Remove old autovect-branch by moving to "dead" directory.
[official-gcc.git] / old-autovect-branch / libgfortran / generated / minloc0_4_i4.c
blobeb12d04c4bac06ba727a0caadac189916e8802ff
1 /* Implementation of the MINLOC intrinsic
2 Copyright 2002 Free Software Foundation, Inc.
3 Contributed by Paul Brook <paul@nowt.org>
5 This file is part of the GNU Fortran 95 runtime library (libgfortran).
7 Libgfortran is free software; you can redistribute it and/or
8 modify it under the terms of the GNU General Public
9 License as published by the Free Software Foundation; either
10 version 2 of the License, or (at your option) any later version.
12 In addition to the permissions in the GNU General Public License, the
13 Free Software Foundation gives you unlimited permission to link the
14 compiled version of this file into combinations with other programs,
15 and to distribute those combinations without any restriction coming
16 from the use of this file. (The General Public License restrictions
17 do apply in other respects; for example, they cover modification of
18 the file, and distribution when not linked into a combine
19 executable.)
21 Libgfortran is distributed in the hope that it will be useful,
22 but WITHOUT ANY WARRANTY; without even the implied warranty of
23 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
24 GNU General Public License for more details.
26 You should have received a copy of the GNU General Public
27 License along with libgfortran; see the file COPYING. If not,
28 write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
29 Boston, MA 02110-1301, USA. */
31 #include "config.h"
32 #include <stdlib.h>
33 #include <assert.h>
34 #include <float.h>
35 #include <limits.h>
36 #include "libgfortran.h"
39 #if defined (HAVE_GFC_INTEGER_4) && defined (HAVE_GFC_INTEGER_4)
42 extern void minloc0_4_i4 (gfc_array_i4 * const restrict retarray,
43 gfc_array_i4 * const restrict array);
44 export_proto(minloc0_4_i4);
46 void
47 minloc0_4_i4 (gfc_array_i4 * const restrict retarray,
48 gfc_array_i4 * const restrict array)
50 index_type count[GFC_MAX_DIMENSIONS];
51 index_type extent[GFC_MAX_DIMENSIONS];
52 index_type sstride[GFC_MAX_DIMENSIONS];
53 index_type dstride;
54 const GFC_INTEGER_4 *base;
55 GFC_INTEGER_4 *dest;
56 index_type rank;
57 index_type n;
59 rank = GFC_DESCRIPTOR_RANK (array);
60 if (rank <= 0)
61 runtime_error ("Rank of array needs to be > 0");
63 if (retarray->data == NULL)
65 retarray->dim[0].lbound = 0;
66 retarray->dim[0].ubound = rank-1;
67 retarray->dim[0].stride = 1;
68 retarray->dtype = (retarray->dtype & ~GFC_DTYPE_RANK_MASK) | 1;
69 retarray->offset = 0;
70 retarray->data = internal_malloc_size (sizeof (GFC_INTEGER_4) * rank);
72 else
74 if (GFC_DESCRIPTOR_RANK (retarray) != 1)
75 runtime_error ("rank of return array does not equal 1");
77 if (retarray->dim[0].ubound + 1 - retarray->dim[0].lbound != rank)
78 runtime_error ("dimension of return array incorrect");
80 if (retarray->dim[0].stride == 0)
81 retarray->dim[0].stride = 1;
84 /* TODO: It should be a front end job to correctly set the strides. */
86 if (array->dim[0].stride == 0)
87 array->dim[0].stride = 1;
89 dstride = retarray->dim[0].stride;
90 dest = retarray->data;
91 for (n = 0; n < rank; n++)
93 sstride[n] = array->dim[n].stride;
94 extent[n] = array->dim[n].ubound + 1 - array->dim[n].lbound;
95 count[n] = 0;
96 if (extent[n] <= 0)
98 /* Set the return value. */
99 for (n = 0; n < rank; n++)
100 dest[n * dstride] = 0;
101 return;
105 base = array->data;
107 /* Initialize the return value. */
108 for (n = 0; n < rank; n++)
109 dest[n * dstride] = 1;
112 GFC_INTEGER_4 minval;
114 minval = GFC_INTEGER_4_HUGE;
116 while (base)
119 /* Implementation start. */
121 if (*base < minval)
123 minval = *base;
124 for (n = 0; n < rank; n++)
