PR tree-optimization/82929
[official-gcc.git] / gcc / ada / sem_ch11.adb
blob13ba280a1c5e5fc0dc295c3b23ab23dca4acbea1
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ C H 1 1 --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2016, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
26 with Atree; use Atree;
27 with Checks; use Checks;
28 with Einfo; use Einfo;
29 with Errout; use Errout;
30 with Lib; use Lib;
31 with Lib.Xref; use Lib.Xref;
32 with Namet; use Namet;
33 with Nlists; use Nlists;
34 with Nmake; use Nmake;
35 with Opt; use Opt;
36 with Restrict; use Restrict;
37 with Rident; use Rident;
38 with Rtsfind; use Rtsfind;
39 with Sem; use Sem;
40 with Sem_Aux; use Sem_Aux;
41 with Sem_Ch5; use Sem_Ch5;
42 with Sem_Ch8; use Sem_Ch8;
43 with Sem_Ch13; use Sem_Ch13;
44 with Sem_Res; use Sem_Res;
45 with Sem_Util; use Sem_Util;
46 with Sem_Warn; use Sem_Warn;
47 with Sinfo; use Sinfo;
48 with Snames; use Snames;
49 with Stand; use Stand;
51 package body Sem_Ch11 is
53 -----------------------------------
54 -- Analyze_Exception_Declaration --
55 -----------------------------------
57 procedure Analyze_Exception_Declaration (N : Node_Id) is
58 Id : constant Entity_Id := Defining_Identifier (N);
59 PF : constant Boolean := Is_Pure (Current_Scope);
61 begin
62 Generate_Definition (Id);
63 Enter_Name (Id);
64 Set_Ekind (Id, E_Exception);
65 Set_Etype (Id, Standard_Exception_Type);
66 Set_Is_Statically_Allocated (Id);
67 Set_Is_Pure (Id, PF);
69 if Has_Aspects (N) then
70 Analyze_Aspect_Specifications (N, Id);
71 end if;
72 end Analyze_Exception_Declaration;
74 --------------------------------
75 -- Analyze_Exception_Handlers --
76 --------------------------------
78 procedure Analyze_Exception_Handlers (L : List_Id) is
79 Handler : Node_Id;
80 Choice : Entity_Id;
81 Id : Node_Id;
82 H_Scope : Entity_Id := Empty;
84 procedure Check_Duplication (Id : Node_Id);
85 -- Iterate through the identifiers in each handler to find duplicates
87 function Others_Present return Boolean;
88 -- Returns True if others handler is present
90 -----------------------
91 -- Check_Duplication --
92 -----------------------
94 procedure Check_Duplication (Id : Node_Id) is
95 Handler : Node_Id;
96 Id1 : Node_Id;
97 Id_Entity : Entity_Id := Entity (Id);
99 begin
100 if Present (Renamed_Entity (Id_Entity)) then
101 Id_Entity := Renamed_Entity (Id_Entity);
102 end if;
104 Handler := First_Non_Pragma (L);
105 while Present (Handler) loop
106 Id1 := First (Exception_Choices (Handler));
107 while Present (Id1) loop
109 -- Only check against the exception choices which precede
110 -- Id in the handler, since the ones that follow Id have not
111 -- been analyzed yet and will be checked in a subsequent call.
