libgo: add misc/cgo files
[official-gcc.git] / gcc / modulo-sched.c
blob005c6e596ad526bc0dc7cdbac1ae224417403d1a
1 /* Swing Modulo Scheduling implementation.
2 Copyright (C) 2004-2017 Free Software Foundation, Inc.
3 Contributed by Ayal Zaks and Mustafa Hagog <zaks,mustafa@il.ibm.com>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "backend.h"
26 #include "target.h"
27 #include "rtl.h"
28 #include "tree.h"
29 #include "cfghooks.h"
30 #include "df.h"
31 #include "memmodel.h"
32 #include "optabs.h"
33 #include "regs.h"
34 #include "emit-rtl.h"
35 #include "gcov-io.h"
36 #include "profile.h"
37 #include "insn-attr.h"
38 #include "cfgrtl.h"
39 #include "sched-int.h"
40 #include "cfgloop.h"
41 #include "expr.h"
42 #include "params.h"
43 #include "ddg.h"
44 #include "tree-pass.h"
45 #include "dbgcnt.h"
46 #include "loop-unroll.h"
48 #ifdef INSN_SCHEDULING
50 /* This file contains the implementation of the Swing Modulo Scheduler,
51 described in the following references:
52 [1] J. Llosa, A. Gonzalez, E. Ayguade, M. Valero., and J. Eckhardt.
53 Lifetime--sensitive modulo scheduling in a production environment.
54 IEEE Trans. on Comps., 50(3), March 2001
55 [2] J. Llosa, A. Gonzalez, E. Ayguade, and M. Valero.
56 Swing Modulo Scheduling: A Lifetime Sensitive Approach.
57 PACT '96 , pages 80-87, October 1996 (Boston - Massachusetts - USA).
59 The basic structure is:
60 1. Build a data-dependence graph (DDG) for each loop.
61 2. Use the DDG to order the insns of a loop (not in topological order
62 necessarily, but rather) trying to place each insn after all its
63 predecessors _or_ after all its successors.
64 3. Compute MII: a lower bound on the number of cycles to schedule the loop.
65 4. Use the ordering to perform list-scheduling of the loop:
66 1. Set II = MII. We will try to schedule the loop within II cycles.
67 2. Try to schedule the insns one by one according to the ordering.
68 For each insn compute an interval of cycles by considering already-
69 scheduled preds and succs (and associated latencies); try to place
70 the insn in the cycles of this window checking for potential
71 resource conflicts (using the DFA interface).
72 Note: this is different from the cycle-scheduling of schedule_insns;
73 here the insns are not scheduled monotonically top-down (nor bottom-
74 up).
75 3. If failed in scheduling all insns - bump II++ and try again, unless
76 II reaches an upper bound MaxII, in which case report failure.
77 5. If we succeeded in scheduling the loop within II cycles, we now
78 generate prolog and epilog, decrease the counter of the loop, and
79 perform modulo variable expansion for live ranges that span more than
80 II cycles (i.e. use register copies to prevent a def from overwriting
81 itself before reaching the use).
83 SMS works with countable loops (1) whose control part can be easily
84 decoupled from the rest of the loop and (2) whose loop count can
85 be easily adjusted. This is because we peel a constant number of
86 iterations into a prologue and epilogue for which we want to avoid
87 emitting the control part, and a kernel which is to iterate that
88 constant number of iterations less than the original loop. So the
89 control part should be a set of insns clearly identified and having
90 its own iv, not otherwise used in the loop (at-least for now), which
91 initializes a register before the loop to the number of iterations.
92 Currently SMS relies on the do-loop pattern to recognize such loops,
93 where (1) the control part comprises of all insns defining and/or
94 using a certain 'count' register and (2) the loop count can be
95 adjusted by modifying this register prior to the loop.
96 TODO: Rely on cfgloop analysis instead. */
98 /* This page defines partial-schedule structures and functions for
99 modulo scheduling. */
101 typedef struct partial_schedule *partial_schedule_ptr;
102 typedef struct ps_insn *ps_insn_ptr;
104 /* The minimum (absolute) cycle that a node of ps was scheduled in. */
105 #define PS_MIN_CYCLE(ps) (((partial_schedule_ptr)(ps))->min_cycle)
107 /* The maximum (absolute) cycle that a node of ps was scheduled in. */
108 #define PS_MAX_CYCLE(ps) (((partial_schedule_ptr)(ps))->max_cycle)
110 /* Perform signed modulo, always returning a non-negative value. */
111 #define SMODULO(x,y) ((x) % (y) < 0 ? ((x) % (y) + (y)) : (x) % (y))
113 /* The number of different iterations the nodes in ps span, assuming
114 the stage boundaries are placed efficiently. */
115 #define CALC_STAGE_COUNT(max_cycle,min_cycle,ii) ((max_cycle - min_cycle \
116 + 1 + ii - 1) / ii)
117 /* The stage count of ps. */
118 #define PS_STAGE_COUNT(ps) (((partial_schedule_ptr)(ps))->stage_count)
120 /* A single instruction in the partial schedule. */
121 struct ps_insn
123 /* Identifies the instruction to be scheduled. Values smaller than
124 the ddg's num_nodes refer directly to ddg nodes. A value of
125 X - num_nodes refers to register move X. */
126 int id;
128 /* The (absolute) cycle in which the PS instruction is scheduled.
129 Same as SCHED_TIME (node). */
130 int cycle;
132 /* The next/prev PS_INSN in the same row. */
133 ps_insn_ptr next_in_row,
134 prev_in_row;
138 /* Information about a register move that has been added to a partial
139 schedule. */
140 struct ps_reg_move_info
142 /* The source of the move is defined by the ps_insn with id DEF.
143 The destination is used by the ps_insns with the ids in USES. */
144 int def;
145 sbitmap uses;
147 /* The original form of USES' instructions used OLD_REG, but they
148 should now use NEW_REG. */
149 rtx old_reg;
150 rtx new_reg;
152 /* The number of consecutive stages that the move occupies. */
153 int num_consecutive_stages;
155 /* An instruction that sets NEW_REG to the correct value. The first
156 move associated with DEF will have an rhs of OLD_REG; later moves
157 use the result of the previous move. */
158 rtx_insn *insn;
161 /* Holds the partial schedule as an array of II rows. Each entry of the
162 array points to a linked list of PS_INSNs, which represents the
163 instructions that are scheduled for that row. */
164 struct partial_schedule
166 int ii; /* Number of rows in the partial schedule. */
167 int history; /* Threshold for conflict checking using DFA. */
169 /* rows[i] points to linked list of insns scheduled in row i (0<=i<ii). */
170 ps_insn_ptr *rows;
172 /* All the moves added for this partial schedule. Index X has
173 a ps_insn id of X + g->num_nodes. */
174 vec<ps_reg_move_info> reg_moves;
176 /* rows_length[i] holds the number of instructions in the row.
177 It is used only (as an optimization) to back off quickly from
178 trying to schedule a node in a full row; that is, to avoid running
179 through futile DFA state transitions. */
180 int *rows_length;
182 /* The earliest absolute cycle of an insn in the partial schedule. */
183 int min_cycle;
185 /* The latest absolute cycle of an insn in the partial schedule. */
186 int max_cycle;
188 ddg_ptr g; /* The DDG of the insns in the partial schedule. */
190 int stage_count; /* The stage count of the partial schedule. */
194 static partial_schedule_ptr create_partial_schedule (int ii, ddg_ptr, int history);
195 static void free_partial_schedule (partial_schedule_ptr);
196 static void reset_partial_schedule (partial_schedule_ptr, int new_ii);
197 void print_partial_schedule (partial_schedule_ptr, FILE *);
198 static void verify_partial_schedule (partial_schedule_ptr, sbitmap);
199 static ps_insn_ptr ps_add_node_check_conflicts (partial_schedule_ptr,
200 int, int, sbitmap, sbitmap);
201 static void rotate_partial_schedule (partial_schedule_ptr, int);
202 void set_row_column_for_ps (partial_schedule_ptr);
203 static void ps_insert_empty_row (partial_schedule_ptr, int, sbitmap);
204 static int compute_split_row (sbitmap, int, int, int, ddg_node_ptr);
207 /* This page defines constants and structures for the modulo scheduling
208 driver. */
210 static int sms_order_nodes (ddg_ptr, int, int *, int *);
211 static void set_node_sched_params (ddg_ptr);
212 static partial_schedule_ptr sms_schedule_by_order (ddg_ptr, int, int, int *);
213 static void permute_partial_schedule (partial_schedule_ptr, rtx_insn *);
214 static void generate_prolog_epilog (partial_schedule_ptr, struct loop *,
215 rtx, rtx);
216 static int calculate_stage_count (partial_schedule_ptr, int);
217 static void calculate_must_precede_follow (ddg_node_ptr, int, int,
218 int, int, sbitmap, sbitmap, sbitmap);
219 static int get_sched_window (partial_schedule_ptr, ddg_node_ptr,
220 sbitmap, int, int *, int *, int *);
221 static bool try_scheduling_node_in_cycle (partial_schedule_ptr, int, int,
222 sbitmap, int *, sbitmap, sbitmap);
223 static void remove_node_from_ps (partial_schedule_ptr, ps_insn_ptr);
225 #define NODE_ASAP(node) ((node)->aux.count)
227 #define SCHED_PARAMS(x) (&node_sched_param_vec[x])
228 #define SCHED_TIME(x) (SCHED_PARAMS (x)->time)
229 #define SCHED_ROW(x) (SCHED_PARAMS (x)->row)
230 #define SCHED_STAGE(x) (SCHED_PARAMS (x)->stage)
231 #define SCHED_COLUMN(x) (SCHED_PARAMS (x)->column)
233 /* The scheduling parameters held for each node. */
234 typedef struct node_sched_params
236 int time; /* The absolute scheduling cycle. */
238 int row; /* Holds time % ii. */
239 int stage; /* Holds time / ii. */
241 /* The column of a node inside the ps. If nodes u, v are on the same row,
242 u will precede v if column (u) < column (v). */
243 int column;
244 } *node_sched_params_ptr;
246 /* The following three functions are copied from the current scheduler
247 code in order to use sched_analyze() for computing the dependencies.
248 They are used when initializing the sched_info structure. */
249 static const char *
250 sms_print_insn (const rtx_insn *insn, int aligned ATTRIBUTE_UNUSED)
252 static char tmp[80];
254 sprintf (tmp, "i%4d", INSN_UID (insn));
255 return tmp;
258 static void
259 compute_jump_reg_dependencies (rtx insn ATTRIBUTE_UNUSED,
260 regset used ATTRIBUTE_UNUSED)
264 static struct common_sched_info_def sms_common_sched_info;
266 static struct sched_deps_info_def sms_sched_deps_info =
268 compute_jump_reg_dependencies,
269 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
270 NULL,
271 0, 0, 0
274 static struct haifa_sched_info sms_sched_info =
276 NULL,
277 NULL,
278 NULL,
279 NULL,
280 NULL,
281 sms_print_insn,
282 NULL,
283 NULL, /* insn_finishes_block_p */
284 NULL, NULL,
285 NULL, NULL,
286 0, 0,
288 NULL, NULL, NULL, NULL,
289 NULL, NULL,
293 /* Partial schedule instruction ID in PS is a register move. Return
294 information about it. */
295 static struct ps_reg_move_info *
296 ps_reg_move (partial_schedule_ptr ps, int id)
298 gcc_checking_assert (id >= ps->g->num_nodes);
299 return &ps->reg_moves[id - ps->g->num_nodes];
302 /* Return the rtl instruction that is being scheduled by partial schedule
303 instruction ID, which belongs to schedule PS. */
304 static rtx_insn *
305 ps_rtl_insn (partial_schedule_ptr ps, int id)
307 if (id < ps->g->num_nodes)
308 return ps->g->nodes[id].insn;
309 else
310 return ps_reg_move (ps, id)->insn;
313 /* Partial schedule instruction ID, which belongs to PS, occurred in
314 the original (unscheduled) loop. Return the first instruction
315 in the loop that was associated with ps_rtl_insn (PS, ID).
316 If the instruction had some notes before it, this is the first
317 of those notes. */
318 static rtx_insn *
319 ps_first_note (partial_schedule_ptr ps, int id)
321 gcc_assert (id < ps->g->num_nodes);
322 return ps->g->nodes[id].first_note;
325 /* Return the number of consecutive stages that are occupied by
326 partial schedule instruction ID in PS. */
327 static int
328 ps_num_consecutive_stages (partial_schedule_ptr ps, int id)
330 if (id < ps->g->num_nodes)
331 return 1;
332 else
333 return ps_reg_move (ps, id)->num_consecutive_stages;
336 /* Given HEAD and TAIL which are the first and last insns in a loop;
337 return the register which controls the loop. Return zero if it has
338 more than one occurrence in the loop besides the control part or the
339 do-loop pattern is not of the form we expect. */
340 static rtx
341 doloop_register_get (rtx_insn *head, rtx_insn *tail)
343 rtx reg, condition;
344 rtx_insn *insn, *first_insn_not_to_check;
346 if (!JUMP_P (tail))
347 return NULL_RTX;
349 if (!targetm.code_for_doloop_end)
350 return NULL_RTX;
352 /* TODO: Free SMS's dependence on doloop_condition_get. */
353 condition = doloop_condition_get (tail);
354 if (! condition)
355 return NULL_RTX;
357 if (REG_P (XEXP (condition, 0)))
358 reg = XEXP (condition, 0);
359 else if (GET_CODE (XEXP (condition, 0)) == PLUS
360 && REG_P (XEXP (XEXP (condition, 0), 0)))
361 reg = XEXP (XEXP (condition, 0), 0);
362 else
363 gcc_unreachable ();
365 /* Check that the COUNT_REG has no other occurrences in the loop
366 until the decrement. We assume the control part consists of
367 either a single (parallel) branch-on-count or a (non-parallel)
368 branch immediately preceded by a single (decrement) insn. */
369 first_insn_not_to_check = (GET_CODE (PATTERN (tail)) == PARALLEL ? tail
370 : prev_nondebug_insn (tail));
372 for (insn = head; insn != first_insn_not_to_check; insn = NEXT_INSN (insn))
373 if (!DEBUG_INSN_P (insn) && reg_mentioned_p (reg, insn))
375 if (dump_file)
377 fprintf (dump_file, "SMS count_reg found ");
378 print_rtl_single (dump_file, reg);
379 fprintf (dump_file, " outside control in insn:\n");
380 print_rtl_single (dump_file, insn);
383 return NULL_RTX;
386 return reg;
389 /* Check if COUNT_REG is set to a constant in the PRE_HEADER block, so
390 that the number of iterations is a compile-time constant. If so,
391 return the rtx_insn that sets COUNT_REG to a constant, and set COUNT to
392 this constant. Otherwise return 0. */
393 static rtx_insn *
394 const_iteration_count (rtx count_reg, basic_block pre_header,
395 int64_t * count)
397 rtx_insn *insn;
398 rtx_insn *head, *tail;
400 if (! pre_header)
401 return NULL;
403 get_ebb_head_tail (pre_header, pre_header, &head, &tail);
405 for (insn = tail; insn != PREV_INSN (head); insn = PREV_INSN (insn))
406 if (NONDEBUG_INSN_P (insn) && single_set (insn) &&
407 rtx_equal_p (count_reg, SET_DEST (single_set (insn))))
409 rtx pat = single_set (insn);
411 if (CONST_INT_P (SET_SRC (pat)))
413 *count = INTVAL (SET_SRC (pat));
414 return insn;
417 return NULL;
420 return NULL;
423 /* A very simple resource-based lower bound on the initiation interval.
