libgo: add misc/cgo files
[official-gcc.git] / gcc / tree-vect-loop-manip.c
blobd60b84e60ef5478556e770a9e00ebe6e58a012b5
1 /* Vectorizer Specific Loop Manipulations
2 Copyright (C) 2003-2017 Free Software Foundation, Inc.
3 Contributed by Dorit Naishlos <dorit@il.ibm.com>
4 and Ira Rosen <irar@il.ibm.com>
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "backend.h"
26 #include "tree.h"
27 #include "gimple.h"
28 #include "cfghooks.h"
29 #include "tree-pass.h"
30 #include "ssa.h"
31 #include "fold-const.h"
32 #include "cfganal.h"
33 #include "gimplify.h"
34 #include "gimple-iterator.h"
35 #include "gimplify-me.h"
36 #include "tree-cfg.h"
37 #include "tree-ssa-loop-manip.h"
38 #include "tree-into-ssa.h"
39 #include "tree-ssa.h"
40 #include "cfgloop.h"
41 #include "tree-scalar-evolution.h"
42 #include "tree-vectorizer.h"
43 #include "tree-ssa-loop-ivopts.h"
45 /*************************************************************************
46 Simple Loop Peeling Utilities
48 Utilities to support loop peeling for vectorization purposes.
49 *************************************************************************/
52 /* Renames the use *OP_P. */
54 static void
55 rename_use_op (use_operand_p op_p)
57 tree new_name;
59 if (TREE_CODE (USE_FROM_PTR (op_p)) != SSA_NAME)
60 return;
62 new_name = get_current_def (USE_FROM_PTR (op_p));
64 /* Something defined outside of the loop. */
65 if (!new_name)
66 return;
68 /* An ordinary ssa name defined in the loop. */
70 SET_USE (op_p, new_name);
74 /* Renames the variables in basic block BB. Allow renaming of PHI arguments
75 on edges incoming from outer-block header if RENAME_FROM_OUTER_LOOP is
76 true. */
78 static void
79 rename_variables_in_bb (basic_block bb, bool rename_from_outer_loop)
81 gimple *stmt;
82 use_operand_p use_p;
83 ssa_op_iter iter;
84 edge e;
85 edge_iterator ei;
86 struct loop *loop = bb->loop_father;
87 struct loop *outer_loop = NULL;
89 if (rename_from_outer_loop)
91 gcc_assert (loop);
92 outer_loop = loop_outer (loop);
95 for (gimple_stmt_iterator gsi = gsi_start_bb (bb); !gsi_end_p (gsi);
96 gsi_next (&gsi))
98 stmt = gsi_stmt (gsi);
99 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_ALL_USES)
100 rename_use_op (use_p);
103 FOR_EACH_EDGE (e, ei, bb->preds)
105 if (!flow_bb_inside_loop_p (loop, e->src))
107 if (!rename_from_outer_loop)
108 continue;
109 if (e->src != outer_loop->header)
111 if (outer_loop->inner->next)
113 /* If outer_loop has 2 inner loops, allow there to
114 be an extra basic block which decides which of the
115 two loops to use using LOOP_VECTORIZED. */
116 if (!single_pred_p (e->src)
117 || single_pred (e->src) != outer_loop->header)
118 continue;
120 else
121 continue;
124 for (gphi_iterator gsi = gsi_start_phis (bb); !gsi_end_p (gsi);
125 gsi_next (&gsi))
126 rename_use_op (PHI_ARG_DEF_PTR_FROM_EDGE (gsi.phi (), e));
131 struct adjust_info
133 tree from, to;
134 basic_block bb;
137 /* A stack of values to be adjusted in debug stmts. We have to
138 process them LIFO, so that the closest substitution applies. If we
139 processed them FIFO, without the stack, we might substitute uses
140 with a PHI DEF that would soon become non-dominant, and when we got
141 to the suitable one, it wouldn't have anything to substitute any
142 more. */
143 static vec<adjust_info, va_heap> adjust_vec;
145 /* Adjust any debug stmts that referenced AI->from values to use the
146 loop-closed AI->to, if the references are dominated by AI->bb and
147 not by the definition of AI->from. */
149 static void
150 adjust_debug_stmts_now (adjust_info *ai)
152 basic_block bbphi = ai->bb;
153 tree orig_def = ai->from;
154 tree new_def = ai->to;
155 imm_use_iterator imm_iter;
156 gimple *stmt;
157 basic_block bbdef = gimple_bb (SSA_NAME_DEF_STMT (orig_def));
159 gcc_assert (dom_info_available_p (CDI_DOMINATORS));
161 /* Adjust any debug stmts that held onto non-loop-closed
162 references. */
163 FOR_EACH_IMM_USE_STMT (stmt, imm_iter, orig_def)
165 use_operand_p use_p;
166 basic_block bbuse;
168 if (!is_gimple_debug (stmt))
169 continue;
171 gcc_assert (gimple_debug_bind_p (stmt));
173 bbuse = gimple_bb (stmt);
175 if ((bbuse == bbphi
176 || dominated_by_p (CDI_DOMINATORS, bbuse, bbphi))
177 && !(bbuse == bbdef
178 || dominated_by_p (CDI_DOMINATORS, bbuse, bbdef)))
180 if (new_def)
181 FOR_EACH_IMM_USE_ON_STMT (use_p, imm_iter)
182 SET_USE (use_p, new_def);
183 else
185 gimple_debug_bind_reset_value (stmt);
186 update_stmt (stmt);
192 /* Adjust debug stmts as scheduled before. */
194 static void
195 adjust_vec_debug_stmts (void)
197 if (!MAY_HAVE_DEBUG_STMTS)
198 return;
200 gcc_assert (adjust_vec.exists ());
202 while (!adjust_vec.is_empty ())
204 adjust_debug_stmts_now (&adjust_vec.last ());
205 adjust_vec.pop ();
209 /* Adjust any debug stmts that referenced FROM values to use the
210 loop-closed TO, if the references are dominated by BB and not by
211 the definition of FROM. If adjust_vec is non-NULL, adjustments
212 will be postponed until adjust_vec_debug_stmts is called. */
214 static void
215 adjust_debug_stmts (tree from, tree to, basic_block bb)
217 adjust_info ai;
219 if (MAY_HAVE_DEBUG_STMTS
220 && TREE_CODE (from) == SSA_NAME
221 && ! SSA_NAME_IS_DEFAULT_DEF (from)
222 && ! virtual_operand_p (from))
224 ai.from = from;
225 ai.to = to;
226 ai.bb = bb;
228 if (adjust_vec.exists ())
229 adjust_vec.safe_push (ai);
230 else
231 adjust_debug_stmts_now (&ai);
235 /* Change E's phi arg in UPDATE_PHI to NEW_DEF, and record information
236 to adjust any debug stmts that referenced the old phi arg,
237 presumably non-loop-closed references left over from other
238 transformations. */
240 static void
241 adjust_phi_and_debug_stmts (gimple *update_phi, edge e, tree new_def)
243 tree orig_def = PHI_ARG_DEF_FROM_EDGE (update_phi, e);
245 SET_PHI_ARG_DEF (update_phi, e->dest_idx, new_def);
247 if (MAY_HAVE_DEBUG_STMTS)
248 adjust_debug_stmts (orig_def, PHI_RESULT (update_phi),
249 gimple_bb (update_phi));
252 /* Make the LOOP iterate NITERS times. This is done by adding a new IV
253 that starts at zero, increases by one and its limit is NITERS.
255 Assumption: the exit-condition of LOOP is the last stmt in the loop. */
257 void
258 slpeel_make_loop_iterate_ntimes (struct loop *loop, tree niters)
260 tree indx_before_incr, indx_after_incr;
261 gcond *cond_stmt;
262 gcond *orig_cond;
263 edge exit_edge = single_exit (loop);
264 gimple_stmt_iterator loop_cond_gsi;
265 gimple_stmt_iterator incr_gsi;
266 bool insert_after;
267 tree init = build_int_cst (TREE_TYPE (niters), 0);
268 tree step = build_int_cst (TREE_TYPE (niters), 1);
269 source_location loop_loc;
270 enum tree_code code;
272 orig_cond = get_loop_exit_condition (loop);
273 gcc_assert (orig_cond);
274 loop_cond_gsi = gsi_for_stmt (orig_cond);
276 standard_iv_increment_position (loop, &incr_gsi, &insert_after);
277 create_iv (init, step, NULL_TREE, loop,
278 &incr_gsi, insert_after, &indx_before_incr, &indx_after_incr);
280 indx_after_incr = force_gimple_operand_gsi (&loop_cond_gsi, indx_after_incr,
281 true, NULL_TREE, true,
282 GSI_SAME_STMT);
283 niters = force_gimple_operand_gsi (&loop_cond_gsi, niters, true, NULL_TREE,
284 true, GSI_SAME_STMT);
286 code = (exit_edge->flags & EDGE_TRUE_VALUE) ? GE_EXPR : LT_EXPR;
287 cond_stmt = gimple_build_cond (code, indx_after_incr, niters, NULL_TREE,
288 NULL_TREE);
290 gsi_insert_before (&loop_cond_gsi, cond_stmt, GSI_SAME_STMT);
292 /* Remove old loop exit test: */
293 gsi_remove (&loop_cond_gsi, true);
294 free_stmt_vec_info (orig_cond);
296 loop_loc = find_loop_location (loop);
297 if (dump_enabled_p ())
299 if (LOCATION_LOCUS (loop_loc) != UNKNOWN_LOCATION)
300 dump_printf (MSG_NOTE, "\nloop at %s:%d: ", LOCATION_FILE (loop_loc),
301 LOCATION_LINE (loop_loc));
302 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, cond_stmt, 0);
305 /* Record the number of latch iterations. */
306 loop->nb_iterations = fold_build2 (MINUS_EXPR, TREE_TYPE (niters), niters,
307 build_int_cst (TREE_TYPE (niters), 1));
310 /* Helper routine of slpeel_tree_duplicate_loop_to_edge_cfg.
