (rtx *call_fusage, rtx reg)
2080 gcc_assert (REG_P (reg) && REGNO (reg) < FIRST_PSEUDO_REGISTER);
2082 *call_fusage
2083 = gen_rtx_EXPR_LIST (VOIDmode,
2084 gen_rtx_USE (VOIDmode, reg), *call_fusage);
2087 /* Add USE expressions to *CALL_FUSAGE for each of NREGS consecutive regs,
2088 starting at REGNO. All of these registers must be hard registers. */
2090 void
2091 use_regs (rtx *call_fusage, int regno, int nregs)
2093 int i;
2095 gcc_assert (regno + nregs <= FIRST_PSEUDO_REGISTER);
2097 for (i = 0; i < nregs; i++)
2098 use_reg (call_fusage, regno_reg_rtx[regno + i]);
2101 /* Add USE expressions to *CALL_FUSAGE for each REG contained in the
2102 PARALLEL REGS. This is for calls that pass values in multiple
2103 non-contiguous locations. The Irix 6 ABI has examples of this. */
2105 void
2106 use_group_regs (rtx *call_fusage, rtx regs)
2108 int i;
2110 for (i = 0; i < XVECLEN (regs, 0); i++)
2112 rtx reg = XEXP (XVECEXP (regs, 0, i), 0);
2114 /* A NULL entry means the parameter goes both on the stack and in
2115 registers. This can also be a MEM for targets that pass values
2116 partially on the stack and partially in registers. */
2117 if (reg != 0 && REG_P (reg))
2118 use_reg (call_fusage, reg);
2123 /* Determine whether the LEN bytes generated by CONSTFUN can be
2124 stored to memory using several move instructions. CONSTFUNDATA is
2125 a pointer which will be passed as argument in every CONSTFUN call.
2126 ALIGN is maximum alignment we can assume. Return nonzero if a
2127 call to store_by_pieces should succeed. */
2130 can_store_by_pieces (unsigned HOST_WIDE_INT len,
2131 rtx (*constfun) (void *, HOST_WIDE_INT, enum machine_mode),
2132 void *constfundata, unsigned int align)
2134 unsigned HOST_WIDE_INT l;
2135 unsigned int max_size;
2136 HOST_WIDE_INT offset = 0;
2137 enum machine_mode mode, tmode;
2138 enum insn_code icode;
2139 int reverse;
2140 rtx cst;
2142 if (len == 0)
2143 return 1;
2145 if (! STORE_BY_PIECES_P (len, align))
2146 return 0;
2148 tmode = mode_for_size (STORE_MAX_PIECES * BITS_PER_UNIT, MODE_INT, 1);
2149 if (align >= GET_MODE_ALIGNMENT (tmode))
2150 align = GET_MODE_ALIGNMENT (tmode);
2151 else
2153 enum machine_mode xmode;
2155 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT), xmode = tmode;
2156 tmode != VOIDmode;
2157 xmode = tmode, tmode = GET_MODE_WIDER_MODE (tmode))
2158 if (GET_MODE_SIZE (tmode) > STORE_MAX_PIECES
2159 || SLOW_UNALIGNED_ACCESS (tmode, align))
2160 break;
2162 align = MAX (align, GET_MODE_ALIGNMENT (xmode));
2165 /* We would first store what we can in the largest integer mode, then go to
2166 successively smaller modes. */
2168 for (reverse = 0;
2169 reverse <= (HAVE_PRE_DECREMENT || HAVE_POST_DECREMENT);
2170 reverse++)
2172 l = len;
2173 mode = VOIDmode;
2174 max_size = STORE_MAX_PIECES + 1;
2175 while (max_size > 1)
2177 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
2178 tmode != VOIDmode; tmode = GET_MODE_WIDER_MODE (tmode))
2179 if (GET_MODE_SIZE (tmode) < max_size)
2180 mode = tmode;
2182 if (mode == VOIDmode)
2183 break;
2185 icode = mov_optab->handlers[(int) mode].insn_code;
2186 if (icode != CODE_FOR_nothing
2187 && align >= GET_MODE_ALIGNMENT (mode))
2189 unsigned int size = GET_MODE_SIZE (mode);
2191 while (l >= size)
2193 if (reverse)
2194 offset -= size;
2196 cst = (*constfun) (constfundata, offset, mode);
2197 if (!LEGITIMATE_CONSTANT_P (cst))
2198 return 0;
2200 if (!reverse)
2201 offset += size;
2203 l -= size;
2207 max_size = GET_MODE_SIZE (mode);
2210 /* The code above should have handled everything. */
2211 gcc_assert (!l);
2214 return 1;
2217 /* Generate several move instructions to store LEN bytes generated by
2218 CONSTFUN to block TO. (A MEM rtx with BLKmode). CONSTFUNDATA is a
2219 pointer which will be passed as argument in every CONSTFUN call.
2220 ALIGN is maximum alignment we can assume.
2221 If ENDP is 0 return to, if ENDP is 1 return memory at the end ala
2222 mempcpy, and if ENDP is 2 return memory the end minus one byte ala
2223 stpcpy. */
2226 store_by_pieces (rtx to, unsigned HOST_WIDE_INT len,
2227 rtx (*constfun) (void *, HOST_WIDE_INT, enum machine_mode),
2228 void *constfundata, unsigned int align, int endp)
2230 struct store_by_pieces data;
2232 if (len == 0)
2234 gcc_assert (endp != 2);
2235 return to;
2238 gcc_assert (STORE_BY_PIECES_P (len, align));
2239 data.constfun = constfun;
2240 data.constfundata = constfundata;
2241 data.len = len;
2242 data.to = to;
2243 store_by_pieces_1 (&data, align);
2244 if (endp)
2246 rtx to1;
2248 gcc_assert (!data.reverse);
2249 if (data.autinc_to)
2251 if (endp == 2)
2253 if (HAVE_POST_INCREMENT && data.explicit_inc_to > 0)
2254 emit_insn (gen_add2_insn (data.to_addr, constm1_rtx));
2255 else
2256 data.to_addr = copy_addr_to_reg (plus_constant (data.to_addr,
2257 -1));
2259 to1 = adjust_automodify_address (data.to, QImode, data.to_addr,
2260 data.offset);
2262 else
2264 if (endp == 2)
2265 --data.offset;
2266 to1 = adjust_address (data.to, QImode, data.offset);
2268 return to1;
2270 else
2271 return data.to;
2274 /* Generate several move instructions to clear LEN bytes of block TO. (A MEM
2275 rtx with BLKmode). ALIGN is maximum alignment we can assume. */
2277 static void
2278 clear_by_pieces (rtx to, unsigned HOST_WIDE_INT len, unsigned int align)
2280 struct store_by_pieces data;
2282 if (len == 0)
2283 return;
2285 data.constfun = clear_by_pieces_1;
2286 data.constfundata = NULL;
2287 data.len = len;
2288 data.to = to;
2289 store_by_pieces_1 (&data, align);
2292 /* Callback routine for clear_by_pieces.
2293 Return const0_rtx unconditionally. */
2295 static rtx
2296 clear_by_pieces_1 (void *data ATTRIBUTE_UNUSED,
2297 HOST_WIDE_INT offset ATTRIBUTE_UNUSED,
2298 enum machine_mode mode ATTRIBUTE_UNUSED)
2300 return const0_rtx;
2303 /* Subroutine of clear_by_pieces and store_by_pieces.
2304 Generate several move instructions to store LEN bytes of block TO. (A MEM
2305 rtx with BLKmode). ALIGN is maximum alignment we can assume. */
2307 static void
2308 store_by_pieces_1 (struct store_by_pieces *data ATTRIBUTE_UNUSED,
2309 unsigned int align ATTRIBUTE_UNUSED)
2311 rtx to_addr = XEXP (data->to, 0);
2312 unsigned int max_size = STORE_MAX_PIECES + 1;
2313 enum machine_mode mode = VOIDmode, tmode;
2314 enum insn_code icode;
2316 data->offset = 0;
2317 data->to_addr = to_addr;
2318 data->autinc_to
2319 = (GET_CODE (to_addr) == PRE_INC || GET_CODE (to_addr) == PRE_DEC
2320 || GET_CODE (to_addr) == POST_INC || GET_CODE (to_addr) == POST_DEC);
2322 data->explicit_inc_to = 0;
2323 data->reverse
2324 = (GET_CODE (to_addr) == PRE_DEC || GET_CODE (to_addr) == POST_DEC);
2325 if (data->reverse)
2326 data->offset = data->len;
2328 /* If storing requires more than two move insns,
2329 copy addresses to registers (to make displacements shorter)
2330 and use post-increment if available. */
2331 if (!data->autinc_to
2332 && move_by_pieces_ninsns (data->len, align, max_size) > 2)
2334 /* Determine the main mode we'll be using. */
2335 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
2336 tmode != VOIDmode; tmode = GET_MODE_WIDER_MODE (tmode))
2337 if (GET_MODE_SIZE (tmode) < max_size)
2338 mode = tmode;
2340 if (USE_STORE_PRE_DECREMENT (mode) && data->reverse && ! data->autinc_to)
2342 data->to_addr = copy_addr_to_reg (plus_constant (to_addr, data->len));
2343 data->autinc_to = 1;
2344 data->explicit_inc_to = -1;
2347 if (USE_STORE_POST_INCREMENT (mode) && ! data->reverse
2348 && ! data->autinc_to)
2350 data->to_addr = copy_addr_to_reg (to_addr);
2351 data->autinc_to = 1;
2352 data->explicit_inc_to = 1;
2355 if ( !data->autinc_to && CONSTANT_P (to_addr))
2356 data->to_addr = copy_addr_to_reg (to_addr);
2359 tmode = mode_for_size (STORE_MAX_PIECES * BITS_PER_UNIT, MODE_INT, 1);
2360 if (align >= GET_MODE_ALIGNMENT (tmode))
2361 align = GET_MODE_ALIGNMENT (tmode);
2362 else
2364 enum machine_mode xmode;
2366 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT), xmode = tmode;
2367 tmode != VOIDmode;
2368 xmode = tmode, tmode = GET_MODE_WIDER_MODE (tmode))
2369 if (GET_MODE_SIZE (tmode) > STORE_MAX_PIECES
2370 || SLOW_UNALIGNED_ACCESS (tmode, align))
2371 break;
2373 align = MAX (align, GET_MODE_ALIGNMENT (xmode));
2376 /* First store what we can in the largest integer mode, then go to
2377 successively smaller modes. */
2379 while (max_size > 1)
2381 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
2382 tmode != VOIDmode; tmode = GET_MODE_WIDER_MODE (tmode))
2383 if (GET_MODE_SIZE (tmode) < max_size)
2384 mode = tmode;
2386 if (mode == VOIDmode)
2387 break;
2389 icode = mov_optab->handlers[(int) mode].insn_code;
2390 if (icode != CODE_FOR_nothing && align >= GET_MODE_ALIGNMENT (mode))
2391 store_by_pieces_2 (GEN_FCN (icode), mode, data);
2393 max_size = GET_MODE_SIZE (mode);
2396 /* The code above should have handled everything. */
2397 gcc_assert (!data->len);
2400 /* Subroutine of store_by_pieces_1. Store as many bytes as appropriate
2401 with move instructions for mode MODE. GENFUN is the gen_... function
2402 to make a move insn for that mode. DATA has all the other info. */
2404 static void
2405 store_by_pieces_2 (rtx (*genfun) (rtx, ...), enum machine_mode mode,
2406 struct store_by_pieces *data)
2408 unsigned int size = GET_MODE_SIZE (mode);
2409 rtx to1, cst;
2411 while (data->len >= size)
2413 if (data->reverse)
2414 data->offset -= size;
2416 if (data->autinc_to)
2417 to1 = adjust_automodify_address (data->to, mode, data->to_addr,
2418 data->offset);
2419 else
2420 to1 = adjust_address (data->to, mode, data->offset);
2422 if (HAVE_PRE_DECREMENT && data->explicit_inc_to < 0)
2423 emit_insn (gen_add2_insn (data->to_addr,
2424 GEN_INT (-(HOST_WIDE_INT) size)));
2426 cst = (*data->constfun) (data->constfundata, data->offset, mode);
2427 emit_insn ((*genfun) (to1, cst));
2429 if (HAVE_POST_INCREMENT && data->explicit_inc_to > 0)
2430 emit_insn (gen_add2_insn (data->to_addr, GEN_INT (size)));
2432 if (! data->reverse)
2433 data->offset += size;
2435 data->len -= size;
2439 /* Write zeros through the storage of OBJECT. If OBJECT has BLKmode, SIZE is
2440 its length in bytes. */
2443 clear_storage (rtx object, rtx size, enum block_op_methods method)
2445 enum machine_mode mode = GET_MODE (object);
2446 unsigned int align;
2448 gcc_assert (method == BLOCK_OP_NORMAL || method == BLOCK_OP_TAILCALL);
2450 /* If OBJECT is not BLKmode and SIZE is the same size as its mode,
2451 just move a zero. Otherwise, do this a piece at a time. */
2452 if (mode != BLKmode
2453 && GET_CODE (size) == CONST_INT
2454 && INTVAL (size) == (HOST_WIDE_INT) GET_MODE_SIZE (mode))
2456 rtx zero = CONST0_RTX (mode);
2457 if (zero != NULL)
2459 emit_move_insn (object, zero);
2460 return NULL;
2463 if (COMPLEX_MODE_P (mode))
2465 zero = CONST0_RTX (GET_MODE_INNER (mode));
2466 if (zero != NULL)
2468 write_complex_part (object, zero, 0);
2469 write_complex_part (object, zero, 1);
2470 return NULL;
2475 if (size == const0_rtx)
2476 return NULL;
2478 align = MEM_ALIGN (object);
2480 if (GET_CODE (size) == CONST_INT
2481 && CLEAR_BY_PIECES_P (INTVAL (size), align))
2482 clear_by_pieces (object, INTVAL (size), align);
2483 else if (set_storage_via_setmem (object, size, const0_rtx, align))
2485 else
2486 return clear_storage_via_libcall (object, size,
2487 method == BLOCK_OP_TAILCALL);
2489 return NULL;
2492 /* A subroutine of clear_storage. Expand a call to memset.
2493 Return the return value of memset, 0 otherwise. */
2495 static rtx
2496 clear_storage_via_libcall (rtx object, rtx size, bool tailcall)
2498 tree call_expr, arg_list, fn, object_tree, size_tree;
2499 enum machine_mode size_mode;
2500 rtx retval;
2502 /* Emit code to copy OBJECT and SIZE into new pseudos. We can then
2503 place those into new pseudos into a VAR_DECL and use them later. */
2505 object = copy_to_mode_reg (Pmode, XEXP (object, 0));
2507 size_mode = TYPE_MODE (sizetype);
2508 size = convert_to_mode (size_mode, size, 1);
2509 size = copy_to_mode_reg (size_mode, size);
2511 /* It is incorrect to use the libcall calling conventions to call
2512 memset in this context. This could be a user call to memset and
2513 the user may wish to examine the return value from memset. For
2514 targets where libcalls and normal calls have different conventions
2515 for returning pointers, we could end up generating incorrect code. */
2517 object_tree = make_tree (ptr_type_node, object);
2518 size_tree = make_tree (sizetype, size);
2520 fn = clear_storage_libcall_fn (true);
2521 arg_list = tree_cons (NULL_TREE, size_tree, NULL_TREE);
2522 arg_list = tree_cons (NULL_TREE, integer_zero_node, arg_list);
2523 arg_list = tree_cons (NULL_TREE, object_tree, arg_list);
2525 /* Now we have to build up the CALL_EXPR itself. */
2526 call_expr = build1 (ADDR_EXPR, build_pointer_type (TREE_TYPE (fn)), fn);
2527 call_expr = build3 (CALL_EXPR, TREE_TYPE (TREE_TYPE (fn)),
2528 call_expr, arg_list, NULL_TREE);
2529 CALL_EXPR_TAILCALL (call_expr) = tailcall;
2531 retval = expand_normal (call_expr);
2533 return retval;
2536 /* A subroutine of clear_storage_via_libcall. Create the tree node
2537 for the function we use for block clears. The first time FOR_CALL
2538 is true, we call assemble_external. */
2540 static GTY(()) tree block_clear_fn;
2542 void
2543 init_block_clear_fn (const char *asmspec)
2545 if (!block_clear_fn)
2547 tree fn, args;
2549 fn = get_identifier ("memset");
2550 args = build_function_type_list (ptr_type_node, ptr_type_node,
2551 integer_type_node, sizetype,
2552 NULL_TREE);
2554 fn = build_decl (FUNCTION_DECL, fn, args);
2555 DECL_EXTERNAL (fn) = 1;
2556 TREE_PUBLIC (fn) = 1;
2557 DECL_ARTIFICIAL (fn) = 1;
2558 TREE_NOTHROW (fn) = 1;
2560 block_clear_fn = fn;
2563 if (asmspec)
2564 set_user_assembler_name (block_clear_fn, asmspec);
2567 static tree
2568 clear_storage_libcall_fn (int for_call)
2570 static bool emitted_extern;
2572 if (!block_clear_fn)
2573 init_block_clear_fn (NULL);
2575 if (for_call && !emitted_extern)
2577 emitted_extern = true;
2578 make_decl_rtl (block_clear_fn);
2579 assemble_external (block_clear_fn);
2582 return block_clear_fn;
2585 /* Expand a setmem pattern; return true if successful. */
2587 bool
2588 set_storage_via_setmem (rtx object, rtx size, rtx val, unsigned int align)
2590 /* Try the most limited insn first, because there's no point
2591 including more than one in the machine description unless
2592 the more limited one has some advantage. */
2594 rtx opalign = GEN_INT (align / BITS_PER_UNIT);
2595 enum machine_mode mode;
2597 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
2598 mode = GET_MODE_WIDER_MODE (mode))
2600 enum insn_code code = setmem_optab[(int) mode];
2601 insn_operand_predicate_fn pred;
2603 if (code != CODE_FOR_nothing
2604 /* We don't need MODE to be narrower than
2605 BITS_PER_HOST_WIDE_INT here because if SIZE is less than
2606 the mode mask, as it is returned by the macro, it will
2607 definitely be less than the actual mode mask. */
2608 && ((GET_CODE (size) == CONST_INT
2609 && ((unsigned HOST_WIDE_INT) INTVAL (size)
2610 <= (GET_MODE_MASK (mode) >> 1)))
2611 || GET_MODE_BITSIZE (mode) >= BITS_PER_WORD)
2612 && ((pred = insn_data[(int) code].operand[0].predicate) == 0
2613 || (*pred) (object, BLKmode))
2614 && ((pred = insn_data[(int) code].operand[3].predicate) == 0
2615 || (*pred) (opalign, VOIDmode)))
2617 rtx opsize, opchar;
2618 enum machine_mode char_mode;
2619 rtx last = get_last_insn ();
2620 rtx pat;
2622 opsize = convert_to_mode (mode, size, 1);
2623 pred = insn_data[(int) code].operand[1].predicate;
2624 if (pred != 0 && ! (*pred) (opsize, mode))
2625 opsize = copy_to_mode_reg (mode, opsize);
2627 opchar = val;
2628 char_mode = insn_data[(int) code].operand[2].mode;
2629 if (char_mode != VOIDmode)
2631 opchar = convert_to_mode (char_mode, opchar, 1);
2632 pred = insn_data[(int) code].operand[2].predicate;
2633 if (pred != 0 && ! (*pred) (opchar, char_mode))
2634 opchar = copy_to_mode_reg (char_mode, opchar);
2637 pat = GEN_FCN ((int) code) (object, opsize, opchar, opalign);
2638 if (pat)
2640 emit_insn (pat);
2641 return true;
2643 else
2644 delete_insns_since (last);
2648 return false;
2652 /* Write to one of the components of the complex value CPLX. Write VAL to
2653 the real part if IMAG_P is false, and the imaginary part if its true. */
2655 static void
2656 write_complex_part (rtx cplx, rtx val, bool imag_p)
2658 enum machine_mode cmode;
2659 enum machine_mode imode;
2660 unsigned ibitsize;
2662 if (GET_CODE (cplx) == CONCAT)
2664 emit_move_insn (XEXP (cplx, imag_p), val);
2665 return;
2668 cmode = GET_MODE (cplx);
2669 imode = GET_MODE_INNER (cmode);
2670 ibitsize = GET_MODE_BITSIZE (imode);
2672 /* For MEMs simplify_gen_subreg may generate an invalid new address
2673 because, e.g., the original address is considered mode-dependent
2674 by the target, which restricts simplify_subreg from invoking
2675 adjust_address_nv. Instead of preparing fallback support for an
2676 invalid address, we call adjust_address_nv directly. */
2677 if (MEM_P (cplx))
2679 emit_move_insn (adjust_address_nv (cplx, imode,
2680 imag_p ? GET_MODE_SIZE (imode) : 0),
2681 val);
2682 return;
2685 /* If the sub-object is at least word sized, then we know that subregging
2686 will work. This special case is important, since store_bit_field
2687 wants to operate on integer modes, and there's rarely an OImode to
2688 correspond to TCmode. */
2689 if (ibitsize >= BITS_PER_WORD
2690 /* For hard regs we have exact predicates. Assume we can split
2691 the original object if it spans an even number of hard regs.
2692 This special case is important for SCmode on 64-bit platforms
2693 where the natural size of floating-point regs is 32-bit. */
2694 || (REG_P (cplx)
2695 && REGNO (cplx) < FIRST_PSEUDO_REGISTER
2696 && hard_regno_nregs[REGNO (cplx)][cmode] % 2 == 0))
2698 rtx part = simplify_gen_subreg (imode, cplx, cmode,
2699 imag_p ? GET_MODE_SIZE (imode) : 0);
2700 if (part)
2702 emit_move_insn (part, val);
2703 return;
2705 else
2706 /* simplify_gen_subreg may fail for sub-word MEMs. */
2707 gcc_assert (MEM_P (cplx) && ibitsize < BITS_PER_WORD);
2710 store_bit_field (cplx, ibitsize, imag_p ? ibitsize : 0, imode, val);
2713 /* Extract one of the components of the complex value CPLX. Extract the
2714 real part if IMAG_P is false, and the imaginary part if it's true. */
2716 static rtx
2717 read_complex_part (rtx cplx, bool imag_p)
2719 enum machine_mode cmode, imode;
2720 unsigned ibitsize;
2722 if (GET_CODE (cplx) == CONCAT)
2723 return XEXP (cplx, imag_p);
2725 cmode = GET_MODE (cplx);
2726 imode = GET_MODE_INNER (cmode);
2727 ibitsize = GET_MODE_BITSIZE (imode);
2729 /* Special case reads from complex constants that got spilled to memory. */
2730 if (MEM_P (cplx) && GET_CODE (XEXP (cplx, 0)) == SYMBOL_REF)
2732 tree decl = SYMBOL_REF_DECL (XEXP (cplx, 0));
2733 if (decl && TREE_CODE (decl) == COMPLEX_CST)
2735 tree part = imag_p ? TREE_IMAGPART (decl) : TREE_REALPART (decl);
2736 if (CONSTANT_CLASS_P (part))
2737 return expand_expr (part, NULL_RTX, imode, EXPAND_NORMAL);
2741 /* For MEMs simplify_gen_subreg may generate an invalid new address
2742 because, e.g., the original address is considered mode-dependent
2743 by the target, which restricts simplify_subreg from invoking
2744 adjust_address_nv. Instead of preparing fallback support for an
2745 invalid address, we call adjust_address_nv directly. */
2746 if (MEM_P (cplx))
2747 return adjust_address_nv (cplx, imode,
2748 imag_p ? GET_MODE_SIZE (imode) : 0);
2750 /* If the sub-object is at least word sized, then we know that subregging
2751 will work. This special case is important, since extract_bit_field
2752 wants to operate on integer modes, and there's rarely an OImode to
2753 correspond to TCmode. */
2754 if (ibitsize >= BITS_PER_WORD
2755 /* For hard regs we have exact predicates. Assume we can split
2756 the original object if it spans an even number of hard regs.
2757 This special case is important for SCmode on 64-bit platforms
2758 where the natural size of floating-point regs is 32-bit. */
2759 || (REG_P (cplx)
2760 && REGNO (cplx) < FIRST_PSEUDO_REGISTER
2761 && hard_regno_nregs[REGNO (cplx)][cmode] % 2 == 0))
2763 rtx ret = simplify_gen_subreg (imode, cplx, cmode,
2764 imag_p ? GET_MODE_SIZE (imode) : 0);
2765 if (ret)
2766 return ret;
2767 else
2768 /* simplify_gen_subreg may fail for sub-word MEMs. */
2769 gcc_assert (MEM_P (cplx) && ibitsize < BITS_PER_WORD);
2772 return extract_bit_field (cplx, ibitsize, imag_p ? ibitsize : 0,
2773 true, NULL_RTX, imode, imode);
2776 /* A subroutine of emit_move_insn_1. Yet another lowpart generator.
2777 NEW_MODE and OLD_MODE are the same size. Return NULL if X cannot be
2778 represented in NEW_MODE. If FORCE is true, this will never happen, as
2779 we'll force-create a SUBREG if needed. */
2781 static rtx
2782 emit_move_change_mode (enum machine_mode new_mode,
2783 enum machine_mode old_mode, rtx x, bool force)
2785 rtx ret;
2787 if (MEM_P (x))
2789 /* We don't have to worry about changing the address since the
2790 size in bytes is supposed to be the same. */
2791 if (reload_in_progress)
2793 /* Copy the MEM to change the mode and move any
2794 substitutions from the old MEM to the new one. */
2795 ret = adjust_address_nv (x, new_mode, 0);
2796 copy_replacements (x, ret);
2798 else
2799 ret = adjust_address (x, new_mode, 0);
2801 else
2803 /* Note that we do want simplify_subreg's behavior of validating
2804 that the new mode is ok for a hard register. If we were to use
2805 simplify_gen_subreg, we would create the subreg, but would
2806 probably run into the target not being able to implement it. */
2807 /* Except, of course, when FORCE is true, when this is exactly what
2808 we want. Which is needed for CCmodes on some targets. */
2809 if (force)
2810 ret = simplify_gen_subreg (new_mode, x, old_mode, 0);
2811 else
2812 ret = simplify_subreg (new_mode, x, old_mode, 0);
2815 return ret;
2818 /* A subroutine of emit_move_insn_1. Generate a move from Y into X using
2819 an integer mode of the same size as MODE. Returns the instruction
2820 emitted, or NULL if such a move could not be generated. */
2822 static rtx
2823 emit_move_via_integer (enum machine_mode mode, rtx x, rtx y, bool force)
2825 enum machine_mode imode;
2826 enum insn_code code;
2828 /* There must exist a mode of the exact size we require. */
2829 imode = int_mode_for_mode (mode);
2830 if (imode == BLKmode)
2831 return NULL_RTX;
2833 /* The target must support moves in this mode. */
2834 code = mov_optab->handlers[imode].insn_code;
2835 if (code == CODE_FOR_nothing)
2836 return NULL_RTX;
2838 x = emit_move_change_mode (imode, mode, x, force);
2839 if (x == NULL_RTX)
2840 return NULL_RTX;
2841 y = emit_move_change_mode (imode, mode, y, force);
2842 if (y == NULL_RTX)
2843 return NULL_RTX;
2844 return emit_insn (GEN_FCN (code) (x, y));
2847 /* A subroutine of emit_move_insn_1. X is a push_operand in MODE.
2848 Return an equivalent MEM that does not use an auto-increment. */
2850 static rtx
2851 emit_move_resolve_push (enum machine_mode mode, rtx x)
2853 enum rtx_code code = GET_CODE (XEXP (x, 0));
2854 HOST_WIDE_INT adjust;
2855 rtx temp;
2857 adjust = GET_MODE_SIZE (mode);
2858 #ifdef PUSH_ROUNDING
2859 adjust = PUSH_ROUNDING (adjust);
2860 #endif
2861 if (code == PRE_DEC || code == POST_DEC)
2862 adjust = -adjust;
2863 else if (code == PRE_MODIFY || code == POST_MODIFY)
2865 rtx expr = XEXP (XEXP (x, 0), 1);
2866 HOST_WIDE_INT val;
2868 gcc_assert (GET_CODE (expr) == PLUS || GET_CODE (expr) == MINUS);
2869 gcc_assert (GET_CODE (XEXP (expr, 1)) == CONST_INT);
2870 val = INTVAL (XEXP (expr, 1));
2871 if (GET_CODE (expr) == MINUS)
2872 val = -val;
2873 gcc_assert (adjust == val || adjust == -val);
2874 adjust = val;
2877 /* Do not use anti_adjust_stack, since we don't want to update
2878 stack_pointer_delta. */
2879 temp = expand_simple_binop (Pmode, PLUS, stack_pointer_rtx,
2880 GEN_INT (adjust), stack_pointer_rtx,
2881 0, OPTAB_LIB_WIDEN);
2882 if (temp != stack_pointer_rtx)
2883 emit_move_insn (stack_pointer_rtx, temp);
2885 switch (code)
2887 case PRE_INC:
2888 case PRE_DEC:
2889 case PRE_MODIFY:
2890 temp = stack_pointer_rtx;
2891 break;
2892 case POST_INC:
2893 case POST_DEC:
2894 case POST_MODIFY:
2895 temp = plus_constant (stack_pointer_rtx, -adjust);
2896 break;
2897 default:
2898 gcc_unreachable ();
2901 return replace_equiv_address (x, temp);
2904 /* A subroutine of emit_move_complex. Generate a move from Y into X.
2905 X is known to satisfy push_operand, and MODE is known to be complex.
2906 Returns the last instruction emitted. */
2908 static rtx
2909 emit_move_complex_push (enum machine_mode mode, rtx x, rtx y)
2911 enum machine_mode submode = GET_MODE_INNER (mode);
2912 bool imag_first;
2914 #ifdef PUSH_ROUNDING
2915 unsigned int submodesize = GET_MODE_SIZE (submode);
2917 /* In case we output to the stack, but the size is smaller than the
2918 machine can push exactly, we need to use move instructions. */
2919 if (PUSH_ROUNDING (submodesize) != submodesize)
2921 x = emit_move_resolve_push (mode, x);
2922 return emit_move_insn (x, y);
2924 #endif
2926 /* Note that the real part always precedes the imag part in memory
2927 regardless of machine's endianness. */
2928 switch (GET_CODE (XEXP (x, 0)))
2930 case PRE_DEC:
2931 case POST_DEC:
2932 imag_first = true;
2933 break;
2934 case PRE_INC:
2935 case POST_INC:
2936 imag_first = false;
2937 break;
2938 default:
2939 gcc_unreachable ();
2942 emit_move_insn (gen_rtx_MEM (submode, XEXP (x, 0)),
2943 read_complex_part (y, imag_first));
2944 return emit_move_insn (gen_rtx_MEM (submode, XEXP (x, 0)),
2945 read_complex_part (y, !imag_first));
2948 /* A subroutine of emit_move_insn_1. Generate a move from Y into X.
2949 MODE is known to be complex. Returns the last instruction emitted. */
2951 static rtx
2952 emit_move_complex (enum machine_mode mode, rtx x, rtx y)
2954 bool try_int;
2956 /* Need to take special care for pushes, to maintain proper ordering
2957 of the data, and possibly extra padding. */
2958 if (push_operand (x, mode))
2959 return emit_move_complex_push (mode, x, y);
2961 /* See if we can coerce the target into moving both values at once. */
2963 /* Move floating point as parts. */
2964 if (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
2965 && mov_optab->handlers[GET_MODE_INNER (mode)].insn_code != CODE_FOR_nothing)
2966 try_int = false;
2967 /* Not possible if the values are inherently not adjacent. */
2968 else if (GET_CODE (x) == CONCAT || GET_CODE (y) == CONCAT)
2969 try_int = false;
2970 /* Is possible if both are registers (or subregs of registers). */
2971 else if (register_operand (x, mode) && register_operand (y, mode))
2972 try_int = true;
2973 /* If one of the operands is a memory, and alignment constraints
2974 are friendly enough, we may be able to do combined memory operations.
2975 We do not attempt this if Y is a constant because that combination is
2976 usually better with the by-parts thing below. */
2977 else if ((MEM_P (x) ? !CONSTANT_P (y) : MEM_P (y))
2978 && (!STRICT_ALIGNMENT
2979 || get_mode_alignment (mode) == BIGGEST_ALIGNMENT))
2980 try_int = true;
2981 else
2982 try_int = false;
2984 if (try_int)
2986 rtx ret;
2988 /* For memory to memory moves, optimal behavior can be had with the
2989 existing block move logic. */
2990 if (MEM_P (x) && MEM_P (y))
2992 emit_block_move (x, y, GEN_INT (GET_MODE_SIZE (mode)),
2993 BLOCK_OP_NO_LIBCALL);
2994 return get_last_insn ();
2997 ret = emit_move_via_integer (mode, x, y, true);
2998 if (ret)
2999 return ret;
3002 /* Show the output dies here. This is necessary for SUBREGs
3003 of pseudos since we cannot track their lifetimes correctly;
3004 hard regs shouldn't appear here except as return values. */
3005 if (!reload_completed && !reload_in_progress
3006 && REG_P (x) && !reg_overlap_mentioned_p (x, y))
3007 emit_insn (gen_rtx_CLOBBER (VOIDmode, x));
3009 write_complex_part (x, read_complex_part (y, false), false);
3010 write_complex_part (x, read_complex_part (y, true), true);
3011 return get_last_insn ();
3014 /* A subroutine of emit_move_insn_1. Generate a move from Y into X.
3015 MODE is known to be MODE_CC. Returns the last instruction emitted. */
3017 static rtx
3018 emit_move_ccmode (enum machine_mode mode, rtx x, rtx y)
3020 rtx ret;
3022 /* Assume all MODE_CC modes are equivalent; if we have movcc, use it. */
3023 if (mode != CCmode)
3025 enum insn_code code = mov_optab->handlers[CCmode].insn_code;
3026 if (code != CODE_FOR_nothing)
3028 x = emit_move_change_mode (CCmode, mode, x, true);
3029 y = emit_move_change_mode (CCmode, mode, y, true);
3030 return emit_insn (GEN_FCN (code) (x, y));
3034 /* Otherwise, find the MODE_INT mode of the same width. */
3035 ret = emit_move_via_integer (mode, x, y, false);
3036 gcc_assert (ret != NULL);
3037 return ret;
3040 /* A subroutine of emit_move_insn_1. Generate a move from Y into X.
