2006-03-15 Paul Brook <paul@codesourcery.com>
[official-gcc.git] / gcc / alias.c
blobad9855d0fedaf9e7e90ba1a44fd7872e23cba807
1 /* Alias analysis for GNU C
2 Copyright (C) 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006
3 Free Software Foundation, Inc.
4 Contributed by John Carr (jfc@mit.edu).
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 2, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to the Free
20 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
21 02110-1301, USA. */
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "rtl.h"
28 #include "tree.h"
29 #include "tm_p.h"
30 #include "function.h"
31 #include "alias.h"
32 #include "emit-rtl.h"
33 #include "regs.h"
34 #include "hard-reg-set.h"
35 #include "basic-block.h"
36 #include "flags.h"
37 #include "output.h"
38 #include "toplev.h"
39 #include "cselib.h"
40 #include "splay-tree.h"
41 #include "ggc.h"
42 #include "langhooks.h"
43 #include "timevar.h"
44 #include "target.h"
45 #include "cgraph.h"
46 #include "varray.h"
47 #include "tree-pass.h"
48 #include "ipa-type-escape.h"
50 /* The aliasing API provided here solves related but different problems:
52 Say there exists (in c)
54 struct X {
55 struct Y y1;
56 struct Z z2;
57 } x1, *px1, *px2;
59 struct Y y2, *py;
60 struct Z z2, *pz;
63 py = &px1.y1;
64 px2 = &x1;
66 Consider the four questions:
68 Can a store to x1 interfere with px2->y1?
69 Can a store to x1 interfere with px2->z2?
70 (*px2).z2
71 Can a store to x1 change the value pointed to by with py?
72 Can a store to x1 change the value pointed to by with pz?
74 The answer to these questions can be yes, yes, yes, and maybe.
76 The first two questions can be answered with a simple examination
77 of the type system. If structure X contains a field of type Y then
78 a store thru a pointer to an X can overwrite any field that is
79 contained (recursively) in an X (unless we know that px1 != px2).
81 The last two of the questions can be solved in the same way as the
82 first two questions but this is too conservative. The observation
83 is that in some cases analysis we can know if which (if any) fields
84 are addressed and if those addresses are used in bad ways. This
85 analysis may be language specific. In C, arbitrary operations may
86 be applied to pointers. However, there is some indication that
87 this may be too conservative for some C++ types.
89 The pass ipa-type-escape does this analysis for the types whose
90 instances do not escape across the compilation boundary.
92 Historically in GCC, these two problems were combined and a single
93 data structure was used to represent the solution to these
94 problems. We now have two similar but different data structures,
95 The data structure to solve the last two question is similar to the
96 first, but does not contain have the fields in it whose address are
97 never taken. For types that do escape the compilation unit, the
98 data structures will have identical information.
101 /* The alias sets assigned to MEMs assist the back-end in determining
102 which MEMs can alias which other MEMs. In general, two MEMs in
103 different alias sets cannot alias each other, with one important
104 exception. Consider something like:
106 struct S { int i; double d; };
108 a store to an `S' can alias something of either type `int' or type
109 `double'. (However, a store to an `int' cannot alias a `double'
110 and vice versa.) We indicate this via a tree structure that looks
111 like:
112 struct S
115 |/_ _\|
116 int double
118 (The arrows are directed and point downwards.)
119 In this situation we say the alias set for `struct S' is the
120 `superset' and that those for `int' and `double' are `subsets'.
122 To see whether two alias sets can point to the same memory, we must
123 see if either alias set is a subset of the other. We need not trace
124 past immediate descendants, however, since we propagate all
125 grandchildren up one level.
127 Alias set zero is implicitly a superset of all other alias sets.
128 However, this is no actual entry for alias set zero. It is an
129 error to attempt to explicitly construct a subset of zero. */
131 struct alias_set_entry GTY(())
133 /* The alias set number, as stored in MEM_ALIAS_SET. */
134 HOST_WIDE_INT alias_set;
136 /* The children of the alias set. These are not just the immediate
137 children, but, in fact, all descendants. So, if we have:
139 struct T { struct S s; float f; }
141 continuing our example above, the children here will be all of
142 `int', `double', `float', and `struct S'. */
143 splay_tree GTY((param1_is (int), param2_is (int))) children;
145 /* Nonzero if would have a child of zero: this effectively makes this
146 alias set the same as alias set zero. */
147 int has_zero_child;
149 typedef struct alias_set_entry *alias_set_entry;
151 static int rtx_equal_for_memref_p (rtx, rtx);
152 static rtx find_symbolic_term (rtx);
153 static int memrefs_conflict_p (int, rtx, int, rtx, HOST_WIDE_INT);
154 static void record_set (rtx, rtx, void *);
155 static int base_alias_check (rtx, rtx, enum machine_mode,
156 enum machine_mode);
157 static rtx find_base_value (rtx);
158 static int mems_in_disjoint_alias_sets_p (rtx, rtx);
159 static int insert_subset_children (splay_tree_node, void*);
160 static tree find_base_decl (tree);
161 static alias_set_entry get_alias_set_entry (HOST_WIDE_INT);
162 static rtx fixed_scalar_and_varying_struct_p (rtx, rtx, rtx, rtx,
163 int (*) (rtx, int));
164 static int aliases_everything_p (rtx);
165 static bool nonoverlapping_component_refs_p (tree, tree);
166 static tree decl_for_component_ref (tree);
167 static rtx adjust_offset_for_component_ref (tree, rtx);
168 static int nonoverlapping_memrefs_p (rtx, rtx);
169 static int write_dependence_p (rtx, rtx, int);
171 static void memory_modified_1 (rtx, rtx, void *);
172 static void record_alias_subset (HOST_WIDE_INT, HOST_WIDE_INT);
174 /* Set up all info needed to perform alias analysis on memory references. */
176 /* Returns the size in bytes of the mode of X. */
177 #define SIZE_FOR_MODE(X) (GET_MODE_SIZE (GET_MODE (X)))
179 /* Returns nonzero if MEM1 and MEM2 do not alias because they are in
180 different alias sets. We ignore alias sets in functions making use
181 of variable arguments because the va_arg macros on some systems are
182 not legal ANSI C. */
183 #define DIFFERENT_ALIAS_SETS_P(MEM1, MEM2) \
184 mems_in_disjoint_alias_sets_p (MEM1, MEM2)
186 /* Cap the number of passes we make over the insns propagating alias
187 information through set chains. 10 is a completely arbitrary choice. */
188 #define MAX_ALIAS_LOOP_PASSES 10
190 /* reg_base_value[N] gives an address to which register N is related.
191 If all sets after the first add or subtract to the current value
192 or otherwise modify it so it does not point to a different top level
193 object, reg_base_value[N] is equal to the address part of the source
194 of the first set.
196 A base address can be an ADDRESS, SYMBOL_REF, or LABEL_REF. ADDRESS
197 expressions represent certain special values: function arguments and
198 the stack, frame, and argument pointers.
200 The contents of an ADDRESS is not normally used, the mode of the
201 ADDRESS determines whether the ADDRESS is a function argument or some
202 other special value. Pointer equality, not rtx_equal_p, determines whether
203 two ADDRESS expressions refer to the same base address.
205 The only use of the contents of an ADDRESS is for determining if the
206 current function performs nonlocal memory memory references for the
207 purposes of marking the function as a constant function. */
209 static GTY(()) varray_type reg_base_value;
210 static rtx *new_reg_base_value;
212 /* We preserve the copy of old array around to avoid amount of garbage
213 produced. About 8% of garbage produced were attributed to this
214 array. */
215 static GTY((deletable)) varray_type old_reg_base_value;
217 /* Static hunks of RTL used by the aliasing code; these are initialized
218 once per function to avoid unnecessary RTL allocations. */
219 static GTY (()) rtx static_reg_base_value[FIRST_PSEUDO_REGISTER];
221 #define REG_BASE_VALUE(X) \
222 (reg_base_value && REGNO (X) < VARRAY_SIZE (reg_base_value) \
223 ? VARRAY_RTX (reg_base_value, REGNO (X)) : 0)
225 /* Vector indexed by N giving the initial (unchanging) value known for
226 pseudo-register N. This array is initialized in init_alias_analysis,
227 and does not change until end_alias_analysis is called. */
228 static GTY((length("reg_known_value_size"))) rtx *reg_known_value;
230 /* Indicates number of valid entries in reg_known_value. */
231 static GTY(()) unsigned int reg_known_value_size;
233 /* Vector recording for each reg_known_value whether it is due to a
234 REG_EQUIV note. Future passes (viz., reload) may replace the
235 pseudo with the equivalent expression and so we account for the
236 dependences that would be introduced if that happens.
238 The REG_EQUIV notes created in assign_parms may mention the arg
239 pointer, and there are explicit insns in the RTL that modify the
240 arg pointer. Thus we must ensure that such insns don't get
241 scheduled across each other because that would invalidate the
242 REG_EQUIV notes. One could argue that the REG_EQUIV notes are
243 wrong, but solving the problem in the scheduler will likely give
244 better code, so we do it here. */
245 static bool *reg_known_equiv_p;
247 /* True when scanning insns from the start of the rtl to the
248 NOTE_INSN_FUNCTION_BEG note. */
249 static bool copying_arguments;
251 /* The splay-tree used to store the various alias set entries. */
252 static GTY ((param_is (struct alias_set_entry))) varray_type alias_sets;
254 /* Returns a pointer to the alias set entry for ALIAS_SET, if there is
255 such an entry, or NULL otherwise. */
257 static inline alias_set_entry
258 get_alias_set_entry (HOST_WIDE_INT alias_set)
260 return (alias_set_entry)VARRAY_GENERIC_PTR (alias_sets, alias_set);
263 /* Returns nonzero if the alias sets for MEM1 and MEM2 are such that
264 the two MEMs cannot alias each other. */
266 static inline int
267 mems_in_disjoint_alias_sets_p (rtx mem1, rtx mem2)
269 /* Perform a basic sanity check. Namely, that there are no alias sets
270 if we're not using strict aliasing. This helps to catch bugs
271 whereby someone uses PUT_CODE, but doesn't clear MEM_ALIAS_SET, or
272 where a MEM is allocated in some way other than by the use of
273 gen_rtx_MEM, and the MEM_ALIAS_SET is not cleared. If we begin to
274 use alias sets to indicate that spilled registers cannot alias each
275 other, we might need to remove this check. */
276 gcc_assert (flag_strict_aliasing
277 || (!MEM_ALIAS_SET (mem1) && !MEM_ALIAS_SET (mem2)));
279 return ! alias_sets_conflict_p (MEM_ALIAS_SET (mem1), MEM_ALIAS_SET (mem2));
282 /* Insert the NODE into the splay tree given by DATA. Used by
283 record_alias_subset via splay_tree_foreach. */
285 static int
286 insert_subset_children (splay_tree_node node, void *data)
288 splay_tree_insert ((splay_tree) data, node->key, node->value);
290 return 0;
293 /* Return 1 if the two specified alias sets may conflict. */
296 alias_sets_conflict_p (HOST_WIDE_INT set1, HOST_WIDE_INT set2)
298 alias_set_entry ase;
300 /* If have no alias set information for one of the operands, we have
301 to assume it can alias anything. */
302 if (set1 == 0 || set2 == 0
303 /* If the two alias sets are the same, they may alias. */
304 || set1 == set2)
305 return 1;
307 /* See if the first alias set is a subset of the second. */
308 ase = get_alias_set_entry (set1);
309 if (ase != 0
310 && (ase->has_zero_child
311 || splay_tree_lookup (ase->children,
312 (splay_tree_key) set2)))
313 return 1;
315 /* Now do the same, but with the alias sets reversed. */
316 ase = get_alias_set_entry (set2);
317 if (ase != 0
318 && (ase->has_zero_child
319 || splay_tree_lookup (ase->children,
320 (splay_tree_key) set1)))
321 return 1;
323 /* The two alias sets are distinct and neither one is the
324 child of the other. Therefore, they cannot alias. */
325 return 0;
328 /* Return 1 if the two specified alias sets might conflict, or if any subtype
329 of these alias sets might conflict. */
332 alias_sets_might_conflict_p (HOST_WIDE_INT set1, HOST_WIDE_INT set2)
334 if (set1 == 0 || set2 == 0 || set1 == set2)
335 return 1;
337 return 0;
341 /* Return 1 if any MEM object of type T1 will always conflict (using the
342 dependency routines in this file) with any MEM object of type T2.
