Remove old autovect-branch by moving to "dead" directory.
[official-gcc.git] / old-autovect-branch / gcc / config / alpha / alpha.h
blobed02c9f3e8ede630b404a736f5bdb5f374400898
1 /* Definitions of target machine for GNU compiler, for DEC Alpha.
2 Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3 2000, 2001, 2002, 2004, 2005 Free Software Foundation, Inc.
4 Contributed by Richard Kenner (kenner@vlsi1.ultra.nyu.edu)
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2, or (at your option)
11 any later version.
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to
20 the Free Software Foundation, 51 Franklin Street, Fifth Floor,
21 Boston, MA 02110-1301, USA. */
23 /* Target CPU builtins. */
24 #define TARGET_CPU_CPP_BUILTINS() \
25 do \
26 { \
27 builtin_define ("__alpha"); \
28 builtin_define ("__alpha__"); \
29 builtin_assert ("cpu=alpha"); \
30 builtin_assert ("machine=alpha"); \
31 if (TARGET_CIX) \
32 { \
33 builtin_define ("__alpha_cix__"); \
34 builtin_assert ("cpu=cix"); \
35 } \
36 if (TARGET_FIX) \
37 { \
38 builtin_define ("__alpha_fix__"); \
39 builtin_assert ("cpu=fix"); \
40 } \
41 if (TARGET_BWX) \
42 { \
43 builtin_define ("__alpha_bwx__"); \
44 builtin_assert ("cpu=bwx"); \
45 } \
46 if (TARGET_MAX) \
47 { \
48 builtin_define ("__alpha_max__"); \
49 builtin_assert ("cpu=max"); \
50 } \
51 if (alpha_cpu == PROCESSOR_EV6) \
52 { \
53 builtin_define ("__alpha_ev6__"); \
54 builtin_assert ("cpu=ev6"); \
55 } \
56 else if (alpha_cpu == PROCESSOR_EV5) \
57 { \
58 builtin_define ("__alpha_ev5__"); \
59 builtin_assert ("cpu=ev5"); \
60 } \
61 else /* Presumably ev4. */ \
62 { \
63 builtin_define ("__alpha_ev4__"); \
64 builtin_assert ("cpu=ev4"); \
65 } \
66 if (TARGET_IEEE || TARGET_IEEE_WITH_INEXACT) \
67 builtin_define ("_IEEE_FP"); \
68 if (TARGET_IEEE_WITH_INEXACT) \
69 builtin_define ("_IEEE_FP_INEXACT"); \
70 if (TARGET_LONG_DOUBLE_128) \
71 builtin_define ("__LONG_DOUBLE_128__"); \
73 /* Macros dependent on the C dialect. */ \
74 SUBTARGET_LANGUAGE_CPP_BUILTINS(); \
75 } while (0)
77 #ifndef SUBTARGET_LANGUAGE_CPP_BUILTINS
78 #define SUBTARGET_LANGUAGE_CPP_BUILTINS() \
79 do \
80 { \
81 if (preprocessing_asm_p ()) \
82 builtin_define_std ("LANGUAGE_ASSEMBLY"); \
83 else if (c_dialect_cxx ()) \
84 { \
85 builtin_define ("__LANGUAGE_C_PLUS_PLUS"); \
86 builtin_define ("__LANGUAGE_C_PLUS_PLUS__"); \
87 } \
88 else \
89 builtin_define_std ("LANGUAGE_C"); \
90 if (c_dialect_objc ()) \
91 { \
92 builtin_define ("__LANGUAGE_OBJECTIVE_C"); \
93 builtin_define ("__LANGUAGE_OBJECTIVE_C__"); \
94 } \
95 } \
96 while (0)
97 #endif
99 #define CPP_SPEC "%(cpp_subtarget)"
101 #ifndef CPP_SUBTARGET_SPEC
102 #define CPP_SUBTARGET_SPEC ""
103 #endif
105 #define WORD_SWITCH_TAKES_ARG(STR) \
106 (!strcmp (STR, "rpath") || DEFAULT_WORD_SWITCH_TAKES_ARG(STR))
108 /* Print subsidiary information on the compiler version in use. */
109 #define TARGET_VERSION
111 /* Run-time compilation parameters selecting different hardware subsets. */
113 /* Which processor to schedule for. The cpu attribute defines a list that
114 mirrors this list, so changes to alpha.md must be made at the same time. */
116 enum processor_type
118 PROCESSOR_EV4, /* 2106[46]{a,} */
119 PROCESSOR_EV5, /* 21164{a,pc,} */
120 PROCESSOR_EV6, /* 21264 */
121 PROCESSOR_MAX
124 extern enum processor_type alpha_cpu;
125 extern enum processor_type alpha_tune;
127 enum alpha_trap_precision
129 ALPHA_TP_PROG, /* No precision (default). */
130 ALPHA_TP_FUNC, /* Trap contained within originating function. */
131 ALPHA_TP_INSN /* Instruction accuracy and code is resumption safe. */
134 enum alpha_fp_rounding_mode
136 ALPHA_FPRM_NORM, /* Normal rounding mode. */
137 ALPHA_FPRM_MINF, /* Round towards minus-infinity. */
138 ALPHA_FPRM_CHOP, /* Chopped rounding mode (towards 0). */
139 ALPHA_FPRM_DYN /* Dynamic rounding mode. */
142 enum alpha_fp_trap_mode
144 ALPHA_FPTM_N, /* Normal trap mode. */
145 ALPHA_FPTM_U, /* Underflow traps enabled. */
146 ALPHA_FPTM_SU, /* Software completion, w/underflow traps */
147 ALPHA_FPTM_SUI /* Software completion, w/underflow & inexact traps */
150 extern int target_flags;
152 extern enum alpha_trap_precision alpha_tp;
153 extern enum alpha_fp_rounding_mode alpha_fprm;
154 extern enum alpha_fp_trap_mode alpha_fptm;
156 /* Invert the easy way to make options work. */
157 #define TARGET_FP (!TARGET_SOFT_FP)
159 /* These are for target os support and cannot be changed at runtime. */
160 #define TARGET_ABI_WINDOWS_NT 0
161 #define TARGET_ABI_OPEN_VMS 0
162 #define TARGET_ABI_UNICOSMK 0
163 #define TARGET_ABI_OSF (!TARGET_ABI_WINDOWS_NT \
164 && !TARGET_ABI_OPEN_VMS \
165 && !TARGET_ABI_UNICOSMK)
167 #ifndef TARGET_AS_CAN_SUBTRACT_LABELS
168 #define TARGET_AS_CAN_SUBTRACT_LABELS TARGET_GAS
169 #endif
170 #ifndef TARGET_AS_SLASH_BEFORE_SUFFIX
171 #define TARGET_AS_SLASH_BEFORE_SUFFIX TARGET_GAS
172 #endif
173 #ifndef TARGET_CAN_FAULT_IN_PROLOGUE
174 #define TARGET_CAN_FAULT_IN_PROLOGUE 0
175 #endif
176 #ifndef TARGET_HAS_XFLOATING_LIBS
177 #define TARGET_HAS_XFLOATING_LIBS TARGET_LONG_DOUBLE_128
178 #endif
179 #ifndef TARGET_PROFILING_NEEDS_GP
180 #define TARGET_PROFILING_NEEDS_GP 0
181 #endif
182 #ifndef TARGET_LD_BUGGY_LDGP
183 #define TARGET_LD_BUGGY_LDGP 0
184 #endif
185 #ifndef TARGET_FIXUP_EV5_PREFETCH
186 #define TARGET_FIXUP_EV5_PREFETCH 0
187 #endif
188 #ifndef HAVE_AS_TLS
189 #define HAVE_AS_TLS 0
190 #endif
192 #define TARGET_DEFAULT MASK_FPREGS
194 #ifndef TARGET_CPU_DEFAULT
195 #define TARGET_CPU_DEFAULT 0
196 #endif
198 #ifndef TARGET_DEFAULT_EXPLICIT_RELOCS
199 #ifdef HAVE_AS_EXPLICIT_RELOCS
200 #define TARGET_DEFAULT_EXPLICIT_RELOCS MASK_EXPLICIT_RELOCS
201 #define TARGET_SUPPORT_ARCH 1
202 #else
203 #define TARGET_DEFAULT_EXPLICIT_RELOCS 0
204 #endif
205 #endif
207 #ifndef TARGET_SUPPORT_ARCH
208 #define TARGET_SUPPORT_ARCH 0
209 #endif
211 /* Support for a compile-time default CPU, et cetera. The rules are:
212 --with-cpu is ignored if -mcpu is specified.
