Remove old autovect-branch by moving to "dead" directory.
[official-gcc.git] / old-autovect-branch / libgfortran / generated / reshape_c8.c
blobe2c7c399b431cb1b5e19c8a5b5f5b9b0b809c43e
1 /* Implementation of the RESHAPE
2 Copyright 2002 Free Software Foundation, Inc.
3 Contributed by Paul Brook <paul@nowt.org>
5 This file is part of the GNU Fortran 95 runtime library (libgfortran).
7 Libgfortran is free software; you can redistribute it and/or
8 modify it under the terms of the GNU General Public
9 License as published by the Free Software Foundation; either
10 version 2 of the License, or (at your option) any later version.
12 In addition to the permissions in the GNU General Public License, the
13 Free Software Foundation gives you unlimited permission to link the
14 compiled version of this file into combinations with other programs,
15 and to distribute those combinations without any restriction coming
16 from the use of this file. (The General Public License restrictions
17 do apply in other respects; for example, they cover modification of
18 the file, and distribution when not linked into a combine
19 executable.)
21 Libgfortran is distributed in the hope that it will be useful,
22 but WITHOUT ANY WARRANTY; without even the implied warranty of
23 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
24 GNU General Public License for more details.
26 You should have received a copy of the GNU General Public
27 License along with libgfortran; see the file COPYING. If not,
28 write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
29 Boston, MA 02110-1301, USA. */
31 #include "config.h"
32 #include <stdlib.h>
33 #include <assert.h>
34 #include "libgfortran.h"
36 #if defined (HAVE_GFC_COMPLEX_8)
38 typedef GFC_ARRAY_DESCRIPTOR(1, index_type) shape_type;
40 /* The shape parameter is ignored. We can currently deduce the shape from the
41 return array. */
43 extern void reshape_c8 (gfc_array_c8 * const restrict,
44 gfc_array_c8 * const restrict,
45 shape_type * const restrict,
46 gfc_array_c8 * const restrict,
47 shape_type * const restrict);
48 export_proto(reshape_c8);
50 void
51 reshape_c8 (gfc_array_c8 * const restrict ret,
52 gfc_array_c8 * const restrict source,
53 shape_type * const restrict shape,
54 gfc_array_c8 * const restrict pad,
55 shape_type * const restrict order)
57 /* r.* indicates the return array. */
58 index_type rcount[GFC_MAX_DIMENSIONS];
59 index_type rextent[GFC_MAX_DIMENSIONS];
60 index_type rstride[GFC_MAX_DIMENSIONS];
61 index_type rstride0;
62 index_type rdim;
63 index_type rsize;
64 index_type rs;
65 index_type rex;
66 GFC_COMPLEX_8 *rptr;
67 /* s.* indicates the source array. */
68 index_type scount[GFC_MAX_DIMENSIONS];
69 index_type sextent[GFC_MAX_DIMENSIONS];
70 index_type sstride[GFC_MAX_DIMENSIONS];
71 index_type sstride0;
72 index_type sdim;
73 index_type ssize;
74 const GFC_COMPLEX_8 *sptr;
75 /* p.* indicates the pad array. */
76 index_type pcount[GFC_MAX_DIMENSIONS];
77 index_type pextent[GFC_MAX_DIMENSIONS];
78 index_type pstride[GFC_MAX_DIMENSIONS];
79 index_type pdim;
80 index_type psize;
81 const GFC_COMPLEX_8 *pptr;
83 const GFC_COMPLEX_8 *src;
84 int n;
85 int dim;
87 if (source->dim[0].stride == 0)
88 source->dim[0].stride = 1;
89 if (shape->dim[0].stride == 0)
90 shape->dim[0].stride = 1;
91 if (pad && pad->dim[0].stride == 0)
92 pad->dim[0].stride = 1;
93 if (order && order->dim[0].stride == 0)
94 order->dim[0].stride = 1;
96 if (ret->data == NULL)
98 rdim = shape->dim[0].ubound - shape->dim[0].lbound + 1;
99 rs = 1;
100 for (n=0; n < rdim; n++)
