libgo: add misc/cgo files
[official-gcc.git] / gcc / tree-data-ref.h
blob0013049053f082e4750bfa94ecef1b7f19bbd4bb
1 /* Data references and dependences detectors.
2 Copyright (C) 2003-2017 Free Software Foundation, Inc.
3 Contributed by Sebastian Pop <pop@cri.ensmp.fr>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #ifndef GCC_TREE_DATA_REF_H
22 #define GCC_TREE_DATA_REF_H
24 #include "graphds.h"
25 #include "tree-chrec.h"
28 innermost_loop_behavior describes the evolution of the address of the memory
29 reference in the innermost enclosing loop. The address is expressed as
30 BASE + STEP * # of iteration, and base is further decomposed as the base
31 pointer (BASE_ADDRESS), loop invariant offset (OFFSET) and
32 constant offset (INIT). Examples, in loop nest
34 for (i = 0; i < 100; i++)
35 for (j = 3; j < 100; j++)
37 Example 1 Example 2
38 data-ref a[j].b[i][j] *(p + x + 16B + 4B * j)
41 innermost_loop_behavior
42 base_address &a p
43 offset i * D_i x
44 init 3 * D_j + offsetof (b) 28
45 step D_j 4
48 struct innermost_loop_behavior
50 tree base_address;
51 tree offset;
52 tree init;
53 tree step;
55 /* Alignment information. ALIGNED_TO is set to the largest power of two
56 that divides OFFSET. */
57 tree aligned_to;
60 /* Describes the evolutions of indices of the memory reference. The indices
61 are indices of the ARRAY_REFs, indexes in artificial dimensions
62 added for member selection of records and the operands of MEM_REFs.
63 BASE_OBJECT is the part of the reference that is loop-invariant
64 (note that this reference does not have to cover the whole object
65 being accessed, in which case UNCONSTRAINED_BASE is set; hence it is
66 not recommended to use BASE_OBJECT in any code generation).
67 For the examples above,
69 base_object: a *(p + x + 4B * j_0)
70 indices: {j_0, +, 1}_2 {16, +, 4}_2
72 {i_0, +, 1}_1
73 {j_0, +, 1}_2
76 struct indices
78 /* The object. */
79 tree base_object;
81 /* A list of chrecs. Access functions of the indices. */
82 vec<tree> access_fns;
84 /* Whether BASE_OBJECT is an access representing the whole object
85 or whether the access could not be constrained. */
86 bool unconstrained_base;
89 struct dr_alias
91 /* The alias information that should be used for new pointers to this
92 location. */
93 struct ptr_info_def *ptr_info;
96 /* An integer vector. A vector formally consists of an element of a vector
97 space. A vector space is a set that is closed under vector addition
98 and scalar multiplication. In this vector space, an element is a list of
99 integers. */
100 typedef int *lambda_vector;
102 /* An integer matrix. A matrix consists of m vectors of length n (IE
103 all vectors are the same length). */
104 typedef lambda_vector *lambda_matrix;
108 struct data_reference
110 /* A pointer to the statement that contains this DR. */
111 gimple *stmt;
113 /* A pointer to the memory reference. */
114 tree ref;
116 /* Auxiliary info specific to a pass. */
117 void *aux;
119 /* True when the data reference is in RHS of a stmt. */
120 bool is_read;
122 /* Behavior of the memory reference in the innermost loop. */
123 struct innermost_loop_behavior innermost;
125 /* Subscripts of this data reference. */
126 struct indices indices;
128 /* Alias information for the data reference. */
129 struct dr_alias alias;
132 #define DR_STMT(DR) (DR)->stmt
133 #define DR_REF(DR) (DR)->ref
134 #define DR_BASE_OBJECT(DR) (DR)->indices.base_object
135 #define DR_UNCONSTRAINED_BASE(DR) (DR)->indices.unconstrained_base
136 #define DR_ACCESS_FNS(DR) (DR)->indices.access_fns