343 This is used when allocating temporary storage. If T1 and/or T2 are
344 NULL_TREE, it means we know nothing about the storage. */
347 objects_must_conflict_p (tree t1, tree t2)
349 HOST_WIDE_INT set1, set2;
351 /* If neither has a type specified, we don't know if they'll conflict
352 because we may be using them to store objects of various types, for
353 example the argument and local variables areas of inlined functions. */
354 if (t1 == 0 && t2 == 0)
355 return 0;
357 /* If they are the same type, they must conflict. */
358 if (t1 == t2
359 /* Likewise if both are volatile. */
360 || (t1 != 0 && TYPE_VOLATILE (t1) && t2 != 0 && TYPE_VOLATILE (t2)))
361 return 1;
363 set1 = t1 ? get_alias_set (t1) : 0;
364 set2 = t2 ? get_alias_set (t2) : 0;
366 /* Otherwise they conflict if they have no alias set or the same. We
367 can't simply use alias_sets_conflict_p here, because we must make
368 sure that every subtype of t1 will conflict with every subtype of
369 t2 for which a pair of subobjects of these respective subtypes
370 overlaps on the stack. */
371 return set1 == 0 || set2 == 0 || set1 == set2;
374 /* T is an expression with pointer type. Find the DECL on which this
375 expression is based. (For example, in `a[i]' this would be `a'.)
376 If there is no such DECL, or a unique decl cannot be determined,
377 NULL_TREE is returned. */
379 static tree
380 find_base_decl (tree t)
382 tree d0, d1;
384 if (t == 0 || t == error_mark_node || ! POINTER_TYPE_P (TREE_TYPE (t)))
385 return 0;
387 /* If this is a declaration, return it. If T is based on a restrict
388 qualified decl, return that decl. */
389 if (DECL_P (t))
391 if (TREE_CODE (t) == VAR_DECL && DECL_BASED_ON_RESTRICT_P (t))
392 t = DECL_GET_RESTRICT_BASE (t);
393 return t;
396 /* Handle general expressions. It would be nice to deal with
397 COMPONENT_REFs here. If we could tell that `a' and `b' were the
398 same, then `a->f' and `b->f' are also the same. */
399 switch (TREE_CODE_CLASS (TREE_CODE (t)))
401 case tcc_unary:
402 return find_base_decl (TREE_OPERAND (t, 0));
404 case tcc_binary:
405 /* Return 0 if found in neither or both are the same. */
406 d0 = find_base_decl (TREE_OPERAND (t, 0));
407 d1 = find_base_decl (TREE_OPERAND (t, 1));
408 if (d0 == d1)
409 return d0;
410 else if (d0 == 0)
411 return d1;
412 else if (d1 == 0)
413 return d0;
414 else
415 return 0;
417 default:
418 return 0;
422 /* Return true if all nested component references handled by
423 get_inner_reference in T are such that we should use the alias set
424 provided by the object at the heart of T.
426 This is true for non-addressable components (which don't have their
427 own alias set), as well as components of objects in alias set zero.
428 This later point is a special case wherein we wish to override the
429 alias set used by the component, but we don't have per-FIELD_DECL
430 assignable alias sets. */
432 bool
433 component_uses_parent_alias_set (tree t)
435 while (1)
437 /* If we're at the end, it vacuously uses its own alias set. */
438 if (!handled_component_p (t))
439 return false;
441 switch (TREE_CODE (t))
443 case COMPONENT_REF:
444 if (DECL_NONADDRESSABLE_P (TREE_OPERAND (t, 1)))
445 return true;
446 break;
448 case ARRAY_REF:
449 case ARRAY_RANGE_REF:
450 if (TYPE_NONALIASED_COMPONENT (TREE_TYPE (TREE_OPERAND (t, 0))))
451 return true;
452 break;
454 case REALPART_EXPR:
455 case IMAGPART_EXPR:
456 break;
458 default:
459 /* Bitfields and casts are never addressable. */
460 return true;
463 t = TREE_OPERAND (t, 0);
464 if (get_alias_set (TREE_TYPE (t)) == 0)
465 return true;
469 /* Return the alias set for T, which may be either a type or an
470 expression. Call language-specific routine for help, if needed. */
472 HOST_WIDE_INT
473 get_alias_set (tree t)
475 HOST_WIDE_INT set;
477 /* If we're not doing any alias analysis, just assume everything
478 aliases everything else. Also return 0 if this or its type is
479 an error. */
480 if (! flag_strict_aliasing || t == error_mark_node
481 || (! TYPE_P (t)
482 && (TREE_TYPE (t) == 0 || TREE_TYPE (t) == error_mark_node)))
483 return 0;
485 /* We can be passed either an expression or a type. This and the
486 language-specific routine may make mutually-recursive calls to each other
487 to figure out what to do. At each juncture, we see if this is a tree
488 that the language may need to handle specially. First handle things that
489 aren't types. */
490 if (! TYPE_P (t))
492 tree inner = t;
494 /* Remove any nops, then give the language a chance to do
495 something with this tree before we look at it. */
496 STRIP_NOPS (t);
497 set = lang_hooks.get_alias_set (t);
498 if (set != -1)
499 return set;
501 /* First see if the actual object referenced is an INDIRECT_REF from a
502 restrict-qualified pointer or a "void *". */
503 while (handled_component_p (inner))
505 inner = TREE_OPERAND (inner, 0);
506 STRIP_NOPS (inner);
509 /* Check for accesses through restrict-qualified pointers. */
510 if (INDIRECT_REF_P (inner))
512 tree decl = find_base_decl (TREE_OPERAND (inner, 0));
514 if (decl && DECL_POINTER_ALIAS_SET_KNOWN_P (decl))
516 /* If we haven't computed the actual alias set, do it now. */
517 if (DECL_POINTER_ALIAS_SET (decl) == -2)
519 tree pointed_to_type = TREE_TYPE (TREE_TYPE (decl));
521 /* No two restricted pointers can point at the same thing.
522 However, a restricted pointer can point at the same thing
523 as an unrestricted pointer, if that unrestricted pointer
524 is based on the restricted pointer. So, we make the
525 alias set for the restricted pointer a subset of the
526 alias set for the type pointed to by the type of the
527 decl. */
528 HOST_WIDE_INT pointed_to_alias_set
529 = get_alias_set (pointed_to_type);
531 if (pointed_to_alias_set == 0)
532 /* It's not legal to make a subset of alias set zero. */
533 DECL_POINTER_ALIAS_SET (decl) = 0;
534 else if (AGGREGATE_TYPE_P (pointed_to_type))
535 /* For an aggregate, we must treat the restricted
536 pointer the same as an ordinary pointer. If we
537 were to make the type pointed to by the
538 restricted pointer a subset of the pointed-to
539 type, then we would believe that other subsets
540 of the pointed-to type (such as fields of that
541 type) do not conflict with the type pointed to
542 by the restricted pointer. */
543 DECL_POINTER_ALIAS_SET (decl)
544 = pointed_to_alias_set;
545 else
547 DECL_POINTER_ALIAS_SET (decl) = new_alias_set ();
548 record_alias_subset (pointed_to_alias_set,
549 DECL_POINTER_ALIAS_SET (decl));
553 /* We use the alias set indicated in the declaration. */
554 return DECL_POINTER_ALIAS_SET (decl);
557 /* If we have an INDIRECT_REF via a void pointer, we don't
558 know anything about what that might alias. Likewise if the
559 pointer is marked that way. */
560 else if (TREE_CODE (TREE_TYPE (inner)) == VOID_TYPE
561 || (TYPE_REF_CAN_ALIAS_ALL
562 (TREE_TYPE (TREE_OPERAND (inner, 0)))))
563 return 0;
566 /* Otherwise, pick up the outermost object that we could have a pointer
567 to, processing conversions as above. */
568 while (component_uses_parent_alias_set (t))
570 t = TREE_OPERAND (t, 0);
571 STRIP_NOPS (t);
574 /* If we've already determined the alias set for a decl, just return
575 it. This is necessary for C++ anonymous unions, whose component
576 variables don't look like union members (boo!). */
577 if (TREE_CODE (t) == VAR_DECL
578 && DECL_RTL_SET_P (t) && MEM_P (DECL_RTL (t)))
579 return MEM_ALIAS_SET (DECL_RTL (t));
581 /* Now all we care about is the type. */
582 t = TREE_TYPE (t);
585 /* Variant qualifiers don't affect the alias set, so get the main
586 variant. If this is a type with a known alias set, return it. */
587 t = TYPE_MAIN_VARIANT (t);
588 if (TYPE_ALIAS_SET_KNOWN_P (t))
589 return TYPE_ALIAS_SET (t);
591 /* See if the language has special handling for this type. */
592 set = lang_hooks.get_alias_set (t);
593 if (set != -1)
594 return set;
596 /* There are no objects of FUNCTION_TYPE, so there's no point in
597 using up an alias set for them. (There are, of course, pointers
598 and references to functions, but that's different.) */
599 else if (TREE_CODE (t) == FUNCTION_TYPE)
600 set = 0;
602 /* Unless the language specifies otherwise, let vector types alias
603 their components. This avoids some nasty type punning issues in
604 normal usage. And indeed lets vectors be treated more like an
605 array slice. */
606 else if (TREE_CODE (t) == VECTOR_TYPE)
607 set = get_alias_set (TREE_TYPE (t));
609 else
610 /* Otherwise make a new alias set for this type. */
611 set = new_alias_set ();
613 TYPE_ALIAS_SET (t) = set;
615 /* If this is an aggregate type, we must record any component aliasing
616 information. */
617 if (AGGREGATE_TYPE_P (t) || TREE_CODE (t) == COMPLEX_TYPE)
618 record_component_aliases (t);
620 return set;
623 /* Return a brand-new alias set. */
625 static GTY(()) HOST_WIDE_INT last_alias_set;
627 HOST_WIDE_INT
628 new_alias_set (void)
630 if (flag_strict_aliasing)
632 if (!alias_sets)
633 VARRAY_GENERIC_PTR_INIT (alias_sets, 10, "alias sets");
634 else
635 VARRAY_GROW (alias_sets, last_alias_set + 2);
636 return ++last_alias_set;
638 else
639 return 0;
642 /* Indicate that things in SUBSET can alias things in SUPERSET, but that
643 not everything that aliases SUPERSET also aliases SUBSET. For example,
644 in C, a store to an `int' can alias a load of a structure containing an
645 `int', and vice versa. But it can't alias a load of a 'double' member
646 of the same structure. Here, the structure would be the SUPERSET and
647 `int' the SUBSET. This relationship is also described in the comment at
648 the beginning of this file.