3041 MODE is any multi-word or full-word mode that lacks a move_insn
3042 pattern. Note that you will get better code if you define such
3043 patterns, even if they must turn into multiple assembler instructions. */
3045 static rtx
3046 emit_move_multi_word (enum machine_mode mode, rtx x, rtx y)
3048 rtx last_insn = 0;
3049 rtx seq, inner;
3050 bool need_clobber;
3051 int i;
3053 gcc_assert (GET_MODE_SIZE (mode) >= UNITS_PER_WORD);
3055 /* If X is a push on the stack, do the push now and replace
3056 X with a reference to the stack pointer. */
3057 if (push_operand (x, mode))
3058 x = emit_move_resolve_push (mode, x);
3060 /* If we are in reload, see if either operand is a MEM whose address
3061 is scheduled for replacement. */
3062 if (reload_in_progress && MEM_P (x)
3063 && (inner = find_replacement (&XEXP (x, 0))) != XEXP (x, 0))
3064 x = replace_equiv_address_nv (x, inner);
3065 if (reload_in_progress && MEM_P (y)
3066 && (inner = find_replacement (&XEXP (y, 0))) != XEXP (y, 0))
3067 y = replace_equiv_address_nv (y, inner);
3069 start_sequence ();
3071 need_clobber = false;
3072 for (i = 0;
3073 i < (GET_MODE_SIZE (mode) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD;
3074 i++)
3076 rtx xpart = operand_subword (x, i, 1, mode);
3077 rtx ypart = operand_subword (y, i, 1, mode);
3079 /* If we can't get a part of Y, put Y into memory if it is a
3080 constant. Otherwise, force it into a register. Then we must
3081 be able to get a part of Y. */
3082 if (ypart == 0 && CONSTANT_P (y))
3084 y = use_anchored_address (force_const_mem (mode, y));
3085 ypart = operand_subword (y, i, 1, mode);
3087 else if (ypart == 0)
3088 ypart = operand_subword_force (y, i, mode);
3090 gcc_assert (xpart && ypart);
3092 need_clobber |= (GET_CODE (xpart) == SUBREG);
3094 last_insn = emit_move_insn (xpart, ypart);
3097 seq = get_insns ();
3098 end_sequence ();
3100 /* Show the output dies here. This is necessary for SUBREGs
3101 of pseudos since we cannot track their lifetimes correctly;
3102 hard regs shouldn't appear here except as return values.
3103 We never want to emit such a clobber after reload. */
3104 if (x != y
3105 && ! (reload_in_progress || reload_completed)
3106 && need_clobber != 0)
3107 emit_insn (gen_rtx_CLOBBER (VOIDmode, x));
3109 emit_insn (seq);
3111 return last_insn;
3114 /* Low level part of emit_move_insn.
3115 Called just like emit_move_insn, but assumes X and Y
3116 are basically valid. */
3119 emit_move_insn_1 (rtx x, rtx y)
3121 enum machine_mode mode = GET_MODE (x);
3122 enum insn_code code;
3124 gcc_assert ((unsigned int) mode < (unsigned int) MAX_MACHINE_MODE);
3126 code = mov_optab->handlers[mode].insn_code;
3127 if (code != CODE_FOR_nothing)
3128 return emit_insn (GEN_FCN (code) (x, y));
3130 /* Expand complex moves by moving real part and imag part. */
3131 if (COMPLEX_MODE_P (mode))
3132 return emit_move_complex (mode, x, y);
3134 if (GET_MODE_CLASS (mode) == MODE_DECIMAL_FLOAT)
3136 rtx result = emit_move_via_integer (mode, x, y, true);
3138 /* If we can't find an integer mode, use multi words. */
3139 if (result)
3140 return result;
3141 else
3142 return emit_move_multi_word (mode, x, y);
3145 if (GET_MODE_CLASS (mode) == MODE_CC)
3146 return emit_move_ccmode (mode, x, y);
3148 /* Try using a move pattern for the corresponding integer mode. This is
3149 only safe when simplify_subreg can convert MODE constants into integer
3150 constants. At present, it can only do this reliably if the value
3151 fits within a HOST_WIDE_INT. */
3152 if (!CONSTANT_P (y) || GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
3154 rtx ret = emit_move_via_integer (mode, x, y, false);
3155 if (ret)
3156 return ret;
3159 return emit_move_multi_word (mode, x, y);
3162 /* Generate code to copy Y into X.
3163 Both Y and X must have the same mode, except that
3164 Y can be a constant with VOIDmode.
3165 This mode cannot be BLKmode; use emit_block_move for that.
3167 Return the last instruction emitted. */
3170 emit_move_insn (rtx x, rtx y)
3172 enum machine_mode mode = GET_MODE (x);
3173 rtx y_cst = NULL_RTX;
3174 rtx last_insn, set;
3176 gcc_assert (mode != BLKmode
3177 && (GET_MODE (y) == mode || GET_MODE (y) == VOIDmode));
3179 if (CONSTANT_P (y))
3181 if (optimize
3182 && SCALAR_FLOAT_MODE_P (GET_MODE (x))
3183 && (last_insn = compress_float_constant (x, y)))
3184 return last_insn;
3186 y_cst = y;
3188 if (!LEGITIMATE_CONSTANT_P (y))
3190 y = force_const_mem (mode, y);
3192 /* If the target's cannot_force_const_mem prevented the spill,
3193 assume that the target's move expanders will also take care
3194 of the non-legitimate constant. */
3195 if (!y)
3196 y = y_cst;
3197 else
3198 y = use_anchored_address (y);
3202 /* If X or Y are memory references, verify that their addresses are valid
3203 for the machine. */
3204 if (MEM_P (x)
3205 && ((! memory_address_p (GET_MODE (x), XEXP (x, 0))
3206 && ! push_operand (x, GET_MODE (x)))
3207 || (flag_force_addr
3208 && CONSTANT_ADDRESS_P (XEXP (x, 0)))))
3209 x = validize_mem (x);
3211 if (MEM_P (y)
3212 && (! memory_address_p (GET_MODE (y), XEXP (y, 0))
3213 || (flag_force_addr
3214 && CONSTANT_ADDRESS_P (XEXP (y, 0)))))
3215 y = validize_mem (y);
3217 gcc_assert (mode != BLKmode);
3219 last_insn = emit_move_insn_1 (x, y);
3221 if (y_cst && REG_P (x)
3222 && (set = single_set (last_insn)) != NULL_RTX
3223 && SET_DEST (set) == x
3224 && ! rtx_equal_p (y_cst, SET_SRC (set)))
3225 set_unique_reg_note (last_insn, REG_EQUAL, y_cst);
3227 return last_insn;
3230 /* If Y is representable exactly in a narrower mode, and the target can
3231 perform the extension directly from constant or memory, then emit the
3232 move as an extension. */
3234 static rtx
3235 compress_float_constant (rtx x, rtx y)
3237 enum machine_mode dstmode = GET_MODE (x);
3238 enum machine_mode orig_srcmode = GET_MODE (y);
3239 enum machine_mode srcmode;
3240 REAL_VALUE_TYPE r;
3241 int oldcost, newcost;
3243 REAL_VALUE_FROM_CONST_DOUBLE (r, y);
3245 if (LEGITIMATE_CONSTANT_P (y))
3246 oldcost = rtx_cost (y, SET);
3247 else
3248 oldcost = rtx_cost (force_const_mem (dstmode, y), SET);
3250 for (srcmode = GET_CLASS_NARROWEST_MODE (GET_MODE_CLASS (orig_srcmode));
3251 srcmode != orig_srcmode;
3252 srcmode = GET_MODE_WIDER_MODE (srcmode))
3254 enum insn_code ic;
3255 rtx trunc_y, last_insn;
3257 /* Skip if the target can't extend this way. */
3258 ic = can_extend_p (dstmode, srcmode, 0);
3259 if (ic == CODE_FOR_nothing)
3260 continue;
3262 /* Skip if the narrowed value isn't exact. */
3263 if (! exact_real_truncate (srcmode, &r))
3264 continue;
3266 trunc_y = CONST_DOUBLE_FROM_REAL_VALUE (r, srcmode);
3268 if (LEGITIMATE_CONSTANT_P (trunc_y))
3270 /* Skip if the target needs extra instructions to perform
3271 the extension. */
3272 if (! (*insn_data[ic].operand[1].predicate) (trunc_y, srcmode))
3273 continue;
3274 /* This is valid, but may not be cheaper than the original. */
3275 newcost = rtx_cost (gen_rtx_FLOAT_EXTEND (dstmode, trunc_y), SET);
3276 if (oldcost < newcost)
3277 continue;
3279 else if (float_extend_from_mem[dstmode][srcmode])
3281 trunc_y = force_const_mem (srcmode, trunc_y);
3282 /* This is valid, but may not be cheaper than the original. */
3283 newcost = rtx_cost (gen_rtx_FLOAT_EXTEND (dstmode, trunc_y), SET);
3284 if (oldcost < newcost)
3285 continue;
3286 trunc_y = validize_mem (trunc_y);
3288 else
3289 continue;
3291 emit_unop_insn (ic, x, trunc_y, UNKNOWN);
3292 last_insn = get_last_insn ();
3294 if (REG_P (x))
3295 set_unique_reg_note (last_insn, REG_EQUAL, y);
3297 return last_insn;
3300 return NULL_RTX;
3303 /* Pushing data onto the stack. */
3305 /* Push a block of length SIZE (perhaps variable)
3306 and return an rtx to address the beginning of the block.
3307 The value may be virtual_outgoing_args_rtx.
3309 EXTRA is the number of bytes of padding to push in addition to SIZE.
3310 BELOW nonzero means this padding comes at low addresses;
3311 otherwise, the padding comes at high addresses. */
3314 push_block (rtx size, int extra, int below)
3316 rtx temp;
3318 size = convert_modes (Pmode, ptr_mode, size, 1);
3319 if (CONSTANT_P (size))
3320 anti_adjust_stack (plus_constant (size, extra));
3321 else if (REG_P (size) && extra == 0)
3322 anti_adjust_stack (size);
3323 else
3325 temp = copy_to_mode_reg (Pmode, size);
3326 if (extra != 0)
3327 temp = expand_binop (Pmode, add_optab, temp, GEN_INT (extra),
3328 temp, 0, OPTAB_LIB_WIDEN);
3329 anti_adjust_stack (temp);
3332 #ifndef STACK_GROWS_DOWNWARD
3333 if (0)
3334 #else
3335 if (1)
3336 #endif
3338 temp = virtual_outgoing_args_rtx;
3339 if (extra != 0 && below)
3340 temp = plus_constant (temp, extra);
3342 else
3344 if (GET_CODE (size) == CONST_INT)
3345 temp = plus_constant (virtual_outgoing_args_rtx,
3346 -INTVAL (size) - (below ? 0 : extra));
3347 else if (extra != 0 && !below)
3348 temp = gen_rtx_PLUS (Pmode, virtual_outgoing_args_rtx,
3349 negate_rtx (Pmode, plus_constant (size, extra)));
3350 else
3351 temp = gen_rtx_PLUS (Pmode, virtual_outgoing_args_rtx,
3352 negate_rtx (Pmode, size));
3355 return memory_address (GET_CLASS_NARROWEST_MODE (MODE_INT), temp);
3358 #ifdef PUSH_ROUNDING
3360 /* Emit single push insn. */
3362 static void
3363 emit_single_push_insn (enum machine_mode mode, rtx x, tree type)
3365 rtx dest_addr;
3366 unsigned rounded_size = PUSH_ROUNDING (GET_MODE_SIZE (mode));
3367 rtx dest;
3368 enum insn_code icode;
3369 insn_operand_predicate_fn pred;
3371 stack_pointer_delta += PUSH_ROUNDING (GET_MODE_SIZE (mode));
3372 /* If there is push pattern, use it. Otherwise try old way of throwing
3373 MEM representing push operation to move expander. */
3374 icode = push_optab->handlers[(int) mode].insn_code;
3375 if (icode != CODE_FOR_nothing)
3377 if (((pred = insn_data[(int) icode].operand[0].predicate)
3378 && !((*pred) (x, mode))))
3379 x = force_reg (mode, x);
3380 emit_insn (GEN_FCN (icode) (x));
3381 return;
3383 if (GET_MODE_SIZE (mode) == rounded_size)
3384 dest_addr = gen_rtx_fmt_e (STACK_PUSH_CODE, Pmode, stack_pointer_rtx);
3385 /* If we are to pad downward, adjust the stack pointer first and
3386 then store X into the stack location using an offset. This is
3387 because emit_move_insn does not know how to pad; it does not have
3388 access to type. */
3389 else if (FUNCTION_ARG_PADDING (mode, type) == downward)
3391 unsigned padding_size = rounded_size - GET_MODE_SIZE (mode);
3392 HOST_WIDE_INT offset;
3394 emit_move_insn (stack_pointer_rtx,
3395 expand_binop (Pmode,
3396 #ifdef STACK_GROWS_DOWNWARD
3397 sub_optab,
3398 #else
3399 add_optab,
3400 #endif
3401 stack_pointer_rtx,
3402 GEN_INT (rounded_size),
3403 NULL_RTX, 0, OPTAB_LIB_WIDEN));
3405 offset = (HOST_WIDE_INT) padding_size;
3406 #ifdef STACK_GROWS_DOWNWARD
3407 if (STACK_PUSH_CODE == POST_DEC)
3408 /* We have already decremented the stack pointer, so get the
3409 previous value. */
3410 offset += (HOST_WIDE_INT) rounded_size;
3411 #else
3412 if (STACK_PUSH_CODE == POST_INC)
3413 /* We have already incremented the stack pointer, so get the
3414 previous value. */
3415 offset -= (HOST_WIDE_INT) rounded_size;
3416 #endif
3417 dest_addr = gen_rtx_PLUS (Pmode, stack_pointer_rtx, GEN_INT (offset));
3419 else
3421 #ifdef STACK_GROWS_DOWNWARD
3422 /* ??? This seems wrong if STACK_PUSH_CODE == POST_DEC. */
3423 dest_addr = gen_rtx_PLUS (Pmode, stack_pointer_rtx,
3424 GEN_INT (-(HOST_WIDE_INT) rounded_size));
3425 #else
3426 /* ??? This seems wrong if STACK_PUSH_CODE == POST_INC. */
3427 dest_addr = gen_rtx_PLUS (Pmode, stack_pointer_rtx,
3428 GEN_INT (rounded_size));
3429 #endif
3430 dest_addr = gen_rtx_PRE_MODIFY (Pmode, stack_pointer_rtx, dest_addr);
3433 dest = gen_rtx_MEM (mode, dest_addr);
3435 if (type != 0)
3437 set_mem_attributes (dest, type, 1);
3439 if (flag_optimize_sibling_calls)
3440 /* Function incoming arguments may overlap with sibling call
3441 outgoing arguments and we cannot allow reordering of reads
3442 from function arguments with stores to outgoing arguments
3443 of sibling calls. */
3444 set_mem_alias_set (dest, 0);
3446 emit_move_insn (dest, x);
3448 #endif
3450 /* Generate code to push X onto the stack, assuming it has mode MODE and
3451 type TYPE.
3452 MODE is redundant except when X is a CONST_INT (since they don't
3453 carry mode info).
3454 SIZE is an rtx for the size of data to be copied (in bytes),
3455 needed only if X is BLKmode.
3457 ALIGN (in bits) is maximum alignment we can assume.
3459 If PARTIAL and REG are both nonzero, then copy that many of the first
3460 bytes of X into registers starting with REG, and push the rest of X.
3461 The amount of space pushed is decreased by PARTIAL bytes.
3462 REG must be a hard register in this case.
3463 If REG is zero but PARTIAL is not, take any all others actions for an
3464 argument partially in registers, but do not actually load any
3465 registers.
3467 EXTRA is the amount in bytes of extra space to leave next to this arg.
3468 This is ignored if an argument block has already been allocated.
3470 On a machine that lacks real push insns, ARGS_ADDR is the address of
3471 the bottom of the argument block for this call. We use indexing off there
3472 to store the arg. On machines with push insns, ARGS_ADDR is 0 when a
3473 argument block has not been preallocated.
3475 ARGS_SO_FAR is the size of args previously pushed for this call.
3477 REG_PARM_STACK_SPACE is nonzero if functions require stack space
3478 for arguments passed in registers. If nonzero, it will be the number
3479 of bytes required. */
3481 void
3482 emit_push_insn (rtx x, enum machine_mode mode, tree type, rtx size,
3483 unsigned int align, int partial, rtx reg, int extra,
3484 rtx args_addr, rtx args_so_far, int reg_parm_stack_space,
3485 rtx alignment_pad)
3487 rtx xinner;
3488 enum direction stack_direction
3489 #ifdef STACK_GROWS_DOWNWARD
3490 = downward;
3491 #else
3492 = upward;
3493 #endif
3495 /* Decide where to pad the argument: `downward' for below,
3496 `upward' for above, or `none' for don't pad it.
3497 Default is below for small data on big-endian machines; else above. */
3498 enum direction where_pad = FUNCTION_ARG_PADDING (mode, type);
3500 /* Invert direction if stack is post-decrement.
3501 FIXME: why? */
3502 if (STACK_PUSH_CODE == POST_DEC)
3503 if (where_pad != none)
3504 where_pad = (where_pad == downward ? upward : downward);
3506 xinner = x;
3508 if (mode == BLKmode)
3510 /* Copy a block into the stack, entirely or partially. */
3512 rtx temp;
3513 int used;
3514 int offset;
3515 int skip;
3517 offset = partial % (PARM_BOUNDARY / BITS_PER_UNIT);
3518 used = partial - offset;
3520 gcc_assert (size);
3522 /* USED is now the # of bytes we need not copy to the stack
3523 because registers will take care of them. */
3525 if (partial != 0)
3526 xinner = adjust_address (xinner, BLKmode, used);
3528 /* If the partial register-part of the arg counts in its stack size,
3529 skip the part of stack space corresponding to the registers.
3530 Otherwise, start copying to the beginning of the stack space,
3531 by setting SKIP to 0. */
3532 skip = (reg_parm_stack_space == 0) ? 0 : used;
3534 #ifdef PUSH_ROUNDING
3535 /* Do it with several push insns if that doesn't take lots of insns
3536 and if there is no difficulty with push insns that skip bytes
3537 on the stack for alignment purposes. */
3538 if (args_addr == 0
3539 && PUSH_ARGS
3540 && GET_CODE (size) == CONST_INT
3541 && skip == 0
3542 && MEM_ALIGN (xinner) >= align
3543 && (MOVE_BY_PIECES_P ((unsigned) INTVAL (size) - used, align))
3544 /* Here we avoid the case of a structure whose weak alignment
3545 forces many pushes of a small amount of data,
3546 and such small pushes do rounding that causes trouble. */
3547 && ((! SLOW_UNALIGNED_ACCESS (word_mode, align))
3548 || align >= BIGGEST_ALIGNMENT
3549 || (PUSH_ROUNDING (align / BITS_PER_UNIT)
3550 == (align / BITS_PER_UNIT)))
3551 && PUSH_ROUNDING (INTVAL (size)) == INTVAL (size))
3553 /* Push padding now if padding above and stack grows down,
3554 or if padding below and stack grows up.
3555 But if space already allocated, this has already been done. */
3556 if (extra && args_addr == 0
3557 && where_pad != none && where_pad != stack_direction)
3558 anti_adjust_stack (GEN_INT (extra));
3560 move_by_pieces (NULL, xinner, INTVAL (size) - used, align, 0);
3562 else
3563 #endif /* PUSH_ROUNDING */
3565 rtx target;
3567 /* Otherwise make space on the stack and copy the data
3568 to the address of that space. */
3570 /* Deduct words put into registers from the size we must copy. */
3571 if (partial != 0)
3573 if (GET_CODE (size) == CONST_INT)
3574 size = GEN_INT (INTVAL (size) - used);
3575 else
3576 size = expand_binop (GET_MODE (size), sub_optab, size,
3577 GEN_INT (used), NULL_RTX, 0,
3578 OPTAB_LIB_WIDEN);
3581 /* Get the address of the stack space.
3582 In this case, we do not deal with EXTRA separately.
3583 A single stack adjust will do. */
3584 if (! args_addr)
3586 temp = push_block (size, extra, where_pad == downward);
3587 extra = 0;
3589 else if (GET_CODE (args_so_far) == CONST_INT)
3590 temp = memory_address (BLKmode,
3591 plus_constant (args_addr,
3592 skip + INTVAL (args_so_far)));
3593 else
3594 temp = memory_address (BLKmode,
3595 plus_constant (gen_rtx_PLUS (Pmode,
3596 args_addr,
3597 args_so_far),
3598 skip));
3600 if (!ACCUMULATE_OUTGOING_ARGS)
3602 /* If the source is referenced relative to the stack pointer,
3603 copy it to another register to stabilize it. We do not need
3604 to do this if we know that we won't be changing sp. */
3606 if (reg_mentioned_p (virtual_stack_dynamic_rtx, temp)
3607 || reg_mentioned_p (virtual_outgoing_args_rtx, temp))
3608 temp = copy_to_reg (temp);
3611 target = gen_rtx_MEM (BLKmode, temp);
3613 /* We do *not* set_mem_attributes here, because incoming arguments
3614 may overlap with sibling call outgoing arguments and we cannot
3615 allow reordering of reads from function arguments with stores
3616 to outgoing arguments of sibling calls. We do, however, want
3617 to record the alignment of the stack slot. */
3618 /* ALIGN may well be better aligned than TYPE, e.g. due to
3619 PARM_BOUNDARY. Assume the caller isn't lying. */
3620 set_mem_align (target, align);
3622 emit_block_move (target, xinner, size, BLOCK_OP_CALL_PARM);
3625 else if (partial > 0)
3627 /* Scalar partly in registers. */
3629 int size = GET_MODE_SIZE (mode) / UNITS_PER_WORD;
3630 int i;
3631 int not_stack;
3632 /* # bytes of start of argument
3633 that we must make space for but need not store. */
3634 int offset = partial % (PARM_BOUNDARY / BITS_PER_UNIT);
3635 int args_offset = INTVAL (args_so_far);
3636 int skip;
3638 /* Push padding now if padding above and stack grows down,
3639 or if padding below and stack grows up.
3640 But if space already allocated, this has already been done. */
3641 if (extra && args_addr == 0
3642 && where_pad != none && where_pad != stack_direction)
3643 anti_adjust_stack (GEN_INT (extra));
3645 /* If we make space by pushing it, we might as well push
3646 the real data. Otherwise, we can leave OFFSET nonzero
3647 and leave the space uninitialized. */
3648 if (args_addr == 0)
3649 offset = 0;
3651 /* Now NOT_STACK gets the number of words that we don't need to
3652 allocate on the stack. Convert OFFSET to words too. */
3653 not_stack = (partial - offset) / UNITS_PER_WORD;
3654 offset /= UNITS_PER_WORD;
3656 /* If the partial register-part of the arg counts in its stack size,
3657 skip the part of stack space corresponding to the registers.
3658 Otherwise, start copying to the beginning of the stack space,
3659 by setting SKIP to 0. */
3660 skip = (reg_parm_stack_space == 0) ? 0 : not_stack;
3662 if (CONSTANT_P (x) && ! LEGITIMATE_CONSTANT_P (x))
3663 x = validize_mem (force_const_mem (mode, x));
3665 /* If X is a hard register in a non-integer mode, copy it into a pseudo;
3666 SUBREGs of such registers are not allowed. */
3667 if ((REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER
3668 && GET_MODE_CLASS (GET_MODE (x)) != MODE_INT))
3669 x = copy_to_reg (x);
3671 /* Loop over all the words allocated on the stack for this arg. */
3672 /* We can do it by words, because any scalar bigger than a word
3673 has a size a multiple of a word. */
3674 #ifndef PUSH_ARGS_REVERSED
3675 for (i = not_stack; i < size; i++)
3676 #else
3677 for (i = size - 1; i >= not_stack; i--)
3678 #endif
3679 if (i >= not_stack + offset)
3680 emit_push_insn (operand_subword_force (x, i, mode),
3681 word_mode, NULL_TREE, NULL_RTX, align, 0, NULL_RTX,
3682 0, args_addr,
3683 GEN_INT (args_offset + ((i - not_stack + skip)
3684 * UNITS_PER_WORD)),
3685 reg_parm_stack_space, alignment_pad);
3687 else
3689 rtx addr;
3690 rtx dest;
3692 /* Push padding now if padding above and stack grows down,
3693 or if padding below and stack grows up.
3694 But if space already allocated, this has already been done. */
3695 if (extra && args_addr == 0
3696 && where_pad != none && where_pad != stack_direction)
3697 anti_adjust_stack (GEN_INT (extra));
3699 #ifdef PUSH_ROUNDING
3700 if (args_addr == 0 && PUSH_ARGS)
3701 emit_single_push_insn (mode, x, type);
3702 else
3703 #endif
3705 if (GET_CODE (args_so_far) == CONST_INT)
3706 addr
3707 = memory_address (mode,
3708 plus_constant (args_addr,
3709 INTVAL (args_so_far)));
3710 else
3711 addr = memory_address (mode, gen_rtx_PLUS (Pmode, args_addr,
3712 args_so_far));
3713 dest = gen_rtx_MEM (mode, addr);
3715 /* We do *not* set_mem_attributes here, because incoming arguments
3716 may overlap with sibling call outgoing arguments and we cannot
3717 allow reordering of reads from function arguments with stores
3718 to outgoing arguments of sibling calls. We do, however, want
3719 to record the alignment of the stack slot. */
3720 /* ALIGN may well be better aligned than TYPE, e.g. due to
3721 PARM_BOUNDARY. Assume the caller isn't lying. */
3722 set_mem_align (dest, align);
3724 emit_move_insn (dest, x);
3728 /* If part should go in registers, copy that part
3729 into the appropriate registers. Do this now, at the end,
3730 since mem-to-mem copies above may do function calls. */
3731 if (partial > 0 && reg != 0)
3733 /* Handle calls that pass values in multiple non-contiguous locations.
3734 The Irix 6 ABI has examples of this. */
3735 if (GET_CODE (reg) == PARALLEL)
3736 emit_group_load (reg, x, type, -1);
3737 else
3739 gcc_assert (partial % UNITS_PER_WORD == 0);
3740 move_block_to_reg (REGNO (reg), x, partial / UNITS_PER_WORD, mode);
3744 if (extra && args_addr == 0 && where_pad == stack_direction)
3745 anti_adjust_stack (GEN_INT (extra));
3747 if (alignment_pad && args_addr == 0)
3748 anti_adjust_stack (alignment_pad);
3751 /* Return X if X can be used as a subtarget in a sequence of arithmetic
3752 operations. */
3754 static rtx
3755 get_subtarget (rtx x)
3757 return (optimize
3758 || x == 0
3759 /* Only registers can be subtargets. */
3760 || !REG_P (x)
3761 /* Don't use hard regs to avoid extending their life. */
3762 || REGNO (x) < FIRST_PSEUDO_REGISTER
3763 ? 0 : x);
3766 /* A subroutine of expand_assignment. Optimize FIELD op= VAL, where
3767 FIELD is a bitfield. Returns true if the optimization was successful,
3768 and there's nothing else to do. */
3770 static bool
3771 optimize_bitfield_assignment_op (unsigned HOST_WIDE_INT bitsize,
3772 unsigned HOST_WIDE_INT bitpos,
3773 enum machine_mode mode1, rtx str_rtx,
3774 tree to, tree src)
3776 enum machine_mode str_mode = GET_MODE (str_rtx);
3777 unsigned int str_bitsize = GET_MODE_BITSIZE (str_mode);
3778 tree op0, op1;
3779 rtx value, result;
3780 optab binop;
3782 if (mode1 != VOIDmode
3783 || bitsize >= BITS_PER_WORD
3784 || str_bitsize > BITS_PER_WORD
3785 || TREE_SIDE_EFFECTS (to)
3786 || TREE_THIS_VOLATILE (to))
3787 return false;
3789 STRIP_NOPS (src);
3790 if (!BINARY_CLASS_P (src)
3791 || TREE_CODE (TREE_TYPE (src)) != INTEGER_TYPE)
3792 return false;
3794 op0 = TREE_OPERAND (src, 0);
3795 op1 = TREE_OPERAND (src, 1);
3796 STRIP_NOPS (op0);
3798 if (!operand_equal_p (to, op0, 0))
3799 return false;
3801 if (MEM_P (str_rtx))
3803 unsigned HOST_WIDE_INT offset1;
3805 if (str_bitsize == 0 || str_bitsize > BITS_PER_WORD)
3806 str_mode = word_mode;
3807 str_mode = get_best_mode (bitsize, bitpos,
3808 MEM_ALIGN (str_rtx), str_mode, 0);
3809 if (str_mode == VOIDmode)
3810 return false;
3811 str_bitsize = GET_MODE_BITSIZE (str_mode);
3813 offset1 = bitpos;
3814 bitpos %= str_bitsize;
3815 offset1 = (offset1 - bitpos) / BITS_PER_UNIT;
3816 str_rtx = adjust_address (str_rtx, str_mode, offset1);
3818 else if (!REG_P (str_rtx) && GET_CODE (str_rtx) != SUBREG)
3819 return false;
3821 /* If the bit field covers the whole REG/MEM, store_field
3822 will likely generate better code. */
3823 if (bitsize >= str_bitsize)
3824 return false;
3826 /* We can't handle fields split across multiple entities. */
3827 if (bitpos + bitsize > str_bitsize)
3828 return false;
3830 if (BYTES_BIG_ENDIAN)
3831 bitpos = str_bitsize - bitpos - bitsize;
3833 switch (TREE_CODE (src))
3835 case PLUS_EXPR:
3836 case MINUS_EXPR:
3837 /* For now, just optimize the case of the topmost bitfield
3838 where we don't need to do any masking and also
3839 1 bit bitfields where xor can be used.
3840 We might win by one instruction for the other bitfields
3841 too if insv/extv instructions aren't used, so that
3842 can be added later. */
3843 if (bitpos + bitsize != str_bitsize
3844 && (bitsize != 1 || TREE_CODE (op1) != INTEGER_CST))
3845 break;
3847 value = expand_expr (op1, NULL_RTX, str_mode, 0);
3848 value = convert_modes (str_mode,
3849 TYPE_MODE (TREE_TYPE (op1)), value,
3850 TYPE_UNSIGNED (TREE_TYPE (op1)));
3852 /* We may be accessing data outside the field, which means
3853 we can alias adjacent data. */
3854 if (MEM_P (str_rtx))
3856 str_rtx = shallow_copy_rtx (str_rtx);
3857 set_mem_alias_set (str_rtx, 0);
3858 set_mem_expr (str_rtx, 0);
3861 binop = TREE_CODE (src) == PLUS_EXPR ? add_optab : sub_optab;
3862 if (bitsize == 1 && bitpos + bitsize != str_bitsize)
3864 value = expand_and (str_mode, value, const1_rtx, NULL);
3865 binop = xor_optab;
3867 value = expand_shift (LSHIFT_EXPR, str_mode, value,
3868 build_int_cst (NULL_TREE, bitpos),
3869 NULL_RTX, 1);
3870 result = expand_binop (str_mode, binop, str_rtx,
3871 value, str_rtx, 1, OPTAB_WIDEN);
3872 if (result != str_rtx)
3873 emit_move_insn (str_rtx, result);
3874 return true;
3876 case BIT_IOR_EXPR:
3877 case BIT_XOR_EXPR:
3878 if (TREE_CODE (op1) != INTEGER_CST)
3879 break;
3880 value = expand_expr (op1, NULL_RTX, GET_MODE (str_rtx), 0);
3881 value = convert_modes (GET_MODE (str_rtx),
3882 TYPE_MODE (TREE_TYPE (op1)), value,
3883 TYPE_UNSIGNED (TREE_TYPE (op1)));
3885 /* We may be accessing data outside the field, which means
3886 we can alias adjacent data. */
3887 if (MEM_P (str_rtx))
3889 str_rtx = shallow_copy_rtx (str_rtx);
3890 set_mem_alias_set (str_rtx, 0);
3891 set_mem_expr (str_rtx, 0);
3894 binop = TREE_CODE (src) == BIT_IOR_EXPR ? ior_optab : xor_optab;
3895 if (bitpos + bitsize != GET_MODE_BITSIZE (GET_MODE (str_rtx)))
3897 rtx mask = GEN_INT (((unsigned HOST_WIDE_INT) 1 << bitsize)
3898 - 1);
3899 value = expand_and (GET_MODE (str_rtx), value, mask,
3900 NULL_RTX);
3902 value = expand_shift (LSHIFT_EXPR, GET_MODE (str_rtx), value,
3903 build_int_cst (NULL_TREE, bitpos),
3904 NULL_RTX, 1);
3905 result = expand_binop (GET_MODE (str_rtx), binop, str_rtx,
3906 value, str_rtx, 1, OPTAB_WIDEN);
3907 if (result != str_rtx)
3908 emit_move_insn (str_rtx, result);
3909 return true;
3911 default:
3912 break;
3915 return false;
3919 /* Expand an assignment that stores the value of FROM into TO. */
3921 void
3922 expand_assignment (tree to, tree from)
3924 rtx to_rtx = 0;
3925 rtx result;
3927 /* Don't crash if the lhs of the assignment was erroneous. */
3929 if (TREE_CODE (to) == ERROR_MARK)
3931 result = expand_normal (from);
3932 return;
3935 /* Assignment of a structure component needs special treatment
3936 if the structure component's rtx is not simply a MEM.
