Remove old autovect-branch by moving to "dead" directory.
[official-gcc.git] / old-autovect-branch / gcc / config / xtensa / xtensa.h
blobe541e2ad8e27af719992f7272c0c3c166c0ebbc3
1 /* Definitions of Tensilica's Xtensa target machine for GNU compiler.
2 Copyright 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
3 Contributed by Bob Wilson (bwilson@tensilica.com) at Tensilica.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
20 02110-1301, USA. */
22 /* Get Xtensa configuration settings */
23 #include "xtensa-config.h"
25 /* Standard GCC variables that we reference. */
26 extern int current_function_calls_alloca;
27 extern int optimize;
29 /* External variables defined in xtensa.c. */
31 /* comparison type */
32 enum cmp_type {
33 CMP_SI, /* four byte integers */
34 CMP_DI, /* eight byte integers */
35 CMP_SF, /* single precision floats */
36 CMP_DF, /* double precision floats */
37 CMP_MAX /* max comparison type */
40 extern struct rtx_def * branch_cmp[2]; /* operands for compare */
41 extern enum cmp_type branch_type; /* what type of branch to use */
42 extern unsigned xtensa_current_frame_size;
44 /* Macros used in the machine description to select various Xtensa
45 configuration options. */
46 #define TARGET_BIG_ENDIAN XCHAL_HAVE_BE
47 #define TARGET_DENSITY XCHAL_HAVE_DENSITY
48 #define TARGET_MAC16 XCHAL_HAVE_MAC16
49 #define TARGET_MUL16 XCHAL_HAVE_MUL16
50 #define TARGET_MUL32 XCHAL_HAVE_MUL32
51 #define TARGET_DIV32 XCHAL_HAVE_DIV32
52 #define TARGET_NSA XCHAL_HAVE_NSA
53 #define TARGET_MINMAX XCHAL_HAVE_MINMAX
54 #define TARGET_SEXT XCHAL_HAVE_SEXT
55 #define TARGET_BOOLEANS XCHAL_HAVE_BOOLEANS
56 #define TARGET_HARD_FLOAT XCHAL_HAVE_FP
57 #define TARGET_HARD_FLOAT_DIV XCHAL_HAVE_FP_DIV
58 #define TARGET_HARD_FLOAT_RECIP XCHAL_HAVE_FP_RECIP
59 #define TARGET_HARD_FLOAT_SQRT XCHAL_HAVE_FP_SQRT
60 #define TARGET_HARD_FLOAT_RSQRT XCHAL_HAVE_FP_RSQRT
61 #define TARGET_ABS XCHAL_HAVE_ABS
62 #define TARGET_ADDX XCHAL_HAVE_ADDX
64 #define TARGET_DEFAULT ( \
65 (XCHAL_HAVE_L32R ? 0 : MASK_CONST16))
67 #define OVERRIDE_OPTIONS override_options ()
69 /* Reordering blocks for Xtensa is not a good idea unless the compiler
70 understands the range of conditional branches. Currently all branch
71 relaxation for Xtensa is handled in the assembler, so GCC cannot do a
72 good job of reordering blocks. Do not enable reordering unless it is
73 explicitly requested. */
74 #define OPTIMIZATION_OPTIONS(LEVEL, SIZE) \
75 do \
76 { \
77 flag_reorder_blocks = 0; \
78 } \
79 while (0)
82 /* Target CPU builtins. */
83 #define TARGET_CPU_CPP_BUILTINS() \
84 do { \
85 builtin_assert ("cpu=xtensa"); \
86 builtin_assert ("machine=xtensa"); \
87 builtin_define ("__xtensa__"); \
88 builtin_define ("__XTENSA__"); \
89 builtin_define ("__XTENSA_WINDOWED_ABI__"); \
90 builtin_define (TARGET_BIG_ENDIAN ? "__XTENSA_EB__" : "__XTENSA_EL__"); \
91 if (!TARGET_HARD_FLOAT) \
92 builtin_define ("__XTENSA_SOFT_FLOAT__"); \
93 } while (0)
95 #define CPP_SPEC " %(subtarget_cpp_spec) "
97 #ifndef SUBTARGET_CPP_SPEC
98 #define SUBTARGET_CPP_SPEC ""
99 #endif
101 #define EXTRA_SPECS \
102 { "subtarget_cpp_spec", SUBTARGET_CPP_SPEC },
104 #ifdef __XTENSA_EB__
105 #define LIBGCC2_WORDS_BIG_ENDIAN 1
106 #else
107 #define LIBGCC2_WORDS_BIG_ENDIAN 0
108 #endif
110 /* Show we can debug even without a frame pointer. */
111 #define CAN_DEBUG_WITHOUT_FP
114 /* Target machine storage layout */
116 /* Define this if most significant bit is lowest numbered
117 in instructions that operate on numbered bit-fields. */
118 #define BITS_BIG_ENDIAN (TARGET_BIG_ENDIAN != 0)
120 /* Define this if most significant byte of a word is the lowest numbered. */
121 #define BYTES_BIG_ENDIAN (TARGET_BIG_ENDIAN != 0)
123 /* Define this if most significant word of a multiword number is the lowest. */
124 #define WORDS_BIG_ENDIAN (TARGET_BIG_ENDIAN != 0)
126 #define MAX_BITS_PER_WORD 32
128 /* Width of a word, in units (bytes). */
129 #define UNITS_PER_WORD 4
130 #define MIN_UNITS_PER_WORD 4
132 /* Width of a floating point register. */
133 #define UNITS_PER_FPREG 4
135 /* Size in bits of various types on the target machine. */
136 #define INT_TYPE_SIZE 32
137 #define SHORT_TYPE_SIZE 16
138 #define LONG_TYPE_SIZE 32
139 #define LONG_LONG_TYPE_SIZE 64
140 #define FLOAT_TYPE_SIZE 32
141 #define DOUBLE_TYPE_SIZE 64
142 #define LONG_DOUBLE_TYPE_SIZE 64
144 /* Allocation boundary (in *bits*) for storing pointers in memory. */
145 #define POINTER_BOUNDARY 32
147 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
148 #define PARM_BOUNDARY 32
150 /* Allocation boundary (in *bits*) for the code of a function. */
151 #define FUNCTION_BOUNDARY 32
153 /* Alignment of field after 'int : 0' in a structure. */
154 #define EMPTY_FIELD_BOUNDARY 32
156 /* Every structure's size must be a multiple of this. */
157 #define STRUCTURE_SIZE_BOUNDARY 8
159 /* There is no point aligning anything to a rounder boundary than this. */
160 #define BIGGEST_ALIGNMENT 128
162 /* Set this nonzero if move instructions will actually fail to work
163 when given unaligned data. */
164 #define STRICT_ALIGNMENT 1
166 /* Promote integer modes smaller than a word to SImode. Set UNSIGNEDP
167 for QImode, because there is no 8-bit load from memory with sign
168 extension. Otherwise, leave UNSIGNEDP alone, since Xtensa has 16-bit
169 loads both with and without sign extension. */
170 #define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
171 do { \
172 if (GET_MODE_CLASS (MODE) == MODE_INT \
173 && GET_MODE_SIZE (MODE) < UNITS_PER_WORD) \
175 if ((MODE) == QImode) \
176 (UNSIGNEDP) = 1; \
177 (MODE) = SImode; \
179 } while (0)
181 /* Imitate the way many other C compilers handle alignment of
182 bitfields and the structures that contain them. */
183 #define PCC_BITFIELD_TYPE_MATTERS 1
185 /* Disable the use of word-sized or smaller complex modes for structures,
186 and for function arguments in particular, where they cause problems with
187 register a7. The xtensa_copy_incoming_a7 function assumes that there is
188 a single reference to an argument in a7, but with small complex modes the
189 real and imaginary components may be extracted separately, leading to two
190 uses of the register, only one of which would be replaced. */
191 #define MEMBER_TYPE_FORCES_BLK(FIELD, MODE) \
192 ((MODE) == CQImode || (MODE) == CHImode)
194 /* Align string constants and constructors to at least a word boundary.
