Remove old autovect-branch by moving to "dead" directory.
[official-gcc.git] / old-autovect-branch / gcc / tree-vrp.c
blob04353f5ad8b279c2889b4c93acf1f58e2fe6452b
1 /* Support routines for Value Range Propagation (VRP).
2 Copyright (C) 2005 Free Software Foundation, Inc.
3 Contributed by Diego Novillo <dnovillo@redhat.com>.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to
19 the Free Software Foundation, 51 Franklin Street, Fifth Floor,
20 Boston, MA 02110-1301, USA. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "ggc.h"
27 #include "flags.h"
28 #include "tree.h"
29 #include "basic-block.h"
30 #include "tree-flow.h"
31 #include "tree-pass.h"
32 #include "tree-dump.h"
33 #include "timevar.h"
34 #include "diagnostic.h"
35 #include "cfgloop.h"
36 #include "tree-scalar-evolution.h"
37 #include "tree-ssa-propagate.h"
38 #include "tree-chrec.h"
40 /* Set of SSA names found during the dominator traversal of a
41 sub-graph in find_assert_locations. */
42 static sbitmap found_in_subgraph;
44 /* Loop structure of the program. Used to analyze scalar evolutions
45 inside adjust_range_with_scev. */
46 static struct loops *cfg_loops;
48 /* Local functions. */
49 static int compare_values (tree val1, tree val2);
51 /* Location information for ASSERT_EXPRs. Each instance of this
52 structure describes an ASSERT_EXPR for an SSA name. Since a single
53 SSA name may have more than one assertion associated with it, these
54 locations are kept in a linked list attached to the corresponding
55 SSA name. */
56 struct assert_locus_d
58 /* Basic block where the assertion would be inserted. */
59 basic_block bb;
61 /* Some assertions need to be inserted on an edge (e.g., assertions
62 generated by COND_EXPRs). In those cases, BB will be NULL. */
63 edge e;
65 /* Pointer to the statement that generated this assertion. */
66 block_stmt_iterator si;
68 /* Predicate code for the ASSERT_EXPR. Must be COMPARISON_CLASS_P. */
69 enum tree_code comp_code;
71 /* Value being compared against. */
72 tree val;
74 /* Next node in the linked list. */
75 struct assert_locus_d *next;
78 typedef struct assert_locus_d *assert_locus_t;
80 /* If bit I is present, it means that SSA name N_i has a list of
81 assertions that should be inserted in the IL. */
82 static bitmap need_assert_for;
84 /* Array of locations lists where to insert assertions. ASSERTS_FOR[I]
85 holds a list of ASSERT_LOCUS_T nodes that describe where
86 ASSERT_EXPRs for SSA name N_I should be inserted. */
87 static assert_locus_t *asserts_for;
89 /* Set of blocks visited in find_assert_locations. Used to avoid
90 visiting the same block more than once. */
91 static sbitmap blocks_visited;
93 /* Value range array. After propagation, VR_VALUE[I] holds the range
94 of values that SSA name N_I may take. */
95 static value_range_t **vr_value;
98 /* Return true if ARG is marked with the nonnull attribute in the
99 current function signature. */
101 static bool
102 nonnull_arg_p (tree arg)
104 tree t, attrs, fntype;
105 unsigned HOST_WIDE_INT arg_num;
107 gcc_assert (TREE_CODE (arg) == PARM_DECL && POINTER_TYPE_P (TREE_TYPE (arg)));
109 fntype = TREE_TYPE (current_function_decl);
110 attrs = lookup_attribute ("nonnull", TYPE_ATTRIBUTES (fntype));
112 /* If "nonnull" wasn't specified, we know nothing about the argument. */
113 if (attrs == NULL_TREE)
114 return false;
116 /* If "nonnull" applies to all the arguments, then ARG is non-null. */
117 if (TREE_VALUE (attrs) == NULL_TREE)
118 return true;
120 /* Get the position number for ARG in the function signature. */
121 for (arg_num = 1, t = DECL_ARGUMENTS (current_function_decl);
123 t = TREE_CHAIN (t), arg_num++)
125 if (t == arg)
126 break;
129 gcc_assert (t == arg);
131 /* Now see if ARG_NUM is mentioned in the nonnull list. */
132 for (t = TREE_VALUE (attrs); t; t = TREE_CHAIN (t))
134 if (compare_tree_int (TREE_VALUE (t), arg_num) == 0)
135 return true;
138 return false;
142 /* Set value range VR to {T, MIN, MAX, EQUIV}. */
144 static void
145 set_value_range (value_range_t *vr, enum value_range_type t, tree min,
146 tree max, bitmap equiv)
148 #if defined ENABLE_CHECKING
149 /* Check the validity of the range. */
150 if (t == VR_RANGE || t == VR_ANTI_RANGE)
152 int cmp;
154 gcc_assert (min && max);
156 if (INTEGRAL_TYPE_P (TREE_TYPE (min)) && t == VR_ANTI_RANGE)
157 gcc_assert (min != TYPE_MIN_VALUE (TREE_TYPE (min))
158 || max != TYPE_MAX_VALUE (TREE_TYPE (max)));
160 cmp = compare_values (min, max);
161 gcc_assert (cmp == 0 || cmp == -1 || cmp == -2);
164 if (t == VR_UNDEFINED || t == VR_VARYING)
165 gcc_assert (min == NULL_TREE && max == NULL_TREE);
167 if (t == VR_UNDEFINED || t == VR_VARYING)
168 gcc_assert (equiv == NULL || bitmap_empty_p (equiv));
169 #endif
171 vr->type = t;
172 vr->min = min;
173 vr->max = max;
175 /* Since updating the equivalence set involves deep copying the
176 bitmaps, only do it if absolutely necessary. */
177 if (vr->equiv == NULL)
178 vr->equiv = BITMAP_ALLOC (NULL);
180 if (equiv != vr->equiv)
182 if (equiv && !bitmap_empty_p (equiv))
183 bitmap_copy (vr->equiv, equiv);
184 else
185 bitmap_clear (vr->equiv);
190 /* Copy value range FROM into value range TO. */
192 static inline void
193 copy_value_range (value_range_t *to, value_range_t *from)
195 set_value_range (to, from->type, from->min, from->max, from->equiv);
199 /* Set value range VR to a non-NULL range of type TYPE. */
201 static inline void
202 set_value_range_to_nonnull (value_range_t *vr, tree type)
204 tree zero = build_int_cst (type, 0);
205 set_value_range (vr, VR_ANTI_RANGE, zero, zero, vr->equiv);
209 /* Set value range VR to a NULL range of type TYPE. */
211 static inline void
212 set_value_range_to_null (value_range_t *vr, tree type)
214 tree zero = build_int_cst (type, 0);
215 set_value_range (vr, VR_RANGE, zero, zero, vr->equiv);
219 /* Set value range VR to VR_VARYING. */
221 static inline void
222 set_value_range_to_varying (value_range_t *vr)
224 vr->type = VR_VARYING;
225 vr->min = vr->max = NULL_TREE;
226 if (vr->equiv)
227 bitmap_clear (vr->equiv);
231 /* Set value range VR to VR_UNDEFINED. */
233 static inline void
234 set_value_range_to_undefined (value_range_t *vr)
236 vr->type = VR_UNDEFINED;
237 vr->min = vr->max = NULL_TREE;
238 if (vr->equiv)
239 bitmap_clear (vr->equiv);
243 /* Return value range information for VAR. Create an empty range
244 if none existed. */
246 static value_range_t *
247 get_value_range (tree var)
249 value_range_t *vr;
250 tree sym;
251 unsigned ver = SSA_NAME_VERSION (var);
253 vr = vr_value[ver];
254 if (vr)
255 return vr;
257 /* Create a default value range. */
258 vr_value[ver] = vr = xmalloc (sizeof (*vr));
259 memset (vr, 0, sizeof (*vr));
261 /* Allocate an equivalence set. */
262 vr->equiv = BITMAP_ALLOC (NULL);
264 /* If VAR is a default definition, the variable can take any value
265 in VAR's type. */
266 sym = SSA_NAME_VAR (var);
267 if (var == default_def (sym))
269 /* Try to use the "nonnull" attribute to create ~[0, 0]
270 anti-ranges for pointers. Note that this is only valid with
271 default definitions of PARM_DECLs. */
272 if (TREE_CODE (sym) == PARM_DECL
273 && POINTER_TYPE_P (TREE_TYPE (sym))
274 && nonnull_arg_p (sym))
275 set_value_range_to_nonnull (vr, TREE_TYPE (sym));
276 else
277 set_value_range_to_varying (vr);
280 return vr;
284 /* Update the value range and equivalence set for variable VAR to
285 NEW_VR. Return true if NEW_VR is different from VAR's previous
286 value.
288 NOTE: This function assumes that NEW_VR is a temporary value range
289 object created for the sole purpose of updating VAR's range. The
290 storage used by the equivalence set from NEW_VR will be freed by
291 this function. Do not call update_value_range when NEW_VR
292 is the range object associated with another SSA name. */
294 static inline bool
295 update_value_range (tree var, value_range_t *new_vr)
297 value_range_t *old_vr;
298 bool is_new;
300 /* Update the value range, if necessary. */
301 old_vr = get_value_range (var);
302 is_new = old_vr->type != new_vr->type
303 || old_vr->min != new_vr->min
304 || old_vr->max != new_vr->max
305 || (old_vr->equiv == NULL && new_vr->equiv)
306 || (old_vr->equiv && new_vr->equiv == NULL)
307 || (!bitmap_equal_p (old_vr->equiv, new_vr->equiv));
309 if (is_new)
310 set_value_range (old_vr, new_vr->type, new_vr->min, new_vr->max,
311 new_vr->equiv);
313 BITMAP_FREE (new_vr->equiv);
314 new_vr->equiv = NULL;
316 return is_new;
320 /* Add VAR and VAR's equivalence set to EQUIV. */
322 static void
323 add_equivalence (bitmap equiv, tree var)
325 unsigned ver = SSA_NAME_VERSION (var);
326 value_range_t *vr = vr_value[ver];
328 bitmap_set_bit (equiv, ver);
329 if (vr && vr->equiv)
330 bitmap_ior_into (equiv, vr->equiv);
334 /* Return true if VR is ~[0, 0]. */
336 static inline bool
337 range_is_nonnull (value_range_t *vr)
339 return vr->type == VR_ANTI_RANGE
340 && integer_zerop (vr->min)
341 && integer_zerop (vr->max);
345 /* Return true if VR is [0, 0]. */
347 static inline bool
348 range_is_null (value_range_t *vr)
350 return vr->type == VR_RANGE
351 && integer_zerop (vr->min)
352 && integer_zerop (vr->max);
356 /* Return true if value range VR involves at least one symbol. */
358 static inline bool
359 symbolic_range_p (value_range_t *vr)
361 return (!is_gimple_min_invariant (vr->min)
362 || !is_gimple_min_invariant (vr->max));
366 /* Like tree_expr_nonzero_p, but this function uses value ranges
367 obtained so far. */
369 static bool
370 vrp_expr_computes_nonzero (tree expr)
372 if (tree_expr_nonzero_p (expr))
373 return true;
375 /* If we have an expression of the form &X->a, then the expression
376 is nonnull if X is nonnull. */
377 if (TREE_CODE (expr) == ADDR_EXPR)
379 tree base = get_base_address (TREE_OPERAND (expr, 0));
381 if (base != NULL_TREE
382 && TREE_CODE (base) == INDIRECT_REF
383 && TREE_CODE (TREE_OPERAND (base, 0)) == SSA_NAME)
385 value_range_t *vr = get_value_range (TREE_OPERAND (base, 0));
386 if (range_is_nonnull (vr))
387 return true;
391 return false;
395 /* Compare two values VAL1 and VAL2. Return
397 -2 if VAL1 and VAL2 cannot be compared at compile-time,
398 -1 if VAL1 < VAL2,
399 0 if VAL1 == VAL2,
400 +1 if VAL1 > VAL2, and
401 +2 if VAL1 != VAL2
403 This is similar to tree_int_cst_compare but supports pointer values
404 and values that cannot be compared at compile time. */
406 static int
407 compare_values (tree val1, tree val2)
409 if (val1 == val2)
410 return 0;
412 /* Below we rely on the fact that VAL1 and VAL2 are both pointers or
413 both integers. */
414 gcc_assert (POINTER_TYPE_P (TREE_TYPE (val1))
415 == POINTER_TYPE_P (TREE_TYPE (val2)));
417 /* Do some limited symbolic comparisons. */
418 if (!POINTER_TYPE_P (TREE_TYPE (val1)))
420 /* We can determine some comparisons against +INF and -INF even
421 if the other value is an expression. */
422 if (val1 == TYPE_MAX_VALUE (TREE_TYPE (val1))
423 && TREE_CODE (val2) == MINUS_EXPR)
425 /* +INF > NAME - CST. */
426 return 1;
428 else if (val1 == TYPE_MIN_VALUE (TREE_TYPE (val1))
429 && TREE_CODE (val2) == PLUS_EXPR)
431 /* -INF < NAME + CST. */
432 return -1;
434 else if (TREE_CODE (val1) == MINUS_EXPR
435 && val2 == TYPE_MAX_VALUE (TREE_TYPE (val2)))
437 /* NAME - CST < +INF. */
438 return -1;
440 else if (TREE_CODE (val1) == PLUS_EXPR
441 && val2 == TYPE_MIN_VALUE (TREE_TYPE (val2)))
443 /* NAME + CST > -INF. */
444 return 1;
448 if ((TREE_CODE (val1) == SSA_NAME
449 || TREE_CODE (val1) == PLUS_EXPR
450 || TREE_CODE (val1) == MINUS_EXPR)
451 && (TREE_CODE (val2) == SSA_NAME
452 || TREE_CODE (val2) == PLUS_EXPR
453 || TREE_CODE (val2) == MINUS_EXPR))
455 tree n1, c1, n2, c2;
457 /* If VAL1 and VAL2 are of the form 'NAME [+-] CST' or 'NAME',
458 return -1 or +1 accordingly. If VAL1 and VAL2 don't use the
459 same name, return -2. */
460 if (TREE_CODE (val1) == SSA_NAME)
462 n1 = val1;
463 c1 = NULL_TREE;
465 else
467 n1 = TREE_OPERAND (val1, 0);
468 c1 = TREE_OPERAND (val1, 1);
471 if (TREE_CODE (val2) == SSA_NAME)
473 n2 = val2;
474 c2 = NULL_TREE;
476 else
478 n2 = TREE_OPERAND (val2, 0);
479 c2 = TREE_OPERAND (val2, 1);
482 /* Both values must use the same name. */
483 if (n1 != n2)
484 return -2;
486 if (TREE_CODE (val1) == SSA_NAME)
488 if (TREE_CODE (val2) == SSA_NAME)
489 /* NAME == NAME */
490 return 0;
491 else if (TREE_CODE (val2) == PLUS_EXPR)
492 /* NAME < NAME + CST */
493 return -1;
494 else if (TREE_CODE (val2) == MINUS_EXPR)
495 /* NAME > NAME - CST */
496 return 1;
498 else if (TREE_CODE (val1) == PLUS_EXPR)
500 if (TREE_CODE (val2) == SSA_NAME)
501 /* NAME + CST > NAME */
502 return 1;
503 else if (TREE_CODE (val2) == PLUS_EXPR)
504 /* NAME + CST1 > NAME + CST2, if CST1 > CST2 */
505 return compare_values (c1, c2);
506 else if (TREE_CODE (val2) == MINUS_EXPR)
507 /* NAME + CST1 > NAME - CST2 */
508 return 1;
510 else if (TREE_CODE (val1) == MINUS_EXPR)
512 if (TREE_CODE (val2) == SSA_NAME)
513 /* NAME - CST < NAME */
514 return -1;
515 else if (TREE_CODE (val2) == PLUS_EXPR)
516 /* NAME - CST1 < NAME + CST2 */
517 return -1;
518 else if (TREE_CODE (val2) == MINUS_EXPR)
519 /* NAME - CST1 > NAME - CST2, if CST1 < CST2. Notice that
520 C1 and C2 are swapped in the call to compare_values. */
521 return compare_values (c2, c1);
524 gcc_unreachable ();
527 /* We cannot compare non-constants. */
528 if (!is_gimple_min_invariant (val1) || !is_gimple_min_invariant (val2))
529 return -2;
531 if (!POINTER_TYPE_P (TREE_TYPE (val1)))
533 /* We cannot compare overflowed values. */
534 if (TREE_OVERFLOW (val1) || TREE_OVERFLOW (val2))
535 return -2;
537 return tree_int_cst_compare (val1, val2);
539 else
541 tree t;
543 /* First see if VAL1 and VAL2 are not the same. */
544 if (val1 == val2 || operand_equal_p (val1, val2, 0))
545 return 0;
547 /* If VAL1 is a lower address than VAL2, return -1. */
548 t = fold_binary (LT_EXPR, boolean_type_node, val1, val2);
549 if (t == boolean_true_node)
550 return -1;
552 /* If VAL1 is a higher address than VAL2, return +1. */
553 t = fold_binary (GT_EXPR, boolean_type_node, val1, val2);
554 if (t == boolean_true_node)
555 return 1;
557 /* If VAL1 is different than VAL2, return +2. */
558 t = fold_binary (NE_EXPR, boolean_type_node, val1, val2);
559 if (t == boolean_true_node)
560 return 2;
562 return -2;
567 /* Return 1 if VAL is inside value range VR (VR->MIN <= VAL <= VR->MAX),
568 0 if VAL is not inside VR,
569 -2 if we cannot tell either way.
571 FIXME, the current semantics of this functions are a bit quirky
572 when taken in the context of VRP. In here we do not care
573 about VR's type. If VR is the anti-range ~[3, 5] the call
574 value_inside_range (4, VR) will return 1.
576 This is counter-intuitive in a strict sense, but the callers
577 currently expect this. They are calling the function
578 merely to determine whether VR->MIN <= VAL <= VR->MAX. The
579 callers are applying the VR_RANGE/VR_ANTI_RANGE semantics
580 themselves.
