Use lowpart_subreg instead of simplify_gen_subreg
[official-gcc.git] / gcc / emit-rtl.c
blobd211e6b0ce56a70cbc3d7782009a5924e8dc433b
1 /* Emit RTL for the GCC expander.
2 Copyright (C) 1987-2015 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
21 /* Middle-to-low level generation of rtx code and insns.
23 This file contains support functions for creating rtl expressions
24 and manipulating them in the doubly-linked chain of insns.
26 The patterns of the insns are created by machine-dependent
27 routines in insn-emit.c, which is generated automatically from
28 the machine description. These routines make the individual rtx's
29 of the pattern with `gen_rtx_fmt_ee' and others in genrtl.[ch],
30 which are automatically generated from rtl.def; what is machine
31 dependent is the kind of rtx's they make and what arguments they
32 use. */
34 #include "config.h"
35 #include "system.h"
36 #include "coretypes.h"
37 #include "backend.h"
38 #include "tree.h"
39 #include "rtl.h"
40 #include "df.h"
41 #include "diagnostic-core.h"
42 #include "alias.h"
43 #include "fold-const.h"
44 #include "varasm.h"
45 #include "cfgrtl.h"
46 #include "tree-eh.h"
47 #include "tm_p.h"
48 #include "flags.h"
49 #include "stringpool.h"
50 #include "insn-config.h"
51 #include "expmed.h"
52 #include "dojump.h"
53 #include "explow.h"
54 #include "calls.h"
55 #include "emit-rtl.h"
56 #include "stmt.h"
57 #include "expr.h"
58 #include "regs.h"
59 #include "recog.h"
60 #include "debug.h"
61 #include "langhooks.h"
62 #include "params.h"
63 #include "target.h"
64 #include "builtins.h"
65 #include "rtl-iter.h"
67 struct target_rtl default_target_rtl;
68 #if SWITCHABLE_TARGET
69 struct target_rtl *this_target_rtl = &default_target_rtl;
70 #endif
72 #define initial_regno_reg_rtx (this_target_rtl->x_initial_regno_reg_rtx)
74 /* Commonly used modes. */
76 machine_mode byte_mode; /* Mode whose width is BITS_PER_UNIT. */
77 machine_mode word_mode; /* Mode whose width is BITS_PER_WORD. */
78 machine_mode double_mode; /* Mode whose width is DOUBLE_TYPE_SIZE. */
79 machine_mode ptr_mode; /* Mode whose width is POINTER_SIZE. */
81 /* Datastructures maintained for currently processed function in RTL form. */
83 struct rtl_data x_rtl;
85 /* Indexed by pseudo register number, gives the rtx for that pseudo.
86 Allocated in parallel with regno_pointer_align.
87 FIXME: We could put it into emit_status struct, but gengtype is not able to deal
88 with length attribute nested in top level structures. */
90 rtx * regno_reg_rtx;
92 /* This is *not* reset after each function. It gives each CODE_LABEL
93 in the entire compilation a unique label number. */
95 static GTY(()) int label_num = 1;
97 /* We record floating-point CONST_DOUBLEs in each floating-point mode for
98 the values of 0, 1, and 2. For the integer entries and VOIDmode, we
99 record a copy of const[012]_rtx and constm1_rtx. CONSTM1_RTX
100 is set only for MODE_INT and MODE_VECTOR_INT modes. */
102 rtx const_tiny_rtx[4][(int) MAX_MACHINE_MODE];
104 rtx const_true_rtx;
106 REAL_VALUE_TYPE dconst0;
107 REAL_VALUE_TYPE dconst1;
108 REAL_VALUE_TYPE dconst2;
109 REAL_VALUE_TYPE dconstm1;
110 REAL_VALUE_TYPE dconsthalf;
112 /* Record fixed-point constant 0 and 1. */
113 FIXED_VALUE_TYPE fconst0[MAX_FCONST0];
114 FIXED_VALUE_TYPE fconst1[MAX_FCONST1];
116 /* We make one copy of (const_int C) where C is in
117 [- MAX_SAVED_CONST_INT, MAX_SAVED_CONST_INT]
118 to save space during the compilation and simplify comparisons of
119 integers. */
121 rtx const_int_rtx[MAX_SAVED_CONST_INT * 2 + 1];
123 /* Standard pieces of rtx, to be substituted directly into things. */
124 rtx pc_rtx;
125 rtx ret_rtx;
126 rtx simple_return_rtx;
127 rtx cc0_rtx;
129 /* Marker used for denoting an INSN, which should never be accessed (i.e.,
130 this pointer should normally never be dereferenced), but is required to be
131 distinct from NULL_RTX. Currently used by peephole2 pass. */
132 rtx_insn *invalid_insn_rtx;