137 #define DR_ACCESS_FN(DR, I) DR_ACCESS_FNS (DR)[I]
138 #define DR_NUM_DIMENSIONS(DR) DR_ACCESS_FNS (DR).length ()
139 #define DR_IS_READ(DR) (DR)->is_read
140 #define DR_IS_WRITE(DR) (!DR_IS_READ (DR))
141 #define DR_BASE_ADDRESS(DR) (DR)->innermost.base_address
142 #define DR_OFFSET(DR) (DR)->innermost.offset
143 #define DR_INIT(DR) (DR)->innermost.init
144 #define DR_STEP(DR) (DR)->innermost.step
145 #define DR_PTR_INFO(DR) (DR)->alias.ptr_info
146 #define DR_ALIGNED_TO(DR) (DR)->innermost.aligned_to
147 #define DR_INNERMOST(DR) (DR)->innermost
149 typedef struct data_reference *data_reference_p;
151 /* This struct is used to store the information of a data reference,
152 including the data ref itself and the segment length for aliasing
153 checks. This is used to merge alias checks. */
155 struct dr_with_seg_len
157 dr_with_seg_len (data_reference_p d, tree len)
158 : dr (d), seg_len (len) {}
160 data_reference_p dr;
161 tree seg_len;
164 /* This struct contains two dr_with_seg_len objects with aliasing data
165 refs. Two comparisons are generated from them. */
167 struct dr_with_seg_len_pair_t
169 dr_with_seg_len_pair_t (const dr_with_seg_len& d1,
170 const dr_with_seg_len& d2)
171 : first (d1), second (d2) {}
173 dr_with_seg_len first;
174 dr_with_seg_len second;
177 enum data_dependence_direction {
178 dir_positive,
179 dir_negative,
180 dir_equal,
181 dir_positive_or_negative,
182 dir_positive_or_equal,
183 dir_negative_or_equal,
184 dir_star,
185 dir_independent
188 /* The description of the grid of iterations that overlap. At most
189 two loops are considered at the same time just now, hence at most
190 two functions are needed. For each of the functions, we store
191 the vector of coefficients, f[0] + x * f[1] + y * f[2] + ...,
192 where x, y, ... are variables. */
194 #define MAX_DIM 2
196 /* Special values of N. */
197 #define NO_DEPENDENCE 0
198 #define NOT_KNOWN (MAX_DIM + 1)
199 #define CF_NONTRIVIAL_P(CF) ((CF)->n != NO_DEPENDENCE && (CF)->n != NOT_KNOWN)
200 #define CF_NOT_KNOWN_P(CF) ((CF)->n == NOT_KNOWN)
201 #define CF_NO_DEPENDENCE_P(CF) ((CF)->n == NO_DEPENDENCE)
203 typedef vec<tree> affine_fn;
205 struct conflict_function
207 unsigned n;
208 affine_fn fns[MAX_DIM];
211 /* What is a subscript? Given two array accesses a subscript is the
212 tuple composed of the access functions for a given dimension.
213 Example: Given A[f1][f2][f3] and B[g1][g2][g3], there are three
214 subscripts: (f1, g1), (f2, g2), (f3, g3). These three subscripts
215 are stored in the data_dependence_relation structure under the form
216 of an array of subscripts. */
218 struct subscript
220 /* A description of the iterations for which the elements are
221 accessed twice. */
222 conflict_function *conflicting_iterations_in_a;
223 conflict_function *conflicting_iterations_in_b;
225 /* This field stores the information about the iteration domain
226 validity of the dependence relation. */
227 tree last_conflict;
229 /* Distance from the iteration that access a conflicting element in
230 A to the iteration that access this same conflicting element in
231 B. The distance is a tree scalar expression, i.e. a constant or a
232 symbolic expression, but certainly not a chrec function. */
233 tree distance;
236 typedef struct subscript *subscript_p;
238 #define SUB_CONFLICTS_IN_A(SUB) (SUB)->conflicting_iterations_in_a
239 #define SUB_CONFLICTS_IN_B(SUB) (SUB)->conflicting_iterations_in_b
240 #define SUB_LAST_CONFLICT(SUB) (SUB)->last_conflict
241 #define SUB_DISTANCE(SUB) (SUB)->distance