102 ret->dim[n].lbound = 0;
103 rex = shape->data[n * shape->dim[0].stride];
104 ret->dim[n].ubound = rex - 1;
105 ret->dim[n].stride = rs;
106 rs *= rex;
108 ret->offset = 0;
109 ret->data = internal_malloc_size ( rs * sizeof (GFC_COMPLEX_8));
110 ret->dtype = (source->dtype & ~GFC_DTYPE_RANK_MASK) | rdim;
112 else
114 rdim = GFC_DESCRIPTOR_RANK (ret);
115 if (ret->dim[0].stride == 0)
116 ret->dim[0].stride = 1;
119 rsize = 1;
120 for (n = 0; n < rdim; n++)
122 if (order)
123 dim = order->data[n * order->dim[0].stride] - 1;
124 else
125 dim = n;
127 rcount[n] = 0;
128 rstride[n] = ret->dim[dim].stride;
129 rextent[n] = ret->dim[dim].ubound + 1 - ret->dim[dim].lbound;
131 if (rextent[n] != shape->data[dim * shape->dim[0].stride])
132 runtime_error ("shape and target do not conform");
134 if (rsize == rstride[n])
135 rsize *= rextent[n];
136 else
137 rsize = 0;
138 if (rextent[n] <= 0)
139 return;
142 sdim = GFC_DESCRIPTOR_RANK (source);
143 ssize = 1;
144 for (n = 0; n < sdim; n++)
146 scount[n] = 0;
147 sstride[n] = source->dim[n].stride;
148 sextent[n] = source->dim[n].ubound + 1 - source->dim[n].lbound;
149 if (sextent[n] <= 0)
150 abort ();
152 if (ssize == sstride[n])
153 ssize *= sextent[n];
154 else
155 ssize = 0;
158 if (pad)
160 pdim = GFC_DESCRIPTOR_RANK (pad);
161 psize = 1;
162 for (n = 0; n < pdim; n++)
164 pcount[n] = 0;
165 pstride[n] = pad->dim[n].stride;
166 pextent[n] = pad->dim[n].ubound + 1 - pad->dim[n].lbound;
167 if (pextent[n] <= 0)
168 abort ();
169 if (psize == pstride[n])
170 psize *= pextent[n];
171 else
172 psize = 0;
174 pptr = pad->data;
176 else
178 pdim = 0;
179 psize = 1;
180 pptr = NULL;
183 if (rsize != 0 && ssize != 0 && psize != 0)
185 rsize *= sizeof (GFC_COMPLEX_8);
186 ssize *= sizeof (GFC_COMPLEX_8);
187 psize *= sizeof (GFC_COMPLEX_8);
188 reshape_packed ((char *)ret->data, rsize, (char *)source->data,
189 ssize, pad ? (char *)pad->data : NULL, psize);
190 return;
192 rptr = ret->data;
193 src = sptr = source->data;
194 rstride0 = rstride[0];
195 sstride0 = sstride[0];
197 while (rptr)
199 /* Select between the source and pad arrays. */
200 *rptr = *src;
201 /* Advance to the next element. */
202 rptr += rstride0;
203 src += sstride0;
204 rcount[0]++;
205 scount[0]++;
206 /* Advance to the next destination element. */
207 n = 0;
208 while (rcount[n] == rextent[n])
210 /* When we get to the end of a dimension, reset it and increment
211 the next dimension. */
212 rcount[n] = 0;
213 /* We could precalculate these products, but this is a less
214 frequently used path so proabably not worth it. */
215 rptr -= rstride[n] * rextent[n];
216 n++;
217 if (n == rdim)
219 /* Break out of the loop. */
220 rptr = NULL;
221 break;
223 else
225 rcount[n]++;
226 rptr += rstride[n];
229 /* Advance to the next source element. */
230 n = 0;
231 while (scount[n] == sextent[n])
233 /* When we get to the end of a dimension, reset it and increment
234 the next dimension. */
235 scount[n] = 0;
236 /* We could precalculate these products, but this is a less
237 frequently used path so proabably not worth it. */
238 src -= sstride[n] * sextent[n];
239 n++;
240 if (n == sdim)
242 if (sptr && pad)
244 /* Switch to the pad array. */
245 sptr = NULL;
246 sdim = pdim;
247 for (dim = 0; dim < pdim; dim++)
249 scount[dim] = pcount[dim];
250 sextent[dim] = pextent[dim];
251 sstride[dim] = pstride[dim];
252 sstride0 = sstride[0];
255 /* We now start again from the beginning of the pad array. */
256 src = pptr;
257 break;
259 else
261 scount[n]++;
262 src += sstride[n];
268 #endif