424 ??? Improve the accuracy of this bound by considering the
425 utilization of various units. */
426 static int
427 res_MII (ddg_ptr g)
429 if (targetm.sched.sms_res_mii)
430 return targetm.sched.sms_res_mii (g);
432 return ((g->num_nodes - g->num_debug) / issue_rate);
436 /* A vector that contains the sched data for each ps_insn. */
437 static vec<node_sched_params> node_sched_param_vec;
439 /* Allocate sched_params for each node and initialize it. */
440 static void
441 set_node_sched_params (ddg_ptr g)
443 node_sched_param_vec.truncate (0);
444 node_sched_param_vec.safe_grow_cleared (g->num_nodes);
447 /* Make sure that node_sched_param_vec has an entry for every move in PS. */
448 static void
449 extend_node_sched_params (partial_schedule_ptr ps)
451 node_sched_param_vec.safe_grow_cleared (ps->g->num_nodes
452 + ps->reg_moves.length ());
455 /* Update the sched_params (time, row and stage) for node U using the II,
456 the CYCLE of U and MIN_CYCLE.
457 We're not simply taking the following
458 SCHED_STAGE (u) = CALC_STAGE_COUNT (SCHED_TIME (u), min_cycle, ii);
459 because the stages may not be aligned on cycle 0. */
460 static void
461 update_node_sched_params (int u, int ii, int cycle, int min_cycle)
463 int sc_until_cycle_zero;
464 int stage;
466 SCHED_TIME (u) = cycle;
467 SCHED_ROW (u) = SMODULO (cycle, ii);
469 /* The calculation of stage count is done adding the number
470 of stages before cycle zero and after cycle zero. */
471 sc_until_cycle_zero = CALC_STAGE_COUNT (-1, min_cycle, ii);
473 if (SCHED_TIME (u) < 0)
475 stage = CALC_STAGE_COUNT (-1, SCHED_TIME (u), ii);
476 SCHED_STAGE (u) = sc_until_cycle_zero - stage;
478 else
480 stage = CALC_STAGE_COUNT (SCHED_TIME (u), 0, ii);
481 SCHED_STAGE (u) = sc_until_cycle_zero + stage - 1;
485 static void
486 print_node_sched_params (FILE *file, int num_nodes, partial_schedule_ptr ps)
488 int i;
490 if (! file)
491 return;
492 for (i = 0; i < num_nodes; i++)
494 node_sched_params_ptr nsp = SCHED_PARAMS (i);
496 fprintf (file, "Node = %d; INSN = %d\n", i,
497 INSN_UID (ps_rtl_insn (ps, i)));
498 fprintf (file, " asap = %d:\n", NODE_ASAP (&ps->g->nodes[i]));
499 fprintf (file, " time = %d:\n", nsp->time);
500 fprintf (file, " stage = %d:\n", nsp->stage);
504 /* Set SCHED_COLUMN for each instruction in row ROW of PS. */
505 static void
506 set_columns_for_row (partial_schedule_ptr ps, int row)
508 ps_insn_ptr cur_insn;
509 int column;
511 column = 0;
512 for (cur_insn = ps->rows[row]; cur_insn; cur_insn = cur_insn->next_in_row)
513 SCHED_COLUMN (cur_insn->id) = column++;
516 /* Set SCHED_COLUMN for each instruction in PS. */
517 static void
518 set_columns_for_ps (partial_schedule_ptr ps)
520 int row;
522 for (row = 0; row < ps->ii; row++)
523 set_columns_for_row (ps, row);
526 /* Try to schedule the move with ps_insn identifier I_REG_MOVE in PS.
527 Its single predecessor has already been scheduled, as has its
528 ddg node successors. (The move may have also another move as its
529 successor, in which case that successor will be scheduled later.)
531 The move is part of a chain that satisfies register dependencies
532 between a producing ddg node and various consuming ddg nodes.
533 If some of these dependencies have a distance of 1 (meaning that
534 the use is upward-exposed) then DISTANCE1_USES is nonnull and
535 contains the set of uses with distance-1 dependencies.
536 DISTANCE1_USES is null otherwise.
538 MUST_FOLLOW is a scratch bitmap that is big enough to hold
539 all current ps_insn ids.
541 Return true on success. */
542 static bool
543 schedule_reg_move (partial_schedule_ptr ps, int i_reg_move,
544 sbitmap distance1_uses, sbitmap must_follow)
546 unsigned int u;
547 int this_time, this_distance, this_start, this_end, this_latency;
548 int start, end, c, ii;
549 sbitmap_iterator sbi;
550 ps_reg_move_info *move;
551 rtx_insn *this_insn;
552 ps_insn_ptr psi;
554 move = ps_reg_move (ps, i_reg_move);
555 ii = ps->ii;
556 if (dump_file)
558 fprintf (dump_file, "Scheduling register move INSN %d; ii = %d"
559 ", min cycle = %d\n\n", INSN_UID (move->insn), ii,
560 PS_MIN_CYCLE (ps));
561 print_rtl_single (dump_file, move->insn);
562 fprintf (dump_file, "\n%11s %11s %5s\n", "start", "end", "time");
563 fprintf (dump_file, "=========== =========== =====\n");
566 start = INT_MIN;
567 end = INT_MAX;
569 /* For dependencies of distance 1 between a producer ddg node A
570 and consumer ddg node B, we have a chain of dependencies:
572 A --(T,L1,1)--> M1 --(T,L2,0)--> M2 ... --(T,Ln,0)--> B
574 where Mi is the ith move. For dependencies of distance 0 between
575 a producer ddg node A and consumer ddg node C, we have a chain of
576 dependencies:
578 A --(T,L1',0)--> M1' --(T,L2',0)--> M2' ... --(T,Ln',0)--> C
580 where Mi' occupies the same position as Mi but occurs a stage later.
581 We can only schedule each move once, so if we have both types of
582 chain, we model the second as:
584 A --(T,L1',1)--> M1 --(T,L2',0)--> M2 ... --(T,Ln',-1)--> C
586 First handle the dependencies between the previously-scheduled
587 predecessor and the move. */
588 this_insn = ps_rtl_insn (ps, move->def);
589 this_latency = insn_latency (this_insn, move->insn);
590 this_distance = distance1_uses && move->def < ps->g->num_nodes ? 1 : 0;
591 this_time = SCHED_TIME (move->def) - this_distance * ii;
592 this_start = this_time + this_latency;
593 this_end = this_time + ii;
594 if (dump_file)
595 fprintf (dump_file, "%11d %11d %5d %d --(T,%d,%d)--> %d\n",
596 this_start, this_end, SCHED_TIME (move->def),
597 INSN_UID (this_insn), this_latency, this_distance,
598 INSN_UID (move->insn));
600 if (start < this_start)
601 start = this_start;
602 if (end > this_end)
603 end = this_end;
605 /* Handle the dependencies between the move and previously-scheduled
606 successors. */
607 EXECUTE_IF_SET_IN_BITMAP (move->uses, 0, u, sbi)
609 this_insn = ps_rtl_insn (ps, u);
610 this_latency = insn_latency (move->insn, this_insn);
611 if (distance1_uses && !bitmap_bit_p (distance1_uses, u))
612 this_distance = -1;
613 else
614 this_distance = 0;
615 this_time = SCHED_TIME (u) + this_distance * ii;
616 this_start = this_time - ii;
617 this_end = this_time - this_latency;
618 if (dump_file)
619 fprintf (dump_file, "%11d %11d %5d %d --(T,%d,%d)--> %d\n",
620 this_start, this_end, SCHED_TIME (u), INSN_UID (move->insn),
621 this_latency, this_distance, INSN_UID (this_insn));
623 if (start < this_start)
624 start = this_start;
625 if (end > this_end)
626 end = this_end;
629 if (dump_file)
631 fprintf (dump_file, "----------- ----------- -----\n");
632 fprintf (dump_file, "%11d %11d %5s %s\n", start, end, "", "(max, min)");
635 bitmap_clear (must_follow);
636 bitmap_set_bit (must_follow, move->def);
638 start = MAX (start, end - (ii - 1));
639 for (c = end; c >= start; c--)
641 psi = ps_add_node_check_conflicts (ps, i_reg_move, c,
642 move->uses, must_follow);
643 if (psi)
645 update_node_sched_params (i_reg_move, ii, c, PS_MIN_CYCLE (ps));
646 if (dump_file)
647 fprintf (dump_file, "\nScheduled register move INSN %d at"
648 " time %d, row %d\n\n", INSN_UID (move->insn), c,
649 SCHED_ROW (i_reg_move));
650 return true;
654 if (dump_file)
655 fprintf (dump_file, "\nNo available slot\n\n");
657 return false;
661 Breaking intra-loop register anti-dependences:
662 Each intra-loop register anti-dependence implies a cross-iteration true
663 dependence of distance 1. Therefore, we can remove such false dependencies
664 and figure out if the partial schedule broke them by checking if (for a
665 true-dependence of distance 1): SCHED_TIME (def) < SCHED_TIME (use) and
666 if so generate a register move. The number of such moves is equal to:
667 SCHED_TIME (use) - SCHED_TIME (def) { 0 broken
668 nreg_moves = ----------------------------------- + 1 - { dependence.
669 ii { 1 if not.
671 static bool
672 schedule_reg_moves (partial_schedule_ptr ps)
674 ddg_ptr g = ps->g;
675 int ii = ps->ii;
676 int i;
678 for (i = 0; i < g->num_nodes; i++)
680 ddg_node_ptr u = &g->nodes[i];
681 ddg_edge_ptr e;
682 int nreg_moves = 0, i_reg_move;
683 rtx prev_reg, old_reg;
684 int first_move;
685 int distances[2];
686 sbitmap distance1_uses;
687 rtx set = single_set (u->insn);
689 /* Skip instructions that do not set a register. */
690 if ((set && !REG_P (SET_DEST (set))))
691 continue;
693 /* Compute the number of reg_moves needed for u, by looking at life
694 ranges started at u (excluding self-loops). */
695 distances[0] = distances[1] = false;
696 for (e = u->out; e; e = e->next_out)
697 if (e->type == TRUE_DEP && e->dest != e->src)
699 int nreg_moves4e = (SCHED_TIME (e->dest->cuid)
700 - SCHED_TIME (e->src->cuid)) / ii;
702 if (e->distance == 1)
703 nreg_moves4e = (SCHED_TIME (e->dest->cuid)
704 - SCHED_TIME (e->src->cuid) + ii) / ii;
706 /* If dest precedes src in the schedule of the kernel, then dest
707 will read before src writes and we can save one reg_copy. */
708 if (SCHED_ROW (e->dest->cuid) == SCHED_ROW (e->src->cuid)
709 && SCHED_COLUMN (e->dest->cuid) < SCHED_COLUMN (e->src->cuid))
710 nreg_moves4e--;
712 if (nreg_moves4e >= 1)
714 /* !single_set instructions are not supported yet and
715 thus we do not except to encounter them in the loop
716 except from the doloop part. For the latter case
717 we assume no regmoves are generated as the doloop
718 instructions are tied to the branch with an edge. */
719 gcc_assert (set);
720 /* If the instruction contains auto-inc register then
721 validate that the regmov is being generated for the
722 target regsiter rather then the inc'ed register. */
723 gcc_assert (!autoinc_var_is_used_p (u->insn, e->dest->insn));
726 if (nreg_moves4e)
728 gcc_assert (e->distance < 2);
729 distances[e->distance] = true;
731 nreg_moves = MAX (nreg_moves, nreg_moves4e);
734 if (nreg_moves == 0)
735 continue;
737 /* Create NREG_MOVES register moves. */
738 first_move = ps->reg_moves.length ();
739 ps->reg_moves.safe_grow_cleared (first_move + nreg_moves);
740 extend_node_sched_params (ps);
742 /* Record the moves associated with this node. */
743 first_move += ps->g->num_nodes;
745 /* Generate each move. */
746 old_reg = prev_reg = SET_DEST (single_set (u->insn));
747 for (i_reg_move = 0; i_reg_move < nreg_moves; i_reg_move++)
749 ps_reg_move_info *move = ps_reg_move (ps, first_move + i_reg_move);
751 move->def = i_reg_move > 0 ? first_move + i_reg_move - 1 : i;
752 move->uses = sbitmap_alloc (first_move + nreg_moves);
753 move->old_reg = old_reg;
754 move->new_reg = gen_reg_rtx (GET_MODE (prev_reg));
755 move->num_consecutive_stages = distances[0] && distances[1] ? 2 : 1;
756 move->insn = gen_move_insn (move->new_reg, copy_rtx (prev_reg));
757 bitmap_clear (move->uses);
759 prev_reg = move->new_reg;
762 distance1_uses = distances[1] ? sbitmap_alloc (g->num_nodes) : NULL;
764 if (distance1_uses)
765 bitmap_clear (distance1_uses);
767 /* Every use of the register defined by node may require a different
768 copy of this register, depending on the time the use is scheduled.