113 if Id = Id1 then
114 return;
116 elsif Nkind (Id1) /= N_Others_Choice
117 and then
118 (Id_Entity = Entity (Id1)
119 or else (Id_Entity = Renamed_Entity (Entity (Id1))))
120 then
121 if Handler /= Parent (Id) then
122 Error_Msg_Sloc := Sloc (Id1);
123 Error_Msg_NE ("exception choice duplicates &#", Id, Id1);
125 else
126 if Ada_Version = Ada_83
127 and then Comes_From_Source (Id)
128 then
129 Error_Msg_N
130 ("(Ada 83): duplicate exception choice&", Id);
131 end if;
132 end if;
133 end if;
135 Next_Non_Pragma (Id1);
136 end loop;
138 Next (Handler);
139 end loop;
140 end Check_Duplication;
142 --------------------
143 -- Others_Present --
144 --------------------
146 function Others_Present return Boolean is
147 H : Node_Id;
149 begin
150 H := First (L);
151 while Present (H) loop
152 if Nkind (H) /= N_Pragma
153 and then Nkind (First (Exception_Choices (H))) = N_Others_Choice
154 then
155 return True;
156 end if;
158 Next (H);
159 end loop;
161 return False;
162 end Others_Present;
164 -- Start of processing for Analyze_Exception_Handlers
166 begin
167 Handler := First (L);
169 -- Pragma Restriction_Warnings has more related semantics than pragma
170 -- Restrictions in that it flags exception handlers as violators. Note
171 -- that the compiler must still generate handlers for certain critical
172 -- scenarios such as finalization. As a result, these handlers should
173 -- not be subjected to the restriction check when in warnings mode.
175 if not Comes_From_Source (Handler)
176 and then (Restriction_Warnings (No_Exception_Handlers)
177 or else Restriction_Warnings (No_Exception_Propagation)
178 or else Restriction_Warnings (No_Exceptions))
179 then
180 null;
182 else
183 Check_Restriction (No_Exceptions, Handler);
184 Check_Restriction (No_Exception_Handlers, Handler);
185 end if;
187 -- Kill current remembered values, since we don't know where we were
188 -- when the exception was raised.
190 Kill_Current_Values;
192 -- Loop through handlers (which can include pragmas)
194 while Present (Handler) loop
196 -- If pragma just analyze it
198 if Nkind (Handler) = N_Pragma then
199 Analyze (Handler);
201 -- Otherwise we have a real exception handler
203 else
204 -- Deal with choice parameter. The exception handler is a
205 -- declarative part for the choice parameter, so it constitutes a
206 -- scope for visibility purposes. We create an entity to denote
207 -- the whole exception part, and use it as the scope of all the
208 -- choices, which may even have the same name without conflict.
209 -- This scope plays no other role in expansion or code generation.
211 Choice := Choice_Parameter (Handler);
213 if Present (Choice) then
214 Set_Local_Raise_Not_OK (Handler);
216 if Comes_From_Source (Choice) then
217 Check_Restriction (No_Exception_Propagation, Choice);
218 Set_Debug_Info_Needed (Choice);
219 end if;
221 if No (H_Scope) then
222 H_Scope :=
223 New_Internal_Entity
224 (E_Block, Current_Scope, Sloc (Choice), 'E');
225 Set_Is_Exception_Handler (H_Scope);
226 end if;
228 Push_Scope (H_Scope);
229 Set_Etype (H_Scope, Standard_Void_Type);
231 Enter_Name (Choice);
232 Set_Ekind (Choice, E_Variable);
234 if RTE_Available (RE_Exception_Occurrence) then
235 Set_Etype (Choice, RTE (RE_Exception_Occurrence));
236 end if;
238 Generate_Definition (Choice);
240 -- Indicate that choice has an initial value, since in effect
241 -- this field is assigned an initial value by the exception.
242 -- We also consider that it is modified in the source.
244 Set_Has_Initial_Value (Choice, True);
245 Set_Never_Set_In_Source (Choice, False);
246 end if;
248 Id := First (Exception_Choices (Handler));
249 while Present (Id) loop
250 if Nkind (Id) = N_Others_Choice then
251 if Present (Next (Id))
252 or else Present (Next (Handler))
253 or else Present (Prev (Id))
254 then
255 Error_Msg_N ("OTHERS must appear alone and last", Id);
256 end if;
258 else
259 Analyze (Id);
261 -- In most cases the choice has already been analyzed in
262 -- Analyze_Handled_Statement_Sequence, in order to expand
263 -- local handlers. This advance analysis does not take into
264 -- account the case in which a choice has the same name as
265 -- the choice parameter of the handler, which may hide an
266 -- outer exception. This pathological case appears in ACATS
267 -- B80001_3.adb, and requires an explicit check to verify
268 -- that the id is not hidden.