582 This also applies to value_ranges_intersect_p and
583 range_includes_zero_p. The semantics of VR_RANGE and
584 VR_ANTI_RANGE should be encoded here, but that also means
585 adapting the users of these functions to the new semantics. */
587 static inline int
588 value_inside_range (tree val, value_range_t *vr)
590 int cmp1, cmp2;
592 cmp1 = compare_values (val, vr->min);
593 if (cmp1 == -2 || cmp1 == 2)
594 return -2;
596 cmp2 = compare_values (val, vr->max);
597 if (cmp2 == -2 || cmp2 == 2)
598 return -2;
600 return (cmp1 == 0 || cmp1 == 1) && (cmp2 == -1 || cmp2 == 0);
604 /* Return true if value ranges VR0 and VR1 have a non-empty
605 intersection. */
607 static inline bool
608 value_ranges_intersect_p (value_range_t *vr0, value_range_t *vr1)
610 return (value_inside_range (vr1->min, vr0) == 1
611 || value_inside_range (vr1->max, vr0) == 1
612 || value_inside_range (vr0->min, vr1) == 1
613 || value_inside_range (vr0->max, vr1) == 1);
617 /* Return true if VR includes the value zero, false otherwise. FIXME,
618 currently this will return false for an anti-range like ~[-4, 3].
619 This will be wrong when the semantics of value_inside_range are
620 modified (currently the users of this function expect these
621 semantics). */
623 static inline bool
624 range_includes_zero_p (value_range_t *vr)
626 tree zero;
628 gcc_assert (vr->type != VR_UNDEFINED
629 && vr->type != VR_VARYING
630 && !symbolic_range_p (vr));
632 zero = build_int_cst (TREE_TYPE (vr->min), 0);
633 return (value_inside_range (zero, vr) == 1);
637 /* When extracting ranges from X_i = ASSERT_EXPR <Y_j, pred>, we will
638 initially consider X_i and Y_j equivalent, so the equivalence set
639 of Y_j is added to the equivalence set of X_i. However, it is
640 possible to have a chain of ASSERT_EXPRs whose predicates are
641 actually incompatible. This is usually the result of nesting of
642 contradictory if-then-else statements. For instance, in PR 24670:
644 count_4 has range [-INF, 63]
646 if (count_4 != 0)
648 count_19 = ASSERT_EXPR <count_4, count_4 != 0>
649 if (count_19 > 63)
651 count_18 = ASSERT_EXPR <count_19, count_19 > 63>
652 if (count_18 <= 63)
657 Notice that 'if (count_19 > 63)' is trivially false and will be
658 folded out at the end. However, during propagation, the flowgraph
659 is not cleaned up and so, VRP will evaluate predicates more
660 predicates than necessary, so it must support these
661 inconsistencies. The problem here is that because of the chaining
662 of ASSERT_EXPRs, the equivalency set for count_18 includes count_4.
663 Since count_4 has an incompatible range, we ICE when evaluating the
664 ranges in the equivalency set. So, we need to remove count_4 from
665 it. */
667 static void
668 fix_equivalence_set (value_range_t *vr_p)
670 bitmap_iterator bi;
671 unsigned i;
672 bitmap e = vr_p->equiv;
673 bitmap to_remove = BITMAP_ALLOC (NULL);
675 /* Only detect inconsistencies on numeric ranges. */
676 if (vr_p->type == VR_VARYING
677 || vr_p->type == VR_UNDEFINED
678 || symbolic_range_p (vr_p))
679 return;
681 EXECUTE_IF_SET_IN_BITMAP (e, 0, i, bi)
683 value_range_t *equiv_vr = vr_value[i];
685 if (equiv_vr->type == VR_VARYING
686 || equiv_vr->type == VR_UNDEFINED
687 || symbolic_range_p (equiv_vr))
688 continue;
690 if (equiv_vr->type == VR_RANGE
691 && vr_p->type == VR_RANGE
692 && !value_ranges_intersect_p (vr_p, equiv_vr))
693 bitmap_set_bit (to_remove, i);
694 else if ((equiv_vr->type == VR_RANGE && vr_p->type == VR_ANTI_RANGE)
695 || (equiv_vr->type == VR_ANTI_RANGE && vr_p->type == VR_RANGE))
697 /* A range and an anti-range have an empty intersection if
698 their end points are the same. FIXME,
699 value_ranges_intersect_p should handle this
700 automatically. */
701 if (compare_values (equiv_vr->min, vr_p->min) == 0
702 && compare_values (equiv_vr->max, vr_p->max) == 0)
703 bitmap_set_bit (to_remove, i);
707 bitmap_and_compl_into (vr_p->equiv, to_remove);
708 BITMAP_FREE (to_remove);
712 /* Extract value range information from an ASSERT_EXPR EXPR and store
713 it in *VR_P. */
715 static void
716 extract_range_from_assert (value_range_t *vr_p, tree expr)
718 tree var, cond, limit, min, max, type;
719 value_range_t *var_vr, *limit_vr;
720 enum tree_code cond_code;
722 var = ASSERT_EXPR_VAR (expr);
723 cond = ASSERT_EXPR_COND (expr);
725 gcc_assert (COMPARISON_CLASS_P (cond));
727 /* Find VAR in the ASSERT_EXPR conditional. */
728 if (var == TREE_OPERAND (cond, 0))
730 /* If the predicate is of the form VAR COMP LIMIT, then we just
731 take LIMIT from the RHS and use the same comparison code. */
732 limit = TREE_OPERAND (cond, 1);
733 cond_code = TREE_CODE (cond);
735 else
737 /* If the predicate is of the form LIMIT COMP VAR, then we need
738 to flip around the comparison code to create the proper range
739 for VAR. */
740 limit = TREE_OPERAND (cond, 0);
741 cond_code = swap_tree_comparison (TREE_CODE (cond));
744 type = TREE_TYPE (limit);
745 gcc_assert (limit != var);
747 /* For pointer arithmetic, we only keep track of pointer equality
748 and inequality. */
749 if (POINTER_TYPE_P (type) && cond_code != NE_EXPR && cond_code != EQ_EXPR)
751 set_value_range_to_varying (vr_p);
752 return;
755 /* If LIMIT is another SSA name and LIMIT has a range of its own,
756 try to use LIMIT's range to avoid creating symbolic ranges
757 unnecessarily. */
758 limit_vr = (TREE_CODE (limit) == SSA_NAME) ? get_value_range (limit) : NULL;
760 /* LIMIT's range is only interesting if it has any useful information. */
761 if (limit_vr
762 && (limit_vr->type == VR_UNDEFINED
763 || limit_vr->type == VR_VARYING
764 || symbolic_range_p (limit_vr)))
765 limit_vr = NULL;
767 /* Special handling for integral types with super-types. Some FEs
768 construct integral types derived from other types and restrict
769 the range of values these new types may take.
771 It may happen that LIMIT is actually smaller than TYPE's minimum
772 value. For instance, the Ada FE is generating code like this
773 during bootstrap:
775 D.1480_32 = nam_30 - 300000361;
776 if (D.1480_32 <= 1) goto <L112>; else goto <L52>;
777 <L112>:;
778 D.1480_94 = ASSERT_EXPR <D.1480_32, D.1480_32 <= 1>;
780 All the names are of type types__name_id___XDLU_300000000__399999999
781 which has min == 300000000 and max == 399999999. This means that
782 the ASSERT_EXPR would try to create the range [3000000, 1] which
783 is invalid.
785 The fact that the type specifies MIN and MAX values does not
786 automatically mean that every variable of that type will always
787 be within that range, so the predicate may well be true at run
788 time. If we had symbolic -INF and +INF values, we could
789 represent this range, but we currently represent -INF and +INF
790 using the type's min and max values.
792 So, the only sensible thing we can do for now is set the
793 resulting range to VR_VARYING. TODO, would having symbolic -INF
794 and +INF values be worth the trouble? */
795 if (TREE_CODE (limit) != SSA_NAME
796 && INTEGRAL_TYPE_P (type)
797 && TREE_TYPE (type))
799 if (cond_code == LE_EXPR || cond_code == LT_EXPR)
801 tree type_min = TYPE_MIN_VALUE (type);
802 int cmp = compare_values (limit, type_min);
804 /* For < or <= comparisons, if LIMIT is smaller than
805 TYPE_MIN, set the range to VR_VARYING. */
806 if (cmp == -1 || cmp == 0)
808 set_value_range_to_varying (vr_p);
809 return;
812 else if (cond_code == GE_EXPR || cond_code == GT_EXPR)
814 tree type_max = TYPE_MIN_VALUE (type);
815 int cmp = compare_values (limit, type_max);
817 /* For > or >= comparisons, if LIMIT is bigger than
818 TYPE_MAX, set the range to VR_VARYING. */
819 if (cmp == 1 || cmp == 0)
821 set_value_range_to_varying (vr_p);
822 return;
827 /* Initially, the new range has the same set of equivalences of
828 VAR's range. This will be revised before returning the final
829 value. Since assertions may be chained via mutually exclusive
830 predicates, we will need to trim the set of equivalences before
831 we are done. */
832 gcc_assert (vr_p->equiv == NULL);
833 vr_p->equiv = BITMAP_ALLOC (NULL);
834 add_equivalence (vr_p->equiv, var);
836 /* Extract a new range based on the asserted comparison for VAR and
837 LIMIT's value range. Notice that if LIMIT has an anti-range, we
838 will only use it for equality comparisons (EQ_EXPR). For any
839 other kind of assertion, we cannot derive a range from LIMIT's
840 anti-range that can be used to describe the new range. For
841 instance, ASSERT_EXPR <x_2, x_2 <= b_4>. If b_4 is ~[2, 10],
842 then b_4 takes on the ranges [-INF, 1] and [11, +INF]. There is
843 no single range for x_2 that could describe LE_EXPR, so we might
844 as well build the range [b_4, +INF] for it. */
845 if (cond_code == EQ_EXPR)
847 enum value_range_type range_type;
849 if (limit_vr)
851 range_type = limit_vr->type;
852 min = limit_vr->min;
853 max = limit_vr->max;
855 else
857 range_type = VR_RANGE;
858 min = limit;
859 max = limit;
862 set_value_range (vr_p, range_type, min, max, vr_p->equiv);
864 /* When asserting the equality VAR == LIMIT and LIMIT is another
865 SSA name, the new range will also inherit the equivalence set
866 from LIMIT. */
867 if (TREE_CODE (limit) == SSA_NAME)
868 add_equivalence (vr_p->equiv, limit);
870 else if (cond_code == NE_EXPR)
872 /* As described above, when LIMIT's range is an anti-range and
873 this assertion is an inequality (NE_EXPR), then we cannot
874 derive anything from the anti-range. For instance, if
875 LIMIT's range was ~[0, 0], the assertion 'VAR != LIMIT' does
876 not imply that VAR's range is [0, 0]. So, in the case of
877 anti-ranges, we just assert the inequality using LIMIT and
878 not its anti-range.
880 If LIMIT_VR is a range, we can only use it to build a new
881 anti-range if LIMIT_VR is a single-valued range. For
882 instance, if LIMIT_VR is [0, 1], the predicate
883 VAR != [0, 1] does not mean that VAR's range is ~[0, 1].
884 Rather, it means that for value 0 VAR should be ~[0, 0]
885 and for value 1, VAR should be ~[1, 1]. We cannot
886 represent these ranges.
888 The only situation in which we can build a valid
889 anti-range is when LIMIT_VR is a single-valued range
890 (i.e., LIMIT_VR->MIN == LIMIT_VR->MAX). In that case,
891 build the anti-range ~[LIMIT_VR->MIN, LIMIT_VR->MAX]. */
892 if (limit_vr
893 && limit_vr->type == VR_RANGE
894 && compare_values (limit_vr->min, limit_vr->max) == 0)
896 min = limit_vr->min;
897 max = limit_vr->max;
899 else
901 /* In any other case, we cannot use LIMIT's range to build a
902 valid anti-range. */
903 min = max = limit;
906 /* If MIN and MAX cover the whole range for their type, then
907 just use the original LIMIT. */
908 if (INTEGRAL_TYPE_P (type)
909 && min == TYPE_MIN_VALUE (type)
910 && max == TYPE_MAX_VALUE (type))
911 min = max = limit;
913 set_value_range (vr_p, VR_ANTI_RANGE, min, max, vr_p->equiv);
915 else if (cond_code == LE_EXPR || cond_code == LT_EXPR)
917 min = TYPE_MIN_VALUE (type);
919 if (limit_vr == NULL || limit_vr->type == VR_ANTI_RANGE)
920 max = limit;
921 else
923 /* If LIMIT_VR is of the form [N1, N2], we need to build the
924 range [MIN, N2] for LE_EXPR and [MIN, N2 - 1] for
925 LT_EXPR. */
926 max = limit_vr->max;
929 /* For LT_EXPR, we create the range [MIN, MAX - 1]. */
930 if (cond_code == LT_EXPR)
932 tree one = build_int_cst (type, 1);
933 max = fold_build2 (MINUS_EXPR, type, max, one);
936 set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
938 else if (cond_code == GE_EXPR || cond_code == GT_EXPR)
940 max = TYPE_MAX_VALUE (type);
942 if (limit_vr == NULL || limit_vr->type == VR_ANTI_RANGE)
943 min = limit;
944 else
946 /* If LIMIT_VR is of the form [N1, N2], we need to build the
947 range [N1, MAX] for GE_EXPR and [N1 + 1, MAX] for
948 GT_EXPR. */
949 min = limit_vr->min;
952 /* For GT_EXPR, we create the range [MIN + 1, MAX]. */
953 if (cond_code == GT_EXPR)
955 tree one = build_int_cst (type, 1);
956 min = fold_build2 (PLUS_EXPR, type, min, one);
959 set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
961 else
962 gcc_unreachable ();
964 /* If VAR already had a known range, it may happen that the new
965 range we have computed and VAR's range are not compatible. For
966 instance,
968 if (p_5 == NULL)
969 p_6 = ASSERT_EXPR <p_5, p_5 == NULL>;
970 x_7 = p_6->fld;
971 p_8 = ASSERT_EXPR <p_6, p_6 != NULL>;
973 While the above comes from a faulty program, it will cause an ICE
974 later because p_8 and p_6 will have incompatible ranges and at
975 the same time will be considered equivalent. A similar situation
976 would arise from
978 if (i_5 > 10)
979 i_6 = ASSERT_EXPR <i_5, i_5 > 10>;
980 if (i_5 < 5)
981 i_7 = ASSERT_EXPR <i_6, i_6 < 5>;
983 Again i_6 and i_7 will have incompatible ranges. It would be
984 pointless to try and do anything with i_7's range because
985 anything dominated by 'if (i_5 < 5)' will be optimized away.
986 Note, due to the wa in which simulation proceeds, the statement
987 i_7 = ASSERT_EXPR <...> we would never be visited because the
988 conditional 'if (i_5 < 5)' always evaluates to false. However,
989 this extra check does not hurt and may protect against future
990 changes to VRP that may get into a situation similar to the
991 NULL pointer dereference example.
993 Note that these compatibility tests are only needed when dealing
994 with ranges or a mix of range and anti-range. If VAR_VR and VR_P
995 are both anti-ranges, they will always be compatible, because two
996 anti-ranges will always have a non-empty intersection. */
998 var_vr = get_value_range (var);
1000 /* We may need to make adjustments when VR_P and VAR_VR are numeric
1001 ranges or anti-ranges. */
1002 if (vr_p->type == VR_VARYING
1003 || vr_p->type == VR_UNDEFINED
1004 || var_vr->type == VR_VARYING
1005 || var_vr->type == VR_UNDEFINED
1006 || symbolic_range_p (vr_p)
1007 || symbolic_range_p (var_vr))
1008 goto done;
1010 if (var_vr->type == VR_RANGE && vr_p->type == VR_RANGE)
1012 /* If the two ranges have a non-empty intersection, we can
1013 refine the resulting range. Since the assert expression
1014 creates an equivalency and at the same time it asserts a
1015 predicate, we can take the intersection of the two ranges to
1016 get better precision. */
1017 if (value_ranges_intersect_p (var_vr, vr_p))
1019 /* Use the larger of the two minimums. */
1020 if (compare_values (vr_p->min, var_vr->min) == -1)
1021 min = var_vr->min;
1022 else
1023 min = vr_p->min;
1025 /* Use the smaller of the two maximums. */
1026 if (compare_values (vr_p->max, var_vr->max) == 1)
1027 max = var_vr->max;
1028 else
1029 max = vr_p->max;
1031 set_value_range (vr_p, vr_p->type, min, max, vr_p->equiv);
1033 else
1035 /* The two ranges do not intersect, set the new range to
1036 VARYING, because we will not be able to do anything
1037 meaningful with it. */
1038 set_value_range_to_varying (vr_p);
1041 else if ((var_vr->type == VR_RANGE && vr_p->type == VR_ANTI_RANGE)
1042 || (var_vr->type == VR_ANTI_RANGE && vr_p->type == VR_RANGE))
1044 /* A range and an anti-range will cancel each other only if
1045 their ends are the same. For instance, in the example above,
1046 p_8's range ~[0, 0] and p_6's range [0, 0] are incompatible,
1047 so VR_P should be set to VR_VARYING. */
1048 if (compare_values (var_vr->min, vr_p->min) == 0
1049 && compare_values (var_vr->max, vr_p->max) == 0)
1050 set_value_range_to_varying (vr_p);
1053 /* Remove names from the equivalence set that have ranges
1054 incompatible with VR_P. */
1055 done:
1056 fix_equivalence_set (vr_p);
1060 /* Extract range information from SSA name VAR and store it in VR. If
1061 VAR has an interesting range, use it. Otherwise, create the
1062 range [VAR, VAR] and return it. This is useful in situations where
1063 we may have conditionals testing values of VARYING names. For
1064 instance,
1066 x_3 = y_5;
1067 if (x_3 > y_5)
1070 Even if y_5 is deemed VARYING, we can determine that x_3 > y_5 is
1071 always false. */
1073 static void
1074 extract_range_from_ssa_name (value_range_t *vr, tree var)
1076 value_range_t *var_vr = get_value_range (var);
1078 if (var_vr->type != VR_UNDEFINED && var_vr->type != VR_VARYING)
1079 copy_value_range (vr, var_vr);
1080 else
1081 set_value_range (vr, VR_RANGE, var, var, NULL);
1083 add_equivalence (vr->equiv, var);
1087 /* Wrapper around int_const_binop. If the operation overflows and we
1088 are not using wrapping arithmetic, then adjust the result to be
1089 -INF or +INF depending on CODE, VAL1 and VAL2. */
1091 static inline tree
1092 vrp_int_const_binop (enum tree_code code, tree val1, tree val2)
1094 tree res;
1096 if (flag_wrapv)
1097 return int_const_binop (code, val1, val2, 0);
1099 /* If we are not using wrapping arithmetic, operate symbolically
1100 on -INF and +INF. */
1101 res = int_const_binop (code, val1, val2, 0);
1103 if (TYPE_UNSIGNED (TREE_TYPE (val1)))
1105 int checkz = compare_values (res, val1);
1107 /* Ensure that res = val1 + val2 >= val1
1108 or that res = val1 - val2 <= val1. */
1109 if ((code == PLUS_EXPR && !(checkz == 1 || checkz == 0))
1110 || (code == MINUS_EXPR && !(checkz == 0 || checkz == -1)))
1112 res = copy_node (res);
1113 TREE_OVERFLOW (res) = 1;
1116 /* If the operation overflowed but neither VAL1 nor VAL2 are
1117 overflown, return -INF or +INF depending on the operation
1118 and the combination of signs of the operands. */
1119 else if (TREE_OVERFLOW (res)
1120 && !TREE_OVERFLOW (val1)
1121 && !TREE_OVERFLOW (val2))
1123 int sgn1 = tree_int_cst_sgn (val1);
1124 int sgn2 = tree_int_cst_sgn (val2);
1126 /* Notice that we only need to handle the restricted set of
1127 operations handled by extract_range_from_binary_expr.