213 --with-tune is ignored if -mtune is specified. */
214 #define OPTION_DEFAULT_SPECS \
215 {"cpu", "%{!mcpu=*:-mcpu=%(VALUE)}" }, \
216 {"tune", "%{!mtune=*:-mtune=%(VALUE)}" }
218 /* This macro defines names of additional specifications to put in the
219 specs that can be used in various specifications like CC1_SPEC. Its
220 definition is an initializer with a subgrouping for each command option.
222 Each subgrouping contains a string constant, that defines the
223 specification name, and a string constant that used by the GCC driver
224 program.
226 Do not define this macro if it does not need to do anything. */
228 #ifndef SUBTARGET_EXTRA_SPECS
229 #define SUBTARGET_EXTRA_SPECS
230 #endif
232 #define EXTRA_SPECS \
233 { "cpp_subtarget", CPP_SUBTARGET_SPEC }, \
234 SUBTARGET_EXTRA_SPECS
237 /* Sometimes certain combinations of command options do not make sense
238 on a particular target machine. You can define a macro
239 `OVERRIDE_OPTIONS' to take account of this. This macro, if
240 defined, is executed once just after all the command options have
241 been parsed.
243 On the Alpha, it is used to translate target-option strings into
244 numeric values. */
246 #define OVERRIDE_OPTIONS override_options ()
249 /* Define this macro to change register usage conditional on target flags.
251 On the Alpha, we use this to disable the floating-point registers when
252 they don't exist. */
254 #define CONDITIONAL_REGISTER_USAGE \
256 int i; \
257 if (! TARGET_FPREGS) \
258 for (i = 32; i < 63; i++) \
259 fixed_regs[i] = call_used_regs[i] = 1; \
263 /* Show we can debug even without a frame pointer. */
264 #define CAN_DEBUG_WITHOUT_FP
266 /* target machine storage layout */
268 /* Define the size of `int'. The default is the same as the word size. */
269 #define INT_TYPE_SIZE 32
271 /* Define the size of `long long'. The default is the twice the word size. */
272 #define LONG_LONG_TYPE_SIZE 64
274 /* We're IEEE unless someone says to use VAX. */
275 #define TARGET_FLOAT_FORMAT \
276 (TARGET_FLOAT_VAX ? VAX_FLOAT_FORMAT : IEEE_FLOAT_FORMAT)
278 /* The two floating-point formats we support are S-floating, which is
279 4 bytes, and T-floating, which is 8 bytes. `float' is S and `double'
280 and `long double' are T. */
282 #define FLOAT_TYPE_SIZE 32
283 #define DOUBLE_TYPE_SIZE 64
284 #define LONG_DOUBLE_TYPE_SIZE (TARGET_LONG_DOUBLE_128 ? 128 : 64)
286 /* Define this to set long double type size to use in libgcc2.c, which can
287 not depend on target_flags. */
288 #ifdef __LONG_DOUBLE_128__
289 #define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 128
290 #else
291 #define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 64
292 #endif
294 /* Work around target_flags dependency in ada/targtyps.c. */
295 #define WIDEST_HARDWARE_FP_SIZE 64
297 #define WCHAR_TYPE "unsigned int"
298 #define WCHAR_TYPE_SIZE 32
300 /* Define this macro if it is advisable to hold scalars in registers
301 in a wider mode than that declared by the program. In such cases,
302 the value is constrained to be within the bounds of the declared
303 type, but kept valid in the wider mode. The signedness of the
304 extension may differ from that of the type.
306 For Alpha, we always store objects in a full register. 32-bit integers
307 are always sign-extended, but smaller objects retain their signedness.
309 Note that small vector types can get mapped onto integer modes at the
310 whim of not appearing in alpha-modes.def. We never promoted these
311 values before; don't do so now that we've trimmed the set of modes to
312 those actually implemented in the backend. */
314 #define PROMOTE_MODE(MODE,UNSIGNEDP,TYPE) \
315 if (GET_MODE_CLASS (MODE) == MODE_INT \
316 && (TYPE == NULL || TREE_CODE (TYPE) != VECTOR_TYPE) \
317 && GET_MODE_SIZE (MODE) < UNITS_PER_WORD) \
319 if ((MODE) == SImode) \
320 (UNSIGNEDP) = 0; \
321 (MODE) = DImode; \
324 /* Define this if most significant bit is lowest numbered
325 in instructions that operate on numbered bit-fields.
327 There are no such instructions on the Alpha, but the documentation
328 is little endian. */
329 #define BITS_BIG_ENDIAN 0
331 /* Define this if most significant byte of a word is the lowest numbered.
332 This is false on the Alpha. */
333 #define BYTES_BIG_ENDIAN 0
335 /* Define this if most significant word of a multiword number is lowest
336 numbered.
338 For Alpha we can decide arbitrarily since there are no machine instructions
339 for them. Might as well be consistent with bytes. */
340 #define WORDS_BIG_ENDIAN 0
342 /* Width of a word, in units (bytes). */
343 #define UNITS_PER_WORD 8
345 /* Width in bits of a pointer.
346 See also the macro `Pmode' defined below. */
347 #define POINTER_SIZE 64
349 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
350 #define PARM_BOUNDARY 64
352 /* Boundary (in *bits*) on which stack pointer should be aligned. */
353 #define STACK_BOUNDARY 128
355 /* Allocation boundary (in *bits*) for the code of a function. */
356 #define FUNCTION_BOUNDARY 32
358 /* Alignment of field after `int : 0' in a structure. */
359 #define EMPTY_FIELD_BOUNDARY 64
361 /* Every structure's size must be a multiple of this. */
362 #define STRUCTURE_SIZE_BOUNDARY 8
364 /* A bit-field declared as `int' forces `int' alignment for the struct. */
365 #define PCC_BITFIELD_TYPE_MATTERS 1
367 /* No data type wants to be aligned rounder than this. */
368 #define BIGGEST_ALIGNMENT 128
370 /* For atomic access to objects, must have at least 32-bit alignment
371 unless the machine has byte operations. */
372 #define MINIMUM_ATOMIC_ALIGNMENT ((unsigned int) (TARGET_BWX ? 8 : 32))
374 /* Align all constants and variables to at least a word boundary so
375 we can pick up pieces of them faster. */
376 /* ??? Only if block-move stuff knows about different source/destination
377 alignment. */
378 #if 0
379 #define CONSTANT_ALIGNMENT(EXP, ALIGN) MAX ((ALIGN), BITS_PER_WORD)
380 #define DATA_ALIGNMENT(EXP, ALIGN) MAX ((ALIGN), BITS_PER_WORD)
381 #endif
383 /* Set this nonzero if move instructions will actually fail to work
384 when given unaligned data.
386 Since we get an error message when we do one, call them invalid. */
388 #define STRICT_ALIGNMENT 1
390 /* Set this nonzero if unaligned move instructions are extremely slow.
392 On the Alpha, they trap. */
394 #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) 1
396 /* Standard register usage. */
398 /* Number of actual hardware registers.
399 The hardware registers are assigned numbers for the compiler
400 from 0 to just below FIRST_PSEUDO_REGISTER.
401 All registers that the compiler knows about must be given numbers,
402 even those that are not normally considered general registers.
404 We define all 32 integer registers, even though $31 is always zero,
405 and all 32 floating-point registers, even though $f31 is also
406 always zero. We do not bother defining the FP status register and
407 there are no other registers.
409 Since $31 is always zero, we will use register number 31 as the
410 argument pointer. It will never appear in the generated code
411 because we will always be eliminating it in favor of the stack
412 pointer or hardware frame pointer.