769 Record which uses require which move results. */
770 for (e = u->out; e; e = e->next_out)
771 if (e->type == TRUE_DEP && e->dest != e->src)
773 int dest_copy = (SCHED_TIME (e->dest->cuid)
774 - SCHED_TIME (e->src->cuid)) / ii;
776 if (e->distance == 1)
777 dest_copy = (SCHED_TIME (e->dest->cuid)
778 - SCHED_TIME (e->src->cuid) + ii) / ii;
780 if (SCHED_ROW (e->dest->cuid) == SCHED_ROW (e->src->cuid)
781 && SCHED_COLUMN (e->dest->cuid) < SCHED_COLUMN (e->src->cuid))
782 dest_copy--;
784 if (dest_copy)
786 ps_reg_move_info *move;
788 move = ps_reg_move (ps, first_move + dest_copy - 1);
789 bitmap_set_bit (move->uses, e->dest->cuid);
790 if (e->distance == 1)
791 bitmap_set_bit (distance1_uses, e->dest->cuid);
795 auto_sbitmap must_follow (first_move + nreg_moves);
796 for (i_reg_move = 0; i_reg_move < nreg_moves; i_reg_move++)
797 if (!schedule_reg_move (ps, first_move + i_reg_move,
798 distance1_uses, must_follow))
799 break;
800 if (distance1_uses)
801 sbitmap_free (distance1_uses);
802 if (i_reg_move < nreg_moves)
803 return false;
805 return true;
808 /* Emit the moves associated with PS. Apply the substitutions
809 associated with them. */
810 static void
811 apply_reg_moves (partial_schedule_ptr ps)
813 ps_reg_move_info *move;
814 int i;
816 FOR_EACH_VEC_ELT (ps->reg_moves, i, move)
818 unsigned int i_use;
819 sbitmap_iterator sbi;
821 EXECUTE_IF_SET_IN_BITMAP (move->uses, 0, i_use, sbi)
823 replace_rtx (ps->g->nodes[i_use].insn, move->old_reg, move->new_reg);
824 df_insn_rescan (ps->g->nodes[i_use].insn);
829 /* Bump the SCHED_TIMEs of all nodes by AMOUNT. Set the values of
830 SCHED_ROW and SCHED_STAGE. Instruction scheduled on cycle AMOUNT
831 will move to cycle zero. */
832 static void
833 reset_sched_times (partial_schedule_ptr ps, int amount)
835 int row;
836 int ii = ps->ii;
837 ps_insn_ptr crr_insn;
839 for (row = 0; row < ii; row++)
840 for (crr_insn = ps->rows[row]; crr_insn; crr_insn = crr_insn->next_in_row)
842 int u = crr_insn->id;
843 int normalized_time = SCHED_TIME (u) - amount;
844 int new_min_cycle = PS_MIN_CYCLE (ps) - amount;
846 if (dump_file)
848 /* Print the scheduling times after the rotation. */
849 rtx_insn *insn = ps_rtl_insn (ps, u);
851 fprintf (dump_file, "crr_insn->node=%d (insn id %d), "
852 "crr_insn->cycle=%d, min_cycle=%d", u,
853 INSN_UID (insn), normalized_time, new_min_cycle);
854 if (JUMP_P (insn))
855 fprintf (dump_file, " (branch)");
856 fprintf (dump_file, "\n");
859 gcc_assert (SCHED_TIME (u) >= ps->min_cycle);
860 gcc_assert (SCHED_TIME (u) <= ps->max_cycle);
862 crr_insn->cycle = normalized_time;
863 update_node_sched_params (u, ii, normalized_time, new_min_cycle);
867 /* Permute the insns according to their order in PS, from row 0 to
868 row ii-1, and position them right before LAST. This schedules
869 the insns of the loop kernel. */
870 static void
871 permute_partial_schedule (partial_schedule_ptr ps, rtx_insn *last)
873 int ii = ps->ii;
874 int row;
875 ps_insn_ptr ps_ij;
877 for (row = 0; row < ii ; row++)
878 for (ps_ij = ps->rows[row]; ps_ij; ps_ij = ps_ij->next_in_row)
880 rtx_insn *insn = ps_rtl_insn (ps, ps_ij->id);
882 if (PREV_INSN (last) != insn)
884 if (ps_ij->id < ps->g->num_nodes)
885 reorder_insns_nobb (ps_first_note (ps, ps_ij->id), insn,
886 PREV_INSN (last));
887 else
888 add_insn_before (insn, last, NULL);
893 /* Set bitmaps TMP_FOLLOW and TMP_PRECEDE to MUST_FOLLOW and MUST_PRECEDE
894 respectively only if cycle C falls on the border of the scheduling
895 window boundaries marked by START and END cycles. STEP is the
896 direction of the window. */
897 static inline void
898 set_must_precede_follow (sbitmap *tmp_follow, sbitmap must_follow,
899 sbitmap *tmp_precede, sbitmap must_precede, int c,
900 int start, int end, int step)
902 *tmp_precede = NULL;
903 *tmp_follow = NULL;
905 if (c == start)
907 if (step == 1)
908 *tmp_precede = must_precede;
909 else /* step == -1. */
910 *tmp_follow = must_follow;
912 if (c == end - step)
914 if (step == 1)
915 *tmp_follow = must_follow;
916 else /* step == -1. */
917 *tmp_precede = must_precede;
922 /* Return True if the branch can be moved to row ii-1 while
923 normalizing the partial schedule PS to start from cycle zero and thus
924 optimize the SC. Otherwise return False. */
925 static bool
926 optimize_sc (partial_schedule_ptr ps, ddg_ptr g)
928 int amount = PS_MIN_CYCLE (ps);
929 int start, end, step;
930 int ii = ps->ii;
931 bool ok = false;
932 int stage_count, stage_count_curr;
934 /* Compare the SC after normalization and SC after bringing the branch
935 to row ii-1. If they are equal just bail out. */
936 stage_count = calculate_stage_count (ps, amount);
937 stage_count_curr =
938 calculate_stage_count (ps, SCHED_TIME (g->closing_branch->cuid) - (ii - 1));
940 if (stage_count == stage_count_curr)
942 if (dump_file)
943 fprintf (dump_file, "SMS SC already optimized.\n");
945 return false;
948 if (dump_file)
950 fprintf (dump_file, "SMS Trying to optimize branch location\n");
951 fprintf (dump_file, "SMS partial schedule before trial:\n");
952 print_partial_schedule (ps, dump_file);
955 /* First, normalize the partial scheduling. */
956 reset_sched_times (ps, amount);
957 rotate_partial_schedule (ps, amount);
958 if (dump_file)
960 fprintf (dump_file,
961 "SMS partial schedule after normalization (ii, %d, SC %d):\n",
962 ii, stage_count);
963 print_partial_schedule (ps, dump_file);
966 if (SMODULO (SCHED_TIME (g->closing_branch->cuid), ii) == ii - 1)
967 return true;
969 auto_sbitmap sched_nodes (g->num_nodes);
970 bitmap_ones (sched_nodes);
972 /* Calculate the new placement of the branch. It should be in row
973 ii-1 and fall into it's scheduling window. */
974 if (get_sched_window (ps, g->closing_branch, sched_nodes, ii, &start,
975 &step, &end) == 0)
977 bool success;
978 ps_insn_ptr next_ps_i;
979 int branch_cycle = SCHED_TIME (g->closing_branch->cuid);
980 int row = SMODULO (branch_cycle, ps->ii);
981 int num_splits = 0;
982 sbitmap tmp_precede, tmp_follow;
983 int min_cycle, c;
985 if (dump_file)
986 fprintf (dump_file, "\nTrying to schedule node %d "
987 "INSN = %d in (%d .. %d) step %d\n",
988 g->closing_branch->cuid,
989 (INSN_UID (g->closing_branch->insn)), start, end, step);
991 gcc_assert ((step > 0 && start < end) || (step < 0 && start > end));
992 if (step == 1)
994 c = start + ii - SMODULO (start, ii) - 1;
995 gcc_assert (c >= start);
996 if (c >= end)
998 if (dump_file)
999 fprintf (dump_file,
1000 "SMS failed to schedule branch at cycle: %d\n", c);
1001 return false;
1004 else
1006 c = start - SMODULO (start, ii) - 1;
1007 gcc_assert (c <= start);
1009 if (c <= end)
1011 if (dump_file)
1012 fprintf (dump_file,
1013 "SMS failed to schedule branch at cycle: %d\n", c);
1014 return false;
1018 auto_sbitmap must_precede (g->num_nodes);
1019 auto_sbitmap must_follow (g->num_nodes);
1021 /* Try to schedule the branch is it's new cycle. */
1022 calculate_must_precede_follow (g->closing_branch, start, end,
1023 step, ii, sched_nodes,
1024 must_precede, must_follow);
1026 set_must_precede_follow (&tmp_follow, must_follow, &tmp_precede,
1027 must_precede, c, start, end, step);
1029 /* Find the element in the partial schedule related to the closing
1030 branch so we can remove it from it's current cycle. */
1031 for (next_ps_i = ps->rows[row];
1032 next_ps_i; next_ps_i = next_ps_i->next_in_row)
1033 if (next_ps_i->id == g->closing_branch->cuid)
1034 break;
1036 min_cycle = PS_MIN_CYCLE (ps) - SMODULO (PS_MIN_CYCLE (ps), ps->ii);
1037 remove_node_from_ps (ps, next_ps_i);
1038 success =
1039 try_scheduling_node_in_cycle (ps, g->closing_branch->cuid, c,
1040 sched_nodes, &num_splits,
1041 tmp_precede, tmp_follow);
1042 gcc_assert (num_splits == 0);
1043 if (!success)
1045 if (dump_file)
1046 fprintf (dump_file,
1047 "SMS failed to schedule branch at cycle: %d, "
1048 "bringing it back to cycle %d\n", c, branch_cycle);
1050 /* The branch was failed to be placed in row ii - 1.
1051 Put it back in it's original place in the partial
1052 schedualing. */
1053 set_must_precede_follow (&tmp_follow, must_follow, &tmp_precede,
1054 must_precede, branch_cycle, start, end,
1055 step);
1056 success =
1057 try_scheduling_node_in_cycle (ps, g->closing_branch->cuid,
1058 branch_cycle, sched_nodes,
1059 &num_splits, tmp_precede,
1060 tmp_follow);
1061 gcc_assert (success && (num_splits == 0));
1062 ok = false;
1064 else
1066 /* The branch is placed in row ii - 1. */
1067 if (dump_file)
1068 fprintf (dump_file,
1069 "SMS success in moving branch to cycle %d\n", c);
1071 update_node_sched_params (g->closing_branch->cuid, ii, c,
1072 PS_MIN_CYCLE (ps));
1073 ok = true;
1076 /* This might have been added to a new first stage. */
1077 if (PS_MIN_CYCLE (ps) < min_cycle)
1078 reset_sched_times (ps, 0);
1081 return ok;
1084 static void
1085 duplicate_insns_of_cycles (partial_schedule_ptr ps, int from_stage,
1086 int to_stage, rtx count_reg)
1088 int row;
1089 ps_insn_ptr ps_ij;
1091 for (row = 0; row < ps->ii; row++)
1092 for (ps_ij = ps->rows[row]; ps_ij; ps_ij = ps_ij->next_in_row)
1094 int u = ps_ij->id;
1095 int first_u, last_u;
1096 rtx_insn *u_insn;
1098 /* Do not duplicate any insn which refers to count_reg as it
1099 belongs to the control part.
1100 The closing branch is scheduled as well and thus should
1101 be ignored.
1102 TODO: This should be done by analyzing the control part of
1103 the loop. */
1104 u_insn = ps_rtl_insn (ps, u);
1105 if (reg_mentioned_p (count_reg, u_insn)
1106 || JUMP_P (u_insn))
1107 continue;
1109 first_u = SCHED_STAGE (u);
1110 last_u = first_u + ps_num_consecutive_stages (ps, u) - 1;
1111 if (from_stage <= last_u && to_stage >= first_u)
1113 if (u < ps->g->num_nodes)
1114 duplicate_insn_chain (ps_first_note (ps, u), u_insn);
1115 else
1116 emit_insn (copy_rtx (PATTERN (u_insn)));
1122 /* Generate the instructions (including reg_moves) for prolog & epilog. */
1123 static void
1124 generate_prolog_epilog (partial_schedule_ptr ps, struct loop *loop,
1125 rtx count_reg, rtx count_init)
1127 int i;
1128 int last_stage = PS_STAGE_COUNT (ps) - 1;
1129 edge e;
1131 /* Generate the prolog, inserting its insns on the loop-entry edge. */
1132 start_sequence ();
1134 if (!count_init)
1136 /* Generate instructions at the beginning of the prolog to
1137 adjust the loop count by STAGE_COUNT. If loop count is constant
1138 (count_init), this constant is adjusted by STAGE_COUNT in
1139 generate_prolog_epilog function. */
1140 rtx sub_reg = NULL_RTX;
1142 sub_reg = expand_simple_binop (GET_MODE (count_reg), MINUS, count_reg,
1143 gen_int_mode (last_stage,
1144 GET_MODE (count_reg)),
1145 count_reg, 1, OPTAB_DIRECT);
1146 gcc_assert (REG_P (sub_reg));
1147 if (REGNO (sub_reg) != REGNO (count_reg))
1148 emit_move_insn (count_reg, sub_reg);
1151 for (i = 0; i < last_stage; i++)
1152 duplicate_insns_of_cycles (ps, 0, i, count_reg);
1154 /* Put the prolog on the entry edge. */
1155 e = loop_preheader_edge (loop);
1156 split_edge_and_insert (e, get_insns ());
1157 if (!flag_resched_modulo_sched)
1158 e->dest->flags |= BB_DISABLE_SCHEDULE;
1160 end_sequence ();
1162 /* Generate the epilog, inserting its insns on the loop-exit edge. */
1163 start_sequence ();
1165 for (i = 0; i < last_stage; i++)
1166 duplicate_insns_of_cycles (ps, i + 1, last_stage, count_reg);
1168 /* Put the epilogue on the exit edge. */
1169 gcc_assert (single_exit (loop));
1170 e = single_exit (loop);
1171 split_edge_and_insert (e, get_insns ());
1172 if (!flag_resched_modulo_sched)
1173 e->dest->flags |= BB_DISABLE_SCHEDULE;
1175 end_sequence ();
1178 /* Mark LOOP as software pipelined so the later
1179 scheduling passes don't touch it. */
1180 static void
1181 mark_loop_unsched (struct loop *loop)
1183 unsigned i;
1184 basic_block *bbs = get_loop_body (loop);
1186 for (i = 0; i < loop->num_nodes; i++)
1187 bbs[i]->flags |= BB_DISABLE_SCHEDULE;
1189 free (bbs);
1192 /* Return true if all the BBs of the loop are empty except the
1193 loop header. */
1194 static bool
1195 loop_single_full_bb_p (struct loop *loop)
1197 unsigned i;
1198 basic_block *bbs = get_loop_body (loop);
1200 for (i = 0; i < loop->num_nodes ; i++)
1202 rtx_insn *head, *tail;
1203 bool empty_bb = true;
1205 if (bbs[i] == loop->header)
1206 continue;
1208 /* Make sure that basic blocks other than the header
1209 have only notes labels or jumps. */
1210 get_ebb_head_tail (bbs[i], bbs[i], &head, &tail);
1211 for (; head != NEXT_INSN (tail); head = NEXT_INSN (head))
1213 if (NOTE_P (head) || LABEL_P (head)
1214 || (INSN_P (head) && (DEBUG_INSN_P (head) || JUMP_P (head))))
1215 continue;
1216 empty_bb = false;
1217 break;
1220 if (! empty_bb)
1222 free (bbs);
1223 return false;
1226 free (bbs);
1227 return true;
1230 /* Dump file:line from INSN's location info to dump_file. */
1232 static void
1233 dump_insn_location (rtx_insn *insn)
1235 if (dump_file && INSN_HAS_LOCATION (insn))
1237 expanded_location xloc = insn_location (insn);
1238 fprintf (dump_file, " %s:%i", xloc.file, xloc.line);
1242 /* A simple loop from SMS point of view; it is a loop that is composed of
1243 either a single basic block or two BBs - a header and a latch. */
1244 #define SIMPLE_SMS_LOOP_P(loop) ((loop->num_nodes < 3 ) \
1245 && (EDGE_COUNT (loop->latch->preds) == 1) \
1246 && (EDGE_COUNT (loop->latch->succs) == 1))
1248 /* Return true if the loop is in its canonical form and false if not.