270 if not Is_Entity_Name (Id)
271 or else Ekind (Entity (Id)) /= E_Exception
272 or else
273 (Nkind (Id) = N_Identifier
274 and then Chars (Id) = Chars (Choice))
275 then
276 Error_Msg_N ("exception name expected", Id);
278 else
279 -- Emit a warning at the declaration level when a local
280 -- exception is never raised explicitly.
282 if Warn_On_Redundant_Constructs
283 and then not Is_Raised (Entity (Id))
284 and then Scope (Entity (Id)) = Current_Scope
285 then
286 Error_Msg_NE
287 ("exception & is never raised?r?", Entity (Id), Id);
288 end if;
290 if Present (Renamed_Entity (Entity (Id))) then
291 if Entity (Id) = Standard_Numeric_Error then
292 Check_Restriction (No_Obsolescent_Features, Id);
294 if Warn_On_Obsolescent_Feature then
295 Error_Msg_N
296 ("Numeric_Error is an " &
297 "obsolescent feature (RM J.6(1))?j?", Id);
298 Error_Msg_N
299 ("\use Constraint_Error instead?j?", Id);
300 end if;
301 end if;
302 end if;
304 Check_Duplication (Id);
306 -- Check for exception declared within generic formal
307 -- package (which is illegal, see RM 11.2(8))
309 declare
310 Ent : Entity_Id := Entity (Id);
311 Scop : Entity_Id;
313 begin
314 if Present (Renamed_Entity (Ent)) then
315 Ent := Renamed_Entity (Ent);
316 end if;
318 Scop := Scope (Ent);
319 while Scop /= Standard_Standard
320 and then Ekind (Scop) = E_Package
321 loop
322 if Nkind (Declaration_Node (Scop)) =
323 N_Package_Specification
324 and then
325 Nkind (Original_Node (Parent
326 (Declaration_Node (Scop)))) =
327 N_Formal_Package_Declaration
328 then
329 Error_Msg_NE
330 ("exception& is declared in generic formal "
331 & "package", Id, Ent);
332 Error_Msg_N
333 ("\and therefore cannot appear in handler "
334 & "(RM 11.2(8))", Id);
335 exit;
337 -- If the exception is declared in an inner
338 -- instance, nothing else to check.
340 elsif Is_Generic_Instance (Scop) then
341 exit;
342 end if;
344 Scop := Scope (Scop);
345 end loop;
346 end;
347 end if;
348 end if;
350 Next (Id);
351 end loop;
353 -- Check for redundant handler (has only raise statement) and is
354 -- either an others handler, or is a specific handler when no
355 -- others handler is present.
357 if Warn_On_Redundant_Constructs
358 and then List_Length (Statements (Handler)) = 1
359 and then Nkind (First (Statements (Handler))) = N_Raise_Statement
360 and then No (Name (First (Statements (Handler))))
361 and then (not Others_Present
362 or else Nkind (First (Exception_Choices (Handler))) =
363 N_Others_Choice)
364 then
365 Error_Msg_N
366 ("useless handler contains only a reraise statement?r?",
367 Handler);
368 end if;
370 -- Now analyze the statements of this handler
372 Analyze_Statements (Statements (Handler));
374 -- If a choice was present, we created a special scope for it, so
375 -- this is where we pop that special scope to get rid of it.
377 if Present (Choice) then
378 End_Scope;
379 end if;
380 end if;
382 Next (Handler);
383 end loop;
384 end Analyze_Exception_Handlers;
386 --------------------------------
387 -- Analyze_Handled_Statements --
388 --------------------------------
390 procedure Analyze_Handled_Statements (N : Node_Id) is
391 Handlers : constant List_Id := Exception_Handlers (N);
392 Handler : Node_Id;
393 Choice : Node_Id;
395 begin
396 if Present (Handlers) then
397 Kill_All_Checks;
398 end if;
400 -- We are now going to analyze the statements and then the exception
401 -- handlers. We certainly need to do things in this order to get the
402 -- proper sequential semantics for various warnings.