1128 Among them, only multiplication, addition and subtraction
1129 can yield overflow without overflown operands because we
1130 are working with integral types only... except in the
1131 case VAL1 = -INF and VAL2 = -1 which overflows to +INF
1132 for division too. */
1134 /* For multiplication, the sign of the overflow is given
1135 by the comparison of the signs of the operands. */
1136 if ((code == MULT_EXPR && sgn1 == sgn2)
1137 /* For addition, the operands must be of the same sign
1138 to yield an overflow. Its sign is therefore that
1139 of one of the operands, for example the first. */
1140 || (code == PLUS_EXPR && sgn1 > 0)
1141 /* For subtraction, the operands must be of different
1142 signs to yield an overflow. Its sign is therefore
1143 that of the first operand or the opposite of that
1144 of the second operand. A first operand of 0 counts
1145 as positive here, for the corner case 0 - (-INF),
1146 which overflows, but must yield +INF. */
1147 || (code == MINUS_EXPR && sgn1 >= 0)
1148 /* For division, the only case is -INF / -1 = +INF. */
1149 || code == TRUNC_DIV_EXPR
1150 || code == FLOOR_DIV_EXPR
1151 || code == CEIL_DIV_EXPR
1152 || code == EXACT_DIV_EXPR
1153 || code == ROUND_DIV_EXPR)
1154 return TYPE_MAX_VALUE (TREE_TYPE (res));
1155 else
1156 return TYPE_MIN_VALUE (TREE_TYPE (res));
1159 return res;
1163 /* Extract range information from a binary expression EXPR based on
1164 the ranges of each of its operands and the expression code. */
1166 static void
1167 extract_range_from_binary_expr (value_range_t *vr, tree expr)
1169 enum tree_code code = TREE_CODE (expr);
1170 tree op0, op1, min, max;
1171 int cmp;
1172 value_range_t vr0 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
1173 value_range_t vr1 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
1175 /* Not all binary expressions can be applied to ranges in a
1176 meaningful way. Handle only arithmetic operations. */
1177 if (code != PLUS_EXPR
1178 && code != MINUS_EXPR
1179 && code != MULT_EXPR
1180 && code != TRUNC_DIV_EXPR
1181 && code != FLOOR_DIV_EXPR
1182 && code != CEIL_DIV_EXPR
1183 && code != EXACT_DIV_EXPR
1184 && code != ROUND_DIV_EXPR
1185 && code != MIN_EXPR
1186 && code != MAX_EXPR
1187 && code != TRUTH_ANDIF_EXPR
1188 && code != TRUTH_ORIF_EXPR
1189 && code != TRUTH_AND_EXPR
1190 && code != TRUTH_OR_EXPR
1191 && code != TRUTH_XOR_EXPR)
1193 set_value_range_to_varying (vr);
1194 return;
1197 /* Get value ranges for each operand. For constant operands, create
1198 a new value range with the operand to simplify processing. */
1199 op0 = TREE_OPERAND (expr, 0);
1200 if (TREE_CODE (op0) == SSA_NAME)
1201 vr0 = *(get_value_range (op0));
1202 else if (is_gimple_min_invariant (op0))
1203 set_value_range (&vr0, VR_RANGE, op0, op0, NULL);
1204 else
1205 set_value_range_to_varying (&vr0);
1207 op1 = TREE_OPERAND (expr, 1);
1208 if (TREE_CODE (op1) == SSA_NAME)
1209 vr1 = *(get_value_range (op1));
1210 else if (is_gimple_min_invariant (op1))
1211 set_value_range (&vr1, VR_RANGE, op1, op1, NULL);
1212 else
1213 set_value_range_to_varying (&vr1);
1215 /* If either range is UNDEFINED, so is the result. */
1216 if (vr0.type == VR_UNDEFINED || vr1.type == VR_UNDEFINED)
1218 set_value_range_to_undefined (vr);
1219 return;
1222 /* Refuse to operate on VARYING ranges, ranges of different kinds
1223 and symbolic ranges. TODO, we may be able to derive anti-ranges
1224 in some cases. */
1225 if (vr0.type == VR_VARYING
1226 || vr1.type == VR_VARYING
1227 || vr0.type != vr1.type
1228 || symbolic_range_p (&vr0)
1229 || symbolic_range_p (&vr1))
1231 set_value_range_to_varying (vr);
1232 return;
1235 /* Now evaluate the expression to determine the new range. */
1236 if (POINTER_TYPE_P (TREE_TYPE (expr))
1237 || POINTER_TYPE_P (TREE_TYPE (op0))
1238 || POINTER_TYPE_P (TREE_TYPE (op1)))
1240 /* For pointer types, we are really only interested in asserting
1241 whether the expression evaluates to non-NULL. FIXME, we used
1242 to gcc_assert (code == PLUS_EXPR || code == MINUS_EXPR), but
1243 ivopts is generating expressions with pointer multiplication
1244 in them. */
1245 if (code == PLUS_EXPR)
1247 if (range_is_nonnull (&vr0) || range_is_nonnull (&vr1))
1248 set_value_range_to_nonnull (vr, TREE_TYPE (expr));
1249 else if (range_is_null (&vr0) && range_is_null (&vr1))
1250 set_value_range_to_null (vr, TREE_TYPE (expr));
1251 else
1252 set_value_range_to_varying (vr);
1254 else
1256 /* Subtracting from a pointer, may yield 0, so just drop the
1257 resulting range to varying. */
1258 set_value_range_to_varying (vr);
1261 return;
1264 /* For integer ranges, apply the operation to each end of the
1265 range and see what we end up with. */
1266 if (code == TRUTH_ANDIF_EXPR
1267 || code == TRUTH_ORIF_EXPR
1268 || code == TRUTH_AND_EXPR
1269 || code == TRUTH_OR_EXPR
1270 || code == TRUTH_XOR_EXPR)
1272 /* Boolean expressions cannot be folded with int_const_binop. */
1273 min = fold_binary (code, TREE_TYPE (expr), vr0.min, vr1.min);
1274 max = fold_binary (code, TREE_TYPE (expr), vr0.max, vr1.max);
1276 else if (code == PLUS_EXPR
1277 || code == MIN_EXPR
1278 || code == MAX_EXPR)
1280 /* If we have a PLUS_EXPR with two VR_ANTI_RANGEs, drop to
1281 VR_VARYING. It would take more effort to compute a precise
1282 range for such a case. For example, if we have op0 == 1 and
1283 op1 == -1 with their ranges both being ~[0,0], we would have
1284 op0 + op1 == 0, so we cannot claim that the sum is in ~[0,0].
1285 Note that we are guaranteed to have vr0.type == vr1.type at
1286 this point. */
1287 if (code == PLUS_EXPR && vr0.type == VR_ANTI_RANGE)
1289 set_value_range_to_varying (vr);
1290 return;
1293 /* For operations that make the resulting range directly
1294 proportional to the original ranges, apply the operation to
1295 the same end of each range. */
1296 min = vrp_int_const_binop (code, vr0.min, vr1.min);
1297 max = vrp_int_const_binop (code, vr0.max, vr1.max);
1299 else if (code == MULT_EXPR
1300 || code == TRUNC_DIV_EXPR
1301 || code == FLOOR_DIV_EXPR
1302 || code == CEIL_DIV_EXPR
1303 || code == EXACT_DIV_EXPR
1304 || code == ROUND_DIV_EXPR)
1306 tree val[4];
1307 size_t i;
1309 /* If we have an unsigned MULT_EXPR with two VR_ANTI_RANGEs,
1310 drop to VR_VARYING. It would take more effort to compute a
1311 precise range for such a case. For example, if we have
1312 op0 == 65536 and op1 == 65536 with their ranges both being
1313 ~[0,0] on a 32-bit machine, we would have op0 * op1 == 0, so
1314 we cannot claim that the product is in ~[0,0]. Note that we
1315 are guaranteed to have vr0.type == vr1.type at this
1316 point. */
1317 if (code == MULT_EXPR
1318 && vr0.type == VR_ANTI_RANGE
1319 && (flag_wrapv || TYPE_UNSIGNED (TREE_TYPE (op0))))
1321 set_value_range_to_varying (vr);
1322 return;
1325 /* Multiplications and divisions are a bit tricky to handle,
1326 depending on the mix of signs we have in the two ranges, we
1327 need to operate on different values to get the minimum and
1328 maximum values for the new range. One approach is to figure
1329 out all the variations of range combinations and do the
1330 operations.
1332 However, this involves several calls to compare_values and it
1333 is pretty convoluted. It's simpler to do the 4 operations
1334 (MIN0 OP MIN1, MIN0 OP MAX1, MAX0 OP MIN1 and MAX0 OP MAX0 OP
1335 MAX1) and then figure the smallest and largest values to form
1336 the new range. */
1338 /* Divisions by zero result in a VARYING value. */
1339 if (code != MULT_EXPR
1340 && (vr0.type == VR_ANTI_RANGE || range_includes_zero_p (&vr1)))
1342 set_value_range_to_varying (vr);
1343 return;
1346 /* Compute the 4 cross operations. */
1347 val[0] = vrp_int_const_binop (code, vr0.min, vr1.min);
1349 val[1] = (vr1.max != vr1.min)
1350 ? vrp_int_const_binop (code, vr0.min, vr1.max)
1351 : NULL_TREE;
1353 val[2] = (vr0.max != vr0.min)
1354 ? vrp_int_const_binop (code, vr0.max, vr1.min)
1355 : NULL_TREE;
1357 val[3] = (vr0.min != vr0.max && vr1.min != vr1.max)
1358 ? vrp_int_const_binop (code, vr0.max, vr1.max)
1359 : NULL_TREE;
1361 /* Set MIN to the minimum of VAL[i] and MAX to the maximum
1362 of VAL[i]. */
1363 min = val[0];
1364 max = val[0];
1365 for (i = 1; i < 4; i++)
1367 if (TREE_OVERFLOW (min) || TREE_OVERFLOW (max))
1368 break;
1370 if (val[i])
1372 if (TREE_OVERFLOW (val[i]))
1374 /* If we found an overflowed value, set MIN and MAX
1375 to it so that we set the resulting range to
1376 VARYING. */
1377 min = max = val[i];
1378 break;
1381 if (compare_values (val[i], min) == -1)
1382 min = val[i];
1384 if (compare_values (val[i], max) == 1)
1385 max = val[i];
1389 else if (code == MINUS_EXPR)
1391 /* If we have a MINUS_EXPR with two VR_ANTI_RANGEs, drop to
1392 VR_VARYING. It would take more effort to compute a precise
1393 range for such a case. For example, if we have op0 == 1 and
1394 op1 == 1 with their ranges both being ~[0,0], we would have
1395 op0 - op1 == 0, so we cannot claim that the difference is in
1396 ~[0,0]. Note that we are guaranteed to have
1397 vr0.type == vr1.type at this point. */
1398 if (vr0.type == VR_ANTI_RANGE)
1400 set_value_range_to_varying (vr);
1401 return;
1404 /* For MINUS_EXPR, apply the operation to the opposite ends of
1405 each range. */
1406 min = vrp_int_const_binop (code, vr0.min, vr1.max);
1407 max = vrp_int_const_binop (code, vr0.max, vr1.min);
1409 else
1410 gcc_unreachable ();
1412 /* If either MIN or MAX overflowed, then set the resulting range to
1413 VARYING. */
1414 if (TREE_OVERFLOW (min) || TREE_OVERFLOW (max))
1416 set_value_range_to_varying (vr);
1417 return;
1420 cmp = compare_values (min, max);
1421 if (cmp == -2 || cmp == 1)
1423 /* If the new range has its limits swapped around (MIN > MAX),
1424 then the operation caused one of them to wrap around, mark
1425 the new range VARYING. */
1426 set_value_range_to_varying (vr);
1428 else
1429 set_value_range (vr, vr0.type, min, max, NULL);
1433 /* Extract range information from a unary expression EXPR based on
1434 the range of its operand and the expression code. */
1436 static void
1437 extract_range_from_unary_expr (value_range_t *vr, tree expr)
1439 enum tree_code code = TREE_CODE (expr);
1440 tree min, max, op0;
1441 int cmp;
1442 value_range_t vr0 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
1444 /* Refuse to operate on certain unary expressions for which we
1445 cannot easily determine a resulting range. */
1446 if (code == FIX_TRUNC_EXPR
1447 || code == FIX_CEIL_EXPR
1448 || code == FIX_FLOOR_EXPR
1449 || code == FIX_ROUND_EXPR
1450 || code == FLOAT_EXPR
1451 || code == BIT_NOT_EXPR
1452 || code == NON_LVALUE_EXPR
1453 || code == CONJ_EXPR)
1455 set_value_range_to_varying (vr);
1456 return;
1459 /* Get value ranges for the operand. For constant operands, create
1460 a new value range with the operand to simplify processing. */
1461 op0 = TREE_OPERAND (expr, 0);
1462 if (TREE_CODE (op0) == SSA_NAME)
1463 vr0 = *(get_value_range (op0));
1464 else if (is_gimple_min_invariant (op0))
1465 set_value_range (&vr0, VR_RANGE, op0, op0, NULL);
1466 else
1467 set_value_range_to_varying (&vr0);
1469 /* If VR0 is UNDEFINED, so is the result. */
1470 if (vr0.type == VR_UNDEFINED)
1472 set_value_range_to_undefined (vr);
1473 return;
1476 /* Refuse to operate on varying and symbolic ranges. Also, if the
1477 operand is neither a pointer nor an integral type, set the
1478 resulting range to VARYING. TODO, in some cases we may be able
1479 to derive anti-ranges (like nonzero values). */
1480 if (vr0.type == VR_VARYING
1481 || (!INTEGRAL_TYPE_P (TREE_TYPE (op0))
1482 && !POINTER_TYPE_P (TREE_TYPE (op0)))
1483 || symbolic_range_p (&vr0))
1485 set_value_range_to_varying (vr);
1486 return;
1489 /* If the expression involves pointers, we are only interested in
1490 determining if it evaluates to NULL [0, 0] or non-NULL (~[0, 0]). */
1491 if (POINTER_TYPE_P (TREE_TYPE (expr)) || POINTER_TYPE_P (TREE_TYPE (op0)))
1493 if (range_is_nonnull (&vr0) || tree_expr_nonzero_p (expr))
1494 set_value_range_to_nonnull (vr, TREE_TYPE (expr));
1495 else if (range_is_null (&vr0))
1496 set_value_range_to_null (vr, TREE_TYPE (expr));
1497 else
1498 set_value_range_to_varying (vr);
1500 return;
1503 /* Handle unary expressions on integer ranges. */
1504 if (code == NOP_EXPR || code == CONVERT_EXPR)
1506 tree inner_type = TREE_TYPE (op0);
1507 tree outer_type = TREE_TYPE (expr);
1509 /* If VR0 represents a simple range, then try to convert
1510 the min and max values for the range to the same type
1511 as OUTER_TYPE. If the results compare equal to VR0's
1512 min and max values and the new min is still less than
1513 or equal to the new max, then we can safely use the newly
1514 computed range for EXPR. This allows us to compute
1515 accurate ranges through many casts. */
1516 if (vr0.type == VR_RANGE)
1518 tree new_min, new_max;
1520 /* Convert VR0's min/max to OUTER_TYPE. */
1521 new_min = fold_convert (outer_type, vr0.min);
1522 new_max = fold_convert (outer_type, vr0.max);
1524 /* Verify the new min/max values are gimple values and
1525 that they compare equal to VR0's min/max values. */
1526 if (is_gimple_val (new_min)
1527 && is_gimple_val (new_max)
1528 && tree_int_cst_equal (new_min, vr0.min)
1529 && tree_int_cst_equal (new_max, vr0.max)
1530 && compare_values (new_min, new_max) <= 0
1531 && compare_values (new_min, new_max) >= -1)
1533 set_value_range (vr, VR_RANGE, new_min, new_max, vr->equiv);
1534 return;
1538 /* When converting types of different sizes, set the result to
1539 VARYING. Things like sign extensions and precision loss may
1540 change the range. For instance, if x_3 is of type 'long long
1541 int' and 'y_5 = (unsigned short) x_3', if x_3 is ~[0, 0], it
1542 is impossible to know at compile time whether y_5 will be
1543 ~[0, 0]. */
1544 if (TYPE_SIZE (inner_type) != TYPE_SIZE (outer_type)
1545 || TYPE_PRECISION (inner_type) != TYPE_PRECISION (outer_type))
1547 set_value_range_to_varying (vr);
1548 return;
1552 /* Apply the operation to each end of the range and see what we end
1553 up with. */
1554 if (code == NEGATE_EXPR
1555 && !TYPE_UNSIGNED (TREE_TYPE (expr)))
1557 /* NEGATE_EXPR flips the range around. */
1558 min = (vr0.max == TYPE_MAX_VALUE (TREE_TYPE (expr)) && !flag_wrapv)
1559 ? TYPE_MIN_VALUE (TREE_TYPE (expr))
1560 : fold_unary_to_constant (code, TREE_TYPE (expr), vr0.max);
1562 max = (vr0.min == TYPE_MIN_VALUE (TREE_TYPE (expr)) && !flag_wrapv)
1563 ? TYPE_MAX_VALUE (TREE_TYPE (expr))
1564 : fold_unary_to_constant (code, TREE_TYPE (expr), vr0.min);
1566 else if (code == ABS_EXPR
1567 && !TYPE_UNSIGNED (TREE_TYPE (expr)))
1569 /* -TYPE_MIN_VALUE = TYPE_MIN_VALUE with flag_wrapv so we can't get a
1570 useful range. */
1571 if (flag_wrapv
1572 && ((vr0.type == VR_RANGE
1573 && vr0.min == TYPE_MIN_VALUE (TREE_TYPE (expr)))
1574 || (vr0.type == VR_ANTI_RANGE
1575 && vr0.min != TYPE_MIN_VALUE (TREE_TYPE (expr))
1576 && !range_includes_zero_p (&vr0))))
1578 set_value_range_to_varying (vr);
1579 return;
1582 /* ABS_EXPR may flip the range around, if the original range
1583 included negative values. */
1584 min = (vr0.min == TYPE_MIN_VALUE (TREE_TYPE (expr)))
1585 ? TYPE_MAX_VALUE (TREE_TYPE (expr))