1249 i.e. SIMPLE_SMS_LOOP_P and have one preheader block, and single exit. */
1250 static bool
1251 loop_canon_p (struct loop *loop)
1254 if (loop->inner || !loop_outer (loop))
1256 if (dump_file)
1257 fprintf (dump_file, "SMS loop inner or !loop_outer\n");
1258 return false;
1261 if (!single_exit (loop))
1263 if (dump_file)
1265 rtx_insn *insn = BB_END (loop->header);
1267 fprintf (dump_file, "SMS loop many exits");
1268 dump_insn_location (insn);
1269 fprintf (dump_file, "\n");
1271 return false;
1274 if (! SIMPLE_SMS_LOOP_P (loop) && ! loop_single_full_bb_p (loop))
1276 if (dump_file)
1278 rtx_insn *insn = BB_END (loop->header);
1280 fprintf (dump_file, "SMS loop many BBs.");
1281 dump_insn_location (insn);
1282 fprintf (dump_file, "\n");
1284 return false;
1287 return true;
1290 /* If there are more than one entry for the loop,
1291 make it one by splitting the first entry edge and
1292 redirecting the others to the new BB. */
1293 static void
1294 canon_loop (struct loop *loop)
1296 edge e;
1297 edge_iterator i;
1299 /* Avoid annoying special cases of edges going to exit
1300 block. */
1301 FOR_EACH_EDGE (e, i, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
1302 if ((e->flags & EDGE_FALLTHRU) && (EDGE_COUNT (e->src->succs) > 1))
1303 split_edge (e);
1305 if (loop->latch == loop->header
1306 || EDGE_COUNT (loop->latch->succs) > 1)
1308 FOR_EACH_EDGE (e, i, loop->header->preds)
1309 if (e->src == loop->latch)
1310 break;
1311 split_edge (e);
1315 /* Setup infos. */
1316 static void
1317 setup_sched_infos (void)
1319 memcpy (&sms_common_sched_info, &haifa_common_sched_info,
1320 sizeof (sms_common_sched_info));
1321 sms_common_sched_info.sched_pass_id = SCHED_SMS_PASS;
1322 common_sched_info = &sms_common_sched_info;
1324 sched_deps_info = &sms_sched_deps_info;
1325 current_sched_info = &sms_sched_info;
1328 /* Probability in % that the sms-ed loop rolls enough so that optimized
1329 version may be entered. Just a guess. */
1330 #define PROB_SMS_ENOUGH_ITERATIONS 80
1332 /* Used to calculate the upper bound of ii. */
1333 #define MAXII_FACTOR 2
1335 /* Main entry point, perform SMS scheduling on the loops of the function
1336 that consist of single basic blocks. */
1337 static void
1338 sms_schedule (void)
1340 rtx_insn *insn;
1341 ddg_ptr *g_arr, g;
1342 int * node_order;
1343 int maxii, max_asap;
1344 partial_schedule_ptr ps;
1345 basic_block bb = NULL;
1346 struct loop *loop;
1347 basic_block condition_bb = NULL;
1348 edge latch_edge;
1349 gcov_type trip_count = 0;
1351 loop_optimizer_init (LOOPS_HAVE_PREHEADERS
1352 | LOOPS_HAVE_RECORDED_EXITS);
1353 if (number_of_loops (cfun) <= 1)
1355 loop_optimizer_finalize ();
1356 return; /* There are no loops to schedule. */
1359 /* Initialize issue_rate. */
1360 if (targetm.sched.issue_rate)
1362 int temp = reload_completed;
1364 reload_completed = 1;
1365 issue_rate = targetm.sched.issue_rate ();
1366 reload_completed = temp;
1368 else
1369 issue_rate = 1;
1371 /* Initialize the scheduler. */
1372 setup_sched_infos ();
1373 haifa_sched_init ();
1375 /* Allocate memory to hold the DDG array one entry for each loop.
1376 We use loop->num as index into this array. */
1377 g_arr = XCNEWVEC (ddg_ptr, number_of_loops (cfun));
1379 if (dump_file)
1381 fprintf (dump_file, "\n\nSMS analysis phase\n");
1382 fprintf (dump_file, "===================\n\n");
1385 /* Build DDGs for all the relevant loops and hold them in G_ARR
1386 indexed by the loop index. */
1387 FOR_EACH_LOOP (loop, 0)
1389 rtx_insn *head, *tail;
1390 rtx count_reg;
1392 /* For debugging. */
1393 if (dbg_cnt (sms_sched_loop) == false)
1395 if (dump_file)
1396 fprintf (dump_file, "SMS reached max limit... \n");
1398 break;
1401 if (dump_file)
1403 rtx_insn *insn = BB_END (loop->header);
1405 fprintf (dump_file, "SMS loop num: %d", loop->num);
1406 dump_insn_location (insn);
1407 fprintf (dump_file, "\n");
1410 if (! loop_canon_p (loop))
1411 continue;
1413 if (! loop_single_full_bb_p (loop))
1415 if (dump_file)
1416 fprintf (dump_file, "SMS not loop_single_full_bb_p\n");
1417 continue;
1420 bb = loop->header;
1422 get_ebb_head_tail (bb, bb, &head, &tail);
1423 latch_edge = loop_latch_edge (loop);
1424 gcc_assert (single_exit (loop));
1425 if (single_exit (loop)->count > profile_count::zero ())
1426 trip_count = latch_edge->count.to_gcov_type ()
1427 / single_exit (loop)->count.to_gcov_type ();
1429 /* Perform SMS only on loops that their average count is above threshold. */
1431 if ( latch_edge->count > profile_count::zero ()
1432 && (latch_edge->count
1433 < single_exit (loop)->count.apply_scale
1434 (SMS_LOOP_AVERAGE_COUNT_THRESHOLD, 1)))
1436 if (dump_file)
1438 dump_insn_location (tail);
1439 fprintf (dump_file, "\nSMS single-bb-loop\n");
1440 if (profile_info && flag_branch_probabilities)
1442 fprintf (dump_file, "SMS loop-count ");
1443 fprintf (dump_file, "%" PRId64,
1444 (int64_t) bb->count.to_gcov_type ());
1445 fprintf (dump_file, "\n");
1446 fprintf (dump_file, "SMS trip-count ");
1447 fprintf (dump_file, "%" PRId64,
1448 (int64_t) trip_count);
1449 fprintf (dump_file, "\n");
1450 fprintf (dump_file, "SMS profile-sum-max ");
1451 fprintf (dump_file, "%" PRId64,
1452 (int64_t) profile_info->sum_max);
1453 fprintf (dump_file, "\n");
1456 continue;
1459 /* Make sure this is a doloop. */
1460 if ( !(count_reg = doloop_register_get (head, tail)))
1462 if (dump_file)
1463 fprintf (dump_file, "SMS doloop_register_get failed\n");
1464 continue;
1467 /* Don't handle BBs with calls or barriers
1468 or !single_set with the exception of instructions that include
1469 count_reg---these instructions are part of the control part
1470 that do-loop recognizes.
1471 ??? Should handle insns defining subregs. */
1472 for (insn = head; insn != NEXT_INSN (tail); insn = NEXT_INSN (insn))
1474 rtx set;
1476 if (CALL_P (insn)
1477 || BARRIER_P (insn)
1478 || (NONDEBUG_INSN_P (insn) && !JUMP_P (insn)
1479 && !single_set (insn) && GET_CODE (PATTERN (insn)) != USE
1480 && !reg_mentioned_p (count_reg, insn))
1481 || (INSN_P (insn) && (set = single_set (insn))
1482 && GET_CODE (SET_DEST (set)) == SUBREG))
1483 break;
1486 if (insn != NEXT_INSN (tail))
1488 if (dump_file)
1490 if (CALL_P (insn))
1491 fprintf (dump_file, "SMS loop-with-call\n");
1492 else if (BARRIER_P (insn))
1493 fprintf (dump_file, "SMS loop-with-barrier\n");
1494 else if ((NONDEBUG_INSN_P (insn) && !JUMP_P (insn)
1495 && !single_set (insn) && GET_CODE (PATTERN (insn)) != USE))
1496 fprintf (dump_file, "SMS loop-with-not-single-set\n");
1497 else
1498 fprintf (dump_file, "SMS loop with subreg in lhs\n");
1499 print_rtl_single (dump_file, insn);
1502 continue;
1505 /* Always schedule the closing branch with the rest of the
1506 instructions. The branch is rotated to be in row ii-1 at the
1507 end of the scheduling procedure to make sure it's the last
1508 instruction in the iteration. */
1509 if (! (g = create_ddg (bb, 1)))
1511 if (dump_file)
1512 fprintf (dump_file, "SMS create_ddg failed\n");
1513 continue;
1516 g_arr[loop->num] = g;
1517 if (dump_file)
1518 fprintf (dump_file, "...OK\n");
1521 if (dump_file)
1523 fprintf (dump_file, "\nSMS transformation phase\n");
1524 fprintf (dump_file, "=========================\n\n");
1527 /* We don't want to perform SMS on new loops - created by versioning. */
1528 FOR_EACH_LOOP (loop, 0)
1530 rtx_insn *head, *tail;
1531 rtx count_reg;
1532 rtx_insn *count_init;
1533 int mii, rec_mii, stage_count, min_cycle;
1534 int64_t loop_count = 0;
1535 bool opt_sc_p;
1537 if (! (g = g_arr[loop->num]))
1538 continue;
1540 if (dump_file)
1542 rtx_insn *insn = BB_END (loop->header);
1544 fprintf (dump_file, "SMS loop num: %d", loop->num);
1545 dump_insn_location (insn);
1546 fprintf (dump_file, "\n");
1548 print_ddg (dump_file, g);
1551 get_ebb_head_tail (loop->header, loop->header, &head, &tail);
1553 latch_edge = loop_latch_edge (loop);
1554 gcc_assert (single_exit (loop));
1555 if (single_exit (loop)->count > profile_count::zero ())
1556 trip_count = latch_edge->count.to_gcov_type ()
1557 / single_exit (loop)->count.to_gcov_type ();
1559 if (dump_file)
1561 dump_insn_location (tail);
1562 fprintf (dump_file, "\nSMS single-bb-loop\n");
1563 if (profile_info && flag_branch_probabilities)
1565 fprintf (dump_file, "SMS loop-count ");
1566 fprintf (dump_file, "%" PRId64,
1567 (int64_t) bb->count.to_gcov_type ());
1568 fprintf (dump_file, "\n");
1569 fprintf (dump_file, "SMS profile-sum-max ");
1570 fprintf (dump_file, "%" PRId64,
1571 (int64_t) profile_info->sum_max);
1572 fprintf (dump_file, "\n");
1574 fprintf (dump_file, "SMS doloop\n");
1575 fprintf (dump_file, "SMS built-ddg %d\n", g->num_nodes);
1576 fprintf (dump_file, "SMS num-loads %d\n", g->num_loads);
1577 fprintf (dump_file, "SMS num-stores %d\n", g->num_stores);
1581 /* In case of th loop have doloop register it gets special
1582 handling. */
1583 count_init = NULL;
1584 if ((count_reg = doloop_register_get (head, tail)))
1586 basic_block pre_header;
1588 pre_header = loop_preheader_edge (loop)->src;
1589 count_init = const_iteration_count (count_reg, pre_header,
1590 &loop_count);
1592 gcc_assert (count_reg);
1594 if (dump_file && count_init)
1596 fprintf (dump_file, "SMS const-doloop ");
1597 fprintf (dump_file, "%" PRId64,
1598 loop_count);
1599 fprintf (dump_file, "\n");
1602 node_order = XNEWVEC (int, g->num_nodes);
1604 mii = 1; /* Need to pass some estimate of mii. */
1605 rec_mii = sms_order_nodes (g, mii, node_order, &max_asap);
1606 mii = MAX (res_MII (g), rec_mii);
1607 maxii = MAX (max_asap, MAXII_FACTOR * mii);
1609 if (dump_file)
1610 fprintf (dump_file, "SMS iis %d %d %d (rec_mii, mii, maxii)\n",
1611 rec_mii, mii, maxii);
1613 for (;;)
1615 set_node_sched_params (g);
1617 stage_count = 0;
1618 opt_sc_p = false;
1619 ps = sms_schedule_by_order (g, mii, maxii, node_order);
1621 if (ps)
1623 /* Try to achieve optimized SC by normalizing the partial
1624 schedule (having the cycles start from cycle zero).
1625 The branch location must be placed in row ii-1 in the
1626 final scheduling. If failed, shift all instructions to
1627 position the branch in row ii-1. */
1628 opt_sc_p = optimize_sc (ps, g);
1629 if (opt_sc_p)
1630 stage_count = calculate_stage_count (ps, 0);
1631 else
1633 /* Bring the branch to cycle ii-1. */
1634 int amount = (SCHED_TIME (g->closing_branch->cuid)
1635 - (ps->ii - 1));
1637 if (dump_file)
1638 fprintf (dump_file, "SMS schedule branch at cycle ii-1\n");
1640 stage_count = calculate_stage_count (ps, amount);
1643 gcc_assert (stage_count >= 1);
1646 /* The default value of PARAM_SMS_MIN_SC is 2 as stage count of
1647 1 means that there is no interleaving between iterations thus
1648 we let the scheduling passes do the job in this case. */
1649 if (stage_count < PARAM_VALUE (PARAM_SMS_MIN_SC)
1650 || (count_init && (loop_count <= stage_count))
1651 || (flag_branch_probabilities && (trip_count <= stage_count)))
1653 if (dump_file)
1655 fprintf (dump_file, "SMS failed... \n");
1656 fprintf (dump_file, "SMS sched-failed (stage-count=%d,"
1657 " loop-count=", stage_count);
1658 fprintf (dump_file, "%" PRId64, loop_count);
1659 fprintf (dump_file, ", trip-count=");
1660 fprintf (dump_file, "%" PRId64, trip_count);
1661 fprintf (dump_file, ")\n");
1663 break;
1666 if (!opt_sc_p)
1668 /* Rotate the partial schedule to have the branch in row ii-1. */
1669 int amount = SCHED_TIME (g->closing_branch->cuid) - (ps->ii - 1);
1671 reset_sched_times (ps, amount);
1672 rotate_partial_schedule (ps, amount);
1675 set_columns_for_ps (ps);
1677 min_cycle = PS_MIN_CYCLE (ps) - SMODULO (PS_MIN_CYCLE (ps), ps->ii);
1678 if (!schedule_reg_moves (ps))
1680 mii = ps->ii + 1;
1681 free_partial_schedule (ps);
1682 continue;
1685 /* Moves that handle incoming values might have been added
1686 to a new first stage. Bump the stage count if so.