195 The typical use of this macro is to increase alignment for string
196 constants to be word aligned so that 'strcpy' calls that copy
197 constants can be done inline. */
198 #define CONSTANT_ALIGNMENT(EXP, ALIGN) \
199 ((TREE_CODE (EXP) == STRING_CST || TREE_CODE (EXP) == CONSTRUCTOR) \
200 && (ALIGN) < BITS_PER_WORD \
201 ? BITS_PER_WORD \
202 : (ALIGN))
204 /* Align arrays, unions and records to at least a word boundary.
205 One use of this macro is to increase alignment of medium-size
206 data to make it all fit in fewer cache lines. Another is to
207 cause character arrays to be word-aligned so that 'strcpy' calls
208 that copy constants to character arrays can be done inline. */
209 #undef DATA_ALIGNMENT
210 #define DATA_ALIGNMENT(TYPE, ALIGN) \
211 ((((ALIGN) < BITS_PER_WORD) \
212 && (TREE_CODE (TYPE) == ARRAY_TYPE \
213 || TREE_CODE (TYPE) == UNION_TYPE \
214 || TREE_CODE (TYPE) == RECORD_TYPE)) ? BITS_PER_WORD : (ALIGN))
216 /* Operations between registers always perform the operation
217 on the full register even if a narrower mode is specified. */
218 #define WORD_REGISTER_OPERATIONS
220 /* Xtensa loads are zero-extended by default. */
221 #define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
223 /* Standard register usage. */
225 /* Number of actual hardware registers.
226 The hardware registers are assigned numbers for the compiler
227 from 0 to just below FIRST_PSEUDO_REGISTER.
228 All registers that the compiler knows about must be given numbers,
229 even those that are not normally considered general registers.
231 The fake frame pointer and argument pointer will never appear in
232 the generated code, since they will always be eliminated and replaced
233 by either the stack pointer or the hard frame pointer.
235 0 - 15 AR[0] - AR[15]
236 16 FRAME_POINTER (fake = initial sp)
237 17 ARG_POINTER (fake = initial sp + framesize)
238 18 BR[0] for floating-point CC
239 19 - 34 FR[0] - FR[15]
240 35 MAC16 accumulator */
242 #define FIRST_PSEUDO_REGISTER 36
244 /* Return the stabs register number to use for REGNO. */
245 #define DBX_REGISTER_NUMBER(REGNO) xtensa_dbx_register_number (REGNO)
247 /* 1 for registers that have pervasive standard uses
248 and are not available for the register allocator. */
249 #define FIXED_REGISTERS \
251 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
252 1, 1, 0, \
253 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
254 0, \
257 /* 1 for registers not available across function calls.
258 These must include the FIXED_REGISTERS and also any
259 registers that can be used without being saved.
260 The latter must include the registers where values are returned
261 and the register where structure-value addresses are passed.
262 Aside from that, you can include as many other registers as you like. */
263 #define CALL_USED_REGISTERS \
265 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, \
266 1, 1, 1, \
267 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
268 1, \
271 /* For non-leaf procedures on Xtensa processors, the allocation order
272 is as specified below by REG_ALLOC_ORDER. For leaf procedures, we
273 want to use the lowest numbered registers first to minimize
274 register window overflows. However, local-alloc is not smart
275 enough to consider conflicts with incoming arguments. If an
276 incoming argument in a2 is live throughout the function and
277 local-alloc decides to use a2, then the incoming argument must
278 either be spilled or copied to another register. To get around
279 this, we define ORDER_REGS_FOR_LOCAL_ALLOC to redefine
280 reg_alloc_order for leaf functions such that lowest numbered
281 registers are used first with the exception that the incoming
282 argument registers are not used until after other register choices
283 have been exhausted. */
285 #define REG_ALLOC_ORDER \
286 { 8, 9, 10, 11, 12, 13, 14, 15, 7, 6, 5, 4, 3, 2, \
287 18, \
288 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, \
289 0, 1, 16, 17, \
290 35, \
293 #define ORDER_REGS_FOR_LOCAL_ALLOC order_regs_for_local_alloc ()
295 /* For Xtensa, the only point of this is to prevent GCC from otherwise
296 giving preference to call-used registers. To minimize window
297 overflows for the AR registers, we want to give preference to the
298 lower-numbered AR registers. For other register files, which are
299 not windowed, we still prefer call-used registers, if there are any. */
300 extern const char xtensa_leaf_regs[FIRST_PSEUDO_REGISTER];
301 #define LEAF_REGISTERS xtensa_leaf_regs
303 /* For Xtensa, no remapping is necessary, but this macro must be
304 defined if LEAF_REGISTERS is defined. */
305 #define LEAF_REG_REMAP(REGNO) (REGNO)
307 /* This must be declared if LEAF_REGISTERS is set. */
308 extern int leaf_function;
310 /* Internal macros to classify a register number. */
312 /* 16 address registers + fake registers */
313 #define GP_REG_FIRST 0
314 #define GP_REG_LAST 17
315 #define GP_REG_NUM (GP_REG_LAST - GP_REG_FIRST + 1)
317 /* Coprocessor registers */
318 #define BR_REG_FIRST 18
319 #define BR_REG_LAST 18
320 #define BR_REG_NUM (BR_REG_LAST - BR_REG_FIRST + 1)
322 /* 16 floating-point registers */
323 #define FP_REG_FIRST 19
324 #define FP_REG_LAST 34
325 #define FP_REG_NUM (FP_REG_LAST - FP_REG_FIRST + 1)
327 /* MAC16 accumulator */
328 #define ACC_REG_FIRST 35
329 #define ACC_REG_LAST 35
330 #define ACC_REG_NUM (ACC_REG_LAST - ACC_REG_FIRST + 1)
332 #define GP_REG_P(REGNO) ((unsigned) ((REGNO) - GP_REG_FIRST) < GP_REG_NUM)
333 #define BR_REG_P(REGNO) ((unsigned) ((REGNO) - BR_REG_FIRST) < BR_REG_NUM)
334 #define FP_REG_P(REGNO) ((unsigned) ((REGNO) - FP_REG_FIRST) < FP_REG_NUM)
335 #define ACC_REG_P(REGNO) ((unsigned) ((REGNO) - ACC_REG_FIRST) < ACC_REG_NUM)
337 /* Return number of consecutive hard regs needed starting at reg REGNO
338 to hold something of mode MODE. */
339 #define HARD_REGNO_NREGS(REGNO, MODE) \
340 (FP_REG_P (REGNO) ? \
341 ((GET_MODE_SIZE (MODE) + UNITS_PER_FPREG - 1) / UNITS_PER_FPREG) : \
342 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
344 /* Value is 1 if hard register REGNO can hold a value of machine-mode
345 MODE. */
346 extern char xtensa_hard_regno_mode_ok[][FIRST_PSEUDO_REGISTER];
348 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
349 xtensa_hard_regno_mode_ok[(int) (MODE)][(REGNO)]
351 /* Value is 1 if it is a good idea to tie two pseudo registers
352 when one has mode MODE1 and one has mode MODE2.