311 For all PHI arguments in FROM->dest and TO->dest from those
312 edges ensure that TO->dest PHI arguments have current_def
313 to that in from. */
315 static void
316 slpeel_duplicate_current_defs_from_edges (edge from, edge to)
318 gimple_stmt_iterator gsi_from, gsi_to;
320 for (gsi_from = gsi_start_phis (from->dest),
321 gsi_to = gsi_start_phis (to->dest);
322 !gsi_end_p (gsi_from) && !gsi_end_p (gsi_to);)
324 gimple *from_phi = gsi_stmt (gsi_from);
325 gimple *to_phi = gsi_stmt (gsi_to);
326 tree from_arg = PHI_ARG_DEF_FROM_EDGE (from_phi, from);
327 tree to_arg = PHI_ARG_DEF_FROM_EDGE (to_phi, to);
328 if (virtual_operand_p (from_arg))
330 gsi_next (&gsi_from);
331 continue;
333 if (virtual_operand_p (to_arg))
335 gsi_next (&gsi_to);
336 continue;
338 if (TREE_CODE (from_arg) != SSA_NAME)
339 gcc_assert (operand_equal_p (from_arg, to_arg, 0));
340 else
342 if (get_current_def (to_arg) == NULL_TREE)
343 set_current_def (to_arg, get_current_def (from_arg));
345 gsi_next (&gsi_from);
346 gsi_next (&gsi_to);
349 gphi *from_phi = get_virtual_phi (from->dest);
350 gphi *to_phi = get_virtual_phi (to->dest);
351 if (from_phi)
352 set_current_def (PHI_ARG_DEF_FROM_EDGE (to_phi, to),
353 get_current_def (PHI_ARG_DEF_FROM_EDGE (from_phi, from)));
357 /* Given LOOP this function generates a new copy of it and puts it
358 on E which is either the entry or exit of LOOP. If SCALAR_LOOP is
359 non-NULL, assume LOOP and SCALAR_LOOP are equivalent and copy the
360 basic blocks from SCALAR_LOOP instead of LOOP, but to either the
361 entry or exit of LOOP. */
363 struct loop *
364 slpeel_tree_duplicate_loop_to_edge_cfg (struct loop *loop,
365 struct loop *scalar_loop, edge e)
367 struct loop *new_loop;
368 basic_block *new_bbs, *bbs, *pbbs;
369 bool at_exit;
370 bool was_imm_dom;
371 basic_block exit_dest;
372 edge exit, new_exit;
373 bool duplicate_outer_loop = false;
375 exit = single_exit (loop);
376 at_exit = (e == exit);
377 if (!at_exit && e != loop_preheader_edge (loop))
378 return NULL;
380 if (scalar_loop == NULL)
381 scalar_loop = loop;
383 bbs = XNEWVEC (basic_block, scalar_loop->num_nodes + 1);
384 pbbs = bbs + 1;
385 get_loop_body_with_size (scalar_loop, pbbs, scalar_loop->num_nodes);
386 /* Allow duplication of outer loops. */
387 if (scalar_loop->inner)
388 duplicate_outer_loop = true;
389 /* Check whether duplication is possible. */
390 if (!can_copy_bbs_p (pbbs, scalar_loop->num_nodes))
392 free (bbs);
393 return NULL;
396 /* Generate new loop structure. */
397 new_loop = duplicate_loop (scalar_loop, loop_outer (scalar_loop));
398 duplicate_subloops (scalar_loop, new_loop);
400 exit_dest = exit->dest;
401 was_imm_dom = (get_immediate_dominator (CDI_DOMINATORS,
402 exit_dest) == loop->header ?
403 true : false);
405 /* Also copy the pre-header, this avoids jumping through hoops to
406 duplicate the loop entry PHI arguments. Create an empty
407 pre-header unconditionally for this. */
408 basic_block preheader = split_edge (loop_preheader_edge (scalar_loop));
409 edge entry_e = single_pred_edge (preheader);
410 bbs[0] = preheader;
411 new_bbs = XNEWVEC (basic_block, scalar_loop->num_nodes + 1);
413 exit = single_exit (scalar_loop);
414 copy_bbs (bbs, scalar_loop->num_nodes + 1, new_bbs,
415 &exit, 1, &new_exit, NULL,
416 at_exit ? loop->latch : e->src, true);
417 exit = single_exit (loop);
418 basic_block new_preheader = new_bbs[0];
420 add_phi_args_after_copy (new_bbs, scalar_loop->num_nodes + 1, NULL);
422 if (scalar_loop != loop)
424 /* If we copied from SCALAR_LOOP rather than LOOP, SSA_NAMEs from
425 SCALAR_LOOP will have current_def set to SSA_NAMEs in the new_loop,
426 but LOOP will not. slpeel_update_phi_nodes_for_guard{1,2} expects
427 the LOOP SSA_NAMEs (on the exit edge and edge from latch to
428 header) to have current_def set, so copy them over. */
429 slpeel_duplicate_current_defs_from_edges (single_exit (scalar_loop),
430 exit);
431 slpeel_duplicate_current_defs_from_edges (EDGE_SUCC (scalar_loop->latch,
433 EDGE_SUCC (loop->latch, 0));
436 if (at_exit) /* Add the loop copy at exit. */
438 if (scalar_loop != loop)
440 gphi_iterator gsi;
441 new_exit = redirect_edge_and_branch (new_exit, exit_dest);
443 for (gsi = gsi_start_phis (exit_dest); !gsi_end_p (gsi);
444 gsi_next (&gsi))
446 gphi *phi = gsi.phi ();
447 tree orig_arg = PHI_ARG_DEF_FROM_EDGE (phi, e);
448 location_t orig_locus
449 = gimple_phi_arg_location_from_edge (phi, e);
451 add_phi_arg (phi, orig_arg, new_exit, orig_locus);
454 redirect_edge_and_branch_force (e, new_preheader);
455 flush_pending_stmts (e);
456 set_immediate_dominator (CDI_DOMINATORS, new_preheader, e->src);
457 if (was_imm_dom || duplicate_outer_loop)
458 set_immediate_dominator (CDI_DOMINATORS, exit_dest, new_exit->src);
460 /* And remove the non-necessary forwarder again. Keep the other
461 one so we have a proper pre-header for the loop at the exit edge. */
462 redirect_edge_pred (single_succ_edge (preheader),
463 single_pred (preheader));
464 delete_basic_block (preheader);
465 set_immediate_dominator (CDI_DOMINATORS, scalar_loop->header,
466 loop_preheader_edge (scalar_loop)->src);
468 else /* Add the copy at entry. */
470 if (scalar_loop != loop)
472 /* Remove the non-necessary forwarder of scalar_loop again. */
473 redirect_edge_pred (single_succ_edge (preheader),
474 single_pred (preheader));
475 delete_basic_block (preheader);
476 set_immediate_dominator (CDI_DOMINATORS, scalar_loop->header,
477 loop_preheader_edge (scalar_loop)->src);
478 preheader = split_edge (loop_preheader_edge (loop));
479 entry_e = single_pred_edge (preheader);
482 redirect_edge_and_branch_force (entry_e, new_preheader);
483 flush_pending_stmts (entry_e);
484 set_immediate_dominator (CDI_DOMINATORS, new_preheader, entry_e->src);
486 redirect_edge_and_branch_force (new_exit, preheader);
487 flush_pending_stmts (new_exit);
488 set_immediate_dominator (CDI_DOMINATORS, preheader, new_exit->src);
490 /* And remove the non-necessary forwarder again. Keep the other
491 one so we have a proper pre-header for the loop at the exit edge. */
492 redirect_edge_pred (single_succ_edge (new_preheader),
493 single_pred (new_preheader));
494 delete_basic_block (new_preheader);
495 set_immediate_dominator (CDI_DOMINATORS, new_loop->header,
496 loop_preheader_edge (new_loop)->src);
499 for (unsigned i = 0; i < scalar_loop->num_nodes + 1; i++)
500 rename_variables_in_bb (new_bbs[i], duplicate_outer_loop);
502 if (scalar_loop != loop)
504 /* Update new_loop->header PHIs, so that on the preheader
505 edge they are the ones from loop rather than scalar_loop. */
506 gphi_iterator gsi_orig, gsi_new;
507 edge orig_e = loop_preheader_edge (loop);
508 edge new_e = loop_preheader_edge (new_loop);
510 for (gsi_orig = gsi_start_phis (loop->header),
511 gsi_new = gsi_start_phis (new_loop->header);
512 !gsi_end_p (gsi_orig) && !gsi_end_p (gsi_new);
513 gsi_next (&gsi_orig), gsi_next (&gsi_new))
515 gphi *orig_phi = gsi_orig.phi ();
516 gphi *new_phi = gsi_new.phi ();
517 tree orig_arg = PHI_ARG_DEF_FROM_EDGE (orig_phi, orig_e);
518 location_t orig_locus
519 = gimple_phi_arg_location_from_edge (orig_phi, orig_e);
521 add_phi_arg (new_phi, orig_arg, new_e, orig_locus);
525 free (new_bbs);
526 free (bbs);
528 checking_verify_dominators (CDI_DOMINATORS);
530 return new_loop;
534 /* Given the condition expression COND, put it as the last statement of
535 GUARD_BB; set both edges' probability; set dominator of GUARD_TO to
536 DOM_BB; return the skip edge. GUARD_TO is the target basic block to
537 skip the loop. PROBABILITY is the skip edge's probability. Mark the
538 new edge as irreducible if IRREDUCIBLE_P is true. */
540 static edge
541 slpeel_add_loop_guard (basic_block guard_bb, tree cond,
542 basic_block guard_to, basic_block dom_bb,
543 int probability, bool irreducible_p)
545 gimple_stmt_iterator gsi;
546 edge new_e, enter_e;
547 gcond *cond_stmt;
548 gimple_seq gimplify_stmt_list = NULL;
550 enter_e = EDGE_SUCC (guard_bb, 0);
551 enter_e->flags &= ~EDGE_FALLTHRU;
552 enter_e->flags |= EDGE_FALSE_VALUE;
553 gsi = gsi_last_bb (guard_bb);
555 cond = force_gimple_operand_1 (cond, &gimplify_stmt_list, is_gimple_condexpr,
556 NULL_TREE);
557 if (gimplify_stmt_list)
558 gsi_insert_seq_after (&gsi, gimplify_stmt_list, GSI_NEW_STMT);
560 cond_stmt = gimple_build_cond_from_tree (cond, NULL_TREE, NULL_TREE);
561 gsi = gsi_last_bb (guard_bb);
562 gsi_insert_after (&gsi, cond_stmt, GSI_NEW_STMT);
564 /* Add new edge to connect guard block to the merge/loop-exit block. */
565 new_e = make_edge (guard_bb, guard_to, EDGE_TRUE_VALUE);
567 new_e->count = guard_bb->count;
568 new_e->probability = probability;
569 new_e->count = enter_e->count.apply_probability (probability);
570 if (irreducible_p)
571 new_e->flags |= EDGE_IRREDUCIBLE_LOOP;
573 enter_e->count -= new_e->count;
574 enter_e->probability = inverse_probability (probability);
575 set_immediate_dominator (CDI_DOMINATORS, guard_to, dom_bb);
577 /* Split enter_e to preserve LOOPS_HAVE_PREHEADERS. */
578 if (enter_e->dest->loop_father->header == enter_e->dest)
579 split_edge (enter_e);
581 return new_e;
585 /* This function verifies that the following restrictions apply to LOOP:
586 (1) it consists of exactly 2 basic blocks - header, and an empty latch
587 for innermost loop and 5 basic blocks for outer-loop.
588 (2) it is single entry, single exit
589 (3) its exit condition is the last stmt in the header
590 (4) E is the entry/exit edge of LOOP.
