libgo: add misc/cgo files
[official-gcc.git] / gcc / tree-vect-loop.c
bloba7c3d3d7e29752f4a4b9b2658c5da6d02e49d91b
1 /* Loop Vectorization
2 Copyright (C) 2003-2017 Free Software Foundation, Inc.
3 Contributed by Dorit Naishlos <dorit@il.ibm.com> and
4 Ira Rosen <irar@il.ibm.com>
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "backend.h"
26 #include "target.h"
27 #include "rtl.h"
28 #include "tree.h"
29 #include "gimple.h"
30 #include "cfghooks.h"
31 #include "tree-pass.h"
32 #include "ssa.h"
33 #include "optabs-tree.h"
34 #include "diagnostic-core.h"
35 #include "fold-const.h"
36 #include "stor-layout.h"
37 #include "cfganal.h"
38 #include "gimplify.h"
39 #include "gimple-iterator.h"
40 #include "gimplify-me.h"
41 #include "tree-ssa-loop-ivopts.h"
42 #include "tree-ssa-loop-manip.h"
43 #include "tree-ssa-loop-niter.h"
44 #include "tree-ssa-loop.h"
45 #include "cfgloop.h"
46 #include "params.h"
47 #include "tree-scalar-evolution.h"
48 #include "tree-vectorizer.h"
49 #include "gimple-fold.h"
50 #include "cgraph.h"
51 #include "tree-cfg.h"
52 #include "tree-if-conv.h"
54 /* Loop Vectorization Pass.
56 This pass tries to vectorize loops.
58 For example, the vectorizer transforms the following simple loop:
60 short a[N]; short b[N]; short c[N]; int i;
62 for (i=0; i<N; i++){
63 a[i] = b[i] + c[i];
66 as if it was manually vectorized by rewriting the source code into:
68 typedef int __attribute__((mode(V8HI))) v8hi;
69 short a[N]; short b[N]; short c[N]; int i;
70 v8hi *pa = (v8hi*)a, *pb = (v8hi*)b, *pc = (v8hi*)c;
71 v8hi va, vb, vc;
73 for (i=0; i<N/8; i++){
74 vb = pb[i];
75 vc = pc[i];
76 va = vb + vc;
77 pa[i] = va;
80 The main entry to this pass is vectorize_loops(), in which
81 the vectorizer applies a set of analyses on a given set of loops,
82 followed by the actual vectorization transformation for the loops that
83 had successfully passed the analysis phase.
84 Throughout this pass we make a distinction between two types of
85 data: scalars (which are represented by SSA_NAMES), and memory references
86 ("data-refs"). These two types of data require different handling both
87 during analysis and transformation. The types of data-refs that the
88 vectorizer currently supports are ARRAY_REFS which base is an array DECL
89 (not a pointer), and INDIRECT_REFS through pointers; both array and pointer
90 accesses are required to have a simple (consecutive) access pattern.
92 Analysis phase:
93 ===============
94 The driver for the analysis phase is vect_analyze_loop().
95 It applies a set of analyses, some of which rely on the scalar evolution
96 analyzer (scev) developed by Sebastian Pop.
98 During the analysis phase the vectorizer records some information
99 per stmt in a "stmt_vec_info" struct which is attached to each stmt in the
100 loop, as well as general information about the loop as a whole, which is
101 recorded in a "loop_vec_info" struct attached to each loop.
103 Transformation phase:
104 =====================
105 The loop transformation phase scans all the stmts in the loop, and
106 creates a vector stmt (or a sequence of stmts) for each scalar stmt S in
107 the loop that needs to be vectorized. It inserts the vector code sequence
108 just before the scalar stmt S, and records a pointer to the vector code
109 in STMT_VINFO_VEC_STMT (stmt_info) (stmt_info is the stmt_vec_info struct
110 attached to S). This pointer will be used for the vectorization of following
111 stmts which use the def of stmt S. Stmt S is removed if it writes to memory;
112 otherwise, we rely on dead code elimination for removing it.
114 For example, say stmt S1 was vectorized into stmt VS1:
116 VS1: vb = px[i];
117 S1: b = x[i]; STMT_VINFO_VEC_STMT (stmt_info (S1)) = VS1
118 S2: a = b;
120 To vectorize stmt S2, the vectorizer first finds the stmt that defines
121 the operand 'b' (S1), and gets the relevant vector def 'vb' from the
122 vector stmt VS1 pointed to by STMT_VINFO_VEC_STMT (stmt_info (S1)). The
123 resulting sequence would be:
125 VS1: vb = px[i];
126 S1: b = x[i]; STMT_VINFO_VEC_STMT (stmt_info (S1)) = VS1
127 VS2: va = vb;
128 S2: a = b; STMT_VINFO_VEC_STMT (stmt_info (S2)) = VS2
130 Operands that are not SSA_NAMEs, are data-refs that appear in
131 load/store operations (like 'x[i]' in S1), and are handled differently.
133 Target modeling:
134 =================
135 Currently the only target specific information that is used is the
136 size of the vector (in bytes) - "TARGET_VECTORIZE_UNITS_PER_SIMD_WORD".
137 Targets that can support different sizes of vectors, for now will need
138 to specify one value for "TARGET_VECTORIZE_UNITS_PER_SIMD_WORD". More
139 flexibility will be added in the future.
141 Since we only vectorize operations which vector form can be
142 expressed using existing tree codes, to verify that an operation is
143 supported, the vectorizer checks the relevant optab at the relevant
144 machine_mode (e.g, optab_handler (add_optab, V8HImode)). If
145 the value found is CODE_FOR_nothing, then there's no target support, and
146 we can't vectorize the stmt.
148 For additional information on this project see:
149 http://gcc.gnu.org/projects/tree-ssa/vectorization.html
152 static void vect_estimate_min_profitable_iters (loop_vec_info, int *, int *);
154 /* Function vect_determine_vectorization_factor
156 Determine the vectorization factor (VF). VF is the number of data elements
157 that are operated upon in parallel in a single iteration of the vectorized
158 loop. For example, when vectorizing a loop that operates on 4byte elements,
159 on a target with vector size (VS) 16byte, the VF is set to 4, since 4
160 elements can fit in a single vector register.
162 We currently support vectorization of loops in which all types operated upon
163 are of the same size. Therefore this function currently sets VF according to
164 the size of the types operated upon, and fails if there are multiple sizes
165 in the loop.
167 VF is also the factor by which the loop iterations are strip-mined, e.g.:
168 original loop:
169 for (i=0; i<N; i++){
170 a[i] = b[i] + c[i];
173 vectorized loop:
174 for (i=0; i<N; i+=VF){
175 a[i:VF] = b[i:VF] + c[i:VF];
179 static bool
180 vect_determine_vectorization_factor (loop_vec_info loop_vinfo)
182 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
183 basic_block *bbs = LOOP_VINFO_BBS (loop_vinfo);
184 unsigned nbbs = loop->num_nodes;
185 unsigned int vectorization_factor = 0;
186 tree scalar_type = NULL_TREE;
187 gphi *phi;
188 tree vectype;
189 unsigned int nunits;
190 stmt_vec_info stmt_info;
191 unsigned i;
192 HOST_WIDE_INT dummy;
193 gimple *stmt, *pattern_stmt = NULL;
194 gimple_seq pattern_def_seq = NULL;
195 gimple_stmt_iterator pattern_def_si = gsi_none ();
196 bool analyze_pattern_stmt = false;
197 bool bool_result;
198 auto_vec<stmt_vec_info> mask_producers;
200 if (dump_enabled_p ())
201 dump_printf_loc (MSG_NOTE, vect_location,
202 "=== vect_determine_vectorization_factor ===\n");
204 for (i = 0; i < nbbs; i++)
206 basic_block bb = bbs[i];
208 for (gphi_iterator si = gsi_start_phis (bb); !gsi_end_p (si);
209 gsi_next (&si))
211 phi = si.phi ();
212 stmt_info = vinfo_for_stmt (phi);
213 if (dump_enabled_p ())
215 dump_printf_loc (MSG_NOTE, vect_location, "==> examining phi: ");
216 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, phi, 0);
219 gcc_assert (stmt_info);
221 if (STMT_VINFO_RELEVANT_P (stmt_info)
222 || STMT_VINFO_LIVE_P (stmt_info))
224 gcc_assert (!STMT_VINFO_VECTYPE (stmt_info));
225 scalar_type = TREE_TYPE (PHI_RESULT (phi));
227 if (dump_enabled_p ())
229 dump_printf_loc (MSG_NOTE, vect_location,
230 "get vectype for scalar type: ");
231 dump_generic_expr (MSG_NOTE, TDF_SLIM, scalar_type);
232 dump_printf (MSG_NOTE, "\n");
235 vectype = get_vectype_for_scalar_type (scalar_type);
236 if (!vectype)
238 if (dump_enabled_p ())
240 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
241 "not vectorized: unsupported "
242 "data-type ");
243 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
244 scalar_type);
245 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
247 return false;
249 STMT_VINFO_VECTYPE (stmt_info) = vectype;
251 if (dump_enabled_p ())
253 dump_printf_loc (MSG_NOTE, vect_location, "vectype: ");
254 dump_generic_expr (MSG_NOTE, TDF_SLIM, vectype);
255 dump_printf (MSG_NOTE, "\n");
258 nunits = TYPE_VECTOR_SUBPARTS (vectype);
259 if (dump_enabled_p ())
260 dump_printf_loc (MSG_NOTE, vect_location, "nunits = %d\n",
261 nunits);
263 if (!vectorization_factor
264 || (nunits > vectorization_factor))
265 vectorization_factor = nunits;
269 for (gimple_stmt_iterator si = gsi_start_bb (bb);
270 !gsi_end_p (si) || analyze_pattern_stmt;)
272 tree vf_vectype;
274 if (analyze_pattern_stmt)
275 stmt = pattern_stmt;
276 else
277 stmt = gsi_stmt (si);
279 stmt_info = vinfo_for_stmt (stmt);
281 if (dump_enabled_p ())
283 dump_printf_loc (MSG_NOTE, vect_location,
284 "==> examining statement: ");
285 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, stmt, 0);
288 gcc_assert (stmt_info);
290 /* Skip stmts which do not need to be vectorized. */
291 if ((!STMT_VINFO_RELEVANT_P (stmt_info)
292 && !STMT_VINFO_LIVE_P (stmt_info))
293 || gimple_clobber_p (stmt))
295 if (STMT_VINFO_IN_PATTERN_P (stmt_info)
296 && (pattern_stmt = STMT_VINFO_RELATED_STMT (stmt_info))
297 && (STMT_VINFO_RELEVANT_P (vinfo_for_stmt (pattern_stmt))
298 || STMT_VINFO_LIVE_P (vinfo_for_stmt (pattern_stmt))))
300 stmt = pattern_stmt;
301 stmt_info = vinfo_for_stmt (pattern_stmt);
302 if (dump_enabled_p ())
304 dump_printf_loc (MSG_NOTE, vect_location,
305 "==> examining pattern statement: ");
306 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, stmt, 0);
309 else
311 if (dump_enabled_p ())
312 dump_printf_loc (MSG_NOTE, vect_location, "skip.\n");
313 gsi_next (&si);
314 continue;
317 else if (STMT_VINFO_IN_PATTERN_P (stmt_info)
318 && (pattern_stmt = STMT_VINFO_RELATED_STMT (stmt_info))
319 && (STMT_VINFO_RELEVANT_P (vinfo_for_stmt (pattern_stmt))
320 || STMT_VINFO_LIVE_P (vinfo_for_stmt (pattern_stmt))))
321 analyze_pattern_stmt = true;
323 /* If a pattern statement has def stmts, analyze them too. */
324 if (is_pattern_stmt_p (stmt_info))
326 if (pattern_def_seq == NULL)
328 pattern_def_seq = STMT_VINFO_PATTERN_DEF_SEQ (stmt_info);
329 pattern_def_si = gsi_start (pattern_def_seq);
331 else if (!gsi_end_p (pattern_def_si))
332 gsi_next (&pattern_def_si);
333 if (pattern_def_seq != NULL)
335 gimple *pattern_def_stmt = NULL;
336 stmt_vec_info pattern_def_stmt_info = NULL;
338 while (!gsi_end_p (pattern_def_si))
340 pattern_def_stmt = gsi_stmt (pattern_def_si);
341 pattern_def_stmt_info
342 = vinfo_for_stmt (pattern_def_stmt);
343 if (STMT_VINFO_RELEVANT_P (pattern_def_stmt_info)
344 || STMT_VINFO_LIVE_P (pattern_def_stmt_info))
345 break;
346 gsi_next (&pattern_def_si);
349 if (!gsi_end_p (pattern_def_si))
351 if (dump_enabled_p ())
353 dump_printf_loc (MSG_NOTE, vect_location,
354 "==> examining pattern def stmt: ");
355 dump_gimple_stmt (MSG_NOTE, TDF_SLIM,
356 pattern_def_stmt, 0);
359 stmt = pattern_def_stmt;
360 stmt_info = pattern_def_stmt_info;
362 else
364 pattern_def_si = gsi_none ();
365 analyze_pattern_stmt = false;
368 else
369 analyze_pattern_stmt = false;
372 if (gimple_get_lhs (stmt) == NULL_TREE
373 /* MASK_STORE has no lhs, but is ok. */
374 && (!is_gimple_call (stmt)
375 || !gimple_call_internal_p (stmt)
376 || gimple_call_internal_fn (stmt) != IFN_MASK_STORE))
378 if (is_gimple_call (stmt))
380 /* Ignore calls with no lhs. These must be calls to
381 #pragma omp simd functions, and what vectorization factor
382 it really needs can't be determined until
383 vectorizable_simd_clone_call. */
384 if (!analyze_pattern_stmt && gsi_end_p (pattern_def_si))
386 pattern_def_seq = NULL;
387 gsi_next (&si);
389 continue;
391 if (dump_enabled_p ())
393 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
394 "not vectorized: irregular stmt.");
395 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, stmt,
398 return false;
401 if (VECTOR_MODE_P (TYPE_MODE (gimple_expr_type (stmt))))
403 if (dump_enabled_p ())
405 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
406 "not vectorized: vector stmt in loop:");
407 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, stmt, 0);
409 return false;
412 bool_result = false;
414 if (STMT_VINFO_VECTYPE (stmt_info))
416 /* The only case when a vectype had been already set is for stmts
417 that contain a dataref, or for "pattern-stmts" (stmts
418 generated by the vectorizer to represent/replace a certain
419 idiom). */
420 gcc_assert (STMT_VINFO_DATA_REF (stmt_info)
421 || is_pattern_stmt_p (stmt_info)
422 || !gsi_end_p (pattern_def_si));
423 vectype = STMT_VINFO_VECTYPE (stmt_info);
425 else
427 gcc_assert (!STMT_VINFO_DATA_REF (stmt_info));
428 if (gimple_call_internal_p (stmt, IFN_MASK_STORE))
429 scalar_type = TREE_TYPE (gimple_call_arg (stmt, 3));
430 else
431 scalar_type = TREE_TYPE (gimple_get_lhs (stmt));
433 /* Bool ops don't participate in vectorization factor
434 computation. For comparison use compared types to
435 compute a factor. */
436 if (VECT_SCALAR_BOOLEAN_TYPE_P (scalar_type)
437 && is_gimple_assign (stmt)
438 && gimple_assign_rhs_code (stmt) != COND_EXPR)
440 if (STMT_VINFO_RELEVANT_P (stmt_info)
441 || STMT_VINFO_LIVE_P (stmt_info))
442 mask_producers.safe_push (stmt_info);
443 bool_result = true;
445 if (TREE_CODE_CLASS (gimple_assign_rhs_code (stmt))
446 == tcc_comparison
447 && !VECT_SCALAR_BOOLEAN_TYPE_P
448 (TREE_TYPE (gimple_assign_rhs1 (stmt))))
449 scalar_type = TREE_TYPE (gimple_assign_rhs1 (stmt));
450 else
452 if (!analyze_pattern_stmt && gsi_end_p (pattern_def_si))
454 pattern_def_seq = NULL;
455 gsi_next (&si);
457 continue;
461 if (dump_enabled_p ())
463 dump_printf_loc (MSG_NOTE, vect_location,
464 "get vectype for scalar type: ");
465 dump_generic_expr (MSG_NOTE, TDF_SLIM, scalar_type);
466 dump_printf (MSG_NOTE, "\n");
468 vectype = get_vectype_for_scalar_type (scalar_type);
469 if (!vectype)
471 if (dump_enabled_p ())
473 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
474 "not vectorized: unsupported "
475 "data-type ");
476 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
477 scalar_type);
478 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
480 return false;
483 if (!bool_result)
484 STMT_VINFO_VECTYPE (stmt_info) = vectype;
486 if (dump_enabled_p ())
488 dump_printf_loc (MSG_NOTE, vect_location, "vectype: ");
489 dump_generic_expr (MSG_NOTE, TDF_SLIM, vectype);
490 dump_printf (MSG_NOTE, "\n");
494 /* Don't try to compute VF out scalar types if we stmt
495 produces boolean vector. Use result vectype instead. */
496 if (VECTOR_BOOLEAN_TYPE_P (vectype))
497 vf_vectype = vectype;
498 else
500 /* The vectorization factor is according to the smallest
501 scalar type (or the largest vector size, but we only
502 support one vector size per loop). */
503 if (!bool_result)
504 scalar_type = vect_get_smallest_scalar_type (stmt, &dummy,
505 &dummy);
506 if (dump_enabled_p ())
508 dump_printf_loc (MSG_NOTE, vect_location,
509 "get vectype for scalar type: ");
510 dump_generic_expr (MSG_NOTE, TDF_SLIM, scalar_type);
511 dump_printf (MSG_NOTE, "\n");
513 vf_vectype = get_vectype_for_scalar_type (scalar_type);
515 if (!vf_vectype)
517 if (dump_enabled_p ())
519 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
520 "not vectorized: unsupported data-type ");
521 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
522 scalar_type);
523 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
525 return false;
528 if ((GET_MODE_SIZE (TYPE_MODE (vectype))
529 != GET_MODE_SIZE (TYPE_MODE (vf_vectype))))
531 if (dump_enabled_p ())
533 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
534 "not vectorized: different sized vector "
535 "types in statement, ");
536 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
537 vectype);
538 dump_printf (MSG_MISSED_OPTIMIZATION, " and ");
539 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
540 vf_vectype);
541 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
543 return false;
546 if (dump_enabled_p ())
548 dump_printf_loc (MSG_NOTE, vect_location, "vectype: ");
549 dump_generic_expr (MSG_NOTE, TDF_SLIM, vf_vectype);
550 dump_printf (MSG_NOTE, "\n");
553 nunits = TYPE_VECTOR_SUBPARTS (vf_vectype);
554 if (dump_enabled_p ())
555 dump_printf_loc (MSG_NOTE, vect_location, "nunits = %d\n", nunits);
556 if (!vectorization_factor
557 || (nunits > vectorization_factor))
558 vectorization_factor = nunits;
560 if (!analyze_pattern_stmt && gsi_end_p (pattern_def_si))
562 pattern_def_seq = NULL;
563 gsi_next (&si);
568 /* TODO: Analyze cost. Decide if worth while to vectorize. */
569 if (dump_enabled_p ())
570 dump_printf_loc (MSG_NOTE, vect_location, "vectorization factor = %d\n",
571 vectorization_factor);
572 if (vectorization_factor <= 1)
574 if (dump_enabled_p ())
575 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
576 "not vectorized: unsupported data-type\n");
577 return false;
579 LOOP_VINFO_VECT_FACTOR (loop_vinfo) = vectorization_factor;
581 for (i = 0; i < mask_producers.length (); i++)
583 tree mask_type = NULL;
585 stmt = STMT_VINFO_STMT (mask_producers[i]);
587 if (is_gimple_assign (stmt)
588 && TREE_CODE_CLASS (gimple_assign_rhs_code (stmt)) == tcc_comparison
589 && !VECT_SCALAR_BOOLEAN_TYPE_P
590 (TREE_TYPE (gimple_assign_rhs1 (stmt))))
592 scalar_type = TREE_TYPE (gimple_assign_rhs1 (stmt));
593 mask_type = get_mask_type_for_scalar_type (scalar_type);
595 if (!mask_type)
597 if (dump_enabled_p ())
598 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
599 "not vectorized: unsupported mask\n");
600 return false;
603 else
605 tree rhs;
606 ssa_op_iter iter;
607 gimple *def_stmt;
608 enum vect_def_type dt;
610 FOR_EACH_SSA_TREE_OPERAND (rhs, stmt, iter, SSA_OP_USE)
612 if (!vect_is_simple_use (rhs, mask_producers[i]->vinfo,
613 &def_stmt, &dt, &vectype))
615 if (dump_enabled_p ())
617 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
618 "not vectorized: can't compute mask type "
619 "for statement, ");
620 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, stmt,
623 return false;
626 /* No vectype probably means external definition.
627 Allow it in case there is another operand which
628 allows to determine mask type. */
629 if (!vectype)
630 continue;
632 if (!mask_type)
633 mask_type = vectype;
634 else if (TYPE_VECTOR_SUBPARTS (mask_type)
635 != TYPE_VECTOR_SUBPARTS (vectype))
637 if (dump_enabled_p ())
639 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
640 "not vectorized: different sized masks "
641 "types in statement, ");
642 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
643 mask_type);
644 dump_printf (MSG_MISSED_OPTIMIZATION, " and ");
645 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
646 vectype);
647 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
649 return false;
651 else if (VECTOR_BOOLEAN_TYPE_P (mask_type)
652 != VECTOR_BOOLEAN_TYPE_P (vectype))
654 if (dump_enabled_p ())
656 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
657 "not vectorized: mixed mask and "
658 "nonmask vector types in statement, ");
659 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
660 mask_type);
661 dump_printf (MSG_MISSED_OPTIMIZATION, " and ");
662 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
663 vectype);
664 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
666 return false;
670 /* We may compare boolean value loaded as vector of integers.
671 Fix mask_type in such case. */
672 if (mask_type
673 && !VECTOR_BOOLEAN_TYPE_P (mask_type)
674 && gimple_code (stmt) == GIMPLE_ASSIGN
675 && TREE_CODE_CLASS (gimple_assign_rhs_code (stmt)) == tcc_comparison)
676 mask_type = build_same_sized_truth_vector_type (mask_type);
679 /* No mask_type should mean loop invariant predicate.
680 This is probably a subject for optimization in
681 if-conversion. */
682 if (!mask_type)
684 if (dump_enabled_p ())
686 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
687 "not vectorized: can't compute mask type "
688 "for statement, ");
689 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, stmt,
692 return false;
695 STMT_VINFO_VECTYPE (mask_producers[i]) = mask_type;
698 return true;
702 /* Function vect_is_simple_iv_evolution.
704 FORNOW: A simple evolution of an induction variables in the loop is
705 considered a polynomial evolution. */
707 static bool
708 vect_is_simple_iv_evolution (unsigned loop_nb, tree access_fn, tree * init,
709 tree * step)
711 tree init_expr;
712 tree step_expr;
713 tree evolution_part = evolution_part_in_loop_num (access_fn, loop_nb);
714 basic_block bb;
716 /* When there is no evolution in this loop, the evolution function
717 is not "simple". */
718 if (evolution_part == NULL_TREE)
719 return false;
721 /* When the evolution is a polynomial of degree >= 2
722 the evolution function is not "simple". */
723 if (tree_is_chrec (evolution_part))
724 return false;
726 step_expr = evolution_part;
727 init_expr = unshare_expr (initial_condition_in_loop_num (access_fn, loop_nb));
729 if (dump_enabled_p ())
731 dump_printf_loc (MSG_NOTE, vect_location, "step: ");
732 dump_generic_expr (MSG_NOTE, TDF_SLIM, step_expr);
733 dump_printf (MSG_NOTE, ", init: ");
734 dump_generic_expr (MSG_NOTE, TDF_SLIM, init_expr);
735 dump_printf (MSG_NOTE, "\n");
738 *init = init_expr;
739 *step = step_expr;
741 if (TREE_CODE (step_expr) != INTEGER_CST
742 && (TREE_CODE (step_expr) != SSA_NAME
743 || ((bb = gimple_bb (SSA_NAME_DEF_STMT (step_expr)))
744 && flow_bb_inside_loop_p (get_loop (cfun, loop_nb), bb))
745 || (!INTEGRAL_TYPE_P (TREE_TYPE (step_expr))
746 && (!SCALAR_FLOAT_TYPE_P (TREE_TYPE (step_expr))
747 || !flag_associative_math)))
748 && (TREE_CODE (step_expr) != REAL_CST
749 || !flag_associative_math))
751 if (dump_enabled_p ())
752 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
753 "step unknown.\n");
754 return false;
757 return true;
760 /* Function vect_analyze_scalar_cycles_1.
762 Examine the cross iteration def-use cycles of scalar variables
763 in LOOP. LOOP_VINFO represents the loop that is now being
764 considered for vectorization (can be LOOP, or an outer-loop
765 enclosing LOOP). */
767 static void
768 vect_analyze_scalar_cycles_1 (loop_vec_info loop_vinfo, struct loop *loop)
770 basic_block bb = loop->header;
771 tree init, step;
772 auto_vec<gimple *, 64> worklist;
773 gphi_iterator gsi;
774 bool double_reduc;
776 if (dump_enabled_p ())
777 dump_printf_loc (MSG_NOTE, vect_location,
778 "=== vect_analyze_scalar_cycles ===\n");
780 /* First - identify all inductions. Reduction detection assumes that all the
781 inductions have been identified, therefore, this order must not be
782 changed. */
783 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
785 gphi *phi = gsi.phi ();
786 tree access_fn = NULL;
787 tree def = PHI_RESULT (phi);
788 stmt_vec_info stmt_vinfo = vinfo_for_stmt (phi);
790 if (dump_enabled_p ())
792 dump_printf_loc (MSG_NOTE, vect_location, "Analyze phi: ");
793 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, phi, 0);
796 /* Skip virtual phi's. The data dependences that are associated with
797 virtual defs/uses (i.e., memory accesses) are analyzed elsewhere. */
798 if (virtual_operand_p (def))
799 continue;
801 STMT_VINFO_DEF_TYPE (stmt_vinfo) = vect_unknown_def_type;
803 /* Analyze the evolution function. */
804 access_fn = analyze_scalar_evolution (loop, def);
805 if (access_fn)
807 STRIP_NOPS (access_fn);
808 if (dump_enabled_p ())
810 dump_printf_loc (MSG_NOTE, vect_location,
811 "Access function of PHI: ");
812 dump_generic_expr (MSG_NOTE, TDF_SLIM, access_fn);
813 dump_printf (MSG_NOTE, "\n");
815 STMT_VINFO_LOOP_PHI_EVOLUTION_BASE_UNCHANGED (stmt_vinfo)
816 = initial_condition_in_loop_num (access_fn, loop->num);
817 STMT_VINFO_LOOP_PHI_EVOLUTION_PART (stmt_vinfo)
818 = evolution_part_in_loop_num (access_fn, loop->num);
821 if (!access_fn
822 || !vect_is_simple_iv_evolution (loop->num, access_fn, &init, &step)
823 || (LOOP_VINFO_LOOP (loop_vinfo) != loop
824 && TREE_CODE (step) != INTEGER_CST))
826 worklist.safe_push (phi);
827 continue;
830 gcc_assert (STMT_VINFO_LOOP_PHI_EVOLUTION_BASE_UNCHANGED (stmt_vinfo)
831 != NULL_TREE);
832 gcc_assert (STMT_VINFO_LOOP_PHI_EVOLUTION_PART (stmt_vinfo) != NULL_TREE);
834 if (dump_enabled_p ())
835 dump_printf_loc (MSG_NOTE, vect_location, "Detected induction.\n");
836 STMT_VINFO_DEF_TYPE (stmt_vinfo) = vect_induction_def;
840 /* Second - identify all reductions and nested cycles. */
841 while (worklist.length () > 0)
843 gimple *phi = worklist.pop ();
844 tree def = PHI_RESULT (phi);
845 stmt_vec_info stmt_vinfo = vinfo_for_stmt (phi);
846 gimple *reduc_stmt;
848 if (dump_enabled_p ())
850 dump_printf_loc (MSG_NOTE, vect_location, "Analyze phi: ");
851 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, phi, 0);
854 gcc_assert (!virtual_operand_p (def)
855 && STMT_VINFO_DEF_TYPE (stmt_vinfo) == vect_unknown_def_type);
857 reduc_stmt = vect_force_simple_reduction (loop_vinfo, phi,
858 &double_reduc, false);
859 if (reduc_stmt)
861 if (double_reduc)
863 if (dump_enabled_p ())
864 dump_printf_loc (MSG_NOTE, vect_location,
865 "Detected double reduction.\n");
867 STMT_VINFO_DEF_TYPE (stmt_vinfo) = vect_double_reduction_def;
868 STMT_VINFO_DEF_TYPE (vinfo_for_stmt (reduc_stmt)) =
869 vect_double_reduction_def;
871 else
873 if (loop != LOOP_VINFO_LOOP (loop_vinfo))
875 if (dump_enabled_p ())
876 dump_printf_loc (MSG_NOTE, vect_location,
877 "Detected vectorizable nested cycle.\n");
879 STMT_VINFO_DEF_TYPE (stmt_vinfo) = vect_nested_cycle;
880 STMT_VINFO_DEF_TYPE (vinfo_for_stmt (reduc_stmt)) =
881 vect_nested_cycle;
883 else
885 if (dump_enabled_p ())
886 dump_printf_loc (MSG_NOTE, vect_location,
887 "Detected reduction.\n");
889 STMT_VINFO_DEF_TYPE (stmt_vinfo) = vect_reduction_def;
890 STMT_VINFO_DEF_TYPE (vinfo_for_stmt (reduc_stmt)) =
891 vect_reduction_def;
892 /* Store the reduction cycles for possible vectorization in
893 loop-aware SLP. */
894 LOOP_VINFO_REDUCTIONS (loop_vinfo).safe_push (reduc_stmt);
898 else
899 if (dump_enabled_p ())
900 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
901 "Unknown def-use cycle pattern.\n");
906 /* Function vect_analyze_scalar_cycles.
908 Examine the cross iteration def-use cycles of scalar variables, by
909 analyzing the loop-header PHIs of scalar variables. Classify each
910 cycle as one of the following: invariant, induction, reduction, unknown.
911 We do that for the loop represented by LOOP_VINFO, and also to its
912 inner-loop, if exists.
913 Examples for scalar cycles:
915 Example1: reduction:
917 loop1:
918 for (i=0; i<N; i++)
919 sum += a[i];
921 Example2: induction:
923 loop2:
924 for (i=0; i<N; i++)
925 a[i] = i; */
927 static void
928 vect_analyze_scalar_cycles (loop_vec_info loop_vinfo)
930 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
932 vect_analyze_scalar_cycles_1 (loop_vinfo, loop);
934 /* When vectorizing an outer-loop, the inner-loop is executed sequentially.
935 Reductions in such inner-loop therefore have different properties than
936 the reductions in the nest that gets vectorized:
937 1. When vectorized, they are executed in the same order as in the original
938 scalar loop, so we can't change the order of computation when
939 vectorizing them.
940 2. FIXME: Inner-loop reductions can be used in the inner-loop, so the
941 current checks are too strict. */
943 if (loop->inner)
944 vect_analyze_scalar_cycles_1 (loop_vinfo, loop->inner);
947 /* Transfer group and reduction information from STMT to its pattern stmt. */
949 static void
950 vect_fixup_reduc_chain (gimple *stmt)
952 gimple *firstp = STMT_VINFO_RELATED_STMT (vinfo_for_stmt (stmt));
953 gimple *stmtp;
954 gcc_assert (!GROUP_FIRST_ELEMENT (vinfo_for_stmt (firstp))
955 && GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt)));
956 GROUP_SIZE (vinfo_for_stmt (firstp)) = GROUP_SIZE (vinfo_for_stmt (stmt));
959 stmtp = STMT_VINFO_RELATED_STMT (vinfo_for_stmt (stmt));
960 GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmtp)) = firstp;
961 stmt = GROUP_NEXT_ELEMENT (vinfo_for_stmt (stmt));
962 if (stmt)
963 GROUP_NEXT_ELEMENT (vinfo_for_stmt (stmtp))
964 = STMT_VINFO_RELATED_STMT (vinfo_for_stmt (stmt));
966 while (stmt);
967 STMT_VINFO_DEF_TYPE (vinfo_for_stmt (stmtp)) = vect_reduction_def;
970 /* Fixup scalar cycles that now have their stmts detected as patterns. */
972 static void
973 vect_fixup_scalar_cycles_with_patterns (loop_vec_info loop_vinfo)
975 gimple *first;
976 unsigned i;
978 FOR_EACH_VEC_ELT (LOOP_VINFO_REDUCTION_CHAINS (loop_vinfo), i, first)
979 if (STMT_VINFO_IN_PATTERN_P (vinfo_for_stmt (first)))
981 gimple *next = GROUP_NEXT_ELEMENT (vinfo_for_stmt (first));
982 while (next)
984 if (! STMT_VINFO_IN_PATTERN_P (vinfo_for_stmt (next)))
985 break;
986 next = GROUP_NEXT_ELEMENT (vinfo_for_stmt (next));
988 /* If not all stmt in the chain are patterns try to handle
989 the chain without patterns. */
990 if (! next)
992 vect_fixup_reduc_chain (first);
993 LOOP_VINFO_REDUCTION_CHAINS (loop_vinfo)[i]
994 = STMT_VINFO_RELATED_STMT (vinfo_for_stmt (first));
999 /* Function vect_get_loop_niters.
1001 Determine how many iterations the loop is executed and place it
1002 in NUMBER_OF_ITERATIONS. Place the number of latch iterations
1003 in NUMBER_OF_ITERATIONSM1. Place the condition under which the
1004 niter information holds in ASSUMPTIONS.
1006 Return the loop exit condition. */
1009 static gcond *
1010 vect_get_loop_niters (struct loop *loop, tree *assumptions,
1011 tree *number_of_iterations, tree *number_of_iterationsm1)
1013 edge exit = single_exit (loop);
1014 struct tree_niter_desc niter_desc;
1015 tree niter_assumptions, niter, may_be_zero;
1016 gcond *cond = get_loop_exit_condition (loop);
1018 *assumptions = boolean_true_node;
1019 *number_of_iterationsm1 = chrec_dont_know;
1020 *number_of_iterations = chrec_dont_know;
1021 if (dump_enabled_p ())
1022 dump_printf_loc (MSG_NOTE, vect_location,
1023 "=== get_loop_niters ===\n");
1025 if (!exit)
1026 return cond;
1028 niter = chrec_dont_know;
1029 may_be_zero = NULL_TREE;
1030 niter_assumptions = boolean_true_node;
1031 if (!number_of_iterations_exit_assumptions (loop, exit, &niter_desc, NULL)
1032 || chrec_contains_undetermined (niter_desc.niter))
1033 return cond;
1035 niter_assumptions = niter_desc.assumptions;
1036 may_be_zero = niter_desc.may_be_zero;
1037 niter = niter_desc.niter;
1039 if (may_be_zero && integer_zerop (may_be_zero))
1040 may_be_zero = NULL_TREE;
1042 if (may_be_zero)
1044 if (COMPARISON_CLASS_P (may_be_zero))
1046 /* Try to combine may_be_zero with assumptions, this can simplify
1047 computation of niter expression. */
1048 if (niter_assumptions && !integer_nonzerop (niter_assumptions))
1049 niter_assumptions = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
1050 niter_assumptions,
1051 fold_build1 (TRUTH_NOT_EXPR,
1052 boolean_type_node,
1053 may_be_zero));
1054 else
1055 niter = fold_build3 (COND_EXPR, TREE_TYPE (niter), may_be_zero,
1056 build_int_cst (TREE_TYPE (niter), 0), niter);
1058 may_be_zero = NULL_TREE;
1060 else if (integer_nonzerop (may_be_zero))
1062 *number_of_iterationsm1 = build_int_cst (TREE_TYPE (niter), 0);
1063 *number_of_iterations = build_int_cst (TREE_TYPE (niter), 1);
1064 return cond;
1066 else
1067 return cond;
1070 *assumptions = niter_assumptions;
1071 *number_of_iterationsm1 = niter;
1073 /* We want the number of loop header executions which is the number
1074 of latch executions plus one.