404 -- However, there is a glitch. When we process raise statements, an
405 -- optimization is to look for local handlers and specialize the code
406 -- in this case.
408 -- In order to detect if a handler is matching, we must have at least
409 -- analyzed the choices in the proper scope so that proper visibility
410 -- analysis is performed. Hence we analyze just the choices first,
411 -- before we analyze the statement sequence.
413 Handler := First_Non_Pragma (Handlers);
414 while Present (Handler) loop
415 Choice := First_Non_Pragma (Exception_Choices (Handler));
416 while Present (Choice) loop
417 Analyze (Choice);
418 Next_Non_Pragma (Choice);
419 end loop;
421 Next_Non_Pragma (Handler);
422 end loop;
424 -- Analyze statements in sequence
426 Analyze_Statements (Statements (N));
428 -- If the current scope is a subprogram, entry or task body or declare
429 -- block then this is the right place to check for hanging useless
430 -- assignments from the statement sequence. Skip this in the body of a
431 -- postcondition, since in that case there are no source references, and
432 -- we need to preserve deferred references from the enclosing scope.
434 if ((Is_Subprogram (Current_Scope) or else Is_Entry (Current_Scope))
435 and then Chars (Current_Scope) /= Name_uPostconditions)
436 or else Ekind_In (Current_Scope, E_Block, E_Task_Type)
437 then
438 Warn_On_Useless_Assignments (Current_Scope);
439 end if;
441 -- Deal with handlers or AT END proc
443 if Present (Handlers) then
444 Analyze_Exception_Handlers (Handlers);
445 elsif Present (At_End_Proc (N)) then
446 Analyze (At_End_Proc (N));
447 end if;
448 end Analyze_Handled_Statements;
450 ------------------------------
451 -- Analyze_Raise_Expression --
452 ------------------------------
454 procedure Analyze_Raise_Expression (N : Node_Id) is
455 Exception_Id : constant Node_Id := Name (N);
456 Exception_Name : Entity_Id := Empty;
458 begin
459 if Comes_From_Source (N) then
460 Check_Compiler_Unit ("raise expression", N);
461 end if;
463 Check_SPARK_05_Restriction ("raise expression is not allowed", N);
465 -- Check exception restrictions on the original source
467 if Comes_From_Source (N) then
468 Check_Restriction (No_Exceptions, N);
469 end if;
471 Analyze (Exception_Id);
473 if Is_Entity_Name (Exception_Id) then
474 Exception_Name := Entity (Exception_Id);
475 end if;
477 if No (Exception_Name)
478 or else Ekind (Exception_Name) /= E_Exception
479 then
480 Error_Msg_N
481 ("exception name expected in raise statement", Exception_Id);
482 else
483 Set_Is_Raised (Exception_Name);
484 end if;
486 -- Deal with RAISE WITH case
488 if Present (Expression (N)) then
489 Analyze_And_Resolve (Expression (N), Standard_String);
490 end if;
492 -- Check obsolescent use of Numeric_Error
494 if Exception_Name = Standard_Numeric_Error then
495 Check_Restriction (No_Obsolescent_Features, Exception_Id);
496 end if;
498 -- Kill last assignment indication
500 Kill_Current_Values (Last_Assignment_Only => True);
502 -- Raise_Type is compatible with all other types so that the raise
503 -- expression is legal in any expression context. It will be eventually
504 -- replaced by the concrete type imposed by the context.