353 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
354 for any hard reg, then this must be 0 for correct output. */
355 #define MODES_TIEABLE_P(MODE1, MODE2) \
356 ((GET_MODE_CLASS (MODE1) == MODE_FLOAT || \
357 GET_MODE_CLASS (MODE1) == MODE_COMPLEX_FLOAT) \
358 == (GET_MODE_CLASS (MODE2) == MODE_FLOAT || \
359 GET_MODE_CLASS (MODE2) == MODE_COMPLEX_FLOAT))
361 /* Register to use for pushing function arguments. */
362 #define STACK_POINTER_REGNUM (GP_REG_FIRST + 1)
364 /* Base register for access to local variables of the function. */
365 #define HARD_FRAME_POINTER_REGNUM (GP_REG_FIRST + 7)
367 /* The register number of the frame pointer register, which is used to
368 access automatic variables in the stack frame. For Xtensa, this
369 register never appears in the output. It is always eliminated to
370 either the stack pointer or the hard frame pointer. */
371 #define FRAME_POINTER_REGNUM (GP_REG_FIRST + 16)
373 /* Value should be nonzero if functions must have frame pointers.
374 Zero means the frame pointer need not be set up (and parms
375 may be accessed via the stack pointer) in functions that seem suitable.
376 This is computed in 'reload', in reload1.c. */
377 #define FRAME_POINTER_REQUIRED xtensa_frame_pointer_required ()
379 /* Base register for access to arguments of the function. */
380 #define ARG_POINTER_REGNUM (GP_REG_FIRST + 17)
382 /* If the static chain is passed in memory, these macros provide rtx
383 giving 'mem' expressions that denote where they are stored.
384 'STATIC_CHAIN' and 'STATIC_CHAIN_INCOMING' give the locations as
385 seen by the calling and called functions, respectively. */
387 #define STATIC_CHAIN \
388 gen_rtx_MEM (Pmode, plus_constant (stack_pointer_rtx, -5 * UNITS_PER_WORD))
390 #define STATIC_CHAIN_INCOMING \
391 gen_rtx_MEM (Pmode, plus_constant (arg_pointer_rtx, -5 * UNITS_PER_WORD))
393 /* For now we don't try to use the full set of boolean registers. Without
394 software pipelining of FP operations, there's not much to gain and it's
395 a real pain to get them reloaded. */
396 #define FPCC_REGNUM (BR_REG_FIRST + 0)
398 /* It is as good or better to call a constant function address than to
399 call an address kept in a register. */
400 #define NO_FUNCTION_CSE 1
402 /* Xtensa processors have "register windows". GCC does not currently
403 take advantage of the possibility for variable-sized windows; instead,
404 we use a fixed window size of 8. */
406 #define INCOMING_REGNO(OUT) \
407 ((GP_REG_P (OUT) && \
408 ((unsigned) ((OUT) - GP_REG_FIRST) >= WINDOW_SIZE)) ? \
409 (OUT) - WINDOW_SIZE : (OUT))
411 #define OUTGOING_REGNO(IN) \
412 ((GP_REG_P (IN) && \
413 ((unsigned) ((IN) - GP_REG_FIRST) < WINDOW_SIZE)) ? \
414 (IN) + WINDOW_SIZE : (IN))
417 /* Define the classes of registers for register constraints in the
418 machine description. */
419 enum reg_class
421 NO_REGS, /* no registers in set */
422 BR_REGS, /* coprocessor boolean registers */
423 FP_REGS, /* floating point registers */
424 ACC_REG, /* MAC16 accumulator */
425 SP_REG, /* sp register (aka a1) */
426 RL_REGS, /* preferred reload regs (not sp or fp) */
427 GR_REGS, /* integer registers except sp */
428 AR_REGS, /* all integer registers */
429 ALL_REGS, /* all registers */
430 LIM_REG_CLASSES /* max value + 1 */
433 #define N_REG_CLASSES (int) LIM_REG_CLASSES
435 #define GENERAL_REGS AR_REGS
437 /* An initializer containing the names of the register classes as C
438 string constants. These names are used in writing some of the
439 debugging dumps. */
440 #define REG_CLASS_NAMES \
442 "NO_REGS", \
443 "BR_REGS", \
444 "FP_REGS", \
445 "ACC_REG", \
446 "SP_REG", \
447 "RL_REGS", \
448 "GR_REGS", \
449 "AR_REGS", \
450 "ALL_REGS" \
453 /* Contents of the register classes. The Nth integer specifies the
454 contents of class N. The way the integer MASK is interpreted is
455 that register R is in the class if 'MASK & (1 << R)' is 1. */
456 #define REG_CLASS_CONTENTS \
458 { 0x00000000, 0x00000000 }, /* no registers */ \
459 { 0x00040000, 0x00000000 }, /* coprocessor boolean registers */ \
460 { 0xfff80000, 0x00000007 }, /* floating-point registers */ \
461 { 0x00000000, 0x00000008 }, /* MAC16 accumulator */ \
462 { 0x00000002, 0x00000000 }, /* stack pointer register */ \
463 { 0x0000ff7d, 0x00000000 }, /* preferred reload registers */ \
464 { 0x0000fffd, 0x00000000 }, /* general-purpose registers */ \
465 { 0x0003ffff, 0x00000000 }, /* integer registers */ \
466 { 0xffffffff, 0x0000000f } /* all registers */ \
469 /* A C expression whose value is a register class containing hard
470 register REGNO. In general there is more that one such class;
471 choose a class which is "minimal", meaning that no smaller class
472 also contains the register. */
473 extern const enum reg_class xtensa_regno_to_class[FIRST_PSEUDO_REGISTER];
475 #define REGNO_REG_CLASS(REGNO) xtensa_regno_to_class[ (REGNO) ]
477 /* Use the Xtensa AR register file for base registers.