650 This function should be called only once per SUPERSET/SUBSET pair.
652 It is illegal for SUPERSET to be zero; everything is implicitly a
653 subset of alias set zero. */
655 static void
656 record_alias_subset (HOST_WIDE_INT superset, HOST_WIDE_INT subset)
658 alias_set_entry superset_entry;
659 alias_set_entry subset_entry;
661 /* It is possible in complex type situations for both sets to be the same,
662 in which case we can ignore this operation. */
663 if (superset == subset)
664 return;
666 gcc_assert (superset);
668 superset_entry = get_alias_set_entry (superset);
669 if (superset_entry == 0)
671 /* Create an entry for the SUPERSET, so that we have a place to
672 attach the SUBSET. */
673 superset_entry = ggc_alloc (sizeof (struct alias_set_entry));
674 superset_entry->alias_set = superset;
675 superset_entry->children
676 = splay_tree_new_ggc (splay_tree_compare_ints);
677 superset_entry->has_zero_child = 0;
678 VARRAY_GENERIC_PTR (alias_sets, superset) = superset_entry;
681 if (subset == 0)
682 superset_entry->has_zero_child = 1;
683 else
685 subset_entry = get_alias_set_entry (subset);
686 /* If there is an entry for the subset, enter all of its children
687 (if they are not already present) as children of the SUPERSET. */
688 if (subset_entry)
690 if (subset_entry->has_zero_child)
691 superset_entry->has_zero_child = 1;
693 splay_tree_foreach (subset_entry->children, insert_subset_children,
694 superset_entry->children);
697 /* Enter the SUBSET itself as a child of the SUPERSET. */
698 splay_tree_insert (superset_entry->children,
699 (splay_tree_key) subset, 0);
703 /* Record that component types of TYPE, if any, are part of that type for
704 aliasing purposes. For record types, we only record component types
705 for fields that are marked addressable. For array types, we always
706 record the component types, so the front end should not call this
707 function if the individual component aren't addressable. */
709 void
710 record_component_aliases (tree type)
712 HOST_WIDE_INT superset = get_alias_set (type);
713 tree field;
715 if (superset == 0)
716 return;
718 switch (TREE_CODE (type))
720 case ARRAY_TYPE:
721 if (! TYPE_NONALIASED_COMPONENT (type))
722 record_alias_subset (superset, get_alias_set (TREE_TYPE (type)));
723 break;
725 case RECORD_TYPE:
726 case UNION_TYPE:
727 case QUAL_UNION_TYPE:
728 /* Recursively record aliases for the base classes, if there are any. */
729 if (TYPE_BINFO (type))
731 int i;
732 tree binfo, base_binfo;
734 for (binfo = TYPE_BINFO (type), i = 0;
735 BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
736 record_alias_subset (superset,
737 get_alias_set (BINFO_TYPE (base_binfo)));
739 for (field = TYPE_FIELDS (type); field != 0; field = TREE_CHAIN (field))
740 if (TREE_CODE (field) == FIELD_DECL && ! DECL_NONADDRESSABLE_P (field))
741 record_alias_subset (superset, get_alias_set (TREE_TYPE (field)));
742 break;
744 case COMPLEX_TYPE:
745 record_alias_subset (superset, get_alias_set (TREE_TYPE (type)));
746 break;
748 default:
749 break;
753 /* Allocate an alias set for use in storing and reading from the varargs
754 spill area. */
756 static GTY(()) HOST_WIDE_INT varargs_set = -1;
758 HOST_WIDE_INT
759 get_varargs_alias_set (void)
761 #if 1
762 /* We now lower VA_ARG_EXPR, and there's currently no way to attach the
763 varargs alias set to an INDIRECT_REF (FIXME!), so we can't
764 consistently use the varargs alias set for loads from the varargs
765 area. So don't use it anywhere. */
766 return 0;
767 #else
768 if (varargs_set == -1)
769 varargs_set = new_alias_set ();
771 return varargs_set;
772 #endif
775 /* Likewise, but used for the fixed portions of the frame, e.g., register
776 save areas. */
778 static GTY(()) HOST_WIDE_INT frame_set = -1;
780 HOST_WIDE_INT
781 get_frame_alias_set (void)
783 if (frame_set == -1)
784 frame_set = new_alias_set ();
786 return frame_set;
789 /* Inside SRC, the source of a SET, find a base address. */
791 static rtx
792 find_base_value (rtx src)
794 unsigned int regno;
796 switch (GET_CODE (src))
798 case SYMBOL_REF:
799 case LABEL_REF:
800 return src;
802 case REG:
803 regno = REGNO (src);
804 /* At the start of a function, argument registers have known base
805 values which may be lost later. Returning an ADDRESS
806 expression here allows optimization based on argument values
807 even when the argument registers are used for other purposes. */
808 if (regno < FIRST_PSEUDO_REGISTER && copying_arguments)
809 return new_reg_base_value[regno];
811 /* If a pseudo has a known base value, return it. Do not do this
812 for non-fixed hard regs since it can result in a circular
813 dependency chain for registers which have values at function entry.
815 The test above is not sufficient because the scheduler may move
816 a copy out of an arg reg past the NOTE_INSN_FUNCTION_BEGIN. */
817 if ((regno >= FIRST_PSEUDO_REGISTER || fixed_regs[regno])
818 && regno < VARRAY_SIZE (reg_base_value))
820 /* If we're inside init_alias_analysis, use new_reg_base_value
821 to reduce the number of relaxation iterations. */
822 if (new_reg_base_value && new_reg_base_value[regno]
823 && REG_N_SETS (regno) == 1)
824 return new_reg_base_value[regno];
826 if (VARRAY_RTX (reg_base_value, regno))
827 return VARRAY_RTX (reg_base_value, regno);
830 return 0;
832 case MEM:
833 /* Check for an argument passed in memory. Only record in the
834 copying-arguments block; it is too hard to track changes
835 otherwise. */
836 if (copying_arguments
837 && (XEXP (src, 0) == arg_pointer_rtx
838 || (GET_CODE (XEXP (src, 0)) == PLUS
839 && XEXP (XEXP (src, 0), 0) == arg_pointer_rtx)))
840 return gen_rtx_ADDRESS (VOIDmode, src);
841 return 0;
843 case CONST:
844 src = XEXP (src, 0);
845 if (GET_CODE (src) != PLUS && GET_CODE (src) != MINUS)
846 break;
848 /* ... fall through ... */
850 case PLUS:
851 case MINUS:
853 rtx temp, src_0 = XEXP (src, 0), src_1 = XEXP (src, 1);
855 /* If either operand is a REG that is a known pointer, then it
856 is the base. */
857 if (REG_P (src_0) && REG_POINTER (src_0))
858 return find_base_value (src_0);
859 if (REG_P (src_1) && REG_POINTER (src_1))
860 return find_base_value (src_1);
862 /* If either operand is a REG, then see if we already have
863 a known value for it. */
864 if (REG_P (src_0))
866 temp = find_base_value (src_0);
867 if (temp != 0)
868 src_0 = temp;
871 if (REG_P (src_1))
873 temp = find_base_value (src_1);
874 if (temp!= 0)
875 src_1 = temp;
878 /* If either base is named object or a special address
879 (like an argument or stack reference), then use it for the
880 base term. */
881 if (src_0 != 0
882 && (GET_CODE (src_0) == SYMBOL_REF
883 || GET_CODE (src_0) == LABEL_REF
884 || (GET_CODE (src_0) == ADDRESS
885 && GET_MODE (src_0) != VOIDmode)))
886 return src_0;
888 if (src_1 != 0
889 && (GET_CODE (src_1) == SYMBOL_REF
890 || GET_CODE (src_1) == LABEL_REF
891 || (GET_CODE (src_1) == ADDRESS
892 && GET_MODE (src_1) != VOIDmode)))
893 return src_1;
895 /* Guess which operand is the base address:
896 If either operand is a symbol, then it is the base. If
897 either operand is a CONST_INT, then the other is the base. */
898 if (GET_CODE (src_1) == CONST_INT || CONSTANT_P (src_0))
899 return find_base_value (src_0);
900 else if (GET_CODE (src_0) == CONST_INT || CONSTANT_P (src_1))
901 return find_base_value (src_1);
903 return 0;
906 case LO_SUM:
907 /* The standard form is (lo_sum reg sym) so look only at the
908 second operand. */
909 return find_base_value (XEXP (src, 1));
911 case AND:
912 /* If the second operand is constant set the base
913 address to the first operand. */
914 if (GET_CODE (XEXP (src, 1)) == CONST_INT && INTVAL (XEXP (src, 1)) != 0)
915 return find_base_value (XEXP (src, 0));
916 return 0;
918 case TRUNCATE:
919 if (GET_MODE_SIZE (GET_MODE (src)) < GET_MODE_SIZE (Pmode))
920 break;
921 /* Fall through. */
922 case HIGH:
923 case PRE_INC:
924 case PRE_DEC:
925 case POST_INC:
926 case POST_DEC:
927 case PRE_MODIFY:
928 case POST_MODIFY:
929 return find_base_value (XEXP (src, 0));
931 case ZERO_EXTEND:
932 case SIGN_EXTEND: /* used for NT/Alpha pointers */
934 rtx temp = find_base_value (XEXP (src, 0));
936 if (temp != 0 && CONSTANT_P (temp))
937 temp = convert_memory_address (Pmode, temp);
939 return temp;
942 default:
943 break;
946 return 0;
949 /* Called from init_alias_analysis indirectly through note_stores. */
951 /* While scanning insns to find base values, reg_seen[N] is nonzero if
952 register N has been set in this function. */
953 static char *reg_seen;
955 /* Addresses which are known not to alias anything else are identified
956 by a unique integer. */
957 static int unique_id;
959 static void
960 record_set (rtx dest, rtx set, void *data ATTRIBUTE_UNUSED)
962 unsigned regno;
963 rtx src;
964 int n;
966 if (!REG_P (dest))
967 return;
969 regno = REGNO (dest);
971 gcc_assert (regno < VARRAY_SIZE (reg_base_value));
973 /* If this spans multiple hard registers, then we must indicate that every
974 register has an unusable value. */
975 if (regno < FIRST_PSEUDO_REGISTER)
976 n = hard_regno_nregs[regno][GET_MODE (dest)];
977 else
978 n = 1;
979 if (n != 1)
981 while (--n >= 0)
983 reg_seen[regno + n] = 1;
984 new_reg_base_value[regno + n] = 0;
986 return;
989 if (set)
991 /* A CLOBBER wipes out any old value but does not prevent a previously
992 unset register from acquiring a base address (i.e. reg_seen is not
993 set). */
994 if (GET_CODE (set) == CLOBBER)
996 new_reg_base_value[regno] = 0;
997 return;
999 src = SET_SRC (set);
1001 else
1003 if (reg_seen[regno])
1005 new_reg_base_value[regno] = 0;
1006 return;
1008 reg_seen[regno] = 1;
1009 new_reg_base_value[regno] = gen_rtx_ADDRESS (Pmode,
1010 GEN_INT (unique_id++));
1011 return;
1014 /* If this is not the first set of REGNO, see whether the new value
1015 is related to the old one. There are two cases of interest:
1017 (1) The register might be assigned an entirely new value
1018 that has the same base term as the original set.