243 /* A data_dependence_relation represents a relation between two
244 data_references A and B. */
246 struct data_dependence_relation
249 struct data_reference *a;
250 struct data_reference *b;
252 /* A "yes/no/maybe" field for the dependence relation:
254 - when "ARE_DEPENDENT == NULL_TREE", there exist a dependence
255 relation between A and B, and the description of this relation
256 is given in the SUBSCRIPTS array,
258 - when "ARE_DEPENDENT == chrec_known", there is no dependence and
259 SUBSCRIPTS is empty,
261 - when "ARE_DEPENDENT == chrec_dont_know", there may be a dependence,
262 but the analyzer cannot be more specific. */
263 tree are_dependent;
265 /* For each subscript in the dependence test, there is an element in
266 this array. This is the attribute that labels the edge A->B of
267 the data_dependence_relation. */
268 vec<subscript_p> subscripts;
270 /* The analyzed loop nest. */
271 vec<loop_p> loop_nest;
273 /* The classic direction vector. */
274 vec<lambda_vector> dir_vects;
276 /* The classic distance vector. */
277 vec<lambda_vector> dist_vects;
279 /* An index in loop_nest for the innermost loop that varies for
280 this data dependence relation. */
281 unsigned inner_loop;
283 /* Is the dependence reversed with respect to the lexicographic order? */
284 bool reversed_p;
286 /* When the dependence relation is affine, it can be represented by
287 a distance vector. */
288 bool affine_p;
290 /* Set to true when the dependence relation is on the same data
291 access. */
292 bool self_reference_p;
295 typedef struct data_dependence_relation *ddr_p;
297 #define DDR_A(DDR) (DDR)->a
298 #define DDR_B(DDR) (DDR)->b
299 #define DDR_AFFINE_P(DDR) (DDR)->affine_p
300 #define DDR_ARE_DEPENDENT(DDR) (DDR)->are_dependent
301 #define DDR_SUBSCRIPTS(DDR) (DDR)->subscripts
302 #define DDR_SUBSCRIPT(DDR, I) DDR_SUBSCRIPTS (DDR)[I]
303 #define DDR_NUM_SUBSCRIPTS(DDR) DDR_SUBSCRIPTS (DDR).length ()
305 #define DDR_LOOP_NEST(DDR) (DDR)->loop_nest
306 /* The size of the direction/distance vectors: the number of loops in
307 the loop nest. */
308 #define DDR_NB_LOOPS(DDR) (DDR_LOOP_NEST (DDR).length ())
309 #define DDR_INNER_LOOP(DDR) (DDR)->inner_loop
310 #define DDR_SELF_REFERENCE(DDR) (DDR)->self_reference_p
312 #define DDR_DIST_VECTS(DDR) ((DDR)->dist_vects)
313 #define DDR_DIR_VECTS(DDR) ((DDR)->dir_vects)
314 #define DDR_NUM_DIST_VECTS(DDR) \
315 (DDR_DIST_VECTS (DDR).length ())
316 #define DDR_NUM_DIR_VECTS(DDR) \
317 (DDR_DIR_VECTS (DDR).length ())
318 #define DDR_DIR_VECT(DDR, I) \
319 DDR_DIR_VECTS (DDR)[I]
320 #define DDR_DIST_VECT(DDR, I) \
321 DDR_DIST_VECTS (DDR)[I]
322 #define DDR_REVERSED_P(DDR) (DDR)->reversed_p
325 bool dr_analyze_innermost (struct data_reference *, struct loop *);
326 extern bool compute_data_dependences_for_loop (struct loop *, bool,
327 vec<loop_p> *,
328 vec<data_reference_p> *,
329 vec<ddr_p> *);
330 extern void debug_ddrs (vec<ddr_p> );
331 extern void dump_data_reference (FILE *, struct data_reference *);
332 extern void debug (data_reference &ref);
333 extern void debug (data_reference *ptr);
334 extern void debug_data_reference (struct data_reference *);
335 extern void debug_data_references (vec<data_reference_p> );
336 extern void debug (vec<data_reference_p> &ref);
337 extern void debug (vec<data_reference_p> *ptr);
338 extern void debug_data_dependence_relation (struct data_dependence_relation *);
339 extern void dump_data_dependence_relations (FILE *, vec<ddr_p> );
340 extern void debug (vec<ddr_p> &ref);