3937 Assignment of an array element at a constant index, and assignment of
3938 an array element in an unaligned packed structure field, has the same
3939 problem. */
3940 if (handled_component_p (to)
3941 || TREE_CODE (TREE_TYPE (to)) == ARRAY_TYPE)
3943 enum machine_mode mode1;
3944 HOST_WIDE_INT bitsize, bitpos;
3945 tree offset;
3946 int unsignedp;
3947 int volatilep = 0;
3948 tree tem;
3950 push_temp_slots ();
3951 tem = get_inner_reference (to, &bitsize, &bitpos, &offset, &mode1,
3952 &unsignedp, &volatilep, true);
3954 /* If we are going to use store_bit_field and extract_bit_field,
3955 make sure to_rtx will be safe for multiple use. */
3957 to_rtx = expand_normal (tem);
3959 if (offset != 0)
3961 rtx offset_rtx;
3963 if (!MEM_P (to_rtx))
3965 /* We can get constant negative offsets into arrays with broken
3966 user code. Translate this to a trap instead of ICEing. */
3967 gcc_assert (TREE_CODE (offset) == INTEGER_CST);
3968 expand_builtin_trap ();
3969 to_rtx = gen_rtx_MEM (BLKmode, const0_rtx);
3972 offset_rtx = expand_expr (offset, NULL_RTX, VOIDmode, EXPAND_SUM);
3973 #ifdef POINTERS_EXTEND_UNSIGNED
3974 if (GET_MODE (offset_rtx) != Pmode)
3975 offset_rtx = convert_to_mode (Pmode, offset_rtx, 0);
3976 #else
3977 if (GET_MODE (offset_rtx) != ptr_mode)
3978 offset_rtx = convert_to_mode (ptr_mode, offset_rtx, 0);
3979 #endif
3981 /* A constant address in TO_RTX can have VOIDmode, we must not try
3982 to call force_reg for that case. Avoid that case. */
3983 if (MEM_P (to_rtx)
3984 && GET_MODE (to_rtx) == BLKmode
3985 && GET_MODE (XEXP (to_rtx, 0)) != VOIDmode
3986 && bitsize > 0
3987 && (bitpos % bitsize) == 0
3988 && (bitsize % GET_MODE_ALIGNMENT (mode1)) == 0
3989 && MEM_ALIGN (to_rtx) == GET_MODE_ALIGNMENT (mode1))
3991 to_rtx = adjust_address (to_rtx, mode1, bitpos / BITS_PER_UNIT);
3992 bitpos = 0;
3995 to_rtx = offset_address (to_rtx, offset_rtx,
3996 highest_pow2_factor_for_target (to,
3997 offset));
4000 /* Handle expand_expr of a complex value returning a CONCAT. */
4001 if (GET_CODE (to_rtx) == CONCAT)
4003 if (TREE_CODE (TREE_TYPE (from)) == COMPLEX_TYPE)
4005 gcc_assert (bitpos == 0);
4006 result = store_expr (from, to_rtx, false);
4008 else
4010 gcc_assert (bitpos == 0 || bitpos == GET_MODE_BITSIZE (mode1));
4011 result = store_expr (from, XEXP (to_rtx, bitpos != 0), false);
4014 else
4016 if (MEM_P (to_rtx))
4018 /* If the field is at offset zero, we could have been given the
4019 DECL_RTX of the parent struct. Don't munge it. */
4020 to_rtx = shallow_copy_rtx (to_rtx);
4022 set_mem_attributes_minus_bitpos (to_rtx, to, 0, bitpos);
4024 /* Deal with volatile and readonly fields. The former is only
4025 done for MEM. Also set MEM_KEEP_ALIAS_SET_P if needed. */
4026 if (volatilep)
4027 MEM_VOLATILE_P (to_rtx) = 1;
4028 if (component_uses_parent_alias_set (to))
4029 MEM_KEEP_ALIAS_SET_P (to_rtx) = 1;
4032 if (optimize_bitfield_assignment_op (bitsize, bitpos, mode1,
4033 to_rtx, to, from))
4034 result = NULL;
4035 else
4036 result = store_field (to_rtx, bitsize, bitpos, mode1, from,
4037 TREE_TYPE (tem), get_alias_set (to));
4040 if (result)
4041 preserve_temp_slots (result);
4042 free_temp_slots ();
4043 pop_temp_slots ();
4044 return;
4047 /* If the rhs is a function call and its value is not an aggregate,
4048 call the function before we start to compute the lhs.
4049 This is needed for correct code for cases such as
4050 val = setjmp (buf) on machines where reference to val
4051 requires loading up part of an address in a separate insn.
4053 Don't do this if TO is a VAR_DECL or PARM_DECL whose DECL_RTL is REG
4054 since it might be a promoted variable where the zero- or sign- extension
4055 needs to be done. Handling this in the normal way is safe because no
4056 computation is done before the call. */
4057 if (TREE_CODE (from) == CALL_EXPR && ! aggregate_value_p (from, from)
4058 && TREE_CODE (TYPE_SIZE (TREE_TYPE (from))) == INTEGER_CST
4059 && ! ((TREE_CODE (to) == VAR_DECL || TREE_CODE (to) == PARM_DECL)
4060 && REG_P (DECL_RTL (to))))
4062 rtx value;
4064 push_temp_slots ();
4065 value = expand_normal (from);
4066 if (to_rtx == 0)
4067 to_rtx = expand_expr (to, NULL_RTX, VOIDmode, EXPAND_WRITE);
4069 /* Handle calls that return values in multiple non-contiguous locations.
4070 The Irix 6 ABI has examples of this. */
4071 if (GET_CODE (to_rtx) == PARALLEL)
4072 emit_group_load (to_rtx, value, TREE_TYPE (from),
4073 int_size_in_bytes (TREE_TYPE (from)));
4074 else if (GET_MODE (to_rtx) == BLKmode)
4075 emit_block_move (to_rtx, value, expr_size (from), BLOCK_OP_NORMAL);
4076 else
4078 if (POINTER_TYPE_P (TREE_TYPE (to)))
4079 value = convert_memory_address (GET_MODE (to_rtx), value);
4080 emit_move_insn (to_rtx, value);
4082 preserve_temp_slots (to_rtx);
4083 free_temp_slots ();
4084 pop_temp_slots ();
4085 return;
4088 /* Ordinary treatment. Expand TO to get a REG or MEM rtx.
4089 Don't re-expand if it was expanded already (in COMPONENT_REF case). */
4091 if (to_rtx == 0)
4092 to_rtx = expand_expr (to, NULL_RTX, VOIDmode, EXPAND_WRITE);
4094 /* Don't move directly into a return register. */
4095 if (TREE_CODE (to) == RESULT_DECL
4096 && (REG_P (to_rtx) || GET_CODE (to_rtx) == PARALLEL))
4098 rtx temp;
4100 push_temp_slots ();
4101 temp = expand_expr (from, 0, GET_MODE (to_rtx), 0);
4103 if (GET_CODE (to_rtx) == PARALLEL)
4104 emit_group_load (to_rtx, temp, TREE_TYPE (from),
4105 int_size_in_bytes (TREE_TYPE (from)));
4106 else
4107 emit_move_insn (to_rtx, temp);
4109 preserve_temp_slots (to_rtx);
4110 free_temp_slots ();
4111 pop_temp_slots ();
4112 return;
4115 /* In case we are returning the contents of an object which overlaps
4116 the place the value is being stored, use a safe function when copying
4117 a value through a pointer into a structure value return block. */
4118 if (TREE_CODE (to) == RESULT_DECL && TREE_CODE (from) == INDIRECT_REF
4119 && current_function_returns_struct
4120 && !current_function_returns_pcc_struct)
4122 rtx from_rtx, size;
4124 push_temp_slots ();
4125 size = expr_size (from);
4126 from_rtx = expand_normal (from);
4128 emit_library_call (memmove_libfunc, LCT_NORMAL,
4129 VOIDmode, 3, XEXP (to_rtx, 0), Pmode,
4130 XEXP (from_rtx, 0), Pmode,
4131 convert_to_mode (TYPE_MODE (sizetype),
4132 size, TYPE_UNSIGNED (sizetype)),
4133 TYPE_MODE (sizetype));
4135 preserve_temp_slots (to_rtx);
4136 free_temp_slots ();
4137 pop_temp_slots ();
4138 return;
4141 /* Compute FROM and store the value in the rtx we got. */
4143 push_temp_slots ();
4144 result = store_expr (from, to_rtx, 0);
4145 preserve_temp_slots (result);
4146 free_temp_slots ();
4147 pop_temp_slots ();
4148 return;
4151 /* Generate code for computing expression EXP,
4152 and storing the value into TARGET.
4154 If the mode is BLKmode then we may return TARGET itself.
4155 It turns out that in BLKmode it doesn't cause a problem.
4156 because C has no operators that could combine two different
4157 assignments into the same BLKmode object with different values
4158 with no sequence point. Will other languages need this to
4159 be more thorough?
4161 If CALL_PARAM_P is nonzero, this is a store into a call param on the
4162 stack, and block moves may need to be treated specially. */
4165 store_expr (tree exp, rtx target, int call_param_p)
4167 rtx temp;
4168 rtx alt_rtl = NULL_RTX;
4169 int dont_return_target = 0;
4171 if (VOID_TYPE_P (TREE_TYPE (exp)))
4173 /* C++ can generate ?: expressions with a throw expression in one
4174 branch and an rvalue in the other. Here, we resolve attempts to
4175 store the throw expression's nonexistent result. */
4176 gcc_assert (!call_param_p);
4177 expand_expr (exp, const0_rtx, VOIDmode, 0);
4178 return NULL_RTX;
4180 if (TREE_CODE (exp) == COMPOUND_EXPR)
4182 /* Perform first part of compound expression, then assign from second
4183 part. */
4184 expand_expr (TREE_OPERAND (exp, 0), const0_rtx, VOIDmode,
4185 call_param_p ? EXPAND_STACK_PARM : EXPAND_NORMAL);
4186 return store_expr (TREE_OPERAND (exp, 1), target, call_param_p);
4188 else if (TREE_CODE (exp) == COND_EXPR && GET_MODE (target) == BLKmode)
4190 /* For conditional expression, get safe form of the target. Then
4191 test the condition, doing the appropriate assignment on either
4192 side. This avoids the creation of unnecessary temporaries.
4193 For non-BLKmode, it is more efficient not to do this. */
4195 rtx lab1 = gen_label_rtx (), lab2 = gen_label_rtx ();
4197 do_pending_stack_adjust ();
4198 NO_DEFER_POP;
4199 jumpifnot (TREE_OPERAND (exp, 0), lab1);
4200 store_expr (TREE_OPERAND (exp, 1), target, call_param_p);
4201 emit_jump_insn (gen_jump (lab2));
4202 emit_barrier ();
4203 emit_label (lab1);
4204 store_expr (TREE_OPERAND (exp, 2), target, call_param_p);
4205 emit_label (lab2);
4206 OK_DEFER_POP;
4208 return NULL_RTX;
4210 else if (GET_CODE (target) == SUBREG && SUBREG_PROMOTED_VAR_P (target))
4211 /* If this is a scalar in a register that is stored in a wider mode
4212 than the declared mode, compute the result into its declared mode
4213 and then convert to the wider mode. Our value is the computed
4214 expression. */
4216 rtx inner_target = 0;
4218 /* We can do the conversion inside EXP, which will often result
4219 in some optimizations. Do the conversion in two steps: first
4220 change the signedness, if needed, then the extend. But don't
4221 do this if the type of EXP is a subtype of something else
4222 since then the conversion might involve more than just
4223 converting modes. */
4224 if (INTEGRAL_TYPE_P (TREE_TYPE (exp))
4225 && TREE_TYPE (TREE_TYPE (exp)) == 0
4226 && (!lang_hooks.reduce_bit_field_operations
4227 || (GET_MODE_PRECISION (GET_MODE (target))
4228 == TYPE_PRECISION (TREE_TYPE (exp)))))
4230 if (TYPE_UNSIGNED (TREE_TYPE (exp))
4231 != SUBREG_PROMOTED_UNSIGNED_P (target))
4232 exp = convert
4233 (lang_hooks.types.signed_or_unsigned_type
4234 (SUBREG_PROMOTED_UNSIGNED_P (target), TREE_TYPE (exp)), exp);
4236 exp = convert (lang_hooks.types.type_for_mode
4237 (GET_MODE (SUBREG_REG (target)),
4238 SUBREG_PROMOTED_UNSIGNED_P (target)),
4239 exp);
4241 inner_target = SUBREG_REG (target);
4244 temp = expand_expr (exp, inner_target, VOIDmode,
4245 call_param_p ? EXPAND_STACK_PARM : EXPAND_NORMAL);
4247 /* If TEMP is a VOIDmode constant, use convert_modes to make
4248 sure that we properly convert it. */
4249 if (CONSTANT_P (temp) && GET_MODE (temp) == VOIDmode)
4251 temp = convert_modes (GET_MODE (target), TYPE_MODE (TREE_TYPE (exp)),
4252 temp, SUBREG_PROMOTED_UNSIGNED_P (target));
4253 temp = convert_modes (GET_MODE (SUBREG_REG (target)),
4254 GET_MODE (target), temp,
4255 SUBREG_PROMOTED_UNSIGNED_P (target));
4258 convert_move (SUBREG_REG (target), temp,
4259 SUBREG_PROMOTED_UNSIGNED_P (target));
4261 return NULL_RTX;
4263 else
4265 temp = expand_expr_real (exp, target, GET_MODE (target),
4266 (call_param_p
4267 ? EXPAND_STACK_PARM : EXPAND_NORMAL),
4268 &alt_rtl);
4269 /* Return TARGET if it's a specified hardware register.
4270 If TARGET is a volatile mem ref, either return TARGET
4271 or return a reg copied *from* TARGET; ANSI requires this.
4273 Otherwise, if TEMP is not TARGET, return TEMP
4274 if it is constant (for efficiency),
4275 or if we really want the correct value. */
4276 if (!(target && REG_P (target)
4277 && REGNO (target) < FIRST_PSEUDO_REGISTER)
4278 && !(MEM_P (target) && MEM_VOLATILE_P (target))
4279 && ! rtx_equal_p (temp, target)
4280 && CONSTANT_P (temp))
4281 dont_return_target = 1;
4284 /* If TEMP is a VOIDmode constant and the mode of the type of EXP is not
4285 the same as that of TARGET, adjust the constant. This is needed, for
4286 example, in case it is a CONST_DOUBLE and we want only a word-sized
4287 value. */
4288 if (CONSTANT_P (temp) && GET_MODE (temp) == VOIDmode
4289 && TREE_CODE (exp) != ERROR_MARK
4290 && GET_MODE (target) != TYPE_MODE (TREE_TYPE (exp)))
4291 temp = convert_modes (GET_MODE (target), TYPE_MODE (TREE_TYPE (exp)),
4292 temp, TYPE_UNSIGNED (TREE_TYPE (exp)));
4294 /* If value was not generated in the target, store it there.
4295 Convert the value to TARGET's type first if necessary and emit the
4296 pending incrementations that have been queued when expanding EXP.
4297 Note that we cannot emit the whole queue blindly because this will
4298 effectively disable the POST_INC optimization later.
4300 If TEMP and TARGET compare equal according to rtx_equal_p, but
4301 one or both of them are volatile memory refs, we have to distinguish
4302 two cases:
4303 - expand_expr has used TARGET. In this case, we must not generate
4304 another copy. This can be detected by TARGET being equal according
4305 to == .
4306 - expand_expr has not used TARGET - that means that the source just
4307 happens to have the same RTX form. Since temp will have been created
4308 by expand_expr, it will compare unequal according to == .
4309 We must generate a copy in this case, to reach the correct number
4310 of volatile memory references. */
4312 if ((! rtx_equal_p (temp, target)
4313 || (temp != target && (side_effects_p (temp)
4314 || side_effects_p (target))))
4315 && TREE_CODE (exp) != ERROR_MARK
4316 /* If store_expr stores a DECL whose DECL_RTL(exp) == TARGET,
4317 but TARGET is not valid memory reference, TEMP will differ
4318 from TARGET although it is really the same location. */
4319 && !(alt_rtl && rtx_equal_p (alt_rtl, target))
4320 /* If there's nothing to copy, don't bother. Don't call
4321 expr_size unless necessary, because some front-ends (C++)
4322 expr_size-hook must not be given objects that are not
4323 supposed to be bit-copied or bit-initialized. */
4324 && expr_size (exp) != const0_rtx)
4326 if (GET_MODE (temp) != GET_MODE (target)
4327 && GET_MODE (temp) != VOIDmode)
4329 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (exp));
4330 if (dont_return_target)
4332 /* In this case, we will return TEMP,
4333 so make sure it has the proper mode.
4334 But don't forget to store the value into TARGET. */
4335 temp = convert_to_mode (GET_MODE (target), temp, unsignedp);
4336 emit_move_insn (target, temp);
4338 else
4339 convert_move (target, temp, unsignedp);
4342 else if (GET_MODE (temp) == BLKmode && TREE_CODE (exp) == STRING_CST)
4344 /* Handle copying a string constant into an array. The string
4345 constant may be shorter than the array. So copy just the string's
4346 actual length, and clear the rest. First get the size of the data
4347 type of the string, which is actually the size of the target. */
4348 rtx size = expr_size (exp);
4350 if (GET_CODE (size) == CONST_INT
4351 && INTVAL (size) < TREE_STRING_LENGTH (exp))
4352 emit_block_move (target, temp, size,
4353 (call_param_p
4354 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
4355 else
4357 /* Compute the size of the data to copy from the string. */
4358 tree copy_size
4359 = size_binop (MIN_EXPR,
4360 make_tree (sizetype, size),
4361 size_int (TREE_STRING_LENGTH (exp)));
4362 rtx copy_size_rtx
4363 = expand_expr (copy_size, NULL_RTX, VOIDmode,
4364 (call_param_p
4365 ? EXPAND_STACK_PARM : EXPAND_NORMAL));
4366 rtx label = 0;
4368 /* Copy that much. */
4369 copy_size_rtx = convert_to_mode (ptr_mode, copy_size_rtx,
4370 TYPE_UNSIGNED (sizetype));
4371 emit_block_move (target, temp, copy_size_rtx,
4372 (call_param_p
4373 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
4375 /* Figure out how much is left in TARGET that we have to clear.
4376 Do all calculations in ptr_mode. */
4377 if (GET_CODE (copy_size_rtx) == CONST_INT)
4379 size = plus_constant (size, -INTVAL (copy_size_rtx));
4380 target = adjust_address (target, BLKmode,
4381 INTVAL (copy_size_rtx));
4383 else
4385 size = expand_binop (TYPE_MODE (sizetype), sub_optab, size,
4386 copy_size_rtx, NULL_RTX, 0,
4387 OPTAB_LIB_WIDEN);
4389 #ifdef POINTERS_EXTEND_UNSIGNED
4390 if (GET_MODE (copy_size_rtx) != Pmode)
4391 copy_size_rtx = convert_to_mode (Pmode, copy_size_rtx,
4392 TYPE_UNSIGNED (sizetype));
4393 #endif
4395 target = offset_address (target, copy_size_rtx,
4396 highest_pow2_factor (copy_size));
4397 label = gen_label_rtx ();
4398 emit_cmp_and_jump_insns (size, const0_rtx, LT, NULL_RTX,
4399 GET_MODE (size), 0, label);
4402 if (size != const0_rtx)
4403 clear_storage (target, size, BLOCK_OP_NORMAL);
4405 if (label)
4406 emit_label (label);
4409 /* Handle calls that return values in multiple non-contiguous locations.
4410 The Irix 6 ABI has examples of this. */
4411 else if (GET_CODE (target) == PARALLEL)
4412 emit_group_load (target, temp, TREE_TYPE (exp),
4413 int_size_in_bytes (TREE_TYPE (exp)));
4414 else if (GET_MODE (temp) == BLKmode)
4415 emit_block_move (target, temp, expr_size (exp),
4416 (call_param_p
4417 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
4418 else
4420 temp = force_operand (temp, target);
4421 if (temp != target)
4422 emit_move_insn (target, temp);
4426 return NULL_RTX;
4429 /* Examine CTOR to discover:
4430 * how many scalar fields are set to nonzero values,
4431 and place it in *P_NZ_ELTS;
4432 * how many scalar fields are set to non-constant values,
4433 and place it in *P_NC_ELTS; and
4434 * how many scalar fields in total are in CTOR,
4435 and place it in *P_ELT_COUNT.
4436 * if a type is a union, and the initializer from the constructor
4437 is not the largest element in the union, then set *p_must_clear. */
4439 static void
4440 categorize_ctor_elements_1 (tree ctor, HOST_WIDE_INT *p_nz_elts,
4441 HOST_WIDE_INT *p_nc_elts,
4442 HOST_WIDE_INT *p_elt_count,
4443 bool *p_must_clear)
4445 unsigned HOST_WIDE_INT idx;
4446 HOST_WIDE_INT nz_elts, nc_elts, elt_count;
4447 tree value, purpose;
4449 nz_elts = 0;
4450 nc_elts = 0;
4451 elt_count = 0;
4453 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (ctor), idx, purpose, value)
4455 HOST_WIDE_INT mult;
4457 mult = 1;
4458 if (TREE_CODE (purpose) == RANGE_EXPR)
4460 tree lo_index = TREE_OPERAND (purpose, 0);
4461 tree hi_index = TREE_OPERAND (purpose, 1);
4463 if (host_integerp (lo_index, 1) && host_integerp (hi_index, 1))
4464 mult = (tree_low_cst (hi_index, 1)
4465 - tree_low_cst (lo_index, 1) + 1);
4468 switch (TREE_CODE (value))
4470 case CONSTRUCTOR:
4472 HOST_WIDE_INT nz = 0, nc = 0, ic = 0;
4473 categorize_ctor_elements_1 (value, &nz, &nc, &ic, p_must_clear);
4474 nz_elts += mult * nz;
4475 nc_elts += mult * nc;
4476 elt_count += mult * ic;
4478 break;
4480 case INTEGER_CST:
4481 case REAL_CST:
4482 if (!initializer_zerop (value))
4483 nz_elts += mult;
4484 elt_count += mult;
4485 break;
4487 case STRING_CST:
4488 nz_elts += mult * TREE_STRING_LENGTH (value);
4489 elt_count += mult * TREE_STRING_LENGTH (value);
4490 break;
4492 case COMPLEX_CST:
4493 if (!initializer_zerop (TREE_REALPART (value)))
4494 nz_elts += mult;
4495 if (!initializer_zerop (TREE_IMAGPART (value)))
4496 nz_elts += mult;
4497 elt_count += mult;
4498 break;
4500 case VECTOR_CST:
4502 tree v;
4503 for (v = TREE_VECTOR_CST_ELTS (value); v; v = TREE_CHAIN (v))
4505 if (!initializer_zerop (TREE_VALUE (v)))
4506 nz_elts += mult;
4507 elt_count += mult;
4510 break;
4512 default:
4513 nz_elts += mult;
4514 elt_count += mult;
4515 if (!initializer_constant_valid_p (value, TREE_TYPE (value)))
4516 nc_elts += mult;
4517 break;
4521 if (!*p_must_clear
4522 && (TREE_CODE (TREE_TYPE (ctor)) == UNION_TYPE
4523 || TREE_CODE (TREE_TYPE (ctor)) == QUAL_UNION_TYPE))
4525 tree init_sub_type;
4526 bool clear_this = true;
4528 if (!VEC_empty (constructor_elt, CONSTRUCTOR_ELTS (ctor)))
4530 /* We don't expect more than one element of the union to be
4531 initialized. Not sure what we should do otherwise... */
4532 gcc_assert (VEC_length (constructor_elt, CONSTRUCTOR_ELTS (ctor))
4533 == 1);
4535 init_sub_type = TREE_TYPE (VEC_index (constructor_elt,
4536 CONSTRUCTOR_ELTS (ctor),
4537 0)->value);
4539 /* ??? We could look at each element of the union, and find the
4540 largest element. Which would avoid comparing the size of the
4541 initialized element against any tail padding in the union.
4542 Doesn't seem worth the effort... */
4543 if (simple_cst_equal (TYPE_SIZE (TREE_TYPE (ctor)),
4544 TYPE_SIZE (init_sub_type)) == 1)
4546 /* And now we have to find out if the element itself is fully
4547 constructed. E.g. for union { struct { int a, b; } s; } u
4548 = { .s = { .a = 1 } }. */
4549 if (elt_count == count_type_elements (init_sub_type, false))
4550 clear_this = false;
4554 *p_must_clear = clear_this;
4557 *p_nz_elts += nz_elts;
4558 *p_nc_elts += nc_elts;
4559 *p_elt_count += elt_count;
4562 void
4563 categorize_ctor_elements (tree ctor, HOST_WIDE_INT *p_nz_elts,
4564 HOST_WIDE_INT *p_nc_elts,
4565 HOST_WIDE_INT *p_elt_count,
4566 bool *p_must_clear)
4568 *p_nz_elts = 0;
4569 *p_nc_elts = 0;
4570 *p_elt_count = 0;
4571 *p_must_clear = false;
4572 categorize_ctor_elements_1 (ctor, p_nz_elts, p_nc_elts, p_elt_count,
4573 p_must_clear);
4576 /* Count the number of scalars in TYPE. Return -1 on overflow or
4577 variable-sized. If ALLOW_FLEXARR is true, don't count flexible
4578 array member at the end of the structure. */
4580 HOST_WIDE_INT
4581 count_type_elements (tree type, bool allow_flexarr)
4583 const HOST_WIDE_INT max = ~((HOST_WIDE_INT)1 << (HOST_BITS_PER_WIDE_INT-1));
4584 switch (TREE_CODE (type))
4586 case ARRAY_TYPE:
4588 tree telts = array_type_nelts (type);
4589 if (telts && host_integerp (telts, 1))
4591 HOST_WIDE_INT n = tree_low_cst (telts, 1) + 1;
4592 HOST_WIDE_INT m = count_type_elements (TREE_TYPE (type), false);
4593 if (n == 0)
4594 return 0;
4595 else if (max / n > m)
4596 return n * m;
4598 return -1;
4601 case RECORD_TYPE:
4603 HOST_WIDE_INT n = 0, t;
4604 tree f;
4606 for (f = TYPE_FIELDS (type); f ; f = TREE_CHAIN (f))
4607 if (TREE_CODE (f) == FIELD_DECL)
4609 t = count_type_elements (TREE_TYPE (f), false);
4610 if (t < 0)
4612 /* Check for structures with flexible array member. */
4613 tree tf = TREE_TYPE (f);
4614 if (allow_flexarr
4615 && TREE_CHAIN (f) == NULL
4616 && TREE_CODE (tf) == ARRAY_TYPE
4617 && TYPE_DOMAIN (tf)
4618 && TYPE_MIN_VALUE (TYPE_DOMAIN (tf))
4619 && integer_zerop (TYPE_MIN_VALUE (TYPE_DOMAIN (tf)))
4620 && !TYPE_MAX_VALUE (TYPE_DOMAIN (tf))
4621 && int_size_in_bytes (type) >= 0)
4622 break;
4624 return -1;
4626 n += t;
4629 return n;
4632 case UNION_TYPE:
4633 case QUAL_UNION_TYPE:
4635 /* Ho hum. How in the world do we guess here? Clearly it isn't
4636 right to count the fields. Guess based on the number of words. */
4637 HOST_WIDE_INT n = int_size_in_bytes (type);
4638 if (n < 0)
4639 return -1;
4640 return n / UNITS_PER_WORD;
4643 case COMPLEX_TYPE:
4644 return 2;
4646 case VECTOR_TYPE:
4647 return TYPE_VECTOR_SUBPARTS (type);
4649 case INTEGER_TYPE:
4650 case REAL_TYPE:
4651 case ENUMERAL_TYPE:
4652 case BOOLEAN_TYPE:
4653 case POINTER_TYPE:
4654 case OFFSET_TYPE:
4655 case REFERENCE_TYPE:
4656 return 1;
4658 case VOID_TYPE:
4659 case METHOD_TYPE:
4660 case FUNCTION_TYPE:
4661 case LANG_TYPE:
4662 default:
4663 gcc_unreachable ();
4667 /* Return 1 if EXP contains mostly (3/4) zeros. */
4669 static int
4670 mostly_zeros_p (tree exp)
4672 if (TREE_CODE (exp) == CONSTRUCTOR)
4675 HOST_WIDE_INT nz_elts, nc_elts, count, elts;
4676 bool must_clear;
4678 categorize_ctor_elements (exp, &nz_elts, &nc_elts, &count, &must_clear);
4679 if (must_clear)
4680 return 1;
4682 elts = count_type_elements (TREE_TYPE (exp), false);
4684 return nz_elts < elts / 4;
4687 return initializer_zerop (exp);
4690 /* Return 1 if EXP contains all zeros. */
4692 static int
4693 all_zeros_p (tree exp)
4695 if (TREE_CODE (exp) == CONSTRUCTOR)
4698 HOST_WIDE_INT nz_elts, nc_elts, count;
4699 bool must_clear;
4701 categorize_ctor_elements (exp, &nz_elts, &nc_elts, &count, &must_clear);
4702 return nz_elts == 0;
4705 return initializer_zerop (exp);
4708 /* Helper function for store_constructor.
4709 TARGET, BITSIZE, BITPOS, MODE, EXP are as for store_field.
4710 TYPE is the type of the CONSTRUCTOR, not the element type.
4711 CLEARED is as for store_constructor.
4712 ALIAS_SET is the alias set to use for any stores.
4714 This provides a recursive shortcut back to store_constructor when it isn't
4715 necessary to go through store_field. This is so that we can pass through
4716 the cleared field to let store_constructor know that we may not have to
4717 clear a substructure if the outer structure has already been cleared. */
4719 static void
4720 store_constructor_field (rtx target, unsigned HOST_WIDE_INT bitsize,
4721 HOST_WIDE_INT bitpos, enum machine_mode mode,
4722 tree exp, tree type, int cleared, int alias_set)
4724 if (TREE_CODE (exp) == CONSTRUCTOR
4725 /* We can only call store_constructor recursively if the size and
4726 bit position are on a byte boundary. */
4727 && bitpos % BITS_PER_UNIT == 0
4728 && (bitsize > 0 && bitsize % BITS_PER_UNIT == 0)
4729 /* If we have a nonzero bitpos for a register target, then we just
4730 let store_field do the bitfield handling. This is unlikely to
4731 generate unnecessary clear instructions anyways. */
4732 && (bitpos == 0 || MEM_P (target)))
4734 if (MEM_P (target))
4735 target
4736 = adjust_address (target,
4737 GET_MODE (target) == BLKmode
4738 || 0 != (bitpos
4739 % GET_MODE_ALIGNMENT (GET_MODE (target)))
4740 ? BLKmode : VOIDmode, bitpos / BITS_PER_UNIT);
4743 /* Update the alias set, if required. */
4744 if (MEM_P (target) && ! MEM_KEEP_ALIAS_SET_P (target)
4745 && MEM_ALIAS_SET (target) != 0)
4747 target = copy_rtx (target);
4748 set_mem_alias_set (target, alias_set);
4751 store_constructor (exp, target, cleared, bitsize / BITS_PER_UNIT);
4753 else
4754 store_field (target, bitsize, bitpos, mode, exp, type, alias_set);
4757 /* Store the value of constructor EXP into the rtx TARGET.
4758 TARGET is either a REG or a MEM; we know it cannot conflict, since
4759 safe_from_p has been called.