478 No index registers. */
479 #define BASE_REG_CLASS AR_REGS
480 #define INDEX_REG_CLASS NO_REGS
482 /* SMALL_REGISTER_CLASSES is required for Xtensa, because all of the
483 16 AR registers may be explicitly used in the RTL, as either
484 incoming or outgoing arguments. */
485 #define SMALL_REGISTER_CLASSES 1
488 /* REGISTER AND CONSTANT CLASSES */
490 /* Get reg_class from a letter such as appears in the machine
491 description.
493 Available letters: a-f,h,j-l,q,t-z,A-D,W,Y-Z
495 DEFINED REGISTER CLASSES:
497 'a' general-purpose registers except sp
498 'q' sp (aka a1)
499 'D' general-purpose registers (only if density option enabled)
500 'd' general-purpose registers, including sp (only if density enabled)
501 'A' MAC16 accumulator (only if MAC16 option enabled)
502 'B' general-purpose registers (only if sext instruction enabled)
503 'C' general-purpose registers (only if mul16 option enabled)
504 'W' general-purpose registers (only if const16 option enabled)
505 'b' coprocessor boolean registers
506 'f' floating-point registers
509 extern enum reg_class xtensa_char_to_class[256];
511 #define REG_CLASS_FROM_LETTER(C) xtensa_char_to_class[ (int) (C) ]
513 /* The letters I, J, K, L, M, N, O, and P in a register constraint
514 string can be used to stand for particular ranges of immediate
515 operands. This macro defines what the ranges are. C is the
516 letter, and VALUE is a constant value. Return 1 if VALUE is
517 in the range specified by C.
519 For Xtensa:
521 I = 12-bit signed immediate for MOVI
522 J = 8-bit signed immediate for ADDI
523 K = 4-bit value in (b4const U {0})
524 L = 4-bit value in b4constu
525 M = 7-bit immediate value for MOVI.N
526 N = 8-bit unsigned immediate shifted left by 8 bits for ADDMI
527 O = 4-bit immediate for ADDI.N
528 P = valid immediate mask value for EXTUI */
530 #define CONST_OK_FOR_LETTER_P xtensa_const_ok_for_letter_p
531 #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) (0)
534 /* Other letters can be defined in a machine-dependent fashion to
535 stand for particular classes of registers or other arbitrary
536 operand types.
538 R = memory that can be accessed with a 4-bit unsigned offset
539 T = memory in a constant pool (addressable with a pc-relative load)
540 U = memory *NOT* in a constant pool
542 The offset range should not be checked here (except to distinguish
543 denser versions of the instructions for which more general versions
544 are available). Doing so leads to problems in reloading: an
545 argptr-relative address may become invalid when the phony argptr is
546 eliminated in favor of the stack pointer (the offset becomes too
547 large to fit in the instruction's immediate field); a reload is
548 generated to fix this but the RTL is not immediately updated; in
549 the meantime, the constraints are checked and none match. The
550 solution seems to be to simply skip the offset check here. The
551 address will be checked anyway because of the code in
552 GO_IF_LEGITIMATE_ADDRESS. */
554 #define EXTRA_CONSTRAINT xtensa_extra_constraint
556 #define PREFERRED_RELOAD_CLASS(X, CLASS) \
557 xtensa_preferred_reload_class (X, CLASS, 0)
559 #define PREFERRED_OUTPUT_RELOAD_CLASS(X, CLASS) \
560 xtensa_preferred_reload_class (X, CLASS, 1)
562 #define SECONDARY_INPUT_RELOAD_CLASS(CLASS, MODE, X) \
563 xtensa_secondary_reload_class (CLASS, MODE, X, 0)
565 #define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, X) \
566 xtensa_secondary_reload_class (CLASS, MODE, X, 1)
568 /* Return the maximum number of consecutive registers
569 needed to represent mode MODE in a register of class CLASS. */
570 #define CLASS_UNITS(mode, size) \
571 ((GET_MODE_SIZE (mode) + (size) - 1) / (size))
573 #define CLASS_MAX_NREGS(CLASS, MODE) \
574 (CLASS_UNITS (MODE, UNITS_PER_WORD))
577 /* Stack layout; function entry, exit and calling. */
579 #define STACK_GROWS_DOWNWARD
581 /* Offset within stack frame to start allocating local variables at. */
582 #define STARTING_FRAME_OFFSET \
583 current_function_outgoing_args_size
585 /* The ARG_POINTER and FRAME_POINTER are not real Xtensa registers, so
586 they are eliminated to either the stack pointer or hard frame pointer. */
587 #define ELIMINABLE_REGS \
588 {{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
589 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
590 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
591 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}}
593 #define CAN_ELIMINATE(FROM, TO) 1
595 /* Specify the initial difference between the specified pair of registers. */
596 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
597 do { \
598 compute_frame_size (get_frame_size ()); \
599 switch (FROM) \
601 case FRAME_POINTER_REGNUM: \
602 (OFFSET) = 0; \
603 break; \
604 case ARG_POINTER_REGNUM: \
605 (OFFSET) = xtensa_current_frame_size; \
606 break; \
607 default: \
608 gcc_unreachable (); \
610 } while (0)
612 /* If defined, the maximum amount of space required for outgoing
613 arguments will be computed and placed into the variable
614 'current_function_outgoing_args_size'. No space will be pushed
615 onto the stack for each call; instead, the function prologue
616 should increase the stack frame size by this amount. */
617 #define ACCUMULATE_OUTGOING_ARGS 1
619 /* Offset from the argument pointer register to the first argument's
620 address. On some machines it may depend on the data type of the
621 function. If 'ARGS_GROW_DOWNWARD', this is the offset to the
622 location above the first argument's address. */
623 #define FIRST_PARM_OFFSET(FNDECL) 0
625 /* Align stack frames on 128 bits for Xtensa. This is necessary for
626 128-bit datatypes defined in TIE (e.g., for Vectra). */
627 #define STACK_BOUNDARY 128
629 /* Functions do not pop arguments off the stack. */
630 #define RETURN_POPS_ARGS(FUNDECL, FUNTYPE, SIZE) 0
632 /* Use a fixed register window size of 8. */
633 #define WINDOW_SIZE 8
635 /* Symbolic macros for the registers used to return integer, floating
636 point, and values of coprocessor and user-defined modes. */
637 #define GP_RETURN (GP_REG_FIRST + 2 + WINDOW_SIZE)
638 #define GP_OUTGOING_RETURN (GP_REG_FIRST + 2)
640 /* Symbolic macros for the first/last argument registers. */
641 #define GP_ARG_FIRST (GP_REG_FIRST + 2)
642 #define GP_ARG_LAST (GP_REG_FIRST + 7)
643 #define GP_OUTGOING_ARG_FIRST (GP_REG_FIRST + 2 + WINDOW_SIZE)
644 #define GP_OUTGOING_ARG_LAST (GP_REG_FIRST + 7 + WINDOW_SIZE)
646 #define MAX_ARGS_IN_REGISTERS 6
648 /* Don't worry about compatibility with PCC. */
649 #define DEFAULT_PCC_STRUCT_RETURN 0
651 /* Define how to find the value returned by a library function
652 assuming the value has mode MODE. Because we have defined
653 TARGET_PROMOTE_FUNCTION_RETURN that returns true, we have to
654 perform the same promotions as PROMOTE_MODE. */
655 #define XTENSA_LIBCALL_VALUE(MODE, OUTGOINGP) \
656 gen_rtx_REG ((GET_MODE_CLASS (MODE) == MODE_INT \
657 && GET_MODE_SIZE (MODE) < UNITS_PER_WORD) \
658 ? SImode : (MODE), \
659 OUTGOINGP ? GP_OUTGOING_RETURN : GP_RETURN)
661 #define LIBCALL_VALUE(MODE) \
662 XTENSA_LIBCALL_VALUE ((MODE), 0)
664 #define LIBCALL_OUTGOING_VALUE(MODE) \
665 XTENSA_LIBCALL_VALUE ((MODE), 1)
667 /* Define how to find the value returned by a function.