341 extern void debug (vec<ddr_p> *ptr);
342 extern void debug_data_dependence_relations (vec<ddr_p> );
343 extern void free_dependence_relation (struct data_dependence_relation *);
344 extern void free_dependence_relations (vec<ddr_p> );
345 extern void free_data_ref (data_reference_p);
346 extern void free_data_refs (vec<data_reference_p> );
347 extern bool find_data_references_in_stmt (struct loop *, gimple *,
348 vec<data_reference_p> *);
349 extern bool graphite_find_data_references_in_stmt (loop_p, loop_p, gimple *,
350 vec<data_reference_p> *);
351 tree find_data_references_in_loop (struct loop *, vec<data_reference_p> *);
352 bool loop_nest_has_data_refs (loop_p loop);
353 struct data_reference *create_data_ref (loop_p, loop_p, tree, gimple *, bool);
354 extern bool find_loop_nest (struct loop *, vec<loop_p> *);
355 extern struct data_dependence_relation *initialize_data_dependence_relation
356 (struct data_reference *, struct data_reference *, vec<loop_p>);
357 extern void compute_affine_dependence (struct data_dependence_relation *,
358 loop_p);
359 extern void compute_self_dependence (struct data_dependence_relation *);
360 extern bool compute_all_dependences (vec<data_reference_p> ,
361 vec<ddr_p> *,
362 vec<loop_p>, bool);
363 extern tree find_data_references_in_bb (struct loop *, basic_block,
364 vec<data_reference_p> *);
366 extern bool dr_may_alias_p (const struct data_reference *,
367 const struct data_reference *, bool);
368 extern bool dr_equal_offsets_p (struct data_reference *,
369 struct data_reference *);
371 extern bool runtime_alias_check_p (ddr_p, struct loop *, bool);
372 extern int data_ref_compare_tree (tree, tree);
373 extern void prune_runtime_alias_test_list (vec<dr_with_seg_len_pair_t> *,
374 unsigned HOST_WIDE_INT);
375 extern void create_runtime_alias_checks (struct loop *,
376 vec<dr_with_seg_len_pair_t> *, tree*);
377 /* Return true when the base objects of data references A and B are
378 the same memory object. */
380 static inline bool
381 same_data_refs_base_objects (data_reference_p a, data_reference_p b)
383 return DR_NUM_DIMENSIONS (a) == DR_NUM_DIMENSIONS (b)
384 && operand_equal_p (DR_BASE_OBJECT (a), DR_BASE_OBJECT (b), 0);
387 /* Return true when the data references A and B are accessing the same
388 memory object with the same access functions. */
390 static inline bool
391 same_data_refs (data_reference_p a, data_reference_p b)
393 unsigned int i;
395 /* The references are exactly the same. */
396 if (operand_equal_p (DR_REF (a), DR_REF (b), 0))
397 return true;
399 if (!same_data_refs_base_objects (a, b))
400 return false;
402 for (i = 0; i < DR_NUM_DIMENSIONS (a); i++)
403 if (!eq_evolutions_p (DR_ACCESS_FN (a, i), DR_ACCESS_FN (b, i)))
404 return false;
406 return true;
409 /* Return true when the DDR contains two data references that have the
410 same access functions. */
412 static inline bool
413 same_access_functions (const struct data_dependence_relation *ddr)
415 unsigned i;
417 for (i = 0; i < DDR_NUM_SUBSCRIPTS (ddr); i++)
418 if (!eq_evolutions_p (DR_ACCESS_FN (DDR_A (ddr), i),
419 DR_ACCESS_FN (DDR_B (ddr), i)))
420 return false;
422 return true;
425 /* Returns true when all the dependences are computable. */
427 inline bool
428 known_dependences_p (vec<ddr_p> dependence_relations)
430 ddr_p ddr;
431 unsigned int i;
433 FOR_EACH_VEC_ELT (dependence_relations, i, ddr)
434 if (DDR_ARE_DEPENDENT (ddr) == chrec_dont_know)
435 return false;
437 return true;
440 /* Returns the dependence level for a vector DIST of size LENGTH.