414 Likewise, we use $f31 for the frame pointer, which will always
415 be eliminated in favor of the hardware frame pointer or the
416 stack pointer. */
418 #define FIRST_PSEUDO_REGISTER 64
420 /* 1 for registers that have pervasive standard uses
421 and are not available for the register allocator. */
423 #define FIXED_REGISTERS \
424 {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
425 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, \
426 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
427 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1 }
429 /* 1 for registers not available across function calls.
430 These must include the FIXED_REGISTERS and also any
431 registers that can be used without being saved.
432 The latter must include the registers where values are returned
433 and the register where structure-value addresses are passed.
434 Aside from that, you can include as many other registers as you like. */
435 #define CALL_USED_REGISTERS \
436 {1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, \
437 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, \
438 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, \
439 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 }
441 /* List the order in which to allocate registers. Each register must be
442 listed once, even those in FIXED_REGISTERS. */
444 #define REG_ALLOC_ORDER { \
445 1, 2, 3, 4, 5, 6, 7, 8, /* nonsaved integer registers */ \
446 22, 23, 24, 25, 28, /* likewise */ \
447 0, /* likewise, but return value */ \
448 21, 20, 19, 18, 17, 16, /* likewise, but input args */ \
449 27, /* likewise, but OSF procedure value */ \
451 42, 43, 44, 45, 46, 47, /* nonsaved floating-point registers */ \
452 54, 55, 56, 57, 58, 59, /* likewise */ \
453 60, 61, 62, /* likewise */ \
454 32, 33, /* likewise, but return values */ \
455 53, 52, 51, 50, 49, 48, /* likewise, but input args */ \
457 9, 10, 11, 12, 13, 14, /* saved integer registers */ \
458 26, /* return address */ \
459 15, /* hard frame pointer */ \
461 34, 35, 36, 37, 38, 39, /* saved floating-point registers */ \
462 40, 41, /* likewise */ \
464 29, 30, 31, 63 /* gp, sp, ap, sfp */ \
467 /* Return number of consecutive hard regs needed starting at reg REGNO
468 to hold something of mode MODE.
469 This is ordinarily the length in words of a value of mode MODE
470 but can be less for certain modes in special long registers. */
472 #define HARD_REGNO_NREGS(REGNO, MODE) \
473 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
475 /* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
476 On Alpha, the integer registers can hold any mode. The floating-point
477 registers can hold 64-bit integers as well, but not smaller values. */
479 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
480 ((REGNO) >= 32 && (REGNO) <= 62 \
481 ? (MODE) == SFmode || (MODE) == DFmode || (MODE) == DImode \
482 || (MODE) == SCmode || (MODE) == DCmode \
483 : 1)
485 /* A C expression that is nonzero if a value of mode
486 MODE1 is accessible in mode MODE2 without copying.
488 This asymmetric test is true when MODE1 could be put
489 in an FP register but MODE2 could not. */
491 #define MODES_TIEABLE_P(MODE1, MODE2) \
492 (HARD_REGNO_MODE_OK (32, (MODE1)) \
493 ? HARD_REGNO_MODE_OK (32, (MODE2)) \
494 : 1)
496 /* Specify the registers used for certain standard purposes.
497 The values of these macros are register numbers. */
499 /* Alpha pc isn't overloaded on a register that the compiler knows about. */
500 /* #define PC_REGNUM */
502 /* Register to use for pushing function arguments. */
503 #define STACK_POINTER_REGNUM 30
505 /* Base register for access to local variables of the function. */
506 #define HARD_FRAME_POINTER_REGNUM 15
508 /* Value should be nonzero if functions must have frame pointers.
509 Zero means the frame pointer need not be set up (and parms
510 may be accessed via the stack pointer) in functions that seem suitable.
511 This is computed in `reload', in reload1.c. */
512 #define FRAME_POINTER_REQUIRED 0
514 /* Base register for access to arguments of the function. */
515 #define ARG_POINTER_REGNUM 31
517 /* Base register for access to local variables of function. */
518 #define FRAME_POINTER_REGNUM 63
520 /* Register in which static-chain is passed to a function.
522 For the Alpha, this is based on an example; the calling sequence
523 doesn't seem to specify this. */
524 #define STATIC_CHAIN_REGNUM 1
526 /* The register number of the register used to address a table of
527 static data addresses in memory. */
528 #define PIC_OFFSET_TABLE_REGNUM 29
530 /* Define this macro if the register defined by `PIC_OFFSET_TABLE_REGNUM'
531 is clobbered by calls. */
532 /* ??? It is and it isn't. It's required to be valid for a given
533 function when the function returns. It isn't clobbered by
534 current_file functions. Moreover, we do not expose the ldgp
535 until after reload, so we're probably safe. */
536 /* #define PIC_OFFSET_TABLE_REG_CALL_CLOBBERED */
538 /* Define the classes of registers for register constraints in the
539 machine description. Also define ranges of constants.
541 One of the classes must always be named ALL_REGS and include all hard regs.
542 If there is more than one class, another class must be named NO_REGS
543 and contain no registers.
545 The name GENERAL_REGS must be the name of a class (or an alias for
546 another name such as ALL_REGS). This is the class of registers
547 that is allowed by "g" or "r" in a register constraint.
548 Also, registers outside this class are allocated only when
549 instructions express preferences for them.
551 The classes must be numbered in nondecreasing order; that is,
552 a larger-numbered class must never be contained completely
553 in a smaller-numbered class.
555 For any two classes, it is very desirable that there be another
556 class that represents their union. */
558 enum reg_class {
559 NO_REGS, R0_REG, R24_REG, R25_REG, R27_REG,
560 GENERAL_REGS, FLOAT_REGS, ALL_REGS,
561 LIM_REG_CLASSES
564 #define N_REG_CLASSES (int) LIM_REG_CLASSES
566 /* Give names of register classes as strings for dump file. */
568 #define REG_CLASS_NAMES \
569 {"NO_REGS", "R0_REG", "R24_REG", "R25_REG", "R27_REG", \
570 "GENERAL_REGS", "FLOAT_REGS", "ALL_REGS" }
572 /* Define which registers fit in which classes.
573 This is an initializer for a vector of HARD_REG_SET
574 of length N_REG_CLASSES. */
576 #define REG_CLASS_CONTENTS \
577 { {0x00000000, 0x00000000}, /* NO_REGS */ \
578 {0x00000001, 0x00000000}, /* R0_REG */ \
579 {0x01000000, 0x00000000}, /* R24_REG */ \
580 {0x02000000, 0x00000000}, /* R25_REG */ \
581 {0x08000000, 0x00000000}, /* R27_REG */ \
582 {0xffffffff, 0x80000000}, /* GENERAL_REGS */ \
583 {0x00000000, 0x7fffffff}, /* FLOAT_REGS */ \
584 {0xffffffff, 0xffffffff} }
586 /* The same information, inverted:
587 Return the class number of the smallest class containing
588 reg number REGNO. This could be a conditional expression
589 or could index an array. */
591 #define REGNO_REG_CLASS(REGNO) \
592 ((REGNO) == 0 ? R0_REG \
593 : (REGNO) == 24 ? R24_REG \
594 : (REGNO) == 25 ? R25_REG \
595 : (REGNO) == 27 ? R27_REG \
596 : (REGNO) >= 32 && (REGNO) <= 62 ? FLOAT_REGS \
597 : GENERAL_REGS)
599 /* The class value for index registers, and the one for base regs. */
600 #define INDEX_REG_CLASS NO_REGS
601 #define BASE_REG_CLASS GENERAL_REGS
603 /* Get reg_class from a letter such as appears in the machine description. */
605 #define REG_CLASS_FROM_LETTER(C) \
606 ((C) == 'a' ? R24_REG \
607 : (C) == 'b' ? R25_REG \
608 : (C) == 'c' ? R27_REG \
609 : (C) == 'f' ? FLOAT_REGS \
610 : (C) == 'v' ? R0_REG \
611 : NO_REGS)
613 /* Define this macro to change register usage conditional on target flags. */
614 /* #define CONDITIONAL_REGISTER_USAGE */
616 /* The letters I, J, K, L, M, N, O, and P in a register constraint string
617 can be used to stand for particular ranges of immediate operands.