668 VALTYPE is the data type of the value (as a tree).
669 If the precise function being called is known, FUNC is its FUNCTION_DECL;
670 otherwise, FUNC is 0. */
671 #define XTENSA_FUNCTION_VALUE(VALTYPE, FUNC, OUTGOINGP) \
672 gen_rtx_REG ((INTEGRAL_TYPE_P (VALTYPE) \
673 && TYPE_PRECISION (VALTYPE) < BITS_PER_WORD) \
674 ? SImode: TYPE_MODE (VALTYPE), \
675 OUTGOINGP ? GP_OUTGOING_RETURN : GP_RETURN)
677 #define FUNCTION_VALUE(VALTYPE, FUNC) \
678 XTENSA_FUNCTION_VALUE (VALTYPE, FUNC, 0)
680 #define FUNCTION_OUTGOING_VALUE(VALTYPE, FUNC) \
681 XTENSA_FUNCTION_VALUE (VALTYPE, FUNC, 1)
683 /* A C expression that is nonzero if REGNO is the number of a hard
684 register in which the values of called function may come back. A
685 register whose use for returning values is limited to serving as
686 the second of a pair (for a value of type 'double', say) need not
687 be recognized by this macro. If the machine has register windows,
688 so that the caller and the called function use different registers
689 for the return value, this macro should recognize only the caller's
690 register numbers. */
691 #define FUNCTION_VALUE_REGNO_P(N) \
692 ((N) == GP_RETURN)
694 /* A C expression that is nonzero if REGNO is the number of a hard
695 register in which function arguments are sometimes passed. This
696 does *not* include implicit arguments such as the static chain and
697 the structure-value address. On many machines, no registers can be
698 used for this purpose since all function arguments are pushed on
699 the stack. */
700 #define FUNCTION_ARG_REGNO_P(N) \
701 ((N) >= GP_OUTGOING_ARG_FIRST && (N) <= GP_OUTGOING_ARG_LAST)
703 /* Record the number of argument words seen so far, along with a flag to
704 indicate whether these are incoming arguments. (FUNCTION_INCOMING_ARG
705 is used for both incoming and outgoing args, so a separate flag is
706 needed. */
707 typedef struct xtensa_args
709 int arg_words;
710 int incoming;
711 } CUMULATIVE_ARGS;
713 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT, N_NAMED_ARGS) \
714 init_cumulative_args (&CUM, 0)
716 #define INIT_CUMULATIVE_INCOMING_ARGS(CUM, FNTYPE, LIBNAME) \
717 init_cumulative_args (&CUM, 1)
719 /* Update the data in CUM to advance over an argument
720 of mode MODE and data type TYPE.
721 (TYPE is null for libcalls where that information may not be available.) */
722 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
723 function_arg_advance (&CUM, MODE, TYPE)
725 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
726 function_arg (&CUM, MODE, TYPE, FALSE)
728 #define FUNCTION_INCOMING_ARG(CUM, MODE, TYPE, NAMED) \
729 function_arg (&CUM, MODE, TYPE, TRUE)
731 /* Specify function argument alignment. */
732 #define FUNCTION_ARG_BOUNDARY(MODE, TYPE) \
733 ((TYPE) != 0 \
734 ? (TYPE_ALIGN (TYPE) <= PARM_BOUNDARY \
735 ? PARM_BOUNDARY \
736 : TYPE_ALIGN (TYPE)) \
737 : (GET_MODE_ALIGNMENT (MODE) <= PARM_BOUNDARY \
738 ? PARM_BOUNDARY \
739 : GET_MODE_ALIGNMENT (MODE)))
741 /* Profiling Xtensa code is typically done with the built-in profiling
742 feature of Tensilica's instruction set simulator, which does not
743 require any compiler support. Profiling code on a real (i.e.,
744 non-simulated) Xtensa processor is currently only supported by
745 GNU/Linux with glibc. The glibc version of _mcount doesn't require
746 counter variables. The _mcount function needs the current PC and
747 the current return address to identify an arc in the call graph.
748 Pass the current return address as the first argument; the current
749 PC is available as a0 in _mcount's register window. Both of these
750 values contain window size information in the two most significant
751 bits; we assume that _mcount will mask off those bits. The call to
752 _mcount uses a window size of 8 to make sure that it doesn't clobber
753 any incoming argument values. */
755 #define NO_PROFILE_COUNTERS 1
757 #define FUNCTION_PROFILER(FILE, LABELNO) \
758 do { \
759 fprintf (FILE, "\t%s\ta10, a0\n", TARGET_DENSITY ? "mov.n" : "mov"); \
760 if (flag_pic) \
762 fprintf (FILE, "\tmovi\ta8, _mcount@PLT\n"); \
763 fprintf (FILE, "\tcallx8\ta8\n"); \
765 else \
766 fprintf (FILE, "\tcall8\t_mcount\n"); \
767 } while (0)
769 /* Stack pointer value doesn't matter at exit. */
770 #define EXIT_IGNORE_STACK 1
772 /* A C statement to output, on the stream FILE, assembler code for a
773 block of data that contains the constant parts of a trampoline.
774 This code should not include a label--the label is taken care of
775 automatically.