1586 : fold_unary_to_constant (code, TREE_TYPE (expr), vr0.min);
1588 max = fold_unary_to_constant (code, TREE_TYPE (expr), vr0.max);
1590 cmp = compare_values (min, max);
1592 /* If a VR_ANTI_RANGEs contains zero, then we have
1593 ~[-INF, min(MIN, MAX)]. */
1594 if (vr0.type == VR_ANTI_RANGE)
1596 if (range_includes_zero_p (&vr0))
1598 tree type_min_value = TYPE_MIN_VALUE (TREE_TYPE (expr));
1600 /* Take the lower of the two values. */
1601 if (cmp != 1)
1602 max = min;
1604 /* Create ~[-INF, min (abs(MIN), abs(MAX))]
1605 or ~[-INF + 1, min (abs(MIN), abs(MAX))] when
1606 flag_wrapv is set and the original anti-range doesn't include
1607 TYPE_MIN_VALUE, remember -TYPE_MIN_VALUE = TYPE_MIN_VALUE. */
1608 min = (flag_wrapv && vr0.min != type_min_value
1609 ? int_const_binop (PLUS_EXPR,
1610 type_min_value,
1611 integer_one_node, 0)
1612 : type_min_value);
1614 else
1616 /* All else has failed, so create the range [0, INF], even for
1617 flag_wrapv since TYPE_MIN_VALUE is in the original
1618 anti-range. */
1619 vr0.type = VR_RANGE;
1620 min = build_int_cst (TREE_TYPE (expr), 0);
1621 max = TYPE_MAX_VALUE (TREE_TYPE (expr));
1625 /* If the range contains zero then we know that the minimum value in the
1626 range will be zero. */
1627 else if (range_includes_zero_p (&vr0))
1629 if (cmp == 1)
1630 max = min;
1631 min = build_int_cst (TREE_TYPE (expr), 0);
1633 else
1635 /* If the range was reversed, swap MIN and MAX. */
1636 if (cmp == 1)
1638 tree t = min;
1639 min = max;
1640 max = t;
1644 else
1646 /* Otherwise, operate on each end of the range. */
1647 min = fold_unary_to_constant (code, TREE_TYPE (expr), vr0.min);
1648 max = fold_unary_to_constant (code, TREE_TYPE (expr), vr0.max);
1651 cmp = compare_values (min, max);
1652 if (cmp == -2 || cmp == 1)
1654 /* If the new range has its limits swapped around (MIN > MAX),
1655 then the operation caused one of them to wrap around, mark
1656 the new range VARYING. */
1657 set_value_range_to_varying (vr);
1659 else
1660 set_value_range (vr, vr0.type, min, max, NULL);
1664 /* Extract range information from a comparison expression EXPR based
1665 on the range of its operand and the expression code. */
1667 static void
1668 extract_range_from_comparison (value_range_t *vr, tree expr)
1670 tree val = vrp_evaluate_conditional (expr, false);
1671 if (val)
1673 /* Since this expression was found on the RHS of an assignment,
1674 its type may be different from _Bool. Convert VAL to EXPR's
1675 type. */
1676 val = fold_convert (TREE_TYPE (expr), val);
1677 set_value_range (vr, VR_RANGE, val, val, vr->equiv);
1679 else
1680 set_value_range_to_varying (vr);
1684 /* Try to compute a useful range out of expression EXPR and store it
1685 in *VR. */
1687 static void
1688 extract_range_from_expr (value_range_t *vr, tree expr)
1690 enum tree_code code = TREE_CODE (expr);
1692 if (code == ASSERT_EXPR)
1693 extract_range_from_assert (vr, expr);
1694 else if (code == SSA_NAME)
1695 extract_range_from_ssa_name (vr, expr);
1696 else if (TREE_CODE_CLASS (code) == tcc_binary
1697 || code == TRUTH_ANDIF_EXPR
1698 || code == TRUTH_ORIF_EXPR
1699 || code == TRUTH_AND_EXPR
1700 || code == TRUTH_OR_EXPR
1701 || code == TRUTH_XOR_EXPR)
1702 extract_range_from_binary_expr (vr, expr);
1703 else if (TREE_CODE_CLASS (code) == tcc_unary)
1704 extract_range_from_unary_expr (vr, expr);
1705 else if (TREE_CODE_CLASS (code) == tcc_comparison)
1706 extract_range_from_comparison (vr, expr);
1707 else if (is_gimple_min_invariant (expr))
1708 set_value_range (vr, VR_RANGE, expr, expr, NULL);
1709 else if (vrp_expr_computes_nonzero (expr))
1710 set_value_range_to_nonnull (vr, TREE_TYPE (expr));
1711 else
1712 set_value_range_to_varying (vr);
1715 /* Given a range VR, a LOOP and a variable VAR, determine whether it
1716 would be profitable to adjust VR using scalar evolution information
1717 for VAR. If so, update VR with the new limits. */
1719 static void
1720 adjust_range_with_scev (value_range_t *vr, struct loop *loop, tree stmt,
1721 tree var)
1723 tree init, step, chrec;
1724 bool init_is_max, unknown_max;
1726 /* TODO. Don't adjust anti-ranges. An anti-range may provide
1727 better opportunities than a regular range, but I'm not sure. */
1728 if (vr->type == VR_ANTI_RANGE)
1729 return;
1731 chrec = instantiate_parameters (loop, analyze_scalar_evolution (loop, var));
1732 if (TREE_CODE (chrec) != POLYNOMIAL_CHREC)
1733 return;
1735 init = initial_condition_in_loop_num (chrec, loop->num);
1736 step = evolution_part_in_loop_num (chrec, loop->num);
1738 /* If STEP is symbolic, we can't know whether INIT will be the
1739 minimum or maximum value in the range. */
1740 if (step == NULL_TREE
1741 || !is_gimple_min_invariant (step))
1742 return;
1744 /* Do not adjust ranges when chrec may wrap. */
1745 if (scev_probably_wraps_p (chrec_type (chrec), init, step, stmt,
1746 cfg_loops->parray[CHREC_VARIABLE (chrec)],
1747 &init_is_max, &unknown_max)
1748 || unknown_max)
1749 return;
1751 if (!POINTER_TYPE_P (TREE_TYPE (init))
1752 && (vr->type == VR_VARYING || vr->type == VR_UNDEFINED))
1754 /* For VARYING or UNDEFINED ranges, just about anything we get
1755 from scalar evolutions should be better. */
1756 if (init_is_max)
1757 set_value_range (vr, VR_RANGE, TYPE_MIN_VALUE (TREE_TYPE (init)),
1758 init, vr->equiv);
1759 else
1760 set_value_range (vr, VR_RANGE, init, TYPE_MAX_VALUE (TREE_TYPE (init)),
1761 vr->equiv);
1763 else if (vr->type == VR_RANGE)
1765 tree min = vr->min;
1766 tree max = vr->max;
1768 if (init_is_max)
1770 /* INIT is the maximum value. If INIT is lower than VR->MAX
1771 but no smaller than VR->MIN, set VR->MAX to INIT. */
1772 if (compare_values (init, max) == -1)
1774 max = init;
1776 /* If we just created an invalid range with the minimum
1777 greater than the maximum, take the minimum all the
1778 way to -INF. */
1779 if (compare_values (min, max) == 1)
1780 min = TYPE_MIN_VALUE (TREE_TYPE (min));
1783 else
1785 /* If INIT is bigger than VR->MIN, set VR->MIN to INIT. */
1786 if (compare_values (init, min) == 1)
1788 min = init;
1790 /* If we just created an invalid range with the minimum
1791 greater than the maximum, take the maximum all the
1792 way to +INF. */
1793 if (compare_values (min, max) == 1)
1794 max = TYPE_MAX_VALUE (TREE_TYPE (max));
1798 set_value_range (vr, VR_RANGE, min, max, vr->equiv);
1803 /* Given two numeric value ranges VR0, VR1 and a comparison code COMP:
1805 - Return BOOLEAN_TRUE_NODE if VR0 COMP VR1 always returns true for
1806 all the values in the ranges.
1808 - Return BOOLEAN_FALSE_NODE if the comparison always returns false.
1810 - Return NULL_TREE if it is not always possible to determine the
1811 value of the comparison. */
1814 static tree
1815 compare_ranges (enum tree_code comp, value_range_t *vr0, value_range_t *vr1)
1817 /* VARYING or UNDEFINED ranges cannot be compared. */
1818 if (vr0->type == VR_VARYING
1819 || vr0->type == VR_UNDEFINED
1820 || vr1->type == VR_VARYING
1821 || vr1->type == VR_UNDEFINED)
1822 return NULL_TREE;
1824 /* Anti-ranges need to be handled separately. */
1825 if (vr0->type == VR_ANTI_RANGE || vr1->type == VR_ANTI_RANGE)
1827 /* If both are anti-ranges, then we cannot compute any
1828 comparison. */
1829 if (vr0->type == VR_ANTI_RANGE && vr1->type == VR_ANTI_RANGE)
1830 return NULL_TREE;
1832 /* These comparisons are never statically computable. */
1833 if (comp == GT_EXPR
1834 || comp == GE_EXPR
1835 || comp == LT_EXPR
1836 || comp == LE_EXPR)
1837 return NULL_TREE;
1839 /* Equality can be computed only between a range and an
1840 anti-range. ~[VAL1, VAL2] == [VAL1, VAL2] is always false. */
1841 if (vr0->type == VR_RANGE)
1843 /* To simplify processing, make VR0 the anti-range. */
1844 value_range_t *tmp = vr0;
1845 vr0 = vr1;
1846 vr1 = tmp;
1849 gcc_assert (comp == NE_EXPR || comp == EQ_EXPR);
1851 if (compare_values (vr0->min, vr1->min) == 0
1852 && compare_values (vr0->max, vr1->max) == 0)
1853 return (comp == NE_EXPR) ? boolean_true_node : boolean_false_node;
1855 return NULL_TREE;
1858 /* Simplify processing. If COMP is GT_EXPR or GE_EXPR, switch the
1859 operands around and change the comparison code. */
1860 if (comp == GT_EXPR || comp == GE_EXPR)
1862 value_range_t *tmp;
1863 comp = (comp == GT_EXPR) ? LT_EXPR : LE_EXPR;
1864 tmp = vr0;
1865 vr0 = vr1;
1866 vr1 = tmp;
1869 if (comp == EQ_EXPR)
1871 /* Equality may only be computed if both ranges represent
1872 exactly one value. */
1873 if (compare_values (vr0->min, vr0->max) == 0
1874 && compare_values (vr1->min, vr1->max) == 0)
1876 int cmp_min = compare_values (vr0->min, vr1->min);
1877 int cmp_max = compare_values (vr0->max, vr1->max);
1878 if (cmp_min == 0 && cmp_max == 0)
1879 return boolean_true_node;
1880 else if (cmp_min != -2 && cmp_max != -2)
1881 return boolean_false_node;
1883 /* If [V0_MIN, V1_MAX] < [V1_MIN, V1_MAX] then V0 != V1. */
1884 else if (compare_values (vr0->min, vr1->max) == 1
1885 || compare_values (vr1->min, vr0->max) == 1)
1886 return boolean_false_node;
1888 return NULL_TREE;
1890 else if (comp == NE_EXPR)
1892 int cmp1, cmp2;
1894 /* If VR0 is completely to the left or completely to the right
1895 of VR1, they are always different. Notice that we need to
1896 make sure that both comparisons yield similar results to
1897 avoid comparing values that cannot be compared at
1898 compile-time. */
1899 cmp1 = compare_values (vr0->max, vr1->min);
1900 cmp2 = compare_values (vr0->min, vr1->max);
1901 if ((cmp1 == -1 && cmp2 == -1) || (cmp1 == 1 && cmp2 == 1))
1902 return boolean_true_node;
1904 /* If VR0 and VR1 represent a single value and are identical,
1905 return false. */
1906 else if (compare_values (vr0->min, vr0->max) == 0
1907 && compare_values (vr1->min, vr1->max) == 0
1908 && compare_values (vr0->min, vr1->min) == 0
1909 && compare_values (vr0->max, vr1->max) == 0)
1910 return boolean_false_node;
1912 /* Otherwise, they may or may not be different. */
1913 else
1914 return NULL_TREE;
1916 else if (comp == LT_EXPR || comp == LE_EXPR)
1918 int tst;
1920 /* If VR0 is to the left of VR1, return true. */
1921 tst = compare_values (vr0->max, vr1->min);
1922 if ((comp == LT_EXPR && tst == -1)
1923 || (comp == LE_EXPR && (tst == -1 || tst == 0)))
1924 return boolean_true_node;
1926 /* If VR0 is to the right of VR1, return false. */
1927 tst = compare_values (vr0->min, vr1->max);
1928 if ((comp == LT_EXPR && (tst == 0 || tst == 1))
1929 || (comp == LE_EXPR && tst == 1))
1930 return boolean_false_node;
1932 /* Otherwise, we don't know. */
1933 return NULL_TREE;
1936 gcc_unreachable ();
1940 /* Given a value range VR, a value VAL and a comparison code COMP, return
1941 BOOLEAN_TRUE_NODE if VR COMP VAL always returns true for all the
1942 values in VR. Return BOOLEAN_FALSE_NODE if the comparison
1943 always returns false. Return NULL_TREE if it is not always
1944 possible to determine the value of the comparison. */
1946 static tree
1947 compare_range_with_value (enum tree_code comp, value_range_t *vr, tree val)
1949 if (vr->type == VR_VARYING || vr->type == VR_UNDEFINED)
1950 return NULL_TREE;
1952 /* Anti-ranges need to be handled separately. */
1953 if (vr->type == VR_ANTI_RANGE)
1955 /* For anti-ranges, the only predicates that we can compute at
1956 compile time are equality and inequality. */
1957 if (comp == GT_EXPR
1958 || comp == GE_EXPR
1959 || comp == LT_EXPR
1960 || comp == LE_EXPR)
1961 return NULL_TREE;
1963 /* ~[VAL_1, VAL_2] OP VAL is known if VAL_1 <= VAL <= VAL_2. */
1964 if (value_inside_range (val, vr) == 1)
1965 return (comp == NE_EXPR) ? boolean_true_node : boolean_false_node;
1967 return NULL_TREE;
1970 if (comp == EQ_EXPR)
1972 /* EQ_EXPR may only be computed if VR represents exactly
1973 one value. */
1974 if (compare_values (vr->min, vr->max) == 0)
1976 int cmp = compare_values (vr->min, val);
1977 if (cmp == 0)
1978 return boolean_true_node;
1979 else if (cmp == -1 || cmp == 1 || cmp == 2)
1980 return boolean_false_node;
1982 else if (compare_values (val, vr->min) == -1
1983 || compare_values (vr->max, val) == -1)
1984 return boolean_false_node;
1986 return NULL_TREE;
1988 else if (comp == NE_EXPR)
1990 /* If VAL is not inside VR, then they are always different. */
1991 if (compare_values (vr->max, val) == -1
1992 || compare_values (vr->min, val) == 1)
1993 return boolean_true_node;
1995 /* If VR represents exactly one value equal to VAL, then return
1996 false. */
1997 if (compare_values (vr->min, vr->max) == 0
1998 && compare_values (vr->min, val) == 0)
1999 return boolean_false_node;
2001 /* Otherwise, they may or may not be different. */
2002 return NULL_TREE;
2004 else if (comp == LT_EXPR || comp == LE_EXPR)
2006 int tst;
2008 /* If VR is to the left of VAL, return true. */
2009 tst = compare_values (vr->max, val);
2010 if ((comp == LT_EXPR && tst == -1)
2011 || (comp == LE_EXPR && (tst == -1 || tst == 0)))
2012 return boolean_true_node;
2014 /* If VR is to the right of VAL, return false. */
2015 tst = compare_values (vr->min, val);
2016 if ((comp == LT_EXPR && (tst == 0 || tst == 1))
2017 || (comp == LE_EXPR && tst == 1))
2018 return boolean_false_node;
2020 /* Otherwise, we don't know. */
2021 return NULL_TREE;
2023 else if (comp == GT_EXPR || comp == GE_EXPR)
2025 int tst;
2027 /* If VR is to the right of VAL, return true. */
2028 tst = compare_values (vr->min, val);
2029 if ((comp == GT_EXPR && tst == 1)
2030 || (comp == GE_EXPR && (tst == 0 || tst == 1)))
2031 return boolean_true_node;
2033 /* If VR is to the left of VAL, return false. */
2034 tst = compare_values (vr->max, val);
2035 if ((comp == GT_EXPR && (tst == -1 || tst == 0))
2036 || (comp == GE_EXPR && tst == -1))
2037 return boolean_false_node;
2039 /* Otherwise, we don't know. */
2040 return NULL_TREE;
2043 gcc_unreachable ();
2047 /* Debugging dumps. */
2049 void dump_value_range (FILE *, value_range_t *);
2050 void debug_value_range (value_range_t *);
2051 void dump_all_value_ranges (FILE *);
2052 void debug_all_value_ranges (void);
2053 void dump_vr_equiv (FILE *, bitmap);
2054 void debug_vr_equiv (bitmap);
2057 /* Dump value range VR to FILE. */
2059 void
2060 dump_value_range (FILE *file, value_range_t *vr)
2062 if (vr == NULL)
2063 fprintf (file, "[]");
2064 else if (vr->type == VR_UNDEFINED)
2065 fprintf (file, "UNDEFINED");
2066 else if (vr->type == VR_RANGE || vr->type == VR_ANTI_RANGE)
2068 tree type = TREE_TYPE (vr->min);
2070 fprintf (file, "%s[", (vr->type == VR_ANTI_RANGE) ? "~" : "");
2072 if (INTEGRAL_TYPE_P (type)
2073 && !TYPE_UNSIGNED (type)
2074 && vr->min == TYPE_MIN_VALUE (type))
2075 fprintf (file, "-INF");
2076 else
2077 print_generic_expr (file, vr->min, 0);
2079 fprintf (file, ", ");
2081 if (INTEGRAL_TYPE_P (type)
2082 && vr->max == TYPE_MAX_VALUE (type))
2083 fprintf (file, "+INF");
2084 else
2085 print_generic_expr (file, vr->max, 0);
2087 fprintf (file, "]");
2089 if (vr->equiv)
2091 bitmap_iterator bi;
2092 unsigned i, c = 0;
2094 fprintf (file, " EQUIVALENCES: { ");
2096 EXECUTE_IF_SET_IN_BITMAP (vr->equiv, 0, i, bi)
2098 print_generic_expr (file, ssa_name (i), 0);
2099 fprintf (file, " ");
2100 c++;
2103 fprintf (file, "} (%u elements)", c);
2106 else if (vr->type == VR_VARYING)
2107 fprintf (file, "VARYING");
2108 else