1688 ??? Perhaps we could consider rotating the schedule here
1689 instead? */
1690 if (PS_MIN_CYCLE (ps) < min_cycle)
1692 reset_sched_times (ps, 0);
1693 stage_count++;
1696 /* The stage count should now be correct without rotation. */
1697 gcc_checking_assert (stage_count == calculate_stage_count (ps, 0));
1698 PS_STAGE_COUNT (ps) = stage_count;
1700 canon_loop (loop);
1702 if (dump_file)
1704 dump_insn_location (tail);
1705 fprintf (dump_file, " SMS succeeded %d %d (with ii, sc)\n",
1706 ps->ii, stage_count);
1707 print_partial_schedule (ps, dump_file);
1710 /* case the BCT count is not known , Do loop-versioning */
1711 if (count_reg && ! count_init)
1713 rtx comp_rtx = gen_rtx_GT (VOIDmode, count_reg,
1714 gen_int_mode (stage_count,
1715 GET_MODE (count_reg)));
1716 unsigned prob = (PROB_SMS_ENOUGH_ITERATIONS
1717 * REG_BR_PROB_BASE) / 100;
1719 loop_version (loop, comp_rtx, &condition_bb,
1720 prob, REG_BR_PROB_BASE - prob,
1721 prob, REG_BR_PROB_BASE - prob,
1722 true);
1725 /* Set new iteration count of loop kernel. */
1726 if (count_reg && count_init)
1727 SET_SRC (single_set (count_init)) = GEN_INT (loop_count
1728 - stage_count + 1);
1730 /* Now apply the scheduled kernel to the RTL of the loop. */
1731 permute_partial_schedule (ps, g->closing_branch->first_note);
1733 /* Mark this loop as software pipelined so the later
1734 scheduling passes don't touch it. */
1735 if (! flag_resched_modulo_sched)
1736 mark_loop_unsched (loop);
1738 /* The life-info is not valid any more. */
1739 df_set_bb_dirty (g->bb);
1741 apply_reg_moves (ps);
1742 if (dump_file)
1743 print_node_sched_params (dump_file, g->num_nodes, ps);
1744 /* Generate prolog and epilog. */
1745 generate_prolog_epilog (ps, loop, count_reg, count_init);
1746 break;
1749 free_partial_schedule (ps);
1750 node_sched_param_vec.release ();
1751 free (node_order);
1752 free_ddg (g);
1755 free (g_arr);
1757 /* Release scheduler data, needed until now because of DFA. */
1758 haifa_sched_finish ();
1759 loop_optimizer_finalize ();
1762 /* The SMS scheduling algorithm itself
1763 -----------------------------------
1764 Input: 'O' an ordered list of insns of a loop.
1765 Output: A scheduling of the loop - kernel, prolog, and epilogue.
1767 'Q' is the empty Set
1768 'PS' is the partial schedule; it holds the currently scheduled nodes with
1769 their cycle/slot.
1770 'PSP' previously scheduled predecessors.
1771 'PSS' previously scheduled successors.
1772 't(u)' the cycle where u is scheduled.
1773 'l(u)' is the latency of u.
1774 'd(v,u)' is the dependence distance from v to u.
1775 'ASAP(u)' the earliest time at which u could be scheduled as computed in
1776 the node ordering phase.
1777 'check_hardware_resources_conflicts(u, PS, c)'
1778 run a trace around cycle/slot through DFA model
1779 to check resource conflicts involving instruction u
1780 at cycle c given the partial schedule PS.
1781 'add_to_partial_schedule_at_time(u, PS, c)'
1782 Add the node/instruction u to the partial schedule
1783 PS at time c.
1784 'calculate_register_pressure(PS)'
1785 Given a schedule of instructions, calculate the register
1786 pressure it implies. One implementation could be the
1787 maximum number of overlapping live ranges.
1788 'maxRP' The maximum allowed register pressure, it is usually derived from the number
1789 registers available in the hardware.
1791 1. II = MII.
1792 2. PS = empty list
1793 3. for each node u in O in pre-computed order
1794 4. if (PSP(u) != Q && PSS(u) == Q) then
1795 5. Early_start(u) = max ( t(v) + l(v) - d(v,u)*II ) over all every v in PSP(u).
1796 6. start = Early_start; end = Early_start + II - 1; step = 1
1797 11. else if (PSP(u) == Q && PSS(u) != Q) then
1798 12. Late_start(u) = min ( t(v) - l(v) + d(v,u)*II ) over all every v in PSS(u).
1799 13. start = Late_start; end = Late_start - II + 1; step = -1
1800 14. else if (PSP(u) != Q && PSS(u) != Q) then
1801 15. Early_start(u) = max ( t(v) + l(v) - d(v,u)*II ) over all every v in PSP(u).
1802 16. Late_start(u) = min ( t(v) - l(v) + d(v,u)*II ) over all every v in PSS(u).
1803 17. start = Early_start;
1804 18. end = min(Early_start + II - 1 , Late_start);
1805 19. step = 1
1806 20. else "if (PSP(u) == Q && PSS(u) == Q)"
1807 21. start = ASAP(u); end = start + II - 1; step = 1
1808 22. endif
1810 23. success = false
1811 24. for (c = start ; c != end ; c += step)
1812 25. if check_hardware_resources_conflicts(u, PS, c) then
1813 26. add_to_partial_schedule_at_time(u, PS, c)
1814 27. success = true
1815 28. break
1816 29. endif
1817 30. endfor
1818 31. if (success == false) then
1819 32. II = II + 1
1820 33. if (II > maxII) then
1821 34. finish - failed to schedule
1822 35. endif
1823 36. goto 2.
1824 37. endif
1825 38. endfor
1826 39. if (calculate_register_pressure(PS) > maxRP) then
1827 40. goto 32.
1828 41. endif
1829 42. compute epilogue & prologue
1830 43. finish - succeeded to schedule
1832 ??? The algorithm restricts the scheduling window to II cycles.
1833 In rare cases, it may be better to allow windows of II+1 cycles.
1834 The window would then start and end on the same row, but with
1835 different "must precede" and "must follow" requirements. */
1837 /* A limit on the number of cycles that resource conflicts can span. ??? Should
1838 be provided by DFA, and be dependent on the type of insn scheduled. Currently
1839 set to 0 to save compile time. */
1840 #define DFA_HISTORY SMS_DFA_HISTORY
1842 /* A threshold for the number of repeated unsuccessful attempts to insert
1843 an empty row, before we flush the partial schedule and start over. */
1844 #define MAX_SPLIT_NUM 10
1845 /* Given the partial schedule PS, this function calculates and returns the
1846 cycles in which we can schedule the node with the given index I.
1847 NOTE: Here we do the backtracking in SMS, in some special cases. We have
1848 noticed that there are several cases in which we fail to SMS the loop
1849 because the sched window of a node is empty due to tight data-deps. In
1850 such cases we want to unschedule some of the predecessors/successors
1851 until we get non-empty scheduling window. It returns -1 if the
1852 scheduling window is empty and zero otherwise. */
1854 static int
1855 get_sched_window (partial_schedule_ptr ps, ddg_node_ptr u_node,
1856 sbitmap sched_nodes, int ii, int *start_p, int *step_p,
1857 int *end_p)
1859 int start, step, end;
1860 int early_start, late_start;
1861 ddg_edge_ptr e;
1862 auto_sbitmap psp (ps->g->num_nodes);
1863 auto_sbitmap pss (ps->g->num_nodes);
1864 sbitmap u_node_preds = NODE_PREDECESSORS (u_node);
1865 sbitmap u_node_succs = NODE_SUCCESSORS (u_node);
1866 int psp_not_empty;
1867 int pss_not_empty;
1868 int count_preds;
1869 int count_succs;
1871 /* 1. compute sched window for u (start, end, step). */
1872 bitmap_clear (psp);
1873 bitmap_clear (pss);
1874 psp_not_empty = bitmap_and (psp, u_node_preds, sched_nodes);
1875 pss_not_empty = bitmap_and (pss, u_node_succs, sched_nodes);
1877 /* We first compute a forward range (start <= end), then decide whether
1878 to reverse it. */
1879 early_start = INT_MIN;
1880 late_start = INT_MAX;
1881 start = INT_MIN;
1882 end = INT_MAX;
1883 step = 1;
1885 count_preds = 0;
1886 count_succs = 0;
1888 if (dump_file && (psp_not_empty || pss_not_empty))
1890 fprintf (dump_file, "\nAnalyzing dependencies for node %d (INSN %d)"
1891 "; ii = %d\n\n", u_node->cuid, INSN_UID (u_node->insn), ii);
1892 fprintf (dump_file, "%11s %11s %11s %11s %5s\n",
1893 "start", "early start", "late start", "end", "time");
1894 fprintf (dump_file, "=========== =========== =========== ==========="
1895 " =====\n");
1897 /* Calculate early_start and limit end. Both bounds are inclusive. */
1898 if (psp_not_empty)
1899 for (e = u_node->in; e != 0; e = e->next_in)
1901 int v = e->src->cuid;
1903 if (bitmap_bit_p (sched_nodes, v))
1905 int p_st = SCHED_TIME (v);
1906 int earliest = p_st + e->latency - (e->distance * ii);
1907 int latest = (e->data_type == MEM_DEP ? p_st + ii - 1 : INT_MAX);
1909 if (dump_file)
1911 fprintf (dump_file, "%11s %11d %11s %11d %5d",
1912 "", earliest, "", latest, p_st);
1913 print_ddg_edge (dump_file, e);
1914 fprintf (dump_file, "\n");
1917 early_start = MAX (early_start, earliest);
1918 end = MIN (end, latest);
1920 if (e->type == TRUE_DEP && e->data_type == REG_DEP)
1921 count_preds++;
1925 /* Calculate late_start and limit start. Both bounds are inclusive. */
1926 if (pss_not_empty)
1927 for (e = u_node->out; e != 0; e = e->next_out)
1929 int v = e->dest->cuid;
1931 if (bitmap_bit_p (sched_nodes, v))
1933 int s_st = SCHED_TIME (v);
1934 int earliest = (e->data_type == MEM_DEP ? s_st - ii + 1 : INT_MIN);
1935 int latest = s_st - e->latency + (e->distance * ii);
1937 if (dump_file)
1939 fprintf (dump_file, "%11d %11s %11d %11s %5d",
1940 earliest, "", latest, "", s_st);
1941 print_ddg_edge (dump_file, e);
1942 fprintf (dump_file, "\n");
1945 start = MAX (start, earliest);
1946 late_start = MIN (late_start, latest);
1948 if (e->type == TRUE_DEP && e->data_type == REG_DEP)
1949 count_succs++;
1953 if (dump_file && (psp_not_empty || pss_not_empty))
1955 fprintf (dump_file, "----------- ----------- ----------- -----------"
1956 " -----\n");
1957 fprintf (dump_file, "%11d %11d %11d %11d %5s %s\n",
1958 start, early_start, late_start, end, "",
1959 "(max, max, min, min)");
1962 /* Get a target scheduling window no bigger than ii. */
1963 if (early_start == INT_MIN && late_start == INT_MAX)
1964 early_start = NODE_ASAP (u_node);
1965 else if (early_start == INT_MIN)
1966 early_start = late_start - (ii - 1);
1967 late_start = MIN (late_start, early_start + (ii - 1));
1969 /* Apply memory dependence limits. */
1970 start = MAX (start, early_start);
1971 end = MIN (end, late_start);
1973 if (dump_file && (psp_not_empty || pss_not_empty))
1974 fprintf (dump_file, "%11s %11d %11d %11s %5s final window\n",
1975 "", start, end, "", "");
1977 /* If there are at least as many successors as predecessors, schedule the
1978 node close to its successors. */
1979 if (pss_not_empty && count_succs >= count_preds)
1981 std::swap (start, end);
1982 step = -1;
1985 /* Now that we've finalized the window, make END an exclusive rather
1986 than an inclusive bound. */
1987 end += step;
1989 *start_p = start;
1990 *step_p = step;
1991 *end_p = end;
1993 if ((start >= end && step == 1) || (start <= end && step == -1))
1995 if (dump_file)
1996 fprintf (dump_file, "\nEmpty window: start=%d, end=%d, step=%d\n",
1997 start, end, step);
1998 return -1;
2001 return 0;
2004 /* Calculate MUST_PRECEDE/MUST_FOLLOW bitmaps of U_NODE; which is the
2005 node currently been scheduled. At the end of the calculation
2006 MUST_PRECEDE/MUST_FOLLOW contains all predecessors/successors of
2007 U_NODE which are (1) already scheduled in the first/last row of
2008 U_NODE's scheduling window, (2) whose dependence inequality with U
2009 becomes an equality when U is scheduled in this same row, and (3)
2010 whose dependence latency is zero.
2012 The first and last rows are calculated using the following parameters:
2013 START/END rows - The cycles that begins/ends the traversal on the window;
2014 searching for an empty cycle to schedule U_NODE.