593 bool
594 slpeel_can_duplicate_loop_p (const struct loop *loop, const_edge e)
596 edge exit_e = single_exit (loop);
597 edge entry_e = loop_preheader_edge (loop);
598 gcond *orig_cond = get_loop_exit_condition (loop);
599 gimple_stmt_iterator loop_exit_gsi = gsi_last_bb (exit_e->src);
600 unsigned int num_bb = loop->inner? 5 : 2;
602 /* All loops have an outer scope; the only case loop->outer is NULL is for
603 the function itself. */
604 if (!loop_outer (loop)
605 || loop->num_nodes != num_bb
606 || !empty_block_p (loop->latch)
607 || !single_exit (loop)
608 /* Verify that new loop exit condition can be trivially modified. */
609 || (!orig_cond || orig_cond != gsi_stmt (loop_exit_gsi))
610 || (e != exit_e && e != entry_e))
611 return false;
613 return true;
616 /* If the loop has a virtual PHI, but exit bb doesn't, create a virtual PHI
617 in the exit bb and rename all the uses after the loop. This simplifies
618 the *guard[12] routines, which assume loop closed SSA form for all PHIs
619 (but normally loop closed SSA form doesn't require virtual PHIs to be
620 in the same form). Doing this early simplifies the checking what
621 uses should be renamed. */
623 static void
624 create_lcssa_for_virtual_phi (struct loop *loop)
626 gphi_iterator gsi;
627 edge exit_e = single_exit (loop);
629 for (gsi = gsi_start_phis (loop->header); !gsi_end_p (gsi); gsi_next (&gsi))
630 if (virtual_operand_p (gimple_phi_result (gsi_stmt (gsi))))
632 gphi *phi = gsi.phi ();
633 for (gsi = gsi_start_phis (exit_e->dest);
634 !gsi_end_p (gsi); gsi_next (&gsi))
635 if (virtual_operand_p (gimple_phi_result (gsi_stmt (gsi))))
636 break;
637 if (gsi_end_p (gsi))
639 tree new_vop = copy_ssa_name (PHI_RESULT (phi));
640 gphi *new_phi = create_phi_node (new_vop, exit_e->dest);
641 tree vop = PHI_ARG_DEF_FROM_EDGE (phi, EDGE_SUCC (loop->latch, 0));
642 imm_use_iterator imm_iter;
643 gimple *stmt;
644 use_operand_p use_p;
646 add_phi_arg (new_phi, vop, exit_e, UNKNOWN_LOCATION);
647 gimple_phi_set_result (new_phi, new_vop);
648 FOR_EACH_IMM_USE_STMT (stmt, imm_iter, vop)
649 if (stmt != new_phi
650 && !flow_bb_inside_loop_p (loop, gimple_bb (stmt)))
651 FOR_EACH_IMM_USE_ON_STMT (use_p, imm_iter)
652 SET_USE (use_p, new_vop);
654 break;
659 /* Function vect_get_loop_location.
661 Extract the location of the loop in the source code.
662 If the loop is not well formed for vectorization, an estimated
663 location is calculated.
664 Return the loop location if succeed and NULL if not. */
666 source_location
667 find_loop_location (struct loop *loop)
669 gimple *stmt = NULL;
670 basic_block bb;
671 gimple_stmt_iterator si;
673 if (!loop)
674 return UNKNOWN_LOCATION;
676 stmt = get_loop_exit_condition (loop);
678 if (stmt
679 && LOCATION_LOCUS (gimple_location (stmt)) > BUILTINS_LOCATION)
680 return gimple_location (stmt);
682 /* If we got here the loop is probably not "well formed",
683 try to estimate the loop location */
685 if (!loop->header)
686 return UNKNOWN_LOCATION;
688 bb = loop->header;
690 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
692 stmt = gsi_stmt (si);
693 if (LOCATION_LOCUS (gimple_location (stmt)) > BUILTINS_LOCATION)
694 return gimple_location (stmt);
697 return UNKNOWN_LOCATION;
700 /* Return true if PHI defines an IV of the loop to be vectorized. */
702 static bool
703 iv_phi_p (gphi *phi)
705 if (virtual_operand_p (PHI_RESULT (phi)))
706 return false;
708 stmt_vec_info stmt_info = vinfo_for_stmt (phi);
709 gcc_assert (stmt_info != NULL);
710 if (STMT_VINFO_DEF_TYPE (stmt_info) == vect_reduction_def
711 || STMT_VINFO_DEF_TYPE (stmt_info) == vect_double_reduction_def)
712 return false;
714 return true;
717 /* Function vect_can_advance_ivs_p
719 In case the number of iterations that LOOP iterates is unknown at compile
720 time, an epilog loop will be generated, and the loop induction variables
721 (IVs) will be "advanced" to the value they are supposed to take just before
722 the epilog loop. Here we check that the access function of the loop IVs
723 and the expression that represents the loop bound are simple enough.
724 These restrictions will be relaxed in the future. */
726 bool
727 vect_can_advance_ivs_p (loop_vec_info loop_vinfo)
729 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
730 basic_block bb = loop->header;
731 gphi_iterator gsi;
733 /* Analyze phi functions of the loop header. */
735 if (dump_enabled_p ())
736 dump_printf_loc (MSG_NOTE, vect_location, "vect_can_advance_ivs_p:\n");
737 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
739 tree evolution_part;
741 gphi *phi = gsi.phi ();
742 if (dump_enabled_p ())
744 dump_printf_loc (MSG_NOTE, vect_location, "Analyze phi: ");
745 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, phi, 0);
748 /* Skip virtual phi's. The data dependences that are associated with
749 virtual defs/uses (i.e., memory accesses) are analyzed elsewhere.
751 Skip reduction phis. */
752 if (!iv_phi_p (phi))
754 if (dump_enabled_p ())
755 dump_printf_loc (MSG_NOTE, vect_location,
756 "reduc or virtual phi. skip.\n");
757 continue;
760 /* Analyze the evolution function. */
762 evolution_part
763 = STMT_VINFO_LOOP_PHI_EVOLUTION_PART (vinfo_for_stmt (phi));
764 if (evolution_part == NULL_TREE)
766 if (dump_enabled_p ())
767 dump_printf (MSG_MISSED_OPTIMIZATION,
768 "No access function or evolution.\n");
769 return false;
772 /* FORNOW: We do not transform initial conditions of IVs
773 which evolution functions are not invariants in the loop. */
775 if (!expr_invariant_in_loop_p (loop, evolution_part))
777 if (dump_enabled_p ())
778 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
779 "evolution not invariant in loop.\n");
780 return false;
783 /* FORNOW: We do not transform initial conditions of IVs
784 which evolution functions are a polynomial of degree >= 2. */
786 if (tree_is_chrec (evolution_part))
788 if (dump_enabled_p ())
789 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
790 "evolution is chrec.\n");
791 return false;
795 return true;
799 /* Function vect_update_ivs_after_vectorizer.
801 "Advance" the induction variables of LOOP to the value they should take
802 after the execution of LOOP. This is currently necessary because the
803 vectorizer does not handle induction variables that are used after the
804 loop. Such a situation occurs when the last iterations of LOOP are
805 peeled, because:
806 1. We introduced new uses after LOOP for IVs that were not originally used
807 after LOOP: the IVs of LOOP are now used by an epilog loop.
808 2. LOOP is going to be vectorized; this means that it will iterate N/VF
809 times, whereas the loop IVs should be bumped N times.
811 Input:
812 - LOOP - a loop that is going to be vectorized. The last few iterations
813 of LOOP were peeled.
814 - NITERS - the number of iterations that LOOP executes (before it is
815 vectorized). i.e, the number of times the ivs should be bumped.
816 - UPDATE_E - a successor edge of LOOP->exit that is on the (only) path
817 coming out from LOOP on which there are uses of the LOOP ivs
818 (this is the path from LOOP->exit to epilog_loop->preheader).
820 The new definitions of the ivs are placed in LOOP->exit.
821 The phi args associated with the edge UPDATE_E in the bb
822 UPDATE_E->dest are updated accordingly.
824 Assumption 1: Like the rest of the vectorizer, this function assumes
825 a single loop exit that has a single predecessor.
827 Assumption 2: The phi nodes in the LOOP header and in update_bb are
828 organized in the same order.
830 Assumption 3: The access function of the ivs is simple enough (see
831 vect_can_advance_ivs_p). This assumption will be relaxed in the future.
833 Assumption 4: Exactly one of the successors of LOOP exit-bb is on a path
834 coming out of LOOP on which the ivs of LOOP are used (this is the path
835 that leads to the epilog loop; other paths skip the epilog loop). This
836 path starts with the edge UPDATE_E, and its destination (denoted update_bb)
837 needs to have its phis updated.
840 static void
841 vect_update_ivs_after_vectorizer (loop_vec_info loop_vinfo,
842 tree niters, edge update_e)
844 gphi_iterator gsi, gsi1;
845 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
846 basic_block update_bb = update_e->dest;
847 basic_block exit_bb = single_exit (loop)->dest;
849 /* Make sure there exists a single-predecessor exit bb: */
850 gcc_assert (single_pred_p (exit_bb));
851 gcc_assert (single_succ_edge (exit_bb) == update_e);
853 for (gsi = gsi_start_phis (loop->header), gsi1 = gsi_start_phis (update_bb);
854 !gsi_end_p (gsi) && !gsi_end_p (gsi1);
855 gsi_next (&gsi), gsi_next (&gsi1))
857 tree init_expr;
858 tree step_expr, off;
859 tree type;
860 tree var, ni, ni_name;
861 gimple_stmt_iterator last_gsi;
863 gphi *phi = gsi.phi ();
864 gphi *phi1 = gsi1.phi ();
865 if (dump_enabled_p ())
867 dump_printf_loc (MSG_NOTE, vect_location,
868 "vect_update_ivs_after_vectorizer: phi: ");
869 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, phi, 0);
872 /* Skip reduction and virtual phis. */
873 if (!iv_phi_p (phi))
875 if (dump_enabled_p ())
876 dump_printf_loc (MSG_NOTE, vect_location,
877 "reduc or virtual phi. skip.\n");
878 continue;
881 type = TREE_TYPE (gimple_phi_result (phi));
882 step_expr = STMT_VINFO_LOOP_PHI_EVOLUTION_PART (vinfo_for_stmt (phi));
883 step_expr = unshare_expr (step_expr);
885 /* FORNOW: We do not support IVs whose evolution function is a polynomial
886 of degree >= 2 or exponential. */
887 gcc_assert (!tree_is_chrec (step_expr));
889 init_expr = PHI_ARG_DEF_FROM_EDGE (phi, loop_preheader_edge (loop));
891 off = fold_build2 (MULT_EXPR, TREE_TYPE (step_expr),
892 fold_convert (TREE_TYPE (step_expr), niters),
893 step_expr);
894 if (POINTER_TYPE_P (type))
895 ni = fold_build_pointer_plus (init_expr, off);
896 else
897 ni = fold_build2 (PLUS_EXPR, type,
898 init_expr, fold_convert (type, off));
900 var = create_tmp_var (type, "tmp");
902 last_gsi = gsi_last_bb (exit_bb);
903 gimple_seq new_stmts = NULL;
904 ni_name = force_gimple_operand (ni, &new_stmts, false, var);
905 /* Exit_bb shouldn't be empty. */
906 if (!gsi_end_p (last_gsi))
907 gsi_insert_seq_after (&last_gsi, new_stmts, GSI_SAME_STMT);
908 else
909 gsi_insert_seq_before (&last_gsi, new_stmts, GSI_SAME_STMT);
911 /* Fix phi expressions in the successor bb. */
912 adjust_phi_and_debug_stmts (phi1, update_e, ni_name);
916 /* Function vect_gen_prolog_loop_niters
918 Generate the number of iterations which should be peeled as prolog for the
919 loop represented by LOOP_VINFO. It is calculated as the misalignment of
920 DR - the data reference recorded in LOOP_VINFO_UNALIGNED_DR (LOOP_VINFO).
921 As a result, after the execution of this loop, the data reference DR will
922 refer to an aligned location. The following computation is generated:
924 If the misalignment of DR is known at compile time:
925 addr_mis = int mis = DR_MISALIGNMENT (dr);
926 Else, compute address misalignment in bytes:
927 addr_mis = addr & (vectype_align - 1)
929 prolog_niters = ((VF - addr_mis/elem_size)&(VF-1))/step
931 (elem_size = element type size; an element is the scalar element whose type
932 is the inner type of the vectype)
934 The computations will be emitted at the end of BB. We also compute and
935 store upper bound (included) of the result in BOUND.