618 This macro defines what the ranges are.
619 C is the letter, and VALUE is a constant value.
620 Return 1 if VALUE is in the range specified by C.
622 For Alpha:
623 `I' is used for the range of constants most insns can contain.
624 `J' is the constant zero.
625 `K' is used for the constant in an LDA insn.
626 `L' is used for the constant in a LDAH insn.
627 `M' is used for the constants that can be AND'ed with using a ZAP insn.
628 `N' is used for complemented 8-bit constants.
629 `O' is used for negated 8-bit constants.
630 `P' is used for the constants 1, 2 and 3. */
632 #define CONST_OK_FOR_LETTER_P alpha_const_ok_for_letter_p
634 /* Similar, but for floating or large integer constants, and defining letters
635 G and H. Here VALUE is the CONST_DOUBLE rtx itself.
637 For Alpha, `G' is the floating-point constant zero. `H' is a CONST_DOUBLE
638 that is the operand of a ZAP insn. */
640 #define CONST_DOUBLE_OK_FOR_LETTER_P alpha_const_double_ok_for_letter_p
642 /* Optional extra constraints for this machine.
644 For the Alpha, `Q' means that this is a memory operand but not a
645 reference to an unaligned location.
647 `R' is a SYMBOL_REF that has SYMBOL_REF_FLAG set or is the current
648 function.
650 'S' is a 6-bit constant (valid for a shift insn).
652 'T' is a HIGH.
654 'U' is a symbolic operand.
656 'W' is a vector zero. */
658 #define EXTRA_CONSTRAINT alpha_extra_constraint
660 /* Given an rtx X being reloaded into a reg required to be
661 in class CLASS, return the class of reg to actually use.
662 In general this is just CLASS; but on some machines
663 in some cases it is preferable to use a more restrictive class. */
665 #define PREFERRED_RELOAD_CLASS alpha_preferred_reload_class
667 /* Loading and storing HImode or QImode values to and from memory
668 usually requires a scratch register. The exceptions are loading
669 QImode and HImode from an aligned address to a general register
670 unless byte instructions are permitted.
671 We also cannot load an unaligned address or a paradoxical SUBREG into an
672 FP register. */
674 #define SECONDARY_INPUT_RELOAD_CLASS(CLASS,MODE,IN) \
675 alpha_secondary_reload_class((CLASS), (MODE), (IN), 1)
677 #define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS,MODE,OUT) \
678 alpha_secondary_reload_class((CLASS), (MODE), (OUT), 0)
680 /* If we are copying between general and FP registers, we need a memory
681 location unless the FIX extension is available. */
683 #define SECONDARY_MEMORY_NEEDED(CLASS1,CLASS2,MODE) \
684 (! TARGET_FIX && (((CLASS1) == FLOAT_REGS && (CLASS2) != FLOAT_REGS) \
685 || ((CLASS2) == FLOAT_REGS && (CLASS1) != FLOAT_REGS)))
687 /* Specify the mode to be used for memory when a secondary memory
688 location is needed. If MODE is floating-point, use it. Otherwise,
689 widen to a word like the default. This is needed because we always
690 store integers in FP registers in quadword format. This whole
691 area is very tricky! */
692 #define SECONDARY_MEMORY_NEEDED_MODE(MODE) \
693 (GET_MODE_CLASS (MODE) == MODE_FLOAT ? (MODE) \
694 : GET_MODE_SIZE (MODE) >= 4 ? (MODE) \
695 : mode_for_size (BITS_PER_WORD, GET_MODE_CLASS (MODE), 0))
697 /* Return the maximum number of consecutive registers
698 needed to represent mode MODE in a register of class CLASS. */
700 #define CLASS_MAX_NREGS(CLASS, MODE) \
701 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
703 /* Return the class of registers that cannot change mode from FROM to TO. */
705 #define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS) \
706 (GET_MODE_SIZE (FROM) != GET_MODE_SIZE (TO) \
707 ? reg_classes_intersect_p (FLOAT_REGS, CLASS) : 0)
709 /* Define the cost of moving between registers of various classes. Moving
710 between FLOAT_REGS and anything else except float regs is expensive.
711 In fact, we make it quite expensive because we really don't want to
712 do these moves unless it is clearly worth it. Optimizations may
713 reduce the impact of not being able to allocate a pseudo to a
714 hard register. */
716 #define REGISTER_MOVE_COST(MODE, CLASS1, CLASS2) \
717 (((CLASS1) == FLOAT_REGS) == ((CLASS2) == FLOAT_REGS) ? 2 \
718 : TARGET_FIX ? ((CLASS1) == FLOAT_REGS ? 6 : 8) \
719 : 4+2*alpha_memory_latency)
721 /* A C expressions returning the cost of moving data of MODE from a register to
722 or from memory.
724 On the Alpha, bump this up a bit. */
726 extern int alpha_memory_latency;
727 #define MEMORY_MOVE_COST(MODE,CLASS,IN) (2*alpha_memory_latency)
729 /* Provide the cost of a branch. Exact meaning under development. */
730 #define BRANCH_COST 5
732 /* Stack layout; function entry, exit and calling. */
734 /* Define this if pushing a word on the stack
735 makes the stack pointer a smaller address. */
736 #define STACK_GROWS_DOWNWARD
738 /* Define this to nonzero if the nominal address of the stack frame
739 is at the high-address end of the local variables;
740 that is, each additional local variable allocated
741 goes at a more negative offset in the frame. */
742 /* #define FRAME_GROWS_DOWNWARD 0 */
744 /* Offset within stack frame to start allocating local variables at.
745 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
746 first local allocated. Otherwise, it is the offset to the BEGINNING
747 of the first local allocated. */
749 #define STARTING_FRAME_OFFSET 0
751 /* If we generate an insn to push BYTES bytes,
752 this says how many the stack pointer really advances by.
753 On Alpha, don't define this because there are no push insns. */
754 /* #define PUSH_ROUNDING(BYTES) */
756 /* Define this to be nonzero if stack checking is built into the ABI. */
757 #define STACK_CHECK_BUILTIN 1
759 /* Define this if the maximum size of all the outgoing args is to be
760 accumulated and pushed during the prologue. The amount can be
761 found in the variable current_function_outgoing_args_size. */
762 #define ACCUMULATE_OUTGOING_ARGS 1
764 /* Offset of first parameter from the argument pointer register value. */
766 #define FIRST_PARM_OFFSET(FNDECL) 0
768 /* Definitions for register eliminations.
770 We have two registers that can be eliminated on the Alpha. First, the
771 frame pointer register can often be eliminated in favor of the stack
772 pointer register. Secondly, the argument pointer register can always be
773 eliminated; it is replaced with either the stack or frame pointer. */
775 /* This is an array of structures. Each structure initializes one pair
776 of eliminable registers. The "from" register number is given first,
777 followed by "to". Eliminations of the same "from" register are listed
778 in order of preference. */
780 #define ELIMINABLE_REGS \
781 {{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
782 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
783 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
784 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}}
786 /* Given FROM and TO register numbers, say whether this elimination is allowed.
787 Frame pointer elimination is automatically handled.
789 All eliminations are valid since the cases where FP can't be
790 eliminated are already handled. */
792 #define CAN_ELIMINATE(FROM, TO) 1
794 /* Round up to a multiple of 16 bytes. */
795 #define ALPHA_ROUND(X) (((X) + 15) & ~ 15)
797 /* Define the offset between two registers, one to be eliminated, and the other
798 its replacement, at the start of a routine. */
799 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
800 ((OFFSET) = alpha_initial_elimination_offset(FROM, TO))
802 /* Define this if stack space is still allocated for a parameter passed
803 in a register. */
804 /* #define REG_PARM_STACK_SPACE */
806 /* Value is the number of bytes of arguments automatically
807 popped when returning from a subroutine call.
808 FUNDECL is the declaration node of the function (as a tree),
809 FUNTYPE is the data type of the function (as a tree),
810 or for a library call it is an identifier node for the subroutine name.
811 SIZE is the number of bytes of arguments passed on the stack. */
813 #define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0
815 /* Define how to find the value returned by a function.
816 VALTYPE is the data type of the value (as a tree).
817 If the precise function being called is known, FUNC is its FUNCTION_DECL;
818 otherwise, FUNC is 0.