4760 CLEARED is true if TARGET is known to have been zero'd.
4761 SIZE is the number of bytes of TARGET we are allowed to modify: this
4762 may not be the same as the size of EXP if we are assigning to a field
4763 which has been packed to exclude padding bits. */
4765 static void
4766 store_constructor (tree exp, rtx target, int cleared, HOST_WIDE_INT size)
4768 tree type = TREE_TYPE (exp);
4769 #ifdef WORD_REGISTER_OPERATIONS
4770 HOST_WIDE_INT exp_size = int_size_in_bytes (type);
4771 #endif
4773 switch (TREE_CODE (type))
4775 case RECORD_TYPE:
4776 case UNION_TYPE:
4777 case QUAL_UNION_TYPE:
4779 unsigned HOST_WIDE_INT idx;
4780 tree field, value;
4782 /* If size is zero or the target is already cleared, do nothing. */
4783 if (size == 0 || cleared)
4784 cleared = 1;
4785 /* We either clear the aggregate or indicate the value is dead. */
4786 else if ((TREE_CODE (type) == UNION_TYPE
4787 || TREE_CODE (type) == QUAL_UNION_TYPE)
4788 && ! CONSTRUCTOR_ELTS (exp))
4789 /* If the constructor is empty, clear the union. */
4791 clear_storage (target, expr_size (exp), BLOCK_OP_NORMAL);
4792 cleared = 1;
4795 /* If we are building a static constructor into a register,
4796 set the initial value as zero so we can fold the value into
4797 a constant. But if more than one register is involved,
4798 this probably loses. */
4799 else if (REG_P (target) && TREE_STATIC (exp)
4800 && GET_MODE_SIZE (GET_MODE (target)) <= UNITS_PER_WORD)
4802 emit_move_insn (target, CONST0_RTX (GET_MODE (target)));
4803 cleared = 1;
4806 /* If the constructor has fewer fields than the structure or
4807 if we are initializing the structure to mostly zeros, clear
4808 the whole structure first. Don't do this if TARGET is a
4809 register whose mode size isn't equal to SIZE since
4810 clear_storage can't handle this case. */
4811 else if (size > 0
4812 && (((int)VEC_length (constructor_elt, CONSTRUCTOR_ELTS (exp))
4813 != fields_length (type))
4814 || mostly_zeros_p (exp))
4815 && (!REG_P (target)
4816 || ((HOST_WIDE_INT) GET_MODE_SIZE (GET_MODE (target))
4817 == size)))
4819 clear_storage (target, GEN_INT (size), BLOCK_OP_NORMAL);
4820 cleared = 1;
4823 if (! cleared)
4824 emit_insn (gen_rtx_CLOBBER (VOIDmode, target));
4826 /* Store each element of the constructor into the
4827 corresponding field of TARGET. */
4828 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp), idx, field, value)
4830 enum machine_mode mode;
4831 HOST_WIDE_INT bitsize;
4832 HOST_WIDE_INT bitpos = 0;
4833 tree offset;
4834 rtx to_rtx = target;
4836 /* Just ignore missing fields. We cleared the whole
4837 structure, above, if any fields are missing. */
4838 if (field == 0)
4839 continue;
4841 if (cleared && initializer_zerop (value))
4842 continue;
4844 if (host_integerp (DECL_SIZE (field), 1))
4845 bitsize = tree_low_cst (DECL_SIZE (field), 1);
4846 else
4847 bitsize = -1;
4849 mode = DECL_MODE (field);
4850 if (DECL_BIT_FIELD (field))
4851 mode = VOIDmode;
4853 offset = DECL_FIELD_OFFSET (field);
4854 if (host_integerp (offset, 0)
4855 && host_integerp (bit_position (field), 0))
4857 bitpos = int_bit_position (field);
4858 offset = 0;
4860 else
4861 bitpos = tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 0);
4863 if (offset)
4865 rtx offset_rtx;
4867 offset
4868 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (offset,
4869 make_tree (TREE_TYPE (exp),
4870 target));
4872 offset_rtx = expand_normal (offset);
4873 gcc_assert (MEM_P (to_rtx));
4875 #ifdef POINTERS_EXTEND_UNSIGNED
4876 if (GET_MODE (offset_rtx) != Pmode)
4877 offset_rtx = convert_to_mode (Pmode, offset_rtx, 0);
4878 #else
4879 if (GET_MODE (offset_rtx) != ptr_mode)
4880 offset_rtx = convert_to_mode (ptr_mode, offset_rtx, 0);
4881 #endif
4883 to_rtx = offset_address (to_rtx, offset_rtx,
4884 highest_pow2_factor (offset));
4887 #ifdef WORD_REGISTER_OPERATIONS
4888 /* If this initializes a field that is smaller than a
4889 word, at the start of a word, try to widen it to a full
4890 word. This special case allows us to output C++ member
4891 function initializations in a form that the optimizers
4892 can understand. */
4893 if (REG_P (target)
4894 && bitsize < BITS_PER_WORD
4895 && bitpos % BITS_PER_WORD == 0
4896 && GET_MODE_CLASS (mode) == MODE_INT
4897 && TREE_CODE (value) == INTEGER_CST
4898 && exp_size >= 0
4899 && bitpos + BITS_PER_WORD <= exp_size * BITS_PER_UNIT)
4901 tree type = TREE_TYPE (value);
4903 if (TYPE_PRECISION (type) < BITS_PER_WORD)
4905 type = lang_hooks.types.type_for_size
4906 (BITS_PER_WORD, TYPE_UNSIGNED (type));
4907 value = convert (type, value);
4910 if (BYTES_BIG_ENDIAN)
4911 value
4912 = fold_build2 (LSHIFT_EXPR, type, value,
4913 build_int_cst (NULL_TREE,
4914 BITS_PER_WORD - bitsize));
4915 bitsize = BITS_PER_WORD;
4916 mode = word_mode;
4918 #endif
4920 if (MEM_P (to_rtx) && !MEM_KEEP_ALIAS_SET_P (to_rtx)
4921 && DECL_NONADDRESSABLE_P (field))
4923 to_rtx = copy_rtx (to_rtx);
4924 MEM_KEEP_ALIAS_SET_P (to_rtx) = 1;
4927 store_constructor_field (to_rtx, bitsize, bitpos, mode,
4928 value, type, cleared,
4929 get_alias_set (TREE_TYPE (field)));
4931 break;
4933 case ARRAY_TYPE:
4935 tree value, index;
4936 unsigned HOST_WIDE_INT i;
4937 int need_to_clear;
4938 tree domain;
4939 tree elttype = TREE_TYPE (type);
4940 int const_bounds_p;
4941 HOST_WIDE_INT minelt = 0;
4942 HOST_WIDE_INT maxelt = 0;
4944 domain = TYPE_DOMAIN (type);
4945 const_bounds_p = (TYPE_MIN_VALUE (domain)
4946 && TYPE_MAX_VALUE (domain)
4947 && host_integerp (TYPE_MIN_VALUE (domain), 0)
4948 && host_integerp (TYPE_MAX_VALUE (domain), 0));
4950 /* If we have constant bounds for the range of the type, get them. */
4951 if (const_bounds_p)
4953 minelt = tree_low_cst (TYPE_MIN_VALUE (domain), 0);
4954 maxelt = tree_low_cst (TYPE_MAX_VALUE (domain), 0);
4957 /* If the constructor has fewer elements than the array, clear
4958 the whole array first. Similarly if this is static
4959 constructor of a non-BLKmode object. */
4960 if (cleared)
4961 need_to_clear = 0;
4962 else if (REG_P (target) && TREE_STATIC (exp))
4963 need_to_clear = 1;
4964 else
4966 unsigned HOST_WIDE_INT idx;
4967 tree index, value;
4968 HOST_WIDE_INT count = 0, zero_count = 0;
4969 need_to_clear = ! const_bounds_p;
4971 /* This loop is a more accurate version of the loop in
4972 mostly_zeros_p (it handles RANGE_EXPR in an index). It
4973 is also needed to check for missing elements. */
4974 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp), idx, index, value)
4976 HOST_WIDE_INT this_node_count;
4978 if (need_to_clear)
4979 break;
4981 if (index != NULL_TREE && TREE_CODE (index) == RANGE_EXPR)
4983 tree lo_index = TREE_OPERAND (index, 0);
4984 tree hi_index = TREE_OPERAND (index, 1);
4986 if (! host_integerp (lo_index, 1)
4987 || ! host_integerp (hi_index, 1))
4989 need_to_clear = 1;
4990 break;
4993 this_node_count = (tree_low_cst (hi_index, 1)
4994 - tree_low_cst (lo_index, 1) + 1);
4996 else
4997 this_node_count = 1;
4999 count += this_node_count;
5000 if (mostly_zeros_p (value))
5001 zero_count += this_node_count;
5004 /* Clear the entire array first if there are any missing
5005 elements, or if the incidence of zero elements is >=
5006 75%. */
5007 if (! need_to_clear
5008 && (count < maxelt - minelt + 1
5009 || 4 * zero_count >= 3 * count))
5010 need_to_clear = 1;
5013 if (need_to_clear && size > 0)
5015 if (REG_P (target))
5016 emit_move_insn (target, CONST0_RTX (GET_MODE (target)));
5017 else
5018 clear_storage (target, GEN_INT (size), BLOCK_OP_NORMAL);
5019 cleared = 1;
5022 if (!cleared && REG_P (target))
5023 /* Inform later passes that the old value is dead. */
5024 emit_insn (gen_rtx_CLOBBER (VOIDmode, target));
5026 /* Store each element of the constructor into the
5027 corresponding element of TARGET, determined by counting the
5028 elements. */
5029 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp), i, index, value)
5031 enum machine_mode mode;
5032 HOST_WIDE_INT bitsize;
5033 HOST_WIDE_INT bitpos;
5034 int unsignedp;
5035 rtx xtarget = target;
5037 if (cleared && initializer_zerop (value))
5038 continue;
5040 unsignedp = TYPE_UNSIGNED (elttype);
5041 mode = TYPE_MODE (elttype);
5042 if (mode == BLKmode)
5043 bitsize = (host_integerp (TYPE_SIZE (elttype), 1)
5044 ? tree_low_cst (TYPE_SIZE (elttype), 1)
5045 : -1);
5046 else
5047 bitsize = GET_MODE_BITSIZE (mode);
5049 if (index != NULL_TREE && TREE_CODE (index) == RANGE_EXPR)
5051 tree lo_index = TREE_OPERAND (index, 0);
5052 tree hi_index = TREE_OPERAND (index, 1);
5053 rtx index_r, pos_rtx;
5054 HOST_WIDE_INT lo, hi, count;
5055 tree position;
5057 /* If the range is constant and "small", unroll the loop. */
5058 if (const_bounds_p
5059 && host_integerp (lo_index, 0)
5060 && host_integerp (hi_index, 0)
5061 && (lo = tree_low_cst (lo_index, 0),
5062 hi = tree_low_cst (hi_index, 0),
5063 count = hi - lo + 1,
5064 (!MEM_P (target)
5065 || count <= 2
5066 || (host_integerp (TYPE_SIZE (elttype), 1)
5067 && (tree_low_cst (TYPE_SIZE (elttype), 1) * count
5068 <= 40 * 8)))))
5070 lo -= minelt; hi -= minelt;
5071 for (; lo <= hi; lo++)
5073 bitpos = lo * tree_low_cst (TYPE_SIZE (elttype), 0);
5075 if (MEM_P (target)
5076 && !MEM_KEEP_ALIAS_SET_P (target)
5077 && TREE_CODE (type) == ARRAY_TYPE
5078 && TYPE_NONALIASED_COMPONENT (type))
5080 target = copy_rtx (target);
5081 MEM_KEEP_ALIAS_SET_P (target) = 1;
5084 store_constructor_field
5085 (target, bitsize, bitpos, mode, value, type, cleared,
5086 get_alias_set (elttype));
5089 else
5091 rtx loop_start = gen_label_rtx ();
5092 rtx loop_end = gen_label_rtx ();
5093 tree exit_cond;
5095 expand_normal (hi_index);
5096 unsignedp = TYPE_UNSIGNED (domain);
5098 index = build_decl (VAR_DECL, NULL_TREE, domain);
5100 index_r
5101 = gen_reg_rtx (promote_mode (domain, DECL_MODE (index),
5102 &unsignedp, 0));
5103 SET_DECL_RTL (index, index_r);
5104 store_expr (lo_index, index_r, 0);
5106 /* Build the head of the loop. */
5107 do_pending_stack_adjust ();
5108 emit_label (loop_start);
5110 /* Assign value to element index. */
5111 position
5112 = convert (ssizetype,
5113 fold_build2 (MINUS_EXPR, TREE_TYPE (index),
5114 index, TYPE_MIN_VALUE (domain)));
5115 position = size_binop (MULT_EXPR, position,
5116 convert (ssizetype,
5117 TYPE_SIZE_UNIT (elttype)));
5119 pos_rtx = expand_normal (position);
5120 xtarget = offset_address (target, pos_rtx,
5121 highest_pow2_factor (position));
5122 xtarget = adjust_address (xtarget, mode, 0);
5123 if (TREE_CODE (value) == CONSTRUCTOR)
5124 store_constructor (value, xtarget, cleared,
5125 bitsize / BITS_PER_UNIT);
5126 else
5127 store_expr (value, xtarget, 0);
5129 /* Generate a conditional jump to exit the loop. */
5130 exit_cond = build2 (LT_EXPR, integer_type_node,
5131 index, hi_index);
5132 jumpif (exit_cond, loop_end);
5134 /* Update the loop counter, and jump to the head of
5135 the loop. */
5136 expand_assignment (index,
5137 build2 (PLUS_EXPR, TREE_TYPE (index),
5138 index, integer_one_node));
5140 emit_jump (loop_start);
5142 /* Build the end of the loop. */
5143 emit_label (loop_end);
5146 else if ((index != 0 && ! host_integerp (index, 0))
5147 || ! host_integerp (TYPE_SIZE (elttype), 1))
5149 tree position;
5151 if (index == 0)
5152 index = ssize_int (1);
5154 if (minelt)
5155 index = fold_convert (ssizetype,
5156 fold_build2 (MINUS_EXPR,
5157 TREE_TYPE (index),
5158 index,
5159 TYPE_MIN_VALUE (domain)));
5161 position = size_binop (MULT_EXPR, index,
5162 convert (ssizetype,
5163 TYPE_SIZE_UNIT (elttype)));
5164 xtarget = offset_address (target,
5165 expand_normal (position),
5166 highest_pow2_factor (position));
5167 xtarget = adjust_address (xtarget, mode, 0);
5168 store_expr (value, xtarget, 0);
5170 else
5172 if (index != 0)
5173 bitpos = ((tree_low_cst (index, 0) - minelt)
5174 * tree_low_cst (TYPE_SIZE (elttype), 1));
5175 else
5176 bitpos = (i * tree_low_cst (TYPE_SIZE (elttype), 1));
5178 if (MEM_P (target) && !MEM_KEEP_ALIAS_SET_P (target)
5179 && TREE_CODE (type) == ARRAY_TYPE
5180 && TYPE_NONALIASED_COMPONENT (type))
5182 target = copy_rtx (target);
5183 MEM_KEEP_ALIAS_SET_P (target) = 1;
5185 store_constructor_field (target, bitsize, bitpos, mode, value,
5186 type, cleared, get_alias_set (elttype));
5189 break;
5192 case VECTOR_TYPE:
5194 unsigned HOST_WIDE_INT idx;
5195 constructor_elt *ce;
5196 int i;
5197 int need_to_clear;
5198 int icode = 0;
5199 tree elttype = TREE_TYPE (type);
5200 int elt_size = tree_low_cst (TYPE_SIZE (elttype), 1);
5201 enum machine_mode eltmode = TYPE_MODE (elttype);
5202 HOST_WIDE_INT bitsize;
5203 HOST_WIDE_INT bitpos;
5204 rtvec vector = NULL;
5205 unsigned n_elts;
5207 gcc_assert (eltmode != BLKmode);
5209 n_elts = TYPE_VECTOR_SUBPARTS (type);
5210 if (REG_P (target) && VECTOR_MODE_P (GET_MODE (target)))
5212 enum machine_mode mode = GET_MODE (target);
5214 icode = (int) vec_init_optab->handlers[mode].insn_code;
5215 if (icode != CODE_FOR_nothing)
5217 unsigned int i;
5219 vector = rtvec_alloc (n_elts);
5220 for (i = 0; i < n_elts; i++)
5221 RTVEC_ELT (vector, i) = CONST0_RTX (GET_MODE_INNER (mode));
5225 /* If the constructor has fewer elements than the vector,
5226 clear the whole array first. Similarly if this is static
5227 constructor of a non-BLKmode object. */
5228 if (cleared)
5229 need_to_clear = 0;
5230 else if (REG_P (target) && TREE_STATIC (exp))
5231 need_to_clear = 1;
5232 else
5234 unsigned HOST_WIDE_INT count = 0, zero_count = 0;
5235 tree value;
5237 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (exp), idx, value)
5239 int n_elts_here = tree_low_cst
5240 (int_const_binop (TRUNC_DIV_EXPR,
5241 TYPE_SIZE (TREE_TYPE (value)),
5242 TYPE_SIZE (elttype), 0), 1);
5244 count += n_elts_here;
5245 if (mostly_zeros_p (value))
5246 zero_count += n_elts_here;
5249 /* Clear the entire vector first if there are any missing elements,
5250 or if the incidence of zero elements is >= 75%. */
5251 need_to_clear = (count < n_elts || 4 * zero_count >= 3 * count);
5254 if (need_to_clear && size > 0 && !vector)
5256 if (REG_P (target))
5257 emit_move_insn (target, CONST0_RTX (GET_MODE (target)));
5258 else
5259 clear_storage (target, GEN_INT (size), BLOCK_OP_NORMAL);
5260 cleared = 1;
5263 /* Inform later passes that the old value is dead. */
5264 if (!cleared && REG_P (target))
5265 emit_move_insn (target, CONST0_RTX (GET_MODE (target)));
5267 /* Store each element of the constructor into the corresponding
5268 element of TARGET, determined by counting the elements. */
5269 for (idx = 0, i = 0;
5270 VEC_iterate (constructor_elt, CONSTRUCTOR_ELTS (exp), idx, ce);
5271 idx++, i += bitsize / elt_size)
5273 HOST_WIDE_INT eltpos;
5274 tree value = ce->value;
5276 bitsize = tree_low_cst (TYPE_SIZE (TREE_TYPE (value)), 1);
5277 if (cleared && initializer_zerop (value))
5278 continue;
5280 if (ce->index)
5281 eltpos = tree_low_cst (ce->index, 1);
5282 else
5283 eltpos = i;
5285 if (vector)
5287 /* Vector CONSTRUCTORs should only be built from smaller
5288 vectors in the case of BLKmode vectors. */
5289 gcc_assert (TREE_CODE (TREE_TYPE (value)) != VECTOR_TYPE);
5290 RTVEC_ELT (vector, eltpos)
5291 = expand_normal (value);
5293 else
5295 enum machine_mode value_mode =
5296 TREE_CODE (TREE_TYPE (value)) == VECTOR_TYPE
5297 ? TYPE_MODE (TREE_TYPE (value))
5298 : eltmode;
5299 bitpos = eltpos * elt_size;
5300 store_constructor_field (target, bitsize, bitpos,
5301 value_mode, value, type,
5302 cleared, get_alias_set (elttype));
5306 if (vector)
5307 emit_insn (GEN_FCN (icode)
5308 (target,
5309 gen_rtx_PARALLEL (GET_MODE (target), vector)));
5310 break;
5313 default:
5314 gcc_unreachable ();
5318 /* Store the value of EXP (an expression tree)
5319 into a subfield of TARGET which has mode MODE and occupies
5320 BITSIZE bits, starting BITPOS bits from the start of TARGET.
5321 If MODE is VOIDmode, it means that we are storing into a bit-field.
5323 Always return const0_rtx unless we have something particular to
5324 return.
5326 TYPE is the type of the underlying object,
5328 ALIAS_SET is the alias set for the destination. This value will
5329 (in general) be different from that for TARGET, since TARGET is a
5330 reference to the containing structure. */
5332 static rtx
5333 store_field (rtx target, HOST_WIDE_INT bitsize, HOST_WIDE_INT bitpos,
5334 enum machine_mode mode, tree exp, tree type, int alias_set)
5336 HOST_WIDE_INT width_mask = 0;
5338 if (TREE_CODE (exp) == ERROR_MARK)
5339 return const0_rtx;
5341 /* If we have nothing to store, do nothing unless the expression has
5342 side-effects. */
5343 if (bitsize == 0)
5344 return expand_expr (exp, const0_rtx, VOIDmode, 0);
5345 else if (bitsize >= 0 && bitsize < HOST_BITS_PER_WIDE_INT)
5346 width_mask = ((HOST_WIDE_INT) 1 << bitsize) - 1;
5348 /* If we are storing into an unaligned field of an aligned union that is
5349 in a register, we may have the mode of TARGET being an integer mode but
5350 MODE == BLKmode. In that case, get an aligned object whose size and
5351 alignment are the same as TARGET and store TARGET into it (we can avoid
5352 the store if the field being stored is the entire width of TARGET). Then
5353 call ourselves recursively to store the field into a BLKmode version of
5354 that object. Finally, load from the object into TARGET. This is not
5355 very efficient in general, but should only be slightly more expensive
5356 than the otherwise-required unaligned accesses. Perhaps this can be
5357 cleaned up later. It's tempting to make OBJECT readonly, but it's set
5358 twice, once with emit_move_insn and once via store_field. */
5360 if (mode == BLKmode
5361 && (REG_P (target) || GET_CODE (target) == SUBREG))
5363 rtx object = assign_temp (type, 0, 1, 1);
5364 rtx blk_object = adjust_address (object, BLKmode, 0);
5366 if (bitsize != (HOST_WIDE_INT) GET_MODE_BITSIZE (GET_MODE (target)))
5367 emit_move_insn (object, target);
5369 store_field (blk_object, bitsize, bitpos, mode, exp, type, alias_set);
5371 emit_move_insn (target, object);
5373 /* We want to return the BLKmode version of the data. */
5374 return blk_object;
5377 if (GET_CODE (target) == CONCAT)
5379 /* We're storing into a struct containing a single __complex. */
5381 gcc_assert (!bitpos);
5382 return store_expr (exp, target, 0);
5385 /* If the structure is in a register or if the component
5386 is a bit field, we cannot use addressing to access it.
5387 Use bit-field techniques or SUBREG to store in it. */
5389 if (mode == VOIDmode
5390 || (mode != BLKmode && ! direct_store[(int) mode]
5391 && GET_MODE_CLASS (mode) != MODE_COMPLEX_INT
5392 && GET_MODE_CLASS (mode) != MODE_COMPLEX_FLOAT)
5393 || REG_P (target)
5394 || GET_CODE (target) == SUBREG
5395 /* If the field isn't aligned enough to store as an ordinary memref,
5396 store it as a bit field. */
5397 || (mode != BLKmode
5398 && ((((MEM_ALIGN (target) < GET_MODE_ALIGNMENT (mode))
5399 || bitpos % GET_MODE_ALIGNMENT (mode))
5400 && SLOW_UNALIGNED_ACCESS (mode, MEM_ALIGN (target)))
5401 || (bitpos % BITS_PER_UNIT != 0)))
5402 /* If the RHS and field are a constant size and the size of the
5403 RHS isn't the same size as the bitfield, we must use bitfield
5404 operations. */
5405 || (bitsize >= 0
5406 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp))) == INTEGER_CST
5407 && compare_tree_int (TYPE_SIZE (TREE_TYPE (exp)), bitsize) != 0))
5409 rtx temp;
5411 /* If EXP is a NOP_EXPR of precision less than its mode, then that
5412 implies a mask operation. If the precision is the same size as
5413 the field we're storing into, that mask is redundant. This is
5414 particularly common with bit field assignments generated by the
5415 C front end. */
5416 if (TREE_CODE (exp) == NOP_EXPR)
5418 tree type = TREE_TYPE (exp);
5419 if (INTEGRAL_TYPE_P (type)
5420 && TYPE_PRECISION (type) < GET_MODE_BITSIZE (TYPE_MODE (type))
5421 && bitsize == TYPE_PRECISION (type))
5423 type = TREE_TYPE (TREE_OPERAND (exp, 0));
5424 if (INTEGRAL_TYPE_P (type) && TYPE_PRECISION (type) >= bitsize)
5425 exp = TREE_OPERAND (exp, 0);
5429 temp = expand_normal (exp);
5431 /* If BITSIZE is narrower than the size of the type of EXP
5432 we will be narrowing TEMP. Normally, what's wanted are the
5433 low-order bits. However, if EXP's type is a record and this is
5434 big-endian machine, we want the upper BITSIZE bits. */
5435 if (BYTES_BIG_ENDIAN && GET_MODE_CLASS (GET_MODE (temp)) == MODE_INT
5436 && bitsize < (HOST_WIDE_INT) GET_MODE_BITSIZE (GET_MODE (temp))
5437 && TREE_CODE (TREE_TYPE (exp)) == RECORD_TYPE)
5438 temp = expand_shift (RSHIFT_EXPR, GET_MODE (temp), temp,
5439 size_int (GET_MODE_BITSIZE (GET_MODE (temp))
5440 - bitsize),
5441 NULL_RTX, 1);
5443 /* Unless MODE is VOIDmode or BLKmode, convert TEMP to
5444 MODE. */
5445 if (mode != VOIDmode && mode != BLKmode
5446 && mode != TYPE_MODE (TREE_TYPE (exp)))
5447 temp = convert_modes (mode, TYPE_MODE (TREE_TYPE (exp)), temp, 1);
5449 /* If the modes of TARGET and TEMP are both BLKmode, both
5450 must be in memory and BITPOS must be aligned on a byte
5451 boundary. If so, we simply do a block copy. */
5452 if (GET_MODE (target) == BLKmode && GET_MODE (temp) == BLKmode)
5454 gcc_assert (MEM_P (target) && MEM_P (temp)
5455 && !(bitpos % BITS_PER_UNIT));
5457 target = adjust_address (target, VOIDmode, bitpos / BITS_PER_UNIT);
5458 emit_block_move (target, temp,
5459 GEN_INT ((bitsize + BITS_PER_UNIT - 1)
5460 / BITS_PER_UNIT),
5461 BLOCK_OP_NORMAL);
5463 return const0_rtx;
5466 /* Store the value in the bitfield. */
5467 store_bit_field (target, bitsize, bitpos, mode, temp);
5469 return const0_rtx;
5471 else
5473 /* Now build a reference to just the desired component. */
5474 rtx to_rtx = adjust_address (target, mode, bitpos / BITS_PER_UNIT);
5476 if (to_rtx == target)
5477 to_rtx = copy_rtx (to_rtx);
5479 MEM_SET_IN_STRUCT_P (to_rtx, 1);
5480 if (!MEM_KEEP_ALIAS_SET_P (to_rtx) && MEM_ALIAS_SET (to_rtx) != 0)
5481 set_mem_alias_set (to_rtx, alias_set);
5483 return store_expr (exp, to_rtx, 0);
5487 /* Given an expression EXP that may be a COMPONENT_REF, a BIT_FIELD_REF,
5488 an ARRAY_REF, or an ARRAY_RANGE_REF, look for nested operations of these
5489 codes and find the ultimate containing object, which we return.
5491 We set *PBITSIZE to the size in bits that we want, *PBITPOS to the
5492 bit position, and *PUNSIGNEDP to the signedness of the field.
5493 If the position of the field is variable, we store a tree
5494 giving the variable offset (in units) in *POFFSET.
5495 This offset is in addition to the bit position.
5496 If the position is not variable, we store 0 in *POFFSET.
5498 If any of the extraction expressions is volatile,
5499 we store 1 in *PVOLATILEP. Otherwise we don't change that.
5501 If the field is a bit-field, *PMODE is set to VOIDmode. Otherwise, it
5502 is a mode that can be used to access the field. In that case, *PBITSIZE
5503 is redundant.
5505 If the field describes a variable-sized object, *PMODE is set to
5506 VOIDmode and *PBITSIZE is set to -1. An access cannot be made in
5507 this case, but the address of the object can be found.
5509 If KEEP_ALIGNING is true and the target is STRICT_ALIGNMENT, we don't
5510 look through nodes that serve as markers of a greater alignment than
5511 the one that can be deduced from the expression. These nodes make it
5512 possible for front-ends to prevent temporaries from being created by
5513 the middle-end on alignment considerations. For that purpose, the
5514 normal operating mode at high-level is to always pass FALSE so that
5515 the ultimate containing object is really returned; moreover, the
5516 associated predicate handled_component_p will always return TRUE
5517 on these nodes, thus indicating that they are essentially handled
5518 by get_inner_reference. TRUE should only be passed when the caller
5519 is scanning the expression in order to build another representation
5520 and specifically knows how to handle these nodes; as such, this is
5521 the normal operating mode in the RTL expanders. */
5523 tree
5524 get_inner_reference (tree exp, HOST_WIDE_INT *pbitsize,
5525 HOST_WIDE_INT *pbitpos, tree *poffset,
5526 enum machine_mode *pmode, int *punsignedp,
5527 int *pvolatilep, bool keep_aligning)
5529 tree size_tree = 0;
5530 enum machine_mode mode = VOIDmode;
5531 tree offset = size_zero_node;
5532 tree bit_offset = bitsize_zero_node;
5533 tree tem;
5535 /* First get the mode, signedness, and size. We do this from just the
5536 outermost expression. */
5537 if (TREE_CODE (exp) == COMPONENT_REF)
5539 size_tree = DECL_SIZE (TREE_OPERAND (exp, 1));
5540 if (! DECL_BIT_FIELD (TREE_OPERAND (exp, 1)))
5541 mode = DECL_MODE (TREE_OPERAND (exp, 1));
5543 *punsignedp = DECL_UNSIGNED (TREE_OPERAND (exp, 1));
5545 else if (TREE_CODE (exp) == BIT_FIELD_REF)
5547 size_tree = TREE_OPERAND (exp, 1);
5548 *punsignedp = BIT_FIELD_REF_UNSIGNED (exp);
5550 else
5552 mode = TYPE_MODE (TREE_TYPE (exp));
5553 *punsignedp = TYPE_UNSIGNED (TREE_TYPE (exp));
5555 if (mode == BLKmode)
5556 size_tree = TYPE_SIZE (TREE_TYPE (exp));
5557 else
5558 *pbitsize = GET_MODE_BITSIZE (mode);
5561 if (size_tree != 0)
5563 if (! host_integerp (size_tree, 1))
5564 mode = BLKmode, *pbitsize = -1;
5565 else
5566 *pbitsize = tree_low_cst (size_tree, 1);
5569 /* Compute cumulative bit-offset for nested component-refs and array-refs,
5570 and find the ultimate containing object. */
5571 while (1)
5573 switch (TREE_CODE (exp))
5575 case BIT_FIELD_REF:
5576 bit_offset = size_binop (PLUS_EXPR, bit_offset,
5577 TREE_OPERAND (exp, 2));
5578 break;
5580 case COMPONENT_REF:
5582 tree field = TREE_OPERAND (exp, 1);
5583 tree this_offset = component_ref_field_offset (exp);
5585 /* If this field hasn't been filled in yet, don't go past it.
5586 This should only happen when folding expressions made during
5587 type construction. */
5588 if (this_offset == 0)
5589 break;
5591 offset = size_binop (PLUS_EXPR, offset, this_offset);
5592 bit_offset = size_binop (PLUS_EXPR, bit_offset,
5593 DECL_FIELD_BIT_OFFSET (field));
5595 /* ??? Right now we don't do anything with DECL_OFFSET_ALIGN. */
5597 break;
5599 case ARRAY_REF:
5600 case ARRAY_RANGE_REF:
5602 tree index = TREE_OPERAND (exp, 1);
5603 tree low_bound = array_ref_low_bound (exp);
5604 tree unit_size = array_ref_element_size (exp);
5606 /* We assume all arrays have sizes that are a multiple of a byte.
5607 First subtract the lower bound, if any, in the type of the
5608 index, then convert to sizetype and multiply by the size of
5609 the array element. */
5610 if (! integer_zerop (low_bound))
5611 index = fold_build2 (MINUS_EXPR, TREE_TYPE (index),
5612 index, low_bound);
5614 offset = size_binop (PLUS_EXPR, offset,
5615 size_binop (MULT_EXPR,
5616 convert (sizetype, index),
5617 unit_size));
5619 break;
5621 case REALPART_EXPR:
5622 break;
5624 case IMAGPART_EXPR:
5625 bit_offset = size_binop (PLUS_EXPR, bit_offset,
5626 bitsize_int (*pbitsize));
5627 break;
5629 case VIEW_CONVERT_EXPR:
5630 if (keep_aligning && STRICT_ALIGNMENT
5631 && (TYPE_ALIGN (TREE_TYPE (exp))
5632 > TYPE_ALIGN (TREE_TYPE (TREE_OPERAND (exp, 0))))
5633 && (TYPE_ALIGN (TREE_TYPE (TREE_OPERAND (exp, 0)))
5634 < BIGGEST_ALIGNMENT)
5635 && (TYPE_ALIGN_OK (TREE_TYPE (exp))
5636 || TYPE_ALIGN_OK (TREE_TYPE (TREE_OPERAND (exp, 0)))))
5637 goto done;
5638 break;
5640 default:
5641 goto done;
5644 /* If any reference in the chain is volatile, the effect is volatile. */
5645 if (TREE_THIS_VOLATILE (exp))
5646 *pvolatilep = 1;
5648 exp = TREE_OPERAND (exp, 0);
5650 done:
5652 /* If OFFSET is constant, see if we can return the whole thing as a
5653 constant bit position. Otherwise, split it up. */
5654 if (host_integerp (offset, 0)
5655 && 0 != (tem = size_binop (MULT_EXPR, convert (bitsizetype, offset),
5656 bitsize_unit_node))
5657 && 0 != (tem = size_binop (PLUS_EXPR, tem, bit_offset))
5658 && host_integerp (tem, 0))
5659 *pbitpos = tree_low_cst (tem, 0), *poffset = 0;
5660 else
5661 *pbitpos = tree_low_cst (bit_offset, 0), *poffset = offset;
5663 *pmode = mode;
5664 return exp;
5667 /* Return a tree of sizetype representing the size, in bytes, of the element
5668 of EXP, an ARRAY_REF. */
5670 tree
5671 array_ref_element_size (tree exp)
5673 tree aligned_size = TREE_OPERAND (exp, 3);
5674 tree elmt_type = TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 0)));
5676 /* If a size was specified in the ARRAY_REF, it's the size measured
5677 in alignment units of the element type. So multiply by that value. */
5678 if (aligned_size)
5680 /* ??? tree_ssa_useless_type_conversion will eliminate casts to
5681 sizetype from another type of the same width and signedness. */
5682 if (TREE_TYPE (aligned_size) != sizetype)
5683 aligned_size = fold_convert (sizetype, aligned_size);
5684 return size_binop (MULT_EXPR, aligned_size,
5685 size_int (TYPE_ALIGN_UNIT (elmt_type)));
5688 /* Otherwise, take the size from that of the element type. Substitute
5689 any PLACEHOLDER_EXPR that we have. */
5690 else
5691 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_SIZE_UNIT (elmt_type), exp);
5694 /* Return a tree representing the lower bound of the array mentioned in
5695 EXP, an ARRAY_REF. */
5697 tree
5698 array_ref_low_bound (tree exp)
5700 tree domain_type = TYPE_DOMAIN (TREE_TYPE (TREE_OPERAND (exp, 0)));
5702 /* If a lower bound is specified in EXP, use it. */
5703 if (TREE_OPERAND (exp, 2))
5704 return TREE_OPERAND (exp, 2);
5706 /* Otherwise, if there is a domain type and it has a lower bound, use it,
5707 substituting for a PLACEHOLDER_EXPR as needed. */
5708 if (domain_type && TYPE_MIN_VALUE (domain_type))
5709 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_MIN_VALUE (domain_type), exp);
5711 /* Otherwise, return a zero of the appropriate type. */
5712 return build_int_cst (TREE_TYPE (TREE_OPERAND (exp, 1)), 0);
5715 /* Return a tree representing the upper bound of the array mentioned in
5716 EXP, an ARRAY_REF. */
5718 tree
5719 array_ref_up_bound (tree exp)
5721 tree domain_type = TYPE_DOMAIN (TREE_TYPE (TREE_OPERAND (exp, 0)));
5723 /* If there is a domain type and it has an upper bound, use it, substituting
5724 for a PLACEHOLDER_EXPR as needed. */
5725 if (domain_type && TYPE_MAX_VALUE (domain_type))
5726 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_MAX_VALUE (domain_type), exp);
5728 /* Otherwise fail. */
5729 return NULL_TREE;
5732 /* Return a tree representing the offset, in bytes, of the field referenced
5733 by EXP. This does not include any offset in DECL_FIELD_BIT_OFFSET. */
5735 tree
5736 component_ref_field_offset (tree exp)
5738 tree aligned_offset = TREE_OPERAND (exp, 2);
5739 tree field = TREE_OPERAND (exp, 1);
5741 /* If an offset was specified in the COMPONENT_REF, it's the offset measured
5742 in units of DECL_OFFSET_ALIGN / BITS_PER_UNIT. So multiply by that
5743 value. */
5744 if (aligned_offset)
5746 /* ??? tree_ssa_useless_type_conversion will eliminate casts to
5747 sizetype from another type of the same width and signedness. */
5748 if (TREE_TYPE (aligned_offset) != sizetype)
5749 aligned_offset = fold_convert (sizetype, aligned_offset);
5750 return size_binop (MULT_EXPR, aligned_offset,
5751 size_int (DECL_OFFSET_ALIGN (field) / BITS_PER_UNIT));
5754 /* Otherwise, take the offset from that of the field. Substitute
5755 any PLACEHOLDER_EXPR that we have. */
5756 else
5757 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (DECL_FIELD_OFFSET (field), exp);
5760 /* Return 1 if T is an expression that get_inner_reference handles. */
5763 handled_component_p (tree t)
5765 switch (TREE_CODE (t))
5767 case BIT_FIELD_REF:
5768 case COMPONENT_REF:
5769 case ARRAY_REF:
5770 case ARRAY_RANGE_REF:
5771 case VIEW_CONVERT_EXPR:
5772 case REALPART_EXPR:
5773 case IMAGPART_EXPR:
5774 return 1;
5776 default:
5777 return 0;
5781 /* Given an rtx VALUE that may contain additions and multiplications, return
5782 an equivalent value that just refers to a register, memory, or constant.
5783 This is done by generating instructions to perform the arithmetic and
5784 returning a pseudo-register containing the value.