1020 (2) The set might be a simple self-modification that
1021 cannot change REGNO's base value.
1023 If neither case holds, reject the original base value as invalid.
1024 Note that the following situation is not detected:
1026 extern int x, y; int *p = &x; p += (&y-&x);
1028 ANSI C does not allow computing the difference of addresses
1029 of distinct top level objects. */
1030 if (new_reg_base_value[regno] != 0
1031 && find_base_value (src) != new_reg_base_value[regno])
1032 switch (GET_CODE (src))
1034 case LO_SUM:
1035 case MINUS:
1036 if (XEXP (src, 0) != dest && XEXP (src, 1) != dest)
1037 new_reg_base_value[regno] = 0;
1038 break;
1039 case PLUS:
1040 /* If the value we add in the PLUS is also a valid base value,
1041 this might be the actual base value, and the original value
1042 an index. */
1044 rtx other = NULL_RTX;
1046 if (XEXP (src, 0) == dest)
1047 other = XEXP (src, 1);
1048 else if (XEXP (src, 1) == dest)
1049 other = XEXP (src, 0);
1051 if (! other || find_base_value (other))
1052 new_reg_base_value[regno] = 0;
1053 break;
1055 case AND:
1056 if (XEXP (src, 0) != dest || GET_CODE (XEXP (src, 1)) != CONST_INT)
1057 new_reg_base_value[regno] = 0;
1058 break;
1059 default:
1060 new_reg_base_value[regno] = 0;
1061 break;
1063 /* If this is the first set of a register, record the value. */
1064 else if ((regno >= FIRST_PSEUDO_REGISTER || ! fixed_regs[regno])
1065 && ! reg_seen[regno] && new_reg_base_value[regno] == 0)
1066 new_reg_base_value[regno] = find_base_value (src);
1068 reg_seen[regno] = 1;
1071 /* Clear alias info for a register. This is used if an RTL transformation
1072 changes the value of a register. This is used in flow by AUTO_INC_DEC
1073 optimizations. We don't need to clear reg_base_value, since flow only
1074 changes the offset. */
1076 void
1077 clear_reg_alias_info (rtx reg)
1079 unsigned int regno = REGNO (reg);
1081 if (regno >= FIRST_PSEUDO_REGISTER)
1083 regno -= FIRST_PSEUDO_REGISTER;
1084 if (regno < reg_known_value_size)
1086 reg_known_value[regno] = reg;
1087 reg_known_equiv_p[regno] = false;
1092 /* If a value is known for REGNO, return it. */
1094 rtx
1095 get_reg_known_value (unsigned int regno)
1097 if (regno >= FIRST_PSEUDO_REGISTER)
1099 regno -= FIRST_PSEUDO_REGISTER;
1100 if (regno < reg_known_value_size)
1101 return reg_known_value[regno];
1103 return NULL;
1106 /* Set it. */
1108 static void
1109 set_reg_known_value (unsigned int regno, rtx val)
1111 if (regno >= FIRST_PSEUDO_REGISTER)
1113 regno -= FIRST_PSEUDO_REGISTER;
1114 if (regno < reg_known_value_size)
1115 reg_known_value[regno] = val;
1119 /* Similarly for reg_known_equiv_p. */
1121 bool
1122 get_reg_known_equiv_p (unsigned int regno)
1124 if (regno >= FIRST_PSEUDO_REGISTER)
1126 regno -= FIRST_PSEUDO_REGISTER;
1127 if (regno < reg_known_value_size)
1128 return reg_known_equiv_p[regno];
1130 return false;
1133 static void
1134 set_reg_known_equiv_p (unsigned int regno, bool val)
1136 if (regno >= FIRST_PSEUDO_REGISTER)
1138 regno -= FIRST_PSEUDO_REGISTER;
1139 if (regno < reg_known_value_size)
1140 reg_known_equiv_p[regno] = val;
1145 /* Returns a canonical version of X, from the point of view alias
1146 analysis. (For example, if X is a MEM whose address is a register,
1147 and the register has a known value (say a SYMBOL_REF), then a MEM
1148 whose address is the SYMBOL_REF is returned.) */
1151 canon_rtx (rtx x)
1153 /* Recursively look for equivalences. */
1154 if (REG_P (x) && REGNO (x) >= FIRST_PSEUDO_REGISTER)
1156 rtx t = get_reg_known_value (REGNO (x));
1157 if (t == x)
1158 return x;
1159 if (t)
1160 return canon_rtx (t);
1163 if (GET_CODE (x) == PLUS)
1165 rtx x0 = canon_rtx (XEXP (x, 0));
1166 rtx x1 = canon_rtx (XEXP (x, 1));
1168 if (x0 != XEXP (x, 0) || x1 != XEXP (x, 1))
1170 if (GET_CODE (x0) == CONST_INT)
1171 return plus_constant (x1, INTVAL (x0));
1172 else if (GET_CODE (x1) == CONST_INT)
1173 return plus_constant (x0, INTVAL (x1));
1174 return gen_rtx_PLUS (GET_MODE (x), x0, x1);
1178 /* This gives us much better alias analysis when called from
1179 the loop optimizer. Note we want to leave the original
1180 MEM alone, but need to return the canonicalized MEM with
1181 all the flags with their original values. */
1182 else if (MEM_P (x))
1183 x = replace_equiv_address_nv (x, canon_rtx (XEXP (x, 0)));
1185 return x;
1188 /* Return 1 if X and Y are identical-looking rtx's.
1189 Expect that X and Y has been already canonicalized.
1191 We use the data in reg_known_value above to see if two registers with
1192 different numbers are, in fact, equivalent. */
1194 static int
1195 rtx_equal_for_memref_p (rtx x, rtx y)
1197 int i;
1198 int j;
1199 enum rtx_code code;
1200 const char *fmt;
1202 if (x == 0 && y == 0)
1203 return 1;
1204 if (x == 0 || y == 0)
1205 return 0;
1207 if (x == y)
1208 return 1;
1210 code = GET_CODE (x);
1211 /* Rtx's of different codes cannot be equal. */
1212 if (code != GET_CODE (y))
1213 return 0;
1215 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent.
1216 (REG:SI x) and (REG:HI x) are NOT equivalent. */
1218 if (GET_MODE (x) != GET_MODE (y))
1219 return 0;
1221 /* Some RTL can be compared without a recursive examination. */
1222 switch (code)
1224 case REG:
1225 return REGNO (x) == REGNO (y);
1227 case LABEL_REF:
1228 return XEXP (x, 0) == XEXP (y, 0);
1230 case SYMBOL_REF:
1231 return XSTR (x, 0) == XSTR (y, 0);
1233 case VALUE:
1234 case CONST_INT:
1235 case CONST_DOUBLE:
1236 /* There's no need to compare the contents of CONST_DOUBLEs or
1237 CONST_INTs because pointer equality is a good enough
1238 comparison for these nodes. */
1239 return 0;
1241 default:
1242 break;
1245 /* canon_rtx knows how to handle plus. No need to canonicalize. */
1246 if (code == PLUS)
1247 return ((rtx_equal_for_memref_p (XEXP (x, 0), XEXP (y, 0))
1248 && rtx_equal_for_memref_p (XEXP (x, 1), XEXP (y, 1)))
1249 || (rtx_equal_for_memref_p (XEXP (x, 0), XEXP (y, 1))
1250 && rtx_equal_for_memref_p (XEXP (x, 1), XEXP (y, 0))));
1251 /* For commutative operations, the RTX match if the operand match in any
1252 order. Also handle the simple binary and unary cases without a loop. */
1253 if (COMMUTATIVE_P (x))
1255 rtx xop0 = canon_rtx (XEXP (x, 0));
1256 rtx yop0 = canon_rtx (XEXP (y, 0));
1257 rtx yop1 = canon_rtx (XEXP (y, 1));
1259 return ((rtx_equal_for_memref_p (xop0, yop0)
1260 && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)), yop1))
1261 || (rtx_equal_for_memref_p (xop0, yop1)
1262 && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)), yop0)));
1264 else if (NON_COMMUTATIVE_P (x))
1266 return (rtx_equal_for_memref_p (canon_rtx (XEXP (x, 0)),
1267 canon_rtx (XEXP (y, 0)))
1268 && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)),
1269 canon_rtx (XEXP (y, 1))));
1271 else if (UNARY_P (x))
1272 return rtx_equal_for_memref_p (canon_rtx (XEXP (x, 0)),
1273 canon_rtx (XEXP (y, 0)));
1275 /* Compare the elements. If any pair of corresponding elements
1276 fail to match, return 0 for the whole things.
1278 Limit cases to types which actually appear in addresses. */
1280 fmt = GET_RTX_FORMAT (code);
1281 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1283 switch (fmt[i])
1285 case 'i':
1286 if (XINT (x, i) != XINT (y, i))
1287 return 0;
1288 break;
1290 case 'E':
1291 /* Two vectors must have the same length. */
1292 if (XVECLEN (x, i) != XVECLEN (y, i))
1293 return 0;
1295 /* And the corresponding elements must match. */
1296 for (j = 0; j < XVECLEN (x, i); j++)
1297 if (rtx_equal_for_memref_p (canon_rtx (XVECEXP (x, i, j)),
1298 canon_rtx (XVECEXP (y, i, j))) == 0)
1299 return 0;
1300 break;
1302 case 'e':
1303 if (rtx_equal_for_memref_p (canon_rtx (XEXP (x, i)),
1304 canon_rtx (XEXP (y, i))) == 0)
1305 return 0;
1306 break;
1308 /* This can happen for asm operands. */
1309 case 's':
1310 if (strcmp (XSTR (x, i), XSTR (y, i)))
1311 return 0;
1312 break;
1314 /* This can happen for an asm which clobbers memory. */
1315 case '0':
1316 break;
1318 /* It is believed that rtx's at this level will never
1319 contain anything but integers and other rtx's,
1320 except for within LABEL_REFs and SYMBOL_REFs. */
1321 default:
1322 gcc_unreachable ();
1325 return 1;
1328 /* Given an rtx X, find a SYMBOL_REF or LABEL_REF within
1329 X and return it, or return 0 if none found. */
1331 static rtx
1332 find_symbolic_term (rtx x)
1334 int i;
1335 enum rtx_code code;
1336 const char *fmt;
1338 code = GET_CODE (x);
1339 if (code == SYMBOL_REF || code == LABEL_REF)
1340 return x;
1341 if (OBJECT_P (x))
1342 return 0;
1344 fmt = GET_RTX_FORMAT (code);
1345 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1347 rtx t;
1349 if (fmt[i] == 'e')
1351 t = find_symbolic_term (XEXP (x, i));
1352 if (t != 0)
1353 return t;
1355 else if (fmt[i] == 'E')
1356 break;
1358 return 0;
1362 find_base_term (rtx x)
1364 cselib_val *val;
1365 struct elt_loc_list *l;
1367 #if defined (FIND_BASE_TERM)
1368 /* Try machine-dependent ways to find the base term. */
1369 x = FIND_BASE_TERM (x);
1370 #endif
1372 switch (GET_CODE (x))
1374 case REG:
1375 return REG_BASE_VALUE (x);
1377 case TRUNCATE:
1378 if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (Pmode))
1379 return 0;
1380 /* Fall through. */
1381 case HIGH:
1382 case PRE_INC:
1383 case PRE_DEC:
1384 case POST_INC:
1385 case POST_DEC:
1386 case PRE_MODIFY:
1387 case POST_MODIFY:
1388 return find_base_term (XEXP (x, 0));
1390 case ZERO_EXTEND:
1391 case SIGN_EXTEND: /* Used for Alpha/NT pointers */
1393 rtx temp = find_base_term (XEXP (x, 0));
1395 if (temp != 0 && CONSTANT_P (temp))
1396 temp = convert_memory_address (Pmode, temp);
1398 return temp;
1401 case VALUE:
1402 val = CSELIB_VAL_PTR (x);
1403 if (!val)
1404 return 0;
1405 for (l = val->locs; l; l = l->next)
1406 if ((x = find_base_term (l->loc)) != 0)
1407 return x;
1408 return 0;
1410 case CONST:
1411 x = XEXP (x, 0);
1412 if (GET_CODE (x) != PLUS && GET_CODE (x) != MINUS)
1413 return 0;
1414 /* Fall through. */
1415 case LO_SUM:
1416 case PLUS:
1417 case MINUS:
1419 rtx tmp1 = XEXP (x, 0);
1420 rtx tmp2 = XEXP (x, 1);
1422 /* This is a little bit tricky since we have to determine which of
1423 the two operands represents the real base address. Otherwise this
1424 routine may return the index register instead of the base register.