820 On Alpha the value is found in $0 for integer functions and
821 $f0 for floating-point functions. */
823 #define FUNCTION_VALUE(VALTYPE, FUNC) \
824 function_value (VALTYPE, FUNC, VOIDmode)
826 /* Define how to find the value returned by a library function
827 assuming the value has mode MODE. */
829 #define LIBCALL_VALUE(MODE) \
830 function_value (NULL, NULL, MODE)
832 /* 1 if N is a possible register number for a function value
833 as seen by the caller. */
835 #define FUNCTION_VALUE_REGNO_P(N) \
836 ((N) == 0 || (N) == 1 || (N) == 32 || (N) == 33)
838 /* 1 if N is a possible register number for function argument passing.
839 On Alpha, these are $16-$21 and $f16-$f21. */
841 #define FUNCTION_ARG_REGNO_P(N) \
842 (((N) >= 16 && (N) <= 21) || ((N) >= 16 + 32 && (N) <= 21 + 32))
844 /* Define a data type for recording info about an argument list
845 during the scan of that argument list. This data type should
846 hold all necessary information about the function itself
847 and about the args processed so far, enough to enable macros
848 such as FUNCTION_ARG to determine where the next arg should go.
850 On Alpha, this is a single integer, which is a number of words
851 of arguments scanned so far.
852 Thus 6 or more means all following args should go on the stack. */
854 #define CUMULATIVE_ARGS int
856 /* Initialize a variable CUM of type CUMULATIVE_ARGS
857 for a call to a function whose data type is FNTYPE.
858 For a library call, FNTYPE is 0. */
860 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT, N_NAMED_ARGS) \
861 (CUM) = 0
863 /* Define intermediate macro to compute the size (in registers) of an argument
864 for the Alpha. */
866 #define ALPHA_ARG_SIZE(MODE, TYPE, NAMED) \
867 ((MODE) == TFmode || (MODE) == TCmode ? 1 \
868 : (((MODE) == BLKmode ? int_size_in_bytes (TYPE) : GET_MODE_SIZE (MODE)) \
869 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
871 /* Update the data in CUM to advance over an argument
872 of mode MODE and data type TYPE.
873 (TYPE is null for libcalls where that information may not be available.) */
875 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
876 ((CUM) += \
877 (targetm.calls.must_pass_in_stack (MODE, TYPE)) \
878 ? 6 : ALPHA_ARG_SIZE (MODE, TYPE, NAMED))
880 /* Determine where to put an argument to a function.
881 Value is zero to push the argument on the stack,
882 or a hard register in which to store the argument.
884 MODE is the argument's machine mode.
885 TYPE is the data type of the argument (as a tree).
886 This is null for libcalls where that information may
887 not be available.
888 CUM is a variable of type CUMULATIVE_ARGS which gives info about
889 the preceding args and about the function being called.
890 NAMED is nonzero if this argument is a named parameter
891 (otherwise it is an extra parameter matching an ellipsis).
893 On Alpha the first 6 words of args are normally in registers
894 and the rest are pushed. */
896 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
897 function_arg((CUM), (MODE), (TYPE), (NAMED))
899 /* Try to output insns to set TARGET equal to the constant C if it can be
900 done in less than N insns. Do all computations in MODE. Returns the place
901 where the output has been placed if it can be done and the insns have been
902 emitted. If it would take more than N insns, zero is returned and no
903 insns and emitted. */
905 /* Define the information needed to generate branch and scc insns. This is
906 stored from the compare operation. Note that we can't use "rtx" here
907 since it hasn't been defined! */
909 struct alpha_compare
911 struct rtx_def *op0, *op1;
912 int fp_p;
915 extern struct alpha_compare alpha_compare;
917 /* Make (or fake) .linkage entry for function call.
918 IS_LOCAL is 0 if name is used in call, 1 if name is used in definition. */
920 /* This macro defines the start of an assembly comment. */
922 #define ASM_COMMENT_START " #"
924 /* This macro produces the initial definition of a function. */
926 #define ASM_DECLARE_FUNCTION_NAME(FILE,NAME,DECL) \
927 alpha_start_function(FILE,NAME,DECL);
929 /* This macro closes up a function definition for the assembler. */
931 #define ASM_DECLARE_FUNCTION_SIZE(FILE,NAME,DECL) \
932 alpha_end_function(FILE,NAME,DECL)
934 /* Output any profiling code before the prologue. */
936 #define PROFILE_BEFORE_PROLOGUE 1
938 /* Never use profile counters. */
940 #define NO_PROFILE_COUNTERS 1
942 /* Output assembler code to FILE to increment profiler label # LABELNO
943 for profiling a function entry. Under OSF/1, profiling is enabled
944 by simply passing -pg to the assembler and linker. */
946 #define FUNCTION_PROFILER(FILE, LABELNO)
948 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
949 the stack pointer does not matter. The value is tested only in
950 functions that have frame pointers.
951 No definition is equivalent to always zero. */
953 #define EXIT_IGNORE_STACK 1
955 /* Define registers used by the epilogue and return instruction. */
957 #define EPILOGUE_USES(REGNO) ((REGNO) == 26)
959 /* Output assembler code for a block containing the constant parts
960 of a trampoline, leaving space for the variable parts.
962 The trampoline should set the static chain pointer to value placed
963 into the trampoline and should branch to the specified routine.
964 Note that $27 has been set to the address of the trampoline, so we can
965 use it for addressability of the two data items. */
967 #define TRAMPOLINE_TEMPLATE(FILE) \
968 do { \
969 fprintf (FILE, "\tldq $1,24($27)\n"); \
970 fprintf (FILE, "\tldq $27,16($27)\n"); \
971 fprintf (FILE, "\tjmp $31,($27),0\n"); \
972 fprintf (FILE, "\tnop\n"); \
973 fprintf (FILE, "\t.quad 0,0\n"); \
974 } while (0)
976 /* Section in which to place the trampoline. On Alpha, instructions
977 may only be placed in a text segment. */
979 #define TRAMPOLINE_SECTION text_section
981 /* Length in units of the trampoline for entering a nested function. */
983 #define TRAMPOLINE_SIZE 32
985 /* The alignment of a trampoline, in bits. */
987 #define TRAMPOLINE_ALIGNMENT 64
989 /* Emit RTL insns to initialize the variable parts of a trampoline.
990 FNADDR is an RTX for the address of the function's pure code.
991 CXT is an RTX for the static chain value for the function. */
993 #define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
994 alpha_initialize_trampoline (TRAMP, FNADDR, CXT, 16, 24, 8)
996 /* A C expression whose value is RTL representing the value of the return
997 address for the frame COUNT steps up from the current frame.
998 FRAMEADDR is the frame pointer of the COUNT frame, or the frame pointer of
999 the COUNT-1 frame if RETURN_ADDR_IN_PREVIOUS_FRAME is defined. */
1001 #define RETURN_ADDR_RTX alpha_return_addr
1003 /* Before the prologue, RA lives in $26. */
1004 #define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (Pmode, 26)
1005 #define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (26)
1006 #define DWARF_ALT_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (64)
1007 #define DWARF_ZERO_REG 31
1009 /* Describe how we implement __builtin_eh_return. */
1010 #define EH_RETURN_DATA_REGNO(N) ((N) < 4 ? (N) + 16 : INVALID_REGNUM)
1011 #define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, 28)
1012 #define EH_RETURN_HANDLER_RTX \
1013 gen_rtx_MEM (Pmode, plus_constant (stack_pointer_rtx, \
1014 current_function_outgoing_args_size))
1016 /* Addressing modes, and classification of registers for them. */
1018 /* Macros to check register numbers against specific register classes. */
1020 /* These assume that REGNO is a hard or pseudo reg number.
1021 They give nonzero only if REGNO is a hard reg of the suitable class
1022 or a pseudo reg currently allocated to a suitable hard reg.