1075 ??? For UINT_MAX latch executions this number overflows to zero
1076 for loops like do { n++; } while (n != 0); */
1077 if (niter && !chrec_contains_undetermined (niter))
1078 niter = fold_build2 (PLUS_EXPR, TREE_TYPE (niter), unshare_expr (niter),
1079 build_int_cst (TREE_TYPE (niter), 1));
1080 *number_of_iterations = niter;
1082 return cond;
1085 /* Function bb_in_loop_p
1087 Used as predicate for dfs order traversal of the loop bbs. */
1089 static bool
1090 bb_in_loop_p (const_basic_block bb, const void *data)
1092 const struct loop *const loop = (const struct loop *)data;
1093 if (flow_bb_inside_loop_p (loop, bb))
1094 return true;
1095 return false;
1099 /* Function new_loop_vec_info.
1101 Create and initialize a new loop_vec_info struct for LOOP, as well as
1102 stmt_vec_info structs for all the stmts in LOOP. */
1104 static loop_vec_info
1105 new_loop_vec_info (struct loop *loop)
1107 loop_vec_info res;
1108 basic_block *bbs;
1109 gimple_stmt_iterator si;
1110 unsigned int i, nbbs;
1112 res = (loop_vec_info) xcalloc (1, sizeof (struct _loop_vec_info));
1113 res->kind = vec_info::loop;
1114 LOOP_VINFO_LOOP (res) = loop;
1116 bbs = get_loop_body (loop);
1118 /* Create/Update stmt_info for all stmts in the loop. */
1119 for (i = 0; i < loop->num_nodes; i++)
1121 basic_block bb = bbs[i];
1123 for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
1125 gimple *phi = gsi_stmt (si);
1126 gimple_set_uid (phi, 0);
1127 set_vinfo_for_stmt (phi, new_stmt_vec_info (phi, res));
1130 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
1132 gimple *stmt = gsi_stmt (si);
1133 gimple_set_uid (stmt, 0);
1134 set_vinfo_for_stmt (stmt, new_stmt_vec_info (stmt, res));
1138 /* CHECKME: We want to visit all BBs before their successors (except for
1139 latch blocks, for which this assertion wouldn't hold). In the simple
1140 case of the loop forms we allow, a dfs order of the BBs would the same
1141 as reversed postorder traversal, so we are safe. */
1143 free (bbs);
1144 bbs = XCNEWVEC (basic_block, loop->num_nodes);
1145 nbbs = dfs_enumerate_from (loop->header, 0, bb_in_loop_p,
1146 bbs, loop->num_nodes, loop);
1147 gcc_assert (nbbs == loop->num_nodes);
1149 LOOP_VINFO_BBS (res) = bbs;
1150 LOOP_VINFO_NITERSM1 (res) = NULL;
1151 LOOP_VINFO_NITERS (res) = NULL;
1152 LOOP_VINFO_NITERS_UNCHANGED (res) = NULL;
1153 LOOP_VINFO_NITERS_ASSUMPTIONS (res) = NULL;
1154 LOOP_VINFO_COST_MODEL_THRESHOLD (res) = 0;
1155 LOOP_VINFO_VECTORIZABLE_P (res) = 0;
1156 LOOP_VINFO_PEELING_FOR_ALIGNMENT (res) = 0;
1157 LOOP_VINFO_VECT_FACTOR (res) = 0;
1158 LOOP_VINFO_LOOP_NEST (res) = vNULL;
1159 LOOP_VINFO_DATAREFS (res) = vNULL;
1160 LOOP_VINFO_DDRS (res) = vNULL;
1161 LOOP_VINFO_UNALIGNED_DR (res) = NULL;
1162 LOOP_VINFO_MAY_MISALIGN_STMTS (res) = vNULL;
1163 LOOP_VINFO_MAY_ALIAS_DDRS (res) = vNULL;
1164 LOOP_VINFO_GROUPED_STORES (res) = vNULL;
1165 LOOP_VINFO_REDUCTIONS (res) = vNULL;
1166 LOOP_VINFO_REDUCTION_CHAINS (res) = vNULL;
1167 LOOP_VINFO_SLP_INSTANCES (res) = vNULL;
1168 LOOP_VINFO_SLP_UNROLLING_FACTOR (res) = 1;
1169 LOOP_VINFO_TARGET_COST_DATA (res) = init_cost (loop);
1170 LOOP_VINFO_PEELING_FOR_GAPS (res) = false;
1171 LOOP_VINFO_PEELING_FOR_NITER (res) = false;
1172 LOOP_VINFO_OPERANDS_SWAPPED (res) = false;
1173 LOOP_VINFO_ORIG_LOOP_INFO (res) = NULL;
1175 return res;
1179 /* Function destroy_loop_vec_info.
1181 Free LOOP_VINFO struct, as well as all the stmt_vec_info structs of all the
1182 stmts in the loop. */
1184 void
1185 destroy_loop_vec_info (loop_vec_info loop_vinfo, bool clean_stmts)
1187 struct loop *loop;
1188 basic_block *bbs;
1189 int nbbs;
1190 gimple_stmt_iterator si;
1191 int j;
1192 vec<slp_instance> slp_instances;
1193 slp_instance instance;
1194 bool swapped;
1196 if (!loop_vinfo)
1197 return;
1199 loop = LOOP_VINFO_LOOP (loop_vinfo);
1201 bbs = LOOP_VINFO_BBS (loop_vinfo);
1202 nbbs = clean_stmts ? loop->num_nodes : 0;
1203 swapped = LOOP_VINFO_OPERANDS_SWAPPED (loop_vinfo);
1205 for (j = 0; j < nbbs; j++)
1207 basic_block bb = bbs[j];
1208 for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
1209 free_stmt_vec_info (gsi_stmt (si));
1211 for (si = gsi_start_bb (bb); !gsi_end_p (si); )
1213 gimple *stmt = gsi_stmt (si);
1215 /* We may have broken canonical form by moving a constant
1216 into RHS1 of a commutative op. Fix such occurrences. */
1217 if (swapped && is_gimple_assign (stmt))
1219 enum tree_code code = gimple_assign_rhs_code (stmt);
1221 if ((code == PLUS_EXPR
1222 || code == POINTER_PLUS_EXPR
1223 || code == MULT_EXPR)
1224 && CONSTANT_CLASS_P (gimple_assign_rhs1 (stmt)))
1225 swap_ssa_operands (stmt,
1226 gimple_assign_rhs1_ptr (stmt),
1227 gimple_assign_rhs2_ptr (stmt));
1228 else if (code == COND_EXPR
1229 && CONSTANT_CLASS_P (gimple_assign_rhs2 (stmt)))
1231 tree cond_expr = gimple_assign_rhs1 (stmt);
1232 enum tree_code cond_code = TREE_CODE (cond_expr);
1234 if (TREE_CODE_CLASS (cond_code) == tcc_comparison)
1236 bool honor_nans = HONOR_NANS (TREE_OPERAND (cond_expr,
1237 0));
1238 cond_code = invert_tree_comparison (cond_code,
1239 honor_nans);
1240 if (cond_code != ERROR_MARK)
1242 TREE_SET_CODE (cond_expr, cond_code);
1243 swap_ssa_operands (stmt,
1244 gimple_assign_rhs2_ptr (stmt),
1245 gimple_assign_rhs3_ptr (stmt));
1251 /* Free stmt_vec_info. */
1252 free_stmt_vec_info (stmt);
1253 gsi_next (&si);
1257 free (LOOP_VINFO_BBS (loop_vinfo));
1258 vect_destroy_datarefs (loop_vinfo);
1259 free_dependence_relations (LOOP_VINFO_DDRS (loop_vinfo));
1260 LOOP_VINFO_LOOP_NEST (loop_vinfo).release ();
1261 LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo).release ();
1262 LOOP_VINFO_COMP_ALIAS_DDRS (loop_vinfo).release ();
1263 LOOP_VINFO_MAY_ALIAS_DDRS (loop_vinfo).release ();
1264 slp_instances = LOOP_VINFO_SLP_INSTANCES (loop_vinfo);
1265 FOR_EACH_VEC_ELT (slp_instances, j, instance)
1266 vect_free_slp_instance (instance);
1268 LOOP_VINFO_SLP_INSTANCES (loop_vinfo).release ();
1269 LOOP_VINFO_GROUPED_STORES (loop_vinfo).release ();
1270 LOOP_VINFO_REDUCTIONS (loop_vinfo).release ();
1271 LOOP_VINFO_REDUCTION_CHAINS (loop_vinfo).release ();
1273 destroy_cost_data (LOOP_VINFO_TARGET_COST_DATA (loop_vinfo));
1274 loop_vinfo->scalar_cost_vec.release ();
1276 free (loop_vinfo);
1277 loop->aux = NULL;
1281 /* Calculate the cost of one scalar iteration of the loop. */
1282 static void
1283 vect_compute_single_scalar_iteration_cost (loop_vec_info loop_vinfo)
1285 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
1286 basic_block *bbs = LOOP_VINFO_BBS (loop_vinfo);
1287 int nbbs = loop->num_nodes, factor, scalar_single_iter_cost = 0;
1288 int innerloop_iters, i;
1290 /* Count statements in scalar loop. Using this as scalar cost for a single
1291 iteration for now.
1293 TODO: Add outer loop support.
1295 TODO: Consider assigning different costs to different scalar
1296 statements. */
1298 /* FORNOW. */
1299 innerloop_iters = 1;
1300 if (loop->inner)
1301 innerloop_iters = 50; /* FIXME */
1303 for (i = 0; i < nbbs; i++)
1305 gimple_stmt_iterator si;
1306 basic_block bb = bbs[i];
1308 if (bb->loop_father == loop->inner)
1309 factor = innerloop_iters;
1310 else
1311 factor = 1;
1313 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
1315 gimple *stmt = gsi_stmt (si);
1316 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
1318 if (!is_gimple_assign (stmt) && !is_gimple_call (stmt))
1319 continue;
1321 /* Skip stmts that are not vectorized inside the loop. */
1322 if (stmt_info
1323 && !STMT_VINFO_RELEVANT_P (stmt_info)
1324 && (!STMT_VINFO_LIVE_P (stmt_info)
1325 || !VECTORIZABLE_CYCLE_DEF (STMT_VINFO_DEF_TYPE (stmt_info)))
1326 && !STMT_VINFO_IN_PATTERN_P (stmt_info))
1327 continue;
1329 vect_cost_for_stmt kind;
1330 if (STMT_VINFO_DATA_REF (stmt_info))
1332 if (DR_IS_READ (STMT_VINFO_DATA_REF (stmt_info)))
1333 kind = scalar_load;
1334 else
1335 kind = scalar_store;
1337 else
1338 kind = scalar_stmt;
1340 scalar_single_iter_cost
1341 += record_stmt_cost (&LOOP_VINFO_SCALAR_ITERATION_COST (loop_vinfo),
1342 factor, kind, stmt_info, 0, vect_prologue);
1345 LOOP_VINFO_SINGLE_SCALAR_ITERATION_COST (loop_vinfo)
1346 = scalar_single_iter_cost;
1350 /* Function vect_analyze_loop_form_1.
1352 Verify that certain CFG restrictions hold, including:
1353 - the loop has a pre-header
1354 - the loop has a single entry and exit
1355 - the loop exit condition is simple enough
1356 - the number of iterations can be analyzed, i.e, a countable loop. The
1357 niter could be analyzed under some assumptions. */
1359 bool
1360 vect_analyze_loop_form_1 (struct loop *loop, gcond **loop_cond,
1361 tree *assumptions, tree *number_of_iterationsm1,
1362 tree *number_of_iterations, gcond **inner_loop_cond)
1364 if (dump_enabled_p ())
1365 dump_printf_loc (MSG_NOTE, vect_location,
1366 "=== vect_analyze_loop_form ===\n");
1368 /* Different restrictions apply when we are considering an inner-most loop,
1369 vs. an outer (nested) loop.
1370 (FORNOW. May want to relax some of these restrictions in the future). */
1372 if (!loop->inner)
1374 /* Inner-most loop. We currently require that the number of BBs is
1375 exactly 2 (the header and latch). Vectorizable inner-most loops
1376 look like this:
1378 (pre-header)
1380 header <--------+
1381 | | |
1382 | +--> latch --+
1384 (exit-bb) */
1386 if (loop->num_nodes != 2)
1388 if (dump_enabled_p ())
1389 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1390 "not vectorized: control flow in loop.\n");
1391 return false;
1394 if (empty_block_p (loop->header))
1396 if (dump_enabled_p ())
1397 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1398 "not vectorized: empty loop.\n");
1399 return false;
1402 else
1404 struct loop *innerloop = loop->inner;
1405 edge entryedge;
1407 /* Nested loop. We currently require that the loop is doubly-nested,
1408 contains a single inner loop, and the number of BBs is exactly 5.
1409 Vectorizable outer-loops look like this:
1411 (pre-header)
1413 header <---+
1415 inner-loop |
1417 tail ------+
1419 (exit-bb)
1421 The inner-loop has the properties expected of inner-most loops
1422 as described above. */
1424 if ((loop->inner)->inner || (loop->inner)->next)
1426 if (dump_enabled_p ())
1427 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1428 "not vectorized: multiple nested loops.\n");
1429 return false;
1432 if (loop->num_nodes != 5)
1434 if (dump_enabled_p ())
1435 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1436 "not vectorized: control flow in loop.\n");
1437 return false;
1440 entryedge = loop_preheader_edge (innerloop);
1441 if (entryedge->src != loop->header
1442 || !single_exit (innerloop)
1443 || single_exit (innerloop)->dest != EDGE_PRED (loop->latch, 0)->src)
1445 if (dump_enabled_p ())
1446 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1447 "not vectorized: unsupported outerloop form.\n");
1448 return false;
1451 /* Analyze the inner-loop. */
1452 tree inner_niterm1, inner_niter, inner_assumptions;
1453 if (! vect_analyze_loop_form_1 (loop->inner, inner_loop_cond,
1454 &inner_assumptions, &inner_niterm1,
1455 &inner_niter, NULL)
1456 /* Don't support analyzing niter under assumptions for inner
1457 loop. */
1458 || !integer_onep (inner_assumptions))
1460 if (dump_enabled_p ())
1461 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1462 "not vectorized: Bad inner loop.\n");
1463 return false;
1466 if (!expr_invariant_in_loop_p (loop, inner_niter))
1468 if (dump_enabled_p ())
1469 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1470 "not vectorized: inner-loop count not"
1471 " invariant.\n");
1472 return false;
1475 if (dump_enabled_p ())
1476 dump_printf_loc (MSG_NOTE, vect_location,
1477 "Considering outer-loop vectorization.\n");
1480 if (!single_exit (loop)
1481 || EDGE_COUNT (loop->header->preds) != 2)
1483 if (dump_enabled_p ())
1485 if (!single_exit (loop))
1486 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1487 "not vectorized: multiple exits.\n");
1488 else if (EDGE_COUNT (loop->header->preds) != 2)
1489 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1490 "not vectorized: too many incoming edges.\n");
1492 return false;
1495 /* We assume that the loop exit condition is at the end of the loop. i.e,
1496 that the loop is represented as a do-while (with a proper if-guard
1497 before the loop if needed), where the loop header contains all the
1498 executable statements, and the latch is empty. */
1499 if (!empty_block_p (loop->latch)
1500 || !gimple_seq_empty_p (phi_nodes (loop->latch)))
1502 if (dump_enabled_p ())
1503 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1504 "not vectorized: latch block not empty.\n");
1505 return false;
1508 /* Make sure the exit is not abnormal. */
1509 edge e = single_exit (loop);
1510 if (e->flags & EDGE_ABNORMAL)
1512 if (dump_enabled_p ())
1513 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1514 "not vectorized: abnormal loop exit edge.\n");
1515 return false;
1518 *loop_cond = vect_get_loop_niters (loop, assumptions, number_of_iterations,
1519 number_of_iterationsm1);
1520 if (!*loop_cond)
1522 if (dump_enabled_p ())
1523 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1524 "not vectorized: complicated exit condition.\n");
1525 return false;
1528 if (integer_zerop (*assumptions)
1529 || !*number_of_iterations
1530 || chrec_contains_undetermined (*number_of_iterations))
1532 if (dump_enabled_p ())
1533 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1534 "not vectorized: number of iterations cannot be "
1535 "computed.\n");
1536 return false;
1539 if (integer_zerop (*number_of_iterations))
1541 if (dump_enabled_p ())
1542 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1543 "not vectorized: number of iterations = 0.\n");
1544 return false;
1547 return true;
1550 /* Analyze LOOP form and return a loop_vec_info if it is of suitable form. */
1552 loop_vec_info
1553 vect_analyze_loop_form (struct loop *loop)
1555 tree assumptions, number_of_iterations, number_of_iterationsm1;
1556 gcond *loop_cond, *inner_loop_cond = NULL;
1558 if (! vect_analyze_loop_form_1 (loop, &loop_cond,
1559 &assumptions, &number_of_iterationsm1,
1560 &number_of_iterations, &inner_loop_cond))
1561 return NULL;
1563 loop_vec_info loop_vinfo = new_loop_vec_info (loop);
1564 LOOP_VINFO_NITERSM1 (loop_vinfo) = number_of_iterationsm1;
1565 LOOP_VINFO_NITERS (loop_vinfo) = number_of_iterations;
1566 LOOP_VINFO_NITERS_UNCHANGED (loop_vinfo) = number_of_iterations;
1567 if (!integer_onep (assumptions))
1569 /* We consider to vectorize this loop by versioning it under
1570 some assumptions. In order to do this, we need to clear
1571 existing information computed by scev and niter analyzer. */
1572 scev_reset_htab ();
1573 free_numbers_of_iterations_estimates (loop);
1574 /* Also set flag for this loop so that following scev and niter
1575 analysis are done under the assumptions. */
1576 loop_constraint_set (loop, LOOP_C_FINITE);
1577 /* Also record the assumptions for versioning. */
1578 LOOP_VINFO_NITERS_ASSUMPTIONS (loop_vinfo) = assumptions;
1581 if (!LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo))
1583 if (dump_enabled_p ())
1585 dump_printf_loc (MSG_NOTE, vect_location,
1586 "Symbolic number of iterations is ");
1587 dump_generic_expr (MSG_NOTE, TDF_DETAILS, number_of_iterations);
1588 dump_printf (MSG_NOTE, "\n");
1592 STMT_VINFO_TYPE (vinfo_for_stmt (loop_cond)) = loop_exit_ctrl_vec_info_type;
1593 if (inner_loop_cond)
1594 STMT_VINFO_TYPE (vinfo_for_stmt (inner_loop_cond))
1595 = loop_exit_ctrl_vec_info_type;
1597 gcc_assert (!loop->aux);
1598 loop->aux = loop_vinfo;
1599 return loop_vinfo;
1604 /* Scan the loop stmts and dependent on whether there are any (non-)SLP
1605 statements update the vectorization factor. */
1607 static void
1608 vect_update_vf_for_slp (loop_vec_info loop_vinfo)
1610 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
1611 basic_block *bbs = LOOP_VINFO_BBS (loop_vinfo);
1612 int nbbs = loop->num_nodes;
1613 unsigned int vectorization_factor;
1614 int i;
1616 if (dump_enabled_p ())
1617 dump_printf_loc (MSG_NOTE, vect_location,
1618 "=== vect_update_vf_for_slp ===\n");
1620 vectorization_factor = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
1621 gcc_assert (vectorization_factor != 0);
1623 /* If all the stmts in the loop can be SLPed, we perform only SLP, and
1624 vectorization factor of the loop is the unrolling factor required by
1625 the SLP instances. If that unrolling factor is 1, we say, that we
1626 perform pure SLP on loop - cross iteration parallelism is not
1627 exploited. */
1628 bool only_slp_in_loop = true;
1629 for (i = 0; i < nbbs; i++)
1631 basic_block bb = bbs[i];
1632 for (gimple_stmt_iterator si = gsi_start_bb (bb); !gsi_end_p (si);
1633 gsi_next (&si))
1635 gimple *stmt = gsi_stmt (si);
1636 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
1637 if (STMT_VINFO_IN_PATTERN_P (stmt_info)
1638 && STMT_VINFO_RELATED_STMT (stmt_info))
1640 stmt = STMT_VINFO_RELATED_STMT (stmt_info);
1641 stmt_info = vinfo_for_stmt (stmt);
1643 if ((STMT_VINFO_RELEVANT_P (stmt_info)
1644 || VECTORIZABLE_CYCLE_DEF (STMT_VINFO_DEF_TYPE (stmt_info)))
1645 && !PURE_SLP_STMT (stmt_info))
1646 /* STMT needs both SLP and loop-based vectorization. */
1647 only_slp_in_loop = false;
1651 if (only_slp_in_loop)
1653 dump_printf_loc (MSG_NOTE, vect_location,
1654 "Loop contains only SLP stmts\n");
1655 vectorization_factor = LOOP_VINFO_SLP_UNROLLING_FACTOR (loop_vinfo);
1657 else
1659 dump_printf_loc (MSG_NOTE, vect_location,
1660 "Loop contains SLP and non-SLP stmts\n");
1661 vectorization_factor
1662 = least_common_multiple (vectorization_factor,
1663 LOOP_VINFO_SLP_UNROLLING_FACTOR (loop_vinfo));
1666 LOOP_VINFO_VECT_FACTOR (loop_vinfo) = vectorization_factor;
1667 if (dump_enabled_p ())
1668 dump_printf_loc (MSG_NOTE, vect_location,
1669 "Updating vectorization factor to %d\n",
1670 vectorization_factor);
1673 /* Function vect_analyze_loop_operations.
1675 Scan the loop stmts and make sure they are all vectorizable. */
1677 static bool
1678 vect_analyze_loop_operations (loop_vec_info loop_vinfo)
1680 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
1681 basic_block *bbs = LOOP_VINFO_BBS (loop_vinfo);
1682 int nbbs = loop->num_nodes;
1683 int i;
1684 stmt_vec_info stmt_info;
1685 bool need_to_vectorize = false;
1686 bool ok;
1688 if (dump_enabled_p ())
1689 dump_printf_loc (MSG_NOTE, vect_location,
1690 "=== vect_analyze_loop_operations ===\n");
1692 for (i = 0; i < nbbs; i++)
1694 basic_block bb = bbs[i];
1696 for (gphi_iterator si = gsi_start_phis (bb); !gsi_end_p (si);
1697 gsi_next (&si))
1699 gphi *phi = si.phi ();
1700 ok = true;
1702 stmt_info = vinfo_for_stmt (phi);
1703 if (dump_enabled_p ())
1705 dump_printf_loc (MSG_NOTE, vect_location, "examining phi: ");
1706 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, phi, 0);
1708 if (virtual_operand_p (gimple_phi_result (phi)))
1709 continue;
1711 /* Inner-loop loop-closed exit phi in outer-loop vectorization
1712 (i.e., a phi in the tail of the outer-loop). */
1713 if (! is_loop_header_bb_p (bb))
1715 /* FORNOW: we currently don't support the case that these phis
1716 are not used in the outerloop (unless it is double reduction,
1717 i.e., this phi is vect_reduction_def), cause this case
1718 requires to actually do something here. */
1719 if (STMT_VINFO_LIVE_P (stmt_info)
1720 && STMT_VINFO_DEF_TYPE (stmt_info)
1721 != vect_double_reduction_def)
1723 if (dump_enabled_p ())
1724 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1725 "Unsupported loop-closed phi in "
1726 "outer-loop.\n");
1727 return false;
1730 /* If PHI is used in the outer loop, we check that its operand
1731 is defined in the inner loop. */
1732 if (STMT_VINFO_RELEVANT_P (stmt_info))
1734 tree phi_op;
1735 gimple *op_def_stmt;
1737 if (gimple_phi_num_args (phi) != 1)
1738 return false;
1740 phi_op = PHI_ARG_DEF (phi, 0);
1741 if (TREE_CODE (phi_op) != SSA_NAME)
1742 return false;
1744 op_def_stmt = SSA_NAME_DEF_STMT (phi_op);
1745 if (gimple_nop_p (op_def_stmt)
1746 || !flow_bb_inside_loop_p (loop, gimple_bb (op_def_stmt))
1747 || !vinfo_for_stmt (op_def_stmt))
1748 return false;
1750 if (STMT_VINFO_RELEVANT (vinfo_for_stmt (op_def_stmt))
1751 != vect_used_in_outer
1752 && STMT_VINFO_RELEVANT (vinfo_for_stmt (op_def_stmt))
1753 != vect_used_in_outer_by_reduction)
1754 return false;
1757 continue;
1760 gcc_assert (stmt_info);
1762 if ((STMT_VINFO_RELEVANT (stmt_info) == vect_used_in_scope
1763 || STMT_VINFO_LIVE_P (stmt_info))
1764 && STMT_VINFO_DEF_TYPE (stmt_info) != vect_induction_def)
1766 /* A scalar-dependence cycle that we don't support. */
1767 if (dump_enabled_p ())
1768 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1769 "not vectorized: scalar dependence cycle.\n");
1770 return false;
1773 if (STMT_VINFO_RELEVANT_P (stmt_info))
1775 need_to_vectorize = true;
1776 if (STMT_VINFO_DEF_TYPE (stmt_info) == vect_induction_def
1777 && ! PURE_SLP_STMT (stmt_info))
1778 ok = vectorizable_induction (phi, NULL, NULL, NULL);
1781 if (ok && STMT_VINFO_LIVE_P (stmt_info))
1782 ok = vectorizable_live_operation (phi, NULL, NULL, -1, NULL);
1784 if (!ok)
1786 if (dump_enabled_p ())
1788 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1789 "not vectorized: relevant phi not "
1790 "supported: ");
1791 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, phi, 0);
1793 return false;
1797 for (gimple_stmt_iterator si = gsi_start_bb (bb); !gsi_end_p (si);
1798 gsi_next (&si))
1800 gimple *stmt = gsi_stmt (si);
1801 if (!gimple_clobber_p (stmt)
1802 && !vect_analyze_stmt (stmt, &need_to_vectorize, NULL))
1803 return false;
1805 } /* bbs */
1807 /* All operations in the loop are either irrelevant (deal with loop
1808 control, or dead), or only used outside the loop and can be moved
1809 out of the loop (e.g. invariants, inductions). The loop can be
1810 optimized away by scalar optimizations. We're better off not
1811 touching this loop. */
1812 if (!need_to_vectorize)
1814 if (dump_enabled_p ())
1815 dump_printf_loc (MSG_NOTE, vect_location,
1816 "All the computation can be taken out of the loop.\n");
1817 if (dump_enabled_p ())
1818 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1819 "not vectorized: redundant loop. no profit to "
1820 "vectorize.\n");
1821 return false;
1824 return true;
1828 /* Function vect_analyze_loop_2.
1830 Apply a set of analyses on LOOP, and create a loop_vec_info struct
1831 for it. The different analyses will record information in the
1832 loop_vec_info struct. */
1833 static bool
1834 vect_analyze_loop_2 (loop_vec_info loop_vinfo, bool &fatal)
1836 bool ok;
1837 int max_vf = MAX_VECTORIZATION_FACTOR;
1838 int min_vf = 2;
1839 unsigned int n_stmts = 0;
1841 /* The first group of checks is independent of the vector size. */
1842 fatal = true;
1844 /* Find all data references in the loop (which correspond to vdefs/vuses)
1845 and analyze their evolution in the loop. */
1847 basic_block *bbs = LOOP_VINFO_BBS (loop_vinfo);
1849 loop_p loop = LOOP_VINFO_LOOP (loop_vinfo);
1850 if (!find_loop_nest (loop, &LOOP_VINFO_LOOP_NEST (loop_vinfo)))
1852 if (dump_enabled_p ())
1853 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1854 "not vectorized: loop nest containing two "
1855 "or more consecutive inner loops cannot be "
1856 "vectorized\n");
1857 return false;
1860 for (unsigned i = 0; i < loop->num_nodes; i++)
1861 for (gimple_stmt_iterator gsi = gsi_start_bb (bbs[i]);
1862 !gsi_end_p (gsi); gsi_next (&gsi))
1864 gimple *stmt = gsi_stmt (gsi);
1865 if (is_gimple_debug (stmt))
1866 continue;
1867 ++n_stmts;
1868 if (!find_data_references_in_stmt (loop, stmt,
1869 &LOOP_VINFO_DATAREFS (loop_vinfo)))
1871 if (is_gimple_call (stmt) && loop->safelen)
1873 tree fndecl = gimple_call_fndecl (stmt), op;
1874 if (fndecl != NULL_TREE)
1876 cgraph_node *node = cgraph_node::get (fndecl);
1877 if (node != NULL && node->simd_clones != NULL)
1879 unsigned int j, n = gimple_call_num_args (stmt);
1880 for (j = 0; j < n; j++)
1882 op = gimple_call_arg (stmt, j);
1883 if (DECL_P (op)
1884 || (REFERENCE_CLASS_P (op)
1885 && get_base_address (op)))
1886 break;
1888 op = gimple_call_lhs (stmt);
1889 /* Ignore #pragma omp declare simd functions
1890 if they don't have data references in the
1891 call stmt itself. */
1892 if (j == n
1893 && !(op
1894 && (DECL_P (op)
1895 || (REFERENCE_CLASS_P (op)
1896 && get_base_address (op)))))
1897 continue;
1901 if (dump_enabled_p ())
1902 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1903 "not vectorized: loop contains function "
1904 "calls or data references that cannot "
1905 "be analyzed\n");
1906 return false;
1910 /* Analyze the data references and also adjust the minimal
1911 vectorization factor according to the loads and stores. */
1913 ok = vect_analyze_data_refs (loop_vinfo, &min_vf);
1914 if (!ok)
1916 if (dump_enabled_p ())
1917 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1918 "bad data references.\n");
1919 return false;
1922 /* Classify all cross-iteration scalar data-flow cycles.
1923 Cross-iteration cycles caused by virtual phis are analyzed separately. */
1924 vect_analyze_scalar_cycles (loop_vinfo);
1926 vect_pattern_recog (loop_vinfo);
1928 vect_fixup_scalar_cycles_with_patterns (loop_vinfo);
1930 /* Analyze the access patterns of the data-refs in the loop (consecutive,
1931 complex, etc.). FORNOW: Only handle consecutive access pattern. */
1933 ok = vect_analyze_data_ref_accesses (loop_vinfo);
1934 if (!ok)
1936 if (dump_enabled_p ())
1937 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1938 "bad data access.\n");
1939 return false;
1942 /* Data-flow analysis to detect stmts that do not need to be vectorized. */
1944 ok = vect_mark_stmts_to_be_vectorized (loop_vinfo);
1945 if (!ok)
1947 if (dump_enabled_p ())
1948 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1949 "unexpected pattern.\n");
1950 return false;
1953 /* While the rest of the analysis below depends on it in some way. */
1954 fatal = false;
1956 /* Analyze data dependences between the data-refs in the loop
1957 and adjust the maximum vectorization factor according to
1958 the dependences.
1959 FORNOW: fail at the first data dependence that we encounter. */
1961 ok = vect_analyze_data_ref_dependences (loop_vinfo, &max_vf);
1962 if (!ok
1963 || max_vf < min_vf)
1965 if (dump_enabled_p ())
1966 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1967 "bad data dependence.\n");
1968 return false;
1971 ok = vect_determine_vectorization_factor (loop_vinfo);
1972 if (!ok)
1974 if (dump_enabled_p ())
1975 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1976 "can't determine vectorization factor.\n");
1977 return false;
1979 if (max_vf < LOOP_VINFO_VECT_FACTOR (loop_vinfo))
1981 if (dump_enabled_p ())
1982 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1983 "bad data dependence.\n");
1984 return false;
1987 /* Compute the scalar iteration cost. */
1988 vect_compute_single_scalar_iteration_cost (loop_vinfo);
1990 int saved_vectorization_factor = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
1991 HOST_WIDE_INT estimated_niter;
1992 unsigned th;
1993 int min_scalar_loop_bound;
1995 /* Check the SLP opportunities in the loop, analyze and build SLP trees. */
1996 ok = vect_analyze_slp (loop_vinfo, n_stmts);
1997 if (!ok)
1998 return false;
2000 /* If there are any SLP instances mark them as pure_slp. */
2001 bool slp = vect_make_slp_decision (loop_vinfo);
2002 if (slp)
2004 /* Find stmts that need to be both vectorized and SLPed. */
2005 vect_detect_hybrid_slp (loop_vinfo);
2007 /* Update the vectorization factor based on the SLP decision. */
2008 vect_update_vf_for_slp (loop_vinfo);
2011 /* This is the point where we can re-start analysis with SLP forced off. */
2012 start_over:
2014 /* Now the vectorization factor is final. */
2015 unsigned vectorization_factor = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
2016 gcc_assert (vectorization_factor != 0);
2018 if (LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo) && dump_enabled_p ())
2019 dump_printf_loc (MSG_NOTE, vect_location,
2020 "vectorization_factor = %d, niters = "
2021 HOST_WIDE_INT_PRINT_DEC "\n", vectorization_factor,
2022 LOOP_VINFO_INT_NITERS (loop_vinfo));
2024 HOST_WIDE_INT max_niter
2025 = likely_max_stmt_executions_int (LOOP_VINFO_LOOP (loop_vinfo));
2026 if ((LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
2027 && (LOOP_VINFO_INT_NITERS (loop_vinfo) < vectorization_factor))
2028 || (max_niter != -1
2029 && (unsigned HOST_WIDE_INT) max_niter < vectorization_factor))
2031 if (dump_enabled_p ())
2032 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2033 "not vectorized: iteration count smaller than "
2034 "vectorization factor.\n");
2035 return false;
2038 /* Analyze the alignment of the data-refs in the loop.
2039 Fail if a data reference is found that cannot be vectorized. */
2041 ok = vect_analyze_data_refs_alignment (loop_vinfo);
2042 if (!ok)
2044 if (dump_enabled_p ())
2045 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2046 "bad data alignment.\n");
2047 return false;
2050 /* Prune the list of ddrs to be tested at run-time by versioning for alias.