777 For Xtensa, the trampoline must perform an entry instruction with a
778 minimal stack frame in order to get some free registers. Once the
779 actual call target is known, the proper stack frame size is extracted
780 from the entry instruction at the target and the current frame is
781 adjusted to match. The trampoline then transfers control to the
782 instruction following the entry at the target. Note: this assumes
783 that the target begins with an entry instruction. */
785 /* minimum frame = reg save area (4 words) plus static chain (1 word)
786 and the total number of words must be a multiple of 128 bits */
787 #define MIN_FRAME_SIZE (8 * UNITS_PER_WORD)
789 #define TRAMPOLINE_TEMPLATE(STREAM) \
790 do { \
791 fprintf (STREAM, "\t.begin no-transform\n"); \
792 fprintf (STREAM, "\tentry\tsp, %d\n", MIN_FRAME_SIZE); \
794 /* save the return address */ \
795 fprintf (STREAM, "\tmov\ta10, a0\n"); \
797 /* Use a CALL0 instruction to skip past the constants and in the \
798 process get the PC into A0. This allows PC-relative access to \
799 the constants without relying on L32R, which may not always be \
800 available. */ \
802 fprintf (STREAM, "\tcall0\t.Lskipconsts\n"); \
803 fprintf (STREAM, "\t.align\t4\n"); \
804 fprintf (STREAM, ".Lchainval:%s0\n", integer_asm_op (4, TRUE)); \
805 fprintf (STREAM, ".Lfnaddr:%s0\n", integer_asm_op (4, TRUE)); \
806 fprintf (STREAM, ".Lskipconsts:\n"); \
808 /* store the static chain */ \
809 fprintf (STREAM, "\taddi\ta0, a0, 3\n"); \
810 fprintf (STREAM, "\tl32i\ta8, a0, 0\n"); \
811 fprintf (STREAM, "\ts32i\ta8, sp, %d\n", MIN_FRAME_SIZE - 20); \
813 /* set the proper stack pointer value */ \
814 fprintf (STREAM, "\tl32i\ta8, a0, 4\n"); \
815 fprintf (STREAM, "\tl32i\ta9, a8, 0\n"); \
816 fprintf (STREAM, "\textui\ta9, a9, %d, 12\n", \
817 TARGET_BIG_ENDIAN ? 8 : 12); \
818 fprintf (STREAM, "\tslli\ta9, a9, 3\n"); \
819 fprintf (STREAM, "\taddi\ta9, a9, %d\n", -MIN_FRAME_SIZE); \
820 fprintf (STREAM, "\tsub\ta9, sp, a9\n"); \
821 fprintf (STREAM, "\tmovsp\tsp, a9\n"); \
823 /* restore the return address */ \
824 fprintf (STREAM, "\tmov\ta0, a10\n"); \
826 /* jump to the instruction following the entry */ \
827 fprintf (STREAM, "\taddi\ta8, a8, 3\n"); \
828 fprintf (STREAM, "\tjx\ta8\n"); \
829 fprintf (STREAM, "\t.byte\t0\n"); \
830 fprintf (STREAM, "\t.end no-transform\n"); \
831 } while (0)
833 /* Size in bytes of the trampoline, as an integer. Make sure this is
834 a multiple of TRAMPOLINE_ALIGNMENT to avoid -Wpadded warnings. */
835 #define TRAMPOLINE_SIZE 60
837 /* Alignment required for trampolines, in bits. */
838 #define TRAMPOLINE_ALIGNMENT (32)
840 /* A C statement to initialize the variable parts of a trampoline. */
841 #define INITIALIZE_TRAMPOLINE(ADDR, FUNC, CHAIN) \
842 do { \
843 rtx addr = ADDR; \
844 emit_move_insn (gen_rtx_MEM (SImode, plus_constant (addr, 12)), CHAIN); \
845 emit_move_insn (gen_rtx_MEM (SImode, plus_constant (addr, 16)), FUNC); \
846 emit_library_call (gen_rtx_SYMBOL_REF (Pmode, "__xtensa_sync_caches"), \
847 0, VOIDmode, 1, addr, Pmode); \
848 } while (0)
850 /* Implement `va_start' for varargs and stdarg. */
851 #define EXPAND_BUILTIN_VA_START(valist, nextarg) \
852 xtensa_va_start (valist, nextarg)
854 /* If defined, a C expression that produces the machine-specific code
855 to setup the stack so that arbitrary frames can be accessed.
857 On Xtensa, a stack back-trace must always begin from the stack pointer,
858 so that the register overflow save area can be located. However, the
859 stack-walking code in GCC always begins from the hard_frame_pointer
860 register, not the stack pointer. The frame pointer is usually equal
861 to the stack pointer, but the __builtin_return_address and
862 __builtin_frame_address functions will not work if count > 0 and
863 they are called from a routine that uses alloca. These functions
864 are not guaranteed to work at all if count > 0 so maybe that is OK.
866 A nicer solution would be to allow the architecture-specific files to
867 specify whether to start from the stack pointer or frame pointer. That
868 would also allow us to skip the machine->accesses_prev_frame stuff that
869 we currently need to ensure that there is a frame pointer when these
870 builtin functions are used. */
872 #define SETUP_FRAME_ADDRESSES xtensa_setup_frame_addresses
874 /* A C expression whose value is RTL representing the address in a
875 stack frame where the pointer to the caller's frame is stored.
876 Assume that FRAMEADDR is an RTL expression for the address of the
877 stack frame itself.
879 For Xtensa, there is no easy way to get the frame pointer if it is
880 not equivalent to the stack pointer. Moreover, the result of this
881 macro is used for continuing to walk back up the stack, so it must
882 return the stack pointer address. Thus, there is some inconsistency
883 here in that __builtin_frame_address will return the frame pointer
884 when count == 0 and the stack pointer when count > 0. */
886 #define DYNAMIC_CHAIN_ADDRESS(frame) \
887 gen_rtx_PLUS (Pmode, frame, GEN_INT (-3 * UNITS_PER_WORD))
889 /* Define this if the return address of a particular stack frame is
890 accessed from the frame pointer of the previous stack frame. */
891 #define RETURN_ADDR_IN_PREVIOUS_FRAME
893 /* A C expression whose value is RTL representing the value of the
894 return address for the frame COUNT steps up from the current
895 frame, after the prologue. */
896 #define RETURN_ADDR_RTX xtensa_return_addr
898 /* Addressing modes, and classification of registers for them. */
900 /* C expressions which are nonzero if register number NUM is suitable
901 for use as a base or index register in operand addresses. It may
902 be either a suitable hard register or a pseudo register that has
903 been allocated such a hard register. The difference between an