506 Set_Etype (N, Raise_Type);
507 end Analyze_Raise_Expression;
509 -----------------------------
510 -- Analyze_Raise_Statement --
511 -----------------------------
513 procedure Analyze_Raise_Statement (N : Node_Id) is
514 Exception_Id : constant Node_Id := Name (N);
515 Exception_Name : Entity_Id := Empty;
516 P : Node_Id;
517 Par : Node_Id;
519 begin
520 if Comes_From_Source (N) then
521 Check_SPARK_05_Restriction ("raise statement is not allowed", N);
522 end if;
524 Check_Unreachable_Code (N);
526 -- Check exception restrictions on the original source
528 if Comes_From_Source (N) then
529 Check_Restriction (No_Exceptions, N);
530 end if;
532 -- Check for useless assignment to OUT or IN OUT scalar preceding the
533 -- raise. Right now only look at assignment statements, could do more???
535 if Is_List_Member (N) then
536 declare
537 P : Node_Id;
538 L : Node_Id;
540 begin
541 P := Prev (N);
543 -- Skip past null statements and pragmas
545 while Present (P)
546 and then Nkind_In (P, N_Null_Statement, N_Pragma)
547 loop
548 P := Prev (P);
549 end loop;
551 -- See if preceding statement is an assignment
553 if Present (P) and then Nkind (P) = N_Assignment_Statement then
554 L := Name (P);
556 -- Give warning for assignment to scalar formal
558 if Is_Scalar_Type (Etype (L))
559 and then Is_Entity_Name (L)
560 and then Is_Formal (Entity (L))
562 -- Do this only for parameters to the current subprogram.
563 -- This avoids some false positives for the nested case.
565 and then Nearest_Dynamic_Scope (Current_Scope) =
566 Scope (Entity (L))
568 then
569 -- Don't give warning if we are covered by an exception
570 -- handler, since this may result in false positives, since
571 -- the handler may handle the exception and return normally.
573 -- First find the enclosing handled sequence of statements
574 -- (note, we could also look for a handler in an outer block
575 -- but currently we don't, and in that case we'll emit the
576 -- warning).
578 Par := N;
579 loop
580 Par := Parent (Par);
581 exit when Nkind (Par) = N_Handled_Sequence_Of_Statements;
582 end loop;
584 -- See if there is a handler, give message if not
586 if No (Exception_Handlers (Par)) then
587 Error_Msg_N
588 ("assignment to pass-by-copy formal "
589 & "may have no effect??", P);
590 Error_Msg_N
591 ("\RAISE statement may result in abnormal return "
592 & "(RM 6.4.1(17))??", P);
593 end if;
594 end if;
595 end if;
596 end;
597 end if;
599 -- Reraise statement
601 if No (Exception_Id) then
602 P := Parent (N);
603 while not Nkind_In (P, N_Exception_Handler,
604 N_Subprogram_Body,
605 N_Package_Body,
606 N_Task_Body,
607 N_Entry_Body)
608 loop
609 P := Parent (P);
610 end loop;
612 if Nkind (P) /= N_Exception_Handler then
613 Error_Msg_N
614 ("reraise statement must appear directly in a handler", N);
616 -- If a handler has a reraise, it cannot be the target of a local
617 -- raise (goto optimization is impossible), and if the no exception
618 -- propagation restriction is set, this is a violation.
620 else
621 Set_Local_Raise_Not_OK (P);
623 -- Do not check the restriction if the reraise statement is part
624 -- of the code generated for an AT-END handler. That's because
625 -- if the restriction is actually active, we never generate this
626 -- raise anyway, so the apparent violation is bogus.