134 /* A hash table storing CONST_INTs whose absolute value is greater
135 than MAX_SAVED_CONST_INT. */
137 struct const_int_hasher : ggc_cache_ptr_hash<rtx_def>
139 typedef HOST_WIDE_INT compare_type;
141 static hashval_t hash (rtx i);
142 static bool equal (rtx i, HOST_WIDE_INT h);
145 static GTY ((cache)) hash_table<const_int_hasher> *const_int_htab;
147 struct const_wide_int_hasher : ggc_cache_ptr_hash<rtx_def>
149 static hashval_t hash (rtx x);
150 static bool equal (rtx x, rtx y);
153 static GTY ((cache)) hash_table<const_wide_int_hasher> *const_wide_int_htab;
155 /* A hash table storing register attribute structures. */
156 struct reg_attr_hasher : ggc_cache_ptr_hash<reg_attrs>
158 static hashval_t hash (reg_attrs *x);
159 static bool equal (reg_attrs *a, reg_attrs *b);
162 static GTY ((cache)) hash_table<reg_attr_hasher> *reg_attrs_htab;
164 /* A hash table storing all CONST_DOUBLEs. */
165 struct const_double_hasher : ggc_cache_ptr_hash<rtx_def>
167 static hashval_t hash (rtx x);
168 static bool equal (rtx x, rtx y);
171 static GTY ((cache)) hash_table<const_double_hasher> *const_double_htab;
173 /* A hash table storing all CONST_FIXEDs. */
174 struct const_fixed_hasher : ggc_cache_ptr_hash<rtx_def>
176 static hashval_t hash (rtx x);
177 static bool equal (rtx x, rtx y);
180 static GTY ((cache)) hash_table<const_fixed_hasher> *const_fixed_htab;
182 #define cur_insn_uid (crtl->emit.x_cur_insn_uid)
183 #define cur_debug_insn_uid (crtl->emit.x_cur_debug_insn_uid)
184 #define first_label_num (crtl->emit.x_first_label_num)
186 static void set_used_decls (tree);
187 static void mark_label_nuses (rtx);
188 #if TARGET_SUPPORTS_WIDE_INT
189 static rtx lookup_const_wide_int (rtx);
190 #endif
191 static rtx lookup_const_double (rtx);
192 static rtx lookup_const_fixed (rtx);
193 static reg_attrs *get_reg_attrs (tree, int);
194 static rtx gen_const_vector (machine_mode, int);
195 static void copy_rtx_if_shared_1 (rtx *orig);
197 /* Probability of the conditional branch currently proceeded by try_split.
198 Set to -1 otherwise. */
199 int split_branch_probability = -1;
201 /* Returns a hash code for X (which is a really a CONST_INT). */
203 hashval_t
204 const_int_hasher::hash (rtx x)
206 return (hashval_t) INTVAL (x);
209 /* Returns nonzero if the value represented by X (which is really a
210 CONST_INT) is the same as that given by Y (which is really a
211 HOST_WIDE_INT *). */
213 bool
214 const_int_hasher::equal (rtx x, HOST_WIDE_INT y)
216 return (INTVAL (x) == y);
219 #if TARGET_SUPPORTS_WIDE_INT
220 /* Returns a hash code for X (which is a really a CONST_WIDE_INT). */
222 hashval_t
223 const_wide_int_hasher::hash (rtx x)
225 int i;
226 unsigned HOST_WIDE_INT hash = 0;
227 const_rtx xr = x;
229 for (i = 0; i < CONST_WIDE_INT_NUNITS (xr); i++)
230 hash += CONST_WIDE_INT_ELT (xr, i);
232 return (hashval_t) hash;
235 /* Returns nonzero if the value represented by X (which is really a
236 CONST_WIDE_INT) is the same as that given by Y (which is really a
237 CONST_WIDE_INT). */
239 bool
240 const_wide_int_hasher::equal (rtx x, rtx y)
242 int i;
243 const_rtx xr = x;
244 const_rtx yr = y;
245 if (CONST_WIDE_INT_NUNITS (xr) != CONST_WIDE_INT_NUNITS (yr))
246 return false;
248 for (i = 0; i < CONST_WIDE_INT_NUNITS (xr); i++)
249 if (CONST_WIDE_INT_ELT (xr, i) != CONST_WIDE_INT_ELT (yr, i))
250 return false;
252 return true;
254 #endif
256 /* Returns a hash code for X (which is really a CONST_DOUBLE). */
257 hashval_t
258 const_double_hasher::hash (rtx x)
260 const_rtx const value = x;
261 hashval_t h;
263 if (TARGET_SUPPORTS_WIDE_INT == 0 && GET_MODE (value) == VOIDmode)
264 h = CONST_DOUBLE_LOW (value) ^ CONST_DOUBLE_HIGH (value);
265 else
267 h = real_hash (CONST_DOUBLE_REAL_VALUE (value));
268 /* MODE is used in the comparison, so it should be in the hash. */
269 h ^= GET_MODE (value);
271 return h;
274 /* Returns nonzero if the value represented by X (really a ...)