2051 It is important to call pruning after vect_analyze_data_ref_accesses,
2052 since we use grouping information gathered by interleaving analysis. */
2053 ok = vect_prune_runtime_alias_test_list (loop_vinfo);
2054 if (!ok)
2055 return false;
2057 /* Do not invoke vect_enhance_data_refs_alignment for eplilogue
2058 vectorization. */
2059 if (!LOOP_VINFO_EPILOGUE_P (loop_vinfo))
2061 /* This pass will decide on using loop versioning and/or loop peeling in
2062 order to enhance the alignment of data references in the loop. */
2063 ok = vect_enhance_data_refs_alignment (loop_vinfo);
2064 if (!ok)
2066 if (dump_enabled_p ())
2067 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2068 "bad data alignment.\n");
2069 return false;
2073 if (slp)
2075 /* Analyze operations in the SLP instances. Note this may
2076 remove unsupported SLP instances which makes the above
2077 SLP kind detection invalid. */
2078 unsigned old_size = LOOP_VINFO_SLP_INSTANCES (loop_vinfo).length ();
2079 vect_slp_analyze_operations (LOOP_VINFO_SLP_INSTANCES (loop_vinfo),
2080 LOOP_VINFO_TARGET_COST_DATA (loop_vinfo));
2081 if (LOOP_VINFO_SLP_INSTANCES (loop_vinfo).length () != old_size)
2082 goto again;
2085 /* Scan all the remaining operations in the loop that are not subject
2086 to SLP and make sure they are vectorizable. */
2087 ok = vect_analyze_loop_operations (loop_vinfo);
2088 if (!ok)
2090 if (dump_enabled_p ())
2091 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2092 "bad operation or unsupported loop bound.\n");
2093 return false;
2096 /* If epilog loop is required because of data accesses with gaps,
2097 one additional iteration needs to be peeled. Check if there is
2098 enough iterations for vectorization. */
2099 if (LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo)
2100 && LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo))
2102 int vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
2103 tree scalar_niters = LOOP_VINFO_NITERSM1 (loop_vinfo);
2105 if (wi::to_widest (scalar_niters) < vf)
2107 if (dump_enabled_p ())
2108 dump_printf_loc (MSG_NOTE, vect_location,
2109 "loop has no enough iterations to support"
2110 " peeling for gaps.\n");
2111 return false;
2115 /* Analyze cost. Decide if worth while to vectorize. */
2116 int min_profitable_estimate, min_profitable_iters;
2117 vect_estimate_min_profitable_iters (loop_vinfo, &min_profitable_iters,
2118 &min_profitable_estimate);
2120 if (min_profitable_iters < 0)
2122 if (dump_enabled_p ())
2123 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2124 "not vectorized: vectorization not profitable.\n");
2125 if (dump_enabled_p ())
2126 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2127 "not vectorized: vector version will never be "
2128 "profitable.\n");
2129 goto again;
2132 min_scalar_loop_bound = ((PARAM_VALUE (PARAM_MIN_VECT_LOOP_BOUND)
2133 * vectorization_factor) - 1);
2135 /* Use the cost model only if it is more conservative than user specified
2136 threshold. */
2137 th = (unsigned) min_scalar_loop_bound;
2138 if (min_profitable_iters
2139 && (!min_scalar_loop_bound
2140 || min_profitable_iters > min_scalar_loop_bound))
2141 th = (unsigned) min_profitable_iters;
2143 LOOP_VINFO_COST_MODEL_THRESHOLD (loop_vinfo) = th;
2145 if (LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
2146 && LOOP_VINFO_INT_NITERS (loop_vinfo) <= th)
2148 if (dump_enabled_p ())
2149 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2150 "not vectorized: vectorization not profitable.\n");
2151 if (dump_enabled_p ())
2152 dump_printf_loc (MSG_NOTE, vect_location,
2153 "not vectorized: iteration count smaller than user "
2154 "specified loop bound parameter or minimum profitable "
2155 "iterations (whichever is more conservative).\n");
2156 goto again;
2159 estimated_niter
2160 = estimated_stmt_executions_int (LOOP_VINFO_LOOP (loop_vinfo));
2161 if (estimated_niter == -1)
2162 estimated_niter = max_niter;
2163 if (estimated_niter != -1
2164 && ((unsigned HOST_WIDE_INT) estimated_niter
2165 <= MAX (th, (unsigned)min_profitable_estimate)))
2167 if (dump_enabled_p ())
2168 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2169 "not vectorized: estimated iteration count too "
2170 "small.\n");
2171 if (dump_enabled_p ())
2172 dump_printf_loc (MSG_NOTE, vect_location,
2173 "not vectorized: estimated iteration count smaller "
2174 "than specified loop bound parameter or minimum "
2175 "profitable iterations (whichever is more "
2176 "conservative).\n");
2177 goto again;
2180 /* Decide whether we need to create an epilogue loop to handle
2181 remaining scalar iterations. */
2182 th = ((LOOP_VINFO_COST_MODEL_THRESHOLD (loop_vinfo) + 1)
2183 / LOOP_VINFO_VECT_FACTOR (loop_vinfo))
2184 * LOOP_VINFO_VECT_FACTOR (loop_vinfo);
2186 if (LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
2187 && LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo) > 0)
2189 if (ctz_hwi (LOOP_VINFO_INT_NITERS (loop_vinfo)
2190 - LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo))
2191 < exact_log2 (LOOP_VINFO_VECT_FACTOR (loop_vinfo)))
2192 LOOP_VINFO_PEELING_FOR_NITER (loop_vinfo) = true;
2194 else if (LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo)
2195 || (tree_ctz (LOOP_VINFO_NITERS (loop_vinfo))
2196 < (unsigned)exact_log2 (LOOP_VINFO_VECT_FACTOR (loop_vinfo))
2197 /* In case of versioning, check if the maximum number of
2198 iterations is greater than th. If they are identical,
2199 the epilogue is unnecessary. */
2200 && (!LOOP_REQUIRES_VERSIONING (loop_vinfo)
2201 || (unsigned HOST_WIDE_INT) max_niter > th)))
2202 LOOP_VINFO_PEELING_FOR_NITER (loop_vinfo) = true;
2204 /* If an epilogue loop is required make sure we can create one. */
2205 if (LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo)
2206 || LOOP_VINFO_PEELING_FOR_NITER (loop_vinfo))
2208 if (dump_enabled_p ())
2209 dump_printf_loc (MSG_NOTE, vect_location, "epilog loop required\n");
2210 if (!vect_can_advance_ivs_p (loop_vinfo)
2211 || !slpeel_can_duplicate_loop_p (LOOP_VINFO_LOOP (loop_vinfo),
2212 single_exit (LOOP_VINFO_LOOP
2213 (loop_vinfo))))
2215 if (dump_enabled_p ())
2216 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2217 "not vectorized: can't create required "
2218 "epilog loop\n");
2219 goto again;
2223 /* During peeling, we need to check if number of loop iterations is
2224 enough for both peeled prolog loop and vector loop. This check
2225 can be merged along with threshold check of loop versioning, so
2226 increase threshold for this case if necessary. */
2227 if (LOOP_REQUIRES_VERSIONING (loop_vinfo)
2228 && (LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo)
2229 || LOOP_VINFO_PEELING_FOR_NITER (loop_vinfo)))
2231 unsigned niters_th;
2233 /* Niters for peeled prolog loop. */
2234 if (LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo) < 0)
2236 struct data_reference *dr = LOOP_VINFO_UNALIGNED_DR (loop_vinfo);
2237 tree vectype = STMT_VINFO_VECTYPE (vinfo_for_stmt (DR_STMT (dr)));
2239 niters_th = TYPE_VECTOR_SUBPARTS (vectype) - 1;
2241 else
2242 niters_th = LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo);
2244 /* Niters for at least one iteration of vectorized loop. */
2245 niters_th += LOOP_VINFO_VECT_FACTOR (loop_vinfo);
2246 /* One additional iteration because of peeling for gap. */
2247 if (!LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo))
2248 niters_th++;
2249 if (LOOP_VINFO_COST_MODEL_THRESHOLD (loop_vinfo) < niters_th)
2250 LOOP_VINFO_COST_MODEL_THRESHOLD (loop_vinfo) = niters_th;
2253 gcc_assert (vectorization_factor
2254 == (unsigned)LOOP_VINFO_VECT_FACTOR (loop_vinfo));
2256 /* Ok to vectorize! */
2257 return true;
2259 again:
2260 /* Try again with SLP forced off but if we didn't do any SLP there is
2261 no point in re-trying. */
2262 if (!slp)
2263 return false;
2265 /* If there are reduction chains re-trying will fail anyway. */
2266 if (! LOOP_VINFO_REDUCTION_CHAINS (loop_vinfo).is_empty ())
2267 return false;
2269 /* Likewise if the grouped loads or stores in the SLP cannot be handled
2270 via interleaving or lane instructions. */
2271 slp_instance instance;
2272 slp_tree node;
2273 unsigned i, j;
2274 FOR_EACH_VEC_ELT (LOOP_VINFO_SLP_INSTANCES (loop_vinfo), i, instance)
2276 stmt_vec_info vinfo;
2277 vinfo = vinfo_for_stmt
2278 (SLP_TREE_SCALAR_STMTS (SLP_INSTANCE_TREE (instance))[0]);
2279 if (! STMT_VINFO_GROUPED_ACCESS (vinfo))
2280 continue;
2281 vinfo = vinfo_for_stmt (STMT_VINFO_GROUP_FIRST_ELEMENT (vinfo));
2282 unsigned int size = STMT_VINFO_GROUP_SIZE (vinfo);
2283 tree vectype = STMT_VINFO_VECTYPE (vinfo);
2284 if (! vect_store_lanes_supported (vectype, size)
2285 && ! vect_grouped_store_supported (vectype, size))
2286 return false;
2287 FOR_EACH_VEC_ELT (SLP_INSTANCE_LOADS (instance), j, node)
2289 vinfo = vinfo_for_stmt (SLP_TREE_SCALAR_STMTS (node)[0]);
2290 vinfo = vinfo_for_stmt (STMT_VINFO_GROUP_FIRST_ELEMENT (vinfo));
2291 bool single_element_p = !STMT_VINFO_GROUP_NEXT_ELEMENT (vinfo);
2292 size = STMT_VINFO_GROUP_SIZE (vinfo);
2293 vectype = STMT_VINFO_VECTYPE (vinfo);
2294 if (! vect_load_lanes_supported (vectype, size)
2295 && ! vect_grouped_load_supported (vectype, single_element_p,
2296 size))
2297 return false;
2301 if (dump_enabled_p ())
2302 dump_printf_loc (MSG_NOTE, vect_location,
2303 "re-trying with SLP disabled\n");
2305 /* Roll back state appropriately. No SLP this time. */
2306 slp = false;
2307 /* Restore vectorization factor as it were without SLP. */
2308 LOOP_VINFO_VECT_FACTOR (loop_vinfo) = saved_vectorization_factor;
2309 /* Free the SLP instances. */
2310 FOR_EACH_VEC_ELT (LOOP_VINFO_SLP_INSTANCES (loop_vinfo), j, instance)
2311 vect_free_slp_instance (instance);
2312 LOOP_VINFO_SLP_INSTANCES (loop_vinfo).release ();
2313 /* Reset SLP type to loop_vect on all stmts. */
2314 for (i = 0; i < LOOP_VINFO_LOOP (loop_vinfo)->num_nodes; ++i)
2316 basic_block bb = LOOP_VINFO_BBS (loop_vinfo)[i];
2317 for (gimple_stmt_iterator si = gsi_start_phis (bb);
2318 !gsi_end_p (si); gsi_next (&si))
2320 stmt_vec_info stmt_info = vinfo_for_stmt (gsi_stmt (si));
2321 STMT_SLP_TYPE (stmt_info) = loop_vect;
2323 for (gimple_stmt_iterator si = gsi_start_bb (bb);
2324 !gsi_end_p (si); gsi_next (&si))
2326 stmt_vec_info stmt_info = vinfo_for_stmt (gsi_stmt (si));
2327 STMT_SLP_TYPE (stmt_info) = loop_vect;
2328 if (STMT_VINFO_IN_PATTERN_P (stmt_info))
2330 stmt_info = vinfo_for_stmt (STMT_VINFO_RELATED_STMT (stmt_info));
2331 STMT_SLP_TYPE (stmt_info) = loop_vect;
2332 for (gimple_stmt_iterator pi
2333 = gsi_start (STMT_VINFO_PATTERN_DEF_SEQ (stmt_info));
2334 !gsi_end_p (pi); gsi_next (&pi))
2336 gimple *pstmt = gsi_stmt (pi);
2337 STMT_SLP_TYPE (vinfo_for_stmt (pstmt)) = loop_vect;
2342 /* Free optimized alias test DDRS. */
2343 LOOP_VINFO_COMP_ALIAS_DDRS (loop_vinfo).release ();
2344 /* Reset target cost data. */
2345 destroy_cost_data (LOOP_VINFO_TARGET_COST_DATA (loop_vinfo));
2346 LOOP_VINFO_TARGET_COST_DATA (loop_vinfo)
2347 = init_cost (LOOP_VINFO_LOOP (loop_vinfo));
2348 /* Reset assorted flags. */
2349 LOOP_VINFO_PEELING_FOR_NITER (loop_vinfo) = false;
2350 LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo) = false;
2351 LOOP_VINFO_COST_MODEL_THRESHOLD (loop_vinfo) = 0;
2353 goto start_over;
2356 /* Function vect_analyze_loop.
2358 Apply a set of analyses on LOOP, and create a loop_vec_info struct
2359 for it. The different analyses will record information in the
2360 loop_vec_info struct. If ORIG_LOOP_VINFO is not NULL epilogue must
2361 be vectorized. */
2362 loop_vec_info
2363 vect_analyze_loop (struct loop *loop, loop_vec_info orig_loop_vinfo)
2365 loop_vec_info loop_vinfo;
2366 unsigned int vector_sizes;
2368 /* Autodetect first vector size we try. */
2369 current_vector_size = 0;
2370 vector_sizes = targetm.vectorize.autovectorize_vector_sizes ();
2372 if (dump_enabled_p ())
2373 dump_printf_loc (MSG_NOTE, vect_location,
2374 "===== analyze_loop_nest =====\n");
2376 if (loop_outer (loop)
2377 && loop_vec_info_for_loop (loop_outer (loop))
2378 && LOOP_VINFO_VECTORIZABLE_P (loop_vec_info_for_loop (loop_outer (loop))))
2380 if (dump_enabled_p ())
2381 dump_printf_loc (MSG_NOTE, vect_location,
2382 "outer-loop already vectorized.\n");
2383 return NULL;
2386 while (1)
2388 /* Check the CFG characteristics of the loop (nesting, entry/exit). */
2389 loop_vinfo = vect_analyze_loop_form (loop);
2390 if (!loop_vinfo)
2392 if (dump_enabled_p ())
2393 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2394 "bad loop form.\n");
2395 return NULL;
2398 bool fatal = false;
2400 if (orig_loop_vinfo)
2401 LOOP_VINFO_ORIG_LOOP_INFO (loop_vinfo) = orig_loop_vinfo;
2403 if (vect_analyze_loop_2 (loop_vinfo, fatal))
2405 LOOP_VINFO_VECTORIZABLE_P (loop_vinfo) = 1;
2407 return loop_vinfo;
2410 destroy_loop_vec_info (loop_vinfo, true);
2412 vector_sizes &= ~current_vector_size;
2413 if (fatal
2414 || vector_sizes == 0
2415 || current_vector_size == 0)
2416 return NULL;
2418 /* Try the next biggest vector size. */
2419 current_vector_size = 1 << floor_log2 (vector_sizes);
2420 if (dump_enabled_p ())
2421 dump_printf_loc (MSG_NOTE, vect_location,
2422 "***** Re-trying analysis with "
2423 "vector size %d\n", current_vector_size);
2428 /* Function reduction_code_for_scalar_code
2430 Input:
2431 CODE - tree_code of a reduction operations.
2433 Output:
2434 REDUC_CODE - the corresponding tree-code to be used to reduce the
2435 vector of partial results into a single scalar result, or ERROR_MARK
2436 if the operation is a supported reduction operation, but does not have
2437 such a tree-code.
2439 Return FALSE if CODE currently cannot be vectorized as reduction. */
2441 static bool
2442 reduction_code_for_scalar_code (enum tree_code code,
2443 enum tree_code *reduc_code)
2445 switch (code)
2447 case MAX_EXPR:
2448 *reduc_code = REDUC_MAX_EXPR;
2449 return true;
2451 case MIN_EXPR:
2452 *reduc_code = REDUC_MIN_EXPR;
2453 return true;
2455 case PLUS_EXPR:
2456 *reduc_code = REDUC_PLUS_EXPR;
2457 return true;
2459 case MULT_EXPR:
2460 case MINUS_EXPR:
2461 case BIT_IOR_EXPR:
2462 case BIT_XOR_EXPR:
2463 case BIT_AND_EXPR:
2464 *reduc_code = ERROR_MARK;
2465 return true;
2467 default:
2468 return false;
2473 /* Error reporting helper for vect_is_simple_reduction below. GIMPLE statement
2474 STMT is printed with a message MSG. */
2476 static void
2477 report_vect_op (dump_flags_t msg_type, gimple *stmt, const char *msg)
2479 dump_printf_loc (msg_type, vect_location, "%s", msg);
2480 dump_gimple_stmt (msg_type, TDF_SLIM, stmt, 0);
2484 /* Detect SLP reduction of the form:
2486 #a1 = phi <a5, a0>
2487 a2 = operation (a1)
2488 a3 = operation (a2)
2489 a4 = operation (a3)
2490 a5 = operation (a4)
2492 #a = phi <a5>
2494 PHI is the reduction phi node (#a1 = phi <a5, a0> above)
2495 FIRST_STMT is the first reduction stmt in the chain
2496 (a2 = operation (a1)).
2498 Return TRUE if a reduction chain was detected. */
2500 static bool
2501 vect_is_slp_reduction (loop_vec_info loop_info, gimple *phi,
2502 gimple *first_stmt)
2504 struct loop *loop = (gimple_bb (phi))->loop_father;
2505 struct loop *vect_loop = LOOP_VINFO_LOOP (loop_info);
2506 enum tree_code code;
2507 gimple *current_stmt = NULL, *loop_use_stmt = NULL, *first, *next_stmt;
2508 stmt_vec_info use_stmt_info, current_stmt_info;
2509 tree lhs;
2510 imm_use_iterator imm_iter;
2511 use_operand_p use_p;
2512 int nloop_uses, size = 0, n_out_of_loop_uses;
2513 bool found = false;
2515 if (loop != vect_loop)
2516 return false;
2518 lhs = PHI_RESULT (phi);
2519 code = gimple_assign_rhs_code (first_stmt);
2520 while (1)
2522 nloop_uses = 0;
2523 n_out_of_loop_uses = 0;
2524 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, lhs)
2526 gimple *use_stmt = USE_STMT (use_p);
2527 if (is_gimple_debug (use_stmt))
2528 continue;
2530 /* Check if we got back to the reduction phi. */
2531 if (use_stmt == phi)
2533 loop_use_stmt = use_stmt;
2534 found = true;
2535 break;
2538 if (flow_bb_inside_loop_p (loop, gimple_bb (use_stmt)))
2540 loop_use_stmt = use_stmt;
2541 nloop_uses++;
2543 else
2544 n_out_of_loop_uses++;
2546 /* There are can be either a single use in the loop or two uses in
2547 phi nodes. */
2548 if (nloop_uses > 1 || (n_out_of_loop_uses && nloop_uses))
2549 return false;
2552 if (found)
2553 break;
2555 /* We reached a statement with no loop uses. */
2556 if (nloop_uses == 0)
2557 return false;
2559 /* This is a loop exit phi, and we haven't reached the reduction phi. */
2560 if (gimple_code (loop_use_stmt) == GIMPLE_PHI)
2561 return false;
2563 if (!is_gimple_assign (loop_use_stmt)
2564 || code != gimple_assign_rhs_code (loop_use_stmt)
2565 || !flow_bb_inside_loop_p (loop, gimple_bb (loop_use_stmt)))
2566 return false;
2568 /* Insert USE_STMT into reduction chain. */
2569 use_stmt_info = vinfo_for_stmt (loop_use_stmt);
2570 if (current_stmt)
2572 current_stmt_info = vinfo_for_stmt (current_stmt);
2573 GROUP_NEXT_ELEMENT (current_stmt_info) = loop_use_stmt;
2574 GROUP_FIRST_ELEMENT (use_stmt_info)
2575 = GROUP_FIRST_ELEMENT (current_stmt_info);
2577 else
2578 GROUP_FIRST_ELEMENT (use_stmt_info) = loop_use_stmt;
2580 lhs = gimple_assign_lhs (loop_use_stmt);
2581 current_stmt = loop_use_stmt;
2582 size++;
2585 if (!found || loop_use_stmt != phi || size < 2)
2586 return false;
2588 /* Swap the operands, if needed, to make the reduction operand be the second
2589 operand. */
2590 lhs = PHI_RESULT (phi);
2591 next_stmt = GROUP_FIRST_ELEMENT (vinfo_for_stmt (current_stmt));
2592 while (next_stmt)
2594 if (gimple_assign_rhs2 (next_stmt) == lhs)
2596 tree op = gimple_assign_rhs1 (next_stmt);
2597 gimple *def_stmt = NULL;
2599 if (TREE_CODE (op) == SSA_NAME)
2600 def_stmt = SSA_NAME_DEF_STMT (op);
2602 /* Check that the other def is either defined in the loop
2603 ("vect_internal_def"), or it's an induction (defined by a
2604 loop-header phi-node). */
2605 if (def_stmt
2606 && gimple_bb (def_stmt)
2607 && flow_bb_inside_loop_p (loop, gimple_bb (def_stmt))
2608 && (is_gimple_assign (def_stmt)
2609 || is_gimple_call (def_stmt)
2610 || STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def_stmt))
2611 == vect_induction_def
2612 || (gimple_code (def_stmt) == GIMPLE_PHI
2613 && STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def_stmt))
2614 == vect_internal_def
2615 && !is_loop_header_bb_p (gimple_bb (def_stmt)))))
2617 lhs = gimple_assign_lhs (next_stmt);
2618 next_stmt = GROUP_NEXT_ELEMENT (vinfo_for_stmt (next_stmt));
2619 continue;
2622 return false;
2624 else
2626 tree op = gimple_assign_rhs2 (next_stmt);
2627 gimple *def_stmt = NULL;
2629 if (TREE_CODE (op) == SSA_NAME)
2630 def_stmt = SSA_NAME_DEF_STMT (op);
2632 /* Check that the other def is either defined in the loop
2633 ("vect_internal_def"), or it's an induction (defined by a
2634 loop-header phi-node). */
2635 if (def_stmt
2636 && gimple_bb (def_stmt)
2637 && flow_bb_inside_loop_p (loop, gimple_bb (def_stmt))
2638 && (is_gimple_assign (def_stmt)
2639 || is_gimple_call (def_stmt)
2640 || STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def_stmt))
2641 == vect_induction_def
2642 || (gimple_code (def_stmt) == GIMPLE_PHI
2643 && STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def_stmt))
2644 == vect_internal_def
2645 && !is_loop_header_bb_p (gimple_bb (def_stmt)))))
2647 if (dump_enabled_p ())
2649 dump_printf_loc (MSG_NOTE, vect_location, "swapping oprnds: ");
2650 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, next_stmt, 0);
2653 swap_ssa_operands (next_stmt,
2654 gimple_assign_rhs1_ptr (next_stmt),
2655 gimple_assign_rhs2_ptr (next_stmt));
2656 update_stmt (next_stmt);
2658 if (CONSTANT_CLASS_P (gimple_assign_rhs1 (next_stmt)))
2659 LOOP_VINFO_OPERANDS_SWAPPED (loop_info) = true;
2661 else
2662 return false;
2665 lhs = gimple_assign_lhs (next_stmt);
2666 next_stmt = GROUP_NEXT_ELEMENT (vinfo_for_stmt (next_stmt));
2669 /* Save the chain for further analysis in SLP detection. */
2670 first = GROUP_FIRST_ELEMENT (vinfo_for_stmt (current_stmt));
2671 LOOP_VINFO_REDUCTION_CHAINS (loop_info).safe_push (first);
2672 GROUP_SIZE (vinfo_for_stmt (first)) = size;
2674 return true;
2678 /* Function vect_is_simple_reduction
2680 (1) Detect a cross-iteration def-use cycle that represents a simple
2681 reduction computation. We look for the following pattern:
2683 loop_header:
2684 a1 = phi < a0, a2 >
2685 a3 = ...
2686 a2 = operation (a3, a1)
2690 a3 = ...
2691 loop_header:
2692 a1 = phi < a0, a2 >
2693 a2 = operation (a3, a1)
2695 such that:
2696 1. operation is commutative and associative and it is safe to
2697 change the order of the computation
2698 2. no uses for a2 in the loop (a2 is used out of the loop)
2699 3. no uses of a1 in the loop besides the reduction operation
2700 4. no uses of a1 outside the loop.
2702 Conditions 1,4 are tested here.
2703 Conditions 2,3 are tested in vect_mark_stmts_to_be_vectorized.
2705 (2) Detect a cross-iteration def-use cycle in nested loops, i.e.,
2706 nested cycles.
2708 (3) Detect cycles of phi nodes in outer-loop vectorization, i.e., double
2709 reductions:
2711 a1 = phi < a0, a2 >
2712 inner loop (def of a3)
2713 a2 = phi < a3 >
2715 (4) Detect condition expressions, ie:
2716 for (int i = 0; i < N; i++)
2717 if (a[i] < val)
2718 ret_val = a[i];
2722 static gimple *
2723 vect_is_simple_reduction (loop_vec_info loop_info, gimple *phi,
2724 bool *double_reduc,
2725 bool need_wrapping_integral_overflow,
2726 enum vect_reduction_type *v_reduc_type)
2728 struct loop *loop = (gimple_bb (phi))->loop_father;
2729 struct loop *vect_loop = LOOP_VINFO_LOOP (loop_info);
2730 gimple *def_stmt, *def1 = NULL, *def2 = NULL, *phi_use_stmt = NULL;
2731 enum tree_code orig_code, code;
2732 tree op1, op2, op3 = NULL_TREE, op4 = NULL_TREE;
2733 tree type;
2734 int nloop_uses;
2735 tree name;
2736 imm_use_iterator imm_iter;
2737 use_operand_p use_p;
2738 bool phi_def;
2740 *double_reduc = false;
2741 *v_reduc_type = TREE_CODE_REDUCTION;
2743 name = PHI_RESULT (phi);
2744 /* ??? If there are no uses of the PHI result the inner loop reduction
2745 won't be detected as possibly double-reduction by vectorizable_reduction
2746 because that tries to walk the PHI arg from the preheader edge which
2747 can be constant. See PR60382. */
2748 if (has_zero_uses (name))
2749 return NULL;
2750 nloop_uses = 0;
2751 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, name)
2753 gimple *use_stmt = USE_STMT (use_p);
2754 if (is_gimple_debug (use_stmt))
2755 continue;
2757 if (!flow_bb_inside_loop_p (loop, gimple_bb (use_stmt)))
2759 if (dump_enabled_p ())
2760 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2761 "intermediate value used outside loop.\n");
2763 return NULL;
2766 nloop_uses++;
2767 if (nloop_uses > 1)
2769 if (dump_enabled_p ())
2770 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2771 "reduction value used in loop.\n");
2772 return NULL;
2775 phi_use_stmt = use_stmt;
2778 edge latch_e = loop_latch_edge (loop);
2779 tree loop_arg = PHI_ARG_DEF_FROM_EDGE (phi, latch_e);
2780 if (TREE_CODE (loop_arg) != SSA_NAME)
2782 if (dump_enabled_p ())
2784 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2785 "reduction: not ssa_name: ");
2786 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM, loop_arg);
2787 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
2789 return NULL;
2792 def_stmt = SSA_NAME_DEF_STMT (loop_arg);
2793 if (is_gimple_assign (def_stmt))
2795 name = gimple_assign_lhs (def_stmt);
2796 phi_def = false;
2798 else if (gimple_code (def_stmt) == GIMPLE_PHI)
2800 name = PHI_RESULT (def_stmt);
2801 phi_def = true;
2803 else
2805 if (dump_enabled_p ())
2807 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2808 "reduction: unhandled reduction operation: ");
2809 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, def_stmt, 0);
2811 return NULL;
2814 nloop_uses = 0;
2815 auto_vec<gphi *, 3> lcphis;
2816 if (flow_bb_inside_loop_p (loop, gimple_bb (def_stmt)))
2817 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, name)
2819 gimple *use_stmt = USE_STMT (use_p);
2820 if (is_gimple_debug (use_stmt))
2821 continue;
2822 if (flow_bb_inside_loop_p (loop, gimple_bb (use_stmt)))
2823 nloop_uses++;
2824 else
2825 /* We can have more than one loop-closed PHI. */
2826 lcphis.safe_push (as_a <gphi *> (use_stmt));
2827 if (nloop_uses > 1)
2829 if (dump_enabled_p ())
2830 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2831 "reduction used in loop.\n");
2832 return NULL;
2836 /* If DEF_STMT is a phi node itself, we expect it to have a single argument
2837 defined in the inner loop. */
2838 if (phi_def)
2840 op1 = PHI_ARG_DEF (def_stmt, 0);
2842 if (gimple_phi_num_args (def_stmt) != 1
2843 || TREE_CODE (op1) != SSA_NAME)
2845 if (dump_enabled_p ())
2846 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2847 "unsupported phi node definition.\n");
2849 return NULL;
2852 def1 = SSA_NAME_DEF_STMT (op1);
2853 if (gimple_bb (def1)
2854 && flow_bb_inside_loop_p (loop, gimple_bb (def_stmt))
2855 && loop->inner
2856 && flow_bb_inside_loop_p (loop->inner, gimple_bb (def1))
2857 && is_gimple_assign (def1)
2858 && flow_bb_inside_loop_p (loop->inner, gimple_bb (phi_use_stmt)))
2860 if (dump_enabled_p ())
2861 report_vect_op (MSG_NOTE, def_stmt,
2862 "detected double reduction: ");
2864 *double_reduc = true;
2865 return def_stmt;
2868 return NULL;
2871 /* If we are vectorizing an inner reduction we are executing that
2872 in the original order only in case we are not dealing with a
2873 double reduction. */
2874 bool check_reduction = true;
2875 if (flow_loop_nested_p (vect_loop, loop))
2877 gphi *lcphi;
2878 unsigned i;
2879 check_reduction = false;
2880 FOR_EACH_VEC_ELT (lcphis, i, lcphi)
2881 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, gimple_phi_result (lcphi))
2883 gimple *use_stmt = USE_STMT (use_p);
2884 if (is_gimple_debug (use_stmt))
2885 continue;
2886 if (! flow_bb_inside_loop_p (vect_loop, gimple_bb (use_stmt)))
2887 check_reduction = true;
2891 bool nested_in_vect_loop = flow_loop_nested_p (vect_loop, loop);
2892 code = orig_code = gimple_assign_rhs_code (def_stmt);
2894 /* We can handle "res -= x[i]", which is non-associative by
2895 simply rewriting this into "res += -x[i]". Avoid changing
2896 gimple instruction for the first simple tests and only do this
2897 if we're allowed to change code at all. */
2898 if (code == MINUS_EXPR
2899 && (op1 = gimple_assign_rhs1 (def_stmt))
2900 && TREE_CODE (op1) == SSA_NAME
2901 && SSA_NAME_DEF_STMT (op1) == phi)
2902 code = PLUS_EXPR;
2904 if (code == COND_EXPR)
2906 if (! nested_in_vect_loop)
2907 *v_reduc_type = COND_REDUCTION;
2909 op3 = gimple_assign_rhs1 (def_stmt);
2910 if (COMPARISON_CLASS_P (op3))
2912 op4 = TREE_OPERAND (op3, 1);
2913 op3 = TREE_OPERAND (op3, 0);
2916 op1 = gimple_assign_rhs2 (def_stmt);
2917 op2 = gimple_assign_rhs3 (def_stmt);
2919 else if (!commutative_tree_code (code) || !associative_tree_code (code))
2921 if (dump_enabled_p ())
2922 report_vect_op (MSG_MISSED_OPTIMIZATION, def_stmt,
2923 "reduction: not commutative/associative: ");
2924 return NULL;
2926 else if (get_gimple_rhs_class (code) == GIMPLE_BINARY_RHS)
2928 op1 = gimple_assign_rhs1 (def_stmt);
2929 op2 = gimple_assign_rhs2 (def_stmt);
2931 else
2933 if (dump_enabled_p ())
2934 report_vect_op (MSG_MISSED_OPTIMIZATION, def_stmt,
2935 "reduction: not handled operation: ");
2936 return NULL;
2939 if (TREE_CODE (op1) != SSA_NAME && TREE_CODE (op2) != SSA_NAME)
2941 if (dump_enabled_p ())
2942 report_vect_op (MSG_MISSED_OPTIMIZATION, def_stmt,
2943 "reduction: both uses not ssa_names: ");
2945 return NULL;
2948 type = TREE_TYPE (gimple_assign_lhs (def_stmt));
2949 if ((TREE_CODE (op1) == SSA_NAME
2950 && !types_compatible_p (type,TREE_TYPE (op1)))
2951 || (TREE_CODE (op2) == SSA_NAME
2952 && !types_compatible_p (type, TREE_TYPE (op2)))
2953 || (op3 && TREE_CODE (op3) == SSA_NAME
2954 && !types_compatible_p (type, TREE_TYPE (op3)))
2955 || (op4 && TREE_CODE (op4) == SSA_NAME
2956 && !types_compatible_p (type, TREE_TYPE (op4))))
2958 if (dump_enabled_p ())
2960 dump_printf_loc (MSG_NOTE, vect_location,
2961 "reduction: multiple types: operation type: ");
2962 dump_generic_expr (MSG_NOTE, TDF_SLIM, type);
2963 dump_printf (MSG_NOTE, ", operands types: ");
2964 dump_generic_expr (MSG_NOTE, TDF_SLIM,
2965 TREE_TYPE (op1));
2966 dump_printf (MSG_NOTE, ",");
2967 dump_generic_expr (MSG_NOTE, TDF_SLIM,
2968 TREE_TYPE (op2));
2969 if (op3)
2971 dump_printf (MSG_NOTE, ",");
2972 dump_generic_expr (MSG_NOTE, TDF_SLIM,
2973 TREE_TYPE (op3));
2976 if (op4)
2978 dump_printf (MSG_NOTE, ",");
2979 dump_generic_expr (MSG_NOTE, TDF_SLIM,
2980 TREE_TYPE (op4));
2982 dump_printf (MSG_NOTE, "\n");
2985 return NULL;
2988 /* Check that it's ok to change the order of the computation.