1426 That may cause us to believe no aliasing was possible, when in
1427 fact aliasing is possible.
1429 We use a few simple tests to guess the base register. Additional
1430 tests can certainly be added. For example, if one of the operands
1431 is a shift or multiply, then it must be the index register and the
1432 other operand is the base register. */
1434 if (tmp1 == pic_offset_table_rtx && CONSTANT_P (tmp2))
1435 return find_base_term (tmp2);
1437 /* If either operand is known to be a pointer, then use it
1438 to determine the base term. */
1439 if (REG_P (tmp1) && REG_POINTER (tmp1))
1440 return find_base_term (tmp1);
1442 if (REG_P (tmp2) && REG_POINTER (tmp2))
1443 return find_base_term (tmp2);
1445 /* Neither operand was known to be a pointer. Go ahead and find the
1446 base term for both operands. */
1447 tmp1 = find_base_term (tmp1);
1448 tmp2 = find_base_term (tmp2);
1450 /* If either base term is named object or a special address
1451 (like an argument or stack reference), then use it for the
1452 base term. */
1453 if (tmp1 != 0
1454 && (GET_CODE (tmp1) == SYMBOL_REF
1455 || GET_CODE (tmp1) == LABEL_REF
1456 || (GET_CODE (tmp1) == ADDRESS
1457 && GET_MODE (tmp1) != VOIDmode)))
1458 return tmp1;
1460 if (tmp2 != 0
1461 && (GET_CODE (tmp2) == SYMBOL_REF
1462 || GET_CODE (tmp2) == LABEL_REF
1463 || (GET_CODE (tmp2) == ADDRESS
1464 && GET_MODE (tmp2) != VOIDmode)))
1465 return tmp2;
1467 /* We could not determine which of the two operands was the
1468 base register and which was the index. So we can determine
1469 nothing from the base alias check. */
1470 return 0;
1473 case AND:
1474 if (GET_CODE (XEXP (x, 1)) == CONST_INT && INTVAL (XEXP (x, 1)) != 0)
1475 return find_base_term (XEXP (x, 0));
1476 return 0;
1478 case SYMBOL_REF:
1479 case LABEL_REF:
1480 return x;
1482 default:
1483 return 0;
1487 /* Return 0 if the addresses X and Y are known to point to different
1488 objects, 1 if they might be pointers to the same object. */
1490 static int
1491 base_alias_check (rtx x, rtx y, enum machine_mode x_mode,
1492 enum machine_mode y_mode)
1494 rtx x_base = find_base_term (x);
1495 rtx y_base = find_base_term (y);
1497 /* If the address itself has no known base see if a known equivalent
1498 value has one. If either address still has no known base, nothing
1499 is known about aliasing. */
1500 if (x_base == 0)
1502 rtx x_c;
1504 if (! flag_expensive_optimizations || (x_c = canon_rtx (x)) == x)
1505 return 1;
1507 x_base = find_base_term (x_c);
1508 if (x_base == 0)
1509 return 1;
1512 if (y_base == 0)
1514 rtx y_c;
1515 if (! flag_expensive_optimizations || (y_c = canon_rtx (y)) == y)
1516 return 1;
1518 y_base = find_base_term (y_c);
1519 if (y_base == 0)
1520 return 1;
1523 /* If the base addresses are equal nothing is known about aliasing. */
1524 if (rtx_equal_p (x_base, y_base))
1525 return 1;
1527 /* The base addresses of the read and write are different expressions.
1528 If they are both symbols and they are not accessed via AND, there is
1529 no conflict. We can bring knowledge of object alignment into play
1530 here. For example, on alpha, "char a, b;" can alias one another,
1531 though "char a; long b;" cannot. */
1532 if (GET_CODE (x_base) != ADDRESS && GET_CODE (y_base) != ADDRESS)
1534 if (GET_CODE (x) == AND && GET_CODE (y) == AND)
1535 return 1;
1536 if (GET_CODE (x) == AND
1537 && (GET_CODE (XEXP (x, 1)) != CONST_INT
1538 || (int) GET_MODE_UNIT_SIZE (y_mode) < -INTVAL (XEXP (x, 1))))
1539 return 1;
1540 if (GET_CODE (y) == AND
1541 && (GET_CODE (XEXP (y, 1)) != CONST_INT
1542 || (int) GET_MODE_UNIT_SIZE (x_mode) < -INTVAL (XEXP (y, 1))))
1543 return 1;
1544 /* Differing symbols never alias. */
1545 return 0;
1548 /* If one address is a stack reference there can be no alias:
1549 stack references using different base registers do not alias,
1550 a stack reference can not alias a parameter, and a stack reference
1551 can not alias a global. */
1552 if ((GET_CODE (x_base) == ADDRESS && GET_MODE (x_base) == Pmode)
1553 || (GET_CODE (y_base) == ADDRESS && GET_MODE (y_base) == Pmode))
1554 return 0;
1556 if (! flag_argument_noalias)
1557 return 1;
1559 if (flag_argument_noalias > 1)
1560 return 0;
1562 /* Weak noalias assertion (arguments are distinct, but may match globals). */
1563 return ! (GET_MODE (x_base) == VOIDmode && GET_MODE (y_base) == VOIDmode);
1566 /* Convert the address X into something we can use. This is done by returning
1567 it unchanged unless it is a value; in the latter case we call cselib to get
1568 a more useful rtx. */
1571 get_addr (rtx x)
1573 cselib_val *v;
1574 struct elt_loc_list *l;
1576 if (GET_CODE (x) != VALUE)
1577 return x;
1578 v = CSELIB_VAL_PTR (x);
1579 if (v)
1581 for (l = v->locs; l; l = l->next)
1582 if (CONSTANT_P (l->loc))
1583 return l->loc;
1584 for (l = v->locs; l; l = l->next)
1585 if (!REG_P (l->loc) && !MEM_P (l->loc))
1586 return l->loc;
1587 if (v->locs)
1588 return v->locs->loc;
1590 return x;
1593 /* Return the address of the (N_REFS + 1)th memory reference to ADDR
1594 where SIZE is the size in bytes of the memory reference. If ADDR
1595 is not modified by the memory reference then ADDR is returned. */
1597 static rtx
1598 addr_side_effect_eval (rtx addr, int size, int n_refs)
1600 int offset = 0;
1602 switch (GET_CODE (addr))
1604 case PRE_INC:
1605 offset = (n_refs + 1) * size;
1606 break;
1607 case PRE_DEC:
1608 offset = -(n_refs + 1) * size;
1609 break;
1610 case POST_INC:
1611 offset = n_refs * size;
1612 break;
1613 case POST_DEC:
1614 offset = -n_refs * size;
1615 break;
1617 default:
1618 return addr;
1621 if (offset)
1622 addr = gen_rtx_PLUS (GET_MODE (addr), XEXP (addr, 0),
1623 GEN_INT (offset));
1624 else
1625 addr = XEXP (addr, 0);
1626 addr = canon_rtx (addr);
1628 return addr;
1631 /* Return nonzero if X and Y (memory addresses) could reference the
1632 same location in memory. C is an offset accumulator. When
1633 C is nonzero, we are testing aliases between X and Y + C.
1634 XSIZE is the size in bytes of the X reference,
1635 similarly YSIZE is the size in bytes for Y.
1636 Expect that canon_rtx has been already called for X and Y.
1638 If XSIZE or YSIZE is zero, we do not know the amount of memory being
1639 referenced (the reference was BLKmode), so make the most pessimistic
1640 assumptions.
1642 If XSIZE or YSIZE is negative, we may access memory outside the object
1643 being referenced as a side effect. This can happen when using AND to
1644 align memory references, as is done on the Alpha.