1023 Since they use reg_renumber, they are safe only once reg_renumber
1024 has been allocated, which happens in local-alloc.c. */
1026 #define REGNO_OK_FOR_INDEX_P(REGNO) 0
1027 #define REGNO_OK_FOR_BASE_P(REGNO) \
1028 ((REGNO) < 32 || (unsigned) reg_renumber[REGNO] < 32 \
1029 || (REGNO) == 63 || reg_renumber[REGNO] == 63)
1031 /* Maximum number of registers that can appear in a valid memory address. */
1032 #define MAX_REGS_PER_ADDRESS 1
1034 /* Recognize any constant value that is a valid address. For the Alpha,
1035 there are only constants none since we want to use LDA to load any
1036 symbolic addresses into registers. */
1038 #define CONSTANT_ADDRESS_P(X) \
1039 (GET_CODE (X) == CONST_INT \
1040 && (unsigned HOST_WIDE_INT) (INTVAL (X) + 0x8000) < 0x10000)
1042 /* Include all constant integers and constant doubles, but not
1043 floating-point, except for floating-point zero. */
1045 #define LEGITIMATE_CONSTANT_P alpha_legitimate_constant_p
1047 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1048 and check its validity for a certain class.
1049 We have two alternate definitions for each of them.
1050 The usual definition accepts all pseudo regs; the other rejects
1051 them unless they have been allocated suitable hard regs.
1052 The symbol REG_OK_STRICT causes the latter definition to be used.
1054 Most source files want to accept pseudo regs in the hope that
1055 they will get allocated to the class that the insn wants them to be in.
1056 Source files for reload pass need to be strict.
1057 After reload, it makes no difference, since pseudo regs have
1058 been eliminated by then. */
1060 /* Nonzero if X is a hard reg that can be used as an index
1061 or if it is a pseudo reg. */
1062 #define REG_OK_FOR_INDEX_P(X) 0
1064 /* Nonzero if X is a hard reg that can be used as a base reg
1065 or if it is a pseudo reg. */
1066 #define NONSTRICT_REG_OK_FOR_BASE_P(X) \
1067 (REGNO (X) < 32 || REGNO (X) == 63 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1069 /* ??? Nonzero if X is the frame pointer, or some virtual register
1070 that may eliminate to the frame pointer. These will be allowed to
1071 have offsets greater than 32K. This is done because register
1072 elimination offsets will change the hi/lo split, and if we split
1073 before reload, we will require additional instructions. */
1074 #define NONSTRICT_REG_OK_FP_BASE_P(X) \
1075 (REGNO (X) == 31 || REGNO (X) == 63 \
1076 || (REGNO (X) >= FIRST_PSEUDO_REGISTER \
1077 && REGNO (X) < LAST_VIRTUAL_REGISTER))
1079 /* Nonzero if X is a hard reg that can be used as a base reg. */
1080 #define STRICT_REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
1082 #ifdef REG_OK_STRICT
1083 #define REG_OK_FOR_BASE_P(X) STRICT_REG_OK_FOR_BASE_P (X)
1084 #else
1085 #define REG_OK_FOR_BASE_P(X) NONSTRICT_REG_OK_FOR_BASE_P (X)
1086 #endif
1088 /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression that is a
1089 valid memory address for an instruction. */
1091 #ifdef REG_OK_STRICT
1092 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, WIN) \
1093 do { \
1094 if (alpha_legitimate_address_p (MODE, X, 1)) \
1095 goto WIN; \
1096 } while (0)
1097 #else
1098 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, WIN) \
1099 do { \
1100 if (alpha_legitimate_address_p (MODE, X, 0)) \
1101 goto WIN; \
1102 } while (0)
1103 #endif
1105 /* Try machine-dependent ways of modifying an illegitimate address
1106 to be legitimate. If we find one, return the new, valid address.
1107 This macro is used in only one place: `memory_address' in explow.c. */
1109 #define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) \
1110 do { \
1111 rtx new_x = alpha_legitimize_address (X, NULL_RTX, MODE); \
1112 if (new_x) \
1114 X = new_x; \
1115 goto WIN; \
1117 } while (0)
1119 /* Try a machine-dependent way of reloading an illegitimate address
1120 operand. If we find one, push the reload and jump to WIN. This
1121 macro is used in only one place: `find_reloads_address' in reload.c. */
1123 #define LEGITIMIZE_RELOAD_ADDRESS(X,MODE,OPNUM,TYPE,IND_L,WIN) \
1124 do { \
1125 rtx new_x = alpha_legitimize_reload_address (X, MODE, OPNUM, TYPE, IND_L); \
1126 if (new_x) \
1128 X = new_x; \
1129 goto WIN; \
1131 } while (0)
1133 /* Go to LABEL if ADDR (a legitimate address expression)
1134 has an effect that depends on the machine mode it is used for.
1135 On the Alpha this is true only for the unaligned modes. We can
1136 simplify this test since we know that the address must be valid. */
1138 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) \
1139 { if (GET_CODE (ADDR) == AND) goto LABEL; }
1141 /* Specify the machine mode that this machine uses
1142 for the index in the tablejump instruction. */
1143 #define CASE_VECTOR_MODE SImode
1145 /* Define as C expression which evaluates to nonzero if the tablejump
1146 instruction expects the table to contain offsets from the address of the
1147 table.
1149 Do not define this if the table should contain absolute addresses.
1150 On the Alpha, the table is really GP-relative, not relative to the PC
1151 of the table, but we pretend that it is PC-relative; this should be OK,
1152 but we should try to find some better way sometime. */
1153 #define CASE_VECTOR_PC_RELATIVE 1
1155 /* Define this as 1 if `char' should by default be signed; else as 0. */
1156 #define DEFAULT_SIGNED_CHAR 1
1158 /* Max number of bytes we can move to or from memory
1159 in one reasonably fast instruction. */
1161 #define MOVE_MAX 8
1163 /* If a memory-to-memory move would take MOVE_RATIO or more simple
1164 move-instruction pairs, we will do a movmem or libcall instead.
1166 Without byte/word accesses, we want no more than four instructions;
1167 with, several single byte accesses are better. */
1169 #define MOVE_RATIO (TARGET_BWX ? 7 : 2)
1171 /* Largest number of bytes of an object that can be placed in a register.
1172 On the Alpha we have plenty of registers, so use TImode. */
1173 #define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (TImode)
1175 /* Nonzero if access to memory by bytes is no faster than for words.
1176 Also nonzero if doing byte operations (specifically shifts) in registers
1177 is undesirable.
1179 On the Alpha, we want to not use the byte operation and instead use
1180 masking operations to access fields; these will save instructions. */
1182 #define SLOW_BYTE_ACCESS 1
1184 /* Define if operations between registers always perform the operation
1185 on the full register even if a narrower mode is specified. */
1186 #define WORD_REGISTER_OPERATIONS
1188 /* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
1189 will either zero-extend or sign-extend. The value of this macro should
1190 be the code that says which one of the two operations is implicitly
1191 done, UNKNOWN if none. */
1192 #define LOAD_EXTEND_OP(MODE) ((MODE) == SImode ? SIGN_EXTEND : ZERO_EXTEND)
1194 /* Define if loading short immediate values into registers sign extends. */
1195 #define SHORT_IMMEDIATES_SIGN_EXTEND
1197 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1198 is done just by pretending it is already truncated. */
1199 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1201 /* The CIX ctlz and cttz instructions return 64 for zero. */
1202 #define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) ((VALUE) = 64, TARGET_CIX)
1203 #define CTZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) ((VALUE) = 64, TARGET_CIX)
1205 /* Define the value returned by a floating-point comparison instruction. */
1207 #define FLOAT_STORE_FLAG_VALUE(MODE) \
1208 REAL_VALUE_ATOF ((TARGET_FLOAT_VAX ? "0.5" : "2.0"), (MODE))
1210 /* Canonicalize a comparison from one we don't have to one we do have. */
1212 #define CANONICALIZE_COMPARISON(CODE,OP0,OP1) \
1213 do { \
1214 if (((CODE) == GE || (CODE) == GT || (CODE) == GEU || (CODE) == GTU) \
1215 && (GET_CODE (OP1) == REG || (OP1) == const0_rtx)) \
1217 rtx tem = (OP0); \
1218 (OP0) = (OP1); \
1219 (OP1) = tem; \
1220 (CODE) = swap_condition (CODE); \
1222 if (((CODE) == LT || (CODE) == LTU) \
1223 && GET_CODE (OP1) == CONST_INT && INTVAL (OP1) == 256) \
1225 (CODE) = (CODE) == LT ? LE : LEU; \
1226 (OP1) = GEN_INT (255); \
1228 } while (0)
1230 /* Specify the machine mode that pointers have.