2989 Generally, when vectorizing a reduction we change the order of the
2990 computation. This may change the behavior of the program in some
2991 cases, so we need to check that this is ok. One exception is when
2992 vectorizing an outer-loop: the inner-loop is executed sequentially,
2993 and therefore vectorizing reductions in the inner-loop during
2994 outer-loop vectorization is safe. */
2996 if (*v_reduc_type != COND_REDUCTION
2997 && check_reduction)
2999 /* CHECKME: check for !flag_finite_math_only too? */
3000 if (SCALAR_FLOAT_TYPE_P (type) && !flag_associative_math)
3002 /* Changing the order of operations changes the semantics. */
3003 if (dump_enabled_p ())
3004 report_vect_op (MSG_MISSED_OPTIMIZATION, def_stmt,
3005 "reduction: unsafe fp math optimization: ");
3006 return NULL;
3008 else if (INTEGRAL_TYPE_P (type))
3010 if (!operation_no_trapping_overflow (type, code))
3012 /* Changing the order of operations changes the semantics. */
3013 if (dump_enabled_p ())
3014 report_vect_op (MSG_MISSED_OPTIMIZATION, def_stmt,
3015 "reduction: unsafe int math optimization"
3016 " (overflow traps): ");
3017 return NULL;
3019 if (need_wrapping_integral_overflow
3020 && !TYPE_OVERFLOW_WRAPS (type)
3021 && operation_can_overflow (code))
3023 /* Changing the order of operations changes the semantics. */
3024 if (dump_enabled_p ())
3025 report_vect_op (MSG_MISSED_OPTIMIZATION, def_stmt,
3026 "reduction: unsafe int math optimization"
3027 " (overflow doesn't wrap): ");
3028 return NULL;
3031 else if (SAT_FIXED_POINT_TYPE_P (type))
3033 /* Changing the order of operations changes the semantics. */
3034 if (dump_enabled_p ())
3035 report_vect_op (MSG_MISSED_OPTIMIZATION, def_stmt,
3036 "reduction: unsafe fixed-point math optimization: ");
3037 return NULL;
3041 /* Reduction is safe. We're dealing with one of the following:
3042 1) integer arithmetic and no trapv
3043 2) floating point arithmetic, and special flags permit this optimization
3044 3) nested cycle (i.e., outer loop vectorization). */
3045 if (TREE_CODE (op1) == SSA_NAME)
3046 def1 = SSA_NAME_DEF_STMT (op1);
3048 if (TREE_CODE (op2) == SSA_NAME)
3049 def2 = SSA_NAME_DEF_STMT (op2);
3051 if (code != COND_EXPR
3052 && ((!def1 || gimple_nop_p (def1)) && (!def2 || gimple_nop_p (def2))))
3054 if (dump_enabled_p ())
3055 report_vect_op (MSG_NOTE, def_stmt, "reduction: no defs for operands: ");
3056 return NULL;
3059 /* Check that one def is the reduction def, defined by PHI,
3060 the other def is either defined in the loop ("vect_internal_def"),
3061 or it's an induction (defined by a loop-header phi-node). */
3063 if (def2 && def2 == phi
3064 && (code == COND_EXPR
3065 || !def1 || gimple_nop_p (def1)
3066 || !flow_bb_inside_loop_p (loop, gimple_bb (def1))
3067 || (def1 && flow_bb_inside_loop_p (loop, gimple_bb (def1))
3068 && (is_gimple_assign (def1)
3069 || is_gimple_call (def1)
3070 || STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def1))
3071 == vect_induction_def
3072 || (gimple_code (def1) == GIMPLE_PHI
3073 && STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def1))
3074 == vect_internal_def
3075 && !is_loop_header_bb_p (gimple_bb (def1)))))))
3077 if (dump_enabled_p ())
3078 report_vect_op (MSG_NOTE, def_stmt, "detected reduction: ");
3079 return def_stmt;
3082 if (def1 && def1 == phi
3083 && (code == COND_EXPR
3084 || !def2 || gimple_nop_p (def2)
3085 || !flow_bb_inside_loop_p (loop, gimple_bb (def2))
3086 || (def2 && flow_bb_inside_loop_p (loop, gimple_bb (def2))
3087 && (is_gimple_assign (def2)
3088 || is_gimple_call (def2)
3089 || STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def2))
3090 == vect_induction_def
3091 || (gimple_code (def2) == GIMPLE_PHI
3092 && STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def2))
3093 == vect_internal_def
3094 && !is_loop_header_bb_p (gimple_bb (def2)))))))
3096 if (! nested_in_vect_loop && orig_code != MINUS_EXPR)
3098 /* Check if we can swap operands (just for simplicity - so that
3099 the rest of the code can assume that the reduction variable
3100 is always the last (second) argument). */
3101 if (code == COND_EXPR)
3103 /* Swap cond_expr by inverting the condition. */
3104 tree cond_expr = gimple_assign_rhs1 (def_stmt);
3105 enum tree_code invert_code = ERROR_MARK;
3106 enum tree_code cond_code = TREE_CODE (cond_expr);
3108 if (TREE_CODE_CLASS (cond_code) == tcc_comparison)
3110 bool honor_nans = HONOR_NANS (TREE_OPERAND (cond_expr, 0));
3111 invert_code = invert_tree_comparison (cond_code, honor_nans);
3113 if (invert_code != ERROR_MARK)
3115 TREE_SET_CODE (cond_expr, invert_code);
3116 swap_ssa_operands (def_stmt,
3117 gimple_assign_rhs2_ptr (def_stmt),
3118 gimple_assign_rhs3_ptr (def_stmt));
3120 else
3122 if (dump_enabled_p ())
3123 report_vect_op (MSG_NOTE, def_stmt,
3124 "detected reduction: cannot swap operands "
3125 "for cond_expr");
3126 return NULL;
3129 else
3130 swap_ssa_operands (def_stmt, gimple_assign_rhs1_ptr (def_stmt),
3131 gimple_assign_rhs2_ptr (def_stmt));
3133 if (dump_enabled_p ())
3134 report_vect_op (MSG_NOTE, def_stmt,
3135 "detected reduction: need to swap operands: ");
3137 if (CONSTANT_CLASS_P (gimple_assign_rhs1 (def_stmt)))
3138 LOOP_VINFO_OPERANDS_SWAPPED (loop_info) = true;
3140 else
3142 if (dump_enabled_p ())
3143 report_vect_op (MSG_NOTE, def_stmt, "detected reduction: ");
3146 return def_stmt;
3149 /* Try to find SLP reduction chain. */
3150 if (! nested_in_vect_loop
3151 && code != COND_EXPR
3152 && vect_is_slp_reduction (loop_info, phi, def_stmt))
3154 if (dump_enabled_p ())
3155 report_vect_op (MSG_NOTE, def_stmt,
3156 "reduction: detected reduction chain: ");
3158 return def_stmt;
3161 if (dump_enabled_p ())
3162 report_vect_op (MSG_MISSED_OPTIMIZATION, def_stmt,
3163 "reduction: unknown pattern: ");
3165 return NULL;
3168 /* Wrapper around vect_is_simple_reduction, which will modify code
3169 in-place if it enables detection of more reductions. Arguments
3170 as there. */
3172 gimple *
3173 vect_force_simple_reduction (loop_vec_info loop_info, gimple *phi,
3174 bool *double_reduc,
3175 bool need_wrapping_integral_overflow)
3177 enum vect_reduction_type v_reduc_type;
3178 gimple *def = vect_is_simple_reduction (loop_info, phi, double_reduc,
3179 need_wrapping_integral_overflow,
3180 &v_reduc_type);
3181 if (def)
3183 stmt_vec_info reduc_def_info = vinfo_for_stmt (phi);
3184 STMT_VINFO_REDUC_TYPE (reduc_def_info) = v_reduc_type;
3185 STMT_VINFO_REDUC_DEF (reduc_def_info) = def;
3187 return def;
3190 /* Calculate cost of peeling the loop PEEL_ITERS_PROLOGUE times. */
3192 vect_get_known_peeling_cost (loop_vec_info loop_vinfo, int peel_iters_prologue,
3193 int *peel_iters_epilogue,
3194 stmt_vector_for_cost *scalar_cost_vec,
3195 stmt_vector_for_cost *prologue_cost_vec,
3196 stmt_vector_for_cost *epilogue_cost_vec)
3198 int retval = 0;
3199 int vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
3201 if (!LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo))
3203 *peel_iters_epilogue = vf/2;
3204 if (dump_enabled_p ())
3205 dump_printf_loc (MSG_NOTE, vect_location,
3206 "cost model: epilogue peel iters set to vf/2 "
3207 "because loop iterations are unknown .\n");
3209 /* If peeled iterations are known but number of scalar loop
3210 iterations are unknown, count a taken branch per peeled loop. */
3211 retval = record_stmt_cost (prologue_cost_vec, 1, cond_branch_taken,
3212 NULL, 0, vect_prologue);
3213 retval = record_stmt_cost (prologue_cost_vec, 1, cond_branch_taken,
3214 NULL, 0, vect_epilogue);
3216 else
3218 int niters = LOOP_VINFO_INT_NITERS (loop_vinfo);
3219 peel_iters_prologue = niters < peel_iters_prologue ?
3220 niters : peel_iters_prologue;
3221 *peel_iters_epilogue = (niters - peel_iters_prologue) % vf;
3222 /* If we need to peel for gaps, but no peeling is required, we have to
3223 peel VF iterations. */
3224 if (LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo) && !*peel_iters_epilogue)
3225 *peel_iters_epilogue = vf;
3228 stmt_info_for_cost *si;
3229 int j;
3230 if (peel_iters_prologue)
3231 FOR_EACH_VEC_ELT (*scalar_cost_vec, j, si)
3233 stmt_vec_info stmt_info
3234 = si->stmt ? vinfo_for_stmt (si->stmt) : NULL;
3235 retval += record_stmt_cost (prologue_cost_vec,
3236 si->count * peel_iters_prologue,
3237 si->kind, stmt_info, si->misalign,
3238 vect_prologue);
3240 if (*peel_iters_epilogue)
3241 FOR_EACH_VEC_ELT (*scalar_cost_vec, j, si)
3243 stmt_vec_info stmt_info
3244 = si->stmt ? vinfo_for_stmt (si->stmt) : NULL;
3245 retval += record_stmt_cost (epilogue_cost_vec,
3246 si->count * *peel_iters_epilogue,
3247 si->kind, stmt_info, si->misalign,
3248 vect_epilogue);
3251 return retval;
3254 /* Function vect_estimate_min_profitable_iters
3256 Return the number of iterations required for the vector version of the
3257 loop to be profitable relative to the cost of the scalar version of the
3258 loop.
3260 *RET_MIN_PROFITABLE_NITERS is a cost model profitability threshold
3261 of iterations for vectorization. -1 value means loop vectorization
3262 is not profitable. This returned value may be used for dynamic
3263 profitability check.
3265 *RET_MIN_PROFITABLE_ESTIMATE is a profitability threshold to be used
3266 for static check against estimated number of iterations. */
3268 static void
3269 vect_estimate_min_profitable_iters (loop_vec_info loop_vinfo,
3270 int *ret_min_profitable_niters,
3271 int *ret_min_profitable_estimate)
3273 int min_profitable_iters;
3274 int min_profitable_estimate;
3275 int peel_iters_prologue;
3276 int peel_iters_epilogue;
3277 unsigned vec_inside_cost = 0;
3278 int vec_outside_cost = 0;
3279 unsigned vec_prologue_cost = 0;
3280 unsigned vec_epilogue_cost = 0;
3281 int scalar_single_iter_cost = 0;
3282 int scalar_outside_cost = 0;
3283 int vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
3284 int npeel = LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo);
3285 void *target_cost_data = LOOP_VINFO_TARGET_COST_DATA (loop_vinfo);
3287 /* Cost model disabled. */
3288 if (unlimited_cost_model (LOOP_VINFO_LOOP (loop_vinfo)))
3290 dump_printf_loc (MSG_NOTE, vect_location, "cost model disabled.\n");
3291 *ret_min_profitable_niters = 0;
3292 *ret_min_profitable_estimate = 0;
3293 return;
3296 /* Requires loop versioning tests to handle misalignment. */
3297 if (LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT (loop_vinfo))
3299 /* FIXME: Make cost depend on complexity of individual check. */
3300 unsigned len = LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo).length ();
3301 (void) add_stmt_cost (target_cost_data, len, vector_stmt, NULL, 0,
3302 vect_prologue);
3303 dump_printf (MSG_NOTE,
3304 "cost model: Adding cost of checks for loop "
3305 "versioning to treat misalignment.\n");
3308 /* Requires loop versioning with alias checks. */
3309 if (LOOP_REQUIRES_VERSIONING_FOR_ALIAS (loop_vinfo))
3311 /* FIXME: Make cost depend on complexity of individual check. */
3312 unsigned len = LOOP_VINFO_COMP_ALIAS_DDRS (loop_vinfo).length ();
3313 (void) add_stmt_cost (target_cost_data, len, vector_stmt, NULL, 0,
3314 vect_prologue);
3315 dump_printf (MSG_NOTE,
3316 "cost model: Adding cost of checks for loop "
3317 "versioning aliasing.\n");
3320 /* Requires loop versioning with niter checks. */
3321 if (LOOP_REQUIRES_VERSIONING_FOR_NITERS (loop_vinfo))
3323 /* FIXME: Make cost depend on complexity of individual check. */
3324 (void) add_stmt_cost (target_cost_data, 1, vector_stmt, NULL, 0,
3325 vect_prologue);
3326 dump_printf (MSG_NOTE,
3327 "cost model: Adding cost of checks for loop "
3328 "versioning niters.\n");
3331 if (LOOP_REQUIRES_VERSIONING (loop_vinfo))
3332 (void) add_stmt_cost (target_cost_data, 1, cond_branch_taken, NULL, 0,
3333 vect_prologue);
3335 /* Count statements in scalar loop. Using this as scalar cost for a single
3336 iteration for now.
3338 TODO: Add outer loop support.
3340 TODO: Consider assigning different costs to different scalar
3341 statements. */
3343 scalar_single_iter_cost
3344 = LOOP_VINFO_SINGLE_SCALAR_ITERATION_COST (loop_vinfo);
3346 /* Add additional cost for the peeled instructions in prologue and epilogue
3347 loop.
3349 FORNOW: If we don't know the value of peel_iters for prologue or epilogue
3350 at compile-time - we assume it's vf/2 (the worst would be vf-1).
3352 TODO: Build an expression that represents peel_iters for prologue and
3353 epilogue to be used in a run-time test. */
3355 if (npeel < 0)
3357 peel_iters_prologue = vf/2;
3358 dump_printf (MSG_NOTE, "cost model: "
3359 "prologue peel iters set to vf/2.\n");
3361 /* If peeling for alignment is unknown, loop bound of main loop becomes
3362 unknown. */
3363 peel_iters_epilogue = vf/2;
3364 dump_printf (MSG_NOTE, "cost model: "
3365 "epilogue peel iters set to vf/2 because "
3366 "peeling for alignment is unknown.\n");
3368 /* If peeled iterations are unknown, count a taken branch and a not taken
3369 branch per peeled loop. Even if scalar loop iterations are known,
3370 vector iterations are not known since peeled prologue iterations are
3371 not known. Hence guards remain the same. */
3372 (void) add_stmt_cost (target_cost_data, 1, cond_branch_taken,
3373 NULL, 0, vect_prologue);
3374 (void) add_stmt_cost (target_cost_data, 1, cond_branch_not_taken,
3375 NULL, 0, vect_prologue);
3376 (void) add_stmt_cost (target_cost_data, 1, cond_branch_taken,
3377 NULL, 0, vect_epilogue);
3378 (void) add_stmt_cost (target_cost_data, 1, cond_branch_not_taken,
3379 NULL, 0, vect_epilogue);
3380 stmt_info_for_cost *si;
3381 int j;
3382 FOR_EACH_VEC_ELT (LOOP_VINFO_SCALAR_ITERATION_COST (loop_vinfo), j, si)
3384 struct _stmt_vec_info *stmt_info
3385 = si->stmt ? vinfo_for_stmt (si->stmt) : NULL;
3386 (void) add_stmt_cost (target_cost_data,
3387 si->count * peel_iters_prologue,
3388 si->kind, stmt_info, si->misalign,
3389 vect_prologue);
3390 (void) add_stmt_cost (target_cost_data,
3391 si->count * peel_iters_epilogue,
3392 si->kind, stmt_info, si->misalign,
3393 vect_epilogue);
3396 else
3398 stmt_vector_for_cost prologue_cost_vec, epilogue_cost_vec;
3399 stmt_info_for_cost *si;
3400 int j;
3401 void *data = LOOP_VINFO_TARGET_COST_DATA (loop_vinfo);
3403 prologue_cost_vec.create (2);
3404 epilogue_cost_vec.create (2);
3405 peel_iters_prologue = npeel;
3407 (void) vect_get_known_peeling_cost (loop_vinfo, peel_iters_prologue,
3408 &peel_iters_epilogue,
3409 &LOOP_VINFO_SCALAR_ITERATION_COST
3410 (loop_vinfo),
3411 &prologue_cost_vec,
3412 &epilogue_cost_vec);
3414 FOR_EACH_VEC_ELT (prologue_cost_vec, j, si)
3416 struct _stmt_vec_info *stmt_info
3417 = si->stmt ? vinfo_for_stmt (si->stmt) : NULL;
3418 (void) add_stmt_cost (data, si->count, si->kind, stmt_info,
3419 si->misalign, vect_prologue);
3422 FOR_EACH_VEC_ELT (epilogue_cost_vec, j, si)
3424 struct _stmt_vec_info *stmt_info
3425 = si->stmt ? vinfo_for_stmt (si->stmt) : NULL;
3426 (void) add_stmt_cost (data, si->count, si->kind, stmt_info,
3427 si->misalign, vect_epilogue);
3430 prologue_cost_vec.release ();
3431 epilogue_cost_vec.release ();
3434 /* FORNOW: The scalar outside cost is incremented in one of the
3435 following ways:
3437 1. The vectorizer checks for alignment and aliasing and generates
3438 a condition that allows dynamic vectorization. A cost model
3439 check is ANDED with the versioning condition. Hence scalar code
3440 path now has the added cost of the versioning check.
3442 if (cost > th & versioning_check)
3443 jmp to vector code
3445 Hence run-time scalar is incremented by not-taken branch cost.
3447 2. The vectorizer then checks if a prologue is required. If the
3448 cost model check was not done before during versioning, it has to
3449 be done before the prologue check.
3451 if (cost <= th)
3452 prologue = scalar_iters
3453 if (prologue == 0)
3454 jmp to vector code
3455 else
3456 execute prologue
3457 if (prologue == num_iters)
3458 go to exit
3460 Hence the run-time scalar cost is incremented by a taken branch,
3461 plus a not-taken branch, plus a taken branch cost.
3463 3. The vectorizer then checks if an epilogue is required. If the
3464 cost model check was not done before during prologue check, it
3465 has to be done with the epilogue check.
3467 if (prologue == 0)
3468 jmp to vector code
3469 else
3470 execute prologue
3471 if (prologue == num_iters)
3472 go to exit
3473 vector code:
3474 if ((cost <= th) | (scalar_iters-prologue-epilogue == 0))
3475 jmp to epilogue
3477 Hence the run-time scalar cost should be incremented by 2 taken
3478 branches.
3480 TODO: The back end may reorder the BBS's differently and reverse
3481 conditions/branch directions. Change the estimates below to
3482 something more reasonable. */
3484 /* If the number of iterations is known and we do not do versioning, we can
3485 decide whether to vectorize at compile time. Hence the scalar version
3486 do not carry cost model guard costs. */
3487 if (!LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
3488 || LOOP_REQUIRES_VERSIONING (loop_vinfo))
3490 /* Cost model check occurs at versioning. */
3491 if (LOOP_REQUIRES_VERSIONING (loop_vinfo))
3492 scalar_outside_cost += vect_get_stmt_cost (cond_branch_not_taken);
3493 else
3495 /* Cost model check occurs at prologue generation. */
3496 if (LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo) < 0)
3497 scalar_outside_cost += 2 * vect_get_stmt_cost (cond_branch_taken)
3498 + vect_get_stmt_cost (cond_branch_not_taken);
3499 /* Cost model check occurs at epilogue generation. */
3500 else
3501 scalar_outside_cost += 2 * vect_get_stmt_cost (cond_branch_taken);
3505 /* Complete the target-specific cost calculations. */
3506 finish_cost (LOOP_VINFO_TARGET_COST_DATA (loop_vinfo), &vec_prologue_cost,
3507 &vec_inside_cost, &vec_epilogue_cost);
3509 vec_outside_cost = (int)(vec_prologue_cost + vec_epilogue_cost);
3511 if (dump_enabled_p ())
3513 dump_printf_loc (MSG_NOTE, vect_location, "Cost model analysis: \n");
3514 dump_printf (MSG_NOTE, " Vector inside of loop cost: %d\n",
3515 vec_inside_cost);
3516 dump_printf (MSG_NOTE, " Vector prologue cost: %d\n",
3517 vec_prologue_cost);
3518 dump_printf (MSG_NOTE, " Vector epilogue cost: %d\n",
3519 vec_epilogue_cost);
3520 dump_printf (MSG_NOTE, " Scalar iteration cost: %d\n",
3521 scalar_single_iter_cost);
3522 dump_printf (MSG_NOTE, " Scalar outside cost: %d\n",
3523 scalar_outside_cost);
3524 dump_printf (MSG_NOTE, " Vector outside cost: %d\n",
3525 vec_outside_cost);
3526 dump_printf (MSG_NOTE, " prologue iterations: %d\n",
3527 peel_iters_prologue);
3528 dump_printf (MSG_NOTE, " epilogue iterations: %d\n",
3529 peel_iters_epilogue);
3532 /* Calculate number of iterations required to make the vector version
3533 profitable, relative to the loop bodies only. The following condition
3534 must hold true:
3535 SIC * niters + SOC > VIC * ((niters-PL_ITERS-EP_ITERS)/VF) + VOC
3536 where
3537 SIC = scalar iteration cost, VIC = vector iteration cost,
3538 VOC = vector outside cost, VF = vectorization factor,
3539 PL_ITERS = prologue iterations, EP_ITERS= epilogue iterations
3540 SOC = scalar outside cost for run time cost model check. */
3542 if ((scalar_single_iter_cost * vf) > (int) vec_inside_cost)
3544 if (vec_outside_cost <= 0)
3545 min_profitable_iters = 1;
3546 else
3548 min_profitable_iters = ((vec_outside_cost - scalar_outside_cost) * vf
3549 - vec_inside_cost * peel_iters_prologue
3550 - vec_inside_cost * peel_iters_epilogue)
3551 / ((scalar_single_iter_cost * vf)
3552 - vec_inside_cost);
3554 if ((scalar_single_iter_cost * vf * min_profitable_iters)
3555 <= (((int) vec_inside_cost * min_profitable_iters)
3556 + (((int) vec_outside_cost - scalar_outside_cost) * vf)))
3557 min_profitable_iters++;
3560 /* vector version will never be profitable. */
3561 else
3563 if (LOOP_VINFO_LOOP (loop_vinfo)->force_vectorize)
3564 warning_at (vect_location, OPT_Wopenmp_simd, "vectorization "
3565 "did not happen for a simd loop");
3567 if (dump_enabled_p ())
3568 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
3569 "cost model: the vector iteration cost = %d "
3570 "divided by the scalar iteration cost = %d "
3571 "is greater or equal to the vectorization factor = %d"
3572 ".\n",
3573 vec_inside_cost, scalar_single_iter_cost, vf);
3574 *ret_min_profitable_niters = -1;
3575 *ret_min_profitable_estimate = -1;
3576 return;
3579 dump_printf (MSG_NOTE,
3580 " Calculated minimum iters for profitability: %d\n",
3581 min_profitable_iters);
3583 min_profitable_iters =
3584 min_profitable_iters < vf ? vf : min_profitable_iters;
3586 /* Because the condition we create is:
3587 if (niters <= min_profitable_iters)
3588 then skip the vectorized loop. */
3589 min_profitable_iters--;
3591 if (dump_enabled_p ())
3592 dump_printf_loc (MSG_NOTE, vect_location,
3593 " Runtime profitability threshold = %d\n",
3594 min_profitable_iters);
3596 *ret_min_profitable_niters = min_profitable_iters;
3598 /* Calculate number of iterations required to make the vector version
3599 profitable, relative to the loop bodies only.
3601 Non-vectorized variant is SIC * niters and it must win over vector
3602 variant on the expected loop trip count. The following condition must hold true:
3603 SIC * niters > VIC * ((niters-PL_ITERS-EP_ITERS)/VF) + VOC + SOC */
3605 if (vec_outside_cost <= 0)
3606 min_profitable_estimate = 1;
3607 else
3609 min_profitable_estimate = ((vec_outside_cost + scalar_outside_cost) * vf
3610 - vec_inside_cost * peel_iters_prologue
3611 - vec_inside_cost * peel_iters_epilogue)
3612 / ((scalar_single_iter_cost * vf)
3613 - vec_inside_cost);
3615 min_profitable_estimate --;
3616 min_profitable_estimate = MAX (min_profitable_estimate, min_profitable_iters);
3617 if (dump_enabled_p ())
3618 dump_printf_loc (MSG_NOTE, vect_location,
3619 " Static estimate profitability threshold = %d\n",
3620 min_profitable_estimate);
3622 *ret_min_profitable_estimate = min_profitable_estimate;
3625 /* Writes into SEL a mask for a vec_perm, equivalent to a vec_shr by OFFSET
3626 vector elements (not bits) for a vector of mode MODE. */
3627 static void
3628 calc_vec_perm_mask_for_shift (enum machine_mode mode, unsigned int offset,
3629 unsigned char *sel)
3631 unsigned int i, nelt = GET_MODE_NUNITS (mode);
3633 for (i = 0; i < nelt; i++)
3634 sel[i] = (i + offset) & (2*nelt - 1);
3637 /* Checks whether the target supports whole-vector shifts for vectors of mode
3638 MODE. This is the case if _either_ the platform handles vec_shr_optab, _or_
3639 it supports vec_perm_const with masks for all necessary shift amounts. */
3640 static bool
3641 have_whole_vector_shift (enum machine_mode mode)
3643 if (optab_handler (vec_shr_optab, mode) != CODE_FOR_nothing)
3644 return true;
3646 if (direct_optab_handler (vec_perm_const_optab, mode) == CODE_FOR_nothing)
3647 return false;
3649 unsigned int i, nelt = GET_MODE_NUNITS (mode);
3650 unsigned char *sel = XALLOCAVEC (unsigned char, nelt);
3652 for (i = nelt/2; i >= 1; i/=2)
3654 calc_vec_perm_mask_for_shift (mode, i, sel);
3655 if (!can_vec_perm_p (mode, false, sel))
3656 return false;
3658 return true;
3661 /* Return the reduction operand (with index REDUC_INDEX) of STMT. */
3663 static tree
3664 get_reduction_op (gimple *stmt, int reduc_index)
3666 switch (get_gimple_rhs_class (gimple_assign_rhs_code (stmt)))
3668 case GIMPLE_SINGLE_RHS:
3669 gcc_assert (TREE_OPERAND_LENGTH (gimple_assign_rhs1 (stmt))
3670 == ternary_op);
3671 return TREE_OPERAND (gimple_assign_rhs1 (stmt), reduc_index);
3672 case GIMPLE_UNARY_RHS:
3673 return gimple_assign_rhs1 (stmt);
3674 case GIMPLE_BINARY_RHS:
3675 return (reduc_index
3676 ? gimple_assign_rhs2 (stmt) : gimple_assign_rhs1 (stmt));
3677 case GIMPLE_TERNARY_RHS:
3678 return gimple_op (stmt, reduc_index + 1);
3679 default:
3680 gcc_unreachable ();
3684 /* TODO: Close dependency between vect_model_*_cost and vectorizable_*
3685 functions. Design better to avoid maintenance issues. */
3687 /* Function vect_model_reduction_cost.
3689 Models cost for a reduction operation, including the vector ops
3690 generated within the strip-mine loop, the initial definition before
3691 the loop, and the epilogue code that must be generated. */
3693 static void
3694 vect_model_reduction_cost (stmt_vec_info stmt_info, enum tree_code reduc_code,
3695 int ncopies)
3697 int prologue_cost = 0, epilogue_cost = 0;
3698 enum tree_code code;
3699 optab optab;
3700 tree vectype;
3701 gimple *orig_stmt;
3702 machine_mode mode;
3703 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
3704 struct loop *loop = NULL;
3705 void *target_cost_data;
3707 if (loop_vinfo)
3709 loop = LOOP_VINFO_LOOP (loop_vinfo);
3710 target_cost_data = LOOP_VINFO_TARGET_COST_DATA (loop_vinfo);
3712 else
3713 target_cost_data = BB_VINFO_TARGET_COST_DATA (STMT_VINFO_BB_VINFO (stmt_info));
3715 /* Condition reductions generate two reductions in the loop. */
3716 if (STMT_VINFO_VEC_REDUCTION_TYPE (stmt_info) == COND_REDUCTION)
3717 ncopies *= 2;
3719 /* Cost of reduction op inside loop. */
3720 unsigned inside_cost = add_stmt_cost (target_cost_data, ncopies, vector_stmt,
3721 stmt_info, 0, vect_body);
3723 vectype = STMT_VINFO_VECTYPE (stmt_info);
3724 mode = TYPE_MODE (vectype);
3725 orig_stmt = STMT_VINFO_RELATED_STMT (stmt_info);
3727 if (!orig_stmt)
3728 orig_stmt = STMT_VINFO_STMT (stmt_info);
3730 code = gimple_assign_rhs_code (orig_stmt);
3732 /* Add in cost for initial definition.
3733 For cond reduction we have four vectors: initial index, step, initial
3734 result of the data reduction, initial value of the index reduction. */
3735 int prologue_stmts = STMT_VINFO_VEC_REDUCTION_TYPE (stmt_info)
3736 == COND_REDUCTION ? 4 : 1;
3737 prologue_cost += add_stmt_cost (target_cost_data, prologue_stmts,
3738 scalar_to_vec, stmt_info, 0,
3739 vect_prologue);
3741 /* Determine cost of epilogue code.
3743 We have a reduction operator that will reduce the vector in one statement.
3744 Also requires scalar extract. */
3746 if (!loop || !nested_in_vect_loop_p (loop, orig_stmt))
3748 if (reduc_code != ERROR_MARK)
3750 if (STMT_VINFO_VEC_REDUCTION_TYPE (stmt_info) == COND_REDUCTION)
3752 /* An EQ stmt and an COND_EXPR stmt. */
3753 epilogue_cost += add_stmt_cost (target_cost_data, 2,
3754 vector_stmt, stmt_info, 0,
3755 vect_epilogue);
3756 /* Reduction of the max index and a reduction of the found
3757 values. */
3758 epilogue_cost += add_stmt_cost (target_cost_data, 2,
3759 vec_to_scalar, stmt_info, 0,
3760 vect_epilogue);
3761 /* A broadcast of the max value. */
3762 epilogue_cost += add_stmt_cost (target_cost_data, 1,
3763 scalar_to_vec, stmt_info, 0,
3764 vect_epilogue);
3766 else
3768 epilogue_cost += add_stmt_cost (target_cost_data, 1, vector_stmt,
3769 stmt_info, 0, vect_epilogue);
3770 epilogue_cost += add_stmt_cost (target_cost_data, 1,
3771 vec_to_scalar, stmt_info, 0,
3772 vect_epilogue);
3775 else if (STMT_VINFO_VEC_REDUCTION_TYPE (stmt_info) == COND_REDUCTION)
3777 unsigned nunits = TYPE_VECTOR_SUBPARTS (vectype);
3778 /* Extraction of scalar elements. */
3779 epilogue_cost += add_stmt_cost (target_cost_data, 2 * nunits,
3780 vec_to_scalar, stmt_info, 0,
3781 vect_epilogue);
3782 /* Scalar max reductions via COND_EXPR / MAX_EXPR. */
3783 epilogue_cost += add_stmt_cost (target_cost_data, 2 * nunits - 3,
3784 scalar_stmt, stmt_info, 0,
3785 vect_epilogue);
3787 else
3789 int vec_size_in_bits = tree_to_uhwi (TYPE_SIZE (vectype));
3790 tree bitsize =
3791 TYPE_SIZE (TREE_TYPE (gimple_assign_lhs (orig_stmt)));
3792 int element_bitsize = tree_to_uhwi (bitsize);
3793 int nelements = vec_size_in_bits / element_bitsize;
3795 if (code == COND_EXPR)
3796 code = MAX_EXPR;
3798 optab = optab_for_tree_code (code, vectype, optab_default);
3800 /* We have a whole vector shift available. */
3801 if (optab != unknown_optab
3802 && VECTOR_MODE_P (mode)
3803 && optab_handler (optab, mode) != CODE_FOR_nothing
3804 && have_whole_vector_shift (mode))
3806 /* Final reduction via vector shifts and the reduction operator.
3807 Also requires scalar extract. */
3808 epilogue_cost += add_stmt_cost (target_cost_data,
3809 exact_log2 (nelements) * 2,
3810 vector_stmt, stmt_info, 0,
3811 vect_epilogue);
3812 epilogue_cost += add_stmt_cost (target_cost_data, 1,
3813 vec_to_scalar, stmt_info, 0,
3814 vect_epilogue);
3816 else
3817 /* Use extracts and reduction op for final reduction. For N
3818 elements, we have N extracts and N-1 reduction ops. */
3819 epilogue_cost += add_stmt_cost (target_cost_data,
3820 nelements + nelements - 1,
3821 vector_stmt, stmt_info, 0,
3822 vect_epilogue);
3826 if (dump_enabled_p ())
3827 dump_printf (MSG_NOTE,
3828 "vect_model_reduction_cost: inside_cost = %d, "
3829 "prologue_cost = %d, epilogue_cost = %d .\n", inside_cost,
3830 prologue_cost, epilogue_cost);
3834 /* Function vect_model_induction_cost.
3836 Models cost for induction operations. */
3838 static void
3839 vect_model_induction_cost (stmt_vec_info stmt_info, int ncopies)
3841 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
3842 void *target_cost_data = LOOP_VINFO_TARGET_COST_DATA (loop_vinfo);
3843 unsigned inside_cost, prologue_cost;
3845 if (PURE_SLP_STMT (stmt_info))
3846 return;
3848 /* loop cost for vec_loop. */
3849 inside_cost = add_stmt_cost (target_cost_data, ncopies, vector_stmt,
3850 stmt_info, 0, vect_body);
3852 /* prologue cost for vec_init and vec_step. */
3853 prologue_cost = add_stmt_cost (target_cost_data, 2, scalar_to_vec,
3854 stmt_info, 0, vect_prologue);
3856 if (dump_enabled_p ())
3857 dump_printf_loc (MSG_NOTE, vect_location,
3858 "vect_model_induction_cost: inside_cost = %d, "
3859 "prologue_cost = %d .\n", inside_cost, prologue_cost);
3864 /* Function get_initial_def_for_reduction
3866 Input:
3867 STMT - a stmt that performs a reduction operation in the loop.
3868 INIT_VAL - the initial value of the reduction variable
3870 Output:
3871 ADJUSTMENT_DEF - a tree that holds a value to be added to the final result
3872 of the reduction (used for adjusting the epilog - see below).
3873 Return a vector variable, initialized according to the operation that STMT
3874 performs. This vector will be used as the initial value of the
3875 vector of partial results.
3877 Option1 (adjust in epilog): Initialize the vector as follows:
3878 add/bit or/xor: [0,0,...,0,0]
3879 mult/bit and: [1,1,...,1,1]
3880 min/max/cond_expr: [init_val,init_val,..,init_val,init_val]
3881 and when necessary (e.g. add/mult case) let the caller know
3882 that it needs to adjust the result by init_val.
3884 Option2: Initialize the vector as follows:
3885 add/bit or/xor: [init_val,0,0,...,0]
3886 mult/bit and: [init_val,1,1,...,1]
3887 min/max/cond_expr: [init_val,init_val,...,init_val]
3888 and no adjustments are needed.
3890 For example, for the following code:
3892 s = init_val;
3893 for (i=0;i<n;i++)
3894 s = s + a[i];
3896 STMT is 's = s + a[i]', and the reduction variable is 's'.
3897 For a vector of 4 units, we want to return either [0,0,0,init_val],
3898 or [0,0,0,0] and let the caller know that it needs to adjust
3899 the result at the end by 'init_val'.
3901 FORNOW, we are using the 'adjust in epilog' scheme, because this way the
3902 initialization vector is simpler (same element in all entries), if
3903 ADJUSTMENT_DEF is not NULL, and Option2 otherwise.
3905 A cost model should help decide between these two schemes. */
3907 tree
3908 get_initial_def_for_reduction (gimple *stmt, tree init_val,
3909 tree *adjustment_def)
3911 stmt_vec_info stmt_vinfo = vinfo_for_stmt (stmt);
3912 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_vinfo);
3913 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
3914 tree scalar_type = TREE_TYPE (init_val);
3915 tree vectype = get_vectype_for_scalar_type (scalar_type);
3916 int nunits;
3917 enum tree_code code = gimple_assign_rhs_code (stmt);
3918 tree def_for_init;
3919 tree init_def;
3920 tree *elts;
3921 int i;
3922 bool nested_in_vect_loop = false;
3923 REAL_VALUE_TYPE real_init_val = dconst0;
3924 int int_init_val = 0;
3925 gimple *def_stmt = NULL;
3926 gimple_seq stmts = NULL;
3928 gcc_assert (vectype);
3929 nunits = TYPE_VECTOR_SUBPARTS (vectype);
3931 gcc_assert (POINTER_TYPE_P (scalar_type) || INTEGRAL_TYPE_P (scalar_type)
3932 || SCALAR_FLOAT_TYPE_P (scalar_type));
3934 if (nested_in_vect_loop_p (loop, stmt))
3935 nested_in_vect_loop = true;
3936 else
3937 gcc_assert (loop == (gimple_bb (stmt))->loop_father);
3939 /* In case of double reduction we only create a vector variable to be put
3940 in the reduction phi node. The actual statement creation is done in
3941 vect_create_epilog_for_reduction. */
3942 if (adjustment_def && nested_in_vect_loop
3943 && TREE_CODE (init_val) == SSA_NAME
3944 && (def_stmt = SSA_NAME_DEF_STMT (init_val))
3945 && gimple_code (def_stmt) == GIMPLE_PHI
3946 && flow_bb_inside_loop_p (loop, gimple_bb (def_stmt))
3947 && vinfo_for_stmt (def_stmt)
3948 && STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def_stmt))
3949 == vect_double_reduction_def)
3951 *adjustment_def = NULL;
3952 return vect_create_destination_var (init_val, vectype);
3955 /* In case of a nested reduction do not use an adjustment def as
3956 that case is not supported by the epilogue generation correctly
3957 if ncopies is not one. */
3958 if (adjustment_def && nested_in_vect_loop)
3960 *adjustment_def = NULL;
3961 return vect_get_vec_def_for_operand (init_val, stmt);
3964 switch (code)
3966 case WIDEN_SUM_EXPR:
3967 case DOT_PROD_EXPR:
3968 case SAD_EXPR:
3969 case PLUS_EXPR:
3970 case MINUS_EXPR:
3971 case BIT_IOR_EXPR:
3972 case BIT_XOR_EXPR:
3973 case MULT_EXPR:
3974 case BIT_AND_EXPR:
3975 /* ADJUSMENT_DEF is NULL when called from
3976 vect_create_epilog_for_reduction to vectorize double reduction. */
3977 if (adjustment_def)
3978 *adjustment_def = init_val;
3980 if (code == MULT_EXPR)
3982 real_init_val = dconst1;
3983 int_init_val = 1;
3986 if (code == BIT_AND_EXPR)
3987 int_init_val = -1;
3989 if (SCALAR_FLOAT_TYPE_P (scalar_type))
3990 def_for_init = build_real (scalar_type, real_init_val);
3991 else
3992 def_for_init = build_int_cst (scalar_type, int_init_val);
3994 /* Create a vector of '0' or '1' except the first element. */
3995 elts = XALLOCAVEC (tree, nunits);
3996 for (i = nunits - 2; i >= 0; --i)
3997 elts[i + 1] = def_for_init;
3999 /* Option1: the first element is '0' or '1' as well. */
4000 if (adjustment_def)
4002 elts[0] = def_for_init;
4003 init_def = build_vector (vectype, elts);
4004 break;
4007 /* Option2: the first element is INIT_VAL. */
4008 elts[0] = init_val;
4009 if (TREE_CONSTANT (init_val))
4010 init_def = build_vector (vectype, elts);
4011 else
4013 vec<constructor_elt, va_gc> *v;
4014 vec_alloc (v, nunits);
4015 CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, init_val);
4016 for (i = 1; i < nunits; ++i)
4017 CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, elts[i]);
4018 init_def = build_constructor (vectype, v);
4021 break;
4023 case MIN_EXPR:
4024 case MAX_EXPR:
4025 case COND_EXPR:
4026 if (adjustment_def)
4028 *adjustment_def = NULL_TREE;
4029 if (STMT_VINFO_VEC_REDUCTION_TYPE (stmt_vinfo) != COND_REDUCTION)
4031 init_def = vect_get_vec_def_for_operand (init_val, stmt);
4032 break;
4035 init_val = gimple_convert (&stmts, TREE_TYPE (vectype), init_val);
4036 if (! gimple_seq_empty_p (stmts))
4037 gsi_insert_seq_on_edge_immediate (loop_preheader_edge (loop), stmts);
4038 init_def = build_vector_from_val (vectype, init_val);
4039 break;
4041 default:
4042 gcc_unreachable ();
4045 return init_def;
4048 /* Function vect_create_epilog_for_reduction
4050 Create code at the loop-epilog to finalize the result of a reduction
4051 computation.