2015 STEP - The direction in which we traverse the window.
2016 II - The initiation interval. */
2018 static void
2019 calculate_must_precede_follow (ddg_node_ptr u_node, int start, int end,
2020 int step, int ii, sbitmap sched_nodes,
2021 sbitmap must_precede, sbitmap must_follow)
2023 ddg_edge_ptr e;
2024 int first_cycle_in_window, last_cycle_in_window;
2026 gcc_assert (must_precede && must_follow);
2028 /* Consider the following scheduling window:
2029 {first_cycle_in_window, first_cycle_in_window+1, ...,
2030 last_cycle_in_window}. If step is 1 then the following will be
2031 the order we traverse the window: {start=first_cycle_in_window,
2032 first_cycle_in_window+1, ..., end=last_cycle_in_window+1},
2033 or {start=last_cycle_in_window, last_cycle_in_window-1, ...,
2034 end=first_cycle_in_window-1} if step is -1. */
2035 first_cycle_in_window = (step == 1) ? start : end - step;
2036 last_cycle_in_window = (step == 1) ? end - step : start;
2038 bitmap_clear (must_precede);
2039 bitmap_clear (must_follow);
2041 if (dump_file)
2042 fprintf (dump_file, "\nmust_precede: ");
2044 /* Instead of checking if:
2045 (SMODULO (SCHED_TIME (e->src), ii) == first_row_in_window)
2046 && ((SCHED_TIME (e->src) + e->latency - (e->distance * ii)) ==
2047 first_cycle_in_window)
2048 && e->latency == 0
2049 we use the fact that latency is non-negative:
2050 SCHED_TIME (e->src) - (e->distance * ii) <=
2051 SCHED_TIME (e->src) + e->latency - (e->distance * ii)) <=
2052 first_cycle_in_window
2053 and check only if
2054 SCHED_TIME (e->src) - (e->distance * ii) == first_cycle_in_window */
2055 for (e = u_node->in; e != 0; e = e->next_in)
2056 if (bitmap_bit_p (sched_nodes, e->src->cuid)
2057 && ((SCHED_TIME (e->src->cuid) - (e->distance * ii)) ==
2058 first_cycle_in_window))
2060 if (dump_file)
2061 fprintf (dump_file, "%d ", e->src->cuid);
2063 bitmap_set_bit (must_precede, e->src->cuid);
2066 if (dump_file)
2067 fprintf (dump_file, "\nmust_follow: ");
2069 /* Instead of checking if:
2070 (SMODULO (SCHED_TIME (e->dest), ii) == last_row_in_window)
2071 && ((SCHED_TIME (e->dest) - e->latency + (e->distance * ii)) ==
2072 last_cycle_in_window)
2073 && e->latency == 0
2074 we use the fact that latency is non-negative:
2075 SCHED_TIME (e->dest) + (e->distance * ii) >=
2076 SCHED_TIME (e->dest) - e->latency + (e->distance * ii)) >=
2077 last_cycle_in_window
2078 and check only if
2079 SCHED_TIME (e->dest) + (e->distance * ii) == last_cycle_in_window */
2080 for (e = u_node->out; e != 0; e = e->next_out)
2081 if (bitmap_bit_p (sched_nodes, e->dest->cuid)
2082 && ((SCHED_TIME (e->dest->cuid) + (e->distance * ii)) ==
2083 last_cycle_in_window))
2085 if (dump_file)
2086 fprintf (dump_file, "%d ", e->dest->cuid);
2088 bitmap_set_bit (must_follow, e->dest->cuid);
2091 if (dump_file)
2092 fprintf (dump_file, "\n");
2095 /* Return 1 if U_NODE can be scheduled in CYCLE. Use the following
2096 parameters to decide if that's possible:
2097 PS - The partial schedule.
2098 U - The serial number of U_NODE.
2099 NUM_SPLITS - The number of row splits made so far.
2100 MUST_PRECEDE - The nodes that must precede U_NODE. (only valid at
2101 the first row of the scheduling window)
2102 MUST_FOLLOW - The nodes that must follow U_NODE. (only valid at the
2103 last row of the scheduling window) */
2105 static bool
2106 try_scheduling_node_in_cycle (partial_schedule_ptr ps,
2107 int u, int cycle, sbitmap sched_nodes,
2108 int *num_splits, sbitmap must_precede,
2109 sbitmap must_follow)
2111 ps_insn_ptr psi;
2112 bool success = 0;
2114 verify_partial_schedule (ps, sched_nodes);
2115 psi = ps_add_node_check_conflicts (ps, u, cycle, must_precede, must_follow);
2116 if (psi)
2118 SCHED_TIME (u) = cycle;
2119 bitmap_set_bit (sched_nodes, u);
2120 success = 1;
2121 *num_splits = 0;
2122 if (dump_file)
2123 fprintf (dump_file, "Scheduled w/o split in %d\n", cycle);
2127 return success;
2130 /* This function implements the scheduling algorithm for SMS according to the
2131 above algorithm. */
2132 static partial_schedule_ptr
2133 sms_schedule_by_order (ddg_ptr g, int mii, int maxii, int *nodes_order)
2135 int ii = mii;
2136 int i, c, success, num_splits = 0;
2137 int flush_and_start_over = true;
2138 int num_nodes = g->num_nodes;
2139 int start, end, step; /* Place together into one struct? */
2140 auto_sbitmap sched_nodes (num_nodes);
2141 auto_sbitmap must_precede (num_nodes);
2142 auto_sbitmap must_follow (num_nodes);
2143 auto_sbitmap tobe_scheduled (num_nodes);
2145 partial_schedule_ptr ps = create_partial_schedule (ii, g, DFA_HISTORY);
2147 bitmap_ones (tobe_scheduled);
2148 bitmap_clear (sched_nodes);
2150 while (flush_and_start_over && (ii < maxii))
2153 if (dump_file)
2154 fprintf (dump_file, "Starting with ii=%d\n", ii);
2155 flush_and_start_over = false;
2156 bitmap_clear (sched_nodes);
2158 for (i = 0; i < num_nodes; i++)
2160 int u = nodes_order[i];
2161 ddg_node_ptr u_node = &ps->g->nodes[u];
2162 rtx_insn *insn = u_node->insn;
2164 if (!NONDEBUG_INSN_P (insn))
2166 bitmap_clear_bit (tobe_scheduled, u);
2167 continue;
2170 if (bitmap_bit_p (sched_nodes, u))
2171 continue;
2173 /* Try to get non-empty scheduling window. */
2174 success = 0;
2175 if (get_sched_window (ps, u_node, sched_nodes, ii, &start,
2176 &step, &end) == 0)
2178 if (dump_file)
2179 fprintf (dump_file, "\nTrying to schedule node %d "
2180 "INSN = %d in (%d .. %d) step %d\n", u, (INSN_UID
2181 (g->nodes[u].insn)), start, end, step);
2183 gcc_assert ((step > 0 && start < end)
2184 || (step < 0 && start > end));
2186 calculate_must_precede_follow (u_node, start, end, step, ii,
2187 sched_nodes, must_precede,
2188 must_follow);
2190 for (c = start; c != end; c += step)
2192 sbitmap tmp_precede, tmp_follow;
2194 set_must_precede_follow (&tmp_follow, must_follow,
2195 &tmp_precede, must_precede,
2196 c, start, end, step);
2197 success =
2198 try_scheduling_node_in_cycle (ps, u, c,
2199 sched_nodes,
2200 &num_splits, tmp_precede,
2201 tmp_follow);
2202 if (success)
2203 break;
2206 verify_partial_schedule (ps, sched_nodes);
2208 if (!success)
2210 int split_row;
2212 if (ii++ == maxii)
2213 break;
2215 if (num_splits >= MAX_SPLIT_NUM)
2217 num_splits = 0;
2218 flush_and_start_over = true;
2219 verify_partial_schedule (ps, sched_nodes);
2220 reset_partial_schedule (ps, ii);
2221 verify_partial_schedule (ps, sched_nodes);
2222 break;
2225 num_splits++;
2226 /* The scheduling window is exclusive of 'end'
2227 whereas compute_split_window() expects an inclusive,
2228 ordered range. */
2229 if (step == 1)
2230 split_row = compute_split_row (sched_nodes, start, end - 1,
2231 ps->ii, u_node);
2232 else
2233 split_row = compute_split_row (sched_nodes, end + 1, start,
2234 ps->ii, u_node);
2236 ps_insert_empty_row (ps, split_row, sched_nodes);
2237 i--; /* Go back and retry node i. */
2239 if (dump_file)
2240 fprintf (dump_file, "num_splits=%d\n", num_splits);
2243 /* ??? If (success), check register pressure estimates. */
2244 } /* Continue with next node. */
2245 } /* While flush_and_start_over. */
2246 if (ii >= maxii)
2248 free_partial_schedule (ps);
2249 ps = NULL;
2251 else
2252 gcc_assert (bitmap_equal_p (tobe_scheduled, sched_nodes));
2254 return ps;
2257 /* This function inserts a new empty row into PS at the position
2258 according to SPLITROW, keeping all already scheduled instructions
2259 intact and updating their SCHED_TIME and cycle accordingly. */
2260 static void
2261 ps_insert_empty_row (partial_schedule_ptr ps, int split_row,
2262 sbitmap sched_nodes)
2264 ps_insn_ptr crr_insn;
2265 ps_insn_ptr *rows_new;
2266 int ii = ps->ii;
2267 int new_ii = ii + 1;
2268 int row;
2269 int *rows_length_new;
2271 verify_partial_schedule (ps, sched_nodes);
2273 /* We normalize sched_time and rotate ps to have only non-negative sched
2274 times, for simplicity of updating cycles after inserting new row. */
2275 split_row -= ps->min_cycle;
2276 split_row = SMODULO (split_row, ii);
2277 if (dump_file)
2278 fprintf (dump_file, "split_row=%d\n", split_row);
2280 reset_sched_times (ps, PS_MIN_CYCLE (ps));
2281 rotate_partial_schedule (ps, PS_MIN_CYCLE (ps));
2283 rows_new = (ps_insn_ptr *) xcalloc (new_ii, sizeof (ps_insn_ptr));
2284 rows_length_new = (int *) xcalloc (new_ii, sizeof (int));
2285 for (row = 0; row < split_row; row++)
2287 rows_new[row] = ps->rows[row];
2288 rows_length_new[row] = ps->rows_length[row];
2289 ps->rows[row] = NULL;
2290 for (crr_insn = rows_new[row];
2291 crr_insn; crr_insn = crr_insn->next_in_row)
2293 int u = crr_insn->id;
2294 int new_time = SCHED_TIME (u) + (SCHED_TIME (u) / ii);
2296 SCHED_TIME (u) = new_time;
2297 crr_insn->cycle = new_time;
2298 SCHED_ROW (u) = new_time % new_ii;
2299 SCHED_STAGE (u) = new_time / new_ii;
2304 rows_new[split_row] = NULL;
2306 for (row = split_row; row < ii; row++)
2308 rows_new[row + 1] = ps->rows[row];
2309 rows_length_new[row + 1] = ps->rows_length[row];
2310 ps->rows[row] = NULL;
2311 for (crr_insn = rows_new[row + 1];
2312 crr_insn; crr_insn = crr_insn->next_in_row)
2314 int u = crr_insn->id;
2315 int new_time = SCHED_TIME (u) + (SCHED_TIME (u) / ii) + 1;
2317 SCHED_TIME (u) = new_time;
2318 crr_insn->cycle = new_time;
2319 SCHED_ROW (u) = new_time % new_ii;
2320 SCHED_STAGE (u) = new_time / new_ii;
2324 /* Updating ps. */
2325 ps->min_cycle = ps->min_cycle + ps->min_cycle / ii
2326 + (SMODULO (ps->min_cycle, ii) >= split_row ? 1 : 0);
2327 ps->max_cycle = ps->max_cycle + ps->max_cycle / ii
2328 + (SMODULO (ps->max_cycle, ii) >= split_row ? 1 : 0);
2329 free (ps->rows);
2330 ps->rows = rows_new;
2331 free (ps->rows_length);
2332 ps->rows_length = rows_length_new;
2333 ps->ii = new_ii;
2334 gcc_assert (ps->min_cycle >= 0);
2336 verify_partial_schedule (ps, sched_nodes);
2338 if (dump_file)
2339 fprintf (dump_file, "min_cycle=%d, max_cycle=%d\n", ps->min_cycle,
2340 ps->max_cycle);
2343 /* Given U_NODE which is the node that failed to be scheduled; LOW and
2344 UP which are the boundaries of it's scheduling window; compute using
2345 SCHED_NODES and II a row in the partial schedule that can be split
2346 which will separate a critical predecessor from a critical successor
2347 thereby expanding the window, and return it. */
2348 static int
2349 compute_split_row (sbitmap sched_nodes, int low, int up, int ii,
2350 ddg_node_ptr u_node)
2352 ddg_edge_ptr e;
2353 int lower = INT_MIN, upper = INT_MAX;
2354 int crit_pred = -1;
2355 int crit_succ = -1;
2356 int crit_cycle;
2358 for (e = u_node->in; e != 0; e = e->next_in)
2360 int v = e->src->cuid;
2362 if (bitmap_bit_p (sched_nodes, v)
2363 && (low == SCHED_TIME (v) + e->latency - (e->distance * ii)))
2364 if (SCHED_TIME (v) > lower)
2366 crit_pred = v;
2367 lower = SCHED_TIME (v);
2371 if (crit_pred >= 0)
2373 crit_cycle = SCHED_TIME (crit_pred) + 1;
2374 return SMODULO (crit_cycle, ii);
2377 for (e = u_node->out; e != 0; e = e->next_out)
2379 int v = e->dest->cuid;
2381 if (bitmap_bit_p (sched_nodes, v)
2382 && (up == SCHED_TIME (v) - e->latency + (e->distance * ii)))
2383 if (SCHED_TIME (v) < upper)
2385 crit_succ = v;
2386 upper = SCHED_TIME (v);
2390 if (crit_succ >= 0)
2392 crit_cycle = SCHED_TIME (crit_succ);
2393 return SMODULO (crit_cycle, ii);
2396 if (dump_file)
2397 fprintf (dump_file, "Both crit_pred and crit_succ are NULL\n");
2399 return SMODULO ((low + up + 1) / 2, ii);
2402 static void
2403 verify_partial_schedule (partial_schedule_ptr ps, sbitmap sched_nodes)
2405 int row;
2406 ps_insn_ptr crr_insn;
2408 for (row = 0; row < ps->ii; row++)
2410 int length = 0;
2412 for (crr_insn = ps->rows[row]; crr_insn; crr_insn = crr_insn->next_in_row)
2414 int u = crr_insn->id;
2416 length++;
2417 gcc_assert (bitmap_bit_p (sched_nodes, u));
2418 /* ??? Test also that all nodes of sched_nodes are in ps, perhaps by
2419 popcount (sched_nodes) == number of insns in ps. */
2420 gcc_assert (SCHED_TIME (u) >= ps->min_cycle);
2421 gcc_assert (SCHED_TIME (u) <= ps->max_cycle);
2424 gcc_assert (ps->rows_length[row] == length);
2429 /* This page implements the algorithm for ordering the nodes of a DDG
2430 for modulo scheduling, activated through the
2431 "int sms_order_nodes (ddg_ptr, int mii, int * result)" API. */
2433 #define ORDER_PARAMS(x) ((struct node_order_params *) (x)->aux.info)
2434 #define ASAP(x) (ORDER_PARAMS ((x))->asap)
2435 #define ALAP(x) (ORDER_PARAMS ((x))->alap)
2436 #define HEIGHT(x) (ORDER_PARAMS ((x))->height)
2437 #define MOB(x) (ALAP ((x)) - ASAP ((x)))
2438 #define DEPTH(x) (ASAP ((x)))
2440 typedef struct node_order_params * nopa;
2442 static void order_nodes_of_sccs (ddg_all_sccs_ptr, int * result);
2443 static int order_nodes_in_scc (ddg_ptr, sbitmap, sbitmap, int*, int);
2444 static nopa calculate_order_params (ddg_ptr, int, int *);
2445 static int find_max_asap (ddg_ptr, sbitmap);
2446 static int find_max_hv_min_mob (ddg_ptr, sbitmap);
2447 static int find_max_dv_min_mob (ddg_ptr, sbitmap);
2449 enum sms_direction {BOTTOMUP, TOPDOWN};
2451 struct node_order_params
2453 int asap;
2454 int alap;
2455 int height;
2458 /* Check if NODE_ORDER contains a permutation of 0 .. NUM_NODES-1. */
2459 static void
2460 check_nodes_order (int *node_order, int num_nodes)
2462 int i;
2463 auto_sbitmap tmp (num_nodes);
2465 bitmap_clear (tmp);
2467 if (dump_file)
2468 fprintf (dump_file, "SMS final nodes order: \n");
2470 for (i = 0; i < num_nodes; i++)
2472 int u = node_order[i];
2474 if (dump_file)
2475 fprintf (dump_file, "%d ", u);
2476 gcc_assert (u < num_nodes && u >= 0 && !bitmap_bit_p (tmp, u));
2478 bitmap_set_bit (tmp, u);
2481 if (dump_file)
2482 fprintf (dump_file, "\n");
2485 /* Order the nodes of G for scheduling and pass the result in
2486 NODE_ORDER. Also set aux.count of each node to ASAP.
2487 Put maximal ASAP to PMAX_ASAP. Return the recMII for the given DDG. */
2488 static int
2489 sms_order_nodes (ddg_ptr g, int mii, int * node_order, int *pmax_asap)
2491 int i;
2492 int rec_mii = 0;
2493 ddg_all_sccs_ptr sccs = create_ddg_all_sccs (g);
2495 nopa nops = calculate_order_params (g, mii, pmax_asap);
2497 if (dump_file)
2498 print_sccs (dump_file, sccs, g);
2500 order_nodes_of_sccs (sccs, node_order);
2502 if (sccs->num_sccs > 0)
2503 /* First SCC has the largest recurrence_length. */
2504 rec_mii = sccs->sccs[0]->recurrence_length;
2506 /* Save ASAP before destroying node_order_params. */
2507 for (i = 0; i < g->num_nodes; i++)
2509 ddg_node_ptr v = &g->nodes[i];
2510 v->aux.count = ASAP (v);
2513 free (nops);
2514 free_ddg_all_sccs (sccs);
2515 check_nodes_order (node_order, g->num_nodes);
2517 return rec_mii;
2520 static void
2521 order_nodes_of_sccs (ddg_all_sccs_ptr all_sccs, int * node_order)
2523 int i, pos = 0;
2524 ddg_ptr g = all_sccs->ddg;
2525 int num_nodes = g->num_nodes;
2526 auto_sbitmap prev_sccs (num_nodes);
2527 auto_sbitmap on_path (num_nodes);
2528 auto_sbitmap tmp (num_nodes);
2529 auto_sbitmap ones (num_nodes);
2531 bitmap_clear (prev_sccs);
2532 bitmap_ones (ones);
2534 /* Perform the node ordering starting from the SCC with the highest recMII.