1231 After generation of rtl, the compiler makes no further distinction
1232 between pointers and any other objects of this machine mode. */
1233 #define Pmode DImode
1235 /* Mode of a function address in a call instruction (for indexing purposes). */
1237 #define FUNCTION_MODE Pmode
1239 /* Define this if addresses of constant functions
1240 shouldn't be put through pseudo regs where they can be cse'd.
1241 Desirable on machines where ordinary constants are expensive
1242 but a CALL with constant address is cheap.
1244 We define this on the Alpha so that gen_call and gen_call_value
1245 get to see the SYMBOL_REF (for the hint field of the jsr). It will
1246 then copy it into a register, thus actually letting the address be
1247 cse'ed. */
1249 #define NO_FUNCTION_CSE
1251 /* Define this to be nonzero if shift instructions ignore all but the low-order
1252 few bits. */
1253 #define SHIFT_COUNT_TRUNCATED 1
1255 /* Control the assembler format that we output. */
1257 /* Output to assembler file text saying following lines
1258 may contain character constants, extra white space, comments, etc. */
1259 #define ASM_APP_ON (TARGET_EXPLICIT_RELOCS ? "\t.set\tmacro\n" : "")
1261 /* Output to assembler file text saying following lines
1262 no longer contain unusual constructs. */
1263 #define ASM_APP_OFF (TARGET_EXPLICIT_RELOCS ? "\t.set\tnomacro\n" : "")
1265 #define TEXT_SECTION_ASM_OP "\t.text"
1267 /* Output before read-only data. */
1269 #define READONLY_DATA_SECTION_ASM_OP "\t.rdata"
1271 /* Output before writable data. */
1273 #define DATA_SECTION_ASM_OP "\t.data"
1275 /* How to refer to registers in assembler output.
1276 This sequence is indexed by compiler's hard-register-number (see above). */
1278 #define REGISTER_NAMES \
1279 {"$0", "$1", "$2", "$3", "$4", "$5", "$6", "$7", "$8", \
1280 "$9", "$10", "$11", "$12", "$13", "$14", "$15", \
1281 "$16", "$17", "$18", "$19", "$20", "$21", "$22", "$23", \
1282 "$24", "$25", "$26", "$27", "$28", "$29", "$30", "AP", \
1283 "$f0", "$f1", "$f2", "$f3", "$f4", "$f5", "$f6", "$f7", "$f8", \
1284 "$f9", "$f10", "$f11", "$f12", "$f13", "$f14", "$f15", \
1285 "$f16", "$f17", "$f18", "$f19", "$f20", "$f21", "$f22", "$f23",\
1286 "$f24", "$f25", "$f26", "$f27", "$f28", "$f29", "$f30", "FP"}
1288 /* Strip name encoding when emitting labels. */
1290 #define ASM_OUTPUT_LABELREF(STREAM, NAME) \
1291 do { \
1292 const char *name_ = NAME; \
1293 if (*name_ == '@' || *name_ == '%') \
1294 name_ += 2; \
1295 if (*name_ == '*') \
1296 name_++; \
1297 else \
1298 fputs (user_label_prefix, STREAM); \
1299 fputs (name_, STREAM); \
1300 } while (0)
1302 /* Globalizing directive for a label. */
1303 #define GLOBAL_ASM_OP "\t.globl "
1305 /* The prefix to add to user-visible assembler symbols. */
1307 #define USER_LABEL_PREFIX ""
1309 /* This is how to output a label for a jump table. Arguments are the same as
1310 for (*targetm.asm_out.internal_label), except the insn for the jump table is
1311 passed. */
1313 #define ASM_OUTPUT_CASE_LABEL(FILE,PREFIX,NUM,TABLEINSN) \
1314 { ASM_OUTPUT_ALIGN (FILE, 2); (*targetm.asm_out.internal_label) (FILE, PREFIX, NUM); }
1316 /* This is how to store into the string LABEL
1317 the symbol_ref name of an internal numbered label where
1318 PREFIX is the class of label and NUM is the number within the class.
1319 This is suitable for output with `assemble_name'. */
1321 #define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
1322 sprintf ((LABEL), "*$%s%ld", (PREFIX), (long)(NUM))
1324 /* We use the default ASCII-output routine, except that we don't write more
1325 than 50 characters since the assembler doesn't support very long lines. */
1327 #define ASM_OUTPUT_ASCII(MYFILE, MYSTRING, MYLENGTH) \
1328 do { \
1329 FILE *_hide_asm_out_file = (MYFILE); \
1330 const unsigned char *_hide_p = (const unsigned char *) (MYSTRING); \
1331 int _hide_thissize = (MYLENGTH); \
1332 int _size_so_far = 0; \
1334 FILE *asm_out_file = _hide_asm_out_file; \
1335 const unsigned char *p = _hide_p; \
1336 int thissize = _hide_thissize; \
1337 int i; \
1338 fprintf (asm_out_file, "\t.ascii \""); \
1340 for (i = 0; i < thissize; i++) \
1342 register int c = p[i]; \
1344 if (_size_so_far ++ > 50 && i < thissize - 4) \
1345 _size_so_far = 0, fprintf (asm_out_file, "\"\n\t.ascii \""); \
1347 if (c == '\"' || c == '\\') \
1348 putc ('\\', asm_out_file); \
1349 if (c >= ' ' && c < 0177) \
1350 putc (c, asm_out_file); \
1351 else \
1353 fprintf (asm_out_file, "\\%o", c); \
1354 /* After an octal-escape, if a digit follows, \
1355 terminate one string constant and start another. \
1356 The VAX assembler fails to stop reading the escape \
1357 after three digits, so this is the only way we \
1358 can get it to parse the data properly. */ \
1359 if (i < thissize - 1 && ISDIGIT (p[i + 1])) \
1360 _size_so_far = 0, fprintf (asm_out_file, "\"\n\t.ascii \""); \
1363 fprintf (asm_out_file, "\"\n"); \
1366 while (0)
1368 /* This is how to output an element of a case-vector that is relative. */
1370 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
1371 fprintf (FILE, "\t.%s $L%d\n", TARGET_ABI_WINDOWS_NT ? "long" : "gprel32", \
1372 (VALUE))
1374 /* This is how to output an assembler line
1375 that says to advance the location counter
1376 to a multiple of 2**LOG bytes. */
1378 #define ASM_OUTPUT_ALIGN(FILE,LOG) \
1379 if ((LOG) != 0) \
1380 fprintf (FILE, "\t.align %d\n", LOG);
1382 /* This is how to advance the location counter by SIZE bytes. */
1384 #define ASM_OUTPUT_SKIP(FILE,SIZE) \
1385 fprintf (FILE, "\t.space "HOST_WIDE_INT_PRINT_UNSIGNED"\n", (SIZE))
1387 /* This says how to output an assembler line
1388 to define a global common symbol. */
1390 #define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED) \
1391 ( fputs ("\t.comm ", (FILE)), \
1392 assemble_name ((FILE), (NAME)), \
1393 fprintf ((FILE), ","HOST_WIDE_INT_PRINT_UNSIGNED"\n", (SIZE)))
1395 /* This says how to output an assembler line
1396 to define a local common symbol. */
1398 #define ASM_OUTPUT_LOCAL(FILE, NAME, SIZE,ROUNDED) \
1399 ( fputs ("\t.lcomm ", (FILE)), \
1400 assemble_name ((FILE), (NAME)), \
1401 fprintf ((FILE), ","HOST_WIDE_INT_PRINT_UNSIGNED"\n", (SIZE)))
1404 /* Print operand X (an rtx) in assembler syntax to file FILE.
1405 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
1406 For `%' followed by punctuation, CODE is the punctuation and X is null. */
1408 #define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
1410 /* Determine which codes are valid without a following integer. These must
1411 not be alphabetic.
1413 ~ Generates the name of the current function.