4053 VECT_DEFS is list of vector of partial results, i.e., the lhs's of vector
4054 reduction statements.
4055 STMT is the scalar reduction stmt that is being vectorized.
4056 NCOPIES is > 1 in case the vectorization factor (VF) is bigger than the
4057 number of elements that we can fit in a vectype (nunits). In this case
4058 we have to generate more than one vector stmt - i.e - we need to "unroll"
4059 the vector stmt by a factor VF/nunits. For more details see documentation
4060 in vectorizable_operation.
4061 REDUC_CODE is the tree-code for the epilog reduction.
4062 REDUCTION_PHIS is a list of the phi-nodes that carry the reduction
4063 computation.
4064 REDUC_INDEX is the index of the operand in the right hand side of the
4065 statement that is defined by REDUCTION_PHI.
4066 DOUBLE_REDUC is TRUE if double reduction phi nodes should be handled.
4067 SLP_NODE is an SLP node containing a group of reduction statements. The
4068 first one in this group is STMT.
4069 INDUCTION_INDEX is the index of the loop for condition reductions.
4070 Otherwise it is undefined.
4072 This function:
4073 1. Creates the reduction def-use cycles: sets the arguments for
4074 REDUCTION_PHIS:
4075 The loop-entry argument is the vectorized initial-value of the reduction.
4076 The loop-latch argument is taken from VECT_DEFS - the vector of partial
4077 sums.
4078 2. "Reduces" each vector of partial results VECT_DEFS into a single result,
4079 by applying the operation specified by REDUC_CODE if available, or by
4080 other means (whole-vector shifts or a scalar loop).
4081 The function also creates a new phi node at the loop exit to preserve
4082 loop-closed form, as illustrated below.
4084 The flow at the entry to this function:
4086 loop:
4087 vec_def = phi <null, null> # REDUCTION_PHI
4088 VECT_DEF = vector_stmt # vectorized form of STMT
4089 s_loop = scalar_stmt # (scalar) STMT
4090 loop_exit:
4091 s_out0 = phi <s_loop> # (scalar) EXIT_PHI
4092 use <s_out0>
4093 use <s_out0>
4095 The above is transformed by this function into:
4097 loop:
4098 vec_def = phi <vec_init, VECT_DEF> # REDUCTION_PHI
4099 VECT_DEF = vector_stmt # vectorized form of STMT
4100 s_loop = scalar_stmt # (scalar) STMT
4101 loop_exit:
4102 s_out0 = phi <s_loop> # (scalar) EXIT_PHI
4103 v_out1 = phi <VECT_DEF> # NEW_EXIT_PHI
4104 v_out2 = reduce <v_out1>
4105 s_out3 = extract_field <v_out2, 0>
4106 s_out4 = adjust_result <s_out3>
4107 use <s_out4>
4108 use <s_out4>
4111 static void
4112 vect_create_epilog_for_reduction (vec<tree> vect_defs, gimple *stmt,
4113 int ncopies, enum tree_code reduc_code,
4114 vec<gimple *> reduction_phis,
4115 int reduc_index, bool double_reduc,
4116 slp_tree slp_node, tree induction_index)
4118 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
4119 stmt_vec_info prev_phi_info;
4120 tree vectype;
4121 machine_mode mode;
4122 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
4123 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo), *outer_loop = NULL;
4124 basic_block exit_bb;
4125 tree scalar_dest;
4126 tree scalar_type;
4127 gimple *new_phi = NULL, *phi;
4128 gimple_stmt_iterator exit_gsi;
4129 tree vec_dest;
4130 tree new_temp = NULL_TREE, new_dest, new_name, new_scalar_dest;
4131 gimple *epilog_stmt = NULL;
4132 enum tree_code code = gimple_assign_rhs_code (stmt);
4133 gimple *exit_phi;
4134 tree bitsize;
4135 tree adjustment_def = NULL;
4136 tree vec_initial_def = NULL;
4137 tree reduction_op, expr, def, initial_def = NULL;
4138 tree orig_name, scalar_result;
4139 imm_use_iterator imm_iter, phi_imm_iter;
4140 use_operand_p use_p, phi_use_p;
4141 gimple *use_stmt, *orig_stmt, *reduction_phi = NULL;
4142 bool nested_in_vect_loop = false;
4143 auto_vec<gimple *> new_phis;
4144 auto_vec<gimple *> inner_phis;
4145 enum vect_def_type dt = vect_unknown_def_type;
4146 int j, i;
4147 auto_vec<tree> scalar_results;
4148 unsigned int group_size = 1, k, ratio;
4149 auto_vec<tree> vec_initial_defs;
4150 auto_vec<gimple *> phis;
4151 bool slp_reduc = false;
4152 tree new_phi_result;
4153 gimple *inner_phi = NULL;
4155 if (slp_node)
4156 group_size = SLP_TREE_SCALAR_STMTS (slp_node).length ();
4158 if (nested_in_vect_loop_p (loop, stmt))
4160 outer_loop = loop;
4161 loop = loop->inner;
4162 nested_in_vect_loop = true;
4163 gcc_assert (!slp_node);
4166 reduction_op = get_reduction_op (stmt, reduc_index);
4168 vectype = get_vectype_for_scalar_type (TREE_TYPE (reduction_op));
4169 gcc_assert (vectype);
4170 mode = TYPE_MODE (vectype);
4172 /* 1. Create the reduction def-use cycle:
4173 Set the arguments of REDUCTION_PHIS, i.e., transform
4175 loop:
4176 vec_def = phi <null, null> # REDUCTION_PHI
4177 VECT_DEF = vector_stmt # vectorized form of STMT
4180 into:
4182 loop:
4183 vec_def = phi <vec_init, VECT_DEF> # REDUCTION_PHI
4184 VECT_DEF = vector_stmt # vectorized form of STMT
4187 (in case of SLP, do it for all the phis). */
4189 /* Get the loop-entry arguments. */
4190 enum vect_def_type initial_def_dt = vect_unknown_def_type;
4191 if (slp_node)
4192 vect_get_vec_defs (reduction_op, NULL_TREE, stmt, &vec_initial_defs,
4193 NULL, slp_node, reduc_index);
4194 else
4196 /* Get at the scalar def before the loop, that defines the initial value
4197 of the reduction variable. */
4198 gimple *def_stmt = SSA_NAME_DEF_STMT (reduction_op);
4199 initial_def = PHI_ARG_DEF_FROM_EDGE (def_stmt,
4200 loop_preheader_edge (loop));
4201 vect_is_simple_use (initial_def, loop_vinfo, &def_stmt, &initial_def_dt);
4202 vec_initial_def = get_initial_def_for_reduction (stmt, initial_def,
4203 &adjustment_def);
4204 vec_initial_defs.create (1);
4205 vec_initial_defs.quick_push (vec_initial_def);
4208 /* Set phi nodes arguments. */
4209 FOR_EACH_VEC_ELT (reduction_phis, i, phi)
4211 tree vec_init_def, def;
4212 gimple_seq stmts;
4213 vec_init_def = force_gimple_operand (vec_initial_defs[i], &stmts,
4214 true, NULL_TREE);
4215 if (stmts)
4216 gsi_insert_seq_on_edge_immediate (loop_preheader_edge (loop), stmts);
4218 def = vect_defs[i];
4219 for (j = 0; j < ncopies; j++)
4221 if (j != 0)
4223 phi = STMT_VINFO_RELATED_STMT (vinfo_for_stmt (phi));
4224 if (nested_in_vect_loop)
4225 vec_init_def
4226 = vect_get_vec_def_for_stmt_copy (initial_def_dt,
4227 vec_init_def);
4230 /* Set the loop-entry arg of the reduction-phi. */
4232 if (STMT_VINFO_VEC_REDUCTION_TYPE (stmt_info)
4233 == INTEGER_INDUC_COND_REDUCTION)
4235 /* Initialise the reduction phi to zero. This prevents initial
4236 values of non-zero interferring with the reduction op. */
4237 gcc_assert (ncopies == 1);
4238 gcc_assert (i == 0);
4240 tree vec_init_def_type = TREE_TYPE (vec_init_def);
4241 tree zero_vec = build_zero_cst (vec_init_def_type);
4243 add_phi_arg (as_a <gphi *> (phi), zero_vec,
4244 loop_preheader_edge (loop), UNKNOWN_LOCATION);
4246 else
4247 add_phi_arg (as_a <gphi *> (phi), vec_init_def,
4248 loop_preheader_edge (loop), UNKNOWN_LOCATION);
4250 /* Set the loop-latch arg for the reduction-phi. */
4251 if (j > 0)
4252 def = vect_get_vec_def_for_stmt_copy (vect_unknown_def_type, def);
4254 add_phi_arg (as_a <gphi *> (phi), def, loop_latch_edge (loop),
4255 UNKNOWN_LOCATION);
4257 if (dump_enabled_p ())
4259 dump_printf_loc (MSG_NOTE, vect_location,
4260 "transform reduction: created def-use cycle: ");
4261 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, phi, 0);
4262 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, SSA_NAME_DEF_STMT (def), 0);
4267 /* 2. Create epilog code.
4268 The reduction epilog code operates across the elements of the vector
4269 of partial results computed by the vectorized loop.
4270 The reduction epilog code consists of:
4272 step 1: compute the scalar result in a vector (v_out2)
4273 step 2: extract the scalar result (s_out3) from the vector (v_out2)
4274 step 3: adjust the scalar result (s_out3) if needed.
4276 Step 1 can be accomplished using one the following three schemes:
4277 (scheme 1) using reduc_code, if available.
4278 (scheme 2) using whole-vector shifts, if available.
4279 (scheme 3) using a scalar loop. In this case steps 1+2 above are
4280 combined.
4282 The overall epilog code looks like this:
4284 s_out0 = phi <s_loop> # original EXIT_PHI
4285 v_out1 = phi <VECT_DEF> # NEW_EXIT_PHI
4286 v_out2 = reduce <v_out1> # step 1
4287 s_out3 = extract_field <v_out2, 0> # step 2
4288 s_out4 = adjust_result <s_out3> # step 3
4290 (step 3 is optional, and steps 1 and 2 may be combined).
4291 Lastly, the uses of s_out0 are replaced by s_out4. */
4294 /* 2.1 Create new loop-exit-phis to preserve loop-closed form:
4295 v_out1 = phi <VECT_DEF>
4296 Store them in NEW_PHIS. */
4298 exit_bb = single_exit (loop)->dest;
4299 prev_phi_info = NULL;
4300 new_phis.create (vect_defs.length ());
4301 FOR_EACH_VEC_ELT (vect_defs, i, def)
4303 for (j = 0; j < ncopies; j++)
4305 tree new_def = copy_ssa_name (def);
4306 phi = create_phi_node (new_def, exit_bb);
4307 set_vinfo_for_stmt (phi, new_stmt_vec_info (phi, loop_vinfo));
4308 if (j == 0)
4309 new_phis.quick_push (phi);
4310 else
4312 def = vect_get_vec_def_for_stmt_copy (dt, def);
4313 STMT_VINFO_RELATED_STMT (prev_phi_info) = phi;
4316 SET_PHI_ARG_DEF (phi, single_exit (loop)->dest_idx, def);
4317 prev_phi_info = vinfo_for_stmt (phi);
4321 /* The epilogue is created for the outer-loop, i.e., for the loop being
4322 vectorized. Create exit phis for the outer loop. */
4323 if (double_reduc)
4325 loop = outer_loop;
4326 exit_bb = single_exit (loop)->dest;
4327 inner_phis.create (vect_defs.length ());
4328 FOR_EACH_VEC_ELT (new_phis, i, phi)
4330 tree new_result = copy_ssa_name (PHI_RESULT (phi));
4331 gphi *outer_phi = create_phi_node (new_result, exit_bb);
4332 SET_PHI_ARG_DEF (outer_phi, single_exit (loop)->dest_idx,
4333 PHI_RESULT (phi));
4334 set_vinfo_for_stmt (outer_phi, new_stmt_vec_info (outer_phi,
4335 loop_vinfo));
4336 inner_phis.quick_push (phi);
4337 new_phis[i] = outer_phi;
4338 prev_phi_info = vinfo_for_stmt (outer_phi);
4339 while (STMT_VINFO_RELATED_STMT (vinfo_for_stmt (phi)))
4341 phi = STMT_VINFO_RELATED_STMT (vinfo_for_stmt (phi));
4342 new_result = copy_ssa_name (PHI_RESULT (phi));
4343 outer_phi = create_phi_node (new_result, exit_bb);
4344 SET_PHI_ARG_DEF (outer_phi, single_exit (loop)->dest_idx,
4345 PHI_RESULT (phi));
4346 set_vinfo_for_stmt (outer_phi, new_stmt_vec_info (outer_phi,
4347 loop_vinfo));
4348 STMT_VINFO_RELATED_STMT (prev_phi_info) = outer_phi;
4349 prev_phi_info = vinfo_for_stmt (outer_phi);
4354 exit_gsi = gsi_after_labels (exit_bb);
4356 /* 2.2 Get the relevant tree-code to use in the epilog for schemes 2,3
4357 (i.e. when reduc_code is not available) and in the final adjustment
4358 code (if needed). Also get the original scalar reduction variable as
4359 defined in the loop. In case STMT is a "pattern-stmt" (i.e. - it
4360 represents a reduction pattern), the tree-code and scalar-def are
4361 taken from the original stmt that the pattern-stmt (STMT) replaces.
4362 Otherwise (it is a regular reduction) - the tree-code and scalar-def
4363 are taken from STMT. */
4365 orig_stmt = STMT_VINFO_RELATED_STMT (stmt_info);
4366 if (!orig_stmt)
4368 /* Regular reduction */
4369 orig_stmt = stmt;
4371 else
4373 /* Reduction pattern */
4374 stmt_vec_info stmt_vinfo = vinfo_for_stmt (orig_stmt);
4375 gcc_assert (STMT_VINFO_IN_PATTERN_P (stmt_vinfo));
4376 gcc_assert (STMT_VINFO_RELATED_STMT (stmt_vinfo) == stmt);
4379 code = gimple_assign_rhs_code (orig_stmt);
4380 /* For MINUS_EXPR the initial vector is [init_val,0,...,0], therefore,
4381 partial results are added and not subtracted. */
4382 if (code == MINUS_EXPR)
4383 code = PLUS_EXPR;
4385 scalar_dest = gimple_assign_lhs (orig_stmt);
4386 scalar_type = TREE_TYPE (scalar_dest);
4387 scalar_results.create (group_size);
4388 new_scalar_dest = vect_create_destination_var (scalar_dest, NULL);
4389 bitsize = TYPE_SIZE (scalar_type);
4391 /* In case this is a reduction in an inner-loop while vectorizing an outer
4392 loop - we don't need to extract a single scalar result at the end of the
4393 inner-loop (unless it is double reduction, i.e., the use of reduction is
4394 outside the outer-loop). The final vector of partial results will be used
4395 in the vectorized outer-loop, or reduced to a scalar result at the end of
4396 the outer-loop. */
4397 if (nested_in_vect_loop && !double_reduc)
4398 goto vect_finalize_reduction;
4400 /* SLP reduction without reduction chain, e.g.,
4401 # a1 = phi <a2, a0>
4402 # b1 = phi <b2, b0>
4403 a2 = operation (a1)
4404 b2 = operation (b1) */
4405 slp_reduc = (slp_node && !GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt)));
4407 /* In case of reduction chain, e.g.,
4408 # a1 = phi <a3, a0>
4409 a2 = operation (a1)
4410 a3 = operation (a2),
4412 we may end up with more than one vector result. Here we reduce them to
4413 one vector. */
4414 if (GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt)))
4416 tree first_vect = PHI_RESULT (new_phis[0]);
4417 tree tmp;
4418 gassign *new_vec_stmt = NULL;
4420 vec_dest = vect_create_destination_var (scalar_dest, vectype);
4421 for (k = 1; k < new_phis.length (); k++)
4423 gimple *next_phi = new_phis[k];
4424 tree second_vect = PHI_RESULT (next_phi);
4426 tmp = build2 (code, vectype, first_vect, second_vect);
4427 new_vec_stmt = gimple_build_assign (vec_dest, tmp);
4428 first_vect = make_ssa_name (vec_dest, new_vec_stmt);
4429 gimple_assign_set_lhs (new_vec_stmt, first_vect);
4430 gsi_insert_before (&exit_gsi, new_vec_stmt, GSI_SAME_STMT);
4433 new_phi_result = first_vect;
4434 if (new_vec_stmt)
4436 new_phis.truncate (0);
4437 new_phis.safe_push (new_vec_stmt);
4440 else
4441 new_phi_result = PHI_RESULT (new_phis[0]);
4443 if (STMT_VINFO_VEC_REDUCTION_TYPE (stmt_info) == COND_REDUCTION
4444 && reduc_code != ERROR_MARK)
4446 /* For condition reductions, we have a vector (NEW_PHI_RESULT) containing
4447 various data values where the condition matched and another vector
4448 (INDUCTION_INDEX) containing all the indexes of those matches. We
4449 need to extract the last matching index (which will be the index with
4450 highest value) and use this to index into the data vector.
4451 For the case where there were no matches, the data vector will contain
4452 all default values and the index vector will be all zeros. */
4454 /* Get various versions of the type of the vector of indexes. */
4455 tree index_vec_type = TREE_TYPE (induction_index);
4456 gcc_checking_assert (TYPE_UNSIGNED (index_vec_type));
4457 tree index_scalar_type = TREE_TYPE (index_vec_type);
4458 tree index_vec_cmp_type = build_same_sized_truth_vector_type
4459 (index_vec_type);
4461 /* Get an unsigned integer version of the type of the data vector. */
4462 int scalar_precision = GET_MODE_PRECISION (TYPE_MODE (scalar_type));
4463 tree scalar_type_unsigned = make_unsigned_type (scalar_precision);
4464 tree vectype_unsigned = build_vector_type
4465 (scalar_type_unsigned, TYPE_VECTOR_SUBPARTS (vectype));
4467 /* First we need to create a vector (ZERO_VEC) of zeros and another
4468 vector (MAX_INDEX_VEC) filled with the last matching index, which we
4469 can create using a MAX reduction and then expanding.
4470 In the case where the loop never made any matches, the max index will
4471 be zero. */
4473 /* Vector of {0, 0, 0,...}. */
4474 tree zero_vec = make_ssa_name (vectype);
4475 tree zero_vec_rhs = build_zero_cst (vectype);
4476 gimple *zero_vec_stmt = gimple_build_assign (zero_vec, zero_vec_rhs);
4477 gsi_insert_before (&exit_gsi, zero_vec_stmt, GSI_SAME_STMT);
4479 /* Find maximum value from the vector of found indexes. */
4480 tree max_index = make_ssa_name (index_scalar_type);
4481 gimple *max_index_stmt = gimple_build_assign (max_index, REDUC_MAX_EXPR,
4482 induction_index);
4483 gsi_insert_before (&exit_gsi, max_index_stmt, GSI_SAME_STMT);
4485 /* Vector of {max_index, max_index, max_index,...}. */
4486 tree max_index_vec = make_ssa_name (index_vec_type);
4487 tree max_index_vec_rhs = build_vector_from_val (index_vec_type,
4488 max_index);
4489 gimple *max_index_vec_stmt = gimple_build_assign (max_index_vec,
4490 max_index_vec_rhs);
4491 gsi_insert_before (&exit_gsi, max_index_vec_stmt, GSI_SAME_STMT);
4493 /* Next we compare the new vector (MAX_INDEX_VEC) full of max indexes
4494 with the vector (INDUCTION_INDEX) of found indexes, choosing values
4495 from the data vector (NEW_PHI_RESULT) for matches, 0 (ZERO_VEC)
4496 otherwise. Only one value should match, resulting in a vector
4497 (VEC_COND) with one data value and the rest zeros.
4498 In the case where the loop never made any matches, every index will
4499 match, resulting in a vector with all data values (which will all be
4500 the default value). */
4502 /* Compare the max index vector to the vector of found indexes to find
4503 the position of the max value. */
4504 tree vec_compare = make_ssa_name (index_vec_cmp_type);
4505 gimple *vec_compare_stmt = gimple_build_assign (vec_compare, EQ_EXPR,
4506 induction_index,
4507 max_index_vec);
4508 gsi_insert_before (&exit_gsi, vec_compare_stmt, GSI_SAME_STMT);
4510 /* Use the compare to choose either values from the data vector or
4511 zero. */
4512 tree vec_cond = make_ssa_name (vectype);
4513 gimple *vec_cond_stmt = gimple_build_assign (vec_cond, VEC_COND_EXPR,
4514 vec_compare, new_phi_result,
4515 zero_vec);
4516 gsi_insert_before (&exit_gsi, vec_cond_stmt, GSI_SAME_STMT);
4518 /* Finally we need to extract the data value from the vector (VEC_COND)
4519 into a scalar (MATCHED_DATA_REDUC). Logically we want to do a OR
4520 reduction, but because this doesn't exist, we can use a MAX reduction
4521 instead. The data value might be signed or a float so we need to cast
4522 it first.
4523 In the case where the loop never made any matches, the data values are
4524 all identical, and so will reduce down correctly. */
4526 /* Make the matched data values unsigned. */
4527 tree vec_cond_cast = make_ssa_name (vectype_unsigned);
4528 tree vec_cond_cast_rhs = build1 (VIEW_CONVERT_EXPR, vectype_unsigned,
4529 vec_cond);
4530 gimple *vec_cond_cast_stmt = gimple_build_assign (vec_cond_cast,
4531 VIEW_CONVERT_EXPR,
4532 vec_cond_cast_rhs);
4533 gsi_insert_before (&exit_gsi, vec_cond_cast_stmt, GSI_SAME_STMT);
4535 /* Reduce down to a scalar value. */
4536 tree data_reduc = make_ssa_name (scalar_type_unsigned);
4537 optab ot = optab_for_tree_code (REDUC_MAX_EXPR, vectype_unsigned,
4538 optab_default);
4539 gcc_assert (optab_handler (ot, TYPE_MODE (vectype_unsigned))
4540 != CODE_FOR_nothing);
4541 gimple *data_reduc_stmt = gimple_build_assign (data_reduc,
4542 REDUC_MAX_EXPR,
4543 vec_cond_cast);
4544 gsi_insert_before (&exit_gsi, data_reduc_stmt, GSI_SAME_STMT);
4546 /* Convert the reduced value back to the result type and set as the
4547 result. */
4548 tree data_reduc_cast = build1 (VIEW_CONVERT_EXPR, scalar_type,
4549 data_reduc);
4550 epilog_stmt = gimple_build_assign (new_scalar_dest, data_reduc_cast);
4551 new_temp = make_ssa_name (new_scalar_dest, epilog_stmt);
4552 gimple_assign_set_lhs (epilog_stmt, new_temp);
4553 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
4554 scalar_results.safe_push (new_temp);
4556 else if (STMT_VINFO_VEC_REDUCTION_TYPE (stmt_info) == COND_REDUCTION
4557 && reduc_code == ERROR_MARK)
4559 /* Condition redution without supported REDUC_MAX_EXPR. Generate
4560 idx = 0;
4561 idx_val = induction_index[0];
4562 val = data_reduc[0];
4563 for (idx = 0, val = init, i = 0; i < nelts; ++i)
4564 if (induction_index[i] > idx_val)
4565 val = data_reduc[i], idx_val = induction_index[i];
4566 return val; */
4568 tree data_eltype = TREE_TYPE (TREE_TYPE (new_phi_result));
4569 tree idx_eltype = TREE_TYPE (TREE_TYPE (induction_index));
4570 unsigned HOST_WIDE_INT el_size = tree_to_uhwi (TYPE_SIZE (idx_eltype));
4571 unsigned HOST_WIDE_INT v_size
4572 = el_size * TYPE_VECTOR_SUBPARTS (TREE_TYPE (induction_index));
4573 tree idx_val = NULL_TREE, val = NULL_TREE;
4574 for (unsigned HOST_WIDE_INT off = 0; off < v_size; off += el_size)
4576 tree old_idx_val = idx_val;
4577 tree old_val = val;
4578 idx_val = make_ssa_name (idx_eltype);
4579 epilog_stmt = gimple_build_assign (idx_val, BIT_FIELD_REF,
4580 build3 (BIT_FIELD_REF, idx_eltype,
4581 induction_index,
4582 bitsize_int (el_size),
4583 bitsize_int (off)));
4584 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
4585 val = make_ssa_name (data_eltype);
4586 epilog_stmt = gimple_build_assign (val, BIT_FIELD_REF,
4587 build3 (BIT_FIELD_REF,
4588 data_eltype,
4589 new_phi_result,
4590 bitsize_int (el_size),
4591 bitsize_int (off)));
4592 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
4593 if (off != 0)
4595 tree new_idx_val = idx_val;
4596 tree new_val = val;
4597 if (off != v_size - el_size)
4599 new_idx_val = make_ssa_name (idx_eltype);
4600 epilog_stmt = gimple_build_assign (new_idx_val,
4601 MAX_EXPR, idx_val,
4602 old_idx_val);
4603 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
4605 new_val = make_ssa_name (data_eltype);
4606 epilog_stmt = gimple_build_assign (new_val,
4607 COND_EXPR,
4608 build2 (GT_EXPR,
4609 boolean_type_node,
4610 idx_val,
4611 old_idx_val),
4612 val, old_val);
4613 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
4614 idx_val = new_idx_val;
4615 val = new_val;
4618 scalar_results.safe_push (val);
4621 /* 2.3 Create the reduction code, using one of the three schemes described
4622 above. In SLP we simply need to extract all the elements from the
4623 vector (without reducing them), so we use scalar shifts. */
4624 else if (reduc_code != ERROR_MARK && !slp_reduc)
4626 tree tmp;
4627 tree vec_elem_type;
4629 /* Case 1: Create:
4630 v_out2 = reduc_expr <v_out1> */
4632 if (dump_enabled_p ())
4633 dump_printf_loc (MSG_NOTE, vect_location,
4634 "Reduce using direct vector reduction.\n");
4636 vec_elem_type = TREE_TYPE (TREE_TYPE (new_phi_result));
4637 if (!useless_type_conversion_p (scalar_type, vec_elem_type))
4639 tree tmp_dest =
4640 vect_create_destination_var (scalar_dest, vec_elem_type);
4641 tmp = build1 (reduc_code, vec_elem_type, new_phi_result);
4642 epilog_stmt = gimple_build_assign (tmp_dest, tmp);
4643 new_temp = make_ssa_name (tmp_dest, epilog_stmt);
4644 gimple_assign_set_lhs (epilog_stmt, new_temp);
4645 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
4647 tmp = build1 (NOP_EXPR, scalar_type, new_temp);
4649 else
4650 tmp = build1 (reduc_code, scalar_type, new_phi_result);
4652 epilog_stmt = gimple_build_assign (new_scalar_dest, tmp);
4653 new_temp = make_ssa_name (new_scalar_dest, epilog_stmt);
4654 gimple_assign_set_lhs (epilog_stmt, new_temp);
4655 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
4657 if (STMT_VINFO_VEC_REDUCTION_TYPE (stmt_info)
4658 == INTEGER_INDUC_COND_REDUCTION)
4660 /* Earlier we set the initial value to be zero. Check the result
4661 and if it is zero then replace with the original initial
4662 value. */
4663 tree zero = build_zero_cst (scalar_type);
4664 tree zcompare = build2 (EQ_EXPR, boolean_type_node, new_temp, zero);
4666 tmp = make_ssa_name (new_scalar_dest);
4667 epilog_stmt = gimple_build_assign (tmp, COND_EXPR, zcompare,
4668 initial_def, new_temp);
4669 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
4670 new_temp = tmp;
4673 scalar_results.safe_push (new_temp);
4675 else
4677 bool reduce_with_shift = have_whole_vector_shift (mode);
4678 int element_bitsize = tree_to_uhwi (bitsize);
4679 int vec_size_in_bits = tree_to_uhwi (TYPE_SIZE (vectype));
4680 tree vec_temp;
4682 /* COND reductions all do the final reduction with MAX_EXPR. */
4683 if (code == COND_EXPR)
4684 code = MAX_EXPR;
4686 /* Regardless of whether we have a whole vector shift, if we're
4687 emulating the operation via tree-vect-generic, we don't want
4688 to use it. Only the first round of the reduction is likely
4689 to still be profitable via emulation. */
4690 /* ??? It might be better to emit a reduction tree code here, so that
4691 tree-vect-generic can expand the first round via bit tricks. */
4692 if (!VECTOR_MODE_P (mode))
4693 reduce_with_shift = false;
4694 else
4696 optab optab = optab_for_tree_code (code, vectype, optab_default);
4697 if (optab_handler (optab, mode) == CODE_FOR_nothing)
4698 reduce_with_shift = false;
4701 if (reduce_with_shift && !slp_reduc)
4703 int nelements = vec_size_in_bits / element_bitsize;
4704 unsigned char *sel = XALLOCAVEC (unsigned char, nelements);
4706 int elt_offset;
4708 tree zero_vec = build_zero_cst (vectype);
4709 /* Case 2: Create:
4710 for (offset = nelements/2; offset >= 1; offset/=2)
4712 Create: va' = vec_shift <va, offset>
4713 Create: va = vop <va, va'>
4714 } */
4716 tree rhs;
4718 if (dump_enabled_p ())
4719 dump_printf_loc (MSG_NOTE, vect_location,
4720 "Reduce using vector shifts\n");
4722 vec_dest = vect_create_destination_var (scalar_dest, vectype);
4723 new_temp = new_phi_result;
4724 for (elt_offset = nelements / 2;
4725 elt_offset >= 1;
4726 elt_offset /= 2)
4728 calc_vec_perm_mask_for_shift (mode, elt_offset, sel);
4729 tree mask = vect_gen_perm_mask_any (vectype, sel);
4730 epilog_stmt = gimple_build_assign (vec_dest, VEC_PERM_EXPR,
4731 new_temp, zero_vec, mask);
4732 new_name = make_ssa_name (vec_dest, epilog_stmt);
4733 gimple_assign_set_lhs (epilog_stmt, new_name);
4734 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
4736 epilog_stmt = gimple_build_assign (vec_dest, code, new_name,
4737 new_temp);
4738 new_temp = make_ssa_name (vec_dest, epilog_stmt);
4739 gimple_assign_set_lhs (epilog_stmt, new_temp);
4740 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
4743 /* 2.4 Extract the final scalar result. Create:
4744 s_out3 = extract_field <v_out2, bitpos> */
4746 if (dump_enabled_p ())
4747 dump_printf_loc (MSG_NOTE, vect_location,
4748 "extract scalar result\n");
4750 rhs = build3 (BIT_FIELD_REF, scalar_type, new_temp,
4751 bitsize, bitsize_zero_node);
4752 epilog_stmt = gimple_build_assign (new_scalar_dest, rhs);
4753 new_temp = make_ssa_name (new_scalar_dest, epilog_stmt);
4754 gimple_assign_set_lhs (epilog_stmt, new_temp);
4755 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
4756 scalar_results.safe_push (new_temp);
4758 else
4760 /* Case 3: Create:
4761 s = extract_field <v_out2, 0>
4762 for (offset = element_size;
4763 offset < vector_size;
4764 offset += element_size;)
4766 Create: s' = extract_field <v_out2, offset>
4767 Create: s = op <s, s'> // For non SLP cases
4768 } */
4770 if (dump_enabled_p ())
4771 dump_printf_loc (MSG_NOTE, vect_location,
4772 "Reduce using scalar code.\n");
4774 vec_size_in_bits = tree_to_uhwi (TYPE_SIZE (vectype));
4775 FOR_EACH_VEC_ELT (new_phis, i, new_phi)
4777 int bit_offset;
4778 if (gimple_code (new_phi) == GIMPLE_PHI)
4779 vec_temp = PHI_RESULT (new_phi);
4780 else
4781 vec_temp = gimple_assign_lhs (new_phi);
4782 tree rhs = build3 (BIT_FIELD_REF, scalar_type, vec_temp, bitsize,
4783 bitsize_zero_node);
4784 epilog_stmt = gimple_build_assign (new_scalar_dest, rhs);
4785 new_temp = make_ssa_name (new_scalar_dest, epilog_stmt);
4786 gimple_assign_set_lhs (epilog_stmt, new_temp);
4787 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
4789 /* In SLP we don't need to apply reduction operation, so we just
4790 collect s' values in SCALAR_RESULTS. */
4791 if (slp_reduc)
4792 scalar_results.safe_push (new_temp);
4794 for (bit_offset = element_bitsize;
4795 bit_offset < vec_size_in_bits;
4796 bit_offset += element_bitsize)
4798 tree bitpos = bitsize_int (bit_offset);
4799 tree rhs = build3 (BIT_FIELD_REF, scalar_type, vec_temp,
4800 bitsize, bitpos);
4802 epilog_stmt = gimple_build_assign (new_scalar_dest, rhs);
4803 new_name = make_ssa_name (new_scalar_dest, epilog_stmt);
4804 gimple_assign_set_lhs (epilog_stmt, new_name);
4805 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
4807 if (slp_reduc)
4809 /* In SLP we don't need to apply reduction operation, so
4810 we just collect s' values in SCALAR_RESULTS. */
4811 new_temp = new_name;
4812 scalar_results.safe_push (new_name);
4814 else
4816 epilog_stmt = gimple_build_assign (new_scalar_dest, code,
4817 new_name, new_temp);
4818 new_temp = make_ssa_name (new_scalar_dest, epilog_stmt);
4819 gimple_assign_set_lhs (epilog_stmt, new_temp);
4820 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
4825 /* The only case where we need to reduce scalar results in SLP, is
4826 unrolling. If the size of SCALAR_RESULTS is greater than
4827 GROUP_SIZE, we reduce them combining elements modulo
4828 GROUP_SIZE. */
4829 if (slp_reduc)
4831 tree res, first_res, new_res;
4832 gimple *new_stmt;
4834 /* Reduce multiple scalar results in case of SLP unrolling. */
4835 for (j = group_size; scalar_results.iterate (j, &res);
4836 j++)
4838 first_res = scalar_results[j % group_size];
4839 new_stmt = gimple_build_assign (new_scalar_dest, code,
4840 first_res, res);
4841 new_res = make_ssa_name (new_scalar_dest, new_stmt);
4842 gimple_assign_set_lhs (new_stmt, new_res);
4843 gsi_insert_before (&exit_gsi, new_stmt, GSI_SAME_STMT);
4844 scalar_results[j % group_size] = new_res;
4847 else
4848 /* Not SLP - we have one scalar to keep in SCALAR_RESULTS. */
4849 scalar_results.safe_push (new_temp);
4852 if (STMT_VINFO_VEC_REDUCTION_TYPE (stmt_info)
4853 == INTEGER_INDUC_COND_REDUCTION)
4855 /* Earlier we set the initial value to be zero. Check the result
4856 and if it is zero then replace with the original initial
4857 value. */
4858 tree zero = build_zero_cst (scalar_type);
4859 tree zcompare = build2 (EQ_EXPR, boolean_type_node, new_temp, zero);
4861 tree tmp = make_ssa_name (new_scalar_dest);
4862 epilog_stmt = gimple_build_assign (tmp, COND_EXPR, zcompare,
4863 initial_def, new_temp);
4864 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
4865 scalar_results[0] = tmp;
4869 vect_finalize_reduction:
4871 if (double_reduc)
4872 loop = loop->inner;
4874 /* 2.5 Adjust the final result by the initial value of the reduction
4875 variable. (When such adjustment is not needed, then
4876 'adjustment_def' is zero). For example, if code is PLUS we create:
4877 new_temp = loop_exit_def + adjustment_def */
4879 if (adjustment_def)
4881 gcc_assert (!slp_reduc);
4882 if (nested_in_vect_loop)
4884 new_phi = new_phis[0];
4885 gcc_assert (TREE_CODE (TREE_TYPE (adjustment_def)) == VECTOR_TYPE);
4886 expr = build2 (code, vectype, PHI_RESULT (new_phi), adjustment_def);
4887 new_dest = vect_create_destination_var (scalar_dest, vectype);
4889 else
4891 new_temp = scalar_results[0];
4892 gcc_assert (TREE_CODE (TREE_TYPE (adjustment_def)) != VECTOR_TYPE);
4893 expr = build2 (code, scalar_type, new_temp, adjustment_def);
4894 new_dest = vect_create_destination_var (scalar_dest, scalar_type);
4897 epilog_stmt = gimple_build_assign (new_dest, expr);
4898 new_temp = make_ssa_name (new_dest, epilog_stmt);
4899 gimple_assign_set_lhs (epilog_stmt, new_temp);
4900 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
4901 if (nested_in_vect_loop)
4903 set_vinfo_for_stmt (epilog_stmt,
4904 new_stmt_vec_info (epilog_stmt, loop_vinfo));
4905 STMT_VINFO_RELATED_STMT (vinfo_for_stmt (epilog_stmt)) =
4906 STMT_VINFO_RELATED_STMT (vinfo_for_stmt (new_phi));
4908 if (!double_reduc)
4909 scalar_results.quick_push (new_temp);
4910 else
4911 scalar_results[0] = new_temp;
4913 else
4914 scalar_results[0] = new_temp;
4916 new_phis[0] = epilog_stmt;
4919 /* 2.6 Handle the loop-exit phis. Replace the uses of scalar loop-exit
4920 phis with new adjusted scalar results, i.e., replace use <s_out0>
4921 with use <s_out4>.