275 is the same as that represented by Y (really a ...) */
276 bool
277 const_double_hasher::equal (rtx x, rtx y)
279 const_rtx const a = x, b = y;
281 if (GET_MODE (a) != GET_MODE (b))
282 return 0;
283 if (TARGET_SUPPORTS_WIDE_INT == 0 && GET_MODE (a) == VOIDmode)
284 return (CONST_DOUBLE_LOW (a) == CONST_DOUBLE_LOW (b)
285 && CONST_DOUBLE_HIGH (a) == CONST_DOUBLE_HIGH (b));
286 else
287 return real_identical (CONST_DOUBLE_REAL_VALUE (a),
288 CONST_DOUBLE_REAL_VALUE (b));
291 /* Returns a hash code for X (which is really a CONST_FIXED). */
293 hashval_t
294 const_fixed_hasher::hash (rtx x)
296 const_rtx const value = x;
297 hashval_t h;
299 h = fixed_hash (CONST_FIXED_VALUE (value));
300 /* MODE is used in the comparison, so it should be in the hash. */
301 h ^= GET_MODE (value);
302 return h;
305 /* Returns nonzero if the value represented by X is the same as that
306 represented by Y. */
308 bool
309 const_fixed_hasher::equal (rtx x, rtx y)
311 const_rtx const a = x, b = y;
313 if (GET_MODE (a) != GET_MODE (b))
314 return 0;
315 return fixed_identical (CONST_FIXED_VALUE (a), CONST_FIXED_VALUE (b));
318 /* Return true if the given memory attributes are equal. */
320 bool
321 mem_attrs_eq_p (const struct mem_attrs *p, const struct mem_attrs *q)
323 if (p == q)
324 return true;
325 if (!p || !q)
326 return false;
327 return (p->alias == q->alias
328 && p->offset_known_p == q->offset_known_p
329 && (!p->offset_known_p || p->offset == q->offset)
330 && p->size_known_p == q->size_known_p
331 && (!p->size_known_p || p->size == q->size)
332 && p->align == q->align
333 && p->addrspace == q->addrspace
334 && (p->expr == q->expr
335 || (p->expr != NULL_TREE && q->expr != NULL_TREE
336 && operand_equal_p (p->expr, q->expr, 0))));
339 /* Set MEM's memory attributes so that they are the same as ATTRS. */
341 static void
342 set_mem_attrs (rtx mem, mem_attrs *attrs)
344 /* If everything is the default, we can just clear the attributes. */
345 if (mem_attrs_eq_p (attrs, mode_mem_attrs[(int) GET_MODE (mem)]))
347 MEM_ATTRS (mem) = 0;
348 return;
351 if (!MEM_ATTRS (mem)
352 || !mem_attrs_eq_p (attrs, MEM_ATTRS (mem)))
354 MEM_ATTRS (mem) = ggc_alloc<mem_attrs> ();
355 memcpy (MEM_ATTRS (mem), attrs, sizeof (mem_attrs));
359 /* Returns a hash code for X (which is a really a reg_attrs *). */
361 hashval_t
362 reg_attr_hasher::hash (reg_attrs *x)
364 const reg_attrs *const p = x;
366 return ((p->offset * 1000) ^ (intptr_t) p->decl);
369 /* Returns nonzero if the value represented by X is the same as that given by
370 Y. */
372 bool
373 reg_attr_hasher::equal (reg_attrs *x, reg_attrs *y)
375 const reg_attrs *const p = x;
376 const reg_attrs *const q = y;
378 return (p->decl == q->decl && p->offset == q->offset);
380 /* Allocate a new reg_attrs structure and insert it into the hash table if
381 one identical to it is not already in the table. We are doing this for
382 MEM of mode MODE. */
384 static reg_attrs *
385 get_reg_attrs (tree decl, int offset)
387 reg_attrs attrs;
389 /* If everything is the default, we can just return zero. */
390 if (decl == 0 && offset == 0)
391 return 0;
393 attrs.decl = decl;
394 attrs.offset = offset;
396 reg_attrs **slot = reg_attrs_htab->find_slot (&attrs, INSERT);
