Remove old autovect-branch by moving to "dead" directory.
[official-gcc.git] / old-autovect-branch / libgfortran / generated / maxval_r10.c
blob9efa92aac8d56b4c447e8801e858fab1cba40e45
1 /* Implementation of the MAXVAL intrinsic
2 Copyright 2002 Free Software Foundation, Inc.
3 Contributed by Paul Brook <paul@nowt.org>
5 This file is part of the GNU Fortran 95 runtime library (libgfortran).
7 Libgfortran is free software; you can redistribute it and/or
8 modify it under the terms of the GNU General Public
9 License as published by the Free Software Foundation; either
10 version 2 of the License, or (at your option) any later version.
12 In addition to the permissions in the GNU General Public License, the
13 Free Software Foundation gives you unlimited permission to link the
14 compiled version of this file into combinations with other programs,
15 and to distribute those combinations without any restriction coming
16 from the use of this file. (The General Public License restrictions
17 do apply in other respects; for example, they cover modification of
18 the file, and distribution when not linked into a combine
19 executable.)
21 Libgfortran is distributed in the hope that it will be useful,
22 but WITHOUT ANY WARRANTY; without even the implied warranty of
23 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
24 GNU General Public License for more details.
26 You should have received a copy of the GNU General Public
27 License along with libgfortran; see the file COPYING. If not,
28 write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
29 Boston, MA 02110-1301, USA. */
31 #include "config.h"
32 #include <stdlib.h>
33 #include <assert.h>
34 #include <float.h>
35 #include "libgfortran.h"
38 #if defined (HAVE_GFC_REAL_10) && defined (HAVE_GFC_REAL_10)
41 extern void maxval_r10 (gfc_array_r10 * const restrict,
42 gfc_array_r10 * const restrict, const index_type * const restrict);
43 export_proto(maxval_r10);
45 void
46 maxval_r10 (gfc_array_r10 * const restrict retarray,
47 gfc_array_r10 * const restrict array,
48 const index_type * const restrict pdim)
50 index_type count[GFC_MAX_DIMENSIONS];
51 index_type extent[GFC_MAX_DIMENSIONS];
52 index_type sstride[GFC_MAX_DIMENSIONS];
53 index_type dstride[GFC_MAX_DIMENSIONS];
54 const GFC_REAL_10 * restrict base;
55 GFC_REAL_10 * restrict dest;
56 index_type rank;
57 index_type n;
58 index_type len;
59 index_type delta;
60 index_type dim;
62 /* Make dim zero based to avoid confusion. */
63 dim = (*pdim) - 1;
64 rank = GFC_DESCRIPTOR_RANK (array) - 1;
66 /* TODO: It should be a front end job to correctly set the strides. */
68 if (array->dim[0].stride == 0)
69 array->dim[0].stride = 1;
71 len = array->dim[dim].ubound + 1 - array->dim[dim].lbound;
72 delta = array->dim[dim].stride;
74 for (n = 0; n < dim; n++)
76 sstride[n] = array->dim[n].stride;
77 extent[n] = array->dim[n].ubound + 1 - array->dim[n].lbound;
79 for (n = dim; n < rank; n++)
81 sstride[n] = array->dim[n + 1].stride;
82 extent[n] =
83 array->dim[n + 1].ubound + 1 - array->dim[n + 1].lbound;
86 if (retarray->data == NULL)
88 for (n = 0; n < rank; n++)
90 retarray->dim[n].lbound = 0;
91 retarray->dim[n].ubound = extent[n]-1;
92 if (n == 0)
93 retarray->dim[n].stride = 1;
94 else
95 retarray->dim[n].stride = retarray->dim[n-1].stride * extent[n-1];
98 retarray->data
99 = internal_malloc_size (sizeof (GFC_REAL_10)
100 * retarray->dim[rank-1].stride
101 * extent[rank-1]);
102 retarray->offset = 0;
103 retarray->dtype = (array->dtype & ~GFC_DTYPE_RANK_MASK) | rank;
105 else
107 if (retarray->dim[0].stride == 0)
108 retarray->dim[0].stride = 1;
110 if (rank != GFC_DESCRIPTOR_RANK (retarray))
111 runtime_error ("rank of return array incorrect");
114 for (n = 0; n < rank; n++)
116 count[n] = 0;
117 dstride[n] = retarray->dim[n].stride;
118 if (extent[n] <= 0)
119 len = 0;
122 base = array->data;
123 dest = retarray->data;
125 while (base)
127 const GFC_REAL_10 * restrict src;
128 GFC_REAL_10 result;
129 src = base;
132 result = -GFC_REAL_10_HUGE;
133 if (len <= 0)
134 *dest = -GFC_REAL_10_HUGE;
135 else
137 for (n = 0; n < len; n++, src += delta)
140 if (*src > result)
141 result = *src;
143 *dest = result;
146 /* Advance to the next element. */
147 count[0]++;
148 base += sstride[0];
149 dest += dstride[0];
150 n = 0;
151 while (count[n] == extent[n])