4923 Transform:
4924 loop_exit:
4925 s_out0 = phi <s_loop> # (scalar) EXIT_PHI
4926 v_out1 = phi <VECT_DEF> # NEW_EXIT_PHI
4927 v_out2 = reduce <v_out1>
4928 s_out3 = extract_field <v_out2, 0>
4929 s_out4 = adjust_result <s_out3>
4930 use <s_out0>
4931 use <s_out0>
4933 into:
4935 loop_exit:
4936 s_out0 = phi <s_loop> # (scalar) EXIT_PHI
4937 v_out1 = phi <VECT_DEF> # NEW_EXIT_PHI
4938 v_out2 = reduce <v_out1>
4939 s_out3 = extract_field <v_out2, 0>
4940 s_out4 = adjust_result <s_out3>
4941 use <s_out4>
4942 use <s_out4> */
4945 /* In SLP reduction chain we reduce vector results into one vector if
4946 necessary, hence we set here GROUP_SIZE to 1. SCALAR_DEST is the LHS of
4947 the last stmt in the reduction chain, since we are looking for the loop
4948 exit phi node. */
4949 if (GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt)))
4951 gimple *dest_stmt = SLP_TREE_SCALAR_STMTS (slp_node)[group_size - 1];
4952 /* Handle reduction patterns. */
4953 if (STMT_VINFO_RELATED_STMT (vinfo_for_stmt (dest_stmt)))
4954 dest_stmt = STMT_VINFO_RELATED_STMT (vinfo_for_stmt (dest_stmt));
4956 scalar_dest = gimple_assign_lhs (dest_stmt);
4957 group_size = 1;
4960 /* In SLP we may have several statements in NEW_PHIS and REDUCTION_PHIS (in
4961 case that GROUP_SIZE is greater than vectorization factor). Therefore, we
4962 need to match SCALAR_RESULTS with corresponding statements. The first
4963 (GROUP_SIZE / number of new vector stmts) scalar results correspond to
4964 the first vector stmt, etc.
4965 (RATIO is equal to (GROUP_SIZE / number of new vector stmts)). */
4966 if (group_size > new_phis.length ())
4968 ratio = group_size / new_phis.length ();
4969 gcc_assert (!(group_size % new_phis.length ()));
4971 else
4972 ratio = 1;
4974 for (k = 0; k < group_size; k++)
4976 if (k % ratio == 0)
4978 epilog_stmt = new_phis[k / ratio];
4979 reduction_phi = reduction_phis[k / ratio];
4980 if (double_reduc)
4981 inner_phi = inner_phis[k / ratio];
4984 if (slp_reduc)
4986 gimple *current_stmt = SLP_TREE_SCALAR_STMTS (slp_node)[k];
4988 orig_stmt = STMT_VINFO_RELATED_STMT (vinfo_for_stmt (current_stmt));
4989 /* SLP statements can't participate in patterns. */
4990 gcc_assert (!orig_stmt);
4991 scalar_dest = gimple_assign_lhs (current_stmt);
4994 phis.create (3);
4995 /* Find the loop-closed-use at the loop exit of the original scalar
4996 result. (The reduction result is expected to have two immediate uses -
4997 one at the latch block, and one at the loop exit). */
4998 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, scalar_dest)
4999 if (!flow_bb_inside_loop_p (loop, gimple_bb (USE_STMT (use_p)))
5000 && !is_gimple_debug (USE_STMT (use_p)))
5001 phis.safe_push (USE_STMT (use_p));
5003 /* While we expect to have found an exit_phi because of loop-closed-ssa
5004 form we can end up without one if the scalar cycle is dead. */
5006 FOR_EACH_VEC_ELT (phis, i, exit_phi)
5008 if (outer_loop)
5010 stmt_vec_info exit_phi_vinfo = vinfo_for_stmt (exit_phi);
5011 gphi *vect_phi;
5013 /* FORNOW. Currently not supporting the case that an inner-loop
5014 reduction is not used in the outer-loop (but only outside the
5015 outer-loop), unless it is double reduction. */
5016 gcc_assert ((STMT_VINFO_RELEVANT_P (exit_phi_vinfo)
5017 && !STMT_VINFO_LIVE_P (exit_phi_vinfo))
5018 || double_reduc);
5020 if (double_reduc)
5021 STMT_VINFO_VEC_STMT (exit_phi_vinfo) = inner_phi;
5022 else
5023 STMT_VINFO_VEC_STMT (exit_phi_vinfo) = epilog_stmt;
5024 if (!double_reduc
5025 || STMT_VINFO_DEF_TYPE (exit_phi_vinfo)
5026 != vect_double_reduction_def)
5027 continue;
5029 /* Handle double reduction:
5031 stmt1: s1 = phi <s0, s2> - double reduction phi (outer loop)
5032 stmt2: s3 = phi <s1, s4> - (regular) reduc phi (inner loop)
5033 stmt3: s4 = use (s3) - (regular) reduc stmt (inner loop)
5034 stmt4: s2 = phi <s4> - double reduction stmt (outer loop)
5036 At that point the regular reduction (stmt2 and stmt3) is
5037 already vectorized, as well as the exit phi node, stmt4.
5038 Here we vectorize the phi node of double reduction, stmt1, and
5039 update all relevant statements. */
5041 /* Go through all the uses of s2 to find double reduction phi
5042 node, i.e., stmt1 above. */
5043 orig_name = PHI_RESULT (exit_phi);
5044 FOR_EACH_IMM_USE_STMT (use_stmt, imm_iter, orig_name)
5046 stmt_vec_info use_stmt_vinfo;
5047 stmt_vec_info new_phi_vinfo;
5048 tree vect_phi_init, preheader_arg, vect_phi_res, init_def;
5049 basic_block bb = gimple_bb (use_stmt);
5050 gimple *use;
5052 /* Check that USE_STMT is really double reduction phi
5053 node. */
5054 if (gimple_code (use_stmt) != GIMPLE_PHI
5055 || gimple_phi_num_args (use_stmt) != 2
5056 || bb->loop_father != outer_loop)
5057 continue;
5058 use_stmt_vinfo = vinfo_for_stmt (use_stmt);
5059 if (!use_stmt_vinfo
5060 || STMT_VINFO_DEF_TYPE (use_stmt_vinfo)
5061 != vect_double_reduction_def)
5062 continue;
5064 /* Create vector phi node for double reduction:
5065 vs1 = phi <vs0, vs2>
5066 vs1 was created previously in this function by a call to
5067 vect_get_vec_def_for_operand and is stored in
5068 vec_initial_def;
5069 vs2 is defined by INNER_PHI, the vectorized EXIT_PHI;
5070 vs0 is created here. */
5072 /* Create vector phi node. */
5073 vect_phi = create_phi_node (vec_initial_def, bb);
5074 new_phi_vinfo = new_stmt_vec_info (vect_phi,
5075 loop_vec_info_for_loop (outer_loop));
5076 set_vinfo_for_stmt (vect_phi, new_phi_vinfo);
5078 /* Create vs0 - initial def of the double reduction phi. */
5079 preheader_arg = PHI_ARG_DEF_FROM_EDGE (use_stmt,
5080 loop_preheader_edge (outer_loop));
5081 init_def = get_initial_def_for_reduction (stmt,
5082 preheader_arg, NULL);
5083 vect_phi_init = vect_init_vector (use_stmt, init_def,
5084 vectype, NULL);
5086 /* Update phi node arguments with vs0 and vs2. */
5087 add_phi_arg (vect_phi, vect_phi_init,
5088 loop_preheader_edge (outer_loop),
5089 UNKNOWN_LOCATION);
5090 add_phi_arg (vect_phi, PHI_RESULT (inner_phi),
5091 loop_latch_edge (outer_loop), UNKNOWN_LOCATION);
5092 if (dump_enabled_p ())
5094 dump_printf_loc (MSG_NOTE, vect_location,
5095 "created double reduction phi node: ");
5096 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, vect_phi, 0);
5099 vect_phi_res = PHI_RESULT (vect_phi);
5101 /* Replace the use, i.e., set the correct vs1 in the regular
5102 reduction phi node. FORNOW, NCOPIES is always 1, so the
5103 loop is redundant. */
5104 use = reduction_phi;
5105 for (j = 0; j < ncopies; j++)
5107 edge pr_edge = loop_preheader_edge (loop);
5108 SET_PHI_ARG_DEF (use, pr_edge->dest_idx, vect_phi_res);
5109 use = STMT_VINFO_RELATED_STMT (vinfo_for_stmt (use));
5115 phis.release ();
5116 if (nested_in_vect_loop)
5118 if (double_reduc)
5119 loop = outer_loop;
5120 else
5121 continue;
5124 phis.create (3);
5125 /* Find the loop-closed-use at the loop exit of the original scalar
5126 result. (The reduction result is expected to have two immediate uses,
5127 one at the latch block, and one at the loop exit). For double
5128 reductions we are looking for exit phis of the outer loop. */
5129 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, scalar_dest)
5131 if (!flow_bb_inside_loop_p (loop, gimple_bb (USE_STMT (use_p))))
5133 if (!is_gimple_debug (USE_STMT (use_p)))
5134 phis.safe_push (USE_STMT (use_p));
5136 else
5138 if (double_reduc && gimple_code (USE_STMT (use_p)) == GIMPLE_PHI)
5140 tree phi_res = PHI_RESULT (USE_STMT (use_p));
5142 FOR_EACH_IMM_USE_FAST (phi_use_p, phi_imm_iter, phi_res)
5144 if (!flow_bb_inside_loop_p (loop,
5145 gimple_bb (USE_STMT (phi_use_p)))
5146 && !is_gimple_debug (USE_STMT (phi_use_p)))
5147 phis.safe_push (USE_STMT (phi_use_p));
5153 FOR_EACH_VEC_ELT (phis, i, exit_phi)
5155 /* Replace the uses: */
5156 orig_name = PHI_RESULT (exit_phi);
5157 scalar_result = scalar_results[k];
5158 FOR_EACH_IMM_USE_STMT (use_stmt, imm_iter, orig_name)
5159 FOR_EACH_IMM_USE_ON_STMT (use_p, imm_iter)
5160 SET_USE (use_p, scalar_result);
5163 phis.release ();
5168 /* Function is_nonwrapping_integer_induction.
5170 Check if STMT (which is part of loop LOOP) both increments and
5171 does not cause overflow. */
5173 static bool
5174 is_nonwrapping_integer_induction (gimple *stmt, struct loop *loop)
5176 stmt_vec_info stmt_vinfo = vinfo_for_stmt (stmt);
5177 tree base = STMT_VINFO_LOOP_PHI_EVOLUTION_BASE_UNCHANGED (stmt_vinfo);
5178 tree step = STMT_VINFO_LOOP_PHI_EVOLUTION_PART (stmt_vinfo);
5179 tree lhs_type = TREE_TYPE (gimple_phi_result (stmt));
5180 widest_int ni, max_loop_value, lhs_max;
5181 bool overflow = false;
5183 /* Make sure the loop is integer based. */
5184 if (TREE_CODE (base) != INTEGER_CST
5185 || TREE_CODE (step) != INTEGER_CST)
5186 return false;
5188 /* Check that the induction increments. */
5189 if (tree_int_cst_sgn (step) == -1)
5190 return false;
5192 /* Check that the max size of the loop will not wrap. */
5194 if (TYPE_OVERFLOW_UNDEFINED (lhs_type))
5195 return true;
5197 if (! max_stmt_executions (loop, &ni))
5198 return false;
5200 max_loop_value = wi::mul (wi::to_widest (step), ni, TYPE_SIGN (lhs_type),
5201 &overflow);
5202 if (overflow)
5203 return false;
5205 max_loop_value = wi::add (wi::to_widest (base), max_loop_value,
5206 TYPE_SIGN (lhs_type), &overflow);
5207 if (overflow)
5208 return false;
5210 return (wi::min_precision (max_loop_value, TYPE_SIGN (lhs_type))
5211 <= TYPE_PRECISION (lhs_type));
5214 /* Function vectorizable_reduction.
5216 Check if STMT performs a reduction operation that can be vectorized.
5217 If VEC_STMT is also passed, vectorize the STMT: create a vectorized
5218 stmt to replace it, put it in VEC_STMT, and insert it at GSI.
5219 Return FALSE if not a vectorizable STMT, TRUE otherwise.
5221 This function also handles reduction idioms (patterns) that have been
5222 recognized in advance during vect_pattern_recog. In this case, STMT may be
5223 of this form:
5224 X = pattern_expr (arg0, arg1, ..., X)
5225 and it's STMT_VINFO_RELATED_STMT points to the last stmt in the original
5226 sequence that had been detected and replaced by the pattern-stmt (STMT).
5228 This function also handles reduction of condition expressions, for example:
5229 for (int i = 0; i < N; i++)
5230 if (a[i] < value)
5231 last = a[i];
5232 This is handled by vectorising the loop and creating an additional vector
5233 containing the loop indexes for which "a[i] < value" was true. In the
5234 function epilogue this is reduced to a single max value and then used to
5235 index into the vector of results.
5237 In some cases of reduction patterns, the type of the reduction variable X is
5238 different than the type of the other arguments of STMT.
5239 In such cases, the vectype that is used when transforming STMT into a vector
5240 stmt is different than the vectype that is used to determine the
5241 vectorization factor, because it consists of a different number of elements
5242 than the actual number of elements that are being operated upon in parallel.
5244 For example, consider an accumulation of shorts into an int accumulator.
5245 On some targets it's possible to vectorize this pattern operating on 8
5246 shorts at a time (hence, the vectype for purposes of determining the
5247 vectorization factor should be V8HI); on the other hand, the vectype that
5248 is used to create the vector form is actually V4SI (the type of the result).
5250 Upon entry to this function, STMT_VINFO_VECTYPE records the vectype that
5251 indicates what is the actual level of parallelism (V8HI in the example), so
5252 that the right vectorization factor would be derived. This vectype
5253 corresponds to the type of arguments to the reduction stmt, and should *NOT*
5254 be used to create the vectorized stmt. The right vectype for the vectorized
5255 stmt is obtained from the type of the result X:
5256 get_vectype_for_scalar_type (TREE_TYPE (X))
5258 This means that, contrary to "regular" reductions (or "regular" stmts in
5259 general), the following equation:
5260 STMT_VINFO_VECTYPE == get_vectype_for_scalar_type (TREE_TYPE (X))
5261 does *NOT* necessarily hold for reduction patterns. */
5263 bool
5264 vectorizable_reduction (gimple *stmt, gimple_stmt_iterator *gsi,
5265 gimple **vec_stmt, slp_tree slp_node)
5267 tree vec_dest;
5268 tree scalar_dest;
5269 tree loop_vec_def0 = NULL_TREE, loop_vec_def1 = NULL_TREE;
5270 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
5271 tree vectype_out = STMT_VINFO_VECTYPE (stmt_info);
5272 tree vectype_in = NULL_TREE;
5273 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
5274 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
5275 enum tree_code code, orig_code, epilog_reduc_code;
5276 machine_mode vec_mode;
5277 int op_type;
5278 optab optab, reduc_optab;
5279 tree new_temp = NULL_TREE;
5280 gimple *def_stmt;
5281 enum vect_def_type dt, cond_reduc_dt = vect_unknown_def_type;
5282 gphi *new_phi = NULL;
5283 tree scalar_type;
5284 bool is_simple_use;
5285 gimple *orig_stmt;
5286 stmt_vec_info orig_stmt_info;
5287 tree expr = NULL_TREE;
5288 int i;
5289 int ncopies;
5290 int epilog_copies;
5291 stmt_vec_info prev_stmt_info, prev_phi_info;
5292 bool single_defuse_cycle = false;
5293 tree reduc_def = NULL_TREE;
5294 gimple *new_stmt = NULL;
5295 int j;
5296 tree ops[3];
5297 bool nested_cycle = false, found_nested_cycle_def = false;
5298 gimple *reduc_def_stmt = NULL;
5299 bool double_reduc = false;
5300 basic_block def_bb;
5301 struct loop * def_stmt_loop, *outer_loop = NULL;
5302 tree def_arg;
5303 gimple *def_arg_stmt;
5304 auto_vec<tree> vec_oprnds0;
5305 auto_vec<tree> vec_oprnds1;
5306 auto_vec<tree> vect_defs;
5307 auto_vec<gimple *> phis;
5308 int vec_num;
5309 tree def0, def1, tem, op1 = NULL_TREE;
5310 bool first_p = true;
5311 tree cr_index_scalar_type = NULL_TREE, cr_index_vector_type = NULL_TREE;
5312 tree cond_reduc_val = NULL_TREE;
5314 /* In case of reduction chain we switch to the first stmt in the chain, but
5315 we don't update STMT_INFO, since only the last stmt is marked as reduction
5316 and has reduction properties. */
5317 if (GROUP_FIRST_ELEMENT (stmt_info)
5318 && GROUP_FIRST_ELEMENT (stmt_info) != stmt)
5320 stmt = GROUP_FIRST_ELEMENT (stmt_info);
5321 first_p = false;
5324 if (nested_in_vect_loop_p (loop, stmt))
5326 outer_loop = loop;
5327 loop = loop->inner;
5328 nested_cycle = true;
5331 /* 1. Is vectorizable reduction? */
5332 /* Not supportable if the reduction variable is used in the loop, unless
5333 it's a reduction chain. */
5334 if (STMT_VINFO_RELEVANT (stmt_info) > vect_used_in_outer
5335 && !GROUP_FIRST_ELEMENT (stmt_info))
5336 return false;
5338 /* Reductions that are not used even in an enclosing outer-loop,
5339 are expected to be "live" (used out of the loop). */
5340 if (STMT_VINFO_RELEVANT (stmt_info) == vect_unused_in_scope
5341 && !STMT_VINFO_LIVE_P (stmt_info))
5342 return false;
5344 /* Make sure it was already recognized as a reduction computation. */
5345 if (STMT_VINFO_DEF_TYPE (vinfo_for_stmt (stmt)) != vect_reduction_def
5346 && STMT_VINFO_DEF_TYPE (vinfo_for_stmt (stmt)) != vect_nested_cycle)
5347 return false;
5349 /* 2. Has this been recognized as a reduction pattern?
5351 Check if STMT represents a pattern that has been recognized
5352 in earlier analysis stages. For stmts that represent a pattern,
5353 the STMT_VINFO_RELATED_STMT field records the last stmt in
5354 the original sequence that constitutes the pattern. */
5356 orig_stmt = STMT_VINFO_RELATED_STMT (vinfo_for_stmt (stmt));
5357 if (orig_stmt)
5359 orig_stmt_info = vinfo_for_stmt (orig_stmt);
5360 gcc_assert (STMT_VINFO_IN_PATTERN_P (orig_stmt_info));
5361 gcc_assert (!STMT_VINFO_IN_PATTERN_P (stmt_info));
5364 /* 3. Check the operands of the operation. The first operands are defined
5365 inside the loop body. The last operand is the reduction variable,
5366 which is defined by the loop-header-phi. */
5368 gcc_assert (is_gimple_assign (stmt));
5370 /* Flatten RHS. */
5371 switch (get_gimple_rhs_class (gimple_assign_rhs_code (stmt)))
5373 case GIMPLE_BINARY_RHS:
5374 code = gimple_assign_rhs_code (stmt);
5375 op_type = TREE_CODE_LENGTH (code);
5376 gcc_assert (op_type == binary_op);
5377 ops[0] = gimple_assign_rhs1 (stmt);
5378 ops[1] = gimple_assign_rhs2 (stmt);
5379 break;
5381 case GIMPLE_TERNARY_RHS:
5382 code = gimple_assign_rhs_code (stmt);
5383 op_type = TREE_CODE_LENGTH (code);
5384 gcc_assert (op_type == ternary_op);
5385 ops[0] = gimple_assign_rhs1 (stmt);
5386 ops[1] = gimple_assign_rhs2 (stmt);
5387 ops[2] = gimple_assign_rhs3 (stmt);
5388 break;
5390 case GIMPLE_UNARY_RHS:
5391 return false;
5393 default:
5394 gcc_unreachable ();
5396 /* The default is that the reduction variable is the last in statement. */
5397 int reduc_index = op_type - 1;
5398 if (code == MINUS_EXPR)
5399 reduc_index = 0;
5401 if (code == COND_EXPR && slp_node)
5402 return false;
5404 scalar_dest = gimple_assign_lhs (stmt);
5405 scalar_type = TREE_TYPE (scalar_dest);
5406 if (!POINTER_TYPE_P (scalar_type) && !INTEGRAL_TYPE_P (scalar_type)
5407 && !SCALAR_FLOAT_TYPE_P (scalar_type))
5408 return false;
5410 /* Do not try to vectorize bit-precision reductions. */
5411 if ((TYPE_PRECISION (scalar_type)
5412 != GET_MODE_PRECISION (TYPE_MODE (scalar_type))))
5413 return false;
5415 /* All uses but the last are expected to be defined in the loop.
5416 The last use is the reduction variable. In case of nested cycle this
5417 assumption is not true: we use reduc_index to record the index of the
5418 reduction variable. */
5419 for (i = 0; i < op_type; i++)
5421 if (i == reduc_index)
5422 continue;
5424 /* The condition of COND_EXPR is checked in vectorizable_condition(). */
5425 if (i == 0 && code == COND_EXPR)
5426 continue;
5428 is_simple_use = vect_is_simple_use (ops[i], loop_vinfo,
5429 &def_stmt, &dt, &tem);
5430 if (!vectype_in)
5431 vectype_in = tem;
5432 gcc_assert (is_simple_use);
5434 if (dt != vect_internal_def
5435 && dt != vect_external_def
5436 && dt != vect_constant_def
5437 && dt != vect_induction_def
5438 && !(dt == vect_nested_cycle && nested_cycle))
5439 return false;
5441 if (dt == vect_nested_cycle)
5443 found_nested_cycle_def = true;
5444 reduc_def_stmt = def_stmt;
5445 reduc_index = i;
5448 if (i == 1 && code == COND_EXPR)
5450 /* Record how value of COND_EXPR is defined. */
5451 if (dt == vect_constant_def)
5453 cond_reduc_dt = dt;
5454 cond_reduc_val = ops[i];
5456 if (dt == vect_induction_def && def_stmt != NULL
5457 && is_nonwrapping_integer_induction (def_stmt, loop))
5458 cond_reduc_dt = dt;
5462 is_simple_use = vect_is_simple_use (ops[reduc_index], loop_vinfo,
5463 &def_stmt, &dt, &tem);
5464 if (!vectype_in)
5465 vectype_in = tem;
5466 gcc_assert (is_simple_use);
5467 if (!found_nested_cycle_def)
5468 reduc_def_stmt = def_stmt;
5470 if (reduc_def_stmt && gimple_code (reduc_def_stmt) != GIMPLE_PHI)
5471 return false;
5473 if (!(dt == vect_reduction_def
5474 || dt == vect_nested_cycle
5475 || ((dt == vect_internal_def || dt == vect_external_def
5476 || dt == vect_constant_def || dt == vect_induction_def)
5477 && nested_cycle && found_nested_cycle_def)))
5479 /* For pattern recognized stmts, orig_stmt might be a reduction,
5480 but some helper statements for the pattern might not, or
5481 might be COND_EXPRs with reduction uses in the condition. */
5482 gcc_assert (orig_stmt);
5483 return false;
5486 stmt_vec_info reduc_def_info = vinfo_for_stmt (reduc_def_stmt);
5487 enum vect_reduction_type v_reduc_type
5488 = STMT_VINFO_REDUC_TYPE (reduc_def_info);
5489 gimple *tmp = STMT_VINFO_REDUC_DEF (reduc_def_info);
5491 STMT_VINFO_VEC_REDUCTION_TYPE (stmt_info) = v_reduc_type;
5492 /* If we have a condition reduction, see if we can simplify it further. */
5493 if (v_reduc_type == COND_REDUCTION)
5495 if (cond_reduc_dt == vect_induction_def)
5497 if (dump_enabled_p ())
5498 dump_printf_loc (MSG_NOTE, vect_location,
5499 "condition expression based on "
5500 "integer induction.\n");
5501 STMT_VINFO_VEC_REDUCTION_TYPE (stmt_info)
5502 = INTEGER_INDUC_COND_REDUCTION;
5505 /* Loop peeling modifies initial value of reduction PHI, which
5506 makes the reduction stmt to be transformed different to the
5507 original stmt analyzed. We need to record reduction code for
5508 CONST_COND_REDUCTION type reduction at analyzing stage, thus
5509 it can be used directly at transform stage. */
5510 if (STMT_VINFO_VEC_CONST_COND_REDUC_CODE (stmt_info) == MAX_EXPR
5511 || STMT_VINFO_VEC_CONST_COND_REDUC_CODE (stmt_info) == MIN_EXPR)
5513 /* Also set the reduction type to CONST_COND_REDUCTION. */
5514 gcc_assert (cond_reduc_dt == vect_constant_def);
5515 STMT_VINFO_VEC_REDUCTION_TYPE (stmt_info) = CONST_COND_REDUCTION;
5517 else if (cond_reduc_dt == vect_constant_def)
5519 enum vect_def_type cond_initial_dt;
5520 gimple *def_stmt = SSA_NAME_DEF_STMT (ops[reduc_index]);
5521 tree cond_initial_val
5522 = PHI_ARG_DEF_FROM_EDGE (def_stmt, loop_preheader_edge (loop));
5524 gcc_assert (cond_reduc_val != NULL_TREE);
5525 vect_is_simple_use (cond_initial_val, loop_vinfo,
5526 &def_stmt, &cond_initial_dt);
5527 if (cond_initial_dt == vect_constant_def
5528 && types_compatible_p (TREE_TYPE (cond_initial_val),
5529 TREE_TYPE (cond_reduc_val)))
5531 tree e = fold_build2 (LE_EXPR, boolean_type_node,
5532 cond_initial_val, cond_reduc_val);
5533 if (e && (integer_onep (e) || integer_zerop (e)))
5535 if (dump_enabled_p ())
5536 dump_printf_loc (MSG_NOTE, vect_location,
5537 "condition expression based on "
5538 "compile time constant.\n");
5539 /* Record reduction code at analysis stage. */
5540 STMT_VINFO_VEC_CONST_COND_REDUC_CODE (stmt_info)
5541 = integer_onep (e) ? MAX_EXPR : MIN_EXPR;
5542 STMT_VINFO_VEC_REDUCTION_TYPE (stmt_info)
5543 = CONST_COND_REDUCTION;
5549 if (orig_stmt)
5550 gcc_assert (tmp == orig_stmt
5551 || GROUP_FIRST_ELEMENT (vinfo_for_stmt (tmp)) == orig_stmt);
5552 else
5553 /* We changed STMT to be the first stmt in reduction chain, hence we
5554 check that in this case the first element in the chain is STMT. */
5555 gcc_assert (stmt == tmp
5556 || GROUP_FIRST_ELEMENT (vinfo_for_stmt (tmp)) == stmt);
5558 if (STMT_VINFO_LIVE_P (vinfo_for_stmt (reduc_def_stmt)))
5559 return false;
5561 if (slp_node)
5562 ncopies = 1;
5563 else
5564 ncopies = (LOOP_VINFO_VECT_FACTOR (loop_vinfo)
5565 / TYPE_VECTOR_SUBPARTS (vectype_in));
5567 gcc_assert (ncopies >= 1);
5569 vec_mode = TYPE_MODE (vectype_in);
5571 if (code == COND_EXPR)
5573 /* Only call during the analysis stage, otherwise we'll lose
5574 STMT_VINFO_TYPE. */
5575 if (!vec_stmt && !vectorizable_condition (stmt, gsi, NULL,
5576 ops[reduc_index], 0, NULL))
5578 if (dump_enabled_p ())
5579 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5580 "unsupported condition in reduction\n");
5581 return false;
5584 else
5586 /* 4. Supportable by target? */
5588 if (code == LSHIFT_EXPR || code == RSHIFT_EXPR
5589 || code == LROTATE_EXPR || code == RROTATE_EXPR)
5591 /* Shifts and rotates are only supported by vectorizable_shifts,
5592 not vectorizable_reduction. */
5593 if (dump_enabled_p ())
5594 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5595 "unsupported shift or rotation.\n");
5596 return false;
5599 /* 4.1. check support for the operation in the loop */
5600 optab = optab_for_tree_code (code, vectype_in, optab_default);
5601 if (!optab)
5603 if (dump_enabled_p ())
5604 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5605 "no optab.\n");
5607 return false;
5610 if (optab_handler (optab, vec_mode) == CODE_FOR_nothing)
5612 if (dump_enabled_p ())
5613 dump_printf (MSG_NOTE, "op not supported by target.\n");
5615 if (GET_MODE_SIZE (vec_mode) != UNITS_PER_WORD
5616 || LOOP_VINFO_VECT_FACTOR (loop_vinfo)
5617 < vect_min_worthwhile_factor (code))
5618 return false;
5620 if (dump_enabled_p ())
5621 dump_printf (MSG_NOTE, "proceeding using word mode.\n");
5624 /* Worthwhile without SIMD support? */
5625 if (!VECTOR_MODE_P (TYPE_MODE (vectype_in))
5626 && LOOP_VINFO_VECT_FACTOR (loop_vinfo)
5627 < vect_min_worthwhile_factor (code))
5629 if (dump_enabled_p ())
5630 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5631 "not worthwhile without SIMD support.\n");
5633 return false;
5637 /* 4.2. Check support for the epilog operation.
5639 If STMT represents a reduction pattern, then the type of the
5640 reduction variable may be different than the type of the rest
5641 of the arguments. For example, consider the case of accumulation
5642 of shorts into an int accumulator; The original code:
5643 S1: int_a = (int) short_a;
5644 orig_stmt-> S2: int_acc = plus <int_a ,int_acc>;
5646 was replaced with:
5647 STMT: int_acc = widen_sum <short_a, int_acc>
5649 This means that:
5650 1. The tree-code that is used to create the vector operation in the
5651 epilog code (that reduces the partial results) is not the
5652 tree-code of STMT, but is rather the tree-code of the original
5653 stmt from the pattern that STMT is replacing. I.e, in the example
5654 above we want to use 'widen_sum' in the loop, but 'plus' in the
5655 epilog.
5656 2. The type (mode) we use to check available target support
5657 for the vector operation to be created in the *epilog*, is
5658 determined by the type of the reduction variable (in the example
5659 above we'd check this: optab_handler (plus_optab, vect_int_mode])).
5660 However the type (mode) we use to check available target support
5661 for the vector operation to be created *inside the loop*, is
5662 determined by the type of the other arguments to STMT (in the
5663 example we'd check this: optab_handler (widen_sum_optab,
5664 vect_short_mode)).
5666 This is contrary to "regular" reductions, in which the types of all
5667 the arguments are the same as the type of the reduction variable.