904 index register and a base register is that the index register may
905 be scaled. */
907 #define REGNO_OK_FOR_BASE_P(NUM) \
908 (GP_REG_P (NUM) || GP_REG_P ((unsigned) reg_renumber[NUM]))
910 #define REGNO_OK_FOR_INDEX_P(NUM) 0
912 /* C expressions that are nonzero if X (assumed to be a `reg' RTX) is
913 valid for use as a base or index register. For hard registers, it
914 should always accept those which the hardware permits and reject
915 the others. Whether the macro accepts or rejects pseudo registers
916 must be controlled by `REG_OK_STRICT'. This usually requires two
917 variant definitions, of which `REG_OK_STRICT' controls the one
918 actually used. The difference between an index register and a base
919 register is that the index register may be scaled. */
921 #ifdef REG_OK_STRICT
923 #define REG_OK_FOR_INDEX_P(X) 0
924 #define REG_OK_FOR_BASE_P(X) \
925 REGNO_OK_FOR_BASE_P (REGNO (X))
927 #else /* !REG_OK_STRICT */
929 #define REG_OK_FOR_INDEX_P(X) 0
930 #define REG_OK_FOR_BASE_P(X) \
931 ((REGNO (X) >= FIRST_PSEUDO_REGISTER) || (GP_REG_P (REGNO (X))))
933 #endif /* !REG_OK_STRICT */
935 /* Maximum number of registers that can appear in a valid memory address. */
936 #define MAX_REGS_PER_ADDRESS 1
938 /* Identify valid Xtensa addresses. */
939 #define GO_IF_LEGITIMATE_ADDRESS(MODE, ADDR, LABEL) \
940 do { \
941 rtx xinsn = (ADDR); \
943 /* allow constant pool addresses */ \
944 if ((MODE) != BLKmode && GET_MODE_SIZE (MODE) >= UNITS_PER_WORD \
945 && !TARGET_CONST16 && constantpool_address_p (xinsn)) \
946 goto LABEL; \
948 while (GET_CODE (xinsn) == SUBREG) \
949 xinsn = SUBREG_REG (xinsn); \
951 /* allow base registers */ \
952 if (GET_CODE (xinsn) == REG && REG_OK_FOR_BASE_P (xinsn)) \
953 goto LABEL; \
955 /* check for "register + offset" addressing */ \
956 if (GET_CODE (xinsn) == PLUS) \
958 rtx xplus0 = XEXP (xinsn, 0); \
959 rtx xplus1 = XEXP (xinsn, 1); \
960 enum rtx_code code0; \
961 enum rtx_code code1; \
963 while (GET_CODE (xplus0) == SUBREG) \
964 xplus0 = SUBREG_REG (xplus0); \
965 code0 = GET_CODE (xplus0); \
967 while (GET_CODE (xplus1) == SUBREG) \
968 xplus1 = SUBREG_REG (xplus1); \
969 code1 = GET_CODE (xplus1); \
971 /* swap operands if necessary so the register is first */ \
972 if (code0 != REG && code1 == REG) \
974 xplus0 = XEXP (xinsn, 1); \
975 xplus1 = XEXP (xinsn, 0); \
976 code0 = GET_CODE (xplus0); \
977 code1 = GET_CODE (xplus1); \
980 if (code0 == REG && REG_OK_FOR_BASE_P (xplus0) \
981 && code1 == CONST_INT \
982 && xtensa_mem_offset (INTVAL (xplus1), (MODE))) \
984 goto LABEL; \
987 } while (0)
989 /* A C expression that is 1 if the RTX X is a constant which is a
990 valid address. This is defined to be the same as 'CONSTANT_P (X)',
991 but rejecting CONST_DOUBLE. */
992 #define CONSTANT_ADDRESS_P(X) \
993 ((GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \
994 || GET_CODE (X) == CONST_INT || GET_CODE (X) == HIGH \
995 || (GET_CODE (X) == CONST)))
997 /* Nonzero if the constant value X is a legitimate general operand.
998 It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
999 #define LEGITIMATE_CONSTANT_P(X) 1
1001 /* A C expression that is nonzero if X is a legitimate immediate
1002 operand on the target machine when generating position independent
1003 code. */
1004 #define LEGITIMATE_PIC_OPERAND_P(X) \
1005 ((GET_CODE (X) != SYMBOL_REF \
1006 || (SYMBOL_REF_LOCAL_P (X) && !SYMBOL_REF_EXTERNAL_P (X))) \
1007 && GET_CODE (X) != LABEL_REF \
1008 && GET_CODE (X) != CONST)
1010 /* Tell GCC how to use ADDMI to generate addresses. */
1011 #define LEGITIMIZE_ADDRESS(X, OLDX, MODE, WIN) \
1012 do { \
1013 rtx xinsn = (X); \
1014 if (GET_CODE (xinsn) == PLUS) \
1016 rtx plus0 = XEXP (xinsn, 0); \
1017 rtx plus1 = XEXP (xinsn, 1); \
1019 if (GET_CODE (plus0) != REG && GET_CODE (plus1) == REG) \
1021 plus0 = XEXP (xinsn, 1); \
1022 plus1 = XEXP (xinsn, 0); \
1025 if (GET_CODE (plus0) == REG \
1026 && GET_CODE (plus1) == CONST_INT \
1027 && !xtensa_mem_offset (INTVAL (plus1), MODE) \
1028 && !xtensa_simm8 (INTVAL (plus1)) \
1029 && xtensa_mem_offset (INTVAL (plus1) & 0xff, MODE) \
1030 && xtensa_simm8x256 (INTVAL (plus1) & ~0xff)) \
1032 rtx temp = gen_reg_rtx (Pmode); \
1033 emit_insn (gen_rtx_SET (Pmode, temp, \
1034 gen_rtx_PLUS (Pmode, plus0, \
1035 GEN_INT (INTVAL (plus1) & ~0xff)))); \
1036 (X) = gen_rtx_PLUS (Pmode, temp, \
1037 GEN_INT (INTVAL (plus1) & 0xff)); \
1038 goto WIN; \
1041 } while (0)
1044 /* Treat constant-pool references as "mode dependent" since they can
1045 only be accessed with SImode loads. This works around a bug in the
1046 combiner where a constant pool reference is temporarily converted
1047 to an HImode load, which is then assumed to zero-extend based on
1048 our definition of LOAD_EXTEND_OP. This is wrong because the high
1049 bits of a 16-bit value in the constant pool are now sign-extended
1050 by default. */
1052 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR, LABEL) \
1053 do { \
1054 if (constantpool_address_p (ADDR)) \
1055 goto LABEL; \
1056 } while (0)
1058 /* Specify the machine mode that this machine uses
1059 for the index in the tablejump instruction. */
1060 #define CASE_VECTOR_MODE (SImode)
1062 /* Define this as 1 if 'char' should by default be signed; else as 0. */
1063 #define DEFAULT_SIGNED_CHAR 0
1065 /* Max number of bytes we can move from memory to memory
1066 in one reasonably fast instruction. */
1067 #define MOVE_MAX 4
1068 #define MAX_MOVE_MAX 4
1070 /* Prefer word-sized loads. */
1071 #define SLOW_BYTE_ACCESS 1
1073 /* Shift instructions ignore all but the low-order few bits. */
1074 #define SHIFT_COUNT_TRUNCATED 1
1076 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1077 is done just by pretending it is already truncated. */
1078 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1080 /* Specify the machine mode that pointers have.