2535 For each SCC order the nodes according to their ASAP/ALAP/HEIGHT etc. */
2536 for (i = 0; i < all_sccs->num_sccs; i++)
2538 ddg_scc_ptr scc = all_sccs->sccs[i];
2540 /* Add nodes on paths from previous SCCs to the current SCC. */
2541 find_nodes_on_paths (on_path, g, prev_sccs, scc->nodes);
2542 bitmap_ior (tmp, scc->nodes, on_path);
2544 /* Add nodes on paths from the current SCC to previous SCCs. */
2545 find_nodes_on_paths (on_path, g, scc->nodes, prev_sccs);
2546 bitmap_ior (tmp, tmp, on_path);
2548 /* Remove nodes of previous SCCs from current extended SCC. */
2549 bitmap_and_compl (tmp, tmp, prev_sccs);
2551 pos = order_nodes_in_scc (g, prev_sccs, tmp, node_order, pos);
2552 /* Above call to order_nodes_in_scc updated prev_sccs |= tmp. */
2555 /* Handle the remaining nodes that do not belong to any scc. Each call
2556 to order_nodes_in_scc handles a single connected component. */
2557 while (pos < g->num_nodes)
2559 bitmap_and_compl (tmp, ones, prev_sccs);
2560 pos = order_nodes_in_scc (g, prev_sccs, tmp, node_order, pos);
2564 /* MII is needed if we consider backarcs (that do not close recursive cycles). */
2565 static struct node_order_params *
2566 calculate_order_params (ddg_ptr g, int mii ATTRIBUTE_UNUSED, int *pmax_asap)
2568 int u;
2569 int max_asap;
2570 int num_nodes = g->num_nodes;
2571 ddg_edge_ptr e;
2572 /* Allocate a place to hold ordering params for each node in the DDG. */
2573 nopa node_order_params_arr;
2575 /* Initialize of ASAP/ALAP/HEIGHT to zero. */
2576 node_order_params_arr = (nopa) xcalloc (num_nodes,
2577 sizeof (struct node_order_params));
2579 /* Set the aux pointer of each node to point to its order_params structure. */
2580 for (u = 0; u < num_nodes; u++)
2581 g->nodes[u].aux.info = &node_order_params_arr[u];
2583 /* Disregarding a backarc from each recursive cycle to obtain a DAG,
2584 calculate ASAP, ALAP, mobility, distance, and height for each node
2585 in the dependence (direct acyclic) graph. */
2587 /* We assume that the nodes in the array are in topological order. */
2589 max_asap = 0;
2590 for (u = 0; u < num_nodes; u++)
2592 ddg_node_ptr u_node = &g->nodes[u];
2594 ASAP (u_node) = 0;
2595 for (e = u_node->in; e; e = e->next_in)
2596 if (e->distance == 0)
2597 ASAP (u_node) = MAX (ASAP (u_node),
2598 ASAP (e->src) + e->latency);
2599 max_asap = MAX (max_asap, ASAP (u_node));
2602 for (u = num_nodes - 1; u > -1; u--)
2604 ddg_node_ptr u_node = &g->nodes[u];
2606 ALAP (u_node) = max_asap;
2607 HEIGHT (u_node) = 0;
2608 for (e = u_node->out; e; e = e->next_out)
2609 if (e->distance == 0)
2611 ALAP (u_node) = MIN (ALAP (u_node),
2612 ALAP (e->dest) - e->latency);
2613 HEIGHT (u_node) = MAX (HEIGHT (u_node),
2614 HEIGHT (e->dest) + e->latency);
2617 if (dump_file)
2619 fprintf (dump_file, "\nOrder params\n");
2620 for (u = 0; u < num_nodes; u++)
2622 ddg_node_ptr u_node = &g->nodes[u];
2624 fprintf (dump_file, "node %d, ASAP: %d, ALAP: %d, HEIGHT: %d\n", u,
2625 ASAP (u_node), ALAP (u_node), HEIGHT (u_node));
2629 *pmax_asap = max_asap;
2630 return node_order_params_arr;
2633 static int
2634 find_max_asap (ddg_ptr g, sbitmap nodes)
2636 unsigned int u = 0;
2637 int max_asap = -1;
2638 int result = -1;
2639 sbitmap_iterator sbi;
2641 EXECUTE_IF_SET_IN_BITMAP (nodes, 0, u, sbi)
2643 ddg_node_ptr u_node = &g->nodes[u];
2645 if (max_asap < ASAP (u_node))
2647 max_asap = ASAP (u_node);
2648 result = u;
2651 return result;
2654 static int
2655 find_max_hv_min_mob (ddg_ptr g, sbitmap nodes)
2657 unsigned int u = 0;
2658 int max_hv = -1;
2659 int min_mob = INT_MAX;
2660 int result = -1;
2661 sbitmap_iterator sbi;
2663 EXECUTE_IF_SET_IN_BITMAP (nodes, 0, u, sbi)
2665 ddg_node_ptr u_node = &g->nodes[u];
2667 if (max_hv < HEIGHT (u_node))
2669 max_hv = HEIGHT (u_node);
2670 min_mob = MOB (u_node);
2671 result = u;
2673 else if ((max_hv == HEIGHT (u_node))
2674 && (min_mob > MOB (u_node)))
2676 min_mob = MOB (u_node);
2677 result = u;
2680 return result;
2683 static int
2684 find_max_dv_min_mob (ddg_ptr g, sbitmap nodes)
2686 unsigned int u = 0;
2687 int max_dv = -1;
2688 int min_mob = INT_MAX;
2689 int result = -1;
2690 sbitmap_iterator sbi;
2692 EXECUTE_IF_SET_IN_BITMAP (nodes, 0, u, sbi)
2694 ddg_node_ptr u_node = &g->nodes[u];
2696 if (max_dv < DEPTH (u_node))
2698 max_dv = DEPTH (u_node);
2699 min_mob = MOB (u_node);
2700 result = u;
2702 else if ((max_dv == DEPTH (u_node))
2703 && (min_mob > MOB (u_node)))
2705 min_mob = MOB (u_node);
2706 result = u;
2709 return result;
2712 /* Places the nodes of SCC into the NODE_ORDER array starting
2713 at position POS, according to the SMS ordering algorithm.
2714 NODES_ORDERED (in&out parameter) holds the bitset of all nodes in
2715 the NODE_ORDER array, starting from position zero. */
2716 static int
2717 order_nodes_in_scc (ddg_ptr g, sbitmap nodes_ordered, sbitmap scc,
2718 int * node_order, int pos)
2720 enum sms_direction dir;
2721 int num_nodes = g->num_nodes;
2722 auto_sbitmap workset (num_nodes);
2723 auto_sbitmap tmp (num_nodes);
2724 sbitmap zero_bitmap = sbitmap_alloc (num_nodes);
2725 auto_sbitmap predecessors (num_nodes);
2726 auto_sbitmap successors (num_nodes);
2728 bitmap_clear (predecessors);
2729 find_predecessors (predecessors, g, nodes_ordered);
2731 bitmap_clear (successors);
2732 find_successors (successors, g, nodes_ordered);
2734 bitmap_clear (tmp);
2735 if (bitmap_and (tmp, predecessors, scc))
2737 bitmap_copy (workset, tmp);
2738 dir = BOTTOMUP;
2740 else if (bitmap_and (tmp, successors, scc))
2742 bitmap_copy (workset, tmp);
2743 dir = TOPDOWN;
2745 else
2747 int u;
2749 bitmap_clear (workset);
2750 if ((u = find_max_asap (g, scc)) >= 0)
2751 bitmap_set_bit (workset, u);
2752 dir = BOTTOMUP;
2755 bitmap_clear (zero_bitmap);
2756 while (!bitmap_equal_p (workset, zero_bitmap))
2758 int v;
2759 ddg_node_ptr v_node;
2760 sbitmap v_node_preds;
2761 sbitmap v_node_succs;
2763 if (dir == TOPDOWN)
2765 while (!bitmap_equal_p (workset, zero_bitmap))
2767 v = find_max_hv_min_mob (g, workset);
2768 v_node = &g->nodes[v];
2769 node_order[pos++] = v;
2770 v_node_succs = NODE_SUCCESSORS (v_node);
2771 bitmap_and (tmp, v_node_succs, scc);
2773 /* Don't consider the already ordered successors again. */
2774 bitmap_and_compl (tmp, tmp, nodes_ordered);
2775 bitmap_ior (workset, workset, tmp);
2776 bitmap_clear_bit (workset, v);
2777 bitmap_set_bit (nodes_ordered, v);
2779 dir = BOTTOMUP;
2780 bitmap_clear (predecessors);
2781 find_predecessors (predecessors, g, nodes_ordered);
2782 bitmap_and (workset, predecessors, scc);
2784 else
2786 while (!bitmap_equal_p (workset, zero_bitmap))
2788 v = find_max_dv_min_mob (g, workset);
2789 v_node = &g->nodes[v];
2790 node_order[pos++] = v;
2791 v_node_preds = NODE_PREDECESSORS (v_node);
2792 bitmap_and (tmp, v_node_preds, scc);
2794 /* Don't consider the already ordered predecessors again. */
2795 bitmap_and_compl (tmp, tmp, nodes_ordered);
2796 bitmap_ior (workset, workset, tmp);
2797 bitmap_clear_bit (workset, v);
2798 bitmap_set_bit (nodes_ordered, v);
2800 dir = TOPDOWN;
2801 bitmap_clear (successors);
2802 find_successors (successors, g, nodes_ordered);
2803 bitmap_and (workset, successors, scc);
2806 sbitmap_free (zero_bitmap);
2807 return pos;
2811 /* This page contains functions for manipulating partial-schedules during
2812 modulo scheduling. */
2814 /* Create a partial schedule and allocate a memory to hold II rows. */
2816 static partial_schedule_ptr
2817 create_partial_schedule (int ii, ddg_ptr g, int history)
2819 partial_schedule_ptr ps = XNEW (struct partial_schedule);
2820 ps->rows = (ps_insn_ptr *) xcalloc (ii, sizeof (ps_insn_ptr));
2821 ps->rows_length = (int *) xcalloc (ii, sizeof (int));
2822 ps->reg_moves.create (0);
2823 ps->ii = ii;
2824 ps->history = history;
2825 ps->min_cycle = INT_MAX;
2826 ps->max_cycle = INT_MIN;
2827 ps->g = g;
2829 return ps;
2832 /* Free the PS_INSNs in rows array of the given partial schedule.