5786 The returned value may be a REG, SUBREG, MEM or constant. */
5789 force_operand (rtx value, rtx target)
5791 rtx op1, op2;
5792 /* Use subtarget as the target for operand 0 of a binary operation. */
5793 rtx subtarget = get_subtarget (target);
5794 enum rtx_code code = GET_CODE (value);
5796 /* Check for subreg applied to an expression produced by loop optimizer. */
5797 if (code == SUBREG
5798 && !REG_P (SUBREG_REG (value))
5799 && !MEM_P (SUBREG_REG (value)))
5801 value = simplify_gen_subreg (GET_MODE (value),
5802 force_reg (GET_MODE (SUBREG_REG (value)),
5803 force_operand (SUBREG_REG (value),
5804 NULL_RTX)),
5805 GET_MODE (SUBREG_REG (value)),
5806 SUBREG_BYTE (value));
5807 code = GET_CODE (value);
5810 /* Check for a PIC address load. */
5811 if ((code == PLUS || code == MINUS)
5812 && XEXP (value, 0) == pic_offset_table_rtx
5813 && (GET_CODE (XEXP (value, 1)) == SYMBOL_REF
5814 || GET_CODE (XEXP (value, 1)) == LABEL_REF
5815 || GET_CODE (XEXP (value, 1)) == CONST))
5817 if (!subtarget)
5818 subtarget = gen_reg_rtx (GET_MODE (value));
5819 emit_move_insn (subtarget, value);
5820 return subtarget;
5823 if (ARITHMETIC_P (value))
5825 op2 = XEXP (value, 1);
5826 if (!CONSTANT_P (op2) && !(REG_P (op2) && op2 != subtarget))
5827 subtarget = 0;
5828 if (code == MINUS && GET_CODE (op2) == CONST_INT)
5830 code = PLUS;
5831 op2 = negate_rtx (GET_MODE (value), op2);
5834 /* Check for an addition with OP2 a constant integer and our first
5835 operand a PLUS of a virtual register and something else. In that
5836 case, we want to emit the sum of the virtual register and the
5837 constant first and then add the other value. This allows virtual
5838 register instantiation to simply modify the constant rather than
5839 creating another one around this addition. */
5840 if (code == PLUS && GET_CODE (op2) == CONST_INT
5841 && GET_CODE (XEXP (value, 0)) == PLUS
5842 && REG_P (XEXP (XEXP (value, 0), 0))
5843 && REGNO (XEXP (XEXP (value, 0), 0)) >= FIRST_VIRTUAL_REGISTER
5844 && REGNO (XEXP (XEXP (value, 0), 0)) <= LAST_VIRTUAL_REGISTER)
5846 rtx temp = expand_simple_binop (GET_MODE (value), code,
5847 XEXP (XEXP (value, 0), 0), op2,
5848 subtarget, 0, OPTAB_LIB_WIDEN);
5849 return expand_simple_binop (GET_MODE (value), code, temp,
5850 force_operand (XEXP (XEXP (value,
5851 0), 1), 0),
5852 target, 0, OPTAB_LIB_WIDEN);
5855 op1 = force_operand (XEXP (value, 0), subtarget);
5856 op2 = force_operand (op2, NULL_RTX);
5857 switch (code)
5859 case MULT:
5860 return expand_mult (GET_MODE (value), op1, op2, target, 1);
5861 case DIV:
5862 if (!INTEGRAL_MODE_P (GET_MODE (value)))
5863 return expand_simple_binop (GET_MODE (value), code, op1, op2,
5864 target, 1, OPTAB_LIB_WIDEN);
5865 else
5866 return expand_divmod (0,
5867 FLOAT_MODE_P (GET_MODE (value))
5868 ? RDIV_EXPR : TRUNC_DIV_EXPR,
5869 GET_MODE (value), op1, op2, target, 0);
5870 break;
5871 case MOD:
5872 return expand_divmod (1, TRUNC_MOD_EXPR, GET_MODE (value), op1, op2,
5873 target, 0);
5874 break;
5875 case UDIV:
5876 return expand_divmod (0, TRUNC_DIV_EXPR, GET_MODE (value), op1, op2,
5877 target, 1);
5878 break;
5879 case UMOD:
5880 return expand_divmod (1, TRUNC_MOD_EXPR, GET_MODE (value), op1, op2,
5881 target, 1);
5882 break;
5883 case ASHIFTRT:
5884 return expand_simple_binop (GET_MODE (value), code, op1, op2,
5885 target, 0, OPTAB_LIB_WIDEN);
5886 break;
5887 default:
5888 return expand_simple_binop (GET_MODE (value), code, op1, op2,
5889 target, 1, OPTAB_LIB_WIDEN);
5892 if (UNARY_P (value))
5894 if (!target)
5895 target = gen_reg_rtx (GET_MODE (value));
5896 op1 = force_operand (XEXP (value, 0), NULL_RTX);
5897 switch (code)
5899 case ZERO_EXTEND:
5900 case SIGN_EXTEND:
5901 case TRUNCATE:
5902 convert_move (target, op1, code == ZERO_EXTEND);
5903 return target;
5905 case FIX:
5906 case UNSIGNED_FIX:
5907 expand_fix (target, op1, code == UNSIGNED_FIX);
5908 return target;
5910 case FLOAT:
5911 case UNSIGNED_FLOAT:
5912 expand_float (target, op1, code == UNSIGNED_FLOAT);
5913 return target;
5915 default:
5916 return expand_simple_unop (GET_MODE (value), code, op1, target, 0);
5920 #ifdef INSN_SCHEDULING
5921 /* On machines that have insn scheduling, we want all memory reference to be
5922 explicit, so we need to deal with such paradoxical SUBREGs. */
5923 if (GET_CODE (value) == SUBREG && MEM_P (SUBREG_REG (value))
5924 && (GET_MODE_SIZE (GET_MODE (value))
5925 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (value)))))
5926 value
5927 = simplify_gen_subreg (GET_MODE (value),
5928 force_reg (GET_MODE (SUBREG_REG (value)),
5929 force_operand (SUBREG_REG (value),
5930 NULL_RTX)),
5931 GET_MODE (SUBREG_REG (value)),
5932 SUBREG_BYTE (value));
5933 #endif
5935 return value;
5938 /* Subroutine of expand_expr: return nonzero iff there is no way that
5939 EXP can reference X, which is being modified. TOP_P is nonzero if this
5940 call is going to be used to determine whether we need a temporary
5941 for EXP, as opposed to a recursive call to this function.
5943 It is always safe for this routine to return zero since it merely
5944 searches for optimization opportunities. */
5947 safe_from_p (rtx x, tree exp, int top_p)
5949 rtx exp_rtl = 0;
5950 int i, nops;
5952 if (x == 0
5953 /* If EXP has varying size, we MUST use a target since we currently
5954 have no way of allocating temporaries of variable size
5955 (except for arrays that have TYPE_ARRAY_MAX_SIZE set).
5956 So we assume here that something at a higher level has prevented a
5957 clash. This is somewhat bogus, but the best we can do. Only
5958 do this when X is BLKmode and when we are at the top level. */
5959 || (top_p && TREE_TYPE (exp) != 0 && COMPLETE_TYPE_P (TREE_TYPE (exp))
5960 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp))) != INTEGER_CST
5961 && (TREE_CODE (TREE_TYPE (exp)) != ARRAY_TYPE
5962 || TYPE_ARRAY_MAX_SIZE (TREE_TYPE (exp)) == NULL_TREE
5963 || TREE_CODE (TYPE_ARRAY_MAX_SIZE (TREE_TYPE (exp)))
5964 != INTEGER_CST)
5965 && GET_MODE (x) == BLKmode)
5966 /* If X is in the outgoing argument area, it is always safe. */
5967 || (MEM_P (x)
5968 && (XEXP (x, 0) == virtual_outgoing_args_rtx
5969 || (GET_CODE (XEXP (x, 0)) == PLUS
5970 && XEXP (XEXP (x, 0), 0) == virtual_outgoing_args_rtx))))
5971 return 1;
5973 /* If this is a subreg of a hard register, declare it unsafe, otherwise,
5974 find the underlying pseudo. */
5975 if (GET_CODE (x) == SUBREG)
5977 x = SUBREG_REG (x);
5978 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
5979 return 0;
5982 /* Now look at our tree code and possibly recurse. */
5983 switch (TREE_CODE_CLASS (TREE_CODE (exp)))
5985 case tcc_declaration:
5986 exp_rtl = DECL_RTL_IF_SET (exp);
5987 break;
5989 case tcc_constant:
5990 return 1;
5992 case tcc_exceptional:
5993 if (TREE_CODE (exp) == TREE_LIST)
5995 while (1)
5997 if (TREE_VALUE (exp) && !safe_from_p (x, TREE_VALUE (exp), 0))
5998 return 0;
5999 exp = TREE_CHAIN (exp);
6000 if (!exp)
6001 return 1;
6002 if (TREE_CODE (exp) != TREE_LIST)
6003 return safe_from_p (x, exp, 0);
6006 else if (TREE_CODE (exp) == ERROR_MARK)
6007 return 1; /* An already-visited SAVE_EXPR? */
6008 else
6009 return 0;
6011 case tcc_statement:
6012 /* The only case we look at here is the DECL_INITIAL inside a
6013 DECL_EXPR. */
6014 return (TREE_CODE (exp) != DECL_EXPR
6015 || TREE_CODE (DECL_EXPR_DECL (exp)) != VAR_DECL
6016 || !DECL_INITIAL (DECL_EXPR_DECL (exp))
6017 || safe_from_p (x, DECL_INITIAL (DECL_EXPR_DECL (exp)), 0));
6019 case tcc_binary:
6020 case tcc_comparison:
6021 if (!safe_from_p (x, TREE_OPERAND (exp, 1), 0))
6022 return 0;
6023 /* Fall through. */
6025 case tcc_unary:
6026 return safe_from_p (x, TREE_OPERAND (exp, 0), 0);
6028 case tcc_expression:
6029 case tcc_reference:
6030 /* Now do code-specific tests. EXP_RTL is set to any rtx we find in
6031 the expression. If it is set, we conflict iff we are that rtx or
6032 both are in memory. Otherwise, we check all operands of the
6033 expression recursively. */
6035 switch (TREE_CODE (exp))
6037 case ADDR_EXPR:
6038 /* If the operand is static or we are static, we can't conflict.
6039 Likewise if we don't conflict with the operand at all. */
6040 if (staticp (TREE_OPERAND (exp, 0))
6041 || TREE_STATIC (exp)
6042 || safe_from_p (x, TREE_OPERAND (exp, 0), 0))
6043 return 1;
6045 /* Otherwise, the only way this can conflict is if we are taking
6046 the address of a DECL a that address if part of X, which is
6047 very rare. */
6048 exp = TREE_OPERAND (exp, 0);
6049 if (DECL_P (exp))
6051 if (!DECL_RTL_SET_P (exp)
6052 || !MEM_P (DECL_RTL (exp)))
6053 return 0;
6054 else
6055 exp_rtl = XEXP (DECL_RTL (exp), 0);
6057 break;
6059 case MISALIGNED_INDIRECT_REF:
6060 case ALIGN_INDIRECT_REF:
6061 case INDIRECT_REF:
6062 if (MEM_P (x)
6063 && alias_sets_conflict_p (MEM_ALIAS_SET (x),
6064 get_alias_set (exp)))
6065 return 0;
6066 break;
6068 case CALL_EXPR:
6069 /* Assume that the call will clobber all hard registers and
6070 all of memory. */
6071 if ((REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
6072 || MEM_P (x))
6073 return 0;
6074 break;
6076 case WITH_CLEANUP_EXPR:
6077 case CLEANUP_POINT_EXPR:
6078 /* Lowered by gimplify.c. */
6079 gcc_unreachable ();
6081 case SAVE_EXPR:
6082 return safe_from_p (x, TREE_OPERAND (exp, 0), 0);
6084 default:
6085 break;
6088 /* If we have an rtx, we do not need to scan our operands. */
6089 if (exp_rtl)
6090 break;
6092 nops = TREE_CODE_LENGTH (TREE_CODE (exp));
6093 for (i = 0; i < nops; i++)
6094 if (TREE_OPERAND (exp, i) != 0
6095 && ! safe_from_p (x, TREE_OPERAND (exp, i), 0))
6096 return 0;
6098 /* If this is a language-specific tree code, it may require
6099 special handling. */
6100 if ((unsigned int) TREE_CODE (exp)
6101 >= (unsigned int) LAST_AND_UNUSED_TREE_CODE
6102 && !lang_hooks.safe_from_p (x, exp))
6103 return 0;
6104 break;
6106 case tcc_type:
6107 /* Should never get a type here. */
6108 gcc_unreachable ();
6111 /* If we have an rtl, find any enclosed object. Then see if we conflict
6112 with it. */
6113 if (exp_rtl)
6115 if (GET_CODE (exp_rtl) == SUBREG)
6117 exp_rtl = SUBREG_REG (exp_rtl);
6118 if (REG_P (exp_rtl)
6119 && REGNO (exp_rtl) < FIRST_PSEUDO_REGISTER)
6120 return 0;
6123 /* If the rtl is X, then it is not safe. Otherwise, it is unless both
6124 are memory and they conflict. */
6125 return ! (rtx_equal_p (x, exp_rtl)
6126 || (MEM_P (x) && MEM_P (exp_rtl)
6127 && true_dependence (exp_rtl, VOIDmode, x,
6128 rtx_addr_varies_p)));
6131 /* If we reach here, it is safe. */
6132 return 1;
6136 /* Return the highest power of two that EXP is known to be a multiple of.
6137 This is used in updating alignment of MEMs in array references. */
6139 unsigned HOST_WIDE_INT
6140 highest_pow2_factor (tree exp)
6142 unsigned HOST_WIDE_INT c0, c1;
6144 switch (TREE_CODE (exp))
6146 case INTEGER_CST:
6147 /* We can find the lowest bit that's a one. If the low
6148 HOST_BITS_PER_WIDE_INT bits are zero, return BIGGEST_ALIGNMENT.
6149 We need to handle this case since we can find it in a COND_EXPR,
6150 a MIN_EXPR, or a MAX_EXPR. If the constant overflows, we have an
6151 erroneous program, so return BIGGEST_ALIGNMENT to avoid any
6152 later ICE. */
6153 if (TREE_CONSTANT_OVERFLOW (exp))
6154 return BIGGEST_ALIGNMENT;
6155 else
6157 /* Note: tree_low_cst is intentionally not used here,
6158 we don't care about the upper bits. */
6159 c0 = TREE_INT_CST_LOW (exp);
6160 c0 &= -c0;
6161 return c0 ? c0 : BIGGEST_ALIGNMENT;
6163 break;
6165 case PLUS_EXPR: case MINUS_EXPR: case MIN_EXPR: case MAX_EXPR:
6166 c0 = highest_pow2_factor (TREE_OPERAND (exp, 0));
6167 c1 = highest_pow2_factor (TREE_OPERAND (exp, 1));
6168 return MIN (c0, c1);
6170 case MULT_EXPR:
6171 c0 = highest_pow2_factor (TREE_OPERAND (exp, 0));
6172 c1 = highest_pow2_factor (TREE_OPERAND (exp, 1));
6173 return c0 * c1;
6175 case ROUND_DIV_EXPR: case TRUNC_DIV_EXPR: case FLOOR_DIV_EXPR:
6176 case CEIL_DIV_EXPR:
6177 if (integer_pow2p (TREE_OPERAND (exp, 1))
6178 && host_integerp (TREE_OPERAND (exp, 1), 1))
6180 c0 = highest_pow2_factor (TREE_OPERAND (exp, 0));
6181 c1 = tree_low_cst (TREE_OPERAND (exp, 1), 1);
6182 return MAX (1, c0 / c1);
6184 break;
6186 case NON_LVALUE_EXPR: case NOP_EXPR: case CONVERT_EXPR:
6187 case SAVE_EXPR:
6188 return highest_pow2_factor (TREE_OPERAND (exp, 0));
6190 case COMPOUND_EXPR:
6191 return highest_pow2_factor (TREE_OPERAND (exp, 1));
6193 case COND_EXPR:
6194 c0 = highest_pow2_factor (TREE_OPERAND (exp, 1));
6195 c1 = highest_pow2_factor (TREE_OPERAND (exp, 2));
6196 return MIN (c0, c1);
6198 default:
6199 break;
6202 return 1;
6205 /* Similar, except that the alignment requirements of TARGET are
6206 taken into account. Assume it is at least as aligned as its
6207 type, unless it is a COMPONENT_REF in which case the layout of
6208 the structure gives the alignment. */
6210 static unsigned HOST_WIDE_INT
6211 highest_pow2_factor_for_target (tree target, tree exp)
6213 unsigned HOST_WIDE_INT target_align, factor;
6215 factor = highest_pow2_factor (exp);
6216 if (TREE_CODE (target) == COMPONENT_REF)
6217 target_align = DECL_ALIGN_UNIT (TREE_OPERAND (target, 1));
6218 else
6219 target_align = TYPE_ALIGN_UNIT (TREE_TYPE (target));
6220 return MAX (factor, target_align);
6223 /* Expands variable VAR. */
6225 void
6226 expand_var (tree var)
6228 if (DECL_EXTERNAL (var))
6229 return;
6231 if (TREE_STATIC (var))
6232 /* If this is an inlined copy of a static local variable,
6233 look up the original decl. */
6234 var = DECL_ORIGIN (var);
6236 if (TREE_STATIC (var)
6237 ? !TREE_ASM_WRITTEN (var)
6238 : !DECL_RTL_SET_P (var))
6240 if (TREE_CODE (var) == VAR_DECL && DECL_HAS_VALUE_EXPR_P (var))
6241 /* Should be ignored. */;
6242 else if (lang_hooks.expand_decl (var))
6243 /* OK. */;
6244 else if (TREE_CODE (var) == VAR_DECL && !TREE_STATIC (var))
6245 expand_decl (var);
6246 else if (TREE_CODE (var) == VAR_DECL && TREE_STATIC (var))
6247 rest_of_decl_compilation (var, 0, 0);
6248 else
6249 /* No expansion needed. */
6250 gcc_assert (TREE_CODE (var) == TYPE_DECL
6251 || TREE_CODE (var) == CONST_DECL
6252 || TREE_CODE (var) == FUNCTION_DECL
6253 || TREE_CODE (var) == LABEL_DECL);
6257 /* Subroutine of expand_expr. Expand the two operands of a binary
6258 expression EXP0 and EXP1 placing the results in OP0 and OP1.
6259 The value may be stored in TARGET if TARGET is nonzero. The
6260 MODIFIER argument is as documented by expand_expr. */
6262 static void
6263 expand_operands (tree exp0, tree exp1, rtx target, rtx *op0, rtx *op1,
6264 enum expand_modifier modifier)
6266 if (! safe_from_p (target, exp1, 1))
6267 target = 0;
6268 if (operand_equal_p (exp0, exp1, 0))
6270 *op0 = expand_expr (exp0, target, VOIDmode, modifier);
6271 *op1 = copy_rtx (*op0);
6273 else
6275 /* If we need to preserve evaluation order, copy exp0 into its own
6276 temporary variable so that it can't be clobbered by exp1. */
6277 if (flag_evaluation_order && TREE_SIDE_EFFECTS (exp1))
6278 exp0 = save_expr (exp0);
6279 *op0 = expand_expr (exp0, target, VOIDmode, modifier);
6280 *op1 = expand_expr (exp1, NULL_RTX, VOIDmode, modifier);
6285 /* Return a MEM that contains constant EXP. DEFER is as for
6286 output_constant_def and MODIFIER is as for expand_expr. */
6288 static rtx
6289 expand_expr_constant (tree exp, int defer, enum expand_modifier modifier)
6291 rtx mem;
6293 mem = output_constant_def (exp, defer);
6294 if (modifier != EXPAND_INITIALIZER)
6295 mem = use_anchored_address (mem);
6296 return mem;
6299 /* A subroutine of expand_expr_addr_expr. Evaluate the address of EXP.
6300 The TARGET, TMODE and MODIFIER arguments are as for expand_expr. */
6302 static rtx
6303 expand_expr_addr_expr_1 (tree exp, rtx target, enum machine_mode tmode,
6304 enum expand_modifier modifier)
6306 rtx result, subtarget;
6307 tree inner, offset;
6308 HOST_WIDE_INT bitsize, bitpos;
6309 int volatilep, unsignedp;
6310 enum machine_mode mode1;
6312 /* If we are taking the address of a constant and are at the top level,
6313 we have to use output_constant_def since we can't call force_const_mem
6314 at top level. */
6315 /* ??? This should be considered a front-end bug. We should not be
6316 generating ADDR_EXPR of something that isn't an LVALUE. The only
6317 exception here is STRING_CST. */
6318 if (TREE_CODE (exp) == CONSTRUCTOR
6319 || CONSTANT_CLASS_P (exp))
6320 return XEXP (expand_expr_constant (exp, 0, modifier), 0);
6322 /* Everything must be something allowed by is_gimple_addressable. */
6323 switch (TREE_CODE (exp))
6325 case INDIRECT_REF:
6326 /* This case will happen via recursion for &a->b. */
6327 return expand_expr (TREE_OPERAND (exp, 0), target, tmode, modifier);
6329 case CONST_DECL:
6330 /* Recurse and make the output_constant_def clause above handle this. */
6331 return expand_expr_addr_expr_1 (DECL_INITIAL (exp), target,
6332 tmode, modifier);
6334 case REALPART_EXPR:
6335 /* The real part of the complex number is always first, therefore
6336 the address is the same as the address of the parent object. */
6337 offset = 0;
6338 bitpos = 0;
6339 inner = TREE_OPERAND (exp, 0);
6340 break;
6342 case IMAGPART_EXPR:
6343 /* The imaginary part of the complex number is always second.
6344 The expression is therefore always offset by the size of the
6345 scalar type. */
6346 offset = 0;
6347 bitpos = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (exp)));
6348 inner = TREE_OPERAND (exp, 0);
6349 break;
6351 default:
6352 /* If the object is a DECL, then expand it for its rtl. Don't bypass
6353 expand_expr, as that can have various side effects; LABEL_DECLs for
6354 example, may not have their DECL_RTL set yet. Assume language
6355 specific tree nodes can be expanded in some interesting way. */
6356 if (DECL_P (exp)
6357 || TREE_CODE (exp) >= LAST_AND_UNUSED_TREE_CODE)
6359 result = expand_expr (exp, target, tmode,
6360 modifier == EXPAND_INITIALIZER
6361 ? EXPAND_INITIALIZER : EXPAND_CONST_ADDRESS);
6363 /* If the DECL isn't in memory, then the DECL wasn't properly
6364 marked TREE_ADDRESSABLE, which will be either a front-end
6365 or a tree optimizer bug. */
6366 gcc_assert (MEM_P (result));
6367 result = XEXP (result, 0);
6369 /* ??? Is this needed anymore? */
6370 if (DECL_P (exp) && !TREE_USED (exp) == 0)
6372 assemble_external (exp);
6373 TREE_USED (exp) = 1;
6376 if (modifier != EXPAND_INITIALIZER
6377 && modifier != EXPAND_CONST_ADDRESS)
6378 result = force_operand (result, target);
6379 return result;
6382 /* Pass FALSE as the last argument to get_inner_reference although
6383 we are expanding to RTL. The rationale is that we know how to
6384 handle "aligning nodes" here: we can just bypass them because
6385 they won't change the final object whose address will be returned
6386 (they actually exist only for that purpose). */
6387 inner = get_inner_reference (exp, &bitsize, &bitpos, &offset,
6388 &mode1, &unsignedp, &volatilep, false);
6389 break;
6392 /* We must have made progress. */
6393 gcc_assert (inner != exp);
6395 subtarget = offset || bitpos ? NULL_RTX : target;
6396 result = expand_expr_addr_expr_1 (inner, subtarget, tmode, modifier);
6398 if (offset)
6400 rtx tmp;
6402 if (modifier != EXPAND_NORMAL)
6403 result = force_operand (result, NULL);
6404 tmp = expand_expr (offset, NULL, tmode, EXPAND_NORMAL);
6406 result = convert_memory_address (tmode, result);
6407 tmp = convert_memory_address (tmode, tmp);
6409 if (modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER)
6410 result = gen_rtx_PLUS (tmode, result, tmp);
6411 else
6413 subtarget = bitpos ? NULL_RTX : target;
6414 result = expand_simple_binop (tmode, PLUS, result, tmp, subtarget,
6415 1, OPTAB_LIB_WIDEN);
6419 if (bitpos)
6421 /* Someone beforehand should have rejected taking the address
6422 of such an object. */
6423 gcc_assert ((bitpos % BITS_PER_UNIT) == 0);
6425 result = plus_constant (result, bitpos / BITS_PER_UNIT);
6426 if (modifier < EXPAND_SUM)
6427 result = force_operand (result, target);
6430 return result;
6433 /* A subroutine of expand_expr. Evaluate EXP, which is an ADDR_EXPR.
6434 The TARGET, TMODE and MODIFIER arguments are as for expand_expr. */
6436 static rtx
6437 expand_expr_addr_expr (tree exp, rtx target, enum machine_mode tmode,
6438 enum expand_modifier modifier)
6440 enum machine_mode rmode;
6441 rtx result;
6443 /* Target mode of VOIDmode says "whatever's natural". */
6444 if (tmode == VOIDmode)
6445 tmode = TYPE_MODE (TREE_TYPE (exp));
6447 /* We can get called with some Weird Things if the user does silliness
6448 like "(short) &a". In that case, convert_memory_address won't do
6449 the right thing, so ignore the given target mode. */
6450 if (tmode != Pmode && tmode != ptr_mode)
6451 tmode = Pmode;
6453 result = expand_expr_addr_expr_1 (TREE_OPERAND (exp, 0), target,
6454 tmode, modifier);
6456 /* Despite expand_expr claims concerning ignoring TMODE when not
6457 strictly convenient, stuff breaks if we don't honor it. Note
6458 that combined with the above, we only do this for pointer modes. */
6459 rmode = GET_MODE (result);
6460 if (rmode == VOIDmode)
6461 rmode = tmode;
6462 if (rmode != tmode)
6463 result = convert_memory_address (tmode, result);
6465 return result;
6469 /* expand_expr: generate code for computing expression EXP.
6470 An rtx for the computed value is returned. The value is never null.
6471 In the case of a void EXP, const0_rtx is returned.
6473 The value may be stored in TARGET if TARGET is nonzero.
6474 TARGET is just a suggestion; callers must assume that
6475 the rtx returned may not be the same as TARGET.
6477 If TARGET is CONST0_RTX, it means that the value will be ignored.
6479 If TMODE is not VOIDmode, it suggests generating the
6480 result in mode TMODE. But this is done only when convenient.
6481 Otherwise, TMODE is ignored and the value generated in its natural mode.
6482 TMODE is just a suggestion; callers must assume that
6483 the rtx returned may not have mode TMODE.
6485 Note that TARGET may have neither TMODE nor MODE. In that case, it
6486 probably will not be used.
6488 If MODIFIER is EXPAND_SUM then when EXP is an addition
6489 we can return an rtx of the form (MULT (REG ...) (CONST_INT ...))
6490 or a nest of (PLUS ...) and (MINUS ...) where the terms are
6491 products as above, or REG or MEM, or constant.
6492 Ordinarily in such cases we would output mul or add instructions
6493 and then return a pseudo reg containing the sum.
6495 EXPAND_INITIALIZER is much like EXPAND_SUM except that
6496 it also marks a label as absolutely required (it can't be dead).
6497 It also makes a ZERO_EXTEND or SIGN_EXTEND instead of emitting extend insns.
6498 This is used for outputting expressions used in initializers.
6500 EXPAND_CONST_ADDRESS says that it is okay to return a MEM
6501 with a constant address even if that address is not normally legitimate.
6502 EXPAND_INITIALIZER and EXPAND_SUM also have this effect.
6504 EXPAND_STACK_PARM is used when expanding to a TARGET on the stack for
6505 a call parameter. Such targets require special care as we haven't yet
6506 marked TARGET so that it's safe from being trashed by libcalls. We
6507 don't want to use TARGET for anything but the final result;
6508 Intermediate values must go elsewhere. Additionally, calls to
6509 emit_block_move will be flagged with BLOCK_OP_CALL_PARM.
6511 If EXP is a VAR_DECL whose DECL_RTL was a MEM with an invalid
6512 address, and ALT_RTL is non-NULL, then *ALT_RTL is set to the
6513 DECL_RTL of the VAR_DECL. *ALT_RTL is also set if EXP is a
6514 COMPOUND_EXPR whose second argument is such a VAR_DECL, and so on
6515 recursively. */
6517 static rtx expand_expr_real_1 (tree, rtx, enum machine_mode,
6518 enum expand_modifier, rtx *);
6521 expand_expr_real (tree exp, rtx target, enum machine_mode tmode,
6522 enum expand_modifier modifier, rtx *alt_rtl)
6524 int rn = -1;
6525 rtx ret, last = NULL;
6527 /* Handle ERROR_MARK before anybody tries to access its type. */
6528 if (TREE_CODE (exp) == ERROR_MARK
6529 || TREE_CODE (TREE_TYPE (exp)) == ERROR_MARK)
6531 ret = CONST0_RTX (tmode);
6532 return ret ? ret : const0_rtx;
6535 if (flag_non_call_exceptions)
6537 rn = lookup_stmt_eh_region (exp);
6538 /* If rn < 0, then either (1) tree-ssa not used or (2) doesn't throw. */
6539 if (rn >= 0)
6540 last = get_last_insn ();
6543 /* If this is an expression of some kind and it has an associated line
6544 number, then emit the line number before expanding the expression.
6546 We need to save and restore the file and line information so that
6547 errors discovered during expansion are emitted with the right
6548 information. It would be better of the diagnostic routines
6549 used the file/line information embedded in the tree nodes rather
6550 than globals. */
6551 if (cfun && cfun->ib_boundaries_block && EXPR_HAS_LOCATION (exp))
6553 location_t saved_location = input_location;
6554 input_location = EXPR_LOCATION (exp);
6555 emit_line_note (input_location);
6557 /* Record where the insns produced belong. */
6558 record_block_change (TREE_BLOCK (exp));
6560 ret = expand_expr_real_1 (exp, target, tmode, modifier, alt_rtl);
6562 input_location = saved_location;
6564 else
6566 ret = expand_expr_real_1 (exp, target, tmode, modifier, alt_rtl);
6569 /* If using non-call exceptions, mark all insns that may trap.
6570 expand_call() will mark CALL_INSNs before we get to this code,
6571 but it doesn't handle libcalls, and these may trap. */
6572 if (rn >= 0)
6574 rtx insn;
6575 for (insn = next_real_insn (last); insn;
6576 insn = next_real_insn (insn))
6578 if (! find_reg_note (insn, REG_EH_REGION, NULL_RTX)
6579 /* If we want exceptions for non-call insns, any
6580 may_trap_p instruction may throw. */
6581 && GET_CODE (PATTERN (insn)) != CLOBBER
6582 && GET_CODE (PATTERN (insn)) != USE
6583 && (CALL_P (insn) || may_trap_p (PATTERN (insn))))
6585 REG_NOTES (insn) = alloc_EXPR_LIST (REG_EH_REGION, GEN_INT (rn),
6586 REG_NOTES (insn));
6591 return ret;
6594 static rtx
6595 expand_expr_real_1 (tree exp, rtx target, enum machine_mode tmode,
6596 enum expand_modifier modifier, rtx *alt_rtl)
6598 rtx op0, op1, temp, decl_rtl;
6599 tree type = TREE_TYPE (exp);
6600 int unsignedp;
6601 enum machine_mode mode;
6602 enum tree_code code = TREE_CODE (exp);
6603 optab this_optab;
6604 rtx subtarget, original_target;
6605 int ignore;
6606 tree context, subexp0, subexp1;
6607 bool reduce_bit_field = false;
6608 #define REDUCE_BIT_FIELD(expr) (reduce_bit_field && !ignore \
6609 ? reduce_to_bit_field_precision ((expr), \
6610 target, \
6611 type) \
6612 : (expr))
6614 mode = TYPE_MODE (type);
6615 unsignedp = TYPE_UNSIGNED (type);
6616 if (lang_hooks.reduce_bit_field_operations
6617 && TREE_CODE (type) == INTEGER_TYPE
6618 && GET_MODE_PRECISION (mode) > TYPE_PRECISION (type))
6620 /* An operation in what may be a bit-field type needs the
6621 result to be reduced to the precision of the bit-field type,
6622 which is narrower than that of the type's mode. */
6623 reduce_bit_field = true;
6624 if (modifier == EXPAND_STACK_PARM)
6625 target = 0;
6628 /* Use subtarget as the target for operand 0 of a binary operation. */
6629 subtarget = get_subtarget (target);
6630 original_target = target;
6631 ignore = (target == const0_rtx
6632 || ((code == NON_LVALUE_EXPR || code == NOP_EXPR
6633 || code == CONVERT_EXPR || code == COND_EXPR
6634 || code == VIEW_CONVERT_EXPR)
6635 && TREE_CODE (type) == VOID_TYPE));
6637 /* If we are going to ignore this result, we need only do something
6638 if there is a side-effect somewhere in the expression. If there
6639 is, short-circuit the most common cases here. Note that we must
6640 not call expand_expr with anything but const0_rtx in case this
6641 is an initial expansion of a size that contains a PLACEHOLDER_EXPR. */
6643 if (ignore)
6645 if (! TREE_SIDE_EFFECTS (exp))
6646 return const0_rtx;
6648 /* Ensure we reference a volatile object even if value is ignored, but
6649 don't do this if all we are doing is taking its address. */
6650 if (TREE_THIS_VOLATILE (exp)
6651 && TREE_CODE (exp) != FUNCTION_DECL
6652 && mode != VOIDmode && mode != BLKmode
6653 && modifier != EXPAND_CONST_ADDRESS)
6655 temp = expand_expr (exp, NULL_RTX, VOIDmode, modifier);
6656 if (MEM_P (temp))
6657 temp = copy_to_reg (temp);
6658 return const0_rtx;
6661 if (TREE_CODE_CLASS (code) == tcc_unary
6662 || code == COMPONENT_REF || code == INDIRECT_REF)
6663 return expand_expr (TREE_OPERAND (exp, 0), const0_rtx, VOIDmode,
6664 modifier);
6666 else if (TREE_CODE_CLASS (code) == tcc_binary
6667 || TREE_CODE_CLASS (code) == tcc_comparison
6668 || code == ARRAY_REF || code == ARRAY_RANGE_REF)
6670 expand_expr (TREE_OPERAND (exp, 0), const0_rtx, VOIDmode, modifier);
6671 expand_expr (TREE_OPERAND (exp, 1), const0_rtx, VOIDmode, modifier);
6672 return const0_rtx;
6674 else if (code == BIT_FIELD_REF)
6676 expand_expr (TREE_OPERAND (exp, 0), const0_rtx, VOIDmode, modifier);
6677 expand_expr (TREE_OPERAND (exp, 1), const0_rtx, VOIDmode, modifier);
6678 expand_expr (TREE_OPERAND (exp, 2), const0_rtx, VOIDmode, modifier);
6679 return const0_rtx;
6682 target = 0;
6686 switch (code)
6688 case LABEL_DECL:
6690 tree function = decl_function_context (exp);
6692 temp = label_rtx (exp);
6693 temp = gen_rtx_LABEL_REF (Pmode, temp);
6695 if (function != current_function_decl
6696 && function != 0)
6697 LABEL_REF_NONLOCAL_P (temp) = 1;
6699 temp = gen_rtx_MEM (FUNCTION_MODE, temp);
6700 return temp;
6703 case SSA_NAME:
6704 return expand_expr_real_1 (SSA_NAME_VAR (exp), target, tmode, modifier,
6705 NULL);
6707 case PARM_DECL:
6708 case VAR_DECL:
6709 /* If a static var's type was incomplete when the decl was written,
6710 but the type is complete now, lay out the decl now. */
6711 if (DECL_SIZE (exp) == 0
6712 && COMPLETE_OR_UNBOUND_ARRAY_TYPE_P (TREE_TYPE (exp))
6713 && (TREE_STATIC (exp) || DECL_EXTERNAL (exp)))
6714 layout_decl (exp, 0);
6716 /* ... fall through ... */
6718 case FUNCTION_DECL:
6719 case RESULT_DECL:
6720 decl_rtl = DECL_RTL (exp);
6721 gcc_assert (decl_rtl);
6723 /* Ensure variable marked as used even if it doesn't go through
6724 a parser. If it hasn't be used yet, write out an external
6725 definition. */
6726 if (! TREE_USED (exp))
6728 assemble_external (exp);
6729 TREE_USED (exp) = 1;
6732 /* Show we haven't gotten RTL for this yet. */
6733 temp = 0;
6735 /* Variables inherited from containing functions should have
6736 been lowered by this point. */
6737 context = decl_function_context (exp);
6738 gcc_assert (!context
6739 || context == current_function_decl
6740 || TREE_STATIC (exp)
6741 /* ??? C++ creates functions that are not TREE_STATIC. */
6742 || TREE_CODE (exp) == FUNCTION_DECL);
6744 /* This is the case of an array whose size is to be determined
6745 from its initializer, while the initializer is still being parsed.