937 When the step of the data-ref in the loop is not 1 (as in interleaved data
938 and SLP), the number of iterations of the prolog must be divided by the step
939 (which is equal to the size of interleaved group).
941 The above formulas assume that VF == number of elements in the vector. This
942 may not hold when there are multiple-types in the loop.
943 In this case, for some data-references in the loop the VF does not represent
944 the number of elements that fit in the vector. Therefore, instead of VF we
945 use TYPE_VECTOR_SUBPARTS. */
947 static tree
948 vect_gen_prolog_loop_niters (loop_vec_info loop_vinfo,
949 basic_block bb, int *bound)
951 struct data_reference *dr = LOOP_VINFO_UNALIGNED_DR (loop_vinfo);
952 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
953 tree var;
954 tree niters_type = TREE_TYPE (LOOP_VINFO_NITERS (loop_vinfo));
955 gimple_seq stmts = NULL, new_stmts = NULL;
956 tree iters, iters_name;
957 gimple *dr_stmt = DR_STMT (dr);
958 stmt_vec_info stmt_info = vinfo_for_stmt (dr_stmt);
959 tree vectype = STMT_VINFO_VECTYPE (stmt_info);
960 int vectype_align = TYPE_ALIGN (vectype) / BITS_PER_UNIT;
961 int nelements = TYPE_VECTOR_SUBPARTS (vectype);
963 if (LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo) > 0)
965 int npeel = LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo);
967 if (dump_enabled_p ())
968 dump_printf_loc (MSG_NOTE, vect_location,
969 "known peeling = %d.\n", npeel);
971 iters = build_int_cst (niters_type, npeel);
972 *bound = LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo);
974 else
976 bool negative = tree_int_cst_compare (DR_STEP (dr), size_zero_node) < 0;
977 tree offset = negative
978 ? size_int (-TYPE_VECTOR_SUBPARTS (vectype) + 1) : size_zero_node;
979 tree start_addr = vect_create_addr_base_for_vector_ref (dr_stmt,
980 &stmts, offset, loop);
981 tree type = unsigned_type_for (TREE_TYPE (start_addr));
982 tree vectype_align_minus_1 = build_int_cst (type, vectype_align - 1);
983 HOST_WIDE_INT elem_size =
984 int_cst_value (TYPE_SIZE_UNIT (TREE_TYPE (vectype)));
985 tree elem_size_log = build_int_cst (type, exact_log2 (elem_size));
986 tree nelements_minus_1 = build_int_cst (type, nelements - 1);
987 tree nelements_tree = build_int_cst (type, nelements);
988 tree byte_misalign;
989 tree elem_misalign;
991 /* Create: byte_misalign = addr & (vectype_align - 1) */
992 byte_misalign =
993 fold_build2 (BIT_AND_EXPR, type, fold_convert (type, start_addr),
994 vectype_align_minus_1);
996 /* Create: elem_misalign = byte_misalign / element_size */
997 elem_misalign =
998 fold_build2 (RSHIFT_EXPR, type, byte_misalign, elem_size_log);
1000 /* Create: (niters_type) (nelements - elem_misalign)&(nelements - 1) */
1001 if (negative)
1002 iters = fold_build2 (MINUS_EXPR, type, elem_misalign, nelements_tree);
1003 else
1004 iters = fold_build2 (MINUS_EXPR, type, nelements_tree, elem_misalign);
1005 iters = fold_build2 (BIT_AND_EXPR, type, iters, nelements_minus_1);
1006 iters = fold_convert (niters_type, iters);
1007 *bound = nelements - 1;
1010 if (dump_enabled_p ())
1012 dump_printf_loc (MSG_NOTE, vect_location,
1013 "niters for prolog loop: ");
1014 dump_generic_expr (MSG_NOTE, TDF_SLIM, iters);
1015 dump_printf (MSG_NOTE, "\n");
1018 var = create_tmp_var (niters_type, "prolog_loop_niters");
1019 iters_name = force_gimple_operand (iters, &new_stmts, false, var);
1021 if (new_stmts)
1022 gimple_seq_add_seq (&stmts, new_stmts);
1023 if (stmts)
1025 gcc_assert (single_succ_p (bb));
1026 gimple_stmt_iterator gsi = gsi_last_bb (bb);
1027 if (gsi_end_p (gsi))
1028 gsi_insert_seq_before (&gsi, stmts, GSI_SAME_STMT);
1029 else
1030 gsi_insert_seq_after (&gsi, stmts, GSI_SAME_STMT);
1032 return iters_name;
1036 /* Function vect_update_init_of_dr
1038 NITERS iterations were peeled from LOOP. DR represents a data reference
1039 in LOOP. This function updates the information recorded in DR to
1040 account for the fact that the first NITERS iterations had already been
1041 executed. Specifically, it updates the OFFSET field of DR. */
1043 static void
1044 vect_update_init_of_dr (struct data_reference *dr, tree niters)
1046 tree offset = DR_OFFSET (dr);
1048 niters = fold_build2 (MULT_EXPR, sizetype,
1049 fold_convert (sizetype, niters),
1050 fold_convert (sizetype, DR_STEP (dr)));
1051 offset = fold_build2 (PLUS_EXPR, sizetype,
1052 fold_convert (sizetype, offset), niters);
1053 DR_OFFSET (dr) = offset;
1057 /* Function vect_update_inits_of_drs
1059 NITERS iterations were peeled from the loop represented by LOOP_VINFO.
1060 This function updates the information recorded for the data references in
1061 the loop to account for the fact that the first NITERS iterations had
1062 already been executed. Specifically, it updates the initial_condition of
1063 the access_function of all the data_references in the loop. */
1065 static void
1066 vect_update_inits_of_drs (loop_vec_info loop_vinfo, tree niters)
1068 unsigned int i;
1069 vec<data_reference_p> datarefs = LOOP_VINFO_DATAREFS (loop_vinfo);
1070 struct data_reference *dr;
1072 if (dump_enabled_p ())
1073 dump_printf_loc (MSG_NOTE, vect_location,
1074 "=== vect_update_inits_of_dr ===\n");
1076 /* Adjust niters to sizetype and insert stmts on loop preheader edge. */
1077 if (!types_compatible_p (sizetype, TREE_TYPE (niters)))
1079 gimple_seq seq;
1080 edge pe = loop_preheader_edge (LOOP_VINFO_LOOP (loop_vinfo));
1081 tree var = create_tmp_var (sizetype, "prolog_loop_adjusted_niters");
1083 niters = fold_convert (sizetype, niters);
1084 niters = force_gimple_operand (niters, &seq, false, var);
1085 if (seq)
1087 basic_block new_bb = gsi_insert_seq_on_edge_immediate (pe, seq);
1088 gcc_assert (!new_bb);
1092 FOR_EACH_VEC_ELT (datarefs, i, dr)
1093 vect_update_init_of_dr (dr, niters);
1097 /* This function builds ni_name = number of iterations. Statements
1098 are emitted on the loop preheader edge. If NEW_VAR_P is not NULL, set
1099 it to TRUE if new ssa_var is generated. */
1101 tree
1102 vect_build_loop_niters (loop_vec_info loop_vinfo, bool *new_var_p)
1104 tree ni = unshare_expr (LOOP_VINFO_NITERS (loop_vinfo));
1105 if (TREE_CODE (ni) == INTEGER_CST)
1106 return ni;
1107 else
1109 tree ni_name, var;
1110 gimple_seq stmts = NULL;
1111 edge pe = loop_preheader_edge (LOOP_VINFO_LOOP (loop_vinfo));
1113 var = create_tmp_var (TREE_TYPE (ni), "niters");
1114 ni_name = force_gimple_operand (ni, &stmts, false, var);
1115 if (stmts)
1117 gsi_insert_seq_on_edge_immediate (pe, stmts);
1118 if (new_var_p != NULL)
1119 *new_var_p = true;
1122 return ni_name;
1126 /* Calculate the number of iterations above which vectorized loop will be
1127 preferred than scalar loop. NITERS_PROLOG is the number of iterations
1128 of prolog loop. If it's integer const, the integer number is also passed
1129 in INT_NITERS_PROLOG. BOUND_PROLOG is the upper bound (included) of
1130 number of iterations of prolog loop. VFM1 is vector factor minus one.