397 if (*slot == 0)
399 *slot = ggc_alloc<reg_attrs> ();
400 memcpy (*slot, &attrs, sizeof (reg_attrs));
403 return *slot;
407 #if !HAVE_blockage
408 /* Generate an empty ASM_INPUT, which is used to block attempts to schedule,
409 and to block register equivalences to be seen across this insn. */
412 gen_blockage (void)
414 rtx x = gen_rtx_ASM_INPUT (VOIDmode, "");
415 MEM_VOLATILE_P (x) = true;
416 return x;
418 #endif
421 /* Set the mode and register number of X to MODE and REGNO. */
423 void
424 set_mode_and_regno (rtx x, machine_mode mode, unsigned int regno)
426 unsigned int nregs = (HARD_REGISTER_NUM_P (regno)
427 ? hard_regno_nregs[regno][mode]
428 : 1);
429 PUT_MODE_RAW (x, mode);
430 set_regno_raw (x, regno, nregs);
433 /* Generate a new REG rtx. Make sure ORIGINAL_REGNO is set properly, and
434 don't attempt to share with the various global pieces of rtl (such as
435 frame_pointer_rtx). */
438 gen_raw_REG (machine_mode mode, unsigned int regno)
440 rtx x = rtx_alloc_stat (REG MEM_STAT_INFO);
441 set_mode_and_regno (x, mode, regno);
442 REG_ATTRS (x) = NULL;
443 ORIGINAL_REGNO (x) = regno;
444 return x;
447 /* There are some RTL codes that require special attention; the generation
448 functions do the raw handling. If you add to this list, modify
449 special_rtx in gengenrtl.c as well. */
451 rtx_expr_list *
452 gen_rtx_EXPR_LIST (machine_mode mode, rtx expr, rtx expr_list)
454 return as_a <rtx_expr_list *> (gen_rtx_fmt_ee (EXPR_LIST, mode, expr,
455 expr_list));
458 rtx_insn_list *
459 gen_rtx_INSN_LIST (machine_mode mode, rtx insn, rtx insn_list)
461 return as_a <rtx_insn_list *> (gen_rtx_fmt_ue (INSN_LIST, mode, insn,
462 insn_list));
465 rtx_insn *
466 gen_rtx_INSN (machine_mode mode, rtx_insn *prev_insn, rtx_insn *next_insn,
467 basic_block bb, rtx pattern, int location, int code,
468 rtx reg_notes)
470 return as_a <rtx_insn *> (gen_rtx_fmt_uuBeiie (INSN, mode,
471 prev_insn, next_insn,
472 bb, pattern, location, code,
473 reg_notes));
477 gen_rtx_CONST_INT (machine_mode mode ATTRIBUTE_UNUSED, HOST_WIDE_INT arg)
479 if (arg >= - MAX_SAVED_CONST_INT && arg <= MAX_SAVED_CONST_INT)
480 return const_int_rtx[arg + MAX_SAVED_CONST_INT];
482 #if STORE_FLAG_VALUE != 1 && STORE_FLAG_VALUE != -1
483 if (const_true_rtx && arg == STORE_FLAG_VALUE)
484 return const_true_rtx;
485 #endif
487 /* Look up the CONST_INT in the hash table. */
488 rtx *slot = const_int_htab->find_slot_with_hash (arg, (hashval_t) arg,
489 INSERT);
490 if (*slot == 0)
491 *slot = gen_rtx_raw_CONST_INT (VOIDmode, arg);
493 return *slot;
497 gen_int_mode (HOST_WIDE_INT c, machine_mode mode)
499 return GEN_INT (trunc_int_for_mode (c, mode));
502 /* CONST_DOUBLEs might be created from pairs of integers, or from
503 REAL_VALUE_TYPEs. Also, their length is known only at run time,
504 so we cannot use gen_rtx_raw_CONST_DOUBLE. */
506 /* Determine whether REAL, a CONST_DOUBLE, already exists in the
507 hash table. If so, return its counterpart; otherwise add it
508 to the hash table and return it. */
509 static rtx
510 lookup_const_double (rtx real)
512 rtx *slot = const_double_htab->find_slot (real, INSERT);
513 if (*slot == 0)
514 *slot = real;