6746 See expand_decl. */
6748 if (MEM_P (decl_rtl) && REG_P (XEXP (decl_rtl, 0)))
6749 temp = validize_mem (decl_rtl);
6751 /* If DECL_RTL is memory, we are in the normal case and either
6752 the address is not valid or it is not a register and -fforce-addr
6753 is specified, get the address into a register. */
6755 else if (MEM_P (decl_rtl) && modifier != EXPAND_INITIALIZER)
6757 if (alt_rtl)
6758 *alt_rtl = decl_rtl;
6759 decl_rtl = use_anchored_address (decl_rtl);
6760 if (modifier != EXPAND_CONST_ADDRESS
6761 && modifier != EXPAND_SUM
6762 && (!memory_address_p (DECL_MODE (exp), XEXP (decl_rtl, 0))
6763 || (flag_force_addr && !REG_P (XEXP (decl_rtl, 0)))))
6764 temp = replace_equiv_address (decl_rtl,
6765 copy_rtx (XEXP (decl_rtl, 0)));
6768 /* If we got something, return it. But first, set the alignment
6769 if the address is a register. */
6770 if (temp != 0)
6772 if (MEM_P (temp) && REG_P (XEXP (temp, 0)))
6773 mark_reg_pointer (XEXP (temp, 0), DECL_ALIGN (exp));
6775 return temp;
6778 /* If the mode of DECL_RTL does not match that of the decl, it
6779 must be a promoted value. We return a SUBREG of the wanted mode,
6780 but mark it so that we know that it was already extended. */
6782 if (REG_P (decl_rtl)
6783 && GET_MODE (decl_rtl) != DECL_MODE (exp))
6785 enum machine_mode pmode;
6787 /* Get the signedness used for this variable. Ensure we get the
6788 same mode we got when the variable was declared. */
6789 pmode = promote_mode (type, DECL_MODE (exp), &unsignedp,
6790 (TREE_CODE (exp) == RESULT_DECL
6791 || TREE_CODE (exp) == PARM_DECL) ? 1 : 0);
6792 gcc_assert (GET_MODE (decl_rtl) == pmode);
6794 temp = gen_lowpart_SUBREG (mode, decl_rtl);
6795 SUBREG_PROMOTED_VAR_P (temp) = 1;
6796 SUBREG_PROMOTED_UNSIGNED_SET (temp, unsignedp);
6797 return temp;
6800 return decl_rtl;
6802 case INTEGER_CST:
6803 temp = immed_double_const (TREE_INT_CST_LOW (exp),
6804 TREE_INT_CST_HIGH (exp), mode);
6806 /* ??? If overflow is set, fold will have done an incomplete job,
6807 which can result in (plus xx (const_int 0)), which can get
6808 simplified by validate_replace_rtx during virtual register
6809 instantiation, which can result in unrecognizable insns.
6810 Avoid this by forcing all overflows into registers. */
6811 if (TREE_CONSTANT_OVERFLOW (exp)
6812 && modifier != EXPAND_INITIALIZER)
6813 temp = force_reg (mode, temp);
6815 return temp;
6817 case VECTOR_CST:
6818 if (GET_MODE_CLASS (TYPE_MODE (TREE_TYPE (exp))) == MODE_VECTOR_INT
6819 || GET_MODE_CLASS (TYPE_MODE (TREE_TYPE (exp))) == MODE_VECTOR_FLOAT)
6820 return const_vector_from_tree (exp);
6821 else
6822 return expand_expr (build_constructor_from_list
6823 (TREE_TYPE (exp),
6824 TREE_VECTOR_CST_ELTS (exp)),
6825 ignore ? const0_rtx : target, tmode, modifier);
6827 case CONST_DECL:
6828 return expand_expr (DECL_INITIAL (exp), target, VOIDmode, modifier);
6830 case REAL_CST:
6831 /* If optimized, generate immediate CONST_DOUBLE
6832 which will be turned into memory by reload if necessary.
6834 We used to force a register so that loop.c could see it. But
6835 this does not allow gen_* patterns to perform optimizations with
6836 the constants. It also produces two insns in cases like "x = 1.0;".
6837 On most machines, floating-point constants are not permitted in
6838 many insns, so we'd end up copying it to a register in any case.
6840 Now, we do the copying in expand_binop, if appropriate. */
6841 return CONST_DOUBLE_FROM_REAL_VALUE (TREE_REAL_CST (exp),
6842 TYPE_MODE (TREE_TYPE (exp)));
6844 case COMPLEX_CST:
6845 /* Handle evaluating a complex constant in a CONCAT target. */
6846 if (original_target && GET_CODE (original_target) == CONCAT)
6848 enum machine_mode mode = TYPE_MODE (TREE_TYPE (TREE_TYPE (exp)));
6849 rtx rtarg, itarg;
6851 rtarg = XEXP (original_target, 0);
6852 itarg = XEXP (original_target, 1);
6854 /* Move the real and imaginary parts separately. */
6855 op0 = expand_expr (TREE_REALPART (exp), rtarg, mode, 0);
6856 op1 = expand_expr (TREE_IMAGPART (exp), itarg, mode, 0);
6858 if (op0 != rtarg)
6859 emit_move_insn (rtarg, op0);
6860 if (op1 != itarg)
6861 emit_move_insn (itarg, op1);
6863 return original_target;
6866 /* ... fall through ... */
6868 case STRING_CST:
6869 temp = expand_expr_constant (exp, 1, modifier);
6871 /* temp contains a constant address.
6872 On RISC machines where a constant address isn't valid,
6873 make some insns to get that address into a register. */
6874 if (modifier != EXPAND_CONST_ADDRESS
6875 && modifier != EXPAND_INITIALIZER
6876 && modifier != EXPAND_SUM
6877 && (! memory_address_p (mode, XEXP (temp, 0))
6878 || flag_force_addr))
6879 return replace_equiv_address (temp,
6880 copy_rtx (XEXP (temp, 0)));
6881 return temp;
6883 case SAVE_EXPR:
6885 tree val = TREE_OPERAND (exp, 0);
6886 rtx ret = expand_expr_real_1 (val, target, tmode, modifier, alt_rtl);
6888 if (!SAVE_EXPR_RESOLVED_P (exp))
6890 /* We can indeed still hit this case, typically via builtin
6891 expanders calling save_expr immediately before expanding
6892 something. Assume this means that we only have to deal
6893 with non-BLKmode values. */
6894 gcc_assert (GET_MODE (ret) != BLKmode);
6896 val = build_decl (VAR_DECL, NULL, TREE_TYPE (exp));
6897 DECL_ARTIFICIAL (val) = 1;
6898 DECL_IGNORED_P (val) = 1;
6899 TREE_OPERAND (exp, 0) = val;
6900 SAVE_EXPR_RESOLVED_P (exp) = 1;
6902 if (!CONSTANT_P (ret))
6903 ret = copy_to_reg (ret);
6904 SET_DECL_RTL (val, ret);
6907 return ret;
6910 case GOTO_EXPR:
6911 if (TREE_CODE (TREE_OPERAND (exp, 0)) == LABEL_DECL)
6912 expand_goto (TREE_OPERAND (exp, 0));
6913 else
6914 expand_computed_goto (TREE_OPERAND (exp, 0));
6915 return const0_rtx;
6917 case CONSTRUCTOR:
6918 /* If we don't need the result, just ensure we evaluate any
6919 subexpressions. */
6920 if (ignore)
6922 unsigned HOST_WIDE_INT idx;
6923 tree value;
6925 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (exp), idx, value)
6926 expand_expr (value, const0_rtx, VOIDmode, 0);
6928 return const0_rtx;
6931 /* Try to avoid creating a temporary at all. This is possible
6932 if all of the initializer is zero.
6933 FIXME: try to handle all [0..255] initializers we can handle
6934 with memset. */
6935 else if (TREE_STATIC (exp)
6936 && !TREE_ADDRESSABLE (exp)
6937 && target != 0 && mode == BLKmode
6938 && all_zeros_p (exp))
6940 clear_storage (target, expr_size (exp), BLOCK_OP_NORMAL);
6941 return target;
6944 /* All elts simple constants => refer to a constant in memory. But
6945 if this is a non-BLKmode mode, let it store a field at a time
6946 since that should make a CONST_INT or CONST_DOUBLE when we
6947 fold. Likewise, if we have a target we can use, it is best to
6948 store directly into the target unless the type is large enough
6949 that memcpy will be used. If we are making an initializer and
6950 all operands are constant, put it in memory as well.
6952 FIXME: Avoid trying to fill vector constructors piece-meal.
6953 Output them with output_constant_def below unless we're sure
6954 they're zeros. This should go away when vector initializers
6955 are treated like VECTOR_CST instead of arrays.
6957 else if ((TREE_STATIC (exp)
6958 && ((mode == BLKmode
6959 && ! (target != 0 && safe_from_p (target, exp, 1)))
6960 || TREE_ADDRESSABLE (exp)
6961 || (host_integerp (TYPE_SIZE_UNIT (type), 1)
6962 && (! MOVE_BY_PIECES_P
6963 (tree_low_cst (TYPE_SIZE_UNIT (type), 1),
6964 TYPE_ALIGN (type)))
6965 && ! mostly_zeros_p (exp))))
6966 || ((modifier == EXPAND_INITIALIZER
6967 || modifier == EXPAND_CONST_ADDRESS)
6968 && TREE_CONSTANT (exp)))
6970 rtx constructor = expand_expr_constant (exp, 1, modifier);
6972 if (modifier != EXPAND_CONST_ADDRESS
6973 && modifier != EXPAND_INITIALIZER
6974 && modifier != EXPAND_SUM)
6975 constructor = validize_mem (constructor);
6977 return constructor;
6979 else
6981 /* Handle calls that pass values in multiple non-contiguous
6982 locations. The Irix 6 ABI has examples of this. */
6983 if (target == 0 || ! safe_from_p (target, exp, 1)
6984 || GET_CODE (target) == PARALLEL
6985 || modifier == EXPAND_STACK_PARM)
6986 target
6987 = assign_temp (build_qualified_type (type,
6988 (TYPE_QUALS (type)
6989 | (TREE_READONLY (exp)
6990 * TYPE_QUAL_CONST))),
6991 0, TREE_ADDRESSABLE (exp), 1);
6993 store_constructor (exp, target, 0, int_expr_size (exp));
6994 return target;
6997 case MISALIGNED_INDIRECT_REF:
6998 case ALIGN_INDIRECT_REF:
6999 case INDIRECT_REF:
7001 tree exp1 = TREE_OPERAND (exp, 0);
7003 if (modifier != EXPAND_WRITE)
7005 tree t;
7007 t = fold_read_from_constant_string (exp);
7008 if (t)
7009 return expand_expr (t, target, tmode, modifier);
7012 op0 = expand_expr (exp1, NULL_RTX, VOIDmode, EXPAND_SUM);
7013 op0 = memory_address (mode, op0);
7015 if (code == ALIGN_INDIRECT_REF)
7017 int align = TYPE_ALIGN_UNIT (type);
7018 op0 = gen_rtx_AND (Pmode, op0, GEN_INT (-align));
7019 op0 = memory_address (mode, op0);
7022 temp = gen_rtx_MEM (mode, op0);
7024 set_mem_attributes (temp, exp, 0);
7026 /* Resolve the misalignment now, so that we don't have to remember
7027 to resolve it later. Of course, this only works for reads. */
7028 /* ??? When we get around to supporting writes, we'll have to handle
7029 this in store_expr directly. The vectorizer isn't generating
7030 those yet, however. */
7031 if (code == MISALIGNED_INDIRECT_REF)
7033 int icode;
7034 rtx reg, insn;
7036 gcc_assert (modifier == EXPAND_NORMAL
7037 || modifier == EXPAND_STACK_PARM);
7039 /* The vectorizer should have already checked the mode. */
7040 icode = movmisalign_optab->handlers[mode].insn_code;
7041 gcc_assert (icode != CODE_FOR_nothing);
7043 /* We've already validated the memory, and we're creating a
7044 new pseudo destination. The predicates really can't fail. */
7045 reg = gen_reg_rtx (mode);
7047 /* Nor can the insn generator. */
7048 insn = GEN_FCN (icode) (reg, temp);
7049 emit_insn (insn);
7051 return reg;
7054 return temp;
7057 case TARGET_MEM_REF:
7059 struct mem_address addr;
7061 get_address_description (exp, &addr);
7062 op0 = addr_for_mem_ref (&addr, true);
7063 op0 = memory_address (mode, op0);
7064 temp = gen_rtx_MEM (mode, op0);
7065 set_mem_attributes (temp, TMR_ORIGINAL (exp), 0);
7067 return temp;
7069 case ARRAY_REF:
7072 tree array = TREE_OPERAND (exp, 0);
7073 tree index = TREE_OPERAND (exp, 1);
7075 /* Fold an expression like: "foo"[2].
7076 This is not done in fold so it won't happen inside &.
7077 Don't fold if this is for wide characters since it's too
7078 difficult to do correctly and this is a very rare case. */
7080 if (modifier != EXPAND_CONST_ADDRESS
7081 && modifier != EXPAND_INITIALIZER
7082 && modifier != EXPAND_MEMORY)
7084 tree t = fold_read_from_constant_string (exp);
7086 if (t)
7087 return expand_expr (t, target, tmode, modifier);
7090 /* If this is a constant index into a constant array,
7091 just get the value from the array. Handle both the cases when
7092 we have an explicit constructor and when our operand is a variable
7093 that was declared const. */
7095 if (modifier != EXPAND_CONST_ADDRESS
7096 && modifier != EXPAND_INITIALIZER
7097 && modifier != EXPAND_MEMORY
7098 && TREE_CODE (array) == CONSTRUCTOR
7099 && ! TREE_SIDE_EFFECTS (array)
7100 && TREE_CODE (index) == INTEGER_CST)
7102 unsigned HOST_WIDE_INT ix;
7103 tree field, value;
7105 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (array), ix,
7106 field, value)
7107 if (tree_int_cst_equal (field, index))
7109 if (!TREE_SIDE_EFFECTS (value))
7110 return expand_expr (fold (value), target, tmode, modifier);
7111 break;
7115 else if (optimize >= 1
7116 && modifier != EXPAND_CONST_ADDRESS
7117 && modifier != EXPAND_INITIALIZER
7118 && modifier != EXPAND_MEMORY
7119 && TREE_READONLY (array) && ! TREE_SIDE_EFFECTS (array)
7120 && TREE_CODE (array) == VAR_DECL && DECL_INITIAL (array)
7121 && TREE_CODE (DECL_INITIAL (array)) != ERROR_MARK
7122 && targetm.binds_local_p (array))
7124 if (TREE_CODE (index) == INTEGER_CST)
7126 tree init = DECL_INITIAL (array);
7128 if (TREE_CODE (init) == CONSTRUCTOR)
7130 unsigned HOST_WIDE_INT ix;
7131 tree field, value;
7133 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (init), ix,
7134 field, value)
7135 if (tree_int_cst_equal (field, index))
7137 if (!TREE_SIDE_EFFECTS (value))
7138 return expand_expr (fold (value), target, tmode,
7139 modifier);
7140 break;
7143 else if(TREE_CODE (init) == STRING_CST)
7145 tree index1 = index;
7146 tree low_bound = array_ref_low_bound (exp);
7147 index1 = fold_convert (sizetype, TREE_OPERAND (exp, 1));
7149 /* Optimize the special-case of a zero lower bound.
7151 We convert the low_bound to sizetype to avoid some problems
7152 with constant folding. (E.g. suppose the lower bound is 1,
7153 and its mode is QI. Without the conversion,l (ARRAY
7154 +(INDEX-(unsigned char)1)) becomes ((ARRAY+(-(unsigned char)1))
7155 +INDEX), which becomes (ARRAY+255+INDEX). Opps!) */
7157 if (! integer_zerop (low_bound))
7158 index1 = size_diffop (index1, fold_convert (sizetype,
7159 low_bound));
7161 if (0 > compare_tree_int (index1,
7162 TREE_STRING_LENGTH (init)))
7164 tree type = TREE_TYPE (TREE_TYPE (init));
7165 enum machine_mode mode = TYPE_MODE (type);
7167 if (GET_MODE_CLASS (mode) == MODE_INT
7168 && GET_MODE_SIZE (mode) == 1)
7169 return gen_int_mode (TREE_STRING_POINTER (init)
7170 [TREE_INT_CST_LOW (index1)],
7171 mode);
7177 goto normal_inner_ref;
7179 case COMPONENT_REF:
7180 /* If the operand is a CONSTRUCTOR, we can just extract the
7181 appropriate field if it is present. */
7182 if (TREE_CODE (TREE_OPERAND (exp, 0)) == CONSTRUCTOR)
7184 unsigned HOST_WIDE_INT idx;
7185 tree field, value;
7187 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (TREE_OPERAND (exp, 0)),
7188 idx, field, value)
7189 if (field == TREE_OPERAND (exp, 1)
7190 /* We can normally use the value of the field in the
7191 CONSTRUCTOR. However, if this is a bitfield in
7192 an integral mode that we can fit in a HOST_WIDE_INT,
7193 we must mask only the number of bits in the bitfield,
7194 since this is done implicitly by the constructor. If
7195 the bitfield does not meet either of those conditions,
7196 we can't do this optimization. */
7197 && (! DECL_BIT_FIELD (field)
7198 || ((GET_MODE_CLASS (DECL_MODE (field)) == MODE_INT)
7199 && (GET_MODE_BITSIZE (DECL_MODE (field))
7200 <= HOST_BITS_PER_WIDE_INT))))
7202 if (DECL_BIT_FIELD (field)
7203 && modifier == EXPAND_STACK_PARM)
7204 target = 0;
7205 op0 = expand_expr (value, target, tmode, modifier);
7206 if (DECL_BIT_FIELD (field))
7208 HOST_WIDE_INT bitsize = TREE_INT_CST_LOW (DECL_SIZE (field));
7209 enum machine_mode imode = TYPE_MODE (TREE_TYPE (field));
7211 if (TYPE_UNSIGNED (TREE_TYPE (field)))
7213 op1 = GEN_INT (((HOST_WIDE_INT) 1 << bitsize) - 1);
7214 op0 = expand_and (imode, op0, op1, target);
7216 else
7218 tree count
7219 = build_int_cst (NULL_TREE,
7220 GET_MODE_BITSIZE (imode) - bitsize);
7222 op0 = expand_shift (LSHIFT_EXPR, imode, op0, count,
7223 target, 0);
7224 op0 = expand_shift (RSHIFT_EXPR, imode, op0, count,
7225 target, 0);
7229 return op0;
7232 goto normal_inner_ref;
7234 case BIT_FIELD_REF:
7235 case ARRAY_RANGE_REF:
7236 normal_inner_ref:
7238 enum machine_mode mode1;
7239 HOST_WIDE_INT bitsize, bitpos;
7240 tree offset;
7241 int volatilep = 0;
7242 tree tem = get_inner_reference (exp, &bitsize, &bitpos, &offset,
7243 &mode1, &unsignedp, &volatilep, true);
7244 rtx orig_op0;
7246 /* If we got back the original object, something is wrong. Perhaps
7247 we are evaluating an expression too early. In any event, don't
7248 infinitely recurse. */
7249 gcc_assert (tem != exp);
7251 /* If TEM's type is a union of variable size, pass TARGET to the inner
7252 computation, since it will need a temporary and TARGET is known
7253 to have to do. This occurs in unchecked conversion in Ada. */
7255 orig_op0 = op0
7256 = expand_expr (tem,
7257 (TREE_CODE (TREE_TYPE (tem)) == UNION_TYPE
7258 && (TREE_CODE (TYPE_SIZE (TREE_TYPE (tem)))
7259 != INTEGER_CST)
7260 && modifier != EXPAND_STACK_PARM
7261 ? target : NULL_RTX),
7262 VOIDmode,
7263 (modifier == EXPAND_INITIALIZER
7264 || modifier == EXPAND_CONST_ADDRESS
7265 || modifier == EXPAND_STACK_PARM)
7266 ? modifier : EXPAND_NORMAL);
7268 /* If this is a constant, put it into a register if it is a legitimate
7269 constant, OFFSET is 0, and we won't try to extract outside the
7270 register (in case we were passed a partially uninitialized object
7271 or a view_conversion to a larger size). Force the constant to
7272 memory otherwise. */
7273 if (CONSTANT_P (op0))
7275 enum machine_mode mode = TYPE_MODE (TREE_TYPE (tem));
7276 if (mode != BLKmode && LEGITIMATE_CONSTANT_P (op0)
7277 && offset == 0
7278 && bitpos + bitsize <= GET_MODE_BITSIZE (mode))
7279 op0 = force_reg (mode, op0);
7280 else
7281 op0 = validize_mem (force_const_mem (mode, op0));
7284 /* Otherwise, if this object not in memory and we either have an
7285 offset, a BLKmode result, or a reference outside the object, put it
7286 there. Such cases can occur in Ada if we have unchecked conversion
7287 of an expression from a scalar type to an array or record type or
7288 for an ARRAY_RANGE_REF whose type is BLKmode. */
7289 else if (!MEM_P (op0)
7290 && (offset != 0
7291 || (bitpos + bitsize > GET_MODE_BITSIZE (GET_MODE (op0)))
7292 || (code == ARRAY_RANGE_REF && mode == BLKmode)))
7294 tree nt = build_qualified_type (TREE_TYPE (tem),
7295 (TYPE_QUALS (TREE_TYPE (tem))
7296 | TYPE_QUAL_CONST));
7297 rtx memloc = assign_temp (nt, 1, 1, 1);
7299 emit_move_insn (memloc, op0);
7300 op0 = memloc;
7303 if (offset != 0)
7305 rtx offset_rtx = expand_expr (offset, NULL_RTX, VOIDmode,
7306 EXPAND_SUM);
7308 gcc_assert (MEM_P (op0));
7310 #ifdef POINTERS_EXTEND_UNSIGNED
7311 if (GET_MODE (offset_rtx) != Pmode)
7312 offset_rtx = convert_to_mode (Pmode, offset_rtx, 0);
7313 #else
7314 if (GET_MODE (offset_rtx) != ptr_mode)
7315 offset_rtx = convert_to_mode (ptr_mode, offset_rtx, 0);
7316 #endif
7318 if (GET_MODE (op0) == BLKmode
7319 /* A constant address in OP0 can have VOIDmode, we must
7320 not try to call force_reg in that case. */
7321 && GET_MODE (XEXP (op0, 0)) != VOIDmode
7322 && bitsize != 0
7323 && (bitpos % bitsize) == 0
7324 && (bitsize % GET_MODE_ALIGNMENT (mode1)) == 0
7325 && MEM_ALIGN (op0) == GET_MODE_ALIGNMENT (mode1))
7327 op0 = adjust_address (op0, mode1, bitpos / BITS_PER_UNIT);
7328 bitpos = 0;
7331 op0 = offset_address (op0, offset_rtx,
7332 highest_pow2_factor (offset));
7335 /* If OFFSET is making OP0 more aligned than BIGGEST_ALIGNMENT,
7336 record its alignment as BIGGEST_ALIGNMENT. */
7337 if (MEM_P (op0) && bitpos == 0 && offset != 0
7338 && is_aligning_offset (offset, tem))
7339 set_mem_align (op0, BIGGEST_ALIGNMENT);
7341 /* Don't forget about volatility even if this is a bitfield. */
7342 if (MEM_P (op0) && volatilep && ! MEM_VOLATILE_P (op0))
7344 if (op0 == orig_op0)
7345 op0 = copy_rtx (op0);
7347 MEM_VOLATILE_P (op0) = 1;
7350 /* The following code doesn't handle CONCAT.
7351 Assume only bitpos == 0 can be used for CONCAT, due to
7352 one element arrays having the same mode as its element. */
7353 if (GET_CODE (op0) == CONCAT)
7355 gcc_assert (bitpos == 0
7356 && bitsize == GET_MODE_BITSIZE (GET_MODE (op0)));
7357 return op0;
7360 /* In cases where an aligned union has an unaligned object
7361 as a field, we might be extracting a BLKmode value from
7362 an integer-mode (e.g., SImode) object. Handle this case
7363 by doing the extract into an object as wide as the field
7364 (which we know to be the width of a basic mode), then
7365 storing into memory, and changing the mode to BLKmode. */
7366 if (mode1 == VOIDmode
7367 || REG_P (op0) || GET_CODE (op0) == SUBREG
7368 || (mode1 != BLKmode && ! direct_load[(int) mode1]
7369 && GET_MODE_CLASS (mode) != MODE_COMPLEX_INT
7370 && GET_MODE_CLASS (mode) != MODE_COMPLEX_FLOAT
7371 && modifier != EXPAND_CONST_ADDRESS
7372 && modifier != EXPAND_INITIALIZER)
7373 /* If the field isn't aligned enough to fetch as a memref,
7374 fetch it as a bit field. */
7375 || (mode1 != BLKmode
7376 && (((TYPE_ALIGN (TREE_TYPE (tem)) < GET_MODE_ALIGNMENT (mode)
7377 || (bitpos % GET_MODE_ALIGNMENT (mode) != 0)
7378 || (MEM_P (op0)
7379 && (MEM_ALIGN (op0) < GET_MODE_ALIGNMENT (mode1)
7380 || (bitpos % GET_MODE_ALIGNMENT (mode1) != 0))))
7381 && ((modifier == EXPAND_CONST_ADDRESS
7382 || modifier == EXPAND_INITIALIZER)
7383 ? STRICT_ALIGNMENT
7384 : SLOW_UNALIGNED_ACCESS (mode1, MEM_ALIGN (op0))))
7385 || (bitpos % BITS_PER_UNIT != 0)))
7386 /* If the type and the field are a constant size and the
7387 size of the type isn't the same size as the bitfield,
7388 we must use bitfield operations. */
7389 || (bitsize >= 0
7390 && TYPE_SIZE (TREE_TYPE (exp))
7391 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp))) == INTEGER_CST
7392 && 0 != compare_tree_int (TYPE_SIZE (TREE_TYPE (exp)),
7393 bitsize)))
7395 enum machine_mode ext_mode = mode;
7397 if (ext_mode == BLKmode
7398 && ! (target != 0 && MEM_P (op0)
7399 && MEM_P (target)
7400 && bitpos % BITS_PER_UNIT == 0))
7401 ext_mode = mode_for_size (bitsize, MODE_INT, 1);
7403 if (ext_mode == BLKmode)
7405 if (target == 0)
7406 target = assign_temp (type, 0, 1, 1);
7408 if (bitsize == 0)
7409 return target;
7411 /* In this case, BITPOS must start at a byte boundary and
7412 TARGET, if specified, must be a MEM. */
7413 gcc_assert (MEM_P (op0)
7414 && (!target || MEM_P (target))
7415 && !(bitpos % BITS_PER_UNIT));
7417 emit_block_move (target,
7418 adjust_address (op0, VOIDmode,
7419 bitpos / BITS_PER_UNIT),
7420 GEN_INT ((bitsize + BITS_PER_UNIT - 1)
7421 / BITS_PER_UNIT),
7422 (modifier == EXPAND_STACK_PARM
7423 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
7425 return target;
7428 op0 = validize_mem (op0);
7430 if (MEM_P (op0) && REG_P (XEXP (op0, 0)))
7431 mark_reg_pointer (XEXP (op0, 0), MEM_ALIGN (op0));
7433 op0 = extract_bit_field (op0, bitsize, bitpos, unsignedp,
7434 (modifier == EXPAND_STACK_PARM
7435 ? NULL_RTX : target),
7436 ext_mode, ext_mode);
7438 /* If the result is a record type and BITSIZE is narrower than
7439 the mode of OP0, an integral mode, and this is a big endian
7440 machine, we must put the field into the high-order bits. */
7441 if (TREE_CODE (type) == RECORD_TYPE && BYTES_BIG_ENDIAN
7442 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
7443 && bitsize < (HOST_WIDE_INT) GET_MODE_BITSIZE (GET_MODE (op0)))
7444 op0 = expand_shift (LSHIFT_EXPR, GET_MODE (op0), op0,
7445 size_int (GET_MODE_BITSIZE (GET_MODE (op0))
7446 - bitsize),
7447 op0, 1);
7449 /* If the result type is BLKmode, store the data into a temporary
7450 of the appropriate type, but with the mode corresponding to the
7451 mode for the data we have (op0's mode). It's tempting to make
7452 this a constant type, since we know it's only being stored once,
7453 but that can cause problems if we are taking the address of this
7454 COMPONENT_REF because the MEM of any reference via that address
7455 will have flags corresponding to the type, which will not
7456 necessarily be constant. */
7457 if (mode == BLKmode)
7459 rtx new
7460 = assign_stack_temp_for_type
7461 (ext_mode, GET_MODE_BITSIZE (ext_mode), 0, type);
7463 emit_move_insn (new, op0);
7464 op0 = copy_rtx (new);
7465 PUT_MODE (op0, BLKmode);
7466 set_mem_attributes (op0, exp, 1);
7469 return op0;
7472 /* If the result is BLKmode, use that to access the object
7473 now as well. */
7474 if (mode == BLKmode)
7475 mode1 = BLKmode;
7477 /* Get a reference to just this component. */
7478 if (modifier == EXPAND_CONST_ADDRESS
7479 || modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER)
7480 op0 = adjust_address_nv (op0, mode1, bitpos / BITS_PER_UNIT);
7481 else
7482 op0 = adjust_address (op0, mode1, bitpos / BITS_PER_UNIT);
7484 if (op0 == orig_op0)
7485 op0 = copy_rtx (op0);
7487 set_mem_attributes (op0, exp, 0);
7488 if (REG_P (XEXP (op0, 0)))
7489 mark_reg_pointer (XEXP (op0, 0), MEM_ALIGN (op0));
7491 MEM_VOLATILE_P (op0) |= volatilep;
7492 if (mode == mode1 || mode1 == BLKmode || mode1 == tmode
7493 || modifier == EXPAND_CONST_ADDRESS
7494 || modifier == EXPAND_INITIALIZER)
7495 return op0;
7496 else if (target == 0)
7497 target = gen_reg_rtx (tmode != VOIDmode ? tmode : mode);
7499 convert_move (target, op0, unsignedp);
7500 return target;
7503 case OBJ_TYPE_REF:
7504 return expand_expr (OBJ_TYPE_REF_EXPR (exp), target, tmode, modifier);
7506 case CALL_EXPR:
7507 /* Check for a built-in function. */
7508 if (TREE_CODE (TREE_OPERAND (exp, 0)) == ADDR_EXPR
7509 && (TREE_CODE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0))
7510 == FUNCTION_DECL)
7511 && DECL_BUILT_IN (TREE_OPERAND (TREE_OPERAND (exp, 0), 0)))
7513 if (DECL_BUILT_IN_CLASS (TREE_OPERAND (TREE_OPERAND (exp, 0), 0))
7514 == BUILT_IN_FRONTEND)
7515 return lang_hooks.expand_expr (exp, original_target,
7516 tmode, modifier,
7517 alt_rtl);
7518 else
7519 return expand_builtin (exp, target, subtarget, tmode, ignore);
7522 return expand_call (exp, target, ignore);
7524 case NON_LVALUE_EXPR:
7525 case NOP_EXPR:
7526 case CONVERT_EXPR:
7527 if (TREE_OPERAND (exp, 0) == error_mark_node)
7528 return const0_rtx;
7530 if (TREE_CODE (type) == UNION_TYPE)
7532 tree valtype = TREE_TYPE (TREE_OPERAND (exp, 0));
7534 /* If both input and output are BLKmode, this conversion isn't doing
7535 anything except possibly changing memory attribute. */
7536 if (mode == BLKmode && TYPE_MODE (valtype) == BLKmode)
7538 rtx result = expand_expr (TREE_OPERAND (exp, 0), target, tmode,
7539 modifier);
7541 result = copy_rtx (result);
7542 set_mem_attributes (result, exp, 0);
7543 return result;
7546 if (target == 0)
7548 if (TYPE_MODE (type) != BLKmode)
7549 target = gen_reg_rtx (TYPE_MODE (type));
7550 else
7551 target = assign_temp (type, 0, 1, 1);
7554 if (MEM_P (target))
7555 /* Store data into beginning of memory target. */
7556 store_expr (TREE_OPERAND (exp, 0),
7557 adjust_address (target, TYPE_MODE (valtype), 0),
7558 modifier == EXPAND_STACK_PARM);
7560 else
7562 gcc_assert (REG_P (target));
7564 /* Store this field into a union of the proper type. */
7565 store_field (target,
7566 MIN ((int_size_in_bytes (TREE_TYPE
7567 (TREE_OPERAND (exp, 0)))
7568 * BITS_PER_UNIT),
7569 (HOST_WIDE_INT) GET_MODE_BITSIZE (mode)),
7570 0, TYPE_MODE (valtype), TREE_OPERAND (exp, 0),
7571 type, 0);
7574 /* Return the entire union. */
7575 return target;
7578 if (mode == TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 0))))
7580 op0 = expand_expr (TREE_OPERAND (exp, 0), target, VOIDmode,
7581 modifier);
7583 /* If the signedness of the conversion differs and OP0 is
7584 a promoted SUBREG, clear that indication since we now
7585 have to do the proper extension. */
7586 if (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (exp, 0))) != unsignedp
7587 && GET_CODE (op0) == SUBREG)
7588 SUBREG_PROMOTED_VAR_P (op0) = 0;
7590 return REDUCE_BIT_FIELD (op0);
7593 op0 = expand_expr (TREE_OPERAND (exp, 0), NULL_RTX, mode, modifier);
7594 if (GET_MODE (op0) == mode)
7597 /* If OP0 is a constant, just convert it into the proper mode. */
7598 else if (CONSTANT_P (op0))
7600 tree inner_type = TREE_TYPE (TREE_OPERAND (exp, 0));
7601 enum machine_mode inner_mode = TYPE_MODE (inner_type);
7603 if (modifier == EXPAND_INITIALIZER)
7604 op0 = simplify_gen_subreg (mode, op0, inner_mode,
7605 subreg_lowpart_offset (mode,
7606 inner_mode));
7607 else
7608 op0= convert_modes (mode, inner_mode, op0,
7609 TYPE_UNSIGNED (inner_type));
7612 else if (modifier == EXPAND_INITIALIZER)
7613 op0 = gen_rtx_fmt_e (unsignedp ? ZERO_EXTEND : SIGN_EXTEND, mode, op0);
7615 else if (target == 0)
7616 op0 = convert_to_mode (mode, op0,
7617 TYPE_UNSIGNED (TREE_TYPE
7618 (TREE_OPERAND (exp, 0))));
7619 else
7621 convert_move (target, op0,
7622 TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (exp, 0))));
7623 op0 = target;
7626 return REDUCE_BIT_FIELD (op0);
7628 case VIEW_CONVERT_EXPR:
7629 op0 = expand_expr (TREE_OPERAND (exp, 0), NULL_RTX, mode, modifier);
7631 /* If the input and output modes are both the same, we are done. */
7632 if (TYPE_MODE (type) == GET_MODE (op0))
7634 /* If neither mode is BLKmode, and both modes are the same size
7635 then we can use gen_lowpart. */
7636 else if (TYPE_MODE (type) != BLKmode && GET_MODE (op0) != BLKmode
7637 && GET_MODE_SIZE (TYPE_MODE (type))
7638 == GET_MODE_SIZE (GET_MODE (op0)))
7640 if (GET_CODE (op0) == SUBREG)
7641 op0 = force_reg (GET_MODE (op0), op0);
7642 op0 = gen_lowpart (TYPE_MODE (type), op0);
7644 /* If both modes are integral, then we can convert from one to the
7645 other. */
7646 else if (SCALAR_INT_MODE_P (GET_MODE (op0))
7647 && SCALAR_INT_MODE_P (TYPE_MODE (type)))
7648 op0 = convert_modes (TYPE_MODE (type), GET_MODE (op0), op0,
7649 TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (exp, 0))));
7650 /* As a last resort, spill op0 to memory, and reload it in a
7651 different mode. */
7652 else if (!MEM_P (op0))
7654 /* If the operand is not a MEM, force it into memory. Since we
7655 are going to be be changing the mode of the MEM, don't call
7656 force_const_mem for constants because we don't allow pool
7657 constants to change mode. */
7658 tree inner_type = TREE_TYPE (TREE_OPERAND (exp, 0));
7660 gcc_assert (!TREE_ADDRESSABLE (exp));
7662 if (target == 0 || GET_MODE (target) != TYPE_MODE (inner_type))
7663 target
7664 = assign_stack_temp_for_type
7665 (TYPE_MODE (inner_type),
7666 GET_MODE_SIZE (TYPE_MODE (inner_type)), 0, inner_type);
7668 emit_move_insn (target, op0);
7669 op0 = target;
7672 /* At this point, OP0 is in the correct mode. If the output type is such
7673 that the operand is known to be aligned, indicate that it is.