1131 If CHECK_PROFITABILITY is true, TH is the threshold below which scalar
1132 (rather than vectorized) loop will be executed. This function stores
1133 upper bound (included) of the result in BOUND_SCALAR. */
1135 static tree
1136 vect_gen_scalar_loop_niters (tree niters_prolog, int int_niters_prolog,
1137 int bound_prolog, int vfm1, int th,
1138 int *bound_scalar, bool check_profitability)
1140 tree type = TREE_TYPE (niters_prolog);
1141 tree niters = fold_build2 (PLUS_EXPR, type, niters_prolog,
1142 build_int_cst (type, vfm1));
1144 *bound_scalar = vfm1 + bound_prolog;
1145 if (check_profitability)
1147 /* TH indicates the minimum niters of vectorized loop, while we
1148 compute the maximum niters of scalar loop. */
1149 th--;
1150 /* Peeling for constant times. */
1151 if (int_niters_prolog >= 0)
1153 *bound_scalar = (int_niters_prolog + vfm1 < th
1154 ? th
1155 : vfm1 + int_niters_prolog);
1156 return build_int_cst (type, *bound_scalar);
1158 /* Peeling for unknown times. Note BOUND_PROLOG is the upper
1159 bound (inlcuded) of niters of prolog loop. */
1160 if (th >= vfm1 + bound_prolog)
1162 *bound_scalar = th;
1163 return build_int_cst (type, th);
1165 /* Need to do runtime comparison, but BOUND_SCALAR remains the same. */
1166 else if (th > vfm1)
1167 return fold_build2 (MAX_EXPR, type, build_int_cst (type, th), niters);
1169 return niters;
1172 /* This function generates the following statements:
1174 niters = number of iterations loop executes (after peeling)
1175 niters_vector = niters / vf
1177 and places them on the loop preheader edge. NITERS_NO_OVERFLOW is
1178 true if NITERS doesn't overflow. */
1180 void
1181 vect_gen_vector_loop_niters (loop_vec_info loop_vinfo, tree niters,
1182 tree *niters_vector_ptr, bool niters_no_overflow)
1184 tree ni_minus_gap, var;
1185 tree niters_vector, type = TREE_TYPE (niters);
1186 int vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
1187 edge pe = loop_preheader_edge (LOOP_VINFO_LOOP (loop_vinfo));
1188 tree log_vf = build_int_cst (type, exact_log2 (vf));
1190 /* If epilogue loop is required because of data accesses with gaps, we
1191 subtract one iteration from the total number of iterations here for
1192 correct calculation of RATIO. */
1193 if (LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo))
1195 ni_minus_gap = fold_build2 (MINUS_EXPR, type, niters,
1196 build_one_cst (type));
1197 if (!is_gimple_val (ni_minus_gap))
1199 var = create_tmp_var (type, "ni_gap");
1200 gimple *stmts = NULL;
1201 ni_minus_gap = force_gimple_operand (ni_minus_gap, &stmts,
1202 true, var);
1203 gsi_insert_seq_on_edge_immediate (pe, stmts);
1206 else
1207 ni_minus_gap = niters;
1209 /* Create: niters >> log2(vf) */
1210 /* If it's known that niters == number of latch executions + 1 doesn't
1211 overflow, we can generate niters >> log2(vf); otherwise we generate
1212 (niters - vf) >> log2(vf) + 1 by using the fact that we know ratio
1213 will be at least one. */
1214 if (niters_no_overflow)
1215 niters_vector = fold_build2 (RSHIFT_EXPR, type, ni_minus_gap, log_vf);
1216 else
1217 niters_vector
1218 = fold_build2 (PLUS_EXPR, type,
1219 fold_build2 (RSHIFT_EXPR, type,
1220 fold_build2 (MINUS_EXPR, type, ni_minus_gap,
1221 build_int_cst (type, vf)),
1222 log_vf),
1223 build_int_cst (type, 1));
1225 if (!is_gimple_val (niters_vector))
1227 var = create_tmp_var (type, "bnd");
1228 gimple_seq stmts = NULL;
1229 niters_vector = force_gimple_operand (niters_vector, &stmts, true, var);
1230 gsi_insert_seq_on_edge_immediate (pe, stmts);
1231 /* Peeling algorithm guarantees that vector loop bound is at least ONE,
1232 we set range information to make niters analyzer's life easier. */
1233 if (stmts != NULL)
1234 set_range_info (niters_vector, VR_RANGE, build_int_cst (type, 1),
1235 fold_build2 (RSHIFT_EXPR, type,
1236 TYPE_MAX_VALUE (type), log_vf));
1238 *niters_vector_ptr = niters_vector;
1240 return;
1243 /* Given NITERS_VECTOR which is the number of iterations for vectorized
1244 loop specified by LOOP_VINFO after vectorization, compute the number
1245 of iterations before vectorization (niters_vector * vf) and store it
1246 to NITERS_VECTOR_MULT_VF_PTR. */
1248 static void
1249 vect_gen_vector_loop_niters_mult_vf (loop_vec_info loop_vinfo,
1250 tree niters_vector,
1251 tree *niters_vector_mult_vf_ptr)
1253 int vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
1254 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
1255 tree type = TREE_TYPE (niters_vector);
1256 tree log_vf = build_int_cst (type, exact_log2 (vf));
1257 basic_block exit_bb = single_exit (loop)->dest;
1259 gcc_assert (niters_vector_mult_vf_ptr != NULL);
1260 tree niters_vector_mult_vf = fold_build2 (LSHIFT_EXPR, type,
1261 niters_vector, log_vf);
1262 if (!is_gimple_val (niters_vector_mult_vf))
1264 tree var = create_tmp_var (type, "niters_vector_mult_vf");
1265 gimple_seq stmts = NULL;
1266 niters_vector_mult_vf = force_gimple_operand (niters_vector_mult_vf,
1267 &stmts, true, var);
1268 gimple_stmt_iterator gsi = gsi_start_bb (exit_bb);
1269 gsi_insert_seq_before (&gsi, stmts, GSI_SAME_STMT);
1271 *niters_vector_mult_vf_ptr = niters_vector_mult_vf;
1274 /* Function slpeel_tree_duplicate_loop_to_edge_cfg duplciates FIRST/SECOND
1275 from SECOND/FIRST and puts it at the original loop's preheader/exit
1276 edge, the two loops are arranged as below:
1278 preheader_a:
1279 first_loop:
1280 header_a:
1281 i_1 = PHI<i_0, i_2>;
1283 i_2 = i_1 + 1;
1284 if (cond_a)
1285 goto latch_a;
1286 else
1287 goto between_bb;
1288 latch_a:
1289 goto header_a;
1291 between_bb:
1292 ;; i_x = PHI<i_2>; ;; LCSSA phi node to be created for FIRST,
1294 second_loop:
1295 header_b:
1296 i_3 = PHI<i_0, i_4>; ;; Use of i_0 to be replaced with i_x,
1297 or with i_2 if no LCSSA phi is created
1298 under condition of CREATE_LCSSA_FOR_IV_PHIS.
1300 i_4 = i_3 + 1;
1301 if (cond_b)
1302 goto latch_b;
1303 else
1304 goto exit_bb;
1305 latch_b:
1306 goto header_b;
1308 exit_bb:
1310 This function creates loop closed SSA for the first loop; update the
1311 second loop's PHI nodes by replacing argument on incoming edge with the
1312 result of newly created lcssa PHI nodes. IF CREATE_LCSSA_FOR_IV_PHIS
1313 is false, Loop closed ssa phis will only be created for non-iv phis for
1314 the first loop.
1316 This function assumes exit bb of the first loop is preheader bb of the
1317 second loop, i.e, between_bb in the example code. With PHIs updated,
1318 the second loop will execute rest iterations of the first. */
1320 static void
1321 slpeel_update_phi_nodes_for_loops (loop_vec_info loop_vinfo,
1322 struct loop *first, struct loop *second,
1323 bool create_lcssa_for_iv_phis)
1325 gphi_iterator gsi_update, gsi_orig;
1326 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
1328 edge first_latch_e = EDGE_SUCC (first->latch, 0);
1329 edge second_preheader_e = loop_preheader_edge (second);
1330 basic_block between_bb = single_exit (first)->dest;
1332 gcc_assert (between_bb == second_preheader_e->src);
1333 gcc_assert (single_pred_p (between_bb) && single_succ_p (between_bb));
1334 /* Either the first loop or the second is the loop to be vectorized. */
1335 gcc_assert (loop == first || loop == second);
1337 for (gsi_orig = gsi_start_phis (first->header),
1338 gsi_update = gsi_start_phis (second->header);
1339 !gsi_end_p (gsi_orig) && !gsi_end_p (gsi_update);
1340 gsi_next (&gsi_orig), gsi_next (&gsi_update))
1342 gphi *orig_phi = gsi_orig.phi ();
1343 gphi *update_phi = gsi_update.phi ();
1345 tree arg = PHI_ARG_DEF_FROM_EDGE (orig_phi, first_latch_e);
1346 /* Generate lcssa PHI node for the first loop. */
1347 gphi *vect_phi = (loop == first) ? orig_phi : update_phi;
1348 if (create_lcssa_for_iv_phis || !iv_phi_p (vect_phi))
1350 tree new_res = copy_ssa_name (PHI_RESULT (orig_phi));
1351 gphi *lcssa_phi = create_phi_node (new_res, between_bb);
1352 add_phi_arg (lcssa_phi, arg, single_exit (first), UNKNOWN_LOCATION);
1353 arg = new_res;
1356 /* Update PHI node in the second loop by replacing arg on the loop's
1357 incoming edge. */
1358 adjust_phi_and_debug_stmts (update_phi, second_preheader_e, arg);
1362 /* Function slpeel_add_loop_guard adds guard skipping from the beginning
1363 of SKIP_LOOP to the beginning of UPDATE_LOOP. GUARD_EDGE and MERGE_EDGE
1364 are two pred edges of the merge point before UPDATE_LOOP. The two loops
1365 appear like below:
1367 guard_bb:
1368 if (cond)
1369 goto merge_bb;
1370 else
1371 goto skip_loop;
1373 skip_loop:
1374 header_a:
1375 i_1 = PHI<i_0, i_2>;
1377 i_2 = i_1 + 1;
1378 if (cond_a)
1379 goto latch_a;
1380 else
1381 goto exit_a;
1382 latch_a:
1383 goto header_a;
1385 exit_a:
1386 i_5 = PHI<i_2>;
1388 merge_bb:
1389 ;; PHI (i_x = PHI<i_0, i_5>) to be created at merge point.
1391 update_loop:
1392 header_b:
1393 i_3 = PHI<i_5, i_4>; ;; Use of i_5 to be replaced with i_x.
1395 i_4 = i_3 + 1;
1396 if (cond_b)
1397 goto latch_b;
1398 else
1399 goto exit_bb;
1400 latch_b:
1401 goto header_b;
1403 exit_bb:
1405 This function creates PHI nodes at merge_bb and replaces the use of i_5
1406 in the update_loop's PHI node with the result of new PHI result. */
1408 static void
1409 slpeel_update_phi_nodes_for_guard1 (struct loop *skip_loop,
1410 struct loop *update_loop,
1411 edge guard_edge, edge merge_edge)
1413 source_location merge_loc, guard_loc;
1414 edge orig_e = loop_preheader_edge (skip_loop);
1415 edge update_e = loop_preheader_edge (update_loop);
1416 gphi_iterator gsi_orig, gsi_update;
1418 for ((gsi_orig = gsi_start_phis (skip_loop->header),
1419 gsi_update = gsi_start_phis (update_loop->header));
1420 !gsi_end_p (gsi_orig) && !gsi_end_p (gsi_update);
1421 gsi_next (&gsi_orig), gsi_next (&gsi_update))
1423 gphi *orig_phi = gsi_orig.phi ();
1424 gphi *update_phi = gsi_update.phi ();
1426 /* Generate new phi node at merge bb of the guard. */
1427 tree new_res = copy_ssa_name (PHI_RESULT (orig_phi));
1428 gphi *new_phi = create_phi_node (new_res, guard_edge->dest);
1430 /* Merge bb has two incoming edges: GUARD_EDGE and MERGE_EDGE. Set the
1431 args in NEW_PHI for these edges. */
1432 tree merge_arg = PHI_ARG_DEF_FROM_EDGE (update_phi, update_e);
1433 tree guard_arg = PHI_ARG_DEF_FROM_EDGE (orig_phi, orig_e);
1434 merge_loc = gimple_phi_arg_location_from_edge (update_phi, update_e);
1435 guard_loc = gimple_phi_arg_location_from_edge (orig_phi, orig_e);
1436 add_phi_arg (new_phi, merge_arg, merge_edge, merge_loc);
1437 add_phi_arg (new_phi, guard_arg, guard_edge, guard_loc);
1439 /* Update phi in UPDATE_PHI. */
1440 adjust_phi_and_debug_stmts (update_phi, update_e, new_res);
1444 /* LCSSA_PHI is a lcssa phi of EPILOG loop which is copied from LOOP,
1445 this function searches for the corresponding lcssa phi node in exit
1446 bb of LOOP. If it is found, return the phi result; otherwise return
1447 NULL. */
1449 static tree
1450 find_guard_arg (struct loop *loop, struct loop *epilog ATTRIBUTE_UNUSED,
1451 gphi *lcssa_phi)
1453 gphi_iterator gsi;
1454 edge e = single_exit (loop);
1456 gcc_assert (single_pred_p (e->dest));
1457 for (gsi = gsi_start_phis (e->dest); !gsi_end_p (gsi); gsi_next (&gsi))
1459 gphi *phi = gsi.phi ();
1460 if (operand_equal_p (PHI_ARG_DEF (phi, 0),
1461 PHI_ARG_DEF (lcssa_phi, 0), 0))
1462 return PHI_RESULT (phi);
1464 return NULL_TREE;
1467 /* LOOP and EPILOG are two consecutive loops in CFG and EPILOG is copied
1468 from LOOP. Function slpeel_add_loop_guard adds guard skipping from a
1469 point between the two loops to the end of EPILOG. Edges GUARD_EDGE
1470 and MERGE_EDGE are the two pred edges of merge_bb at the end of EPILOG.
1471 The CFG looks like:
1473 loop:
1474 header_a:
1475 i_1 = PHI<i_0, i_2>;
1477 i_2 = i_1 + 1;
1478 if (cond_a)
1479 goto latch_a;
1480 else
1481 goto exit_a;
1482 latch_a:
1483 goto header_a;
1485 exit_a:
1487 guard_bb:
1488 if (cond)
1489 goto merge_bb;
1490 else
1491 goto epilog_loop;
1493 ;; fall_through_bb
1495 epilog_loop:
1496 header_b:
1497 i_3 = PHI<i_2, i_4>;
1499 i_4 = i_3 + 1;
1500 if (cond_b)
1501 goto latch_b;
1502 else
1503 goto merge_bb;
1504 latch_b:
1505 goto header_b;
1507 merge_bb:
1508 ; PHI node (i_y = PHI<i_2, i_4>) to be created at merge point.