2833 ??? Consider caching the PS_INSN's. */
2834 static void
2835 free_ps_insns (partial_schedule_ptr ps)
2837 int i;
2839 for (i = 0; i < ps->ii; i++)
2841 while (ps->rows[i])
2843 ps_insn_ptr ps_insn = ps->rows[i]->next_in_row;
2845 free (ps->rows[i]);
2846 ps->rows[i] = ps_insn;
2848 ps->rows[i] = NULL;
2852 /* Free all the memory allocated to the partial schedule. */
2854 static void
2855 free_partial_schedule (partial_schedule_ptr ps)
2857 ps_reg_move_info *move;
2858 unsigned int i;
2860 if (!ps)
2861 return;
2863 FOR_EACH_VEC_ELT (ps->reg_moves, i, move)
2864 sbitmap_free (move->uses);
2865 ps->reg_moves.release ();
2867 free_ps_insns (ps);
2868 free (ps->rows);
2869 free (ps->rows_length);
2870 free (ps);
2873 /* Clear the rows array with its PS_INSNs, and create a new one with
2874 NEW_II rows. */
2876 static void
2877 reset_partial_schedule (partial_schedule_ptr ps, int new_ii)
2879 if (!ps)
2880 return;
2881 free_ps_insns (ps);
2882 if (new_ii == ps->ii)
2883 return;
2884 ps->rows = (ps_insn_ptr *) xrealloc (ps->rows, new_ii
2885 * sizeof (ps_insn_ptr));
2886 memset (ps->rows, 0, new_ii * sizeof (ps_insn_ptr));
2887 ps->rows_length = (int *) xrealloc (ps->rows_length, new_ii * sizeof (int));
2888 memset (ps->rows_length, 0, new_ii * sizeof (int));
2889 ps->ii = new_ii;
2890 ps->min_cycle = INT_MAX;
2891 ps->max_cycle = INT_MIN;
2894 /* Prints the partial schedule as an ii rows array, for each rows
2895 print the ids of the insns in it. */
2896 void
2897 print_partial_schedule (partial_schedule_ptr ps, FILE *dump)
2899 int i;
2901 for (i = 0; i < ps->ii; i++)
2903 ps_insn_ptr ps_i = ps->rows[i];
2905 fprintf (dump, "\n[ROW %d ]: ", i);
2906 while (ps_i)
2908 rtx_insn *insn = ps_rtl_insn (ps, ps_i->id);
2910 if (JUMP_P (insn))
2911 fprintf (dump, "%d (branch), ", INSN_UID (insn));
2912 else
2913 fprintf (dump, "%d, ", INSN_UID (insn));
2915 ps_i = ps_i->next_in_row;
2920 /* Creates an object of PS_INSN and initializes it to the given parameters. */
2921 static ps_insn_ptr
2922 create_ps_insn (int id, int cycle)
2924 ps_insn_ptr ps_i = XNEW (struct ps_insn);
2926 ps_i->id = id;
2927 ps_i->next_in_row = NULL;
2928 ps_i->prev_in_row = NULL;
2929 ps_i->cycle = cycle;
2931 return ps_i;
2935 /* Removes the given PS_INSN from the partial schedule. */
2936 static void
2937 remove_node_from_ps (partial_schedule_ptr ps, ps_insn_ptr ps_i)
2939 int row;
2941 gcc_assert (ps && ps_i);
2943 row = SMODULO (ps_i->cycle, ps->ii);
2944 if (! ps_i->prev_in_row)
2946 gcc_assert (ps_i == ps->rows[row]);
2947 ps->rows[row] = ps_i->next_in_row;
2948 if (ps->rows[row])
2949 ps->rows[row]->prev_in_row = NULL;
2951 else
2953 ps_i->prev_in_row->next_in_row = ps_i->next_in_row;
2954 if (ps_i->next_in_row)
2955 ps_i->next_in_row->prev_in_row = ps_i->prev_in_row;
2958 ps->rows_length[row] -= 1;
2959 free (ps_i);
2960 return;
2963 /* Unlike what literature describes for modulo scheduling (which focuses
2964 on VLIW machines) the order of the instructions inside a cycle is
2965 important. Given the bitmaps MUST_FOLLOW and MUST_PRECEDE we know
2966 where the current instruction should go relative to the already
2967 scheduled instructions in the given cycle. Go over these
2968 instructions and find the first possible column to put it in. */
2969 static bool
2970 ps_insn_find_column (partial_schedule_ptr ps, ps_insn_ptr ps_i,
2971 sbitmap must_precede, sbitmap must_follow)
2973 ps_insn_ptr next_ps_i;
2974 ps_insn_ptr first_must_follow = NULL;
2975 ps_insn_ptr last_must_precede = NULL;
2976 ps_insn_ptr last_in_row = NULL;
2977 int row;
2979 if (! ps_i)
2980 return false;
2982 row = SMODULO (ps_i->cycle, ps->ii);
2984 /* Find the first must follow and the last must precede
2985 and insert the node immediately after the must precede
2986 but make sure that it there is no must follow after it. */
2987 for (next_ps_i = ps->rows[row];
2988 next_ps_i;
2989 next_ps_i = next_ps_i->next_in_row)
2991 if (must_follow
2992 && bitmap_bit_p (must_follow, next_ps_i->id)
2993 && ! first_must_follow)
2994 first_must_follow = next_ps_i;
2995 if (must_precede && bitmap_bit_p (must_precede, next_ps_i->id))
2997 /* If we have already met a node that must follow, then
2998 there is no possible column. */
2999 if (first_must_follow)
3000 return false;
3001 else
3002 last_must_precede = next_ps_i;
3004 /* The closing branch must be the last in the row. */
3005 if (must_precede
3006 && bitmap_bit_p (must_precede, next_ps_i->id)
3007 && JUMP_P (ps_rtl_insn (ps, next_ps_i->id)))
3008 return false;
3010 last_in_row = next_ps_i;
3013 /* The closing branch is scheduled as well. Make sure there is no
3014 dependent instruction after it as the branch should be the last
3015 instruction in the row. */
3016 if (JUMP_P (ps_rtl_insn (ps, ps_i->id)))
3018 if (first_must_follow)
3019 return false;
3020 if (last_in_row)
3022 /* Make the branch the last in the row. New instructions
3023 will be inserted at the beginning of the row or after the
3024 last must_precede instruction thus the branch is guaranteed
3025 to remain the last instruction in the row. */
3026 last_in_row->next_in_row = ps_i;
3027 ps_i->prev_in_row = last_in_row;
3028 ps_i->next_in_row = NULL;
3030 else
3031 ps->rows[row] = ps_i;
3032 return true;
3035 /* Now insert the node after INSERT_AFTER_PSI. */
3037 if (! last_must_precede)
3039 ps_i->next_in_row = ps->rows[row];
3040 ps_i->prev_in_row = NULL;
3041 if (ps_i->next_in_row)
3042 ps_i->next_in_row->prev_in_row = ps_i;
3043 ps->rows[row] = ps_i;
3045 else
3047 ps_i->next_in_row = last_must_precede->next_in_row;
3048 last_must_precede->next_in_row = ps_i;
3049 ps_i->prev_in_row = last_must_precede;
3050 if (ps_i->next_in_row)
3051 ps_i->next_in_row->prev_in_row = ps_i;
3054 return true;
3057 /* Advances the PS_INSN one column in its current row; returns false
3058 in failure and true in success. Bit N is set in MUST_FOLLOW if
3059 the node with cuid N must be come after the node pointed to by
3060 PS_I when scheduled in the same cycle. */
3061 static int
3062 ps_insn_advance_column (partial_schedule_ptr ps, ps_insn_ptr ps_i,
3063 sbitmap must_follow)
3065 ps_insn_ptr prev, next;
3066 int row;
3068 if (!ps || !ps_i)
3069 return false;
3071 row = SMODULO (ps_i->cycle, ps->ii);
3073 if (! ps_i->next_in_row)
3074 return false;
3076 /* Check if next_in_row is dependent on ps_i, both having same sched
3077 times (typically ANTI_DEP). If so, ps_i cannot skip over it. */
3078 if (must_follow && bitmap_bit_p (must_follow, ps_i->next_in_row->id))
3079 return false;
3081 /* Advance PS_I over its next_in_row in the doubly linked list. */
3082 prev = ps_i->prev_in_row;
3083 next = ps_i->next_in_row;
3085 if (ps_i == ps->rows[row])
3086 ps->rows[row] = next;
3088 ps_i->next_in_row = next->next_in_row;
3090 if (next->next_in_row)
3091 next->next_in_row->prev_in_row = ps_i;
3093 next->next_in_row = ps_i;
3094 ps_i->prev_in_row = next;
3096 next->prev_in_row = prev;
3097 if (prev)
3098 prev->next_in_row = next;
3100 return true;
3103 /* Inserts a DDG_NODE to the given partial schedule at the given cycle.
3104 Returns 0 if this is not possible and a PS_INSN otherwise. Bit N is
3105 set in MUST_PRECEDE/MUST_FOLLOW if the node with cuid N must be come
3106 before/after (respectively) the node pointed to by PS_I when scheduled
3107 in the same cycle. */
3108 static ps_insn_ptr
3109 add_node_to_ps (partial_schedule_ptr ps, int id, int cycle,
3110 sbitmap must_precede, sbitmap must_follow)
3112 ps_insn_ptr ps_i;
3113 int row = SMODULO (cycle, ps->ii);
3115 if (ps->rows_length[row] >= issue_rate)
3116 return NULL;
3118 ps_i = create_ps_insn (id, cycle);
3120 /* Finds and inserts PS_I according to MUST_FOLLOW and
3121 MUST_PRECEDE. */
3122 if (! ps_insn_find_column (ps, ps_i, must_precede, must_follow))
3124 free (ps_i);
3125 return NULL;
3128 ps->rows_length[row] += 1;
3129 return ps_i;
3132 /* Advance time one cycle. Assumes DFA is being used. */
3133 static void
3134 advance_one_cycle (void)
3136 if (targetm.sched.dfa_pre_cycle_insn)
3137 state_transition (curr_state,
3138 targetm.sched.dfa_pre_cycle_insn ());
3140 state_transition (curr_state, NULL);
3142 if (targetm.sched.dfa_post_cycle_insn)
3143 state_transition (curr_state,
3144 targetm.sched.dfa_post_cycle_insn ());
3149 /* Checks if PS has resource conflicts according to DFA, starting from
3150 FROM cycle to TO cycle; returns true if there are conflicts and false
3151 if there are no conflicts. Assumes DFA is being used. */
3152 static int
3153 ps_has_conflicts (partial_schedule_ptr ps, int from, int to)
3155 int cycle;
3157 state_reset (curr_state);
3159 for (cycle = from; cycle <= to; cycle++)
3161 ps_insn_ptr crr_insn;
3162 /* Holds the remaining issue slots in the current row. */
3163 int can_issue_more = issue_rate;
3165 /* Walk through the DFA for the current row. */
3166 for (crr_insn = ps->rows[SMODULO (cycle, ps->ii)];
3167 crr_insn;
3168 crr_insn = crr_insn->next_in_row)
3170 rtx_insn *insn = ps_rtl_insn (ps, crr_insn->id);
3172 if (!NONDEBUG_INSN_P (insn))
3173 continue;
3175 /* Check if there is room for the current insn. */
3176 if (!can_issue_more || state_dead_lock_p (curr_state))
3177 return true;
3179 /* Update the DFA state and return with failure if the DFA found
3180 resource conflicts. */
3181 if (state_transition (curr_state, insn) >= 0)
3182 return true;
3184 if (targetm.sched.variable_issue)
3185 can_issue_more =
3186 targetm.sched.variable_issue (sched_dump, sched_verbose,
3187 insn, can_issue_more);
3188 /* A naked CLOBBER or USE generates no instruction, so don't
3189 let them consume issue slots. */
3190 else if (GET_CODE (PATTERN (insn)) != USE
3191 && GET_CODE (PATTERN (insn)) != CLOBBER)
3192 can_issue_more--;
3195 /* Advance the DFA to the next cycle. */
3196 advance_one_cycle ();
3198 return false;
3201 /* Checks if the given node causes resource conflicts when added to PS at
3202 cycle C. If not the node is added to PS and returned; otherwise zero
3203 is returned. Bit N is set in MUST_PRECEDE/MUST_FOLLOW if the node with
3204 cuid N must be come before/after (respectively) the node pointed to by
3205 PS_I when scheduled in the same cycle. */
3206 ps_insn_ptr
3207 ps_add_node_check_conflicts (partial_schedule_ptr ps, int n,
3208 int c, sbitmap must_precede,
3209 sbitmap must_follow)
3211 int has_conflicts = 0;
3212 ps_insn_ptr ps_i;
3214 /* First add the node to the PS, if this succeeds check for
3215 conflicts, trying different issue slots in the same row. */
3216 if (! (ps_i = add_node_to_ps (ps, n, c, must_precede, must_follow)))
3217 return NULL; /* Failed to insert the node at the given cycle. */
3219 has_conflicts = ps_has_conflicts (ps, c, c)
3220 || (ps->history > 0
3221 && ps_has_conflicts (ps,
3222 c - ps->history,
3223 c + ps->history));
3225 /* Try different issue slots to find one that the given node can be
3226 scheduled in without conflicts. */
3227 while (has_conflicts)
3229 if (! ps_insn_advance_column (ps, ps_i, must_follow))
3230 break;
3231 has_conflicts = ps_has_conflicts (ps, c, c)
3232 || (ps->history > 0
3233 && ps_has_conflicts (ps,
3234 c - ps->history,
3235 c + ps->history));
3238 if (has_conflicts)
3240 remove_node_from_ps (ps, ps_i);
3241 return NULL;
3244 ps->min_cycle = MIN (ps->min_cycle, c);
3245 ps->max_cycle = MAX (ps->max_cycle, c);
3246 return ps_i;
3249 /* Calculate the stage count of the partial schedule PS. The calculation
3250 takes into account the rotation amount passed in ROTATION_AMOUNT. */
3252 calculate_stage_count (partial_schedule_ptr ps, int rotation_amount)
3254 int new_min_cycle = PS_MIN_CYCLE (ps) - rotation_amount;
3255 int new_max_cycle = PS_MAX_CYCLE (ps) - rotation_amount;
3256 int stage_count = CALC_STAGE_COUNT (-1, new_min_cycle, ps->ii);
3258 /* The calculation of stage count is done adding the number of stages
3259 before cycle zero and after cycle zero. */
3260 stage_count += CALC_STAGE_COUNT (new_max_cycle, 0, ps->ii);
3262 return stage_count;
3265 /* Rotate the rows of PS such that insns scheduled at time
3266 START_CYCLE will appear in row 0. Updates max/min_cycles. */
3267 void
3268 rotate_partial_schedule (partial_schedule_ptr ps, int start_cycle)
3270 int i, row, backward_rotates;
3271 int last_row = ps->ii - 1;
3273 if (start_cycle == 0)
3274 return;
3276 backward_rotates = SMODULO (start_cycle, ps->ii);
3278 /* Revisit later and optimize this into a single loop. */
3279 for (i = 0; i < backward_rotates; i++)
3281 ps_insn_ptr first_row = ps->rows[0];
3282 int first_row_length = ps->rows_length[0];
3284 for (row = 0; row < last_row; row++)
3286 ps->rows[row] = ps->rows[row + 1];
3287 ps->rows_length[row] = ps->rows_length[row + 1];
3290 ps->rows[last_row] = first_row;
3291 ps->rows_length[last_row] = first_row_length;
3294 ps->max_cycle -= start_cycle;
3295 ps->min_cycle -= start_cycle;
3298 #endif /* INSN_SCHEDULING */
3300 /* Run instruction scheduler. */
3301 /* Perform SMS module scheduling. */
3303 namespace {
3305 const pass_data pass_data_sms =
3307 RTL_PASS, /* type */
3308 "sms", /* name */
3309 OPTGROUP_NONE, /* optinfo_flags */
3310 TV_SMS, /* tv_id */
3311 0, /* properties_required */
3312 0, /* properties_provided */
3313 0, /* properties_destroyed */
3314 0, /* todo_flags_start */
3315 TODO_df_finish, /* todo_flags_finish */
3318 class pass_sms : public rtl_opt_pass
3320 public:
3321 pass_sms (gcc::context *ctxt)
3322 : rtl_opt_pass (pass_data_sms, ctxt)
3325 /* opt_pass methods: */
3326 virtual bool gate (function *)
3328 return (optimize > 0 && flag_modulo_sched);
3331 virtual unsigned int execute (function *);
3333 }; // class pass_sms
3335 unsigned int
3336 pass_sms::execute (function *fun ATTRIBUTE_UNUSED)
3338 #ifdef INSN_SCHEDULING
3339 basic_block bb;
3341 /* Collect loop information to be used in SMS. */
3342 cfg_layout_initialize (0);
3343 sms_schedule ();
3345 /* Update the life information, because we add pseudos. */
3346 max_regno = max_reg_num ();
3348 /* Finalize layout changes. */
3349 FOR_EACH_BB_FN (bb, fun)
3350 if (bb->next_bb != EXIT_BLOCK_PTR_FOR_FN (fun))
3351 bb->aux = bb->next_bb;
3352 free_dominance_info (CDI_DOMINATORS);
3353 cfg_layout_finalize ();
3354 #endif /* INSN_SCHEDULING */
3355 return 0;
3358 } // anon namespace
3360 rtl_opt_pass *
3361 make_pass_sms (gcc::context *ctxt)
3363 return new pass_sms (ctxt);