7674 Otherwise, we need only be concerned about alignment for non-BLKmode
7675 results. */
7676 if (MEM_P (op0))
7678 op0 = copy_rtx (op0);
7680 if (TYPE_ALIGN_OK (type))
7681 set_mem_align (op0, MAX (MEM_ALIGN (op0), TYPE_ALIGN (type)));
7682 else if (TYPE_MODE (type) != BLKmode && STRICT_ALIGNMENT
7683 && MEM_ALIGN (op0) < GET_MODE_ALIGNMENT (TYPE_MODE (type)))
7685 tree inner_type = TREE_TYPE (TREE_OPERAND (exp, 0));
7686 HOST_WIDE_INT temp_size
7687 = MAX (int_size_in_bytes (inner_type),
7688 (HOST_WIDE_INT) GET_MODE_SIZE (TYPE_MODE (type)));
7689 rtx new = assign_stack_temp_for_type (TYPE_MODE (type),
7690 temp_size, 0, type);
7691 rtx new_with_op0_mode = adjust_address (new, GET_MODE (op0), 0);
7693 gcc_assert (!TREE_ADDRESSABLE (exp));
7695 if (GET_MODE (op0) == BLKmode)
7696 emit_block_move (new_with_op0_mode, op0,
7697 GEN_INT (GET_MODE_SIZE (TYPE_MODE (type))),
7698 (modifier == EXPAND_STACK_PARM
7699 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
7700 else
7701 emit_move_insn (new_with_op0_mode, op0);
7703 op0 = new;
7706 op0 = adjust_address (op0, TYPE_MODE (type), 0);
7709 return op0;
7711 case PLUS_EXPR:
7712 /* If we are adding a constant, a VAR_DECL that is sp, fp, or ap, and
7713 something else, make sure we add the register to the constant and
7714 then to the other thing. This case can occur during strength
7715 reduction and doing it this way will produce better code if the
7716 frame pointer or argument pointer is eliminated.
7718 fold-const.c will ensure that the constant is always in the inner
7719 PLUS_EXPR, so the only case we need to do anything about is if
7720 sp, ap, or fp is our second argument, in which case we must swap
7721 the innermost first argument and our second argument. */
7723 if (TREE_CODE (TREE_OPERAND (exp, 0)) == PLUS_EXPR
7724 && TREE_CODE (TREE_OPERAND (TREE_OPERAND (exp, 0), 1)) == INTEGER_CST
7725 && TREE_CODE (TREE_OPERAND (exp, 1)) == VAR_DECL
7726 && (DECL_RTL (TREE_OPERAND (exp, 1)) == frame_pointer_rtx
7727 || DECL_RTL (TREE_OPERAND (exp, 1)) == stack_pointer_rtx
7728 || DECL_RTL (TREE_OPERAND (exp, 1)) == arg_pointer_rtx))
7730 tree t = TREE_OPERAND (exp, 1);
7732 TREE_OPERAND (exp, 1) = TREE_OPERAND (TREE_OPERAND (exp, 0), 0);
7733 TREE_OPERAND (TREE_OPERAND (exp, 0), 0) = t;
7736 /* If the result is to be ptr_mode and we are adding an integer to
7737 something, we might be forming a constant. So try to use
7738 plus_constant. If it produces a sum and we can't accept it,
7739 use force_operand. This allows P = &ARR[const] to generate
7740 efficient code on machines where a SYMBOL_REF is not a valid
7741 address.
7743 If this is an EXPAND_SUM call, always return the sum. */
7744 if (modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER
7745 || (mode == ptr_mode && (unsignedp || ! flag_trapv)))
7747 if (modifier == EXPAND_STACK_PARM)
7748 target = 0;
7749 if (TREE_CODE (TREE_OPERAND (exp, 0)) == INTEGER_CST
7750 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
7751 && TREE_CONSTANT (TREE_OPERAND (exp, 1)))
7753 rtx constant_part;
7755 op1 = expand_expr (TREE_OPERAND (exp, 1), subtarget, VOIDmode,
7756 EXPAND_SUM);
7757 /* Use immed_double_const to ensure that the constant is
7758 truncated according to the mode of OP1, then sign extended
7759 to a HOST_WIDE_INT. Using the constant directly can result
7760 in non-canonical RTL in a 64x32 cross compile. */
7761 constant_part
7762 = immed_double_const (TREE_INT_CST_LOW (TREE_OPERAND (exp, 0)),
7763 (HOST_WIDE_INT) 0,
7764 TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 1))));
7765 op1 = plus_constant (op1, INTVAL (constant_part));
7766 if (modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER)
7767 op1 = force_operand (op1, target);
7768 return REDUCE_BIT_FIELD (op1);
7771 else if (TREE_CODE (TREE_OPERAND (exp, 1)) == INTEGER_CST
7772 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
7773 && TREE_CONSTANT (TREE_OPERAND (exp, 0)))
7775 rtx constant_part;
7777 op0 = expand_expr (TREE_OPERAND (exp, 0), subtarget, VOIDmode,
7778 (modifier == EXPAND_INITIALIZER
7779 ? EXPAND_INITIALIZER : EXPAND_SUM));
7780 if (! CONSTANT_P (op0))
7782 op1 = expand_expr (TREE_OPERAND (exp, 1), NULL_RTX,
7783 VOIDmode, modifier);
7784 /* Return a PLUS if modifier says it's OK. */
7785 if (modifier == EXPAND_SUM
7786 || modifier == EXPAND_INITIALIZER)
7787 return simplify_gen_binary (PLUS, mode, op0, op1);
7788 goto binop2;
7790 /* Use immed_double_const to ensure that the constant is
7791 truncated according to the mode of OP1, then sign extended
7792 to a HOST_WIDE_INT. Using the constant directly can result
7793 in non-canonical RTL in a 64x32 cross compile. */
7794 constant_part
7795 = immed_double_const (TREE_INT_CST_LOW (TREE_OPERAND (exp, 1)),
7796 (HOST_WIDE_INT) 0,
7797 TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 0))));
7798 op0 = plus_constant (op0, INTVAL (constant_part));
7799 if (modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER)
7800 op0 = force_operand (op0, target);
7801 return REDUCE_BIT_FIELD (op0);
7805 /* No sense saving up arithmetic to be done
7806 if it's all in the wrong mode to form part of an address.
7807 And force_operand won't know whether to sign-extend or
7808 zero-extend. */
7809 if ((modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER)
7810 || mode != ptr_mode)
7812 expand_operands (TREE_OPERAND (exp, 0), TREE_OPERAND (exp, 1),
7813 subtarget, &op0, &op1, 0);
7814 if (op0 == const0_rtx)
7815 return op1;
7816 if (op1 == const0_rtx)
7817 return op0;
7818 goto binop2;
7821 expand_operands (TREE_OPERAND (exp, 0), TREE_OPERAND (exp, 1),
7822 subtarget, &op0, &op1, modifier);
7823 return REDUCE_BIT_FIELD (simplify_gen_binary (PLUS, mode, op0, op1));
7825 case MINUS_EXPR:
7826 /* For initializers, we are allowed to return a MINUS of two
7827 symbolic constants. Here we handle all cases when both operands
7828 are constant. */
7829 /* Handle difference of two symbolic constants,
7830 for the sake of an initializer. */
7831 if ((modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER)
7832 && really_constant_p (TREE_OPERAND (exp, 0))
7833 && really_constant_p (TREE_OPERAND (exp, 1)))
7835 expand_operands (TREE_OPERAND (exp, 0), TREE_OPERAND (exp, 1),
7836 NULL_RTX, &op0, &op1, modifier);
7838 /* If the last operand is a CONST_INT, use plus_constant of
7839 the negated constant. Else make the MINUS. */
7840 if (GET_CODE (op1) == CONST_INT)
7841 return REDUCE_BIT_FIELD (plus_constant (op0, - INTVAL (op1)));
7842 else
7843 return REDUCE_BIT_FIELD (gen_rtx_MINUS (mode, op0, op1));
7846 /* No sense saving up arithmetic to be done
7847 if it's all in the wrong mode to form part of an address.
7848 And force_operand won't know whether to sign-extend or
7849 zero-extend. */
7850 if ((modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER)
7851 || mode != ptr_mode)
7852 goto binop;
7854 expand_operands (TREE_OPERAND (exp, 0), TREE_OPERAND (exp, 1),
7855 subtarget, &op0, &op1, modifier);
7857 /* Convert A - const to A + (-const). */
7858 if (GET_CODE (op1) == CONST_INT)
7860 op1 = negate_rtx (mode, op1);
7861 return REDUCE_BIT_FIELD (simplify_gen_binary (PLUS, mode, op0, op1));
7864 goto binop2;
7866 case MULT_EXPR:
7867 /* If first operand is constant, swap them.
7868 Thus the following special case checks need only
7869 check the second operand. */
7870 if (TREE_CODE (TREE_OPERAND (exp, 0)) == INTEGER_CST)
7872 tree t1 = TREE_OPERAND (exp, 0);
7873 TREE_OPERAND (exp, 0) = TREE_OPERAND (exp, 1);
7874 TREE_OPERAND (exp, 1) = t1;
7877 /* Attempt to return something suitable for generating an
7878 indexed address, for machines that support that. */
7880 if (modifier == EXPAND_SUM && mode == ptr_mode
7881 && host_integerp (TREE_OPERAND (exp, 1), 0))
7883 tree exp1 = TREE_OPERAND (exp, 1);
7885 op0 = expand_expr (TREE_OPERAND (exp, 0), subtarget, VOIDmode,
7886 EXPAND_SUM);
7888 if (!REG_P (op0))
7889 op0 = force_operand (op0, NULL_RTX);
7890 if (!REG_P (op0))
7891 op0 = copy_to_mode_reg (mode, op0);
7893 return REDUCE_BIT_FIELD (gen_rtx_MULT (mode, op0,
7894 gen_int_mode (tree_low_cst (exp1, 0),
7895 TYPE_MODE (TREE_TYPE (exp1)))));
7898 if (modifier == EXPAND_STACK_PARM)
7899 target = 0;
7901 /* Check for multiplying things that have been extended
7902 from a narrower type. If this machine supports multiplying
7903 in that narrower type with a result in the desired type,
7904 do it that way, and avoid the explicit type-conversion. */
7906 subexp0 = TREE_OPERAND (exp, 0);
7907 subexp1 = TREE_OPERAND (exp, 1);
7908 /* First, check if we have a multiplication of one signed and one
7909 unsigned operand. */
7910 if (TREE_CODE (subexp0) == NOP_EXPR
7911 && TREE_CODE (subexp1) == NOP_EXPR
7912 && TREE_CODE (type) == INTEGER_TYPE
7913 && (TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (subexp0, 0)))
7914 < TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (exp, 0))))
7915 && (TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (subexp0, 0)))
7916 == TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (subexp1, 0))))
7917 && (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (subexp0, 0)))
7918 != TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (subexp1, 0)))))
7920 enum machine_mode innermode
7921 = TYPE_MODE (TREE_TYPE (TREE_OPERAND (subexp0, 0)));
7922 this_optab = usmul_widen_optab;
7923 if (mode == GET_MODE_WIDER_MODE (innermode))
7925 if (this_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
7927 if (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (subexp0, 0))))
7928 expand_operands (TREE_OPERAND (subexp0, 0),
7929 TREE_OPERAND (subexp1, 0),
7930 NULL_RTX, &op0, &op1, 0);
7931 else
7932 expand_operands (TREE_OPERAND (subexp0, 0),
7933 TREE_OPERAND (subexp1, 0),
7934 NULL_RTX, &op1, &op0, 0);
7936 goto binop3;
7940 /* Check for a multiplication with matching signedness. */
7941 else if (TREE_CODE (TREE_OPERAND (exp, 0)) == NOP_EXPR
7942 && TREE_CODE (type) == INTEGER_TYPE
7943 && (TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0)))
7944 < TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (exp, 0))))
7945 && ((TREE_CODE (TREE_OPERAND (exp, 1)) == INTEGER_CST
7946 && int_fits_type_p (TREE_OPERAND (exp, 1),
7947 TREE_TYPE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0)))
7948 /* Don't use a widening multiply if a shift will do. */
7949 && ((GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 1))))
7950 > HOST_BITS_PER_WIDE_INT)
7951 || exact_log2 (TREE_INT_CST_LOW (TREE_OPERAND (exp, 1))) < 0))
7953 (TREE_CODE (TREE_OPERAND (exp, 1)) == NOP_EXPR
7954 && (TYPE_PRECISION (TREE_TYPE
7955 (TREE_OPERAND (TREE_OPERAND (exp, 1), 0)))
7956 == TYPE_PRECISION (TREE_TYPE
7957 (TREE_OPERAND
7958 (TREE_OPERAND (exp, 0), 0))))
7959 /* If both operands are extended, they must either both
7960 be zero-extended or both be sign-extended. */
7961 && (TYPE_UNSIGNED (TREE_TYPE
7962 (TREE_OPERAND (TREE_OPERAND (exp, 1), 0)))
7963 == TYPE_UNSIGNED (TREE_TYPE
7964 (TREE_OPERAND
7965 (TREE_OPERAND (exp, 0), 0)))))))
7967 tree op0type = TREE_TYPE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0));
7968 enum machine_mode innermode = TYPE_MODE (op0type);
7969 bool zextend_p = TYPE_UNSIGNED (op0type);
7970 optab other_optab = zextend_p ? smul_widen_optab : umul_widen_optab;
7971 this_optab = zextend_p ? umul_widen_optab : smul_widen_optab;
7973 if (mode == GET_MODE_2XWIDER_MODE (innermode))
7975 if (this_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
7977 if (TREE_CODE (TREE_OPERAND (exp, 1)) == INTEGER_CST)
7978 expand_operands (TREE_OPERAND (TREE_OPERAND (exp, 0), 0),
7979 TREE_OPERAND (exp, 1),
7980 NULL_RTX, &op0, &op1, EXPAND_NORMAL);
7981 else
7982 expand_operands (TREE_OPERAND (TREE_OPERAND (exp, 0), 0),
7983 TREE_OPERAND (TREE_OPERAND (exp, 1), 0),
7984 NULL_RTX, &op0, &op1, EXPAND_NORMAL);
7985 goto binop3;
7987 else if (other_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing
7988 && innermode == word_mode)
7990 rtx htem, hipart;
7991 op0 = expand_normal (TREE_OPERAND (TREE_OPERAND (exp, 0), 0));
7992 if (TREE_CODE (TREE_OPERAND (exp, 1)) == INTEGER_CST)
7993 op1 = convert_modes (innermode, mode,
7994 expand_normal (TREE_OPERAND (exp, 1)),
7995 unsignedp);
7996 else
7997 op1 = expand_normal (TREE_OPERAND (TREE_OPERAND (exp, 1), 0));
7998 temp = expand_binop (mode, other_optab, op0, op1, target,
7999 unsignedp, OPTAB_LIB_WIDEN);
8000 hipart = gen_highpart (innermode, temp);
8001 htem = expand_mult_highpart_adjust (innermode, hipart,
8002 op0, op1, hipart,
8003 zextend_p);
8004 if (htem != hipart)
8005 emit_move_insn (hipart, htem);
8006 return REDUCE_BIT_FIELD (temp);
8010 expand_operands (TREE_OPERAND (exp, 0), TREE_OPERAND (exp, 1),
8011 subtarget, &op0, &op1, 0);
8012 return REDUCE_BIT_FIELD (expand_mult (mode, op0, op1, target, unsignedp));
8014 case TRUNC_DIV_EXPR:
8015 case FLOOR_DIV_EXPR:
8016 case CEIL_DIV_EXPR:
8017 case ROUND_DIV_EXPR:
8018 case EXACT_DIV_EXPR:
8019 if (modifier == EXPAND_STACK_PARM)
8020 target = 0;
8021 /* Possible optimization: compute the dividend with EXPAND_SUM
8022 then if the divisor is constant can optimize the case
8023 where some terms of the dividend have coeffs divisible by it. */
8024 expand_operands (TREE_OPERAND (exp, 0), TREE_OPERAND (exp, 1),
8025 subtarget, &op0, &op1, 0);
8026 return expand_divmod (0, code, mode, op0, op1, target, unsignedp);
8028 case RDIV_EXPR:
8029 goto binop;
8031 case TRUNC_MOD_EXPR:
8032 case FLOOR_MOD_EXPR:
8033 case CEIL_MOD_EXPR:
8034 case ROUND_MOD_EXPR:
8035 if (modifier == EXPAND_STACK_PARM)
8036 target = 0;
8037 expand_operands (TREE_OPERAND (exp, 0), TREE_OPERAND (exp, 1),
8038 subtarget, &op0, &op1, 0);
8039 return expand_divmod (1, code, mode, op0, op1, target, unsignedp);
8041 case FIX_ROUND_EXPR:
8042 case FIX_FLOOR_EXPR:
8043 case FIX_CEIL_EXPR:
8044 gcc_unreachable (); /* Not used for C. */
8046 case FIX_TRUNC_EXPR:
8047 op0 = expand_normal (TREE_OPERAND (exp, 0));
8048 if (target == 0 || modifier == EXPAND_STACK_PARM)
8049 target = gen_reg_rtx (mode);
8050 expand_fix (target, op0, unsignedp);
8051 return target;
8053 case FLOAT_EXPR:
8054 op0 = expand_normal (TREE_OPERAND (exp, 0));
8055 if (target == 0 || modifier == EXPAND_STACK_PARM)
8056 target = gen_reg_rtx (mode);
8057 /* expand_float can't figure out what to do if FROM has VOIDmode.
8058 So give it the correct mode. With -O, cse will optimize this. */
8059 if (GET_MODE (op0) == VOIDmode)
8060 op0 = copy_to_mode_reg (TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 0))),
8061 op0);
8062 expand_float (target, op0,
8063 TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (exp, 0))));
8064 return target;
8066 case NEGATE_EXPR:
8067 op0 = expand_expr (TREE_OPERAND (exp, 0), subtarget, VOIDmode, 0);
8068 if (modifier == EXPAND_STACK_PARM)
8069 target = 0;
8070 temp = expand_unop (mode,
8071 optab_for_tree_code (NEGATE_EXPR, type),
8072 op0, target, 0);
8073 gcc_assert (temp);
8074 return REDUCE_BIT_FIELD (temp);
8076 case ABS_EXPR:
8077 op0 = expand_expr (TREE_OPERAND (exp, 0), subtarget, VOIDmode, 0);
8078 if (modifier == EXPAND_STACK_PARM)
8079 target = 0;
8081 /* ABS_EXPR is not valid for complex arguments. */
8082 gcc_assert (GET_MODE_CLASS (mode) != MODE_COMPLEX_INT
8083 && GET_MODE_CLASS (mode) != MODE_COMPLEX_FLOAT);
8085 /* Unsigned abs is simply the operand. Testing here means we don't
8086 risk generating incorrect code below. */
8087 if (TYPE_UNSIGNED (type))
8088 return op0;
8090 return expand_abs (mode, op0, target, unsignedp,
8091 safe_from_p (target, TREE_OPERAND (exp, 0), 1));
8093 case MAX_EXPR:
8094 case MIN_EXPR:
8095 target = original_target;
8096 if (target == 0
8097 || modifier == EXPAND_STACK_PARM
8098 || (MEM_P (target) && MEM_VOLATILE_P (target))
8099 || GET_MODE (target) != mode
8100 || (REG_P (target)
8101 && REGNO (target) < FIRST_PSEUDO_REGISTER))
8102 target = gen_reg_rtx (mode);
8103 expand_operands (TREE_OPERAND (exp, 0), TREE_OPERAND (exp, 1),
8104 target, &op0, &op1, 0);
8106 /* First try to do it with a special MIN or MAX instruction.
8107 If that does not win, use a conditional jump to select the proper
8108 value. */
8109 this_optab = optab_for_tree_code (code, type);
8110 temp = expand_binop (mode, this_optab, op0, op1, target, unsignedp,
8111 OPTAB_WIDEN);
8112 if (temp != 0)
8113 return temp;
8115 /* At this point, a MEM target is no longer useful; we will get better
8116 code without it. */
8118 if (! REG_P (target))
8119 target = gen_reg_rtx (mode);
8121 /* If op1 was placed in target, swap op0 and op1. */
8122 if (target != op0 && target == op1)
8124 temp = op0;
8125 op0 = op1;
8126 op1 = temp;
8129 /* We generate better code and avoid problems with op1 mentioning
8130 target by forcing op1 into a pseudo if it isn't a constant. */
8131 if (! CONSTANT_P (op1))
8132 op1 = force_reg (mode, op1);
8135 enum rtx_code comparison_code;
8136 rtx cmpop1 = op1;
8138 if (code == MAX_EXPR)
8139 comparison_code = unsignedp ? GEU : GE;
8140 else
8141 comparison_code = unsignedp ? LEU : LE;
8143 /* Canonicalize to comparisons against 0. */
8144 if (op1 == const1_rtx)
8146 /* Converting (a >= 1 ? a : 1) into (a > 0 ? a : 1)
8147 or (a != 0 ? a : 1) for unsigned.
8148 For MIN we are safe converting (a <= 1 ? a : 1)
8149 into (a <= 0 ? a : 1) */
8150 cmpop1 = const0_rtx;
8151 if (code == MAX_EXPR)
8152 comparison_code = unsignedp ? NE : GT;
8154 if (op1 == constm1_rtx && !unsignedp)
8156 /* Converting (a >= -1 ? a : -1) into (a >= 0 ? a : -1)
8157 and (a <= -1 ? a : -1) into (a < 0 ? a : -1) */
8158 cmpop1 = const0_rtx;
8159 if (code == MIN_EXPR)
8160 comparison_code = LT;
8162 #ifdef HAVE_conditional_move
8163 /* Use a conditional move if possible. */
8164 if (can_conditionally_move_p (mode))
8166 rtx insn;
8168 /* ??? Same problem as in expmed.c: emit_conditional_move
8169 forces a stack adjustment via compare_from_rtx, and we
8170 lose the stack adjustment if the sequence we are about
8171 to create is discarded. */
8172 do_pending_stack_adjust ();
8174 start_sequence ();
8176 /* Try to emit the conditional move. */
8177 insn = emit_conditional_move (target, comparison_code,
8178 op0, cmpop1, mode,
8179 op0, op1, mode,
8180 unsignedp);
8182 /* If we could do the conditional move, emit the sequence,
8183 and return. */
8184 if (insn)
8186 rtx seq = get_insns ();
8187 end_sequence ();
8188 emit_insn (seq);
8189 return target;
8192 /* Otherwise discard the sequence and fall back to code with
8193 branches. */
8194 end_sequence ();
8196 #endif
8197 if (target != op0)
8198 emit_move_insn (target, op0);
8200 temp = gen_label_rtx ();
8201 do_compare_rtx_and_jump (target, cmpop1, comparison_code,
8202 unsignedp, mode, NULL_RTX, NULL_RTX, temp);
8204 emit_move_insn (target, op1);
8205 emit_label (temp);
8206 return target;
8208 case BIT_NOT_EXPR:
8209 op0 = expand_expr (TREE_OPERAND (exp, 0), subtarget, VOIDmode, 0);
8210 if (modifier == EXPAND_STACK_PARM)
8211 target = 0;
8212 temp = expand_unop (mode, one_cmpl_optab, op0, target, 1);
8213 gcc_assert (temp);
8214 return temp;
8216 /* ??? Can optimize bitwise operations with one arg constant.
8217 Can optimize (a bitwise1 n) bitwise2 (a bitwise3 b)
8218 and (a bitwise1 b) bitwise2 b (etc)
8219 but that is probably not worth while. */
8221 /* BIT_AND_EXPR is for bitwise anding. TRUTH_AND_EXPR is for anding two
8222 boolean values when we want in all cases to compute both of them. In
8223 general it is fastest to do TRUTH_AND_EXPR by computing both operands
8224 as actual zero-or-1 values and then bitwise anding. In cases where
8225 there cannot be any side effects, better code would be made by
8226 treating TRUTH_AND_EXPR like TRUTH_ANDIF_EXPR; but the question is
8227 how to recognize those cases. */
8229 case TRUTH_AND_EXPR:
8230 code = BIT_AND_EXPR;
8231 case BIT_AND_EXPR:
8232 goto binop;
8234 case TRUTH_OR_EXPR:
8235 code = BIT_IOR_EXPR;
8236 case BIT_IOR_EXPR:
8237 goto binop;
8239 case TRUTH_XOR_EXPR:
8240 code = BIT_XOR_EXPR;
8241 case BIT_XOR_EXPR:
8242 goto binop;
8244 case LSHIFT_EXPR:
8245 case RSHIFT_EXPR:
8246 case LROTATE_EXPR:
8247 case RROTATE_EXPR:
8248 if (! safe_from_p (subtarget, TREE_OPERAND (exp, 1), 1))
8249 subtarget = 0;
8250 if (modifier == EXPAND_STACK_PARM)
8251 target = 0;
8252 op0 = expand_expr (TREE_OPERAND (exp, 0), subtarget, VOIDmode, 0);
8253 return expand_shift (code, mode, op0, TREE_OPERAND (exp, 1), target,
8254 unsignedp);
8256 /* Could determine the answer when only additive constants differ. Also,
8257 the addition of one can be handled by changing the condition. */
8258 case LT_EXPR:
8259 case LE_EXPR:
8260 case GT_EXPR:
8261 case GE_EXPR:
8262 case EQ_EXPR:
8263 case NE_EXPR:
8264 case UNORDERED_EXPR:
8265 case ORDERED_EXPR:
8266 case UNLT_EXPR:
8267 case UNLE_EXPR:
8268 case UNGT_EXPR:
8269 case UNGE_EXPR:
8270 case UNEQ_EXPR:
8271 case LTGT_EXPR:
8272 temp = do_store_flag (exp,
8273 modifier != EXPAND_STACK_PARM ? target : NULL_RTX,
8274 tmode != VOIDmode ? tmode : mode, 0);
8275 if (temp != 0)
8276 return temp;
8278 /* For foo != 0, load foo, and if it is nonzero load 1 instead. */
8279 if (code == NE_EXPR && integer_zerop (TREE_OPERAND (exp, 1))
8280 && original_target
8281 && REG_P (original_target)
8282 && (GET_MODE (original_target)
8283 == TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 0)))))
8285 temp = expand_expr (TREE_OPERAND (exp, 0), original_target,
8286 VOIDmode, 0);
8288 /* If temp is constant, we can just compute the result. */
8289 if (GET_CODE (temp) == CONST_INT)
8291 if (INTVAL (temp) != 0)
8292 emit_move_insn (target, const1_rtx);
8293 else
8294 emit_move_insn (target, const0_rtx);
8296 return target;
8299 if (temp != original_target)
8301 enum machine_mode mode1 = GET_MODE (temp);
8302 if (mode1 == VOIDmode)
8303 mode1 = tmode != VOIDmode ? tmode : mode;
8305 temp = copy_to_mode_reg (mode1, temp);
8308 op1 = gen_label_rtx ();
8309 emit_cmp_and_jump_insns (temp, const0_rtx, EQ, NULL_RTX,
8310 GET_MODE (temp), unsignedp, op1);
8311 emit_move_insn (temp, const1_rtx);
8312 emit_label (op1);
8313 return temp;
8316 /* If no set-flag instruction, must generate a conditional store
8317 into a temporary variable. Drop through and handle this
8318 like && and ||. */
8320 if (! ignore
8321 && (target == 0
8322 || modifier == EXPAND_STACK_PARM
8323 || ! safe_from_p (target, exp, 1)
8324 /* Make sure we don't have a hard reg (such as function's return
8325 value) live across basic blocks, if not optimizing. */
8326 || (!optimize && REG_P (target)
8327 && REGNO (target) < FIRST_PSEUDO_REGISTER)))
8328 target = gen_reg_rtx (tmode != VOIDmode ? tmode : mode);
8330 if (target)
8331 emit_move_insn (target, const0_rtx);
8333 op1 = gen_label_rtx ();
8334 jumpifnot (exp, op1);
8336 if (target)
8337 emit_move_insn (target, const1_rtx);
8339 emit_label (op1);
8340 return ignore ? const0_rtx : target;
8342 case TRUTH_NOT_EXPR:
8343 if (modifier == EXPAND_STACK_PARM)
8344 target = 0;
8345 op0 = expand_expr (TREE_OPERAND (exp, 0), target, VOIDmode, 0);
8346 /* The parser is careful to generate TRUTH_NOT_EXPR
8347 only with operands that are always zero or one. */
8348 temp = expand_binop (mode, xor_optab, op0, const1_rtx,
8349 target, 1, OPTAB_LIB_WIDEN);
8350 gcc_assert (temp);
8351 return temp;
8353 case STATEMENT_LIST:
8355 tree_stmt_iterator iter;
8357 gcc_assert (ignore);
8359 for (iter = tsi_start (exp); !tsi_end_p (iter); tsi_next (&iter))
8360 expand_expr (tsi_stmt (iter), const0_rtx, VOIDmode, modifier);
8362 return const0_rtx;
8364 case COND_EXPR:
8365 /* A COND_EXPR with its type being VOID_TYPE represents a
8366 conditional jump and is handled in
8367 expand_gimple_cond_expr. */
8368 gcc_assert (!VOID_TYPE_P (TREE_TYPE (exp)));
8370 /* Note that COND_EXPRs whose type is a structure or union
8371 are required to be constructed to contain assignments of
8372 a temporary variable, so that we can evaluate them here
8373 for side effect only. If type is void, we must do likewise. */
8375 gcc_assert (!TREE_ADDRESSABLE (type)
8376 && !ignore
8377 && TREE_TYPE (TREE_OPERAND (exp, 1)) != void_type_node
8378 && TREE_TYPE (TREE_OPERAND (exp, 2)) != void_type_node);
8380 /* If we are not to produce a result, we have no target. Otherwise,
8381 if a target was specified use it; it will not be used as an
8382 intermediate target unless it is safe. If no target, use a
8383 temporary. */
8385 if (modifier != EXPAND_STACK_PARM
8386 && original_target
8387 && safe_from_p (original_target, TREE_OPERAND (exp, 0), 1)
8388 && GET_MODE (original_target) == mode
8389 #ifdef HAVE_conditional_move
8390 && (! can_conditionally_move_p (mode)
8391 || REG_P (original_target))
8392 #endif
8393 && !MEM_P (original_target))
8394 temp = original_target;
8395 else
8396 temp = assign_temp (type, 0, 0, 1);
8398 do_pending_stack_adjust ();
8399 NO_DEFER_POP;
8400 op0 = gen_label_rtx ();
8401 op1 = gen_label_rtx ();
8402 jumpifnot (TREE_OPERAND (exp, 0), op0);
8403 store_expr (TREE_OPERAND (exp, 1), temp,
8404 modifier == EXPAND_STACK_PARM);
8406 emit_jump_insn (gen_jump (op1));
8407 emit_barrier ();
8408 emit_label (op0);
8409 store_expr (TREE_OPERAND (exp, 2), temp,
8410 modifier == EXPAND_STACK_PARM);
8412 emit_label (op1);
8413 OK_DEFER_POP;
8414 return temp;
8416 case VEC_COND_EXPR:
8417 target = expand_vec_cond_expr (exp, target);
8418 return target;
8420 case MODIFY_EXPR:
8422 tree lhs = TREE_OPERAND (exp, 0);
8423 tree rhs = TREE_OPERAND (exp, 1);
8425 gcc_assert (ignore);
8427 /* Check for |= or &= of a bitfield of size one into another bitfield
8428 of size 1. In this case, (unless we need the result of the
8429 assignment) we can do this more efficiently with a
8430 test followed by an assignment, if necessary.