1510 exit_bb:
1511 i_x = PHI<i_4>; ;Use of i_4 to be replaced with i_y in merge_bb.
1513 For each name used out side EPILOG (i.e - for each name that has a lcssa
1514 phi in exit_bb) we create a new PHI in merge_bb. The new PHI has two
1515 args corresponding to GUARD_EDGE and MERGE_EDGE. Arg for MERGE_EDGE is
1516 the arg of the original PHI in exit_bb, arg for GUARD_EDGE is defined
1517 by LOOP and is found in the exit bb of LOOP. Arg of the original PHI
1518 in exit_bb will also be updated. */
1520 static void
1521 slpeel_update_phi_nodes_for_guard2 (struct loop *loop, struct loop *epilog,
1522 edge guard_edge, edge merge_edge)
1524 gphi_iterator gsi;
1525 basic_block merge_bb = guard_edge->dest;
1527 gcc_assert (single_succ_p (merge_bb));
1528 edge e = single_succ_edge (merge_bb);
1529 basic_block exit_bb = e->dest;
1530 gcc_assert (single_pred_p (exit_bb));
1531 gcc_assert (single_pred (exit_bb) == single_exit (epilog)->dest);
1533 for (gsi = gsi_start_phis (exit_bb); !gsi_end_p (gsi); gsi_next (&gsi))
1535 gphi *update_phi = gsi.phi ();
1536 tree old_arg = PHI_ARG_DEF (update_phi, 0);
1537 /* This loop-closed-phi actually doesn't represent a use out of the
1538 loop - the phi arg is a constant. */
1539 if (TREE_CODE (old_arg) != SSA_NAME)
1540 continue;
1542 tree merge_arg = get_current_def (old_arg);
1543 if (!merge_arg)
1544 merge_arg = old_arg;
1546 tree guard_arg = find_guard_arg (loop, epilog, update_phi);
1547 /* If the var is live after loop but not a reduction, we simply
1548 use the old arg. */
1549 if (!guard_arg)
1550 guard_arg = old_arg;
1552 /* Create new phi node in MERGE_BB: */
1553 tree new_res = copy_ssa_name (PHI_RESULT (update_phi));
1554 gphi *merge_phi = create_phi_node (new_res, merge_bb);
1556 /* MERGE_BB has two incoming edges: GUARD_EDGE and MERGE_EDGE, Set
1557 the two PHI args in merge_phi for these edges. */
1558 add_phi_arg (merge_phi, merge_arg, merge_edge, UNKNOWN_LOCATION);
1559 add_phi_arg (merge_phi, guard_arg, guard_edge, UNKNOWN_LOCATION);
1561 /* Update the original phi in exit_bb. */
1562 adjust_phi_and_debug_stmts (update_phi, e, new_res);
1566 /* EPILOG loop is duplicated from the original loop for vectorizing,
1567 the arg of its loop closed ssa PHI needs to be updated. */
1569 static void
1570 slpeel_update_phi_nodes_for_lcssa (struct loop *epilog)
1572 gphi_iterator gsi;
1573 basic_block exit_bb = single_exit (epilog)->dest;
1575 gcc_assert (single_pred_p (exit_bb));
1576 edge e = EDGE_PRED (exit_bb, 0);
1577 for (gsi = gsi_start_phis (exit_bb); !gsi_end_p (gsi); gsi_next (&gsi))
1578 rename_use_op (PHI_ARG_DEF_PTR_FROM_EDGE (gsi.phi (), e));
1581 /* Function vect_do_peeling.
1583 Input:
1584 - LOOP_VINFO: Represent a loop to be vectorized, which looks like:
1586 preheader:
1587 LOOP:
1588 header_bb:
1589 loop_body
1590 if (exit_loop_cond) goto exit_bb
1591 else goto header_bb
1592 exit_bb:
1594 - NITERS: The number of iterations of the loop.
1595 - NITERSM1: The number of iterations of the loop's latch.
1596 - NITERS_NO_OVERFLOW: No overflow in computing NITERS.
1597 - TH, CHECK_PROFITABILITY: Threshold of niters to vectorize loop if
1598 CHECK_PROFITABILITY is true.
1599 Output:
1600 - NITERS_VECTOR: The number of iterations of loop after vectorization.
1602 This function peels prolog and epilog from the loop, adds guards skipping
1603 PROLOG and EPILOG for various conditions. As a result, the changed CFG
1604 would look like:
1606 guard_bb_1:
1607 if (prefer_scalar_loop) goto merge_bb_1
1608 else goto guard_bb_2
1610 guard_bb_2:
1611 if (skip_prolog) goto merge_bb_2
1612 else goto prolog_preheader
1614 prolog_preheader:
1615 PROLOG:
1616 prolog_header_bb:
1617 prolog_body
1618 if (exit_prolog_cond) goto prolog_exit_bb
1619 else goto prolog_header_bb
1620 prolog_exit_bb:
1622 merge_bb_2:
1624 vector_preheader:
1625 VECTOR LOOP:
1626 vector_header_bb:
1627 vector_body
1628 if (exit_vector_cond) goto vector_exit_bb
1629 else goto vector_header_bb
1630 vector_exit_bb:
1632 guard_bb_3:
1633 if (skip_epilog) goto merge_bb_3
1634 else goto epilog_preheader
1636 merge_bb_1:
1638 epilog_preheader:
1639 EPILOG:
1640 epilog_header_bb:
1641 epilog_body
1642 if (exit_epilog_cond) goto merge_bb_3
1643 else goto epilog_header_bb
1645 merge_bb_3:
1647 Note this function peels prolog and epilog only if it's necessary,
1648 as well as guards.
1649 Returns created epilogue or NULL.
1651 TODO: Guard for prefer_scalar_loop should be emitted along with
1652 versioning conditions if loop versioning is needed. */
1655 struct loop *
1656 vect_do_peeling (loop_vec_info loop_vinfo, tree niters, tree nitersm1,
1657 tree *niters_vector, int th, bool check_profitability,
1658 bool niters_no_overflow)
1660 edge e, guard_e;
1661 tree type = TREE_TYPE (niters), guard_cond;
1662 basic_block guard_bb, guard_to;
1663 int prob_prolog, prob_vector, prob_epilog;
1664 int bound_prolog = 0, bound_scalar = 0, bound = 0;
1665 int vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
1666 int prolog_peeling = LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo);
1667 bool epilog_peeling = (LOOP_VINFO_PEELING_FOR_NITER (loop_vinfo)
1668 || LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo));
1670 if (!prolog_peeling && !epilog_peeling)
1671 return NULL;
1673 prob_vector = 9 * REG_BR_PROB_BASE / 10;
1674 if ((vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo)) == 2)
1675 vf = 3;
1676 prob_prolog = prob_epilog = (vf - 1) * REG_BR_PROB_BASE / vf;
1677 vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
1679 struct loop *prolog, *epilog = NULL, *loop = LOOP_VINFO_LOOP (loop_vinfo);
1680 struct loop *first_loop = loop;
1681 bool irred_flag = loop_preheader_edge (loop)->flags & EDGE_IRREDUCIBLE_LOOP;
1682 create_lcssa_for_virtual_phi (loop);
1683 update_ssa (TODO_update_ssa_only_virtuals);
1685 if (MAY_HAVE_DEBUG_STMTS)
1687 gcc_assert (!adjust_vec.exists ());
1688 adjust_vec.create (32);
1690 initialize_original_copy_tables ();
1692 /* Prolog loop may be skipped. */
1693 bool skip_prolog = (prolog_peeling != 0);
1694 /* Skip to epilog if scalar loop may be preferred. It's only needed
1695 when we peel for epilog loop and when it hasn't been checked with
1696 loop versioning. */
1697 bool skip_vector = (!LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
1698 && !LOOP_REQUIRES_VERSIONING (loop_vinfo));
1699 /* Epilog loop must be executed if the number of iterations for epilog
1700 loop is known at compile time, otherwise we need to add a check at
1701 the end of vector loop and skip to the end of epilog loop. */
1702 bool skip_epilog = (prolog_peeling < 0
1703 || !LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo));
1704 /* PEELING_FOR_GAPS is special because epilog loop must be executed. */
1705 if (LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo))
1706 skip_epilog = false;
1708 /* Record the anchor bb at which guard should be placed if scalar loop
1709 may be preferred. */
1710 basic_block anchor = loop_preheader_edge (loop)->src;
1711 if (skip_vector)
1713 split_edge (loop_preheader_edge (loop));
1715 /* Due to the order in which we peel prolog and epilog, we first
1716 propagate probability to the whole loop. The purpose is to
1717 avoid adjusting probabilities of both prolog and vector loops
1718 separately. Note in this case, the probability of epilog loop
1719 needs to be scaled back later. */
1720 basic_block bb_before_loop = loop_preheader_edge (loop)->src;
1721 scale_bbs_frequencies_int (&bb_before_loop, 1, prob_vector,
1722 REG_BR_PROB_BASE);
1723 scale_loop_profile (loop, prob_vector, bound);
1726 tree niters_prolog = build_int_cst (type, 0);
1727 source_location loop_loc = find_loop_location (loop);
1728 struct loop *scalar_loop = LOOP_VINFO_SCALAR_LOOP (loop_vinfo);
1729 if (prolog_peeling)
1731 e = loop_preheader_edge (loop);
1732 if (!slpeel_can_duplicate_loop_p (loop, e))
1734 dump_printf_loc (MSG_MISSED_OPTIMIZATION, loop_loc,
1735 "loop can't be duplicated to preheader edge.\n");
1736 gcc_unreachable ();
1738 /* Peel prolog and put it on preheader edge of loop. */
1739 prolog = slpeel_tree_duplicate_loop_to_edge_cfg (loop, scalar_loop, e);
1740 if (!prolog)
1742 dump_printf_loc (MSG_MISSED_OPTIMIZATION, loop_loc,
1743 "slpeel_tree_duplicate_loop_to_edge_cfg failed.\n");
1744 gcc_unreachable ();
1746 slpeel_update_phi_nodes_for_loops (loop_vinfo, prolog, loop, true);
1747 first_loop = prolog;
1748 reset_original_copy_tables ();
1750 /* Generate and update the number of iterations for prolog loop. */
1751 niters_prolog = vect_gen_prolog_loop_niters (loop_vinfo, anchor,
1752 &bound_prolog);
1753 slpeel_make_loop_iterate_ntimes (prolog, niters_prolog);
1755 /* Skip the prolog loop. */
1756 if (skip_prolog)
1758 guard_cond = fold_build2 (EQ_EXPR, boolean_type_node,
1759 niters_prolog, build_int_cst (type, 0));
1760 guard_bb = loop_preheader_edge (prolog)->src;
1761 basic_block bb_after_prolog = loop_preheader_edge (loop)->src;
1762 guard_to = split_edge (loop_preheader_edge (loop));
1763 guard_e = slpeel_add_loop_guard (guard_bb, guard_cond,
1764 guard_to, guard_bb,
1765 inverse_probability (prob_prolog),
1766 irred_flag);
1767 e = EDGE_PRED (guard_to, 0);
1768 e = (e != guard_e ? e : EDGE_PRED (guard_to, 1));
1769 slpeel_update_phi_nodes_for_guard1 (prolog, loop, guard_e, e);
1771 scale_bbs_frequencies_int (&bb_after_prolog, 1, prob_prolog,
1772 REG_BR_PROB_BASE);
1773 scale_loop_profile (prolog, prob_prolog, bound_prolog);
1775 /* Update init address of DRs. */
1776 vect_update_inits_of_drs (loop_vinfo, niters_prolog);
1777 /* Update niters for vector loop. */
1778 LOOP_VINFO_NITERS (loop_vinfo)
1779 = fold_build2 (MINUS_EXPR, type, niters, niters_prolog);
1780 LOOP_VINFO_NITERSM1 (loop_vinfo)
1781 = fold_build2 (MINUS_EXPR, type,
1782 LOOP_VINFO_NITERSM1 (loop_vinfo), niters_prolog);
1783 bool new_var_p = false;
1784 niters = vect_build_loop_niters (loop_vinfo, &new_var_p);