5668 For "regular" reductions we can therefore use the same vector type
5669 (and also the same tree-code) when generating the epilog code and
5670 when generating the code inside the loop. */
5672 if (orig_stmt)
5674 /* This is a reduction pattern: get the vectype from the type of the
5675 reduction variable, and get the tree-code from orig_stmt. */
5676 gcc_assert (STMT_VINFO_VEC_REDUCTION_TYPE (stmt_info)
5677 == TREE_CODE_REDUCTION);
5678 orig_code = gimple_assign_rhs_code (orig_stmt);
5679 gcc_assert (vectype_out);
5680 vec_mode = TYPE_MODE (vectype_out);
5682 else
5684 /* Regular reduction: use the same vectype and tree-code as used for
5685 the vector code inside the loop can be used for the epilog code. */
5686 orig_code = code;
5688 if (code == MINUS_EXPR)
5689 orig_code = PLUS_EXPR;
5691 /* For simple condition reductions, replace with the actual expression
5692 we want to base our reduction around. */
5693 if (STMT_VINFO_VEC_REDUCTION_TYPE (stmt_info) == CONST_COND_REDUCTION)
5695 orig_code = STMT_VINFO_VEC_CONST_COND_REDUC_CODE (stmt_info);
5696 gcc_assert (orig_code == MAX_EXPR || orig_code == MIN_EXPR);
5698 else if (STMT_VINFO_VEC_REDUCTION_TYPE (stmt_info)
5699 == INTEGER_INDUC_COND_REDUCTION)
5700 orig_code = MAX_EXPR;
5703 if (nested_cycle)
5705 def_bb = gimple_bb (reduc_def_stmt);
5706 def_stmt_loop = def_bb->loop_father;
5707 def_arg = PHI_ARG_DEF_FROM_EDGE (reduc_def_stmt,
5708 loop_preheader_edge (def_stmt_loop));
5709 if (TREE_CODE (def_arg) == SSA_NAME
5710 && (def_arg_stmt = SSA_NAME_DEF_STMT (def_arg))
5711 && gimple_code (def_arg_stmt) == GIMPLE_PHI
5712 && flow_bb_inside_loop_p (outer_loop, gimple_bb (def_arg_stmt))
5713 && vinfo_for_stmt (def_arg_stmt)
5714 && STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def_arg_stmt))
5715 == vect_double_reduction_def)
5716 double_reduc = true;
5719 epilog_reduc_code = ERROR_MARK;
5721 if (STMT_VINFO_VEC_REDUCTION_TYPE (stmt_info) != COND_REDUCTION)
5723 if (reduction_code_for_scalar_code (orig_code, &epilog_reduc_code))
5725 reduc_optab = optab_for_tree_code (epilog_reduc_code, vectype_out,
5726 optab_default);
5727 if (!reduc_optab)
5729 if (dump_enabled_p ())
5730 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5731 "no optab for reduction.\n");
5733 epilog_reduc_code = ERROR_MARK;
5735 else if (optab_handler (reduc_optab, vec_mode) == CODE_FOR_nothing)
5737 if (dump_enabled_p ())
5738 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5739 "reduc op not supported by target.\n");
5741 epilog_reduc_code = ERROR_MARK;
5744 else
5746 if (!nested_cycle || double_reduc)
5748 if (dump_enabled_p ())
5749 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5750 "no reduc code for scalar code.\n");
5752 return false;
5756 else
5758 int scalar_precision = GET_MODE_PRECISION (TYPE_MODE (scalar_type));
5759 cr_index_scalar_type = make_unsigned_type (scalar_precision);
5760 cr_index_vector_type = build_vector_type
5761 (cr_index_scalar_type, TYPE_VECTOR_SUBPARTS (vectype_out));
5763 optab = optab_for_tree_code (REDUC_MAX_EXPR, cr_index_vector_type,
5764 optab_default);
5765 if (optab_handler (optab, TYPE_MODE (cr_index_vector_type))
5766 != CODE_FOR_nothing)
5767 epilog_reduc_code = REDUC_MAX_EXPR;
5770 if ((double_reduc
5771 || STMT_VINFO_VEC_REDUCTION_TYPE (stmt_info) != TREE_CODE_REDUCTION)
5772 && ncopies > 1)
5774 if (dump_enabled_p ())
5775 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5776 "multiple types in double reduction or condition "
5777 "reduction.\n");
5778 return false;
5781 /* In case of widenning multiplication by a constant, we update the type
5782 of the constant to be the type of the other operand. We check that the
5783 constant fits the type in the pattern recognition pass. */
5784 if (code == DOT_PROD_EXPR
5785 && !types_compatible_p (TREE_TYPE (ops[0]), TREE_TYPE (ops[1])))
5787 if (TREE_CODE (ops[0]) == INTEGER_CST)
5788 ops[0] = fold_convert (TREE_TYPE (ops[1]), ops[0]);
5789 else if (TREE_CODE (ops[1]) == INTEGER_CST)
5790 ops[1] = fold_convert (TREE_TYPE (ops[0]), ops[1]);
5791 else
5793 if (dump_enabled_p ())
5794 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5795 "invalid types in dot-prod\n");
5797 return false;
5801 if (STMT_VINFO_VEC_REDUCTION_TYPE (stmt_info) == COND_REDUCTION)
5803 widest_int ni;
5805 if (! max_loop_iterations (loop, &ni))
5807 if (dump_enabled_p ())
5808 dump_printf_loc (MSG_NOTE, vect_location,
5809 "loop count not known, cannot create cond "
5810 "reduction.\n");
5811 return false;
5813 /* Convert backedges to iterations. */
5814 ni += 1;
5816 /* The additional index will be the same type as the condition. Check
5817 that the loop can fit into this less one (because we'll use up the
5818 zero slot for when there are no matches). */
5819 tree max_index = TYPE_MAX_VALUE (cr_index_scalar_type);
5820 if (wi::geu_p (ni, wi::to_widest (max_index)))
5822 if (dump_enabled_p ())
5823 dump_printf_loc (MSG_NOTE, vect_location,
5824 "loop size is greater than data size.\n");
5825 return false;
5829 if (!vec_stmt) /* transformation not required. */
5831 if (first_p)
5832 vect_model_reduction_cost (stmt_info, epilog_reduc_code, ncopies);
5833 STMT_VINFO_TYPE (stmt_info) = reduc_vec_info_type;
5834 return true;
5837 /* Transform. */
5839 if (dump_enabled_p ())
5840 dump_printf_loc (MSG_NOTE, vect_location, "transform reduction.\n");
5842 /* FORNOW: Multiple types are not supported for condition. */
5843 if (code == COND_EXPR)
5844 gcc_assert (ncopies == 1);
5846 /* Create the destination vector */
5847 vec_dest = vect_create_destination_var (scalar_dest, vectype_out);
5849 /* In case the vectorization factor (VF) is bigger than the number
5850 of elements that we can fit in a vectype (nunits), we have to generate
5851 more than one vector stmt - i.e - we need to "unroll" the
5852 vector stmt by a factor VF/nunits. For more details see documentation
5853 in vectorizable_operation. */
5855 /* If the reduction is used in an outer loop we need to generate
5856 VF intermediate results, like so (e.g. for ncopies=2):
5857 r0 = phi (init, r0)
5858 r1 = phi (init, r1)
5859 r0 = x0 + r0;
5860 r1 = x1 + r1;
5861 (i.e. we generate VF results in 2 registers).
5862 In this case we have a separate def-use cycle for each copy, and therefore
5863 for each copy we get the vector def for the reduction variable from the
5864 respective phi node created for this copy.
5866 Otherwise (the reduction is unused in the loop nest), we can combine
5867 together intermediate results, like so (e.g. for ncopies=2):
5868 r = phi (init, r)
5869 r = x0 + r;
5870 r = x1 + r;
5871 (i.e. we generate VF/2 results in a single register).
5872 In this case for each copy we get the vector def for the reduction variable
5873 from the vectorized reduction operation generated in the previous iteration.
5876 if (STMT_VINFO_RELEVANT (stmt_info) <= vect_used_only_live)
5878 single_defuse_cycle = true;
5879 epilog_copies = 1;
5881 else
5882 epilog_copies = ncopies;
5884 prev_stmt_info = NULL;
5885 prev_phi_info = NULL;
5886 if (slp_node)
5887 vec_num = SLP_TREE_NUMBER_OF_VEC_STMTS (slp_node);
5888 else
5890 vec_num = 1;
5891 vec_oprnds0.create (1);
5892 if (op_type == ternary_op)
5893 vec_oprnds1.create (1);
5896 phis.create (vec_num);
5897 vect_defs.create (vec_num);
5898 if (!slp_node)
5899 vect_defs.quick_push (NULL_TREE);
5901 for (j = 0; j < ncopies; j++)
5903 if (j == 0 || !single_defuse_cycle)
5905 for (i = 0; i < vec_num; i++)
5907 /* Create the reduction-phi that defines the reduction
5908 operand. */
5909 new_phi = create_phi_node (vec_dest, loop->header);
5910 set_vinfo_for_stmt (new_phi,
5911 new_stmt_vec_info (new_phi, loop_vinfo));
5912 if (j == 0 || slp_node)
5913 phis.quick_push (new_phi);
5917 if (code == COND_EXPR)
5919 gcc_assert (!slp_node);
5920 vectorizable_condition (stmt, gsi, vec_stmt,
5921 PHI_RESULT (phis[0]),
5922 reduc_index, NULL);
5923 /* Multiple types are not supported for condition. */
5924 break;
5927 /* Handle uses. */
5928 if (j == 0)
5930 if (slp_node)
5932 /* Get vec defs for all the operands except the reduction index,
5933 ensuring the ordering of the ops in the vector is kept. */
5934 auto_vec<tree, 3> slp_ops;
5935 auto_vec<vec<tree>, 3> vec_defs;
5937 slp_ops.quick_push (reduc_index == 0 ? NULL : ops[0]);
5938 slp_ops.quick_push (reduc_index == 1 ? NULL : ops[1]);
5939 if (op_type == ternary_op)
5940 slp_ops.quick_push (reduc_index == 2 ? NULL : ops[2]);
5942 vect_get_slp_defs (slp_ops, slp_node, &vec_defs, -1);
5944 vec_oprnds0.safe_splice (vec_defs[reduc_index == 0 ? 1 : 0]);
5945 vec_defs[reduc_index == 0 ? 1 : 0].release ();
5946 if (op_type == ternary_op)
5948 vec_oprnds1.safe_splice (vec_defs[reduc_index == 2 ? 1 : 2]);
5949 vec_defs[reduc_index == 2 ? 1 : 2].release ();
5952 else
5954 loop_vec_def0 = vect_get_vec_def_for_operand (ops[!reduc_index],
5955 stmt);
5956 vec_oprnds0.quick_push (loop_vec_def0);
5957 if (op_type == ternary_op)
5959 op1 = reduc_index == 0 ? ops[2] : ops[1];
5960 loop_vec_def1 = vect_get_vec_def_for_operand (op1, stmt);
5961 vec_oprnds1.quick_push (loop_vec_def1);
5965 else
5967 if (!slp_node)
5969 enum vect_def_type dt;
5970 gimple *dummy_stmt;
5972 vect_is_simple_use (ops[!reduc_index], loop_vinfo,
5973 &dummy_stmt, &dt);
5974 loop_vec_def0 = vect_get_vec_def_for_stmt_copy (dt,
5975 loop_vec_def0);
5976 vec_oprnds0[0] = loop_vec_def0;
5977 if (op_type == ternary_op)
5979 vect_is_simple_use (op1, loop_vinfo, &dummy_stmt, &dt);
5980 loop_vec_def1 = vect_get_vec_def_for_stmt_copy (dt,
5981 loop_vec_def1);
5982 vec_oprnds1[0] = loop_vec_def1;
5986 if (single_defuse_cycle)
5987 reduc_def = gimple_assign_lhs (new_stmt);
5989 STMT_VINFO_RELATED_STMT (prev_phi_info) = new_phi;
5992 FOR_EACH_VEC_ELT (vec_oprnds0, i, def0)
5994 if (slp_node)
5995 reduc_def = PHI_RESULT (phis[i]);
5996 else
5998 if (!single_defuse_cycle || j == 0)
5999 reduc_def = PHI_RESULT (new_phi);
6002 def1 = ((op_type == ternary_op)
6003 ? vec_oprnds1[i] : NULL);
6004 if (op_type == binary_op)
6006 if (reduc_index == 0)
6007 expr = build2 (code, vectype_out, reduc_def, def0);
6008 else
6009 expr = build2 (code, vectype_out, def0, reduc_def);
6011 else
6013 if (reduc_index == 0)
6014 expr = build3 (code, vectype_out, reduc_def, def0, def1);
6015 else
6017 if (reduc_index == 1)
6018 expr = build3 (code, vectype_out, def0, reduc_def, def1);
6019 else
6020 expr = build3 (code, vectype_out, def0, def1, reduc_def);
6024 new_stmt = gimple_build_assign (vec_dest, expr);
6025 new_temp = make_ssa_name (vec_dest, new_stmt);
6026 gimple_assign_set_lhs (new_stmt, new_temp);
6027 vect_finish_stmt_generation (stmt, new_stmt, gsi);
6029 if (slp_node)
6031 SLP_TREE_VEC_STMTS (slp_node).quick_push (new_stmt);
6032 vect_defs.quick_push (new_temp);
6034 else
6035 vect_defs[0] = new_temp;
6038 if (slp_node)
6039 continue;
6041 if (j == 0)
6042 STMT_VINFO_VEC_STMT (stmt_info) = *vec_stmt = new_stmt;
6043 else
6044 STMT_VINFO_RELATED_STMT (prev_stmt_info) = new_stmt;
6046 prev_stmt_info = vinfo_for_stmt (new_stmt);
6047 prev_phi_info = vinfo_for_stmt (new_phi);
6050 tree indx_before_incr, indx_after_incr, cond_name = NULL;
6052 /* Finalize the reduction-phi (set its arguments) and create the
6053 epilog reduction code. */
6054 if ((!single_defuse_cycle || code == COND_EXPR) && !slp_node)
6056 new_temp = gimple_assign_lhs (*vec_stmt);
6057 vect_defs[0] = new_temp;
6059 /* For cond reductions we want to create a new vector (INDEX_COND_EXPR)
6060 which is updated with the current index of the loop for every match of
6061 the original loop's cond_expr (VEC_STMT). This results in a vector
6062 containing the last time the condition passed for that vector lane.
6063 The first match will be a 1 to allow 0 to be used for non-matching
6064 indexes. If there are no matches at all then the vector will be all
6065 zeroes. */
6066 if (STMT_VINFO_VEC_REDUCTION_TYPE (stmt_info) == COND_REDUCTION)
6068 int nunits_out = TYPE_VECTOR_SUBPARTS (vectype_out);
6069 int k;
6071 gcc_assert (gimple_assign_rhs_code (*vec_stmt) == VEC_COND_EXPR);
6073 /* First we create a simple vector induction variable which starts
6074 with the values {1,2,3,...} (SERIES_VECT) and increments by the
6075 vector size (STEP). */
6077 /* Create a {1,2,3,...} vector. */
6078 tree *vtemp = XALLOCAVEC (tree, nunits_out);
6079 for (k = 0; k < nunits_out; ++k)
6080 vtemp[k] = build_int_cst (cr_index_scalar_type, k + 1);
6081 tree series_vect = build_vector (cr_index_vector_type, vtemp);
6083 /* Create a vector of the step value. */
6084 tree step = build_int_cst (cr_index_scalar_type, nunits_out);
6085 tree vec_step = build_vector_from_val (cr_index_vector_type, step);
6087 /* Create an induction variable. */
6088 gimple_stmt_iterator incr_gsi;
6089 bool insert_after;
6090 standard_iv_increment_position (loop, &incr_gsi, &insert_after);
6091 create_iv (series_vect, vec_step, NULL_TREE, loop, &incr_gsi,
6092 insert_after, &indx_before_incr, &indx_after_incr);
6094 /* Next create a new phi node vector (NEW_PHI_TREE) which starts
6095 filled with zeros (VEC_ZERO). */
6097 /* Create a vector of 0s. */
6098 tree zero = build_zero_cst (cr_index_scalar_type);
6099 tree vec_zero = build_vector_from_val (cr_index_vector_type, zero);
6101 /* Create a vector phi node. */
6102 tree new_phi_tree = make_ssa_name (cr_index_vector_type);
6103 new_phi = create_phi_node (new_phi_tree, loop->header);
6104 set_vinfo_for_stmt (new_phi,
6105 new_stmt_vec_info (new_phi, loop_vinfo));
6106 add_phi_arg (new_phi, vec_zero, loop_preheader_edge (loop),
6107 UNKNOWN_LOCATION);
6109 /* Now take the condition from the loops original cond_expr
6110 (VEC_STMT) and produce a new cond_expr (INDEX_COND_EXPR) which for
6111 every match uses values from the induction variable
6112 (INDEX_BEFORE_INCR) otherwise uses values from the phi node
6113 (NEW_PHI_TREE).
6114 Finally, we update the phi (NEW_PHI_TREE) to take the value of
6115 the new cond_expr (INDEX_COND_EXPR). */
6117 /* Duplicate the condition from vec_stmt. */
6118 tree ccompare = unshare_expr (gimple_assign_rhs1 (*vec_stmt));
6120 /* Create a conditional, where the condition is taken from vec_stmt
6121 (CCOMPARE), then is the induction index (INDEX_BEFORE_INCR) and
6122 else is the phi (NEW_PHI_TREE). */
6123 tree index_cond_expr = build3 (VEC_COND_EXPR, cr_index_vector_type,
6124 ccompare, indx_before_incr,
6125 new_phi_tree);
6126 cond_name = make_ssa_name (cr_index_vector_type);
6127 gimple *index_condition = gimple_build_assign (cond_name,
6128 index_cond_expr);
6129 gsi_insert_before (&incr_gsi, index_condition, GSI_SAME_STMT);
6130 stmt_vec_info index_vec_info = new_stmt_vec_info (index_condition,
6131 loop_vinfo);
6132 STMT_VINFO_VECTYPE (index_vec_info) = cr_index_vector_type;
6133 set_vinfo_for_stmt (index_condition, index_vec_info);
6135 /* Update the phi with the vec cond. */
6136 add_phi_arg (new_phi, cond_name, loop_latch_edge (loop),
6137 UNKNOWN_LOCATION);
6141 vect_create_epilog_for_reduction (vect_defs, stmt, epilog_copies,
6142 epilog_reduc_code, phis, reduc_index,
6143 double_reduc, slp_node, cond_name);
6145 return true;
6148 /* Function vect_min_worthwhile_factor.
6150 For a loop where we could vectorize the operation indicated by CODE,
6151 return the minimum vectorization factor that makes it worthwhile
6152 to use generic vectors. */
6154 vect_min_worthwhile_factor (enum tree_code code)
6156 switch (code)
6158 case PLUS_EXPR:
6159 case MINUS_EXPR:
6160 case NEGATE_EXPR:
6161 return 4;
6163 case BIT_AND_EXPR:
6164 case BIT_IOR_EXPR:
6165 case BIT_XOR_EXPR:
6166 case BIT_NOT_EXPR:
6167 return 2;
6169 default:
6170 return INT_MAX;
6175 /* Function vectorizable_induction
6177 Check if PHI performs an induction computation that can be vectorized.
6178 If VEC_STMT is also passed, vectorize the induction PHI: create a vectorized
6179 phi to replace it, put it in VEC_STMT, and add it to the same basic block.
6180 Return FALSE if not a vectorizable STMT, TRUE otherwise. */
6182 bool
6183 vectorizable_induction (gimple *phi,
6184 gimple_stmt_iterator *gsi ATTRIBUTE_UNUSED,
6185 gimple **vec_stmt, slp_tree slp_node)
6187 stmt_vec_info stmt_info = vinfo_for_stmt (phi);
6188 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
6189 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
6190 unsigned ncopies;
6191 bool nested_in_vect_loop = false;
6192 struct loop *iv_loop;
6193 tree vec_def;
6194 edge pe = loop_preheader_edge (loop);
6195 basic_block new_bb;
6196 tree new_vec, vec_init, vec_step, t;
6197 tree new_name;
6198 gimple *new_stmt;
6199 gphi *induction_phi;
6200 tree induc_def, vec_dest;
6201 tree init_expr, step_expr;
6202 int vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
6203 unsigned i;
6204 tree expr;
6205 gimple_seq stmts;
6206 imm_use_iterator imm_iter;
6207 use_operand_p use_p;
6208 gimple *exit_phi;
6209 edge latch_e;
6210 tree loop_arg;
6211 gimple_stmt_iterator si;
6212 basic_block bb = gimple_bb (phi);
6214 if (gimple_code (phi) != GIMPLE_PHI)
6215 return false;
6217 if (!STMT_VINFO_RELEVANT_P (stmt_info))
6218 return false;
6220 /* Make sure it was recognized as induction computation. */
6221 if (STMT_VINFO_DEF_TYPE (stmt_info) != vect_induction_def)
6222 return false;
6224 tree vectype = STMT_VINFO_VECTYPE (stmt_info);
6225 unsigned nunits = TYPE_VECTOR_SUBPARTS (vectype);
6227 if (slp_node)
6228 ncopies = 1;
6229 else
6230 ncopies = vf / nunits;
6231 gcc_assert (ncopies >= 1);
6233 /* FORNOW. These restrictions should be relaxed. */
6234 if (nested_in_vect_loop_p (loop, phi))
6236 imm_use_iterator imm_iter;
6237 use_operand_p use_p;
6238 gimple *exit_phi;
6239 edge latch_e;
6240 tree loop_arg;
6242 if (ncopies > 1)
6244 if (dump_enabled_p ())
6245 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
6246 "multiple types in nested loop.\n");
6247 return false;
6250 /* FORNOW: outer loop induction with SLP not supported. */
6251 if (STMT_SLP_TYPE (stmt_info))
6252 return false;
6254 exit_phi = NULL;
6255 latch_e = loop_latch_edge (loop->inner);
6256 loop_arg = PHI_ARG_DEF_FROM_EDGE (phi, latch_e);
6257 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, loop_arg)
6259 gimple *use_stmt = USE_STMT (use_p);
6260 if (is_gimple_debug (use_stmt))
6261 continue;
6263 if (!flow_bb_inside_loop_p (loop->inner, gimple_bb (use_stmt)))
6265 exit_phi = use_stmt;
6266 break;
6269 if (exit_phi)
6271 stmt_vec_info exit_phi_vinfo = vinfo_for_stmt (exit_phi);
6272 if (!(STMT_VINFO_RELEVANT_P (exit_phi_vinfo)
6273 && !STMT_VINFO_LIVE_P (exit_phi_vinfo)))
6275 if (dump_enabled_p ())
6276 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
6277 "inner-loop induction only used outside "
6278 "of the outer vectorized loop.\n");
6279 return false;
6283 nested_in_vect_loop = true;
6284 iv_loop = loop->inner;
6286 else
6287 iv_loop = loop;
6288 gcc_assert (iv_loop == (gimple_bb (phi))->loop_father);
6290 if (!vec_stmt) /* transformation not required. */
6292 STMT_VINFO_TYPE (stmt_info) = induc_vec_info_type;
6293 if (dump_enabled_p ())
6294 dump_printf_loc (MSG_NOTE, vect_location,
6295 "=== vectorizable_induction ===\n");
6296 vect_model_induction_cost (stmt_info, ncopies);
6297 return true;
6300 /* Transform. */
6302 /* Compute a vector variable, initialized with the first VF values of
6303 the induction variable. E.g., for an iv with IV_PHI='X' and
6304 evolution S, for a vector of 4 units, we want to compute:
6305 [X, X + S, X + 2*S, X + 3*S]. */
6307 if (dump_enabled_p ())
6308 dump_printf_loc (MSG_NOTE, vect_location, "transform induction phi.\n");
6310 latch_e = loop_latch_edge (iv_loop);
6311 loop_arg = PHI_ARG_DEF_FROM_EDGE (phi, latch_e);
6313 step_expr = STMT_VINFO_LOOP_PHI_EVOLUTION_PART (stmt_info);
6314 gcc_assert (step_expr != NULL_TREE);
6316 pe = loop_preheader_edge (iv_loop);
6317 init_expr = PHI_ARG_DEF_FROM_EDGE (phi,
6318 loop_preheader_edge (iv_loop));
6320 /* Convert the step to the desired type. */
6321 stmts = NULL;
6322 step_expr = gimple_convert (&stmts, TREE_TYPE (vectype), step_expr);
6323 if (stmts)
6325 new_bb = gsi_insert_seq_on_edge_immediate (pe, stmts);
6326 gcc_assert (!new_bb);
6329 /* Find the first insertion point in the BB. */
6330 si = gsi_after_labels (bb);
6332 /* For SLP induction we have to generate several IVs as for example
6333 with group size 3 we need [i, i, i, i + S] [i + S, i + S, i + 2*S, i + 2*S]
6334 [i + 2*S, i + 3*S, i + 3*S, i + 3*S]. The step is the same uniform
6335 [VF*S, VF*S, VF*S, VF*S] for all. */
6336 if (slp_node)
6338 /* Convert the init to the desired type. */
6339 stmts = NULL;
6340 init_expr = gimple_convert (&stmts, TREE_TYPE (vectype), init_expr);
6341 if (stmts)
6343 new_bb = gsi_insert_seq_on_edge_immediate (pe, stmts);
6344 gcc_assert (!new_bb);
6347 /* Generate [VF*S, VF*S, ... ]. */
6348 if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (step_expr)))
6350 expr = build_int_cst (integer_type_node, vf);
6351 expr = fold_convert (TREE_TYPE (step_expr), expr);
6353 else
6354 expr = build_int_cst (TREE_TYPE (step_expr), vf);
6355 new_name = fold_build2 (MULT_EXPR, TREE_TYPE (step_expr),
6356 expr, step_expr);
6357 if (! CONSTANT_CLASS_P (new_name))
6358 new_name = vect_init_vector (phi, new_name,
6359 TREE_TYPE (step_expr), NULL);
6360 new_vec = build_vector_from_val (vectype, new_name);
6361 vec_step = vect_init_vector (phi, new_vec, vectype, NULL);
6363 /* Now generate the IVs. */
6364 unsigned group_size = SLP_TREE_SCALAR_STMTS (slp_node).length ();
6365 unsigned nvects = SLP_TREE_NUMBER_OF_VEC_STMTS (slp_node);
6366 unsigned elts = nunits * nvects;
6367 unsigned nivs = least_common_multiple (group_size, nunits) / nunits;
6368 gcc_assert (elts % group_size == 0);
6369 tree elt = init_expr;
6370 unsigned ivn;
6371 for (ivn = 0; ivn < nivs; ++ivn)
6373 tree *elts = XALLOCAVEC (tree, nunits);
6374 bool constant_p = true;
6375 for (unsigned eltn = 0; eltn < nunits; ++eltn)
6377 if (ivn*nunits + eltn >= group_size
6378 && (ivn*nunits + eltn) % group_size == 0)
6380 stmts = NULL;
6381 elt = gimple_build (&stmts, PLUS_EXPR, TREE_TYPE (elt),
6382 elt, step_expr);
6383 if (stmts)
6385 new_bb = gsi_insert_seq_on_edge_immediate (pe, stmts);
6386 gcc_assert (!new_bb);
6389 if (! CONSTANT_CLASS_P (elt))
6390 constant_p = false;
6391 elts[eltn] = elt;
6393 if (constant_p)
6394 new_vec = build_vector (vectype, elts);
6395 else
6397 vec<constructor_elt, va_gc> *v;
6398 vec_alloc (v, nunits);
6399 for (i = 0; i < nunits; ++i)
6400 CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, elts[i]);
6401 new_vec = build_constructor (vectype, v);
6403 vec_init = vect_init_vector (phi, new_vec, vectype, NULL);
6405 /* Create the induction-phi that defines the induction-operand. */
6406 vec_dest = vect_get_new_vect_var (vectype, vect_simple_var, "vec_iv_");
6407 induction_phi = create_phi_node (vec_dest, iv_loop->header);
6408 set_vinfo_for_stmt (induction_phi,
6409 new_stmt_vec_info (induction_phi, loop_vinfo));
6410 induc_def = PHI_RESULT (induction_phi);
6412 /* Create the iv update inside the loop */
6413 vec_def = make_ssa_name (vec_dest);
6414 new_stmt = gimple_build_assign (vec_def, PLUS_EXPR, induc_def, vec_step);
6415 gsi_insert_before (&si, new_stmt, GSI_SAME_STMT);
6416 set_vinfo_for_stmt (new_stmt, new_stmt_vec_info (new_stmt, loop_vinfo));
6418 /* Set the arguments of the phi node: */
6419 add_phi_arg (induction_phi, vec_init, pe, UNKNOWN_LOCATION);
6420 add_phi_arg (induction_phi, vec_def, loop_latch_edge (iv_loop),
6421 UNKNOWN_LOCATION);
6423 SLP_TREE_VEC_STMTS (slp_node).quick_push (induction_phi);
6426 /* Re-use IVs when we can. */
6427 if (ivn < nvects)
6429 unsigned vfp
6430 = least_common_multiple (group_size, nunits) / group_size;
6431 /* Generate [VF'*S, VF'*S, ... ]. */
6432 if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (step_expr)))
6434 expr = build_int_cst (integer_type_node, vfp);
6435 expr = fold_convert (TREE_TYPE (step_expr), expr);
6437 else
6438 expr = build_int_cst (TREE_TYPE (step_expr), vfp);
6439 new_name = fold_build2 (MULT_EXPR, TREE_TYPE (step_expr),
6440 expr, step_expr);
6441 if (! CONSTANT_CLASS_P (new_name))
6442 new_name = vect_init_vector (phi, new_name,
6443 TREE_TYPE (step_expr), NULL);
6444 new_vec = build_vector_from_val (vectype, new_name);
6445 vec_step = vect_init_vector (phi, new_vec, vectype, NULL);
6446 for (; ivn < nvects; ++ivn)
6448 gimple *iv = SLP_TREE_VEC_STMTS (slp_node)[ivn - nivs];
6449 tree def;
6450 if (gimple_code (iv) == GIMPLE_PHI)
6451 def = gimple_phi_result (iv);
6452 else
6453 def = gimple_assign_lhs (iv);
6454 new_stmt = gimple_build_assign (make_ssa_name (vectype),
6455 PLUS_EXPR,
6456 def, vec_step);
6457 if (gimple_code (iv) == GIMPLE_PHI)
6458 gsi_insert_before (&si, new_stmt, GSI_SAME_STMT);
6459 else
6461 gimple_stmt_iterator tgsi = gsi_for_stmt (iv);
6462 gsi_insert_after (&tgsi, new_stmt, GSI_CONTINUE_LINKING);
6464 set_vinfo_for_stmt (new_stmt,
6465 new_stmt_vec_info (new_stmt, loop_vinfo));
6466 SLP_TREE_VEC_STMTS (slp_node).quick_push (new_stmt);
6470 return true;
6473 /* Create the vector that holds the initial_value of the induction. */
6474 if (nested_in_vect_loop)
6476 /* iv_loop is nested in the loop to be vectorized. init_expr had already
6477 been created during vectorization of previous stmts. We obtain it
6478 from the STMT_VINFO_VEC_STMT of the defining stmt. */
6479 vec_init = vect_get_vec_def_for_operand (init_expr, phi);
6480 /* If the initial value is not of proper type, convert it. */
6481 if (!useless_type_conversion_p (vectype, TREE_TYPE (vec_init)))
6483 new_stmt
6484 = gimple_build_assign (vect_get_new_ssa_name (vectype,
6485 vect_simple_var,
6486 "vec_iv_"),
6487 VIEW_CONVERT_EXPR,
6488 build1 (VIEW_CONVERT_EXPR, vectype,
6489 vec_init));
6490 vec_init = gimple_assign_lhs (new_stmt);
6491 new_bb = gsi_insert_on_edge_immediate (loop_preheader_edge (iv_loop),
6492 new_stmt);
6493 gcc_assert (!new_bb);
6494 set_vinfo_for_stmt (new_stmt,
6495 new_stmt_vec_info (new_stmt, loop_vinfo));
6498 else
6500 vec<constructor_elt, va_gc> *v;
6502 /* iv_loop is the loop to be vectorized. Create:
6503 vec_init = [X, X+S, X+2*S, X+3*S] (S = step_expr, X = init_expr) */
6504 stmts = NULL;
6505 new_name = gimple_convert (&stmts, TREE_TYPE (vectype), init_expr);
6507 vec_alloc (v, nunits);
6508 bool constant_p = is_gimple_min_invariant (new_name);
6509 CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, new_name);
6510 for (i = 1; i < nunits; i++)
6512 /* Create: new_name_i = new_name + step_expr */
6513 new_name = gimple_build (&stmts, PLUS_EXPR, TREE_TYPE (new_name),
6514 new_name, step_expr);
6515 if (!is_gimple_min_invariant (new_name))
6516 constant_p = false;
6517 CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, new_name);
6519 if (stmts)
6521 new_bb = gsi_insert_seq_on_edge_immediate (pe, stmts);
6522 gcc_assert (!new_bb);
6525 /* Create a vector from [new_name_0, new_name_1, ..., new_name_nunits-1] */
6526 if (constant_p)
6527 new_vec = build_vector_from_ctor (vectype, v);
6528 else
6529 new_vec = build_constructor (vectype, v);
6530 vec_init = vect_init_vector (phi, new_vec, vectype, NULL);
6534 /* Create the vector that holds the step of the induction. */
6535 if (nested_in_vect_loop)
6536 /* iv_loop is nested in the loop to be vectorized. Generate:
6537 vec_step = [S, S, S, S] */
6538 new_name = step_expr;
6539 else
6541 /* iv_loop is the loop to be vectorized. Generate:
6542 vec_step = [VF*S, VF*S, VF*S, VF*S] */
6543 if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (step_expr)))
6545 expr = build_int_cst (integer_type_node, vf);
6546 expr = fold_convert (TREE_TYPE (step_expr), expr);
6548 else
6549 expr = build_int_cst (TREE_TYPE (step_expr), vf);
6550 new_name = fold_build2 (MULT_EXPR, TREE_TYPE (step_expr),
6551 expr, step_expr);
6552 if (TREE_CODE (step_expr) == SSA_NAME)
6553 new_name = vect_init_vector (phi, new_name,
6554 TREE_TYPE (step_expr), NULL);
6557 t = unshare_expr (new_name);
6558 gcc_assert (CONSTANT_CLASS_P (new_name)
6559 || TREE_CODE (new_name) == SSA_NAME);
6560 new_vec = build_vector_from_val (vectype, t);
6561 vec_step = vect_init_vector (phi, new_vec, vectype, NULL);
6564 /* Create the following def-use cycle:
6565 loop prolog:
6566 vec_init = ...
6567 vec_step = ...
6568 loop:
6569 vec_iv = PHI <vec_init, vec_loop>
6571 STMT
6573 vec_loop = vec_iv + vec_step; */
6575 /* Create the induction-phi that defines the induction-operand. */
6576 vec_dest = vect_get_new_vect_var (vectype, vect_simple_var, "vec_iv_");
6577 induction_phi = create_phi_node (vec_dest, iv_loop->header);
6578 set_vinfo_for_stmt (induction_phi,
6579 new_stmt_vec_info (induction_phi, loop_vinfo));
6580 induc_def = PHI_RESULT (induction_phi);
6582 /* Create the iv update inside the loop */
6583 vec_def = make_ssa_name (vec_dest);
6584 new_stmt = gimple_build_assign (vec_def, PLUS_EXPR, induc_def, vec_step);
6585 gsi_insert_before (&si, new_stmt, GSI_SAME_STMT);
6586 set_vinfo_for_stmt (new_stmt, new_stmt_vec_info (new_stmt, loop_vinfo));
6588 /* Set the arguments of the phi node: */
6589 add_phi_arg (induction_phi, vec_init, pe, UNKNOWN_LOCATION);
6590 add_phi_arg (induction_phi, vec_def, loop_latch_edge (iv_loop),
6591 UNKNOWN_LOCATION);
6593 STMT_VINFO_VEC_STMT (stmt_info) = *vec_stmt = induction_phi;
6595 /* In case that vectorization factor (VF) is bigger than the number
6596 of elements that we can fit in a vectype (nunits), we have to generate
6597 more than one vector stmt - i.e - we need to "unroll" the
6598 vector stmt by a factor VF/nunits. For more details see documentation
6599 in vectorizable_operation. */
6601 if (ncopies > 1)
6603 stmt_vec_info prev_stmt_vinfo;
6604 /* FORNOW. This restriction should be relaxed. */
6605 gcc_assert (!nested_in_vect_loop);
6607 /* Create the vector that holds the step of the induction. */
6608 if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (step_expr)))
6610 expr = build_int_cst (integer_type_node, nunits);
6611 expr = fold_convert (TREE_TYPE (step_expr), expr);
6613 else
6614 expr = build_int_cst (TREE_TYPE (step_expr), nunits);
6615 new_name = fold_build2 (MULT_EXPR, TREE_TYPE (step_expr),
6616 expr, step_expr);
6617 if (TREE_CODE (step_expr) == SSA_NAME)
6618 new_name = vect_init_vector (phi, new_name,
6619 TREE_TYPE (step_expr), NULL);
6620 t = unshare_expr (new_name);
6621 gcc_assert (CONSTANT_CLASS_P (new_name)
6622 || TREE_CODE (new_name) == SSA_NAME);
6623 new_vec = build_vector_from_val (vectype, t);
6624 vec_step = vect_init_vector (phi, new_vec, vectype, NULL);
6626 vec_def = induc_def;
6627 prev_stmt_vinfo = vinfo_for_stmt (induction_phi);
6628 for (i = 1; i < ncopies; i++)
6630 /* vec_i = vec_prev + vec_step */
6631 new_stmt = gimple_build_assign (vec_dest, PLUS_EXPR,
6632 vec_def, vec_step);
6633 vec_def = make_ssa_name (vec_dest, new_stmt);
6634 gimple_assign_set_lhs (new_stmt, vec_def);
6636 gsi_insert_before (&si, new_stmt, GSI_SAME_STMT);
6637 set_vinfo_for_stmt (new_stmt,
6638 new_stmt_vec_info (new_stmt, loop_vinfo));
6639 STMT_VINFO_RELATED_STMT (prev_stmt_vinfo) = new_stmt;
6640 prev_stmt_vinfo = vinfo_for_stmt (new_stmt);
6644 if (nested_in_vect_loop)
6646 /* Find the loop-closed exit-phi of the induction, and record
6647 the final vector of induction results: */
6648 exit_phi = NULL;
6649 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, loop_arg)
6651 gimple *use_stmt = USE_STMT (use_p);
6652 if (is_gimple_debug (use_stmt))
6653 continue;
6655 if (!flow_bb_inside_loop_p (iv_loop, gimple_bb (use_stmt)))
6657 exit_phi = use_stmt;
6658 break;
6661 if (exit_phi)
6663 stmt_vec_info stmt_vinfo = vinfo_for_stmt (exit_phi);
6664 /* FORNOW. Currently not supporting the case that an inner-loop induction
6665 is not used in the outer-loop (i.e. only outside the outer-loop). */
6666 gcc_assert (STMT_VINFO_RELEVANT_P (stmt_vinfo)
6667 && !STMT_VINFO_LIVE_P (stmt_vinfo));
6669 STMT_VINFO_VEC_STMT (stmt_vinfo) = new_stmt;
6670 if (dump_enabled_p ())
6672 dump_printf_loc (MSG_NOTE, vect_location,
6673 "vector of inductions after inner-loop:");
6674 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, new_stmt, 0);
6680 if (dump_enabled_p ())
6682 dump_printf_loc (MSG_NOTE, vect_location,
6683 "transform induction: created def-use cycle: ");
6684 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, induction_phi, 0);
6685 dump_gimple_stmt (MSG_NOTE, TDF_SLIM,
6686 SSA_NAME_DEF_STMT (vec_def), 0);
6689 return true;
6692 /* Function vectorizable_live_operation.