1415 / Generates the instruction suffix. The TRAP_SUFFIX and ROUND_SUFFIX
1416 attributes are examined to determine what is appropriate.
1418 , Generates single precision suffix for floating point
1419 instructions (s for IEEE, f for VAX)
1421 - Generates double precision suffix for floating point
1422 instructions (t for IEEE, g for VAX)
1424 + Generates a nop instruction after a noreturn call at the very end
1425 of the function
1428 #define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
1429 ((CODE) == '/' || (CODE) == ',' || (CODE) == '-' || (CODE) == '~' \
1430 || (CODE) == '#' || (CODE) == '*' || (CODE) == '&' || (CODE) == '+')
1432 /* Print a memory address as an operand to reference that memory location. */
1434 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
1435 print_operand_address((FILE), (ADDR))
1437 /* Implement `va_start' for varargs and stdarg. */
1438 #define EXPAND_BUILTIN_VA_START(valist, nextarg) \
1439 alpha_va_start (valist, nextarg)
1441 /* Tell collect that the object format is ECOFF. */
1442 #define OBJECT_FORMAT_COFF
1443 #define EXTENDED_COFF
1445 /* If we use NM, pass -g to it so it only lists globals. */
1446 #define NM_FLAGS "-pg"
1448 /* Definitions for debugging. */
1450 #define SDB_DEBUGGING_INFO 1 /* generate info for mips-tfile */
1451 #define DBX_DEBUGGING_INFO 1 /* generate embedded stabs */
1452 #define MIPS_DEBUGGING_INFO 1 /* MIPS specific debugging info */
1454 #ifndef PREFERRED_DEBUGGING_TYPE /* assume SDB_DEBUGGING_INFO */
1455 #define PREFERRED_DEBUGGING_TYPE SDB_DEBUG
1456 #endif
1459 /* Correct the offset of automatic variables and arguments. Note that
1460 the Alpha debug format wants all automatic variables and arguments
1461 to be in terms of two different offsets from the virtual frame pointer,
1462 which is the stack pointer before any adjustment in the function.
1463 The offset for the argument pointer is fixed for the native compiler,
1464 it is either zero (for the no arguments case) or large enough to hold
1465 all argument registers.
1466 The offset for the auto pointer is the fourth argument to the .frame
1467 directive (local_offset).
1468 To stay compatible with the native tools we use the same offsets
1469 from the virtual frame pointer and adjust the debugger arg/auto offsets
1470 accordingly. These debugger offsets are set up in output_prolog. */
1472 extern long alpha_arg_offset;
1473 extern long alpha_auto_offset;
1474 #define DEBUGGER_AUTO_OFFSET(X) \
1475 ((GET_CODE (X) == PLUS ? INTVAL (XEXP (X, 1)) : 0) + alpha_auto_offset)
1476 #define DEBUGGER_ARG_OFFSET(OFFSET, X) (OFFSET + alpha_arg_offset)
1478 /* mips-tfile doesn't understand .stabd directives. */
1479 #define DBX_OUTPUT_SOURCE_LINE(STREAM, LINE, COUNTER) do { \
1480 dbxout_begin_stabn_sline (LINE); \
1481 dbxout_stab_value_internal_label ("LM", &COUNTER); \
1482 } while (0)
1484 /* We want to use MIPS-style .loc directives for SDB line numbers. */
1485 extern int num_source_filenames;
1486 #define SDB_OUTPUT_SOURCE_LINE(STREAM, LINE) \
1487 fprintf (STREAM, "\t.loc\t%d %d\n", num_source_filenames, LINE)
1489 #define ASM_OUTPUT_SOURCE_FILENAME(STREAM, NAME) \
1490 alpha_output_filename (STREAM, NAME)
1492 /* mips-tfile.c limits us to strings of one page. We must underestimate this
1493 number, because the real length runs past this up to the next
1494 continuation point. This is really a dbxout.c bug. */
1495 #define DBX_CONTIN_LENGTH 3000
1497 /* By default, turn on GDB extensions. */
1498 #define DEFAULT_GDB_EXTENSIONS 1
1500 /* Stabs-in-ECOFF can't handle dbxout_function_end(). */
1501 #define NO_DBX_FUNCTION_END 1
1503 /* If we are smuggling stabs through the ALPHA ECOFF object
1504 format, put a comment in front of the .stab<x> operation so
1505 that the ALPHA assembler does not choke. The mips-tfile program
1506 will correctly put the stab into the object file. */
1508 #define ASM_STABS_OP ((TARGET_GAS) ? "\t.stabs\t" : " #.stabs\t")
1509 #define ASM_STABN_OP ((TARGET_GAS) ? "\t.stabn\t" : " #.stabn\t")
1510 #define ASM_STABD_OP ((TARGET_GAS) ? "\t.stabd\t" : " #.stabd\t")
1512 /* Forward references to tags are allowed. */
1513 #define SDB_ALLOW_FORWARD_REFERENCES
1515 /* Unknown tags are also allowed. */
1516 #define SDB_ALLOW_UNKNOWN_REFERENCES
1518 #define PUT_SDB_DEF(a) \
1519 do { \
1520 fprintf (asm_out_file, "\t%s.def\t", \
1521 (TARGET_GAS) ? "" : "#"); \
1522 ASM_OUTPUT_LABELREF (asm_out_file, a); \
1523 fputc (';', asm_out_file); \
1524 } while (0)
1526 #define PUT_SDB_PLAIN_DEF(a) \
1527 do { \
1528 fprintf (asm_out_file, "\t%s.def\t.%s;", \
1529 (TARGET_GAS) ? "" : "#", (a)); \
1530 } while (0)
1532 #define PUT_SDB_TYPE(a) \
1533 do { \
1534 fprintf (asm_out_file, "\t.type\t0x%x;", (a)); \
1535 } while (0)
1537 /* For block start and end, we create labels, so that
1538 later we can figure out where the correct offset is.
1539 The normal .ent/.end serve well enough for functions,
1540 so those are just commented out. */
1542 extern int sdb_label_count; /* block start/end next label # */
1544 #define PUT_SDB_BLOCK_START(LINE) \
1545 do { \
1546 fprintf (asm_out_file, \
1547 "$Lb%d:\n\t%s.begin\t$Lb%d\t%d\n", \
1548 sdb_label_count, \
1549 (TARGET_GAS) ? "" : "#", \
1550 sdb_label_count, \
1551 (LINE)); \
1552 sdb_label_count++; \
1553 } while (0)
1555 #define PUT_SDB_BLOCK_END(LINE) \
1556 do { \
1557 fprintf (asm_out_file, \
1558 "$Le%d:\n\t%s.bend\t$Le%d\t%d\n", \
1559 sdb_label_count, \
1560 (TARGET_GAS) ? "" : "#", \
1561 sdb_label_count, \
1562 (LINE)); \
1563 sdb_label_count++; \
1564 } while (0)
1566 #define PUT_SDB_FUNCTION_START(LINE)
1568 #define PUT_SDB_FUNCTION_END(LINE)
1570 #define PUT_SDB_EPILOGUE_END(NAME) ((void)(NAME))
1572 /* Macros for mips-tfile.c to encapsulate stabs in ECOFF, and for
1573 mips-tdump.c to print them out.
1575 These must match the corresponding definitions in gdb/mipsread.c.
1576 Unfortunately, gcc and gdb do not currently share any directories. */
1578 #define CODE_MASK 0x8F300
1579 #define MIPS_IS_STAB(sym) (((sym)->index & 0xFFF00) == CODE_MASK)
1580 #define MIPS_MARK_STAB(code) ((code)+CODE_MASK)
1581 #define MIPS_UNMARK_STAB(code) ((code)-CODE_MASK)
1583 /* Override some mips-tfile definitions. */
1585 #define SHASH_SIZE 511
1586 #define THASH_SIZE 55
1588 /* Align ecoff symbol tables to avoid OSF1/1.3 nm complaints. */
1590 #define ALIGN_SYMTABLE_OFFSET(OFFSET) (((OFFSET) + 7) & ~7)
1592 /* The system headers under Alpha systems are generally C++-aware. */
1593 #define NO_IMPLICIT_EXTERN_C