2109 fprintf (file, "INVALID RANGE");
2113 /* Dump value range VR to stderr. */
2115 void
2116 debug_value_range (value_range_t *vr)
2118 dump_value_range (stderr, vr);
2122 /* Dump value ranges of all SSA_NAMEs to FILE. */
2124 void
2125 dump_all_value_ranges (FILE *file)
2127 size_t i;
2129 for (i = 0; i < num_ssa_names; i++)
2131 if (vr_value[i])
2133 print_generic_expr (file, ssa_name (i), 0);
2134 fprintf (file, ": ");
2135 dump_value_range (file, vr_value[i]);
2136 fprintf (file, "\n");
2140 fprintf (file, "\n");
2144 /* Dump all value ranges to stderr. */
2146 void
2147 debug_all_value_ranges (void)
2149 dump_all_value_ranges (stderr);
2153 /* Given a COND_EXPR COND of the form 'V OP W', and an SSA name V,
2154 create a new SSA name N and return the assertion assignment
2155 'V = ASSERT_EXPR <V, V OP W>'. */
2157 static tree
2158 build_assert_expr_for (tree cond, tree v)
2160 tree n, assertion;
2162 gcc_assert (TREE_CODE (v) == SSA_NAME);
2163 n = duplicate_ssa_name (v, NULL_TREE);
2165 if (COMPARISON_CLASS_P (cond))
2167 tree a = build2 (ASSERT_EXPR, TREE_TYPE (v), v, cond);
2168 assertion = build2 (MODIFY_EXPR, TREE_TYPE (v), n, a);
2170 else if (TREE_CODE (cond) == TRUTH_NOT_EXPR)
2172 /* Given !V, build the assignment N = false. */
2173 tree op0 = TREE_OPERAND (cond, 0);
2174 gcc_assert (op0 == v);
2175 assertion = build2 (MODIFY_EXPR, TREE_TYPE (v), n, boolean_false_node);
2177 else if (TREE_CODE (cond) == SSA_NAME)
2179 /* Given V, build the assignment N = true. */
2180 gcc_assert (v == cond);
2181 assertion = build2 (MODIFY_EXPR, TREE_TYPE (v), n, boolean_true_node);
2183 else
2184 gcc_unreachable ();
2186 SSA_NAME_DEF_STMT (n) = assertion;
2188 /* The new ASSERT_EXPR, creates a new SSA name that replaces the
2189 operand of the ASSERT_EXPR. Register the new name and the old one
2190 in the replacement table so that we can fix the SSA web after
2191 adding all the ASSERT_EXPRs. */
2192 register_new_name_mapping (n, v);
2194 return assertion;
2198 /* Return false if EXPR is a predicate expression involving floating
2199 point values. */
2201 static inline bool
2202 fp_predicate (tree expr)
2204 return (COMPARISON_CLASS_P (expr)
2205 && FLOAT_TYPE_P (TREE_TYPE (TREE_OPERAND (expr, 0))));
2209 /* If the range of values taken by OP can be inferred after STMT executes,
2210 return the comparison code (COMP_CODE_P) and value (VAL_P) that
2211 describes the inferred range. Return true if a range could be
2212 inferred. */
2214 static bool
2215 infer_value_range (tree stmt, tree op, enum tree_code *comp_code_p, tree *val_p)
2217 *val_p = NULL_TREE;
2218 *comp_code_p = ERROR_MARK;
2220 /* Do not attempt to infer anything in names that flow through
2221 abnormal edges. */
2222 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (op))
2223 return false;
2225 /* Similarly, don't infer anything from statements that may throw
2226 exceptions. */
2227 if (tree_could_throw_p (stmt))
2228 return false;
2230 /* If STMT is the last statement of a basic block with no
2231 successors, there is no point inferring anything about any of its
2232 operands. We would not be able to find a proper insertion point
2233 for the assertion, anyway. */
2234 if (stmt_ends_bb_p (stmt) && EDGE_COUNT (bb_for_stmt (stmt)->succs) == 0)
2235 return false;
2237 if (POINTER_TYPE_P (TREE_TYPE (op)))
2239 bool is_store;
2240 unsigned num_uses, num_derefs;
2242 count_uses_and_derefs (op, stmt, &num_uses, &num_derefs, &is_store);
2243 if (num_derefs > 0 && flag_delete_null_pointer_checks)
2245 /* We can only assume that a pointer dereference will yield
2246 non-NULL if -fdelete-null-pointer-checks is enabled. */
2247 *val_p = build_int_cst (TREE_TYPE (op), 0);
2248 *comp_code_p = NE_EXPR;
2249 return true;
2253 return false;
2257 void dump_asserts_for (FILE *, tree);
2258 void debug_asserts_for (tree);
2259 void dump_all_asserts (FILE *);
2260 void debug_all_asserts (void);
2262 /* Dump all the registered assertions for NAME to FILE. */
2264 void
2265 dump_asserts_for (FILE *file, tree name)
2267 assert_locus_t loc;
2269 fprintf (file, "Assertions to be inserted for ");
2270 print_generic_expr (file, name, 0);
2271 fprintf (file, "\n");
2273 loc = asserts_for[SSA_NAME_VERSION (name)];
2274 while (loc)
2276 fprintf (file, "\t");
2277 print_generic_expr (file, bsi_stmt (loc->si), 0);
2278 fprintf (file, "\n\tBB #%d", loc->bb->index);
2279 if (loc->e)
2281 fprintf (file, "\n\tEDGE %d->%d", loc->e->src->index,
2282 loc->e->dest->index);
2283 dump_edge_info (file, loc->e, 0);
2285 fprintf (file, "\n\tPREDICATE: ");
2286 print_generic_expr (file, name, 0);
2287 fprintf (file, " %s ", tree_code_name[(int)loc->comp_code]);
2288 print_generic_expr (file, loc->val, 0);
2289 fprintf (file, "\n\n");
2290 loc = loc->next;
2293 fprintf (file, "\n");
2297 /* Dump all the registered assertions for NAME to stderr. */
2299 void
2300 debug_asserts_for (tree name)
2302 dump_asserts_for (stderr, name);
2306 /* Dump all the registered assertions for all the names to FILE. */
2308 void
2309 dump_all_asserts (FILE *file)
2311 unsigned i;
2312 bitmap_iterator bi;
2314 fprintf (file, "\nASSERT_EXPRs to be inserted\n\n");
2315 EXECUTE_IF_SET_IN_BITMAP (need_assert_for, 0, i, bi)
2316 dump_asserts_for (file, ssa_name (i));
2317 fprintf (file, "\n");
2321 /* Dump all the registered assertions for all the names to stderr. */
2323 void
2324 debug_all_asserts (void)
2326 dump_all_asserts (stderr);
2330 /* If NAME doesn't have an ASSERT_EXPR registered for asserting
2331 'NAME COMP_CODE VAL' at a location that dominates block BB or
2332 E->DEST, then register this location as a possible insertion point
2333 for ASSERT_EXPR <NAME, NAME COMP_CODE VAL>.
2335 BB, E and SI provide the exact insertion point for the new
2336 ASSERT_EXPR. If BB is NULL, then the ASSERT_EXPR is to be inserted
2337 on edge E. Otherwise, if E is NULL, the ASSERT_EXPR is inserted on
2338 BB. If SI points to a COND_EXPR or a SWITCH_EXPR statement, then E
2339 must not be NULL. */
2341 static void
2342 register_new_assert_for (tree name,
2343 enum tree_code comp_code,
2344 tree val,
2345 basic_block bb,
2346 edge e,
2347 block_stmt_iterator si)
2349 assert_locus_t n, loc, last_loc;
2350 bool found;
2351 basic_block dest_bb;
2353 #if defined ENABLE_CHECKING
2354 gcc_assert (bb == NULL || e == NULL);
2356 if (e == NULL)
2357 gcc_assert (TREE_CODE (bsi_stmt (si)) != COND_EXPR
2358 && TREE_CODE (bsi_stmt (si)) != SWITCH_EXPR);
2359 #endif
2361 /* The new assertion A will be inserted at BB or E. We need to
2362 determine if the new location is dominated by a previously
2363 registered location for A. If we are doing an edge insertion,
2364 assume that A will be inserted at E->DEST. Note that this is not
2365 necessarily true.
2367 If E is a critical edge, it will be split. But even if E is
2368 split, the new block will dominate the same set of blocks that
2369 E->DEST dominates.
2371 The reverse, however, is not true, blocks dominated by E->DEST
2372 will not be dominated by the new block created to split E. So,
2373 if the insertion location is on a critical edge, we will not use
2374 the new location to move another assertion previously registered
2375 at a block dominated by E->DEST. */
2376 dest_bb = (bb) ? bb : e->dest;
2378 /* If NAME already has an ASSERT_EXPR registered for COMP_CODE and
2379 VAL at a block dominating DEST_BB, then we don't need to insert a new
2380 one. Similarly, if the same assertion already exists at a block
2381 dominated by DEST_BB and the new location is not on a critical
2382 edge, then update the existing location for the assertion (i.e.,
2383 move the assertion up in the dominance tree).
2385 Note, this is implemented as a simple linked list because there
2386 should not be more than a handful of assertions registered per
2387 name. If this becomes a performance problem, a table hashed by
2388 COMP_CODE and VAL could be implemented. */
2389 loc = asserts_for[SSA_NAME_VERSION (name)];
2390 last_loc = loc;
2391 found = false;
2392 while (loc)
2394 if (loc->comp_code == comp_code
2395 && (loc->val == val
2396 || operand_equal_p (loc->val, val, 0)))
2398 /* If the assertion NAME COMP_CODE VAL has already been
2399 registered at a basic block that dominates DEST_BB, then
2400 we don't need to insert the same assertion again. Note
2401 that we don't check strict dominance here to avoid
2402 replicating the same assertion inside the same basic
2403 block more than once (e.g., when a pointer is
2404 dereferenced several times inside a block).
2406 An exception to this rule are edge insertions. If the
2407 new assertion is to be inserted on edge E, then it will
2408 dominate all the other insertions that we may want to
2409 insert in DEST_BB. So, if we are doing an edge
2410 insertion, don't do this dominance check. */
2411 if (e == NULL
2412 && dominated_by_p (CDI_DOMINATORS, dest_bb, loc->bb))
2413 return;
2415 /* Otherwise, if E is not a critical edge and DEST_BB
2416 dominates the existing location for the assertion, move
2417 the assertion up in the dominance tree by updating its
2418 location information. */
2419 if ((e == NULL || !EDGE_CRITICAL_P (e))
2420 && dominated_by_p (CDI_DOMINATORS, loc->bb, dest_bb))
2422 loc->bb = dest_bb;
2423 loc->e = e;
2424 loc->si = si;
2425 return;
2429 /* Update the last node of the list and move to the next one. */
2430 last_loc = loc;
2431 loc = loc->next;
2434 /* If we didn't find an assertion already registered for
2435 NAME COMP_CODE VAL, add a new one at the end of the list of
2436 assertions associated with NAME. */
2437 n = xmalloc (sizeof (*n));
2438 n->bb = dest_bb;
2439 n->e = e;
2440 n->si = si;
2441 n->comp_code = comp_code;
2442 n->val = val;
2443 n->next = NULL;
2445 if (last_loc)
2446 last_loc->next = n;
2447 else
2448 asserts_for[SSA_NAME_VERSION (name)] = n;
2450 bitmap_set_bit (need_assert_for, SSA_NAME_VERSION (name));
2454 /* Try to register an edge assertion for SSA name NAME on edge E for
2455 the conditional jump pointed to by SI. Return true if an assertion
2456 for NAME could be registered. */
2458 static bool
2459 register_edge_assert_for (tree name, edge e, block_stmt_iterator si)
2461 tree val, stmt;
2462 enum tree_code comp_code;
2464 stmt = bsi_stmt (si);
2466 /* Do not attempt to infer anything in names that flow through
2467 abnormal edges. */
2468 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (name))
2469 return false;
2471 /* If NAME was not found in the sub-graph reachable from E, then
2472 there's nothing to do. */
2473 if (!TEST_BIT (found_in_subgraph, SSA_NAME_VERSION (name)))
2474 return false;
2476 /* We found a use of NAME in the sub-graph rooted at E->DEST.
2477 Register an assertion for NAME according to the value that NAME
2478 takes on edge E. */
2479 if (TREE_CODE (stmt) == COND_EXPR)
2481 /* If BB ends in a COND_EXPR then NAME then we should insert
2482 the original predicate on EDGE_TRUE_VALUE and the
2483 opposite predicate on EDGE_FALSE_VALUE. */
2484 tree cond = COND_EXPR_COND (stmt);
2485 bool is_else_edge = (e->flags & EDGE_FALSE_VALUE) != 0;
2487 /* Predicates may be a single SSA name or NAME OP VAL. */
2488 if (cond == name)
2490 /* If the predicate is a name, it must be NAME, in which
2491 case we create the predicate NAME == true or
2492 NAME == false accordingly. */
2493 comp_code = EQ_EXPR;
2494 val = (is_else_edge) ? boolean_false_node : boolean_true_node;
2496 else
2498 /* Otherwise, we have a comparison of the form NAME COMP VAL
2499 or VAL COMP NAME. */
2500 if (name == TREE_OPERAND (cond, 1))
2502 /* If the predicate is of the form VAL COMP NAME, flip
2503 COMP around because we need to register NAME as the
2504 first operand in the predicate. */
2505 comp_code = swap_tree_comparison (TREE_CODE (cond));
2506 val = TREE_OPERAND (cond, 0);
2508 else
2510 /* The comparison is of the form NAME COMP VAL, so the
2511 comparison code remains unchanged. */
2512 comp_code = TREE_CODE (cond);
2513 val = TREE_OPERAND (cond, 1);
2516 /* If we are inserting the assertion on the ELSE edge, we
2517 need to invert the sign comparison. */
2518 if (is_else_edge)
2519 comp_code = invert_tree_comparison (comp_code, 0);
2521 /* Do not register always-false predicates. FIXME, this
2522 works around a limitation in fold() when dealing with
2523 enumerations. Given 'enum { N1, N2 } x;', fold will not
2524 fold 'if (x > N2)' to 'if (0)'. */
2525 if ((comp_code == GT_EXPR || comp_code == LT_EXPR)
2526 && (INTEGRAL_TYPE_P (TREE_TYPE (val))
2527 || SCALAR_FLOAT_TYPE_P (TREE_TYPE (val))))
2529 tree min = TYPE_MIN_VALUE (TREE_TYPE (val));
2530 tree max = TYPE_MAX_VALUE (TREE_TYPE (val));
2532 if (comp_code == GT_EXPR && compare_values (val, max) == 0)
2533 return false;
2535 if (comp_code == LT_EXPR && compare_values (val, min) == 0)
2536 return false;
2540 else
2542 /* FIXME. Handle SWITCH_EXPR. */
2543 gcc_unreachable ();
2546 register_new_assert_for (name, comp_code, val, NULL, e, si);
2547 return true;
2551 static bool find_assert_locations (basic_block bb);
2553 /* Determine whether the outgoing edges of BB should receive an
2554 ASSERT_EXPR for each of the operands of BB's last statement. The
2555 last statement of BB must be a COND_EXPR or a SWITCH_EXPR.
2557 If any of the sub-graphs rooted at BB have an interesting use of
2558 the predicate operands, an assert location node is added to the
2559 list of assertions for the corresponding operands. */
2561 static bool
2562 find_conditional_asserts (basic_block bb)
2564 bool need_assert;
2565 block_stmt_iterator last_si;
2566 tree op, last;
2567 edge_iterator ei;
2568 edge e;
2569 ssa_op_iter iter;
2571 need_assert = false;
2572 last_si = bsi_last (bb);
2573 last = bsi_stmt (last_si);
2575 /* Look for uses of the operands in each of the sub-graphs
2576 rooted at BB. We need to check each of the outgoing edges
2577 separately, so that we know what kind of ASSERT_EXPR to
2578 insert. */
2579 FOR_EACH_EDGE (e, ei, bb->succs)
2581 if (e->dest == bb)
2582 continue;
2584 /* Remove the COND_EXPR operands from the FOUND_IN_SUBGRAPH bitmap.
2585 Otherwise, when we finish traversing each of the sub-graphs, we
2586 won't know whether the variables were found in the sub-graphs or
2587 if they had been found in a block upstream from BB. */
2588 FOR_EACH_SSA_TREE_OPERAND (op, last, iter, SSA_OP_USE)
2589 RESET_BIT (found_in_subgraph, SSA_NAME_VERSION (op));
2591 /* Traverse the strictly dominated sub-graph rooted at E->DEST
2592 to determine if any of the operands in the conditional
2593 predicate are used. */
2594 if (e->dest != bb)
2595 need_assert |= find_assert_locations (e->dest);
2597 /* Register the necessary assertions for each operand in the
2598 conditional predicate. */
2599 FOR_EACH_SSA_TREE_OPERAND (op, last, iter, SSA_OP_USE)
2600 need_assert |= register_edge_assert_for (op, e, last_si);
2603 /* Finally, indicate that we have found the operands in the
2604 conditional. */
2605 FOR_EACH_SSA_TREE_OPERAND (op, last, iter, SSA_OP_USE)
2606 SET_BIT (found_in_subgraph, SSA_NAME_VERSION (op));
2608 return need_assert;
2612 /* Traverse all the statements in block BB looking for statements that
2613 may generate useful assertions for the SSA names in their operand.