628 if not From_At_End (N) then
629 Check_Restriction (No_Exception_Propagation, N);
630 end if;
631 end if;
633 -- Normal case with exception id present
635 else
636 Analyze (Exception_Id);
638 if Is_Entity_Name (Exception_Id) then
639 Exception_Name := Entity (Exception_Id);
640 end if;
642 if No (Exception_Name)
643 or else Ekind (Exception_Name) /= E_Exception
644 then
645 Error_Msg_N
646 ("exception name expected in raise statement", Exception_Id);
647 else
648 Set_Is_Raised (Exception_Name);
649 end if;
651 -- Deal with RAISE WITH case
653 if Present (Expression (N)) then
654 Analyze_And_Resolve (Expression (N), Standard_String);
655 end if;
656 end if;
658 -- Check obsolescent use of Numeric_Error
660 if Exception_Name = Standard_Numeric_Error then
661 Check_Restriction (No_Obsolescent_Features, Exception_Id);
662 end if;
664 -- Kill last assignment indication
666 Kill_Current_Values (Last_Assignment_Only => True);
667 end Analyze_Raise_Statement;
669 -----------------------------
670 -- Analyze_Raise_xxx_Error --
671 -----------------------------
673 -- Normally, the Etype is already set (when this node is used within
674 -- an expression, since it is copied from the node which it rewrites).
675 -- If this node is used in a statement context, then we set the type
676 -- Standard_Void_Type. This is used both by Gigi and by the front end
677 -- to distinguish the statement use and the subexpression use.
679 -- The only other required processing is to take care of the Condition
680 -- field if one is present.
682 procedure Analyze_Raise_xxx_Error (N : Node_Id) is
684 function Same_Expression (C1, C2 : Node_Id) return Boolean;
685 -- It often occurs that two identical raise statements are generated in
686 -- succession (for example when dynamic elaboration checks take place on
687 -- separate expressions in a call). If the two statements are identical
688 -- according to the simple criterion that follows, the raise is
689 -- converted into a null statement.
691 ---------------------
692 -- Same_Expression --
693 ---------------------
695 function Same_Expression (C1, C2 : Node_Id) return Boolean is
696 begin
697 if No (C1) and then No (C2) then
698 return True;
700 elsif Is_Entity_Name (C1) and then Is_Entity_Name (C2) then
701 return Entity (C1) = Entity (C2);
703 elsif Nkind (C1) /= Nkind (C2) then
704 return False;
706 elsif Nkind (C1) in N_Unary_Op then
707 return Same_Expression (Right_Opnd (C1), Right_Opnd (C2));
709 elsif Nkind (C1) in N_Binary_Op then
710 return Same_Expression (Left_Opnd (C1), Left_Opnd (C2))
711 and then
712 Same_Expression (Right_Opnd (C1), Right_Opnd (C2));
714 elsif Nkind (C1) = N_Null then
715 return True;
717 else
718 return False;
719 end if;
720 end Same_Expression;
722 -- Start of processing for Analyze_Raise_xxx_Error
724 begin
725 if Nkind (Original_Node (N)) = N_Raise_Statement then
726 Check_SPARK_05_Restriction ("raise statement is not allowed", N);
727 end if;
729 if No (Etype (N)) then
730 Set_Etype (N, Standard_Void_Type);
731 end if;
733 if Present (Condition (N)) then
734 Analyze_And_Resolve (Condition (N), Standard_Boolean);
735 end if;
737 -- Deal with static cases in obvious manner
739 if Nkind (Condition (N)) = N_Identifier then
740 if Entity (Condition (N)) = Standard_True then
741 Set_Condition (N, Empty);
743 elsif Entity (Condition (N)) = Standard_False then
744 Rewrite (N, Make_Null_Statement (Sloc (N)));
745 end if;
746 end if;
748 -- Remove duplicate raise statements. Note that the previous one may
749 -- already have been removed as well.
751 if not Comes_From_Source (N)
752 and then Nkind (N) /= N_Null_Statement
753 and then Is_List_Member (N)
754 and then Present (Prev (N))
755 and then Nkind (N) = Nkind (Original_Node (Prev (N)))
756 and then Same_Expression
757 (Condition (N), Condition (Original_Node (Prev (N))))
758 then
759 Rewrite (N, Make_Null_Statement (Sloc (N)));
760 end if;
761 end Analyze_Raise_xxx_Error;
763 end Sem_Ch11;