153 /* When we get to the end of a dimension, reset it and increment
154 the next dimension. */
155 count[n] = 0;
156 /* We could precalculate these products, but this is a less
157 frequently used path so proabably not worth it. */
158 base -= sstride[n] * extent[n];
159 dest -= dstride[n] * extent[n];
160 n++;
161 if (n == rank)
163 /* Break out of the look. */
164 base = NULL;
165 break;
167 else
169 count[n]++;
170 base += sstride[n];
171 dest += dstride[n];
178 extern void mmaxval_r10 (gfc_array_r10 * const restrict,
179 gfc_array_r10 * const restrict, const index_type * const restrict,
180 gfc_array_l4 * const restrict);
181 export_proto(mmaxval_r10);
183 void
184 mmaxval_r10 (gfc_array_r10 * const restrict retarray,
185 gfc_array_r10 * const restrict array,
186 const index_type * const restrict pdim,
187 gfc_array_l4 * const restrict mask)
189 index_type count[GFC_MAX_DIMENSIONS];
190 index_type extent[GFC_MAX_DIMENSIONS];
191 index_type sstride[GFC_MAX_DIMENSIONS];
192 index_type dstride[GFC_MAX_DIMENSIONS];
193 index_type mstride[GFC_MAX_DIMENSIONS];
194 GFC_REAL_10 * restrict dest;
195 const GFC_REAL_10 * restrict base;
196 const GFC_LOGICAL_4 * restrict mbase;
197 int rank;
198 int dim;
199 index_type n;
200 index_type len;
201 index_type delta;
202 index_type mdelta;
204 dim = (*pdim) - 1;
205 rank = GFC_DESCRIPTOR_RANK (array) - 1;
207 /* TODO: It should be a front end job to correctly set the strides. */
209 if (array->dim[0].stride == 0)
210 array->dim[0].stride = 1;
212 if (mask->dim[0].stride == 0)
213 mask->dim[0].stride = 1;
215 len = array->dim[dim].ubound + 1 - array->dim[dim].lbound;
216 if (len <= 0)
217 return;
218 delta = array->dim[dim].stride;
219 mdelta = mask->dim[dim].stride;
221 for (n = 0; n < dim; n++)
223 sstride[n] = array->dim[n].stride;
224 mstride[n] = mask->dim[n].stride;
225 extent[n] = array->dim[n].ubound + 1 - array->dim[n].lbound;
227 for (n = dim; n < rank; n++)
229 sstride[n] = array->dim[n + 1].stride;
230 mstride[n] = mask->dim[n + 1].stride;
231 extent[n] =
232 array->dim[n + 1].ubound + 1 - array->dim[n + 1].lbound;
235 if (retarray->data == NULL)
237 for (n = 0; n < rank; n++)
239 retarray->dim[n].lbound = 0;
240 retarray->dim[n].ubound = extent[n]-1;
241 if (n == 0)
242 retarray->dim[n].stride = 1;
243 else
244 retarray->dim[n].stride = retarray->dim[n-1].stride * extent[n-1];
247 retarray->data
248 = internal_malloc_size (sizeof (GFC_REAL_10)
249 * retarray->dim[rank-1].stride
250 * extent[rank-1]);
251 retarray->offset = 0;
252 retarray->dtype = (array->dtype & ~GFC_DTYPE_RANK_MASK) | rank;
254 else
256 if (retarray->dim[0].stride == 0)
257 retarray->dim[0].stride = 1;
259 if (rank != GFC_DESCRIPTOR_RANK (retarray))
260 runtime_error ("rank of return array incorrect");
263 for (n = 0; n < rank; n++)
265 count[n] = 0;
266 dstride[n] = retarray->dim[n].stride;
267 if (extent[n] <= 0)
268 return;
271 dest = retarray->data;
272 base = array->data;
273 mbase = mask->data;
275 if (GFC_DESCRIPTOR_SIZE (mask) != 4)
277 /* This allows the same loop to be used for all logical types. */
278 assert (GFC_DESCRIPTOR_SIZE (mask) == 8);
279 for (n = 0; n < rank; n++)
280 mstride[n] <<= 1;
281 mdelta <<= 1;
282 mbase = (GFOR_POINTER_L8_TO_L4 (mbase));
285 while (base)
287 const GFC_REAL_10 * restrict src;
288 const GFC_LOGICAL_4 * restrict msrc;
289 GFC_REAL_10 result;
290 src = base;
291 msrc = mbase;
294 result = -GFC_REAL_10_HUGE;
295 if (len <= 0)
296 *dest = -GFC_REAL_10_HUGE;
297 else
299 for (n = 0; n < len; n++, src += delta, msrc += mdelta)
302 if (*msrc && *src > result)
303 result = *src;
305 *dest = result;
308 /* Advance to the next element. */
309 count[0]++;
310 base += sstride[0];
311 mbase += mstride[0];
312 dest += dstride[0];
313 n = 0;
314 while (count[n] == extent[n])
316 /* When we get to the end of a dimension, reset it and increment
317 the next dimension. */
318 count[n] = 0;
319 /* We could precalculate these products, but this is a less
320 frequently used path so proabably not worth it. */
321 base -= sstride[n] * extent[n];
322 mbase -= mstride[n] * extent[n];
323 dest -= dstride[n] * extent[n];
324 n++;
325 if (n == rank)
327 /* Break out of the look. */
328 base = NULL;
329 break;
331 else
333 count[n]++;
334 base += sstride[n];
335 mbase += mstride[n];
336 dest += dstride[n];
342 #endif