1785 /* It's guaranteed that vector loop bound before vectorization is at
1786 least VF, so set range information for newly generated var. */
1787 if (new_var_p)
1788 set_range_info (niters, VR_RANGE,
1789 build_int_cst (type, vf), TYPE_MAX_VALUE (type));
1791 /* Prolog iterates at most bound_prolog times, latch iterates at
1792 most bound_prolog - 1 times. */
1793 record_niter_bound (prolog, bound_prolog - 1, false, true);
1794 delete_update_ssa ();
1795 adjust_vec_debug_stmts ();
1796 scev_reset ();
1799 if (epilog_peeling)
1801 e = single_exit (loop);
1802 if (!slpeel_can_duplicate_loop_p (loop, e))
1804 dump_printf_loc (MSG_MISSED_OPTIMIZATION, loop_loc,
1805 "loop can't be duplicated to exit edge.\n");
1806 gcc_unreachable ();
1808 /* Peel epilog and put it on exit edge of loop. */
1809 epilog = slpeel_tree_duplicate_loop_to_edge_cfg (loop, scalar_loop, e);
1810 if (!epilog)
1812 dump_printf_loc (MSG_MISSED_OPTIMIZATION, loop_loc,
1813 "slpeel_tree_duplicate_loop_to_edge_cfg failed.\n");
1814 gcc_unreachable ();
1816 slpeel_update_phi_nodes_for_loops (loop_vinfo, loop, epilog, false);
1818 /* Scalar version loop may be preferred. In this case, add guard
1819 and skip to epilog. Note this only happens when the number of
1820 iterations of loop is unknown at compile time, otherwise this
1821 won't be vectorized. */
1822 if (skip_vector)
1824 /* Additional epilogue iteration is peeled if gap exists. */
1825 bool peel_for_gaps = LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo);
1826 tree t = vect_gen_scalar_loop_niters (niters_prolog, prolog_peeling,
1827 bound_prolog,
1828 peel_for_gaps ? vf : vf - 1,
1829 th, &bound_scalar,
1830 check_profitability);
1831 /* Build guard against NITERSM1 since NITERS may overflow. */
1832 guard_cond = fold_build2 (LT_EXPR, boolean_type_node, nitersm1, t);
1833 guard_bb = anchor;
1834 guard_to = split_edge (loop_preheader_edge (epilog));
1835 guard_e = slpeel_add_loop_guard (guard_bb, guard_cond,
1836 guard_to, guard_bb,
1837 inverse_probability (prob_vector),
1838 irred_flag);
1839 e = EDGE_PRED (guard_to, 0);
1840 e = (e != guard_e ? e : EDGE_PRED (guard_to, 1));
1841 slpeel_update_phi_nodes_for_guard1 (first_loop, epilog, guard_e, e);
1843 /* Simply propagate profile info from guard_bb to guard_to which is
1844 a merge point of control flow. */
1845 guard_to->frequency = guard_bb->frequency;
1846 guard_to->count = guard_bb->count;
1847 single_succ_edge (guard_to)->count = guard_to->count;
1848 /* Scale probability of epilog loop back. */
1849 int scale_up = REG_BR_PROB_BASE * REG_BR_PROB_BASE / prob_vector;
1850 scale_loop_frequencies (epilog, scale_up, REG_BR_PROB_BASE);
1853 basic_block bb_before_epilog = loop_preheader_edge (epilog)->src;
1854 tree niters_vector_mult_vf;
1855 /* If loop is peeled for non-zero constant times, now niters refers to
1856 orig_niters - prolog_peeling, it won't overflow even the orig_niters
1857 overflows. */
1858 niters_no_overflow |= (prolog_peeling > 0);
1859 vect_gen_vector_loop_niters (loop_vinfo, niters,
1860 niters_vector, niters_no_overflow);
1861 vect_gen_vector_loop_niters_mult_vf (loop_vinfo, *niters_vector,
1862 &niters_vector_mult_vf);
1863 /* Update IVs of original loop as if they were advanced by
1864 niters_vector_mult_vf steps. */
1865 gcc_checking_assert (vect_can_advance_ivs_p (loop_vinfo));
1866 edge update_e = skip_vector ? e : loop_preheader_edge (epilog);
1867 vect_update_ivs_after_vectorizer (loop_vinfo, niters_vector_mult_vf,
1868 update_e);
1870 if (skip_epilog)
1872 guard_cond = fold_build2 (EQ_EXPR, boolean_type_node,
1873 niters, niters_vector_mult_vf);
1874 guard_bb = single_exit (loop)->dest;
1875 guard_to = split_edge (single_exit (epilog));
1876 guard_e = slpeel_add_loop_guard (guard_bb, guard_cond, guard_to,
1877 skip_vector ? anchor : guard_bb,
1878 inverse_probability (prob_epilog),
1879 irred_flag);
1880 slpeel_update_phi_nodes_for_guard2 (loop, epilog, guard_e,
1881 single_exit (epilog));
1882 /* Only need to handle basic block before epilog loop if it's not
1883 the guard_bb, which is the case when skip_vector is true. */
1884 if (guard_bb != bb_before_epilog)
1886 prob_epilog = (combine_probabilities (prob_vector, prob_epilog)
1887 + inverse_probability (prob_vector));
1889 scale_bbs_frequencies_int (&bb_before_epilog, 1, prob_epilog,
1890 REG_BR_PROB_BASE);
1892 scale_loop_profile (epilog, prob_epilog, bound);
1894 else
1895 slpeel_update_phi_nodes_for_lcssa (epilog);
1897 bound = LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo) ? vf - 1 : vf - 2;
1898 /* We share epilog loop with scalar version loop. */
1899 bound = MAX (bound, bound_scalar - 1);
1900 record_niter_bound (epilog, bound, false, true);
1902 delete_update_ssa ();
1903 adjust_vec_debug_stmts ();
1904 scev_reset ();
1906 adjust_vec.release ();
1907 free_original_copy_tables ();
1909 return epilog;
1912 /* Function vect_create_cond_for_niters_checks.
1914 Create a conditional expression that represents the run-time checks for
1915 loop's niter. The loop is guaranteed to to terminate if the run-time
1916 checks hold.
1918 Input:
1919 COND_EXPR - input conditional expression. New conditions will be chained
1920 with logical AND operation. If it is NULL, then the function
1921 is used to return the number of alias checks.
1922 LOOP_VINFO - field LOOP_VINFO_MAY_ALIAS_STMTS contains the list of ddrs
1923 to be checked.
1925 Output:
1926 COND_EXPR - conditional expression.
1928 The returned COND_EXPR is the conditional expression to be used in the
1929 if statement that controls which version of the loop gets executed at
1930 runtime. */
1932 static void
1933 vect_create_cond_for_niters_checks (loop_vec_info loop_vinfo, tree *cond_expr)
1935 tree part_cond_expr = LOOP_VINFO_NITERS_ASSUMPTIONS (loop_vinfo);
1937 if (*cond_expr)
1938 *cond_expr = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
1939 *cond_expr, part_cond_expr);
1940 else
1941 *cond_expr = part_cond_expr;
1944 /* Function vect_create_cond_for_align_checks.
1946 Create a conditional expression that represents the alignment checks for
1947 all of data references (array element references) whose alignment must be
1948 checked at runtime.
1950 Input:
1951 COND_EXPR - input conditional expression. New conditions will be chained
1952 with logical AND operation.
1953 LOOP_VINFO - two fields of the loop information are used.
1954 LOOP_VINFO_PTR_MASK is the mask used to check the alignment.
1955 LOOP_VINFO_MAY_MISALIGN_STMTS contains the refs to be checked.
1957 Output:
1958 COND_EXPR_STMT_LIST - statements needed to construct the conditional
1959 expression.
1960 The returned value is the conditional expression to be used in the if
1961 statement that controls which version of the loop gets executed at runtime.
1963 The algorithm makes two assumptions:
1964 1) The number of bytes "n" in a vector is a power of 2.
1965 2) An address "a" is aligned if a%n is zero and that this
1966 test can be done as a&(n-1) == 0. For example, for 16
1967 byte vectors the test is a&0xf == 0. */
1969 static void
1970 vect_create_cond_for_align_checks (loop_vec_info loop_vinfo,
1971 tree *cond_expr,
1972 gimple_seq *cond_expr_stmt_list)
1974 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
1975 vec<gimple *> may_misalign_stmts
1976 = LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo);
1977 gimple *ref_stmt;
1978 int mask = LOOP_VINFO_PTR_MASK (loop_vinfo);
1979 tree mask_cst;
1980 unsigned int i;
1981 tree int_ptrsize_type;
1982 char tmp_name[20];
1983 tree or_tmp_name = NULL_TREE;
1984 tree and_tmp_name;
1985 gimple *and_stmt;
1986 tree ptrsize_zero;
1987 tree part_cond_expr;
1989 /* Check that mask is one less than a power of 2, i.e., mask is
1990 all zeros followed by all ones. */
1991 gcc_assert ((mask != 0) && ((mask & (mask+1)) == 0));
1993 int_ptrsize_type = signed_type_for (ptr_type_node);
1995 /* Create expression (mask & (dr_1 || ... || dr_n)) where dr_i is the address
1996 of the first vector of the i'th data reference. */
1998 FOR_EACH_VEC_ELT (may_misalign_stmts, i, ref_stmt)
2000 gimple_seq new_stmt_list = NULL;
2001 tree addr_base;
2002 tree addr_tmp_name;
2003 tree new_or_tmp_name;
2004 gimple *addr_stmt, *or_stmt;
2005 stmt_vec_info stmt_vinfo = vinfo_for_stmt (ref_stmt);
2006 tree vectype = STMT_VINFO_VECTYPE (stmt_vinfo);
2007 bool negative = tree_int_cst_compare
2008 (DR_STEP (STMT_VINFO_DATA_REF (stmt_vinfo)), size_zero_node) < 0;
2009 tree offset = negative
2010 ? size_int (-TYPE_VECTOR_SUBPARTS (vectype) + 1) : size_zero_node;
2012 /* create: addr_tmp = (int)(address_of_first_vector) */
2013 addr_base =
2014 vect_create_addr_base_for_vector_ref (ref_stmt, &new_stmt_list,
2015 offset, loop);
2016 if (new_stmt_list != NULL)
2017 gimple_seq_add_seq (cond_expr_stmt_list, new_stmt_list);
2019 sprintf (tmp_name, "addr2int%d", i);
2020 addr_tmp_name = make_temp_ssa_name (int_ptrsize_type, NULL, tmp_name);
2021 addr_stmt = gimple_build_assign (addr_tmp_name, NOP_EXPR, addr_base);
2022 gimple_seq_add_stmt (cond_expr_stmt_list, addr_stmt);
2024 /* The addresses are OR together. */
2026 if (or_tmp_name != NULL_TREE)
2028 /* create: or_tmp = or_tmp | addr_tmp */
2029 sprintf (tmp_name, "orptrs%d", i);
2030 new_or_tmp_name = make_temp_ssa_name (int_ptrsize_type, NULL, tmp_name);
2031 or_stmt = gimple_build_assign (new_or_tmp_name, BIT_IOR_EXPR,
2032 or_tmp_name, addr_tmp_name);
2033 gimple_seq_add_stmt (cond_expr_stmt_list, or_stmt);
2034 or_tmp_name = new_or_tmp_name;
2036 else
2037 or_tmp_name = addr_tmp_name;
2039 } /* end for i */
2041 mask_cst = build_int_cst (int_ptrsize_type, mask);
2043 /* create: and_tmp = or_tmp & mask */
2044 and_tmp_name = make_temp_ssa_name (int_ptrsize_type, NULL, "andmask");
2046 and_stmt = gimple_build_assign (and_tmp_name, BIT_AND_EXPR,
2047 or_tmp_name, mask_cst);
2048 gimple_seq_add_stmt (cond_expr_stmt_list, and_stmt);
2050 /* Make and_tmp the left operand of the conditional test against zero.