2614 If a statement produces a useful assertion A for name N_i, then the
2615 list of assertions already generated for N_i is scanned to
2616 determine if A is actually needed.
2618 If N_i already had the assertion A at a location dominating the
2619 current location, then nothing needs to be done. Otherwise, the
2620 new location for A is recorded instead.
2622 1- For every statement S in BB, all the variables used by S are
2623 added to bitmap FOUND_IN_SUBGRAPH.
2625 2- If statement S uses an operand N in a way that exposes a known
2626 value range for N, then if N was not already generated by an
2627 ASSERT_EXPR, create a new assert location for N. For instance,
2628 if N is a pointer and the statement dereferences it, we can
2629 assume that N is not NULL.
2631 3- COND_EXPRs are a special case of #2. We can derive range
2632 information from the predicate but need to insert different
2633 ASSERT_EXPRs for each of the sub-graphs rooted at the
2634 conditional block. If the last statement of BB is a conditional
2635 expression of the form 'X op Y', then
2637 a) Remove X and Y from the set FOUND_IN_SUBGRAPH.
2639 b) If the conditional is the only entry point to the sub-graph
2640 corresponding to the THEN_CLAUSE, recurse into it. On
2641 return, if X and/or Y are marked in FOUND_IN_SUBGRAPH, then
2642 an ASSERT_EXPR is added for the corresponding variable.
2644 c) Repeat step (b) on the ELSE_CLAUSE.
2646 d) Mark X and Y in FOUND_IN_SUBGRAPH.
2648 For instance,
2650 if (a == 9)
2651 b = a;
2652 else
2653 b = c + 1;
2655 In this case, an assertion on the THEN clause is useful to
2656 determine that 'a' is always 9 on that edge. However, an assertion
2657 on the ELSE clause would be unnecessary.
2659 4- If BB does not end in a conditional expression, then we recurse
2660 into BB's dominator children.
2662 At the end of the recursive traversal, every SSA name will have a
2663 list of locations where ASSERT_EXPRs should be added. When a new
2664 location for name N is found, it is registered by calling
2665 register_new_assert_for. That function keeps track of all the
2666 registered assertions to prevent adding unnecessary assertions.
2667 For instance, if a pointer P_4 is dereferenced more than once in a
2668 dominator tree, only the location dominating all the dereference of
2669 P_4 will receive an ASSERT_EXPR.
2671 If this function returns true, then it means that there are names
2672 for which we need to generate ASSERT_EXPRs. Those assertions are
2673 inserted by process_assert_insertions.
2675 TODO. Handle SWITCH_EXPR. */
2677 static bool
2678 find_assert_locations (basic_block bb)
2680 block_stmt_iterator si;
2681 tree last, phi;
2682 bool need_assert;
2683 basic_block son;
2685 if (TEST_BIT (blocks_visited, bb->index))
2686 return false;
2688 SET_BIT (blocks_visited, bb->index);
2690 need_assert = false;
2692 /* Traverse all PHI nodes in BB marking used operands. */
2693 for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
2695 use_operand_p arg_p;
2696 ssa_op_iter i;
2698 FOR_EACH_PHI_ARG (arg_p, phi, i, SSA_OP_USE)
2700 tree arg = USE_FROM_PTR (arg_p);
2701 if (TREE_CODE (arg) == SSA_NAME)
2703 gcc_assert (is_gimple_reg (PHI_RESULT (phi)));
2704 SET_BIT (found_in_subgraph, SSA_NAME_VERSION (arg));
2709 /* Traverse all the statements in BB marking used names and looking
2710 for statements that may infer assertions for their used operands. */
2711 last = NULL_TREE;
2712 for (si = bsi_start (bb); !bsi_end_p (si); bsi_next (&si))
2714 tree stmt, op;
2715 ssa_op_iter i;
2717 stmt = bsi_stmt (si);
2719 /* See if we can derive an assertion for any of STMT's operands. */
2720 FOR_EACH_SSA_TREE_OPERAND (op, stmt, i, SSA_OP_USE)
2722 tree value;
2723 enum tree_code comp_code;
2725 /* Mark OP in bitmap FOUND_IN_SUBGRAPH. If STMT is inside
2726 the sub-graph of a conditional block, when we return from
2727 this recursive walk, our parent will use the
2728 FOUND_IN_SUBGRAPH bitset to determine if one of the
2729 operands it was looking for was present in the sub-graph. */
2730 SET_BIT (found_in_subgraph, SSA_NAME_VERSION (op));
2732 /* If OP is used only once, namely in this STMT, don't
2733 bother creating an ASSERT_EXPR for it. Such an
2734 ASSERT_EXPR would do nothing but increase compile time.
2735 Experiments show that with this simple check, we can save
2736 more than 20% of ASSERT_EXPRs. */
2737 if (has_single_use (op))
2738 continue;
2740 /* If OP is used in such a way that we can infer a value
2741 range for it, and we don't find a previous assertion for
2742 it, create a new assertion location node for OP. */
2743 if (infer_value_range (stmt, op, &comp_code, &value))
2745 register_new_assert_for (op, comp_code, value, bb, NULL, si);
2746 need_assert = true;
2750 /* Remember the last statement of the block. */
2751 last = stmt;
2754 /* If BB's last statement is a conditional expression
2755 involving integer operands, recurse into each of the sub-graphs
2756 rooted at BB to determine if we need to add ASSERT_EXPRs. */
2757 if (last
2758 && TREE_CODE (last) == COND_EXPR
2759 && !fp_predicate (COND_EXPR_COND (last))
2760 && !ZERO_SSA_OPERANDS (last, SSA_OP_USE))
2761 need_assert |= find_conditional_asserts (bb);
2763 /* Recurse into the dominator children of BB. */
2764 for (son = first_dom_son (CDI_DOMINATORS, bb);
2765 son;
2766 son = next_dom_son (CDI_DOMINATORS, son))
2767 need_assert |= find_assert_locations (son);
2769 return need_assert;
2773 /* Create an ASSERT_EXPR for NAME and insert it in the location
2774 indicated by LOC. Return true if we made any edge insertions. */
2776 static bool
2777 process_assert_insertions_for (tree name, assert_locus_t loc)
2779 /* Build the comparison expression NAME_i COMP_CODE VAL. */
2780 tree stmt, cond, assert_expr;
2781 edge_iterator ei;
2782 edge e;
2784 cond = build2 (loc->comp_code, boolean_type_node, name, loc->val);
2785 assert_expr = build_assert_expr_for (cond, name);
2787 if (loc->e)
2789 /* We have been asked to insert the assertion on an edge. This
2790 is used only by COND_EXPR and SWITCH_EXPR assertions. */
2791 #if defined ENABLE_CHECKING
2792 gcc_assert (TREE_CODE (bsi_stmt (loc->si)) == COND_EXPR
2793 || TREE_CODE (bsi_stmt (loc->si)) == SWITCH_EXPR);
2794 #endif
2796 bsi_insert_on_edge (loc->e, assert_expr);
2797 return true;
2800 /* Otherwise, we can insert right after LOC->SI iff the
2801 statement must not be the last statement in the block. */
2802 stmt = bsi_stmt (loc->si);
2803 if (!stmt_ends_bb_p (stmt))
2805 bsi_insert_after (&loc->si, assert_expr, BSI_SAME_STMT);
2806 return false;
2809 /* If STMT must be the last statement in BB, we can only insert new
2810 assertions on the non-abnormal edge out of BB. Note that since
2811 STMT is not control flow, there may only be one non-abnormal edge
2812 out of BB. */
2813 FOR_EACH_EDGE (e, ei, loc->bb->succs)
2814 if (!(e->flags & EDGE_ABNORMAL))
2816 bsi_insert_on_edge (e, assert_expr);
2817 return true;
2820 gcc_unreachable ();
2824 /* Process all the insertions registered for every name N_i registered
2825 in NEED_ASSERT_FOR. The list of assertions to be inserted are
2826 found in ASSERTS_FOR[i]. */
2828 static void
2829 process_assert_insertions (void)
2831 unsigned i;
2832 bitmap_iterator bi;
2833 bool update_edges_p = false;
2834 int num_asserts = 0;
2836 if (dump_file && (dump_flags & TDF_DETAILS))
2837 dump_all_asserts (dump_file);
2839 EXECUTE_IF_SET_IN_BITMAP (need_assert_for, 0, i, bi)
2841 assert_locus_t loc = asserts_for[i];
2842 gcc_assert (loc);
2844 while (loc)
2846 assert_locus_t next = loc->next;
2847 update_edges_p |= process_assert_insertions_for (ssa_name (i), loc);
2848 free (loc);
2849 loc = next;
2850 num_asserts++;
2854 if (update_edges_p)
2855 bsi_commit_edge_inserts ();
2857 if (dump_file && (dump_flags & TDF_STATS))
2858 fprintf (dump_file, "\nNumber of ASSERT_EXPR expressions inserted: %d\n\n",
2859 num_asserts);
2863 /* Traverse the flowgraph looking for conditional jumps to insert range
2864 expressions. These range expressions are meant to provide information
2865 to optimizations that need to reason in terms of value ranges. They
2866 will not be expanded into RTL. For instance, given:
2868 x = ...
2869 y = ...
2870 if (x < y)
2871 y = x - 2;
2872 else
2873 x = y + 3;
2875 this pass will transform the code into:
2877 x = ...
2878 y = ...
2879 if (x < y)
2881 x = ASSERT_EXPR <x, x < y>
2882 y = x - 2
2884 else
2886 y = ASSERT_EXPR <y, x <= y>
2887 x = y + 3
2890 The idea is that once copy and constant propagation have run, other
2891 optimizations will be able to determine what ranges of values can 'x'
2892 take in different paths of the code, simply by checking the reaching
2893 definition of 'x'. */
2895 static void
2896 insert_range_assertions (void)
2898 edge e;
2899 edge_iterator ei;
2900 bool update_ssa_p;
2902 found_in_subgraph = sbitmap_alloc (num_ssa_names);
2903 sbitmap_zero (found_in_subgraph);
2905 blocks_visited = sbitmap_alloc (last_basic_block);
2906 sbitmap_zero (blocks_visited);
2908 need_assert_for = BITMAP_ALLOC (NULL);
2909 asserts_for = xmalloc (num_ssa_names * sizeof (assert_locus_t));
2910 memset (asserts_for, 0, num_ssa_names * sizeof (assert_locus_t));
2912 calculate_dominance_info (CDI_DOMINATORS);
2914 update_ssa_p = false;
2915 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
2916 if (find_assert_locations (e->dest))
2917 update_ssa_p = true;
2919 if (update_ssa_p)
2921 process_assert_insertions ();
2922 update_ssa (TODO_update_ssa_no_phi);
2925 if (dump_file && (dump_flags & TDF_DETAILS))
2927 fprintf (dump_file, "\nSSA form after inserting ASSERT_EXPRs\n");
2928 dump_function_to_file (current_function_decl, dump_file, dump_flags);
2931 sbitmap_free (found_in_subgraph);
2932 free (asserts_for);
2933 BITMAP_FREE (need_assert_for);
2937 /* Convert range assertion expressions into the implied copies and
2938 copy propagate away the copies. Doing the trivial copy propagation
2939 here avoids the need to run the full copy propagation pass after
2940 VRP.
2942 FIXME, this will eventually lead to copy propagation removing the
2943 names that had useful range information attached to them. For
2944 instance, if we had the assertion N_i = ASSERT_EXPR <N_j, N_j > 3>,
2945 then N_i will have the range [3, +INF].
2947 However, by converting the assertion into the implied copy
2948 operation N_i = N_j, we will then copy-propagate N_j into the uses
2949 of N_i and lose the range information. We may want to hold on to
2950 ASSERT_EXPRs a little while longer as the ranges could be used in
2951 things like jump threading.
2953 The problem with keeping ASSERT_EXPRs around is that passes after
2954 VRP need to handle them appropriately.
2956 Another approach would be to make the range information a first
2957 class property of the SSA_NAME so that it can be queried from
2958 any pass. This is made somewhat more complex by the need for
2959 multiple ranges to be associated with one SSA_NAME. */
2961 static void
2962 remove_range_assertions (void)
2964 basic_block bb;
2965 block_stmt_iterator si;
2967 /* Note that the BSI iterator bump happens at the bottom of the
2968 loop and no bump is necessary if we're removing the statement
2969 referenced by the current BSI. */
2970 FOR_EACH_BB (bb)
2971 for (si = bsi_start (bb); !bsi_end_p (si);)
2973 tree stmt = bsi_stmt (si);
2975 if (TREE_CODE (stmt) == MODIFY_EXPR
2976 && TREE_CODE (TREE_OPERAND (stmt, 1)) == ASSERT_EXPR)
2978 tree rhs = TREE_OPERAND (stmt, 1);
2979 tree cond = fold (ASSERT_EXPR_COND (rhs));
2980 use_operand_p use_p;
2981 imm_use_iterator iter;
2983 gcc_assert (cond != boolean_false_node);
2984 TREE_OPERAND (stmt, 1) = ASSERT_EXPR_VAR (rhs);
2985 update_stmt (stmt);
2987 /* The statement is now a copy. Propagate the RHS into
2988 every use of the LHS. */
2989 FOR_EACH_IMM_USE_SAFE (use_p, iter, TREE_OPERAND (stmt, 0))
2991 SET_USE (use_p, ASSERT_EXPR_VAR (rhs));
2992 update_stmt (USE_STMT (use_p));
2995 /* And finally, remove the copy, it is not needed. */
2996 bsi_remove (&si);
2998 else
2999 bsi_next (&si);
3002 sbitmap_free (blocks_visited);
3006 /* Return true if STMT is interesting for VRP. */
3008 static bool
3009 stmt_interesting_for_vrp (tree stmt)
3011 if (TREE_CODE (stmt) == PHI_NODE
3012 && is_gimple_reg (PHI_RESULT (stmt))
3013 && (INTEGRAL_TYPE_P (TREE_TYPE (PHI_RESULT (stmt)))
3014 || POINTER_TYPE_P (TREE_TYPE (PHI_RESULT (stmt)))))
3015 return true;
3016 else if (TREE_CODE (stmt) == MODIFY_EXPR)
3018 tree lhs = TREE_OPERAND (stmt, 0);
3020 if (TREE_CODE (lhs) == SSA_NAME
3021 && (INTEGRAL_TYPE_P (TREE_TYPE (lhs))
3022 || POINTER_TYPE_P (TREE_TYPE (lhs)))
3023 && ZERO_SSA_OPERANDS (stmt, SSA_OP_ALL_VIRTUALS))
3024 return true;
3026 else if (TREE_CODE (stmt) == COND_EXPR || TREE_CODE (stmt) == SWITCH_EXPR)
3027 return true;
3029 return false;
3033 /* Initialize local data structures for VRP. */
3035 static void
3036 vrp_initialize (void)
3038 basic_block bb;
3040 vr_value = xmalloc (num_ssa_names * sizeof (value_range_t *));
3041 memset (vr_value, 0, num_ssa_names * sizeof (value_range_t *));
3043 FOR_EACH_BB (bb)
3045 block_stmt_iterator si;
3046 tree phi;
3048 for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
3050 if (!stmt_interesting_for_vrp (phi))
3052 tree lhs = PHI_RESULT (phi);
3053 set_value_range_to_varying (get_value_range (lhs));
3054 DONT_SIMULATE_AGAIN (phi) = true;
3056 else
3057 DONT_SIMULATE_AGAIN (phi) = false;
3060 for (si = bsi_start (bb); !bsi_end_p (si); bsi_next (&si))
3062 tree stmt = bsi_stmt (si);
3064 if (!stmt_interesting_for_vrp (stmt))
3066 ssa_op_iter i;
3067 tree def;
3068 FOR_EACH_SSA_TREE_OPERAND (def, stmt, i, SSA_OP_DEF)
3069 set_value_range_to_varying (get_value_range (def));
3070 DONT_SIMULATE_AGAIN (stmt) = true;
3072 else
3074 DONT_SIMULATE_AGAIN (stmt) = false;
3081 /* Visit assignment STMT. If it produces an interesting range, record
3082 the SSA name in *OUTPUT_P. */
3084 static enum ssa_prop_result
3085 vrp_visit_assignment (tree stmt, tree *output_p)
3087 tree lhs, rhs, def;
3088 ssa_op_iter iter;
3090 lhs = TREE_OPERAND (stmt, 0);
3091 rhs = TREE_OPERAND (stmt, 1);
3093 /* We only keep track of ranges in integral and pointer types. */
3094 if (TREE_CODE (lhs) == SSA_NAME
3095 && (INTEGRAL_TYPE_P (TREE_TYPE (lhs))
3096 || POINTER_TYPE_P (TREE_TYPE (lhs))))
3098 struct loop *l;
3099 value_range_t new_vr = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
3101 extract_range_from_expr (&new_vr, rhs);
3103 /* If STMT is inside a loop, we may be able to know something
3104 else about the range of LHS by examining scalar evolution
3105 information. */
3106 if (cfg_loops && (l = loop_containing_stmt (stmt)))
3107 adjust_range_with_scev (&new_vr, l, stmt, lhs);
3109 if (update_value_range (lhs, &new_vr))
3111 *output_p = lhs;
3113 if (dump_file && (dump_flags & TDF_DETAILS))
3115 fprintf (dump_file, "Found new range for ");
3116 print_generic_expr (dump_file, lhs, 0);
3117 fprintf (dump_file, ": ");
3118 dump_value_range (dump_file, &new_vr);
3119 fprintf (dump_file, "\n\n");
3122 if (new_vr.type == VR_VARYING)
3123 return SSA_PROP_VARYING;
3125 return SSA_PROP_INTERESTING;
3128 return SSA_PROP_NOT_INTERESTING;
3131 /* Every other statement produces no useful ranges. */
3132 FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_DEF)
3133 set_value_range_to_varying (get_value_range (def));
3135 return SSA_PROP_VARYING;
3139 /* Compare all the value ranges for names equivalent to VAR with VAL
3140 using comparison code COMP. Return the same value returned by
3141 compare_range_with_value. */
3143 static tree
3144 compare_name_with_value (enum tree_code comp, tree var, tree val)
3146 bitmap_iterator bi;
3147 unsigned i;
3148 bitmap e;
3149 tree retval, t;
3151 t = retval = NULL_TREE;
3153 /* Get the set of equivalences for VAR. */
3154 e = get_value_range (var)->equiv;
3156 /* Add VAR to its own set of equivalences so that VAR's value range
3157 is processed by this loop (otherwise, we would have to replicate
3158 the body of the loop just to check VAR's value range). */
3159 bitmap_set_bit (e, SSA_NAME_VERSION (var));
3161 EXECUTE_IF_SET_IN_BITMAP (e, 0, i, bi)
3163 value_range_t equiv_vr = *(vr_value[i]);
3165 /* If name N_i does not have a valid range, use N_i as its own
3166 range. This allows us to compare against names that may
3167 have N_i in their ranges. */
3168 if (equiv_vr.type == VR_VARYING || equiv_vr.type == VR_UNDEFINED)
3170 equiv_vr.type = VR_RANGE;
3171 equiv_vr.min = ssa_name (i);
3172 equiv_vr.max = ssa_name (i);
3175 t = compare_range_with_value (comp, &equiv_vr, val);
3176 if (t)
3178 /* All the ranges should compare the same against VAL. */
3179 gcc_assert (retval == NULL || t == retval);
3180 retval = t;
3184 /* Remove VAR from its own equivalence set. */
3185 bitmap_clear_bit (e, SSA_NAME_VERSION (var));
3187 if (retval)
3188 return retval;
3190 /* We couldn't find a non-NULL value for the predicate. */
3191 return NULL_TREE;
3195 /* Given a comparison code COMP and names N1 and N2, compare all the
3196 ranges equivalent to N1 against all the ranges equivalent to N2
3197 to determine the value of N1 COMP N2. Return the same value
3198 returned by compare_ranges. */
3200 static tree
3201 compare_names (enum tree_code comp, tree n1, tree n2)
3203 tree t, retval;
3204 bitmap e1, e2;
3205 bitmap_iterator bi1, bi2;
3206 unsigned i1, i2;
3208 /* Compare the ranges of every name equivalent to N1 against the
3209 ranges of every name equivalent to N2. */
3210 e1 = get_value_range (n1)->equiv;
3211 e2 = get_value_range (n2)->equiv;
3213 /* Add N1 and N2 to their own set of equivalences to avoid
3214 duplicating the body of the loop just to check N1 and N2
3215 ranges. */
3216 bitmap_set_bit (e1, SSA_NAME_VERSION (n1));
3217 bitmap_set_bit (e2, SSA_NAME_VERSION (n2));
3219 /* If the equivalence sets have a common intersection, then the two
3220 names can be compared without checking their ranges. */
3221 if (bitmap_intersect_p (e1, e2))
3223 bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
3224 bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
3226 return (comp == EQ_EXPR || comp == GE_EXPR || comp == LE_EXPR)
3227 ? boolean_true_node
3228 : boolean_false_node;
3231 /* Otherwise, compare all the equivalent ranges. First, add N1 and
3232 N2 to their own set of equivalences to avoid duplicating the body
3233 of the loop just to check N1 and N2 ranges. */
3234 EXECUTE_IF_SET_IN_BITMAP (e1, 0, i1, bi1)
3236 value_range_t vr1 = *(vr_value[i1]);
3238 /* If the range is VARYING or UNDEFINED, use the name itself. */
3239 if (vr1.type == VR_VARYING || vr1.type == VR_UNDEFINED)
3241 vr1.type = VR_RANGE;
3242 vr1.min = ssa_name (i1);
3243 vr1.max = ssa_name (i1);
3246 t = retval = NULL_TREE;
3247 EXECUTE_IF_SET_IN_BITMAP (e2, 0, i2, bi2)
3249 value_range_t vr2 = *(vr_value[i2]);
3251 if (vr2.type == VR_VARYING || vr2.type == VR_UNDEFINED)
3253 vr2.type = VR_RANGE;
3254 vr2.min = ssa_name (i2);
3255 vr2.max = ssa_name (i2);
3258 t = compare_ranges (comp, &vr1, &vr2);
3259 if (t)
3261 /* All the ranges in the equivalent sets should compare
3262 the same. */
3263 gcc_assert (retval == NULL || t == retval);
3264 retval = t;
3268 if (retval)
3270 bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
3271 bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
3272 return retval;
3276 /* None of the equivalent ranges are useful in computing this
3277 comparison. */
3278 bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
3279 bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
3280 return NULL_TREE;