1646 Nice to notice that varying addresses cannot conflict with fp if no
1647 local variables had their addresses taken, but that's too hard now. */
1649 static int
1650 memrefs_conflict_p (int xsize, rtx x, int ysize, rtx y, HOST_WIDE_INT c)
1652 if (GET_CODE (x) == VALUE)
1653 x = get_addr (x);
1654 if (GET_CODE (y) == VALUE)
1655 y = get_addr (y);
1656 if (GET_CODE (x) == HIGH)
1657 x = XEXP (x, 0);
1658 else if (GET_CODE (x) == LO_SUM)
1659 x = XEXP (x, 1);
1660 else
1661 x = addr_side_effect_eval (x, xsize, 0);
1662 if (GET_CODE (y) == HIGH)
1663 y = XEXP (y, 0);
1664 else if (GET_CODE (y) == LO_SUM)
1665 y = XEXP (y, 1);
1666 else
1667 y = addr_side_effect_eval (y, ysize, 0);
1669 if (rtx_equal_for_memref_p (x, y))
1671 if (xsize <= 0 || ysize <= 0)
1672 return 1;
1673 if (c >= 0 && xsize > c)
1674 return 1;
1675 if (c < 0 && ysize+c > 0)
1676 return 1;
1677 return 0;
1680 /* This code used to check for conflicts involving stack references and
1681 globals but the base address alias code now handles these cases. */
1683 if (GET_CODE (x) == PLUS)
1685 /* The fact that X is canonicalized means that this
1686 PLUS rtx is canonicalized. */
1687 rtx x0 = XEXP (x, 0);
1688 rtx x1 = XEXP (x, 1);
1690 if (GET_CODE (y) == PLUS)
1692 /* The fact that Y is canonicalized means that this
1693 PLUS rtx is canonicalized. */
1694 rtx y0 = XEXP (y, 0);
1695 rtx y1 = XEXP (y, 1);
1697 if (rtx_equal_for_memref_p (x1, y1))
1698 return memrefs_conflict_p (xsize, x0, ysize, y0, c);
1699 if (rtx_equal_for_memref_p (x0, y0))
1700 return memrefs_conflict_p (xsize, x1, ysize, y1, c);
1701 if (GET_CODE (x1) == CONST_INT)
1703 if (GET_CODE (y1) == CONST_INT)
1704 return memrefs_conflict_p (xsize, x0, ysize, y0,
1705 c - INTVAL (x1) + INTVAL (y1));
1706 else
1707 return memrefs_conflict_p (xsize, x0, ysize, y,
1708 c - INTVAL (x1));
1710 else if (GET_CODE (y1) == CONST_INT)
1711 return memrefs_conflict_p (xsize, x, ysize, y0, c + INTVAL (y1));
1713 return 1;
1715 else if (GET_CODE (x1) == CONST_INT)
1716 return memrefs_conflict_p (xsize, x0, ysize, y, c - INTVAL (x1));
1718 else if (GET_CODE (y) == PLUS)
1720 /* The fact that Y is canonicalized means that this
1721 PLUS rtx is canonicalized. */
1722 rtx y0 = XEXP (y, 0);
1723 rtx y1 = XEXP (y, 1);
1725 if (GET_CODE (y1) == CONST_INT)
1726 return memrefs_conflict_p (xsize, x, ysize, y0, c + INTVAL (y1));
1727 else
1728 return 1;
1731 if (GET_CODE (x) == GET_CODE (y))
1732 switch (GET_CODE (x))
1734 case MULT:
1736 /* Handle cases where we expect the second operands to be the
1737 same, and check only whether the first operand would conflict
1738 or not. */
1739 rtx x0, y0;
1740 rtx x1 = canon_rtx (XEXP (x, 1));
1741 rtx y1 = canon_rtx (XEXP (y, 1));
1742 if (! rtx_equal_for_memref_p (x1, y1))
1743 return 1;
1744 x0 = canon_rtx (XEXP (x, 0));
1745 y0 = canon_rtx (XEXP (y, 0));
1746 if (rtx_equal_for_memref_p (x0, y0))
1747 return (xsize == 0 || ysize == 0
1748 || (c >= 0 && xsize > c) || (c < 0 && ysize+c > 0));
1750 /* Can't properly adjust our sizes. */
1751 if (GET_CODE (x1) != CONST_INT)
1752 return 1;
1753 xsize /= INTVAL (x1);
1754 ysize /= INTVAL (x1);
1755 c /= INTVAL (x1);
1756 return memrefs_conflict_p (xsize, x0, ysize, y0, c);
1759 default:
1760 break;
1763 /* Treat an access through an AND (e.g. a subword access on an Alpha)
1764 as an access with indeterminate size. Assume that references
1765 besides AND are aligned, so if the size of the other reference is
1766 at least as large as the alignment, assume no other overlap. */
1767 if (GET_CODE (x) == AND && GET_CODE (XEXP (x, 1)) == CONST_INT)
1769 if (GET_CODE (y) == AND || ysize < -INTVAL (XEXP (x, 1)))
1770 xsize = -1;
1771 return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)), ysize, y, c);
1773 if (GET_CODE (y) == AND && GET_CODE (XEXP (y, 1)) == CONST_INT)
1775 /* ??? If we are indexing far enough into the array/structure, we
1776 may yet be able to determine that we can not overlap. But we
1777 also need to that we are far enough from the end not to overlap
1778 a following reference, so we do nothing with that for now. */
1779 if (GET_CODE (x) == AND || xsize < -INTVAL (XEXP (y, 1)))
1780 ysize = -1;
1781 return memrefs_conflict_p (xsize, x, ysize, canon_rtx (XEXP (y, 0)), c);
1784 if (CONSTANT_P (x))
1786 if (GET_CODE (x) == CONST_INT && GET_CODE (y) == CONST_INT)
1788 c += (INTVAL (y) - INTVAL (x));
1789 return (xsize <= 0 || ysize <= 0
1790 || (c >= 0 && xsize > c) || (c < 0 && ysize+c > 0));
1793 if (GET_CODE (x) == CONST)
1795 if (GET_CODE (y) == CONST)
1796 return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)),
1797 ysize, canon_rtx (XEXP (y, 0)), c);
1798 else
1799 return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)),
1800 ysize, y, c);
1802 if (GET_CODE (y) == CONST)
1803 return memrefs_conflict_p (xsize, x, ysize,
1804 canon_rtx (XEXP (y, 0)), c);
1806 if (CONSTANT_P (y))
1807 return (xsize <= 0 || ysize <= 0
1808 || (rtx_equal_for_memref_p (x, y)
1809 && ((c >= 0 && xsize > c) || (c < 0 && ysize+c > 0))));
1811 return 1;
1813 return 1;
1816 /* Functions to compute memory dependencies.
1818 Since we process the insns in execution order, we can build tables
1819 to keep track of what registers are fixed (and not aliased), what registers
1820 are varying in known ways, and what registers are varying in unknown
1821 ways.
1823 If both memory references are volatile, then there must always be a
1824 dependence between the two references, since their order can not be
1825 changed. A volatile and non-volatile reference can be interchanged
1826 though.
1828 A MEM_IN_STRUCT reference at a non-AND varying address can never
1829 conflict with a non-MEM_IN_STRUCT reference at a fixed address. We
1830 also must allow AND addresses, because they may generate accesses
1831 outside the object being referenced. This is used to generate
1832 aligned addresses from unaligned addresses, for instance, the alpha
1833 storeqi_unaligned pattern. */
1835 /* Read dependence: X is read after read in MEM takes place. There can
1836 only be a dependence here if both reads are volatile. */
1839 read_dependence (rtx mem, rtx x)
1841 return MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem);
1844 /* Returns MEM1 if and only if MEM1 is a scalar at a fixed address and
1845 MEM2 is a reference to a structure at a varying address, or returns
1846 MEM2 if vice versa. Otherwise, returns NULL_RTX. If a non-NULL
1847 value is returned MEM1 and MEM2 can never alias. VARIES_P is used
1848 to decide whether or not an address may vary; it should return
1849 nonzero whenever variation is possible.
1850 MEM1_ADDR and MEM2_ADDR are the addresses of MEM1 and MEM2. */
1852 static rtx
1853 fixed_scalar_and_varying_struct_p (rtx mem1, rtx mem2, rtx mem1_addr,
1854 rtx mem2_addr,
1855 int (*varies_p) (rtx, int))
1857 if (! flag_strict_aliasing)
1858 return NULL_RTX;
1860 if (MEM_SCALAR_P (mem1) && MEM_IN_STRUCT_P (mem2)
1861 && !varies_p (mem1_addr, 1) && varies_p (mem2_addr, 1))
1862 /* MEM1 is a scalar at a fixed address; MEM2 is a struct at a
1863 varying address. */
1864 return mem1;
1866 if (MEM_IN_STRUCT_P (mem1) && MEM_SCALAR_P (mem2)
1867 && varies_p (mem1_addr, 1) && !varies_p (mem2_addr, 1))
1868 /* MEM2 is a scalar at a fixed address; MEM1 is a struct at a
1869 varying address. */
1870 return mem2;
1872 return NULL_RTX;
1875 /* Returns nonzero if something about the mode or address format MEM1
1876 indicates that it might well alias *anything*. */
1878 static int
1879 aliases_everything_p (rtx mem)
1881 if (GET_CODE (XEXP (mem, 0)) == AND)
1882 /* If the address is an AND, it's very hard to know at what it is
1883 actually pointing. */
1884 return 1;
1886 return 0;
1889 /* Return true if we can determine that the fields referenced cannot
1890 overlap for any pair of objects. */
1892 static bool
1893 nonoverlapping_component_refs_p (tree x, tree y)
1895 tree fieldx, fieldy, typex, typey, orig_y;
1899 /* The comparison has to be done at a common type, since we don't
1900 know how the inheritance hierarchy works. */
1901 orig_y = y;
1904 fieldx = TREE_OPERAND (x, 1);
1905 typex = TYPE_MAIN_VARIANT (DECL_FIELD_CONTEXT (fieldx));
1907 y = orig_y;
1910 fieldy = TREE_OPERAND (y, 1);
1911 typey = TYPE_MAIN_VARIANT (DECL_FIELD_CONTEXT (fieldy));
1913 if (typex == typey)
1914 goto found;
1916 y = TREE_OPERAND (y, 0);
1918 while (y && TREE_CODE (y) == COMPONENT_REF);
1920 x = TREE_OPERAND (x, 0);
1922 while (x && TREE_CODE (x) == COMPONENT_REF);
1923 /* Never found a common type. */
1924 return false;
1926 found:
1927 /* If we're left with accessing different fields of a structure,
1928 then no overlap. */
1929 if (TREE_CODE (typex) == RECORD_TYPE
1930 && fieldx != fieldy)
1931 return true;
1933 /* The comparison on the current field failed. If we're accessing
1934 a very nested structure, look at the next outer level. */
1935 x = TREE_OPERAND (x, 0);
1936 y = TREE_OPERAND (y, 0);
1938 while (x && y
1939 && TREE_CODE (x) == COMPONENT_REF
1940 && TREE_CODE (y) == COMPONENT_REF);
1942 return false;
1945 /* Look at the bottom of the COMPONENT_REF list for a DECL, and return it. */
1947 static tree
1948 decl_for_component_ref (tree x)
1952 x = TREE_OPERAND (x, 0);
1954 while (x && TREE_CODE (x) == COMPONENT_REF);
1956 return x && DECL_P (x) ? x : NULL_TREE;
1959 /* Walk up the COMPONENT_REF list and adjust OFFSET to compensate for the
1960 offset of the field reference. */
1962 static rtx
1963 adjust_offset_for_component_ref (tree x, rtx offset)
1965 HOST_WIDE_INT ioffset;
1967 if (! offset)
1968 return NULL_RTX;
1970 ioffset = INTVAL (offset);
1973 tree offset = component_ref_field_offset (x);
1974 tree field = TREE_OPERAND (x, 1);
1976 if (! host_integerp (offset, 1))
1977 return NULL_RTX;
1978 ioffset += (tree_low_cst (offset, 1)
1979 + (tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 1)
1980 / BITS_PER_UNIT));
1982 x = TREE_OPERAND (x, 0);
1984 while (x && TREE_CODE (x) == COMPONENT_REF);
1986 return GEN_INT (ioffset);
1989 /* Return nonzero if we can determine the exprs corresponding to memrefs
1990 X and Y and they do not overlap. */
1992 static int
1993 nonoverlapping_memrefs_p (rtx x, rtx y)
1995 tree exprx = MEM_EXPR (x), expry = MEM_EXPR (y);