2051 if and_tmp has a nonzero bit then some address is unaligned. */
2052 ptrsize_zero = build_int_cst (int_ptrsize_type, 0);
2053 part_cond_expr = fold_build2 (EQ_EXPR, boolean_type_node,
2054 and_tmp_name, ptrsize_zero);
2055 if (*cond_expr)
2056 *cond_expr = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
2057 *cond_expr, part_cond_expr);
2058 else
2059 *cond_expr = part_cond_expr;
2062 /* Function vect_create_cond_for_alias_checks.
2064 Create a conditional expression that represents the run-time checks for
2065 overlapping of address ranges represented by a list of data references
2066 relations passed as input.
2068 Input:
2069 COND_EXPR - input conditional expression. New conditions will be chained
2070 with logical AND operation. If it is NULL, then the function
2071 is used to return the number of alias checks.
2072 LOOP_VINFO - field LOOP_VINFO_MAY_ALIAS_STMTS contains the list of ddrs
2073 to be checked.
2075 Output:
2076 COND_EXPR - conditional expression.
2078 The returned COND_EXPR is the conditional expression to be used in the if
2079 statement that controls which version of the loop gets executed at runtime.
2082 void
2083 vect_create_cond_for_alias_checks (loop_vec_info loop_vinfo, tree * cond_expr)
2085 vec<dr_with_seg_len_pair_t> comp_alias_ddrs =
2086 LOOP_VINFO_COMP_ALIAS_DDRS (loop_vinfo);
2088 if (comp_alias_ddrs.is_empty ())
2089 return;
2091 create_runtime_alias_checks (LOOP_VINFO_LOOP (loop_vinfo),
2092 &comp_alias_ddrs, cond_expr);
2093 if (dump_enabled_p ())
2094 dump_printf_loc (MSG_NOTE, vect_location,
2095 "created %u versioning for alias checks.\n",
2096 comp_alias_ddrs.length ());
2100 /* Function vect_loop_versioning.
2102 If the loop has data references that may or may not be aligned or/and
2103 has data reference relations whose independence was not proven then
2104 two versions of the loop need to be generated, one which is vectorized
2105 and one which isn't. A test is then generated to control which of the
2106 loops is executed. The test checks for the alignment of all of the
2107 data references that may or may not be aligned. An additional
2108 sequence of runtime tests is generated for each pairs of DDRs whose
2109 independence was not proven. The vectorized version of loop is
2110 executed only if both alias and alignment tests are passed.
2112 The test generated to check which version of loop is executed
2113 is modified to also check for profitability as indicated by the
2114 cost model threshold TH.
2116 The versioning precondition(s) are placed in *COND_EXPR and
2117 *COND_EXPR_STMT_LIST. */
2119 void
2120 vect_loop_versioning (loop_vec_info loop_vinfo,
2121 unsigned int th, bool check_profitability)
2123 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo), *nloop;
2124 struct loop *scalar_loop = LOOP_VINFO_SCALAR_LOOP (loop_vinfo);
2125 basic_block condition_bb;
2126 gphi_iterator gsi;
2127 gimple_stmt_iterator cond_exp_gsi;
2128 basic_block merge_bb;
2129 basic_block new_exit_bb;
2130 edge new_exit_e, e;
2131 gphi *orig_phi, *new_phi;
2132 tree cond_expr = NULL_TREE;
2133 gimple_seq cond_expr_stmt_list = NULL;
2134 tree arg;
2135 unsigned prob = 4 * REG_BR_PROB_BASE / 5;
2136 gimple_seq gimplify_stmt_list = NULL;
2137 tree scalar_loop_iters = LOOP_VINFO_NITERS (loop_vinfo);
2138 bool version_align = LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT (loop_vinfo);
2139 bool version_alias = LOOP_REQUIRES_VERSIONING_FOR_ALIAS (loop_vinfo);
2140 bool version_niter = LOOP_REQUIRES_VERSIONING_FOR_NITERS (loop_vinfo);
2142 if (check_profitability)
2143 cond_expr = fold_build2 (GT_EXPR, boolean_type_node, scalar_loop_iters,
2144 build_int_cst (TREE_TYPE (scalar_loop_iters),
2145 th));
2147 if (version_niter)
2148 vect_create_cond_for_niters_checks (loop_vinfo, &cond_expr);
2150 if (cond_expr)
2151 cond_expr = force_gimple_operand_1 (cond_expr, &cond_expr_stmt_list,
2152 is_gimple_condexpr, NULL_TREE);
2154 if (version_align)
2155 vect_create_cond_for_align_checks (loop_vinfo, &cond_expr,
2156 &cond_expr_stmt_list);
2158 if (version_alias)
2159 vect_create_cond_for_alias_checks (loop_vinfo, &cond_expr);
2161 cond_expr = force_gimple_operand_1 (cond_expr, &gimplify_stmt_list,
2162 is_gimple_condexpr, NULL_TREE);
2163 gimple_seq_add_seq (&cond_expr_stmt_list, gimplify_stmt_list);
2165 initialize_original_copy_tables ();
2166 if (scalar_loop)
2168 edge scalar_e;
2169 basic_block preheader, scalar_preheader;
2171 /* We don't want to scale SCALAR_LOOP's frequencies, we need to
2172 scale LOOP's frequencies instead. */
2173 nloop = loop_version (scalar_loop, cond_expr, &condition_bb,
2174 prob, REG_BR_PROB_BASE - prob,
2175 REG_BR_PROB_BASE, REG_BR_PROB_BASE - prob, true);
2176 scale_loop_frequencies (loop, prob, REG_BR_PROB_BASE);
2177 /* CONDITION_BB was created above SCALAR_LOOP's preheader,
2178 while we need to move it above LOOP's preheader. */
2179 e = loop_preheader_edge (loop);
2180 scalar_e = loop_preheader_edge (scalar_loop);
2181 gcc_assert (empty_block_p (e->src)
2182 && single_pred_p (e->src));
2183 gcc_assert (empty_block_p (scalar_e->src)
2184 && single_pred_p (scalar_e->src));
2185 gcc_assert (single_pred_p (condition_bb));
2186 preheader = e->src;
2187 scalar_preheader = scalar_e->src;
2188 scalar_e = find_edge (condition_bb, scalar_preheader);
2189 e = single_pred_edge (preheader);
2190 redirect_edge_and_branch_force (single_pred_edge (condition_bb),
2191 scalar_preheader);
2192 redirect_edge_and_branch_force (scalar_e, preheader);
2193 redirect_edge_and_branch_force (e, condition_bb);
2194 set_immediate_dominator (CDI_DOMINATORS, condition_bb,
2195 single_pred (condition_bb));
2196 set_immediate_dominator (CDI_DOMINATORS, scalar_preheader,
2197 single_pred (scalar_preheader));
2198 set_immediate_dominator (CDI_DOMINATORS, preheader,
2199 condition_bb);
2201 else
2202 nloop = loop_version (loop, cond_expr, &condition_bb,
2203 prob, REG_BR_PROB_BASE - prob,
2204 prob, REG_BR_PROB_BASE - prob, true);
2206 if (version_niter)
2208 /* The versioned loop could be infinite, we need to clear existing
2209 niter information which is copied from the original loop. */
2210 gcc_assert (loop_constraint_set_p (loop, LOOP_C_FINITE));
2211 vect_free_loop_info_assumptions (nloop);
2212 /* And set constraint LOOP_C_INFINITE for niter analyzer. */
2213 loop_constraint_set (loop, LOOP_C_INFINITE);
2216 if (LOCATION_LOCUS (vect_location) != UNKNOWN_LOCATION
2217 && dump_enabled_p ())
2219 if (version_alias)
2220 dump_printf_loc (MSG_OPTIMIZED_LOCATIONS, vect_location,
2221 "loop versioned for vectorization because of "
2222 "possible aliasing\n");
2223 if (version_align)
2224 dump_printf_loc (MSG_OPTIMIZED_LOCATIONS, vect_location,
2225 "loop versioned for vectorization to enhance "
2226 "alignment\n");
2229 free_original_copy_tables ();
2231 /* Loop versioning violates an assumption we try to maintain during
2232 vectorization - that the loop exit block has a single predecessor.
2233 After versioning, the exit block of both loop versions is the same
2234 basic block (i.e. it has two predecessors). Just in order to simplify
2235 following transformations in the vectorizer, we fix this situation
2236 here by adding a new (empty) block on the exit-edge of the loop,
2237 with the proper loop-exit phis to maintain loop-closed-form.
2238 If loop versioning wasn't done from loop, but scalar_loop instead,
2239 merge_bb will have already just a single successor. */
2241 merge_bb = single_exit (loop)->dest;
2242 if (scalar_loop == NULL || EDGE_COUNT (merge_bb->preds) >= 2)
2244 gcc_assert (EDGE_COUNT (merge_bb->preds) >= 2);
2245 new_exit_bb = split_edge (single_exit (loop));
2246 new_exit_e = single_exit (loop);
2247 e = EDGE_SUCC (new_exit_bb, 0);
2249 for (gsi = gsi_start_phis (merge_bb); !gsi_end_p (gsi); gsi_next (&gsi))
2251 tree new_res;
2252 orig_phi = gsi.phi ();
2253 new_res = copy_ssa_name (PHI_RESULT (orig_phi));
2254 new_phi = create_phi_node (new_res, new_exit_bb);
2255 arg = PHI_ARG_DEF_FROM_EDGE (orig_phi, e);
2256 add_phi_arg (new_phi, arg, new_exit_e,
2257 gimple_phi_arg_location_from_edge (orig_phi, e));
2258 adjust_phi_and_debug_stmts (orig_phi, e, PHI_RESULT (new_phi));
2262 /* End loop-exit-fixes after versioning. */
2264 if (cond_expr_stmt_list)
2266 cond_exp_gsi = gsi_last_bb (condition_bb);
2267 gsi_insert_seq_before (&cond_exp_gsi, cond_expr_stmt_list,
2268 GSI_SAME_STMT);
2270 update_ssa (TODO_update_ssa);