3284 /* Given a conditional predicate COND, try to determine if COND yields
3285 true or false based on the value ranges of its operands. Return
3286 BOOLEAN_TRUE_NODE if the conditional always evaluates to true,
3287 BOOLEAN_FALSE_NODE if the conditional always evaluates to false, and,
3288 NULL if the conditional cannot be evaluated at compile time.
3290 If USE_EQUIV_P is true, the ranges of all the names equivalent with
3291 the operands in COND are used when trying to compute its value.
3292 This is only used during final substitution. During propagation,
3293 we only check the range of each variable and not its equivalents. */
3295 tree
3296 vrp_evaluate_conditional (tree cond, bool use_equiv_p)
3298 gcc_assert (TREE_CODE (cond) == SSA_NAME
3299 || TREE_CODE_CLASS (TREE_CODE (cond)) == tcc_comparison);
3301 if (TREE_CODE (cond) == SSA_NAME)
3303 value_range_t *vr;
3304 tree retval;
3306 if (use_equiv_p)
3307 retval = compare_name_with_value (NE_EXPR, cond, boolean_false_node);
3308 else
3310 value_range_t *vr = get_value_range (cond);
3311 retval = compare_range_with_value (NE_EXPR, vr, boolean_false_node);
3314 /* If COND has a known boolean range, return it. */
3315 if (retval)
3316 return retval;
3318 /* Otherwise, if COND has a symbolic range of exactly one value,
3319 return it. */
3320 vr = get_value_range (cond);
3321 if (vr->type == VR_RANGE && vr->min == vr->max)
3322 return vr->min;
3324 else
3326 tree op0 = TREE_OPERAND (cond, 0);
3327 tree op1 = TREE_OPERAND (cond, 1);
3329 /* We only deal with integral and pointer types. */
3330 if (!INTEGRAL_TYPE_P (TREE_TYPE (op0))
3331 && !POINTER_TYPE_P (TREE_TYPE (op0)))
3332 return NULL_TREE;
3334 if (use_equiv_p)
3336 if (TREE_CODE (op0) == SSA_NAME && TREE_CODE (op1) == SSA_NAME)
3337 return compare_names (TREE_CODE (cond), op0, op1);
3338 else if (TREE_CODE (op0) == SSA_NAME)
3339 return compare_name_with_value (TREE_CODE (cond), op0, op1);
3340 else if (TREE_CODE (op1) == SSA_NAME)
3341 return compare_name_with_value (
3342 swap_tree_comparison (TREE_CODE (cond)), op1, op0);
3344 else
3346 value_range_t *vr0, *vr1;
3348 vr0 = (TREE_CODE (op0) == SSA_NAME) ? get_value_range (op0) : NULL;
3349 vr1 = (TREE_CODE (op1) == SSA_NAME) ? get_value_range (op1) : NULL;
3351 if (vr0 && vr1)
3352 return compare_ranges (TREE_CODE (cond), vr0, vr1);
3353 else if (vr0 && vr1 == NULL)
3354 return compare_range_with_value (TREE_CODE (cond), vr0, op1);
3355 else if (vr0 == NULL && vr1)
3356 return compare_range_with_value (
3357 swap_tree_comparison (TREE_CODE (cond)), vr1, op0);
3361 /* Anything else cannot be computed statically. */
3362 return NULL_TREE;
3366 /* Visit conditional statement STMT. If we can determine which edge
3367 will be taken out of STMT's basic block, record it in
3368 *TAKEN_EDGE_P and return SSA_PROP_INTERESTING. Otherwise, return
3369 SSA_PROP_VARYING. */
3371 static enum ssa_prop_result
3372 vrp_visit_cond_stmt (tree stmt, edge *taken_edge_p)
3374 tree cond, val;
3376 *taken_edge_p = NULL;
3378 /* FIXME. Handle SWITCH_EXPRs. But first, the assert pass needs to
3379 add ASSERT_EXPRs for them. */
3380 if (TREE_CODE (stmt) == SWITCH_EXPR)
3381 return SSA_PROP_VARYING;
3383 cond = COND_EXPR_COND (stmt);
3385 if (dump_file && (dump_flags & TDF_DETAILS))
3387 tree use;
3388 ssa_op_iter i;
3390 fprintf (dump_file, "\nVisiting conditional with predicate: ");
3391 print_generic_expr (dump_file, cond, 0);
3392 fprintf (dump_file, "\nWith known ranges\n");
3394 FOR_EACH_SSA_TREE_OPERAND (use, stmt, i, SSA_OP_USE)
3396 fprintf (dump_file, "\t");
3397 print_generic_expr (dump_file, use, 0);
3398 fprintf (dump_file, ": ");
3399 dump_value_range (dump_file, vr_value[SSA_NAME_VERSION (use)]);
3402 fprintf (dump_file, "\n");
3405 /* Compute the value of the predicate COND by checking the known
3406 ranges of each of its operands.
3408 Note that we cannot evaluate all the equivalent ranges here
3409 because those ranges may not yet be final and with the current
3410 propagation strategy, we cannot determine when the value ranges
3411 of the names in the equivalence set have changed.
3413 For instance, given the following code fragment
3415 i_5 = PHI <8, i_13>
3417 i_14 = ASSERT_EXPR <i_5, i_5 != 0>
3418 if (i_14 == 1)
3421 Assume that on the first visit to i_14, i_5 has the temporary
3422 range [8, 8] because the second argument to the PHI function is
3423 not yet executable. We derive the range ~[0, 0] for i_14 and the
3424 equivalence set { i_5 }. So, when we visit 'if (i_14 == 1)' for
3425 the first time, since i_14 is equivalent to the range [8, 8], we
3426 determine that the predicate is always false.
3428 On the next round of propagation, i_13 is determined to be
3429 VARYING, which causes i_5 to drop down to VARYING. So, another
3430 visit to i_14 is scheduled. In this second visit, we compute the
3431 exact same range and equivalence set for i_14, namely ~[0, 0] and
3432 { i_5 }. But we did not have the previous range for i_5
3433 registered, so vrp_visit_assignment thinks that the range for
3434 i_14 has not changed. Therefore, the predicate 'if (i_14 == 1)'
3435 is not visited again, which stops propagation from visiting
3436 statements in the THEN clause of that if().
3438 To properly fix this we would need to keep the previous range
3439 value for the names in the equivalence set. This way we would've
3440 discovered that from one visit to the other i_5 changed from
3441 range [8, 8] to VR_VARYING.
3443 However, fixing this apparent limitation may not be worth the
3444 additional checking. Testing on several code bases (GCC, DLV,
3445 MICO, TRAMP3D and SPEC2000) showed that doing this results in
3446 4 more predicates folded in SPEC. */
3447 val = vrp_evaluate_conditional (cond, false);
3448 if (val)
3449 *taken_edge_p = find_taken_edge (bb_for_stmt (stmt), val);
3451 if (dump_file && (dump_flags & TDF_DETAILS))
3453 fprintf (dump_file, "\nPredicate evaluates to: ");
3454 if (val == NULL_TREE)
3455 fprintf (dump_file, "DON'T KNOW\n");
3456 else
3457 print_generic_stmt (dump_file, val, 0);
3460 return (*taken_edge_p) ? SSA_PROP_INTERESTING : SSA_PROP_VARYING;
3464 /* Evaluate statement STMT. If the statement produces a useful range,
3465 return SSA_PROP_INTERESTING and record the SSA name with the
3466 interesting range into *OUTPUT_P.
3468 If STMT is a conditional branch and we can determine its truth
3469 value, the taken edge is recorded in *TAKEN_EDGE_P.
3471 If STMT produces a varying value, return SSA_PROP_VARYING. */
3473 static enum ssa_prop_result
3474 vrp_visit_stmt (tree stmt, edge *taken_edge_p, tree *output_p)
3476 tree def;
3477 ssa_op_iter iter;
3478 stmt_ann_t ann;
3480 if (dump_file && (dump_flags & TDF_DETAILS))
3482 fprintf (dump_file, "\nVisiting statement:\n");
3483 print_generic_stmt (dump_file, stmt, dump_flags);
3484 fprintf (dump_file, "\n");
3487 ann = stmt_ann (stmt);
3488 if (TREE_CODE (stmt) == MODIFY_EXPR
3489 && ZERO_SSA_OPERANDS (stmt, SSA_OP_ALL_VIRTUALS))
3490 return vrp_visit_assignment (stmt, output_p);
3491 else if (TREE_CODE (stmt) == COND_EXPR || TREE_CODE (stmt) == SWITCH_EXPR)
3492 return vrp_visit_cond_stmt (stmt, taken_edge_p);
3494 /* All other statements produce nothing of interest for VRP, so mark
3495 their outputs varying and prevent further simulation. */
3496 FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_DEF)
3497 set_value_range_to_varying (get_value_range (def));
3499 return SSA_PROP_VARYING;
3503 /* Meet operation for value ranges. Given two value ranges VR0 and
3504 VR1, store in VR0 the result of meeting VR0 and VR1.
3506 The meeting rules are as follows:
3508 1- If VR0 and VR1 have an empty intersection, set VR0 to VR_VARYING.