441 LEVEL = 0 means a lexicographic dependence, i.e. a dependence due
442 to the sequence of statements, not carried by any loop. */
444 static inline unsigned
445 dependence_level (lambda_vector dist_vect, int length)
447 int i;
449 for (i = 0; i < length; i++)
450 if (dist_vect[i] != 0)
451 return i + 1;
453 return 0;
456 /* Return the dependence level for the DDR relation. */
458 static inline unsigned
459 ddr_dependence_level (ddr_p ddr)
461 unsigned vector;
462 unsigned level = 0;
464 if (DDR_DIST_VECTS (ddr).exists ())
465 level = dependence_level (DDR_DIST_VECT (ddr, 0), DDR_NB_LOOPS (ddr));
467 for (vector = 1; vector < DDR_NUM_DIST_VECTS (ddr); vector++)
468 level = MIN (level, dependence_level (DDR_DIST_VECT (ddr, vector),
469 DDR_NB_LOOPS (ddr)));
470 return level;
473 /* Return the index of the variable VAR in the LOOP_NEST array. */
475 static inline int
476 index_in_loop_nest (int var, vec<loop_p> loop_nest)
478 struct loop *loopi;
479 int var_index;
481 for (var_index = 0; loop_nest.iterate (var_index, &loopi);
482 var_index++)
483 if (loopi->num == var)
484 break;
486 return var_index;
489 /* Returns true when the data reference DR the form "A[i] = ..."
490 with a stride equal to its unit type size. */
492 static inline bool
493 adjacent_dr_p (struct data_reference *dr)
495 /* If this is a bitfield store bail out. */
496 if (TREE_CODE (DR_REF (dr)) == COMPONENT_REF
497 && DECL_BIT_FIELD (TREE_OPERAND (DR_REF (dr), 1)))
498 return false;
500 if (!DR_STEP (dr)
501 || TREE_CODE (DR_STEP (dr)) != INTEGER_CST)
502 return false;
504 return tree_int_cst_equal (fold_unary (ABS_EXPR, TREE_TYPE (DR_STEP (dr)),
505 DR_STEP (dr)),
506 TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (dr))));
509 void split_constant_offset (tree , tree *, tree *);
511 /* Compute the greatest common divisor of a VECTOR of SIZE numbers. */
513 static inline int
514 lambda_vector_gcd (lambda_vector vector, int size)
516 int i;
517 int gcd1 = 0;
519 if (size > 0)
521 gcd1 = vector[0];
522 for (i = 1; i < size; i++)
523 gcd1 = gcd (gcd1, vector[i]);
525 return gcd1;
528 /* Allocate a new vector of given SIZE. */
530 static inline lambda_vector
531 lambda_vector_new (int size)
533 /* ??? We shouldn't abuse the GC allocator here. */
534 return ggc_cleared_vec_alloc<int> (size);
537 /* Clear out vector VEC1 of length SIZE. */
539 static inline void
540 lambda_vector_clear (lambda_vector vec1, int size)
542 memset (vec1, 0, size * sizeof (*vec1));
545 /* Returns true when the vector V is lexicographically positive, in
546 other words, when the first nonzero element is positive. */
548 static inline bool
549 lambda_vector_lexico_pos (lambda_vector v,
550 unsigned n)
552 unsigned i;
553 for (i = 0; i < n; i++)
555 if (v[i] == 0)
556 continue;
557 if (v[i] < 0)
558 return false;
559 if (v[i] > 0)
560 return true;
562 return true;
565 /* Return true if vector VEC1 of length SIZE is the zero vector. */
567 static inline bool
568 lambda_vector_zerop (lambda_vector vec1, int size)
570 int i;
571 for (i = 0; i < size; i++)
572 if (vec1[i] != 0)
573 return false;
574 return true;
577 /* Allocate a matrix of M rows x N cols. */
579 static inline lambda_matrix
580 lambda_matrix_new (int m, int n, struct obstack *lambda_obstack)
582 lambda_matrix mat;
583 int i;
585 mat = XOBNEWVEC (lambda_obstack, lambda_vector, m);
587 for (i = 0; i < m; i++)
588 mat[i] = XOBNEWVEC (lambda_obstack, int, n);
590 return mat;
593 #endif /* GCC_TREE_DATA_REF_H */