1081 After generation of rtl, the compiler makes no further distinction
1082 between pointers and any other objects of this machine mode. */
1083 #define Pmode SImode
1085 /* A function address in a call instruction is a word address (for
1086 indexing purposes) so give the MEM rtx a words's mode. */
1087 #define FUNCTION_MODE SImode
1089 /* A C expression for the cost of moving data from a register in
1090 class FROM to one in class TO. The classes are expressed using
1091 the enumeration values such as 'GENERAL_REGS'. A value of 2 is
1092 the default; other values are interpreted relative to that. */
1093 #define REGISTER_MOVE_COST(MODE, FROM, TO) \
1094 (((FROM) == (TO) && (FROM) != BR_REGS && (TO) != BR_REGS) \
1095 ? 2 \
1096 : (reg_class_subset_p ((FROM), AR_REGS) \
1097 && reg_class_subset_p ((TO), AR_REGS) \
1098 ? 2 \
1099 : (reg_class_subset_p ((FROM), AR_REGS) \
1100 && (TO) == ACC_REG \
1101 ? 3 \
1102 : ((FROM) == ACC_REG \
1103 && reg_class_subset_p ((TO), AR_REGS) \
1104 ? 3 \
1105 : 10))))
1107 #define MEMORY_MOVE_COST(MODE, CLASS, IN) 4
1109 #define BRANCH_COST 3
1111 /* How to refer to registers in assembler output.
1112 This sequence is indexed by compiler's hard-register-number (see above). */
1113 #define REGISTER_NAMES \
1115 "a0", "sp", "a2", "a3", "a4", "a5", "a6", "a7", \
1116 "a8", "a9", "a10", "a11", "a12", "a13", "a14", "a15", \
1117 "fp", "argp", "b0", \
1118 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7", \
1119 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15", \
1120 "acc" \
1123 /* If defined, a C initializer for an array of structures containing a
1124 name and a register number. This macro defines additional names
1125 for hard registers, thus allowing the 'asm' option in declarations
1126 to refer to registers using alternate names. */
1127 #define ADDITIONAL_REGISTER_NAMES \
1129 { "a1", 1 + GP_REG_FIRST } \
1132 #define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
1133 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address (FILE, ADDR)
1135 /* Recognize machine-specific patterns that may appear within
1136 constants. Used for PIC-specific UNSPECs. */
1137 #define OUTPUT_ADDR_CONST_EXTRA(STREAM, X, FAIL) \
1138 do { \
1139 if (flag_pic && GET_CODE (X) == UNSPEC && XVECLEN ((X), 0) == 1) \
1141 switch (XINT ((X), 1)) \
1143 case UNSPEC_PLT: \
1144 output_addr_const ((STREAM), XVECEXP ((X), 0, 0)); \
1145 fputs ("@PLT", (STREAM)); \
1146 break; \
1147 default: \
1148 goto FAIL; \
1150 break; \
1152 else \
1153 goto FAIL; \
1154 } while (0)
1156 /* Globalizing directive for a label. */
1157 #define GLOBAL_ASM_OP "\t.global\t"
1159 /* Declare an uninitialized external linkage data object. */
1160 #define ASM_OUTPUT_ALIGNED_BSS(FILE, DECL, NAME, SIZE, ALIGN) \
1161 asm_output_aligned_bss (FILE, DECL, NAME, SIZE, ALIGN)
1163 /* This is how to output an element of a case-vector that is absolute. */
1164 #define ASM_OUTPUT_ADDR_VEC_ELT(STREAM, VALUE) \
1165 fprintf (STREAM, "%s%sL%u\n", integer_asm_op (4, TRUE), \
1166 LOCAL_LABEL_PREFIX, VALUE)
1168 /* This is how to output an element of a case-vector that is relative.
1169 This is used for pc-relative code. */
1170 #define ASM_OUTPUT_ADDR_DIFF_ELT(STREAM, BODY, VALUE, REL) \
1171 do { \
1172 fprintf (STREAM, "%s%sL%u-%sL%u\n", integer_asm_op (4, TRUE), \
1173 LOCAL_LABEL_PREFIX, (VALUE), \
1174 LOCAL_LABEL_PREFIX, (REL)); \
1175 } while (0)
1177 /* This is how to output an assembler line that says to advance the
1178 location counter to a multiple of 2**LOG bytes. */
1179 #define ASM_OUTPUT_ALIGN(STREAM, LOG) \
1180 do { \
1181 if ((LOG) != 0) \
1182 fprintf (STREAM, "\t.align\t%d\n", 1 << (LOG)); \
1183 } while (0)
1185 /* Indicate that jump tables go in the text section. This is
1186 necessary when compiling PIC code. */
1187 #define JUMP_TABLES_IN_TEXT_SECTION (flag_pic)
1190 /* Define the strings to put out for each section in the object file. */
1191 #define TEXT_SECTION_ASM_OP "\t.text"
1192 #define DATA_SECTION_ASM_OP "\t.data"
1193 #define BSS_SECTION_ASM_OP "\t.section\t.bss"
1196 /* Define output to appear before the constant pool. If the function
1197 has been assigned to a specific ELF section, or if it goes into a
1198 unique section, set the name of that section to be the literal
1199 prefix. */
1200 #define ASM_OUTPUT_POOL_PROLOGUE(FILE, FUNNAME, FUNDECL, SIZE) \
1201 do { \
1202 tree fnsection; \
1203 resolve_unique_section ((FUNDECL), 0, flag_function_sections); \
1204 fnsection = DECL_SECTION_NAME (FUNDECL); \
1205 if (fnsection != NULL_TREE) \
1207 const char *fnsectname = TREE_STRING_POINTER (fnsection); \
1208 fprintf (FILE, "\t.begin\tliteral_prefix %s\n", \
1209 strcmp (fnsectname, ".text") ? fnsectname : ""); \
1211 if ((SIZE) > 0) \
1213 switch_to_section (function_section (FUNDECL)); \
1214 fprintf (FILE, "\t.literal_position\n"); \
1216 } while (0)
1219 /* Define code to write out the ".end literal_prefix" directive for a
1220 function in a special section. This is appended to the standard ELF
1221 code for ASM_DECLARE_FUNCTION_SIZE. */
1222 #define XTENSA_DECLARE_FUNCTION_SIZE(FILE, FNAME, DECL) \
1223 if (DECL_SECTION_NAME (DECL) != NULL_TREE) \
1224 fprintf (FILE, "\t.end\tliteral_prefix\n")
1226 /* A C statement (with or without semicolon) to output a constant in
1227 the constant pool, if it needs special treatment. */
1228 #define ASM_OUTPUT_SPECIAL_POOL_ENTRY(FILE, X, MODE, ALIGN, LABELNO, JUMPTO) \
1229 do { \
1230 xtensa_output_literal (FILE, X, MODE, LABELNO); \
1231 goto JUMPTO; \
1232 } while (0)
1234 /* How to start an assembler comment. */
1235 #define ASM_COMMENT_START "#"
1237 /* Exception handling TODO!! */
1238 #define DWARF_UNWIND_INFO 0
1240 /* Xtensa constant pool breaks the devices in crtstuff.c to control
1241 section in where code resides. We have to write it as asm code. Use
1242 a MOVI and let the assembler relax it -- for the .init and .fini
1243 sections, the assembler knows to put the literal in the right
1244 place. */
1245 #define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \
1246 asm (SECTION_OP "\n\
1247 movi\ta8, " USER_LABEL_PREFIX #FUNC "\n\
1248 callx8\ta8\n" \
1249 TEXT_SECTION_ASM_OP);