3510 2- If VR0 and VR1 have a non-empty intersection, set VR0 to the
3511 union of VR0 and VR1. */
3513 static void
3514 vrp_meet (value_range_t *vr0, value_range_t *vr1)
3516 if (vr0->type == VR_UNDEFINED)
3518 copy_value_range (vr0, vr1);
3519 return;
3522 if (vr1->type == VR_UNDEFINED)
3524 /* Nothing to do. VR0 already has the resulting range. */
3525 return;
3528 if (vr0->type == VR_VARYING)
3530 /* Nothing to do. VR0 already has the resulting range. */
3531 return;
3534 if (vr1->type == VR_VARYING)
3536 set_value_range_to_varying (vr0);
3537 return;
3540 if (vr0->type == VR_RANGE && vr1->type == VR_RANGE)
3542 /* If VR0 and VR1 have a non-empty intersection, compute the
3543 union of both ranges. */
3544 if (value_ranges_intersect_p (vr0, vr1))
3546 int cmp;
3547 tree min, max;
3549 /* The lower limit of the new range is the minimum of the
3550 two ranges. If they cannot be compared, the result is
3551 VARYING. */
3552 cmp = compare_values (vr0->min, vr1->min);
3553 if (cmp == 0 || cmp == 1)
3554 min = vr1->min;
3555 else if (cmp == -1)
3556 min = vr0->min;
3557 else
3559 set_value_range_to_varying (vr0);
3560 return;
3563 /* Similarly, the upper limit of the new range is the
3564 maximum of the two ranges. If they cannot be compared,
3565 the result is VARYING. */
3566 cmp = compare_values (vr0->max, vr1->max);
3567 if (cmp == 0 || cmp == -1)
3568 max = vr1->max;
3569 else if (cmp == 1)
3570 max = vr0->max;
3571 else
3573 set_value_range_to_varying (vr0);
3574 return;
3577 /* The resulting set of equivalences is the intersection of
3578 the two sets. */
3579 if (vr0->equiv && vr1->equiv && vr0->equiv != vr1->equiv)
3580 bitmap_and_into (vr0->equiv, vr1->equiv);
3581 else if (vr0->equiv && !vr1->equiv)
3582 bitmap_clear (vr0->equiv);
3584 set_value_range (vr0, vr0->type, min, max, vr0->equiv);
3586 else
3587 goto no_meet;
3589 else if (vr0->type == VR_ANTI_RANGE && vr1->type == VR_ANTI_RANGE)
3591 /* Two anti-ranges meet only if they are both identical. */
3592 if (compare_values (vr0->min, vr1->min) == 0
3593 && compare_values (vr0->max, vr1->max) == 0
3594 && compare_values (vr0->min, vr0->max) == 0)
3596 /* The resulting set of equivalences is the intersection of
3597 the two sets. */
3598 if (vr0->equiv && vr1->equiv && vr0->equiv != vr1->equiv)
3599 bitmap_and_into (vr0->equiv, vr1->equiv);
3600 else if (vr0->equiv && !vr1->equiv)
3601 bitmap_clear (vr0->equiv);
3603 else
3604 goto no_meet;
3606 else if (vr0->type == VR_ANTI_RANGE || vr1->type == VR_ANTI_RANGE)
3608 /* A numeric range [VAL1, VAL2] and an anti-range ~[VAL3, VAL4]
3609 meet only if the ranges have an empty intersection. The
3610 result of the meet operation is the anti-range. */
3611 if (!symbolic_range_p (vr0)
3612 && !symbolic_range_p (vr1)
3613 && !value_ranges_intersect_p (vr0, vr1))
3615 /* Copy most of VR1 into VR0. Don't copy VR1's equivalence
3616 set. We need to compute the intersection of the two
3617 equivalence sets. */
3618 if (vr1->type == VR_ANTI_RANGE)
3619 set_value_range (vr0, vr1->type, vr1->min, vr1->max, vr0->equiv);
3621 /* The resulting set of equivalences is the intersection of
3622 the two sets. */
3623 if (vr0->equiv && vr1->equiv && vr0->equiv != vr1->equiv)
3624 bitmap_and_into (vr0->equiv, vr1->equiv);
3625 else if (vr0->equiv && !vr1->equiv)
3626 bitmap_clear (vr0->equiv);
3628 else
3629 goto no_meet;
3631 else
3632 gcc_unreachable ();
3634 return;
3636 no_meet:
3637 /* The two range VR0 and VR1 do not meet. Before giving up and
3638 setting the result to VARYING, see if we can at least derive a
3639 useful anti-range. FIXME, all this nonsense about distinguishing
3640 anti-ranges from ranges is necessary because of the odd
3641 semantics of range_includes_zero_p and friends. */
3642 if (!symbolic_range_p (vr0)
3643 && ((vr0->type == VR_RANGE && !range_includes_zero_p (vr0))
3644 || (vr0->type == VR_ANTI_RANGE && range_includes_zero_p (vr0)))
3645 && !symbolic_range_p (vr1)
3646 && ((vr1->type == VR_RANGE && !range_includes_zero_p (vr1))
3647 || (vr1->type == VR_ANTI_RANGE && range_includes_zero_p (vr1))))
3649 set_value_range_to_nonnull (vr0, TREE_TYPE (vr0->min));
3651 /* Since this meet operation did not result from the meeting of
3652 two equivalent names, VR0 cannot have any equivalences. */
3653 if (vr0->equiv)
3654 bitmap_clear (vr0->equiv);
3656 else
3657 set_value_range_to_varying (vr0);
3661 /* Visit all arguments for PHI node PHI that flow through executable
3662 edges. If a valid value range can be derived from all the incoming
3663 value ranges, set a new range for the LHS of PHI. */
3665 static enum ssa_prop_result
3666 vrp_visit_phi_node (tree phi)
3668 int i;
3669 tree lhs = PHI_RESULT (phi);
3670 value_range_t *lhs_vr = get_value_range (lhs);
3671 value_range_t vr_result = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
3673 copy_value_range (&vr_result, lhs_vr);
3675 if (dump_file && (dump_flags & TDF_DETAILS))
3677 fprintf (dump_file, "\nVisiting PHI node: ");
3678 print_generic_expr (dump_file, phi, dump_flags);
3681 for (i = 0; i < PHI_NUM_ARGS (phi); i++)
3683 edge e = PHI_ARG_EDGE (phi, i);
3685 if (dump_file && (dump_flags & TDF_DETAILS))
3687 fprintf (dump_file,
3688 "\n Argument #%d (%d -> %d %sexecutable)\n",
3689 i, e->src->index, e->dest->index,
3690 (e->flags & EDGE_EXECUTABLE) ? "" : "not ");
3693 if (e->flags & EDGE_EXECUTABLE)
3695 tree arg = PHI_ARG_DEF (phi, i);
3696 value_range_t vr_arg;
3698 if (TREE_CODE (arg) == SSA_NAME)
3699 vr_arg = *(get_value_range (arg));
3700 else
3702 vr_arg.type = VR_RANGE;
3703 vr_arg.min = arg;
3704 vr_arg.max = arg;
3705 vr_arg.equiv = NULL;
3708 if (dump_file && (dump_flags & TDF_DETAILS))
3710 fprintf (dump_file, "\t");
3711 print_generic_expr (dump_file, arg, dump_flags);
3712 fprintf (dump_file, "\n\tValue: ");
3713 dump_value_range (dump_file, &vr_arg);
3714 fprintf (dump_file, "\n");
3717 vrp_meet (&vr_result, &vr_arg);
3719 if (vr_result.type == VR_VARYING)
3720 break;
3724 if (vr_result.type == VR_VARYING)
3725 goto varying;
3727 /* To prevent infinite iterations in the algorithm, derive ranges
3728 when the new value is slightly bigger or smaller than the
3729 previous one. */
3730 if (lhs_vr->type == VR_RANGE && vr_result.type == VR_RANGE)
3732 if (!POINTER_TYPE_P (TREE_TYPE (lhs)))
3734 int cmp_min = compare_values (lhs_vr->min, vr_result.min);
3735 int cmp_max = compare_values (lhs_vr->max, vr_result.max);
3737 /* If the new minimum is smaller or larger than the previous
3738 one, go all the way to -INF. In the first case, to avoid
3739 iterating millions of times to reach -INF, and in the
3740 other case to avoid infinite bouncing between different
3741 minimums. */
3742 if (cmp_min > 0 || cmp_min < 0)
3743 vr_result.min = TYPE_MIN_VALUE (TREE_TYPE (vr_result.min));
3745 /* Similarly, if the new maximum is smaller or larger than
3746 the previous one, go all the way to +INF. */
3747 if (cmp_max < 0 || cmp_max > 0)
3748 vr_result.max = TYPE_MAX_VALUE (TREE_TYPE (vr_result.max));
3750 /* If we ended up with a (-INF, +INF) range, set it to
3751 VARYING. */
3752 if (vr_result.min == TYPE_MIN_VALUE (TREE_TYPE (vr_result.min))
3753 && vr_result.max == TYPE_MAX_VALUE (TREE_TYPE (vr_result.max)))
3754 goto varying;
3758 /* If the new range is different than the previous value, keep
3759 iterating. */
3760 if (update_value_range (lhs, &vr_result))
3761 return SSA_PROP_INTERESTING;
3763 /* Nothing changed, don't add outgoing edges. */
3764 return SSA_PROP_NOT_INTERESTING;
3766 /* No match found. Set the LHS to VARYING. */
3767 varying:
3768 set_value_range_to_varying (lhs_vr);
3769 return SSA_PROP_VARYING;
3772 /* Simplify a division or modulo operator to a right shift or
3773 bitwise and if the first operand is unsigned or is greater
3774 than zero and the second operand is an exact power of two. */
3776 static void
3777 simplify_div_or_mod_using_ranges (tree stmt, tree rhs, enum tree_code rhs_code)
3779 tree val = NULL;
3780 tree op = TREE_OPERAND (rhs, 0);
3781 value_range_t *vr = get_value_range (TREE_OPERAND (rhs, 0));
3783 if (TYPE_UNSIGNED (TREE_TYPE (op)))
3785 val = integer_one_node;
3787 else
3789 val = compare_range_with_value (GT_EXPR, vr, integer_zero_node);
3792 if (val && integer_onep (val))
3794 tree t;
3795 tree op0 = TREE_OPERAND (rhs, 0);
3796 tree op1 = TREE_OPERAND (rhs, 1);
3798 if (rhs_code == TRUNC_DIV_EXPR)
3800 t = build_int_cst (NULL_TREE, tree_log2 (op1));
3801 t = build2 (RSHIFT_EXPR, TREE_TYPE (op0), op0, t);
3803 else
3805 t = build_int_cst (TREE_TYPE (op1), 1);
3806 t = int_const_binop (MINUS_EXPR, op1, t, 0);
3807 t = fold_convert (TREE_TYPE (op0), t);
3808 t = build2 (BIT_AND_EXPR, TREE_TYPE (op0), op0, t);
3811 TREE_OPERAND (stmt, 1) = t;
3812 update_stmt (stmt);
3816 /* If the operand to an ABS_EXPR is >= 0, then eliminate the
3817 ABS_EXPR. If the operand is <= 0, then simplify the
3818 ABS_EXPR into a NEGATE_EXPR. */
3820 static void
3821 simplify_abs_using_ranges (tree stmt, tree rhs)
3823 tree val = NULL;
3824 tree op = TREE_OPERAND (rhs, 0);
3825 tree type = TREE_TYPE (op);
3826 value_range_t *vr = get_value_range (TREE_OPERAND (rhs, 0));
3828 if (TYPE_UNSIGNED (type))
3830 val = integer_zero_node;
3832 else if (vr)
3834 val = compare_range_with_value (LE_EXPR, vr, integer_zero_node);
3835 if (!val)
3837 val = compare_range_with_value (GE_EXPR, vr, integer_zero_node);
3839 if (val)
3841 if (integer_zerop (val))
3842 val = integer_one_node;
3843 else if (integer_onep (val))
3844 val = integer_zero_node;
3848 if (val
3849 && (integer_onep (val) || integer_zerop (val)))
3851 tree t;
3853 if (integer_onep (val))
3854 t = build1 (NEGATE_EXPR, TREE_TYPE (op), op);
3855 else
3856 t = op;
3858 TREE_OPERAND (stmt, 1) = t;
3859 update_stmt (stmt);
3864 /* We are comparing trees OP0 and OP1 using COND_CODE. OP0 has
3865 a known value range VR.
3867 If there is one and only one value which will satisfy the
3868 conditional, then return that value. Else return NULL. */
3870 static tree
3871 test_for_singularity (enum tree_code cond_code, tree op0,
3872 tree op1, value_range_t *vr)
3874 tree min = NULL;
3875 tree max = NULL;
3877 /* Extract minimum/maximum values which satisfy the
3878 the conditional as it was written. */
3879 if (cond_code == LE_EXPR || cond_code == LT_EXPR)
3881 min = TYPE_MIN_VALUE (TREE_TYPE (op0));
3883 max = op1;
3884 if (cond_code == LT_EXPR)
3886 tree one = build_int_cst (TREE_TYPE (op0), 1);
3887 max = fold_build2 (MINUS_EXPR, TREE_TYPE (op0), max, one);
3890 else if (cond_code == GE_EXPR || cond_code == GT_EXPR)
3892 max = TYPE_MAX_VALUE (TREE_TYPE (op0));
3894 min = op1;
3895 if (cond_code == GT_EXPR)
3897 tree one = build_int_cst (TREE_TYPE (op0), 1);
3898 max = fold_build2 (PLUS_EXPR, TREE_TYPE (op0), max, one);
3902 /* Now refine the minimum and maximum values using any
3903 value range information we have for op0. */
3904 if (min && max)
3906 if (compare_values (vr->min, min) == -1)
3907 min = min;
3908 else
3909 min = vr->min;
3910 if (compare_values (vr->max, max) == 1)
3911 max = max;
3912 else
3913 max = vr->max;
3915 /* If the new min/max values have converged to a
3916 single value, then there is only one value which
3917 can satisfy the condition, return that value. */
3918 if (min == max && is_gimple_min_invariant (min))
3919 return min;
3921 return NULL;
3924 /* Simplify a conditional using a relational operator to an equality
3925 test if the range information indicates only one value can satisfy
3926 the original conditional. */
3928 static void
3929 simplify_cond_using_ranges (tree stmt)
3931 tree cond = COND_EXPR_COND (stmt);
3932 tree op0 = TREE_OPERAND (cond, 0);
3933 tree op1 = TREE_OPERAND (cond, 1);
3934 enum tree_code cond_code = TREE_CODE (cond);
3936 if (cond_code != NE_EXPR
3937 && cond_code != EQ_EXPR
3938 && TREE_CODE (op0) == SSA_NAME
3939 && INTEGRAL_TYPE_P (TREE_TYPE (op0))
3940 && is_gimple_min_invariant (op1))
3942 value_range_t *vr = get_value_range (op0);
3944 /* If we have range information for OP0, then we might be
3945 able to simplify this conditional. */
3946 if (vr->type == VR_RANGE)
3948 tree new = test_for_singularity (cond_code, op0, op1, vr);
3950 if (new)
3952 if (dump_file)
3954 fprintf (dump_file, "Simplified relational ");
3955 print_generic_expr (dump_file, cond, 0);
3956 fprintf (dump_file, " into ");
3959 COND_EXPR_COND (stmt)
3960 = build2 (EQ_EXPR, boolean_type_node, op0, new);
3961 update_stmt (stmt);
3963 if (dump_file)
3965 print_generic_expr (dump_file, COND_EXPR_COND (stmt), 0);
3966 fprintf (dump_file, "\n");
3968 return;
3972 /* Try again after inverting the condition. We only deal
3973 with integral types here, so no need to worry about
3974 issues with inverting FP comparisons. */
3975 cond_code = invert_tree_comparison (cond_code, false);
3976 new = test_for_singularity (cond_code, op0, op1, vr);
3978 if (new)
3980 if (dump_file)
3982 fprintf (dump_file, "Simplified relational ");
3983 print_generic_expr (dump_file, cond, 0);
3984 fprintf (dump_file, " into ");
3987 COND_EXPR_COND (stmt)
3988 = build2 (NE_EXPR, boolean_type_node, op0, new);
3989 update_stmt (stmt);
3991 if (dump_file)
3993 print_generic_expr (dump_file, COND_EXPR_COND (stmt), 0);
3994 fprintf (dump_file, "\n");
3996 return;
4003 /* Simplify STMT using ranges if possible. */
4005 void
4006 simplify_stmt_using_ranges (tree stmt)
4008 if (TREE_CODE (stmt) == MODIFY_EXPR)
4010 tree rhs = TREE_OPERAND (stmt, 1);
4011 enum tree_code rhs_code = TREE_CODE (rhs);
4013 /* Transform TRUNC_DIV_EXPR and TRUNC_MOD_EXPR into RSHIFT_EXPR
4014 and BIT_AND_EXPR respectively if the first operand is greater
4015 than zero and the second operand is an exact power of two. */
4016 if ((rhs_code == TRUNC_DIV_EXPR || rhs_code == TRUNC_MOD_EXPR)
4017 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (rhs, 0)))
4018 && integer_pow2p (TREE_OPERAND (rhs, 1)))
4019 simplify_div_or_mod_using_ranges (stmt, rhs, rhs_code);
4021 /* Transform ABS (X) into X or -X as appropriate. */
4022 if (rhs_code == ABS_EXPR
4023 && TREE_CODE (TREE_OPERAND (rhs, 0)) == SSA_NAME
4024 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (rhs, 0))))
4025 simplify_abs_using_ranges (stmt, rhs);
4027 else if (TREE_CODE (stmt) == COND_EXPR
4028 && COMPARISON_CLASS_P (COND_EXPR_COND (stmt)))
4030 simplify_cond_using_ranges (stmt);
4036 /* Traverse all the blocks folding conditionals with known ranges. */
4038 static void
4039 vrp_finalize (void)
4041 size_t i;
4042 prop_value_t *single_val_range;
4043 bool do_value_subst_p;
4045 if (dump_file)
4047 fprintf (dump_file, "\nValue ranges after VRP:\n\n");
4048 dump_all_value_ranges (dump_file);
4049 fprintf (dump_file, "\n");
4052 /* We may have ended with ranges that have exactly one value. Those
4053 values can be substituted as any other copy/const propagated
4054 value using substitute_and_fold. */
4055 single_val_range = xmalloc (num_ssa_names * sizeof (*single_val_range));
4056 memset (single_val_range, 0, num_ssa_names * sizeof (*single_val_range));
4058 do_value_subst_p = false;
4059 for (i = 0; i < num_ssa_names; i++)
4060 if (vr_value[i]
4061 && vr_value[i]->type == VR_RANGE
4062 && vr_value[i]->min == vr_value[i]->max)
4064 single_val_range[i].value = vr_value[i]->min;
4065 do_value_subst_p = true;
4068 if (!do_value_subst_p)
4070 /* We found no single-valued ranges, don't waste time trying to
4071 do single value substitution in substitute_and_fold. */
4072 free (single_val_range);
4073 single_val_range = NULL;
4076 substitute_and_fold (single_val_range, true);
4078 /* Free allocated memory. */
4079 for (i = 0; i < num_ssa_names; i++)
4080 if (vr_value[i])
4082 BITMAP_FREE (vr_value[i]->equiv);
4083 free (vr_value[i]);
4086 free (single_val_range);
4087 free (vr_value);
4091 /* Main entry point to VRP (Value Range Propagation). This pass is
4092 loosely based on J. R. C. Patterson, ``Accurate Static Branch
4093 Prediction by Value Range Propagation,'' in SIGPLAN Conference on
4094 Programming Language Design and Implementation, pp. 67-78, 1995.
4095 Also available at http://citeseer.ist.psu.edu/patterson95accurate.html
4097 This is essentially an SSA-CCP pass modified to deal with ranges
4098 instead of constants.
4100 While propagating ranges, we may find that two or more SSA name
4101 have equivalent, though distinct ranges. For instance,
4103 1 x_9 = p_3->a;
4104 2 p_4 = ASSERT_EXPR <p_3, p_3 != 0>
4105 3 if (p_4 == q_2)
4106 4 p_5 = ASSERT_EXPR <p_4, p_4 == q_2>;
4107 5 endif
4108 6 if (q_2)
4110 In the code above, pointer p_5 has range [q_2, q_2], but from the
4111 code we can also determine that p_5 cannot be NULL and, if q_2 had
4112 a non-varying range, p_5's range should also be compatible with it.
4114 These equivalences are created by two expressions: ASSERT_EXPR and
4115 copy operations. Since p_5 is an assertion on p_4, and p_4 was the
4116 result of another assertion, then we can use the fact that p_5 and
4117 p_4 are equivalent when evaluating p_5's range.
4119 Together with value ranges, we also propagate these equivalences
4120 between names so that we can take advantage of information from
4121 multiple ranges when doing final replacement. Note that this
4122 equivalency relation is transitive but not symmetric.
4124 In the example above, p_5 is equivalent to p_4, q_2 and p_3, but we
4125 cannot assert that q_2 is equivalent to p_5 because q_2 may be used
4126 in contexts where that assertion does not hold (e.g., in line 6).
4128 TODO, the main difference between this pass and Patterson's is that
4129 we do not propagate edge probabilities. We only compute whether
4130 edges can be taken or not. That is, instead of having a spectrum
4131 of jump probabilities between 0 and 1, we only deal with 0, 1 and
4132 DON'T KNOW. In the future, it may be worthwhile to propagate
4133 probabilities to aid branch prediction. */
4135 static void
4136 execute_vrp (void)
4138 insert_range_assertions ();
4140 cfg_loops = loop_optimizer_init (NULL);
4141 if (cfg_loops)
4142 scev_initialize (cfg_loops);
4144 vrp_initialize ();
4145 ssa_propagate (vrp_visit_stmt, vrp_visit_phi_node);
4146 vrp_finalize ();
4148 if (cfg_loops)
4150 scev_finalize ();
4151 loop_optimizer_finalize (cfg_loops, NULL);
4152 current_loops = NULL;
4155 remove_range_assertions ();
4158 static bool
4159 gate_vrp (void)
4161 return flag_tree_vrp != 0;
4164 struct tree_opt_pass pass_vrp =
4166 "vrp", /* name */
4167 gate_vrp, /* gate */
4168 execute_vrp, /* execute */
4169 NULL, /* sub */
4170 NULL, /* next */
4171 0, /* static_pass_number */
4172 TV_TREE_VRP, /* tv_id */
4173 PROP_ssa | PROP_alias, /* properties_required */
4174 0, /* properties_provided */
4175 0, /* properties_destroyed */
4176 0, /* todo_flags_start */
4177 TODO_cleanup_cfg
4178 | TODO_ggc_collect
4179 | TODO_verify_ssa
4180 | TODO_dump_func
4181 | TODO_update_ssa, /* todo_flags_finish */
4182 0 /* letter */