6694 STMT computes a value that is used outside the loop. Check if
6695 it can be supported. */
6697 bool
6698 vectorizable_live_operation (gimple *stmt,
6699 gimple_stmt_iterator *gsi ATTRIBUTE_UNUSED,
6700 slp_tree slp_node, int slp_index,
6701 gimple **vec_stmt)
6703 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
6704 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
6705 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
6706 imm_use_iterator imm_iter;
6707 tree lhs, lhs_type, bitsize, vec_bitsize;
6708 tree vectype = STMT_VINFO_VECTYPE (stmt_info);
6709 int nunits = TYPE_VECTOR_SUBPARTS (vectype);
6710 int ncopies = LOOP_VINFO_VECT_FACTOR (loop_vinfo) / nunits;
6711 gimple *use_stmt;
6712 auto_vec<tree> vec_oprnds;
6714 gcc_assert (STMT_VINFO_LIVE_P (stmt_info));
6716 if (STMT_VINFO_DEF_TYPE (stmt_info) == vect_reduction_def)
6717 return false;
6719 /* FORNOW. CHECKME. */
6720 if (nested_in_vect_loop_p (loop, stmt))
6721 return false;
6723 /* If STMT is not relevant and it is a simple assignment and its inputs are
6724 invariant then it can remain in place, unvectorized. The original last
6725 scalar value that it computes will be used. */
6726 if (!STMT_VINFO_RELEVANT_P (stmt_info))
6728 gcc_assert (is_simple_and_all_uses_invariant (stmt, loop_vinfo));
6729 if (dump_enabled_p ())
6730 dump_printf_loc (MSG_NOTE, vect_location,
6731 "statement is simple and uses invariant. Leaving in "
6732 "place.\n");
6733 return true;
6736 if (!vec_stmt)
6737 /* No transformation required. */
6738 return true;
6740 /* If stmt has a related stmt, then use that for getting the lhs. */
6741 if (is_pattern_stmt_p (stmt_info))
6742 stmt = STMT_VINFO_RELATED_STMT (stmt_info);
6744 lhs = (is_a <gphi *> (stmt)) ? gimple_phi_result (stmt)
6745 : gimple_get_lhs (stmt);
6746 lhs_type = TREE_TYPE (lhs);
6748 bitsize = TYPE_SIZE (TREE_TYPE (vectype));
6749 vec_bitsize = TYPE_SIZE (vectype);
6751 /* Get the vectorized lhs of STMT and the lane to use (counted in bits). */
6752 tree vec_lhs, bitstart;
6753 if (slp_node)
6755 gcc_assert (slp_index >= 0);
6757 int num_scalar = SLP_TREE_SCALAR_STMTS (slp_node).length ();
6758 int num_vec = SLP_TREE_NUMBER_OF_VEC_STMTS (slp_node);
6760 /* Get the last occurrence of the scalar index from the concatenation of
6761 all the slp vectors. Calculate which slp vector it is and the index
6762 within. */
6763 int pos = (num_vec * nunits) - num_scalar + slp_index;
6764 int vec_entry = pos / nunits;
6765 int vec_index = pos % nunits;
6767 /* Get the correct slp vectorized stmt. */
6768 vec_lhs = gimple_get_lhs (SLP_TREE_VEC_STMTS (slp_node)[vec_entry]);
6770 /* Get entry to use. */
6771 bitstart = build_int_cst (unsigned_type_node, vec_index);
6772 bitstart = int_const_binop (MULT_EXPR, bitsize, bitstart);
6774 else
6776 enum vect_def_type dt = STMT_VINFO_DEF_TYPE (stmt_info);
6777 vec_lhs = vect_get_vec_def_for_operand_1 (stmt, dt);
6779 /* For multiple copies, get the last copy. */
6780 for (int i = 1; i < ncopies; ++i)
6781 vec_lhs = vect_get_vec_def_for_stmt_copy (vect_unknown_def_type,
6782 vec_lhs);
6784 /* Get the last lane in the vector. */
6785 bitstart = int_const_binop (MINUS_EXPR, vec_bitsize, bitsize);
6788 /* Create a new vectorized stmt for the uses of STMT and insert outside the
6789 loop. */
6790 gimple_seq stmts = NULL;
6791 tree bftype = TREE_TYPE (vectype);
6792 if (VECTOR_BOOLEAN_TYPE_P (vectype))
6793 bftype = build_nonstandard_integer_type (tree_to_uhwi (bitsize), 1);
6794 tree new_tree = build3 (BIT_FIELD_REF, bftype, vec_lhs, bitsize, bitstart);
6795 new_tree = force_gimple_operand (fold_convert (lhs_type, new_tree), &stmts,
6796 true, NULL_TREE);
6797 if (stmts)
6798 gsi_insert_seq_on_edge_immediate (single_exit (loop), stmts);
6800 /* Replace use of lhs with newly computed result. If the use stmt is a
6801 single arg PHI, just replace all uses of PHI result. It's necessary
6802 because lcssa PHI defining lhs may be before newly inserted stmt. */
6803 use_operand_p use_p;
6804 FOR_EACH_IMM_USE_STMT (use_stmt, imm_iter, lhs)
6805 if (!flow_bb_inside_loop_p (loop, gimple_bb (use_stmt))
6806 && !is_gimple_debug (use_stmt))
6808 if (gimple_code (use_stmt) == GIMPLE_PHI
6809 && gimple_phi_num_args (use_stmt) == 1)
6811 replace_uses_by (gimple_phi_result (use_stmt), new_tree);
6813 else
6815 FOR_EACH_IMM_USE_ON_STMT (use_p, imm_iter)
6816 SET_USE (use_p, new_tree);
6818 update_stmt (use_stmt);
6821 return true;
6824 /* Kill any debug uses outside LOOP of SSA names defined in STMT. */
6826 static void
6827 vect_loop_kill_debug_uses (struct loop *loop, gimple *stmt)
6829 ssa_op_iter op_iter;
6830 imm_use_iterator imm_iter;
6831 def_operand_p def_p;
6832 gimple *ustmt;
6834 FOR_EACH_PHI_OR_STMT_DEF (def_p, stmt, op_iter, SSA_OP_DEF)
6836 FOR_EACH_IMM_USE_STMT (ustmt, imm_iter, DEF_FROM_PTR (def_p))
6838 basic_block bb;
6840 if (!is_gimple_debug (ustmt))
6841 continue;
6843 bb = gimple_bb (ustmt);
6845 if (!flow_bb_inside_loop_p (loop, bb))
6847 if (gimple_debug_bind_p (ustmt))
6849 if (dump_enabled_p ())
6850 dump_printf_loc (MSG_NOTE, vect_location,
6851 "killing debug use\n");
6853 gimple_debug_bind_reset_value (ustmt);
6854 update_stmt (ustmt);
6856 else
6857 gcc_unreachable ();
6863 /* Given loop represented by LOOP_VINFO, return true if computation of
6864 LOOP_VINFO_NITERS (= LOOP_VINFO_NITERSM1 + 1) doesn't overflow, false
6865 otherwise. */
6867 static bool
6868 loop_niters_no_overflow (loop_vec_info loop_vinfo)
6870 /* Constant case. */
6871 if (LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo))
6873 tree cst_niters = LOOP_VINFO_NITERS (loop_vinfo);
6874 tree cst_nitersm1 = LOOP_VINFO_NITERSM1 (loop_vinfo);
6876 gcc_assert (TREE_CODE (cst_niters) == INTEGER_CST);
6877 gcc_assert (TREE_CODE (cst_nitersm1) == INTEGER_CST);
6878 if (wi::to_widest (cst_nitersm1) < wi::to_widest (cst_niters))
6879 return true;
6882 widest_int max;
6883 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
6884 /* Check the upper bound of loop niters. */
6885 if (get_max_loop_iterations (loop, &max))
6887 tree type = TREE_TYPE (LOOP_VINFO_NITERS (loop_vinfo));
6888 signop sgn = TYPE_SIGN (type);
6889 widest_int type_max = widest_int::from (wi::max_value (type), sgn);
6890 if (max < type_max)
6891 return true;
6893 return false;
6896 /* Scale profiling counters by estimation for LOOP which is vectorized
6897 by factor VF. */
6899 static void
6900 scale_profile_for_vect_loop (struct loop *loop, unsigned vf)
6902 edge preheader = loop_preheader_edge (loop);
6903 /* Reduce loop iterations by the vectorization factor. */
6904 gcov_type new_est_niter = niter_for_unrolled_loop (loop, vf);
6905 profile_count freq_h = loop->header->count, freq_e = preheader->count;
6907 /* Use frequency only if counts are zero. */
6908 if (!(freq_h > 0) && !(freq_e > 0))
6910 freq_h = profile_count::from_gcov_type (loop->header->frequency);
6911 freq_e = profile_count::from_gcov_type (EDGE_FREQUENCY (preheader));
6913 if (freq_h > 0)
6915 gcov_type scale;
6917 /* Avoid dropping loop body profile counter to 0 because of zero count
6918 in loop's preheader. */
6919 if (!(freq_e > profile_count::from_gcov_type (1)))
6920 freq_e = profile_count::from_gcov_type (1);
6921 /* This should not overflow. */
6922 scale = freq_e.apply_scale (new_est_niter + 1, 1).probability_in (freq_h);
6923 scale_loop_frequencies (loop, scale, REG_BR_PROB_BASE);
6926 basic_block exit_bb = single_pred (loop->latch);
6927 edge exit_e = single_exit (loop);
6928 exit_e->count = loop_preheader_edge (loop)->count;
6929 exit_e->probability = REG_BR_PROB_BASE / (new_est_niter + 1);
6931 edge exit_l = single_pred_edge (loop->latch);
6932 int prob = exit_l->probability;
6933 exit_l->probability = REG_BR_PROB_BASE - exit_e->probability;
6934 exit_l->count = exit_bb->count - exit_e->count;
6935 if (prob > 0)
6936 scale_bbs_frequencies_int (&loop->latch, 1, exit_l->probability, prob);
6939 /* Function vect_transform_loop.
6941 The analysis phase has determined that the loop is vectorizable.
6942 Vectorize the loop - created vectorized stmts to replace the scalar
6943 stmts in the loop, and update the loop exit condition.
6944 Returns scalar epilogue loop if any. */
6946 struct loop *
6947 vect_transform_loop (loop_vec_info loop_vinfo)
6949 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
6950 struct loop *epilogue = NULL;
6951 basic_block *bbs = LOOP_VINFO_BBS (loop_vinfo);
6952 int nbbs = loop->num_nodes;
6953 int i;
6954 tree niters_vector = NULL;
6955 int vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
6956 bool grouped_store;
6957 bool slp_scheduled = false;
6958 gimple *stmt, *pattern_stmt;
6959 gimple_seq pattern_def_seq = NULL;
6960 gimple_stmt_iterator pattern_def_si = gsi_none ();
6961 bool transform_pattern_stmt = false;
6962 bool check_profitability = false;
6963 int th;
6965 if (dump_enabled_p ())
6966 dump_printf_loc (MSG_NOTE, vect_location, "=== vec_transform_loop ===\n");
6968 /* Use the more conservative vectorization threshold. If the number
6969 of iterations is constant assume the cost check has been performed
6970 by our caller. If the threshold makes all loops profitable that
6971 run at least the vectorization factor number of times checking
6972 is pointless, too. */
6973 th = LOOP_VINFO_COST_MODEL_THRESHOLD (loop_vinfo);
6974 if (th >= LOOP_VINFO_VECT_FACTOR (loop_vinfo) - 1
6975 && !LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo))
6977 if (dump_enabled_p ())
6978 dump_printf_loc (MSG_NOTE, vect_location,
6979 "Profitability threshold is %d loop iterations.\n",
6980 th);
6981 check_profitability = true;
6984 /* Make sure there exists a single-predecessor exit bb. Do this before
6985 versioning. */
6986 edge e = single_exit (loop);
6987 if (! single_pred_p (e->dest))
6989 split_loop_exit_edge (e);
6990 if (dump_enabled_p ())
6991 dump_printf (MSG_NOTE, "split exit edge\n");
6994 /* Version the loop first, if required, so the profitability check
6995 comes first. */
6997 if (LOOP_REQUIRES_VERSIONING (loop_vinfo))
6999 vect_loop_versioning (loop_vinfo, th, check_profitability);
7000 check_profitability = false;
7003 /* Make sure there exists a single-predecessor exit bb also on the
7004 scalar loop copy. Do this after versioning but before peeling
7005 so CFG structure is fine for both scalar and if-converted loop
7006 to make slpeel_duplicate_current_defs_from_edges face matched
7007 loop closed PHI nodes on the exit. */
7008 if (LOOP_VINFO_SCALAR_LOOP (loop_vinfo))
7010 e = single_exit (LOOP_VINFO_SCALAR_LOOP (loop_vinfo));
7011 if (! single_pred_p (e->dest))
7013 split_loop_exit_edge (e);
7014 if (dump_enabled_p ())
7015 dump_printf (MSG_NOTE, "split exit edge of scalar loop\n");
7019 tree niters = vect_build_loop_niters (loop_vinfo);
7020 LOOP_VINFO_NITERS_UNCHANGED (loop_vinfo) = niters;
7021 tree nitersm1 = unshare_expr (LOOP_VINFO_NITERSM1 (loop_vinfo));
7022 bool niters_no_overflow = loop_niters_no_overflow (loop_vinfo);
7023 epilogue = vect_do_peeling (loop_vinfo, niters, nitersm1, &niters_vector, th,
7024 check_profitability, niters_no_overflow);
7025 if (niters_vector == NULL_TREE)
7027 if (LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo))
7028 niters_vector
7029 = build_int_cst (TREE_TYPE (LOOP_VINFO_NITERS (loop_vinfo)),
7030 LOOP_VINFO_INT_NITERS (loop_vinfo) / vf);
7031 else
7032 vect_gen_vector_loop_niters (loop_vinfo, niters, &niters_vector,
7033 niters_no_overflow);
7036 /* 1) Make sure the loop header has exactly two entries
7037 2) Make sure we have a preheader basic block. */
7039 gcc_assert (EDGE_COUNT (loop->header->preds) == 2);
7041 split_edge (loop_preheader_edge (loop));
7043 /* FORNOW: the vectorizer supports only loops which body consist
7044 of one basic block (header + empty latch). When the vectorizer will
7045 support more involved loop forms, the order by which the BBs are
7046 traversed need to be reconsidered. */
7048 for (i = 0; i < nbbs; i++)
7050 basic_block bb = bbs[i];
7051 stmt_vec_info stmt_info;
7053 for (gphi_iterator si = gsi_start_phis (bb); !gsi_end_p (si);
7054 gsi_next (&si))
7056 gphi *phi = si.phi ();
7057 if (dump_enabled_p ())
7059 dump_printf_loc (MSG_NOTE, vect_location,
7060 "------>vectorizing phi: ");
7061 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, phi, 0);
7063 stmt_info = vinfo_for_stmt (phi);
7064 if (!stmt_info)
7065 continue;
7067 if (MAY_HAVE_DEBUG_STMTS && !STMT_VINFO_LIVE_P (stmt_info))
7068 vect_loop_kill_debug_uses (loop, phi);
7070 if (!STMT_VINFO_RELEVANT_P (stmt_info)
7071 && !STMT_VINFO_LIVE_P (stmt_info))
7072 continue;
7074 if (STMT_VINFO_VECTYPE (stmt_info)
7075 && (TYPE_VECTOR_SUBPARTS (STMT_VINFO_VECTYPE (stmt_info))
7076 != (unsigned HOST_WIDE_INT) vf)
7077 && dump_enabled_p ())
7078 dump_printf_loc (MSG_NOTE, vect_location, "multiple-types.\n");
7080 if (STMT_VINFO_DEF_TYPE (stmt_info) == vect_induction_def
7081 && ! PURE_SLP_STMT (stmt_info))
7083 if (dump_enabled_p ())
7084 dump_printf_loc (MSG_NOTE, vect_location, "transform phi.\n");
7085 vect_transform_stmt (phi, NULL, NULL, NULL, NULL);
7089 pattern_stmt = NULL;
7090 for (gimple_stmt_iterator si = gsi_start_bb (bb);
7091 !gsi_end_p (si) || transform_pattern_stmt;)
7093 bool is_store;
7095 if (transform_pattern_stmt)
7096 stmt = pattern_stmt;
7097 else
7099 stmt = gsi_stmt (si);
7100 /* During vectorization remove existing clobber stmts. */
7101 if (gimple_clobber_p (stmt))
7103 unlink_stmt_vdef (stmt);
7104 gsi_remove (&si, true);
7105 release_defs (stmt);
7106 continue;
7110 if (dump_enabled_p ())
7112 dump_printf_loc (MSG_NOTE, vect_location,
7113 "------>vectorizing statement: ");
7114 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, stmt, 0);
7117 stmt_info = vinfo_for_stmt (stmt);
7119 /* vector stmts created in the outer-loop during vectorization of
7120 stmts in an inner-loop may not have a stmt_info, and do not
7121 need to be vectorized. */
7122 if (!stmt_info)
7124 gsi_next (&si);
7125 continue;
7128 if (MAY_HAVE_DEBUG_STMTS && !STMT_VINFO_LIVE_P (stmt_info))
7129 vect_loop_kill_debug_uses (loop, stmt);
7131 if (!STMT_VINFO_RELEVANT_P (stmt_info)
7132 && !STMT_VINFO_LIVE_P (stmt_info))
7134 if (STMT_VINFO_IN_PATTERN_P (stmt_info)
7135 && (pattern_stmt = STMT_VINFO_RELATED_STMT (stmt_info))
7136 && (STMT_VINFO_RELEVANT_P (vinfo_for_stmt (pattern_stmt))
7137 || STMT_VINFO_LIVE_P (vinfo_for_stmt (pattern_stmt))))
7139 stmt = pattern_stmt;
7140 stmt_info = vinfo_for_stmt (stmt);
7142 else
7144 gsi_next (&si);
7145 continue;
7148 else if (STMT_VINFO_IN_PATTERN_P (stmt_info)
7149 && (pattern_stmt = STMT_VINFO_RELATED_STMT (stmt_info))
7150 && (STMT_VINFO_RELEVANT_P (vinfo_for_stmt (pattern_stmt))
7151 || STMT_VINFO_LIVE_P (vinfo_for_stmt (pattern_stmt))))
7152 transform_pattern_stmt = true;
7154 /* If pattern statement has def stmts, vectorize them too. */
7155 if (is_pattern_stmt_p (stmt_info))
7157 if (pattern_def_seq == NULL)
7159 pattern_def_seq = STMT_VINFO_PATTERN_DEF_SEQ (stmt_info);
7160 pattern_def_si = gsi_start (pattern_def_seq);
7162 else if (!gsi_end_p (pattern_def_si))
7163 gsi_next (&pattern_def_si);
7164 if (pattern_def_seq != NULL)
7166 gimple *pattern_def_stmt = NULL;
7167 stmt_vec_info pattern_def_stmt_info = NULL;
7169 while (!gsi_end_p (pattern_def_si))
7171 pattern_def_stmt = gsi_stmt (pattern_def_si);
7172 pattern_def_stmt_info
7173 = vinfo_for_stmt (pattern_def_stmt);
7174 if (STMT_VINFO_RELEVANT_P (pattern_def_stmt_info)
7175 || STMT_VINFO_LIVE_P (pattern_def_stmt_info))
7176 break;
7177 gsi_next (&pattern_def_si);
7180 if (!gsi_end_p (pattern_def_si))
7182 if (dump_enabled_p ())
7184 dump_printf_loc (MSG_NOTE, vect_location,
7185 "==> vectorizing pattern def "
7186 "stmt: ");
7187 dump_gimple_stmt (MSG_NOTE, TDF_SLIM,
7188 pattern_def_stmt, 0);
7191 stmt = pattern_def_stmt;
7192 stmt_info = pattern_def_stmt_info;
7194 else
7196 pattern_def_si = gsi_none ();
7197 transform_pattern_stmt = false;
7200 else
7201 transform_pattern_stmt = false;
7204 if (STMT_VINFO_VECTYPE (stmt_info))
7206 unsigned int nunits
7207 = (unsigned int)
7208 TYPE_VECTOR_SUBPARTS (STMT_VINFO_VECTYPE (stmt_info));
7209 if (!STMT_SLP_TYPE (stmt_info)
7210 && nunits != (unsigned int) vf
7211 && dump_enabled_p ())
7212 /* For SLP VF is set according to unrolling factor, and not
7213 to vector size, hence for SLP this print is not valid. */
7214 dump_printf_loc (MSG_NOTE, vect_location, "multiple-types.\n");
7217 /* SLP. Schedule all the SLP instances when the first SLP stmt is
7218 reached. */
7219 if (STMT_SLP_TYPE (stmt_info))
7221 if (!slp_scheduled)
7223 slp_scheduled = true;
7225 if (dump_enabled_p ())
7226 dump_printf_loc (MSG_NOTE, vect_location,
7227 "=== scheduling SLP instances ===\n");
7229 vect_schedule_slp (loop_vinfo);
7232 /* Hybrid SLP stmts must be vectorized in addition to SLP. */
7233 if (!vinfo_for_stmt (stmt) || PURE_SLP_STMT (stmt_info))
7235 if (!transform_pattern_stmt && gsi_end_p (pattern_def_si))
7237 pattern_def_seq = NULL;
7238 gsi_next (&si);
7240 continue;
7244 /* -------- vectorize statement ------------ */
7245 if (dump_enabled_p ())
7246 dump_printf_loc (MSG_NOTE, vect_location, "transform statement.\n");
7248 grouped_store = false;
7249 is_store = vect_transform_stmt (stmt, &si, &grouped_store, NULL, NULL);
7250 if (is_store)
7252 if (STMT_VINFO_GROUPED_ACCESS (stmt_info))
7254 /* Interleaving. If IS_STORE is TRUE, the vectorization of the
7255 interleaving chain was completed - free all the stores in
7256 the chain. */
7257 gsi_next (&si);
7258 vect_remove_stores (GROUP_FIRST_ELEMENT (stmt_info));
7260 else
7262 /* Free the attached stmt_vec_info and remove the stmt. */
7263 gimple *store = gsi_stmt (si);
7264 free_stmt_vec_info (store);
7265 unlink_stmt_vdef (store);
7266 gsi_remove (&si, true);
7267 release_defs (store);
7270 /* Stores can only appear at the end of pattern statements. */
7271 gcc_assert (!transform_pattern_stmt);
7272 pattern_def_seq = NULL;
7274 else if (!transform_pattern_stmt && gsi_end_p (pattern_def_si))
7276 pattern_def_seq = NULL;
7277 gsi_next (&si);
7279 } /* stmts in BB */
7280 } /* BBs in loop */
7282 slpeel_make_loop_iterate_ntimes (loop, niters_vector);
7284 scale_profile_for_vect_loop (loop, vf);
7286 /* The minimum number of iterations performed by the epilogue. This
7287 is 1 when peeling for gaps because we always need a final scalar
7288 iteration. */
7289 int min_epilogue_iters = LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo) ? 1 : 0;
7290 /* +1 to convert latch counts to loop iteration counts,
7291 -min_epilogue_iters to remove iterations that cannot be performed
7292 by the vector code. */
7293 int bias = 1 - min_epilogue_iters;
7294 /* In these calculations the "- 1" converts loop iteration counts
7295 back to latch counts. */
7296 if (loop->any_upper_bound)
7297 loop->nb_iterations_upper_bound
7298 = wi::udiv_floor (loop->nb_iterations_upper_bound + bias, vf) - 1;
7299 if (loop->any_likely_upper_bound)
7300 loop->nb_iterations_likely_upper_bound
7301 = wi::udiv_floor (loop->nb_iterations_likely_upper_bound + bias, vf) - 1;
7302 if (loop->any_estimate)
7303 loop->nb_iterations_estimate
7304 = wi::udiv_floor (loop->nb_iterations_estimate + bias, vf) - 1;
7306 if (dump_enabled_p ())
7308 if (!LOOP_VINFO_EPILOGUE_P (loop_vinfo))
7310 dump_printf_loc (MSG_NOTE, vect_location,
7311 "LOOP VECTORIZED\n");
7312 if (loop->inner)
7313 dump_printf_loc (MSG_NOTE, vect_location,
7314 "OUTER LOOP VECTORIZED\n");
7315 dump_printf (MSG_NOTE, "\n");
7317 else
7318 dump_printf_loc (MSG_NOTE, vect_location,
7319 "LOOP EPILOGUE VECTORIZED (VS=%d)\n",
7320 current_vector_size);
7323 /* Free SLP instances here because otherwise stmt reference counting
7324 won't work. */
7325 slp_instance instance;
7326 FOR_EACH_VEC_ELT (LOOP_VINFO_SLP_INSTANCES (loop_vinfo), i, instance)
7327 vect_free_slp_instance (instance);
7328 LOOP_VINFO_SLP_INSTANCES (loop_vinfo).release ();
7329 /* Clear-up safelen field since its value is invalid after vectorization
7330 since vectorized loop can have loop-carried dependencies. */
7331 loop->safelen = 0;
7333 /* Don't vectorize epilogue for epilogue. */
7334 if (LOOP_VINFO_EPILOGUE_P (loop_vinfo))
7335 epilogue = NULL;
7337 if (epilogue)
7339 unsigned int vector_sizes
7340 = targetm.vectorize.autovectorize_vector_sizes ();
7341 vector_sizes &= current_vector_size - 1;
7343 if (!PARAM_VALUE (PARAM_VECT_EPILOGUES_NOMASK))
7344 epilogue = NULL;
7345 else if (!vector_sizes)
7346 epilogue = NULL;
7347 else if (LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
7348 && LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo) >= 0)
7350 int smallest_vec_size = 1 << ctz_hwi (vector_sizes);
7351 int ratio = current_vector_size / smallest_vec_size;
7352 int eiters = LOOP_VINFO_INT_NITERS (loop_vinfo)
7353 - LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo);
7354 eiters = eiters % vf;
7356 epilogue->nb_iterations_upper_bound = eiters - 1;
7358 if (eiters < vf / ratio)
7359 epilogue = NULL;
7363 if (epilogue)
7365 epilogue->force_vectorize = loop->force_vectorize;
7366 epilogue->safelen = loop->safelen;
7367 epilogue->dont_vectorize = false;
7369 /* We may need to if-convert epilogue to vectorize it. */
7370 if (LOOP_VINFO_SCALAR_LOOP (loop_vinfo))
7371 tree_if_conversion (epilogue);
7374 return epilogue;
7377 /* The code below is trying to perform simple optimization - revert
7378 if-conversion for masked stores, i.e. if the mask of a store is zero
7379 do not perform it and all stored value producers also if possible.
7380 For example,
7381 for (i=0; i<n; i++)
7382 if (c[i])
7384 p1[i] += 1;
7385 p2[i] = p3[i] +2;
7387 this transformation will produce the following semi-hammock:
7389 if (!mask__ifc__42.18_165 == { 0, 0, 0, 0, 0, 0, 0, 0 })
7391 vect__11.19_170 = MASK_LOAD (vectp_p1.20_168, 0B, mask__ifc__42.18_165);
7392 vect__12.22_172 = vect__11.19_170 + vect_cst__171;
7393 MASK_STORE (vectp_p1.23_175, 0B, mask__ifc__42.18_165, vect__12.22_172);
7394 vect__18.25_182 = MASK_LOAD (vectp_p3.26_180, 0B, mask__ifc__42.18_165);
7395 vect__19.28_184 = vect__18.25_182 + vect_cst__183;
7396 MASK_STORE (vectp_p2.29_187, 0B, mask__ifc__42.18_165, vect__19.28_184);
7400 void
7401 optimize_mask_stores (struct loop *loop)
7403 basic_block *bbs = get_loop_body (loop);
7404 unsigned nbbs = loop->num_nodes;
7405 unsigned i;
7406 basic_block bb;
7407 struct loop *bb_loop;
7408 gimple_stmt_iterator gsi;
7409 gimple *stmt;
7410 auto_vec<gimple *> worklist;
7412 vect_location = find_loop_location (loop);
7413 /* Pick up all masked stores in loop if any. */
7414 for (i = 0; i < nbbs; i++)
7416 bb = bbs[i];
7417 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi);
7418 gsi_next (&gsi))
7420 stmt = gsi_stmt (gsi);
7421 if (gimple_call_internal_p (stmt, IFN_MASK_STORE))
7422 worklist.safe_push (stmt);
7426 free (bbs);
7427 if (worklist.is_empty ())
7428 return;
7430 /* Loop has masked stores. */
7431 while (!worklist.is_empty ())
7433 gimple *last, *last_store;
7434 edge e, efalse;
7435 tree mask;
7436 basic_block store_bb, join_bb;
7437 gimple_stmt_iterator gsi_to;
7438 tree vdef, new_vdef;
7439 gphi *phi;
7440 tree vectype;
7441 tree zero;
7443 last = worklist.pop ();
7444 mask = gimple_call_arg (last, 2);
7445 bb = gimple_bb (last);
7446 /* Create then_bb and if-then structure in CFG, then_bb belongs to
7447 the same loop as if_bb. It could be different to LOOP when two
7448 level loop-nest is vectorized and mask_store belongs to the inner
7449 one. */
7450 e = split_block (bb, last);
7451 bb_loop = bb->loop_father;
7452 gcc_assert (loop == bb_loop || flow_loop_nested_p (loop, bb_loop));
7453 join_bb = e->dest;
7454 store_bb = create_empty_bb (bb);
7455 add_bb_to_loop (store_bb, bb_loop);
7456 e->flags = EDGE_TRUE_VALUE;
7457 efalse = make_edge (bb, store_bb, EDGE_FALSE_VALUE);
7458 /* Put STORE_BB to likely part. */
7459 efalse->probability = PROB_UNLIKELY;
7460 store_bb->frequency = PROB_ALWAYS - EDGE_FREQUENCY (efalse);
7461 make_edge (store_bb, join_bb, EDGE_FALLTHRU);
7462 if (dom_info_available_p (CDI_DOMINATORS))
7463 set_immediate_dominator (CDI_DOMINATORS, store_bb, bb);
7464 if (dump_enabled_p ())
7465 dump_printf_loc (MSG_NOTE, vect_location,
7466 "Create new block %d to sink mask stores.",
7467 store_bb->index);
7468 /* Create vector comparison with boolean result. */
7469 vectype = TREE_TYPE (mask);
7470 zero = build_zero_cst (vectype);
7471 stmt = gimple_build_cond (EQ_EXPR, mask, zero, NULL_TREE, NULL_TREE);
7472 gsi = gsi_last_bb (bb);
7473 gsi_insert_after (&gsi, stmt, GSI_SAME_STMT);
7474 /* Create new PHI node for vdef of the last masked store:
7475 .MEM_2 = VDEF <.MEM_1>
7476 will be converted to
7477 .MEM.3 = VDEF <.MEM_1>
7478 and new PHI node will be created in join bb
7479 .MEM_2 = PHI <.MEM_1, .MEM_3>
7481 vdef = gimple_vdef (last);
7482 new_vdef = make_ssa_name (gimple_vop (cfun), last);
7483 gimple_set_vdef (last, new_vdef);
7484 phi = create_phi_node (vdef, join_bb);
7485 add_phi_arg (phi, new_vdef, EDGE_SUCC (store_bb, 0), UNKNOWN_LOCATION);
7487 /* Put all masked stores with the same mask to STORE_BB if possible. */
7488 while (true)
7490 gimple_stmt_iterator gsi_from;
7491 gimple *stmt1 = NULL;
7493 /* Move masked store to STORE_BB. */
7494 last_store = last;
7495 gsi = gsi_for_stmt (last);
7496 gsi_from = gsi;
7497 /* Shift GSI to the previous stmt for further traversal. */
7498 gsi_prev (&gsi);
7499 gsi_to = gsi_start_bb (store_bb);
7500 gsi_move_before (&gsi_from, &gsi_to);
7501 /* Setup GSI_TO to the non-empty block start. */
7502 gsi_to = gsi_start_bb (store_bb);
7503 if (dump_enabled_p ())
7505 dump_printf_loc (MSG_NOTE, vect_location,
7506 "Move stmt to created bb\n");
7507 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, last, 0);
7509 /* Move all stored value producers if possible. */
7510 while (!gsi_end_p (gsi))
7512 tree lhs;
7513 imm_use_iterator imm_iter;
7514 use_operand_p use_p;
7515 bool res;
7517 /* Skip debug statements. */
7518 if (is_gimple_debug (gsi_stmt (gsi)))
7520 gsi_prev (&gsi);
7521 continue;
7523 stmt1 = gsi_stmt (gsi);
7524 /* Do not consider statements writing to memory or having
7525 volatile operand. */
7526 if (gimple_vdef (stmt1)
7527 || gimple_has_volatile_ops (stmt1))
7528 break;
7529 gsi_from = gsi;
7530 gsi_prev (&gsi);
7531 lhs = gimple_get_lhs (stmt1);
7532 if (!lhs)
7533 break;
7535 /* LHS of vectorized stmt must be SSA_NAME. */
7536 if (TREE_CODE (lhs) != SSA_NAME)
7537 break;
7539 if (!VECTOR_TYPE_P (TREE_TYPE (lhs)))
7541 /* Remove dead scalar statement. */
7542 if (has_zero_uses (lhs))
7544 gsi_remove (&gsi_from, true);
7545 continue;
7549 /* Check that LHS does not have uses outside of STORE_BB. */
7550 res = true;
7551 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, lhs)
7553 gimple *use_stmt;
7554 use_stmt = USE_STMT (use_p);
7555 if (is_gimple_debug (use_stmt))
7556 continue;
7557 if (gimple_bb (use_stmt) != store_bb)
7559 res = false;
7560 break;
7563 if (!res)
7564 break;
7566 if (gimple_vuse (stmt1)
7567 && gimple_vuse (stmt1) != gimple_vuse (last_store))
7568 break;
7570 /* Can move STMT1 to STORE_BB. */
7571 if (dump_enabled_p ())
7573 dump_printf_loc (MSG_NOTE, vect_location,
7574 "Move stmt to created bb\n");
7575 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, stmt1, 0);
7577 gsi_move_before (&gsi_from, &gsi_to);
7578 /* Shift GSI_TO for further insertion. */
7579 gsi_prev (&gsi_to);
7581 /* Put other masked stores with the same mask to STORE_BB. */
7582 if (worklist.is_empty ()
7583 || gimple_call_arg (worklist.last (), 2) != mask
7584 || worklist.last () != stmt1)
7585 break;
7586 last = worklist.pop ();
7588 add_phi_arg (phi, gimple_vuse (last_store), e, UNKNOWN_LOCATION);