516 return *slot;
519 /* Return a CONST_DOUBLE rtx for a floating-point value specified by
520 VALUE in mode MODE. */
522 const_double_from_real_value (REAL_VALUE_TYPE value, machine_mode mode)
524 rtx real = rtx_alloc (CONST_DOUBLE);
525 PUT_MODE (real, mode);
527 real->u.rv = value;
529 return lookup_const_double (real);
532 /* Determine whether FIXED, a CONST_FIXED, already exists in the
533 hash table. If so, return its counterpart; otherwise add it
534 to the hash table and return it. */
536 static rtx
537 lookup_const_fixed (rtx fixed)
539 rtx *slot = const_fixed_htab->find_slot (fixed, INSERT);
540 if (*slot == 0)
541 *slot = fixed;
543 return *slot;
546 /* Return a CONST_FIXED rtx for a fixed-point value specified by
547 VALUE in mode MODE. */
550 const_fixed_from_fixed_value (FIXED_VALUE_TYPE value, machine_mode mode)
552 rtx fixed = rtx_alloc (CONST_FIXED);
553 PUT_MODE (fixed, mode);
555 fixed->u.fv = value;
557 return lookup_const_fixed (fixed);
560 #if TARGET_SUPPORTS_WIDE_INT == 0
561 /* Constructs double_int from rtx CST. */
563 double_int
564 rtx_to_double_int (const_rtx cst)
566 double_int r;
568 if (CONST_INT_P (cst))
569 r = double_int::from_shwi (INTVAL (cst));
570 else if (CONST_DOUBLE_AS_INT_P (cst))
572 r.low = CONST_DOUBLE_LOW (cst);
573 r.high = CONST_DOUBLE_HIGH (cst);
575 else
576 gcc_unreachable ();
578 return r;
580 #endif
582 #if TARGET_SUPPORTS_WIDE_INT
583 /* Determine whether CONST_WIDE_INT WINT already exists in the hash table.
584 If so, return its counterpart; otherwise add it to the hash table and
585 return it. */
587 static rtx
588 lookup_const_wide_int (rtx wint)
590 rtx *slot = const_wide_int_htab->find_slot (wint, INSERT);
591 if (*slot == 0)
592 *slot = wint;
594 return *slot;
596 #endif
598 /* Return an rtx constant for V, given that the constant has mode MODE.
599 The returned rtx will be a CONST_INT if V fits, otherwise it will be
600 a CONST_DOUBLE (if !TARGET_SUPPORTS_WIDE_INT) or a CONST_WIDE_INT
601 (if TARGET_SUPPORTS_WIDE_INT). */
604 immed_wide_int_const (const wide_int_ref &v, machine_mode mode)
606 unsigned int len = v.get_len ();
607 unsigned int prec = GET_MODE_PRECISION (mode);
609 /* Allow truncation but not extension since we do not know if the
610 number is signed or unsigned. */
611 gcc_assert (prec <= v.get_precision ());
613 if (len < 2 || prec <= HOST_BITS_PER_WIDE_INT)
614 return gen_int_mode (v.elt (0), mode);
616 #if TARGET_SUPPORTS_WIDE_INT
618 unsigned int i;
619 rtx value;
620 unsigned int blocks_needed
621 = (prec + HOST_BITS_PER_WIDE_INT - 1) / HOST_BITS_PER_WIDE_INT;
623 if (len > blocks_needed)
624 len = blocks_needed;
626 value = const_wide_int_alloc (len);
628 /* It is so tempting to just put the mode in here. Must control
629 myself ... */
630 PUT_MODE (value, VOIDmode);
631 CWI_PUT_NUM_ELEM (value, len);
633 for (i = 0; i < len; i++)
634 CONST_WIDE_INT_ELT (value, i) = v.elt (i);
636 return lookup_const_wide_int (value);
638 #else
639 return immed_double_const (v.elt (0), v.elt (1), mode);
640 #endif
643 #if TARGET_SUPPORTS_WIDE_INT == 0
644 /* Return a CONST_DOUBLE or CONST_INT for a value specified as a pair
645 of ints: I0 is the low-order word and I1 is the high-order word.