1996 rtx rtlx, rtly;
1997 rtx basex, basey;
1998 rtx moffsetx, moffsety;
1999 HOST_WIDE_INT offsetx = 0, offsety = 0, sizex, sizey, tem;
2001 /* Unless both have exprs, we can't tell anything. */
2002 if (exprx == 0 || expry == 0)
2003 return 0;
2005 /* If both are field references, we may be able to determine something. */
2006 if (TREE_CODE (exprx) == COMPONENT_REF
2007 && TREE_CODE (expry) == COMPONENT_REF
2008 && nonoverlapping_component_refs_p (exprx, expry))
2009 return 1;
2012 /* If the field reference test failed, look at the DECLs involved. */
2013 moffsetx = MEM_OFFSET (x);
2014 if (TREE_CODE (exprx) == COMPONENT_REF)
2016 if (TREE_CODE (expry) == VAR_DECL
2017 && POINTER_TYPE_P (TREE_TYPE (expry)))
2019 tree field = TREE_OPERAND (exprx, 1);
2020 tree fieldcontext = DECL_FIELD_CONTEXT (field);
2021 if (ipa_type_escape_field_does_not_clobber_p (fieldcontext,
2022 TREE_TYPE (field)))
2023 return 1;
2026 tree t = decl_for_component_ref (exprx);
2027 if (! t)
2028 return 0;
2029 moffsetx = adjust_offset_for_component_ref (exprx, moffsetx);
2030 exprx = t;
2033 else if (INDIRECT_REF_P (exprx))
2035 exprx = TREE_OPERAND (exprx, 0);
2036 if (flag_argument_noalias < 2
2037 || TREE_CODE (exprx) != PARM_DECL)
2038 return 0;
2041 moffsety = MEM_OFFSET (y);
2042 if (TREE_CODE (expry) == COMPONENT_REF)
2044 if (TREE_CODE (exprx) == VAR_DECL
2045 && POINTER_TYPE_P (TREE_TYPE (exprx)))
2047 tree field = TREE_OPERAND (expry, 1);
2048 tree fieldcontext = DECL_FIELD_CONTEXT (field);
2049 if (ipa_type_escape_field_does_not_clobber_p (fieldcontext,
2050 TREE_TYPE (field)))
2051 return 1;
2054 tree t = decl_for_component_ref (expry);
2055 if (! t)
2056 return 0;
2057 moffsety = adjust_offset_for_component_ref (expry, moffsety);
2058 expry = t;
2061 else if (INDIRECT_REF_P (expry))
2063 expry = TREE_OPERAND (expry, 0);
2064 if (flag_argument_noalias < 2
2065 || TREE_CODE (expry) != PARM_DECL)
2066 return 0;
2069 if (! DECL_P (exprx) || ! DECL_P (expry))
2070 return 0;
2072 rtlx = DECL_RTL (exprx);
2073 rtly = DECL_RTL (expry);
2075 /* If either RTL is not a MEM, it must be a REG or CONCAT, meaning they
2076 can't overlap unless they are the same because we never reuse that part
2077 of the stack frame used for locals for spilled pseudos. */
2078 if ((!MEM_P (rtlx) || !MEM_P (rtly))
2079 && ! rtx_equal_p (rtlx, rtly))
2080 return 1;
2082 /* Get the base and offsets of both decls. If either is a register, we
2083 know both are and are the same, so use that as the base. The only
2084 we can avoid overlap is if we can deduce that they are nonoverlapping
2085 pieces of that decl, which is very rare. */
2086 basex = MEM_P (rtlx) ? XEXP (rtlx, 0) : rtlx;
2087 if (GET_CODE (basex) == PLUS && GET_CODE (XEXP (basex, 1)) == CONST_INT)
2088 offsetx = INTVAL (XEXP (basex, 1)), basex = XEXP (basex, 0);
2090 basey = MEM_P (rtly) ? XEXP (rtly, 0) : rtly;
2091 if (GET_CODE (basey) == PLUS && GET_CODE (XEXP (basey, 1)) == CONST_INT)
2092 offsety = INTVAL (XEXP (basey, 1)), basey = XEXP (basey, 0);
2094 /* If the bases are different, we know they do not overlap if both
2095 are constants or if one is a constant and the other a pointer into the
2096 stack frame. Otherwise a different base means we can't tell if they
2097 overlap or not. */
2098 if (! rtx_equal_p (basex, basey))
2099 return ((CONSTANT_P (basex) && CONSTANT_P (basey))
2100 || (CONSTANT_P (basex) && REG_P (basey)
2101 && REGNO_PTR_FRAME_P (REGNO (basey)))
2102 || (CONSTANT_P (basey) && REG_P (basex)
2103 && REGNO_PTR_FRAME_P (REGNO (basex))));
2105 sizex = (!MEM_P (rtlx) ? (int) GET_MODE_SIZE (GET_MODE (rtlx))
2106 : MEM_SIZE (rtlx) ? INTVAL (MEM_SIZE (rtlx))
2107 : -1);
2108 sizey = (!MEM_P (rtly) ? (int) GET_MODE_SIZE (GET_MODE (rtly))
2109 : MEM_SIZE (rtly) ? INTVAL (MEM_SIZE (rtly)) :
2110 -1);
2112 /* If we have an offset for either memref, it can update the values computed
2113 above. */
2114 if (moffsetx)
2115 offsetx += INTVAL (moffsetx), sizex -= INTVAL (moffsetx);
2116 if (moffsety)
2117 offsety += INTVAL (moffsety), sizey -= INTVAL (moffsety);
2119 /* If a memref has both a size and an offset, we can use the smaller size.
2120 We can't do this if the offset isn't known because we must view this
2121 memref as being anywhere inside the DECL's MEM. */
2122 if (MEM_SIZE (x) && moffsetx)
2123 sizex = INTVAL (MEM_SIZE (x));
2124 if (MEM_SIZE (y) && moffsety)
2125 sizey = INTVAL (MEM_SIZE (y));
2127 /* Put the values of the memref with the lower offset in X's values. */
2128 if (offsetx > offsety)
2130 tem = offsetx, offsetx = offsety, offsety = tem;
2131 tem = sizex, sizex = sizey, sizey = tem;
2134 /* If we don't know the size of the lower-offset value, we can't tell
2135 if they conflict. Otherwise, we do the test. */
2136 return sizex >= 0 && offsety >= offsetx + sizex;
2139 /* True dependence: X is read after store in MEM takes place. */
2142 true_dependence (rtx mem, enum machine_mode mem_mode, rtx x,
2143 int (*varies) (rtx, int))
2145 rtx x_addr, mem_addr;
2146 rtx base;
2148 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
2149 return 1;
2151 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
2152 This is used in epilogue deallocation functions. */
2153 if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
2154 return 1;
2155 if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
2156 return 1;
2157 if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
2158 || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
2159 return 1;
2161 if (DIFFERENT_ALIAS_SETS_P (x, mem))
2162 return 0;
2164 /* Read-only memory is by definition never modified, and therefore can't
2165 conflict with anything. We don't expect to find read-only set on MEM,
2166 but stupid user tricks can produce them, so don't die. */
2167 if (MEM_READONLY_P (x))
2168 return 0;
2170 if (nonoverlapping_memrefs_p (mem, x))
2171 return 0;
2173 if (mem_mode == VOIDmode)
2174 mem_mode = GET_MODE (mem);
2176 x_addr = get_addr (XEXP (x, 0));
2177 mem_addr = get_addr (XEXP (mem, 0));
2179 base = find_base_term (x_addr);
2180 if (base && (GET_CODE (base) == LABEL_REF
2181 || (GET_CODE (base) == SYMBOL_REF
2182 && CONSTANT_POOL_ADDRESS_P (base))))
2183 return 0;
2185 if (! base_alias_check (x_addr, mem_addr, GET_MODE (x), mem_mode))
2186 return 0;
2188 x_addr = canon_rtx (x_addr);
2189 mem_addr = canon_rtx (mem_addr);
2191 if (! memrefs_conflict_p (GET_MODE_SIZE (mem_mode), mem_addr,
2192 SIZE_FOR_MODE (x), x_addr, 0))
2193 return 0;
2195 if (aliases_everything_p (x))
2196 return 1;
2198 /* We cannot use aliases_everything_p to test MEM, since we must look
2199 at MEM_MODE, rather than GET_MODE (MEM). */
2200 if (mem_mode == QImode || GET_CODE (mem_addr) == AND)
2201 return 1;
2203 /* In true_dependence we also allow BLKmode to alias anything. Why
2204 don't we do this in anti_dependence and output_dependence? */
2205 if (mem_mode == BLKmode || GET_MODE (x) == BLKmode)
2206 return 1;
2208 return ! fixed_scalar_and_varying_struct_p (mem, x, mem_addr, x_addr,
2209 varies);
2212 /* Canonical true dependence: X is read after store in MEM takes place.
2213 Variant of true_dependence which assumes MEM has already been
2214 canonicalized (hence we no longer do that here).
2215 The mem_addr argument has been added, since true_dependence computed
2216 this value prior to canonicalizing. */
2219 canon_true_dependence (rtx mem, enum machine_mode mem_mode, rtx mem_addr,
2220 rtx x, int (*varies) (rtx, int))
2222 rtx x_addr;
2224 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
2225 return 1;
2227 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
2228 This is used in epilogue deallocation functions. */
2229 if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
2230 return 1;
2231 if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
2232 return 1;
2233 if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
2234 || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
2235 return 1;
2237 if (DIFFERENT_ALIAS_SETS_P (x, mem))
2238 return 0;
2240 /* Read-only memory is by definition never modified, and therefore can't
2241 conflict with anything. We don't expect to find read-only set on MEM,
2242 but stupid user tricks can produce them, so don't die. */
2243 if (MEM_READONLY_P (x))
2244 return 0;
2246 if (nonoverlapping_memrefs_p (x, mem))
2247 return 0;
2249 x_addr = get_addr (XEXP (x, 0));
2251 if (! base_alias_check (x_addr, mem_addr, GET_MODE (x), mem_mode))
2252 return 0;
2254 x_addr = canon_rtx (x_addr);
2255 if (! memrefs_conflict_p (GET_MODE_SIZE (mem_mode), mem_addr,
2256 SIZE_FOR_MODE (x), x_addr, 0))
2257 return 0;
2259 if (aliases_everything_p (x))
2260 return 1;
2262 /* We cannot use aliases_everything_p to test MEM, since we must look
2263 at MEM_MODE, rather than GET_MODE (MEM). */
2264 if (mem_mode == QImode || GET_CODE (mem_addr) == AND)
2265 return 1;
2267 /* In true_dependence we also allow BLKmode to alias anything. Why
2268 don't we do this in anti_dependence and output_dependence? */
2269 if (mem_mode == BLKmode || GET_MODE (x) == BLKmode)
2270 return 1;
2272 return ! fixed_scalar_and_varying_struct_p (mem, x, mem_addr, x_addr,
2273 varies);
2276 /* Returns nonzero if a write to X might alias a previous read from
2277 (or, if WRITEP is nonzero, a write to) MEM. */
2279 static int
2280 write_dependence_p (rtx mem, rtx x, int writep)
2282 rtx x_addr, mem_addr;
2283 rtx fixed_scalar;
2284 rtx base;
2286 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
2287 return 1;
2289 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
2290 This is used in epilogue deallocation functions. */
2291 if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
2292 return 1;
2293 if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
2294 return 1;
2295 if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
2296 || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
2297 return 1;
2299 if (DIFFERENT_ALIAS_SETS_P (x, mem))
2300 return 0;
2302 /* A read from read-only memory can't conflict with read-write memory. */
2303 if (!writep && MEM_READONLY_P (mem))
2304 return 0;
2306 if (nonoverlapping_memrefs_p (x, mem))
2307 return 0;
2309 x_addr = get_addr (XEXP (x, 0));
2310 mem_addr = get_addr (XEXP (mem, 0));