8432 ??? At this point, we can't get a BIT_FIELD_REF here. But if
8433 things change so we do, this code should be enhanced to
8434 support it. */
8435 if (TREE_CODE (lhs) == COMPONENT_REF
8436 && (TREE_CODE (rhs) == BIT_IOR_EXPR
8437 || TREE_CODE (rhs) == BIT_AND_EXPR)
8438 && TREE_OPERAND (rhs, 0) == lhs
8439 && TREE_CODE (TREE_OPERAND (rhs, 1)) == COMPONENT_REF
8440 && integer_onep (DECL_SIZE (TREE_OPERAND (lhs, 1)))
8441 && integer_onep (DECL_SIZE (TREE_OPERAND (TREE_OPERAND (rhs, 1), 1))))
8443 rtx label = gen_label_rtx ();
8445 do_jump (TREE_OPERAND (rhs, 1),
8446 TREE_CODE (rhs) == BIT_IOR_EXPR ? label : 0,
8447 TREE_CODE (rhs) == BIT_AND_EXPR ? label : 0);
8448 expand_assignment (lhs, convert (TREE_TYPE (rhs),
8449 (TREE_CODE (rhs) == BIT_IOR_EXPR
8450 ? integer_one_node
8451 : integer_zero_node)));
8452 do_pending_stack_adjust ();
8453 emit_label (label);
8454 return const0_rtx;
8457 expand_assignment (lhs, rhs);
8459 return const0_rtx;
8462 case RETURN_EXPR:
8463 if (!TREE_OPERAND (exp, 0))
8464 expand_null_return ();
8465 else
8466 expand_return (TREE_OPERAND (exp, 0));
8467 return const0_rtx;
8469 case ADDR_EXPR:
8470 return expand_expr_addr_expr (exp, target, tmode, modifier);
8472 case COMPLEX_EXPR:
8473 /* Get the rtx code of the operands. */
8474 op0 = expand_normal (TREE_OPERAND (exp, 0));
8475 op1 = expand_normal (TREE_OPERAND (exp, 1));
8477 if (!target)
8478 target = gen_reg_rtx (TYPE_MODE (TREE_TYPE (exp)));
8480 /* Move the real (op0) and imaginary (op1) parts to their location. */
8481 write_complex_part (target, op0, false);
8482 write_complex_part (target, op1, true);
8484 return target;
8486 case REALPART_EXPR:
8487 op0 = expand_normal (TREE_OPERAND (exp, 0));
8488 return read_complex_part (op0, false);
8490 case IMAGPART_EXPR:
8491 op0 = expand_normal (TREE_OPERAND (exp, 0));
8492 return read_complex_part (op0, true);
8494 case RESX_EXPR:
8495 expand_resx_expr (exp);
8496 return const0_rtx;
8498 case TRY_CATCH_EXPR:
8499 case CATCH_EXPR:
8500 case EH_FILTER_EXPR:
8501 case TRY_FINALLY_EXPR:
8502 /* Lowered by tree-eh.c. */
8503 gcc_unreachable ();
8505 case WITH_CLEANUP_EXPR:
8506 case CLEANUP_POINT_EXPR:
8507 case TARGET_EXPR:
8508 case CASE_LABEL_EXPR:
8509 case VA_ARG_EXPR:
8510 case BIND_EXPR:
8511 case INIT_EXPR:
8512 case CONJ_EXPR:
8513 case COMPOUND_EXPR:
8514 case PREINCREMENT_EXPR:
8515 case PREDECREMENT_EXPR:
8516 case POSTINCREMENT_EXPR:
8517 case POSTDECREMENT_EXPR:
8518 case LOOP_EXPR:
8519 case EXIT_EXPR:
8520 case TRUTH_ANDIF_EXPR:
8521 case TRUTH_ORIF_EXPR:
8522 /* Lowered by gimplify.c. */
8523 gcc_unreachable ();
8525 case EXC_PTR_EXPR:
8526 return get_exception_pointer (cfun);
8528 case FILTER_EXPR:
8529 return get_exception_filter (cfun);
8531 case FDESC_EXPR:
8532 /* Function descriptors are not valid except for as
8533 initialization constants, and should not be expanded. */
8534 gcc_unreachable ();
8536 case SWITCH_EXPR:
8537 expand_case (exp);
8538 return const0_rtx;
8540 case LABEL_EXPR:
8541 expand_label (TREE_OPERAND (exp, 0));
8542 return const0_rtx;
8544 case ASM_EXPR:
8545 expand_asm_expr (exp);
8546 return const0_rtx;
8548 case WITH_SIZE_EXPR:
8549 /* WITH_SIZE_EXPR expands to its first argument. The caller should
8550 have pulled out the size to use in whatever context it needed. */
8551 return expand_expr_real (TREE_OPERAND (exp, 0), original_target, tmode,
8552 modifier, alt_rtl);
8554 case REALIGN_LOAD_EXPR:
8556 tree oprnd0 = TREE_OPERAND (exp, 0);
8557 tree oprnd1 = TREE_OPERAND (exp, 1);
8558 tree oprnd2 = TREE_OPERAND (exp, 2);
8559 rtx op2;
8561 this_optab = optab_for_tree_code (code, type);
8562 expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
8563 op2 = expand_normal (oprnd2);
8564 temp = expand_ternary_op (mode, this_optab, op0, op1, op2,
8565 target, unsignedp);
8566 gcc_assert (temp);
8567 return temp;
8570 case DOT_PROD_EXPR:
8572 tree oprnd0 = TREE_OPERAND (exp, 0);
8573 tree oprnd1 = TREE_OPERAND (exp, 1);
8574 tree oprnd2 = TREE_OPERAND (exp, 2);
8575 rtx op2;
8577 expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
8578 op2 = expand_normal (oprnd2);
8579 target = expand_widen_pattern_expr (exp, op0, op1, op2,
8580 target, unsignedp);
8581 return target;
8584 case WIDEN_SUM_EXPR:
8586 tree oprnd0 = TREE_OPERAND (exp, 0);
8587 tree oprnd1 = TREE_OPERAND (exp, 1);
8589 expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, 0);
8590 target = expand_widen_pattern_expr (exp, op0, NULL_RTX, op1,
8591 target, unsignedp);
8592 return target;
8595 case REDUC_MAX_EXPR:
8596 case REDUC_MIN_EXPR:
8597 case REDUC_PLUS_EXPR:
8599 op0 = expand_normal (TREE_OPERAND (exp, 0));
8600 this_optab = optab_for_tree_code (code, type);
8601 temp = expand_unop (mode, this_optab, op0, target, unsignedp);
8602 gcc_assert (temp);
8603 return temp;
8606 case VEC_LSHIFT_EXPR:
8607 case VEC_RSHIFT_EXPR:
8609 target = expand_vec_shift_expr (exp, target);
8610 return target;
8613 default:
8614 return lang_hooks.expand_expr (exp, original_target, tmode,
8615 modifier, alt_rtl);
8618 /* Here to do an ordinary binary operator. */
8619 binop:
8620 expand_operands (TREE_OPERAND (exp, 0), TREE_OPERAND (exp, 1),
8621 subtarget, &op0, &op1, 0);
8622 binop2:
8623 this_optab = optab_for_tree_code (code, type);
8624 binop3:
8625 if (modifier == EXPAND_STACK_PARM)
8626 target = 0;
8627 temp = expand_binop (mode, this_optab, op0, op1, target,
8628 unsignedp, OPTAB_LIB_WIDEN);
8629 gcc_assert (temp);
8630 return REDUCE_BIT_FIELD (temp);
8632 #undef REDUCE_BIT_FIELD
8634 /* Subroutine of above: reduce EXP to the precision of TYPE (in the
8635 signedness of TYPE), possibly returning the result in TARGET. */
8636 static rtx
8637 reduce_to_bit_field_precision (rtx exp, rtx target, tree type)
8639 HOST_WIDE_INT prec = TYPE_PRECISION (type);
8640 if (target && GET_MODE (target) != GET_MODE (exp))
8641 target = 0;
8642 if (TYPE_UNSIGNED (type))
8644 rtx mask;
8645 if (prec < HOST_BITS_PER_WIDE_INT)
8646 mask = immed_double_const (((unsigned HOST_WIDE_INT) 1 << prec) - 1, 0,
8647 GET_MODE (exp));
8648 else
8649 mask = immed_double_const ((unsigned HOST_WIDE_INT) -1,
8650 ((unsigned HOST_WIDE_INT) 1
8651 << (prec - HOST_BITS_PER_WIDE_INT)) - 1,
8652 GET_MODE (exp));
8653 return expand_and (GET_MODE (exp), exp, mask, target);
8655 else
8657 tree count = build_int_cst (NULL_TREE,
8658 GET_MODE_BITSIZE (GET_MODE (exp)) - prec);
8659 exp = expand_shift (LSHIFT_EXPR, GET_MODE (exp), exp, count, target, 0);
8660 return expand_shift (RSHIFT_EXPR, GET_MODE (exp), exp, count, target, 0);
8664 /* Subroutine of above: returns 1 if OFFSET corresponds to an offset that
8665 when applied to the address of EXP produces an address known to be
8666 aligned more than BIGGEST_ALIGNMENT. */
8668 static int
8669 is_aligning_offset (tree offset, tree exp)
8671 /* Strip off any conversions. */
8672 while (TREE_CODE (offset) == NON_LVALUE_EXPR
8673 || TREE_CODE (offset) == NOP_EXPR
8674 || TREE_CODE (offset) == CONVERT_EXPR)
8675 offset = TREE_OPERAND (offset, 0);
8677 /* We must now have a BIT_AND_EXPR with a constant that is one less than
8678 power of 2 and which is larger than BIGGEST_ALIGNMENT. */
8679 if (TREE_CODE (offset) != BIT_AND_EXPR
8680 || !host_integerp (TREE_OPERAND (offset, 1), 1)
8681 || compare_tree_int (TREE_OPERAND (offset, 1),
8682 BIGGEST_ALIGNMENT / BITS_PER_UNIT) <= 0
8683 || !exact_log2 (tree_low_cst (TREE_OPERAND (offset, 1), 1) + 1) < 0)
8684 return 0;
8686 /* Look at the first operand of BIT_AND_EXPR and strip any conversion.
8687 It must be NEGATE_EXPR. Then strip any more conversions. */
8688 offset = TREE_OPERAND (offset, 0);
8689 while (TREE_CODE (offset) == NON_LVALUE_EXPR
8690 || TREE_CODE (offset) == NOP_EXPR
8691 || TREE_CODE (offset) == CONVERT_EXPR)
8692 offset = TREE_OPERAND (offset, 0);
8694 if (TREE_CODE (offset) != NEGATE_EXPR)
8695 return 0;
8697 offset = TREE_OPERAND (offset, 0);
8698 while (TREE_CODE (offset) == NON_LVALUE_EXPR
8699 || TREE_CODE (offset) == NOP_EXPR
8700 || TREE_CODE (offset) == CONVERT_EXPR)
8701 offset = TREE_OPERAND (offset, 0);
8703 /* This must now be the address of EXP. */
8704 return TREE_CODE (offset) == ADDR_EXPR && TREE_OPERAND (offset, 0) == exp;
8707 /* Return the tree node if an ARG corresponds to a string constant or zero
8708 if it doesn't. If we return nonzero, set *PTR_OFFSET to the offset
8709 in bytes within the string that ARG is accessing. The type of the
8710 offset will be `sizetype'. */
8712 tree
8713 string_constant (tree arg, tree *ptr_offset)
8715 tree array, offset;
8716 STRIP_NOPS (arg);
8718 if (TREE_CODE (arg) == ADDR_EXPR)
8720 if (TREE_CODE (TREE_OPERAND (arg, 0)) == STRING_CST)
8722 *ptr_offset = size_zero_node;
8723 return TREE_OPERAND (arg, 0);
8725 else if (TREE_CODE (TREE_OPERAND (arg, 0)) == VAR_DECL)
8727 array = TREE_OPERAND (arg, 0);
8728 offset = size_zero_node;
8730 else if (TREE_CODE (TREE_OPERAND (arg, 0)) == ARRAY_REF)
8732 array = TREE_OPERAND (TREE_OPERAND (arg, 0), 0);
8733 offset = TREE_OPERAND (TREE_OPERAND (arg, 0), 1);
8734 if (TREE_CODE (array) != STRING_CST
8735 && TREE_CODE (array) != VAR_DECL)
8736 return 0;
8738 else
8739 return 0;
8741 else if (TREE_CODE (arg) == PLUS_EXPR)
8743 tree arg0 = TREE_OPERAND (arg, 0);
8744 tree arg1 = TREE_OPERAND (arg, 1);
8746 STRIP_NOPS (arg0);
8747 STRIP_NOPS (arg1);
8749 if (TREE_CODE (arg0) == ADDR_EXPR
8750 && (TREE_CODE (TREE_OPERAND (arg0, 0)) == STRING_CST
8751 || TREE_CODE (TREE_OPERAND (arg0, 0)) == VAR_DECL))
8753 array = TREE_OPERAND (arg0, 0);
8754 offset = arg1;
8756 else if (TREE_CODE (arg1) == ADDR_EXPR
8757 && (TREE_CODE (TREE_OPERAND (arg1, 0)) == STRING_CST
8758 || TREE_CODE (TREE_OPERAND (arg1, 0)) == VAR_DECL))
8760 array = TREE_OPERAND (arg1, 0);
8761 offset = arg0;
8763 else
8764 return 0;
8766 else
8767 return 0;
8769 if (TREE_CODE (array) == STRING_CST)
8771 *ptr_offset = convert (sizetype, offset);
8772 return array;
8774 else if (TREE_CODE (array) == VAR_DECL)
8776 int length;
8778 /* Variables initialized to string literals can be handled too. */
8779 if (DECL_INITIAL (array) == NULL_TREE
8780 || TREE_CODE (DECL_INITIAL (array)) != STRING_CST)
8781 return 0;
8783 /* If they are read-only, non-volatile and bind locally. */
8784 if (! TREE_READONLY (array)
8785 || TREE_SIDE_EFFECTS (array)
8786 || ! targetm.binds_local_p (array))
8787 return 0;
8789 /* Avoid const char foo[4] = "abcde"; */
8790 if (DECL_SIZE_UNIT (array) == NULL_TREE
8791 || TREE_CODE (DECL_SIZE_UNIT (array)) != INTEGER_CST
8792 || (length = TREE_STRING_LENGTH (DECL_INITIAL (array))) <= 0
8793 || compare_tree_int (DECL_SIZE_UNIT (array), length) < 0)
8794 return 0;
8796 /* If variable is bigger than the string literal, OFFSET must be constant
8797 and inside of the bounds of the string literal. */
8798 offset = convert (sizetype, offset);
8799 if (compare_tree_int (DECL_SIZE_UNIT (array), length) > 0
8800 && (! host_integerp (offset, 1)
8801 || compare_tree_int (offset, length) >= 0))
8802 return 0;
8804 *ptr_offset = offset;
8805 return DECL_INITIAL (array);
8808 return 0;
8811 /* Generate code to calculate EXP using a store-flag instruction
8812 and return an rtx for the result. EXP is either a comparison
8813 or a TRUTH_NOT_EXPR whose operand is a comparison.
8815 If TARGET is nonzero, store the result there if convenient.
8817 If ONLY_CHEAP is nonzero, only do this if it is likely to be very
8818 cheap.
8820 Return zero if there is no suitable set-flag instruction
8821 available on this machine.
8823 Once expand_expr has been called on the arguments of the comparison,
8824 we are committed to doing the store flag, since it is not safe to
8825 re-evaluate the expression. We emit the store-flag insn by calling
8826 emit_store_flag, but only expand the arguments if we have a reason
8827 to believe that emit_store_flag will be successful. If we think that
8828 it will, but it isn't, we have to simulate the store-flag with a
8829 set/jump/set sequence. */
8831 static rtx
8832 do_store_flag (tree exp, rtx target, enum machine_mode mode, int only_cheap)
8834 enum rtx_code code;
8835 tree arg0, arg1, type;
8836 tree tem;
8837 enum machine_mode operand_mode;
8838 int invert = 0;
8839 int unsignedp;
8840 rtx op0, op1;
8841 enum insn_code icode;
8842 rtx subtarget = target;
8843 rtx result, label;
8845 /* If this is a TRUTH_NOT_EXPR, set a flag indicating we must invert the
8846 result at the end. We can't simply invert the test since it would
8847 have already been inverted if it were valid. This case occurs for
8848 some floating-point comparisons. */
8850 if (TREE_CODE (exp) == TRUTH_NOT_EXPR)
8851 invert = 1, exp = TREE_OPERAND (exp, 0);
8853 arg0 = TREE_OPERAND (exp, 0);
8854 arg1 = TREE_OPERAND (exp, 1);
8856 /* Don't crash if the comparison was erroneous. */
8857 if (arg0 == error_mark_node || arg1 == error_mark_node)
8858 return const0_rtx;
8860 type = TREE_TYPE (arg0);
8861 operand_mode = TYPE_MODE (type);
8862 unsignedp = TYPE_UNSIGNED (type);
8864 /* We won't bother with BLKmode store-flag operations because it would mean
8865 passing a lot of information to emit_store_flag. */
8866 if (operand_mode == BLKmode)
8867 return 0;
8869 /* We won't bother with store-flag operations involving function pointers
8870 when function pointers must be canonicalized before comparisons. */
8871 #ifdef HAVE_canonicalize_funcptr_for_compare
8872 if (HAVE_canonicalize_funcptr_for_compare
8873 && ((TREE_CODE (TREE_TYPE (TREE_OPERAND (exp, 0))) == POINTER_TYPE
8874 && (TREE_CODE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 0))))
8875 == FUNCTION_TYPE))
8876 || (TREE_CODE (TREE_TYPE (TREE_OPERAND (exp, 1))) == POINTER_TYPE
8877 && (TREE_CODE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 1))))
8878 == FUNCTION_TYPE))))
8879 return 0;
8880 #endif
8882 STRIP_NOPS (arg0);
8883 STRIP_NOPS (arg1);
8885 /* Get the rtx comparison code to use. We know that EXP is a comparison
8886 operation of some type. Some comparisons against 1 and -1 can be
8887 converted to comparisons with zero. Do so here so that the tests
8888 below will be aware that we have a comparison with zero. These
8889 tests will not catch constants in the first operand, but constants
8890 are rarely passed as the first operand. */
8892 switch (TREE_CODE (exp))
8894 case EQ_EXPR:
8895 code = EQ;
8896 break;
8897 case NE_EXPR:
8898 code = NE;
8899 break;
8900 case LT_EXPR:
8901 if (integer_onep (arg1))
8902 arg1 = integer_zero_node, code = unsignedp ? LEU : LE;
8903 else
8904 code = unsignedp ? LTU : LT;
8905 break;
8906 case LE_EXPR:
8907 if (! unsignedp && integer_all_onesp (arg1))
8908 arg1 = integer_zero_node, code = LT;
8909 else
8910 code = unsignedp ? LEU : LE;
8911 break;
8912 case GT_EXPR:
8913 if (! unsignedp && integer_all_onesp (arg1))
8914 arg1 = integer_zero_node, code = GE;
8915 else
8916 code = unsignedp ? GTU : GT;
8917 break;
8918 case GE_EXPR:
8919 if (integer_onep (arg1))
8920 arg1 = integer_zero_node, code = unsignedp ? GTU : GT;
8921 else
8922 code = unsignedp ? GEU : GE;
8923 break;
8925 case UNORDERED_EXPR:
8926 code = UNORDERED;
8927 break;
8928 case ORDERED_EXPR:
8929 code = ORDERED;
8930 break;
8931 case UNLT_EXPR:
8932 code = UNLT;
8933 break;
8934 case UNLE_EXPR:
8935 code = UNLE;
8936 break;
8937 case UNGT_EXPR:
8938 code = UNGT;
8939 break;
8940 case UNGE_EXPR:
8941 code = UNGE;
8942 break;
8943 case UNEQ_EXPR:
8944 code = UNEQ;
8945 break;
8946 case LTGT_EXPR:
8947 code = LTGT;
8948 break;
8950 default:
8951 gcc_unreachable ();
8954 /* Put a constant second. */
8955 if (TREE_CODE (arg0) == REAL_CST || TREE_CODE (arg0) == INTEGER_CST)
8957 tem = arg0; arg0 = arg1; arg1 = tem;
8958 code = swap_condition (code);
8961 /* If this is an equality or inequality test of a single bit, we can
8962 do this by shifting the bit being tested to the low-order bit and
8963 masking the result with the constant 1. If the condition was EQ,
8964 we xor it with 1. This does not require an scc insn and is faster
8965 than an scc insn even if we have it.
8967 The code to make this transformation was moved into fold_single_bit_test,
8968 so we just call into the folder and expand its result. */
8970 if ((code == NE || code == EQ)
8971 && TREE_CODE (arg0) == BIT_AND_EXPR && integer_zerop (arg1)
8972 && integer_pow2p (TREE_OPERAND (arg0, 1)))
8974 tree type = lang_hooks.types.type_for_mode (mode, unsignedp);
8975 return expand_expr (fold_single_bit_test (code == NE ? NE_EXPR : EQ_EXPR,
8976 arg0, arg1, type),
8977 target, VOIDmode, EXPAND_NORMAL);
8980 /* Now see if we are likely to be able to do this. Return if not. */
8981 if (! can_compare_p (code, operand_mode, ccp_store_flag))
8982 return 0;
8984 icode = setcc_gen_code[(int) code];
8985 if (icode == CODE_FOR_nothing
8986 || (only_cheap && insn_data[(int) icode].operand[0].mode != mode))
8988 /* We can only do this if it is one of the special cases that
8989 can be handled without an scc insn. */
8990 if ((code == LT && integer_zerop (arg1))
8991 || (! only_cheap && code == GE && integer_zerop (arg1)))
8993 else if (! only_cheap && (code == NE || code == EQ)
8994 && TREE_CODE (type) != REAL_TYPE
8995 && ((abs_optab->handlers[(int) operand_mode].insn_code
8996 != CODE_FOR_nothing)
8997 || (ffs_optab->handlers[(int) operand_mode].insn_code
8998 != CODE_FOR_nothing)))
9000 else
9001 return 0;
9004 if (! get_subtarget (target)
9005 || GET_MODE (subtarget) != operand_mode)
9006 subtarget = 0;
9008 expand_operands (arg0, arg1, subtarget, &op0, &op1, 0);
9010 if (target == 0)
9011 target = gen_reg_rtx (mode);
9013 result = emit_store_flag (target, code, op0, op1,
9014 operand_mode, unsignedp, 1);
9016 if (result)
9018 if (invert)
9019 result = expand_binop (mode, xor_optab, result, const1_rtx,
9020 result, 0, OPTAB_LIB_WIDEN);
9021 return result;
9024 /* If this failed, we have to do this with set/compare/jump/set code. */
9025 if (!REG_P (target)
9026 || reg_mentioned_p (target, op0) || reg_mentioned_p (target, op1))
9027 target = gen_reg_rtx (GET_MODE (target));
9029 emit_move_insn (target, invert ? const0_rtx : const1_rtx);
9030 result = compare_from_rtx (op0, op1, code, unsignedp,
9031 operand_mode, NULL_RTX);
9032 if (GET_CODE (result) == CONST_INT)
9033 return (((result == const0_rtx && ! invert)
9034 || (result != const0_rtx && invert))
9035 ? const0_rtx : const1_rtx);
9037 /* The code of RESULT may not match CODE if compare_from_rtx
9038 decided to swap its operands and reverse the original code.
9040 We know that compare_from_rtx returns either a CONST_INT or
9041 a new comparison code, so it is safe to just extract the
9042 code from RESULT. */
9043 code = GET_CODE (result);
9045 label = gen_label_rtx ();
9046 gcc_assert (bcc_gen_fctn[(int) code]);
9048 emit_jump_insn ((*bcc_gen_fctn[(int) code]) (label));
9049 emit_move_insn (target, invert ? const1_rtx : const0_rtx);
9050 emit_label (label);
9052 return target;
9056 /* Stubs in case we haven't got a casesi insn. */
9057 #ifndef HAVE_casesi
9058 # define HAVE_casesi 0
9059 # define gen_casesi(a, b, c, d, e) (0)
9060 # define CODE_FOR_casesi CODE_FOR_nothing
9061 #endif
9063 /* If the machine does not have a case insn that compares the bounds,
9064 this means extra overhead for dispatch tables, which raises the
9065 threshold for using them. */
9066 #ifndef CASE_VALUES_THRESHOLD
9067 #define CASE_VALUES_THRESHOLD (HAVE_casesi ? 4 : 5)
9068 #endif /* CASE_VALUES_THRESHOLD */
9070 unsigned int
9071 case_values_threshold (void)
9073 return CASE_VALUES_THRESHOLD;
9076 /* Attempt to generate a casesi instruction. Returns 1 if successful,
9077 0 otherwise (i.e. if there is no casesi instruction). */
9079 try_casesi (tree index_type, tree index_expr, tree minval, tree range,
9080 rtx table_label ATTRIBUTE_UNUSED, rtx default_label)
9082 enum machine_mode index_mode = SImode;
9083 int index_bits = GET_MODE_BITSIZE (index_mode);
9084 rtx op1, op2, index;
9085 enum machine_mode op_mode;
9087 if (! HAVE_casesi)
9088 return 0;
9090 /* Convert the index to SImode. */
9091 if (GET_MODE_BITSIZE (TYPE_MODE (index_type)) > GET_MODE_BITSIZE (index_mode))
9093 enum machine_mode omode = TYPE_MODE (index_type);
9094 rtx rangertx = expand_normal (range);
9096 /* We must handle the endpoints in the original mode. */
9097 index_expr = build2 (MINUS_EXPR, index_type,
9098 index_expr, minval);
9099 minval = integer_zero_node;
9100 index = expand_normal (index_expr);
9101 emit_cmp_and_jump_insns (rangertx, index, LTU, NULL_RTX,
9102 omode, 1, default_label);
9103 /* Now we can safely truncate. */
9104 index = convert_to_mode (index_mode, index, 0);
9106 else
9108 if (TYPE_MODE (index_type) != index_mode)
9110 index_expr = convert (lang_hooks.types.type_for_size
9111 (index_bits, 0), index_expr);
9112 index_type = TREE_TYPE (index_expr);
9115 index = expand_normal (index_expr);
9118 do_pending_stack_adjust ();
9120 op_mode = insn_data[(int) CODE_FOR_casesi].operand[0].mode;
9121 if (! (*insn_data[(int) CODE_FOR_casesi].operand[0].predicate)
9122 (index, op_mode))
9123 index = copy_to_mode_reg (op_mode, index);
9125 op1 = expand_normal (minval);
9127 op_mode = insn_data[(int) CODE_FOR_casesi].operand[1].mode;
9128 op1 = convert_modes (op_mode, TYPE_MODE (TREE_TYPE (minval)),
9129 op1, TYPE_UNSIGNED (TREE_TYPE (minval)));
9130 if (! (*insn_data[(int) CODE_FOR_casesi].operand[1].predicate)
9131 (op1, op_mode))
9132 op1 = copy_to_mode_reg (op_mode, op1);
9134 op2 = expand_normal (range);
9136 op_mode = insn_data[(int) CODE_FOR_casesi].operand[2].mode;
9137 op2 = convert_modes (op_mode, TYPE_MODE (TREE_TYPE (range)),
9138 op2, TYPE_UNSIGNED (TREE_TYPE (range)));
9139 if (! (*insn_data[(int) CODE_FOR_casesi].operand[2].predicate)
9140 (op2, op_mode))
9141 op2 = copy_to_mode_reg (op_mode, op2);
9143 emit_jump_insn (gen_casesi (index, op1, op2,
9144 table_label, default_label));
9145 return 1;
9148 /* Attempt to generate a tablejump instruction; same concept. */
9149 #ifndef HAVE_tablejump
9150 #define HAVE_tablejump 0
9151 #define gen_tablejump(x, y) (0)
9152 #endif
9154 /* Subroutine of the next function.
9156 INDEX is the value being switched on, with the lowest value
9157 in the table already subtracted.
9158 MODE is its expected mode (needed if INDEX is constant).
9159 RANGE is the length of the jump table.
9160 TABLE_LABEL is a CODE_LABEL rtx for the table itself.
9162 DEFAULT_LABEL is a CODE_LABEL rtx to jump to if the
9163 index value is out of range. */
9165 static void
9166 do_tablejump (rtx index, enum machine_mode mode, rtx range, rtx table_label,
9167 rtx default_label)
9169 rtx temp, vector;
9171 if (INTVAL (range) > cfun->max_jumptable_ents)
9172 cfun->max_jumptable_ents = INTVAL (range);
9174 /* Do an unsigned comparison (in the proper mode) between the index
9175 expression and the value which represents the length of the range.
9176 Since we just finished subtracting the lower bound of the range
9177 from the index expression, this comparison allows us to simultaneously
9178 check that the original index expression value is both greater than
9179 or equal to the minimum value of the range and less than or equal to
9180 the maximum value of the range. */
9182 emit_cmp_and_jump_insns (index, range, GTU, NULL_RTX, mode, 1,
9183 default_label);
9185 /* If index is in range, it must fit in Pmode.
9186 Convert to Pmode so we can index with it. */
9187 if (mode != Pmode)
9188 index = convert_to_mode (Pmode, index, 1);
9190 /* Don't let a MEM slip through, because then INDEX that comes
9191 out of PIC_CASE_VECTOR_ADDRESS won't be a valid address,
9192 and break_out_memory_refs will go to work on it and mess it up. */
9193 #ifdef PIC_CASE_VECTOR_ADDRESS
9194 if (flag_pic && !REG_P (index))
9195 index = copy_to_mode_reg (Pmode, index);
9196 #endif
9198 /* If flag_force_addr were to affect this address
9199 it could interfere with the tricky assumptions made
9200 about addresses that contain label-refs,
9201 which may be valid only very near the tablejump itself. */
9202 /* ??? The only correct use of CASE_VECTOR_MODE is the one inside the
9203 GET_MODE_SIZE, because this indicates how large insns are. The other
9204 uses should all be Pmode, because they are addresses. This code
9205 could fail if addresses and insns are not the same size. */
9206 index = gen_rtx_PLUS (Pmode,
9207 gen_rtx_MULT (Pmode, index,
9208 GEN_INT (GET_MODE_SIZE (CASE_VECTOR_MODE))),
9209 gen_rtx_LABEL_REF (Pmode, table_label));
9210 #ifdef PIC_CASE_VECTOR_ADDRESS
9211 if (flag_pic)
9212 index = PIC_CASE_VECTOR_ADDRESS (index);
9213 else
9214 #endif
9215 index = memory_address_noforce (CASE_VECTOR_MODE, index);
9216 temp = gen_reg_rtx (CASE_VECTOR_MODE);
9217 vector = gen_const_mem (CASE_VECTOR_MODE, index);
9218 convert_move (temp, vector, 0);
9220 emit_jump_insn (gen_tablejump (temp, table_label));
9222 /* If we are generating PIC code or if the table is PC-relative, the
9223 table and JUMP_INSN must be adjacent, so don't output a BARRIER. */
9224 if (! CASE_VECTOR_PC_RELATIVE && ! flag_pic)
9225 emit_barrier ();
9229 try_tablejump (tree index_type, tree index_expr, tree minval, tree range,
9230 rtx table_label, rtx default_label)
9232 rtx index;
9234 if (! HAVE_tablejump)
9235 return 0;
9237 index_expr = fold_build2 (MINUS_EXPR, index_type,
9238 convert (index_type, index_expr),
9239 convert (index_type, minval));
9240 index = expand_normal (index_expr);
9241 do_pending_stack_adjust ();
9243 do_tablejump (index, TYPE_MODE (index_type),
9244 convert_modes (TYPE_MODE (index_type),
9245 TYPE_MODE (TREE_TYPE (range)),
9246 expand_normal (range),
9247 TYPE_UNSIGNED (TREE_TYPE (range))),
9248 table_label, default_label);
9249 return 1;
9252 /* Nonzero if the mode is a valid vector mode for this architecture.
9253 This returns nonzero even if there is no hardware support for the
9254 vector mode, but we can emulate with narrower modes. */
9257 vector_mode_valid_p (enum machine_mode mode)
9259 enum mode_class class = GET_MODE_CLASS (mode);
9260 enum machine_mode innermode;
9262 /* Doh! What's going on? */
9263 if (class != MODE_VECTOR_INT
9264 && class != MODE_VECTOR_FLOAT)
9265 return 0;
9267 /* Hardware support. Woo hoo! */
9268 if (targetm.vector_mode_supported_p (mode))
9269 return 1;
9271 innermode = GET_MODE_INNER (mode);
9273 /* We should probably return 1 if requesting V4DI and we have no DI,
9274 but we have V2DI, but this is probably very unlikely. */
9276 /* If we have support for the inner mode, we can safely emulate it.
9277 We may not have V2DI, but me can emulate with a pair of DIs. */
9278 return targetm.scalar_mode_supported_p (innermode);
9281 /* Return a CONST_VECTOR rtx for a VECTOR_CST tree. */
9282 static rtx
9283 const_vector_from_tree (tree exp)
9285 rtvec v;
9286 int units, i;
9287 tree link, elt;
9288 enum machine_mode inner, mode;
9290 mode = TYPE_MODE (TREE_TYPE (exp));
9292 if (initializer_zerop (exp))
9293 return CONST0_RTX (mode);
9295 units = GET_MODE_NUNITS (mode);
9296 inner = GET_MODE_INNER (mode);
9298 v = rtvec_alloc (units);
9300 link = TREE_VECTOR_CST_ELTS (exp);
9301 for (i = 0; link; link = TREE_CHAIN (link), ++i)
9303 elt = TREE_VALUE (link);
9305 if (TREE_CODE (elt) == REAL_CST)
9306 RTVEC_ELT (v, i) = CONST_DOUBLE_FROM_REAL_VALUE (TREE_REAL_CST (elt),
9307 inner);
9308 else
9309 RTVEC_ELT (v, i) = immed_double_const (TREE_INT_CST_LOW (elt),
9310 TREE_INT_CST_HIGH (elt),
9311 inner);
9314 /* Initialize remaining elements to 0. */
9315 for (; i < units; ++i)
9316 RTVEC_ELT (v, i) = CONST0_RTX (inner);
9318 return gen_rtx_CONST_VECTOR (mode, v);
9320 #include "gt-expr.h"