125 dest[n * dstride] = count[n] + 1;
127 /* Implementation end. */
129 /* Advance to the next element. */
130 count[0]++;
131 base += sstride[0];
132 n = 0;
133 while (count[n] == extent[n])
135 /* When we get to the end of a dimension, reset it and increment
136 the next dimension. */
137 count[n] = 0;
138 /* We could precalculate these products, but this is a less
139 frequently used path so proabably not worth it. */
140 base -= sstride[n] * extent[n];
141 n++;
142 if (n == rank)
144 /* Break out of the loop. */
145 base = NULL;
146 break;
148 else
150 count[n]++;
151 base += sstride[n];
159 extern void mminloc0_4_i4 (gfc_array_i4 * const restrict,
160 gfc_array_i4 * const restrict, gfc_array_l4 * const restrict);
161 export_proto(mminloc0_4_i4);
163 void
164 mminloc0_4_i4 (gfc_array_i4 * const restrict retarray,
165 gfc_array_i4 * const restrict array,
166 gfc_array_l4 * const restrict mask)
168 index_type count[GFC_MAX_DIMENSIONS];
169 index_type extent[GFC_MAX_DIMENSIONS];
170 index_type sstride[GFC_MAX_DIMENSIONS];
171 index_type mstride[GFC_MAX_DIMENSIONS];
172 index_type dstride;
173 GFC_INTEGER_4 *dest;
174 const GFC_INTEGER_4 *base;
175 GFC_LOGICAL_4 *mbase;
176 int rank;
177 index_type n;
179 rank = GFC_DESCRIPTOR_RANK (array);
180 if (rank <= 0)
181 runtime_error ("Rank of array needs to be > 0");
183 if (retarray->data == NULL)
185 retarray->dim[0].lbound = 0;
186 retarray->dim[0].ubound = rank-1;
187 retarray->dim[0].stride = 1;
188 retarray->dtype = (retarray->dtype & ~GFC_DTYPE_RANK_MASK) | 1;
189 retarray->offset = 0;
190 retarray->data = internal_malloc_size (sizeof (GFC_INTEGER_4) * rank);
192 else
194 if (GFC_DESCRIPTOR_RANK (retarray) != 1)
195 runtime_error ("rank of return array does not equal 1");
197 if (retarray->dim[0].ubound + 1 - retarray->dim[0].lbound != rank)
198 runtime_error ("dimension of return array incorrect");
200 if (retarray->dim[0].stride == 0)
201 retarray->dim[0].stride = 1;
204 /* TODO: It should be a front end job to correctly set the strides. */
206 if (array->dim[0].stride == 0)
207 array->dim[0].stride = 1;
209 if (mask->dim[0].stride == 0)
210 mask->dim[0].stride = 1;
212 dstride = retarray->dim[0].stride;
213 dest = retarray->data;
214 for (n = 0; n < rank; n++)
216 sstride[n] = array->dim[n].stride;
217 mstride[n] = mask->dim[n].stride;
218 extent[n] = array->dim[n].ubound + 1 - array->dim[n].lbound;
219 count[n] = 0;
220 if (extent[n] <= 0)
222 /* Set the return value. */
223 for (n = 0; n < rank; n++)
224 dest[n * dstride] = 0;
225 return;
229 base = array->data;
230 mbase = mask->data;
232 if (GFC_DESCRIPTOR_SIZE (mask) != 4)
234 /* This allows the same loop to be used for all logical types. */
235 assert (GFC_DESCRIPTOR_SIZE (mask) == 8);
236 for (n = 0; n < rank; n++)
237 mstride[n] <<= 1;
238 mbase = (GFOR_POINTER_L8_TO_L4 (mbase));
242 /* Initialize the return value. */
243 for (n = 0; n < rank; n++)
244 dest[n * dstride] = 1;
247 GFC_INTEGER_4 minval;
249 minval = GFC_INTEGER_4_HUGE;
251 while (base)
254 /* Implementation start. */
256 if (*mbase && *base < minval)
258 minval = *base;
259 for (n = 0; n < rank; n++)
260 dest[n * dstride] = count[n] + 1;
262 /* Implementation end. */
264 /* Advance to the next element. */
265 count[0]++;
266 base += sstride[0];
267 mbase += mstride[0];
268 n = 0;
269 while (count[n] == extent[n])
271 /* When we get to the end of a dimension, reset it and increment
272 the next dimension. */
273 count[n] = 0;
274 /* We could precalculate these products, but this is a less
275 frequently used path so proabably not worth it. */
276 base -= sstride[n] * extent[n];
277 mbase -= mstride[n] * extent[n];
278 n++;
279 if (n == rank)
281 /* Break out of the loop. */
282 base = NULL;
283 break;
285 else
287 count[n]++;
288 base += sstride[n];
289 mbase += mstride[n];
296 #endif