2312 if (! writep)
2314 base = find_base_term (mem_addr);
2315 if (base && (GET_CODE (base) == LABEL_REF
2316 || (GET_CODE (base) == SYMBOL_REF
2317 && CONSTANT_POOL_ADDRESS_P (base))))
2318 return 0;
2321 if (! base_alias_check (x_addr, mem_addr, GET_MODE (x),
2322 GET_MODE (mem)))
2323 return 0;
2325 x_addr = canon_rtx (x_addr);
2326 mem_addr = canon_rtx (mem_addr);
2328 if (!memrefs_conflict_p (SIZE_FOR_MODE (mem), mem_addr,
2329 SIZE_FOR_MODE (x), x_addr, 0))
2330 return 0;
2332 fixed_scalar
2333 = fixed_scalar_and_varying_struct_p (mem, x, mem_addr, x_addr,
2334 rtx_addr_varies_p);
2336 return (!(fixed_scalar == mem && !aliases_everything_p (x))
2337 && !(fixed_scalar == x && !aliases_everything_p (mem)));
2340 /* Anti dependence: X is written after read in MEM takes place. */
2343 anti_dependence (rtx mem, rtx x)
2345 return write_dependence_p (mem, x, /*writep=*/0);
2348 /* Output dependence: X is written after store in MEM takes place. */
2351 output_dependence (rtx mem, rtx x)
2353 return write_dependence_p (mem, x, /*writep=*/1);
2357 void
2358 init_alias_once (void)
2360 int i;
2362 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2363 /* Check whether this register can hold an incoming pointer
2364 argument. FUNCTION_ARG_REGNO_P tests outgoing register
2365 numbers, so translate if necessary due to register windows. */
2366 if (FUNCTION_ARG_REGNO_P (OUTGOING_REGNO (i))
2367 && HARD_REGNO_MODE_OK (i, Pmode))
2368 static_reg_base_value[i]
2369 = gen_rtx_ADDRESS (VOIDmode, gen_rtx_REG (Pmode, i));
2371 static_reg_base_value[STACK_POINTER_REGNUM]
2372 = gen_rtx_ADDRESS (Pmode, stack_pointer_rtx);
2373 static_reg_base_value[ARG_POINTER_REGNUM]
2374 = gen_rtx_ADDRESS (Pmode, arg_pointer_rtx);
2375 static_reg_base_value[FRAME_POINTER_REGNUM]
2376 = gen_rtx_ADDRESS (Pmode, frame_pointer_rtx);
2377 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
2378 static_reg_base_value[HARD_FRAME_POINTER_REGNUM]
2379 = gen_rtx_ADDRESS (Pmode, hard_frame_pointer_rtx);
2380 #endif
2383 /* Set MEMORY_MODIFIED when X modifies DATA (that is assumed
2384 to be memory reference. */
2385 static bool memory_modified;
2386 static void
2387 memory_modified_1 (rtx x, rtx pat ATTRIBUTE_UNUSED, void *data)
2389 if (MEM_P (x))
2391 if (anti_dependence (x, (rtx)data) || output_dependence (x, (rtx)data))
2392 memory_modified = true;
2397 /* Return true when INSN possibly modify memory contents of MEM
2398 (i.e. address can be modified). */
2399 bool
2400 memory_modified_in_insn_p (rtx mem, rtx insn)
2402 if (!INSN_P (insn))
2403 return false;
2404 memory_modified = false;
2405 note_stores (PATTERN (insn), memory_modified_1, mem);
2406 return memory_modified;
2409 /* Initialize the aliasing machinery. Initialize the REG_KNOWN_VALUE
2410 array. */
2412 void
2413 init_alias_analysis (void)
2415 unsigned int maxreg = max_reg_num ();
2416 int changed, pass;
2417 int i;
2418 unsigned int ui;
2419 rtx insn;
2421 timevar_push (TV_ALIAS_ANALYSIS);
2423 reg_known_value_size = maxreg - FIRST_PSEUDO_REGISTER;
2424 reg_known_value = ggc_calloc (reg_known_value_size, sizeof (rtx));
2425 reg_known_equiv_p = xcalloc (reg_known_value_size, sizeof (bool));
2427 /* Overallocate reg_base_value to allow some growth during loop
2428 optimization. Loop unrolling can create a large number of
2429 registers. */
2430 if (old_reg_base_value)
2432 reg_base_value = old_reg_base_value;
2433 /* If varray gets large zeroing cost may get important. */
2434 if (VARRAY_SIZE (reg_base_value) > 256
2435 && VARRAY_SIZE (reg_base_value) > 4 * maxreg)
2436 VARRAY_GROW (reg_base_value, maxreg);
2437 VARRAY_CLEAR (reg_base_value);
2438 if (VARRAY_SIZE (reg_base_value) < maxreg)
2439 VARRAY_GROW (reg_base_value, maxreg);
2441 else
2443 VARRAY_RTX_INIT (reg_base_value, maxreg, "reg_base_value");
2446 new_reg_base_value = XNEWVEC (rtx, maxreg);
2447 reg_seen = XNEWVEC (char, maxreg);
2449 /* The basic idea is that each pass through this loop will use the
2450 "constant" information from the previous pass to propagate alias
2451 information through another level of assignments.
2453 This could get expensive if the assignment chains are long. Maybe
2454 we should throttle the number of iterations, possibly based on
2455 the optimization level or flag_expensive_optimizations.
2457 We could propagate more information in the first pass by making use
2458 of REG_N_SETS to determine immediately that the alias information
2459 for a pseudo is "constant".
2461 A program with an uninitialized variable can cause an infinite loop
2462 here. Instead of doing a full dataflow analysis to detect such problems
2463 we just cap the number of iterations for the loop.
2465 The state of the arrays for the set chain in question does not matter
2466 since the program has undefined behavior. */
2468 pass = 0;
2471 /* Assume nothing will change this iteration of the loop. */
2472 changed = 0;
2474 /* We want to assign the same IDs each iteration of this loop, so
2475 start counting from zero each iteration of the loop. */
2476 unique_id = 0;
2478 /* We're at the start of the function each iteration through the
2479 loop, so we're copying arguments. */
2480 copying_arguments = true;
2482 /* Wipe the potential alias information clean for this pass. */
2483 memset (new_reg_base_value, 0, maxreg * sizeof (rtx));
2485 /* Wipe the reg_seen array clean. */
2486 memset (reg_seen, 0, maxreg);
2488 /* Mark all hard registers which may contain an address.
2489 The stack, frame and argument pointers may contain an address.
2490 An argument register which can hold a Pmode value may contain
2491 an address even if it is not in BASE_REGS.
2493 The address expression is VOIDmode for an argument and
2494 Pmode for other registers. */
2496 memcpy (new_reg_base_value, static_reg_base_value,
2497 FIRST_PSEUDO_REGISTER * sizeof (rtx));
2499 /* Walk the insns adding values to the new_reg_base_value array. */
2500 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
2502 if (INSN_P (insn))
2504 rtx note, set;
2506 #if defined (HAVE_prologue) || defined (HAVE_epilogue)
2507 /* The prologue/epilogue insns are not threaded onto the
2508 insn chain until after reload has completed. Thus,
2509 there is no sense wasting time checking if INSN is in
2510 the prologue/epilogue until after reload has completed. */
2511 if (reload_completed
2512 && prologue_epilogue_contains (insn))
2513 continue;
2514 #endif
2516 /* If this insn has a noalias note, process it, Otherwise,
2517 scan for sets. A simple set will have no side effects
2518 which could change the base value of any other register. */
2520 if (GET_CODE (PATTERN (insn)) == SET
2521 && REG_NOTES (insn) != 0
2522 && find_reg_note (insn, REG_NOALIAS, NULL_RTX))
2523 record_set (SET_DEST (PATTERN (insn)), NULL_RTX, NULL);
2524 else
2525 note_stores (PATTERN (insn), record_set, NULL);
2527 set = single_set (insn);
2529 if (set != 0
2530 && REG_P (SET_DEST (set))
2531 && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER)
2533 unsigned int regno = REGNO (SET_DEST (set));
2534 rtx src = SET_SRC (set);
2535 rtx t;
2537 if (REG_NOTES (insn) != 0
2538 && (((note = find_reg_note (insn, REG_EQUAL, 0)) != 0
2539 && REG_N_SETS (regno) == 1)
2540 || (note = find_reg_note (insn, REG_EQUIV, NULL_RTX)) != 0)
2541 && GET_CODE (XEXP (note, 0)) != EXPR_LIST
2542 && ! rtx_varies_p (XEXP (note, 0), 1)
2543 && ! reg_overlap_mentioned_p (SET_DEST (set),
2544 XEXP (note, 0)))
2546 set_reg_known_value (regno, XEXP (note, 0));
2547 set_reg_known_equiv_p (regno,
2548 REG_NOTE_KIND (note) == REG_EQUIV);
2550 else if (REG_N_SETS (regno) == 1
2551 && GET_CODE (src) == PLUS
2552 && REG_P (XEXP (src, 0))
2553 && (t = get_reg_known_value (REGNO (XEXP (src, 0))))
2554 && GET_CODE (XEXP (src, 1)) == CONST_INT)
2556 t = plus_constant (t, INTVAL (XEXP (src, 1)));
2557 set_reg_known_value (regno, t);
2558 set_reg_known_equiv_p (regno, 0);
2560 else if (REG_N_SETS (regno) == 1
2561 && ! rtx_varies_p (src, 1))
2563 set_reg_known_value (regno, src);
2564 set_reg_known_equiv_p (regno, 0);
2568 else if (NOTE_P (insn)
2569 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_FUNCTION_BEG)
2570 copying_arguments = false;
2573 /* Now propagate values from new_reg_base_value to reg_base_value. */
2574 gcc_assert (maxreg == (unsigned int) max_reg_num());
2576 for (ui = 0; ui < maxreg; ui++)
2578 if (new_reg_base_value[ui]
2579 && new_reg_base_value[ui] != VARRAY_RTX (reg_base_value, ui)
2580 && ! rtx_equal_p (new_reg_base_value[ui],
2581 VARRAY_RTX (reg_base_value, ui)))
2583 VARRAY_RTX (reg_base_value, ui) = new_reg_base_value[ui];
2584 changed = 1;
2588 while (changed && ++pass < MAX_ALIAS_LOOP_PASSES);
2590 /* Fill in the remaining entries. */
2591 for (i = 0; i < (int)reg_known_value_size; i++)
2592 if (reg_known_value[i] == 0)
2593 reg_known_value[i] = regno_reg_rtx[i + FIRST_PSEUDO_REGISTER];
2595 /* Simplify the reg_base_value array so that no register refers to
2596 another register, except to special registers indirectly through
2597 ADDRESS expressions.
2599 In theory this loop can take as long as O(registers^2), but unless
2600 there are very long dependency chains it will run in close to linear
2601 time.
2603 This loop may not be needed any longer now that the main loop does
2604 a better job at propagating alias information. */
2605 pass = 0;
2608 changed = 0;
2609 pass++;
2610 for (ui = 0; ui < maxreg; ui++)
2612 rtx base = VARRAY_RTX (reg_base_value, ui);
2613 if (base && REG_P (base))
2615 unsigned int base_regno = REGNO (base);
2616 if (base_regno == ui) /* register set from itself */
2617 VARRAY_RTX (reg_base_value, ui) = 0;
2618 else
2619 VARRAY_RTX (reg_base_value, ui)
2620 = VARRAY_RTX (reg_base_value, base_regno);
2621 changed = 1;
2625 while (changed && pass < MAX_ALIAS_LOOP_PASSES);
2627 /* Clean up. */
2628 free (new_reg_base_value);
2629 new_reg_base_value = 0;
2630 free (reg_seen);
2631 reg_seen = 0;
2632 timevar_pop (TV_ALIAS_ANALYSIS);
2635 void
2636 end_alias_analysis (void)
2638 old_reg_base_value = reg_base_value;
2639 ggc_free (reg_known_value);
2640 reg_known_value = 0;
2641 reg_known_value_size = 0;
2642 free (reg_known_equiv_p);
2643 reg_known_equiv_p = 0;
2646 #include "gt-alias.h"