646 For values that are larger than HOST_BITS_PER_DOUBLE_INT, the
647 implied upper bits are copies of the high bit of i1. The value
648 itself is neither signed nor unsigned. Do not use this routine for
649 non-integer modes; convert to REAL_VALUE_TYPE and use
650 CONST_DOUBLE_FROM_REAL_VALUE. */
653 immed_double_const (HOST_WIDE_INT i0, HOST_WIDE_INT i1, machine_mode mode)
655 rtx value;
656 unsigned int i;
658 /* There are the following cases (note that there are no modes with
659 HOST_BITS_PER_WIDE_INT < GET_MODE_BITSIZE (mode) < HOST_BITS_PER_DOUBLE_INT):
661 1) If GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT, then we use
662 gen_int_mode.
663 2) If the value of the integer fits into HOST_WIDE_INT anyway
664 (i.e., i1 consists only from copies of the sign bit, and sign
665 of i0 and i1 are the same), then we return a CONST_INT for i0.
666 3) Otherwise, we create a CONST_DOUBLE for i0 and i1. */
667 if (mode != VOIDmode)
669 gcc_assert (GET_MODE_CLASS (mode) == MODE_INT
670 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT
671 /* We can get a 0 for an error mark. */
672 || GET_MODE_CLASS (mode) == MODE_VECTOR_INT
673 || GET_MODE_CLASS (mode) == MODE_VECTOR_FLOAT
674 || GET_MODE_CLASS (mode) == MODE_POINTER_BOUNDS);
676 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
677 return gen_int_mode (i0, mode);
680 /* If this integer fits in one word, return a CONST_INT. */
681 if ((i1 == 0 && i0 >= 0) || (i1 == ~0 && i0 < 0))
682 return GEN_INT (i0);
684 /* We use VOIDmode for integers. */
685 value = rtx_alloc (CONST_DOUBLE);
686 PUT_MODE (value, VOIDmode);
688 CONST_DOUBLE_LOW (value) = i0;
689 CONST_DOUBLE_HIGH (value) = i1;
691 for (i = 2; i < (sizeof CONST_DOUBLE_FORMAT - 1); i++)
692 XWINT (value, i) = 0;
694 return lookup_const_double (value);
696 #endif
699 gen_rtx_REG (machine_mode mode, unsigned int regno)
701 /* In case the MD file explicitly references the frame pointer, have
702 all such references point to the same frame pointer. This is
703 used during frame pointer elimination to distinguish the explicit
704 references to these registers from pseudos that happened to be
705 assigned to them.
707 If we have eliminated the frame pointer or arg pointer, we will
708 be using it as a normal register, for example as a spill
709 register. In such cases, we might be accessing it in a mode that
710 is not Pmode and therefore cannot use the pre-allocated rtx.
712 Also don't do this when we are making new REGs in reload, since
713 we don't want to get confused with the real pointers. */
715 if (mode == Pmode && !reload_in_progress && !lra_in_progress)
717 if (regno == FRAME_POINTER_REGNUM
718 && (!reload_completed || frame_pointer_needed))
719 return frame_pointer_rtx;
721 if (!HARD_FRAME_POINTER_IS_FRAME_POINTER
722 && regno == HARD_FRAME_POINTER_REGNUM
723 && (!reload_completed || frame_pointer_needed))
724 return hard_frame_pointer_rtx;
725 #if !HARD_FRAME_POINTER_IS_ARG_POINTER
726 if (FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
727 && regno == ARG_POINTER_REGNUM)
728 return arg_pointer_rtx;
729 #endif
730 #ifdef RETURN_ADDRESS_POINTER_REGNUM
731 if (regno == RETURN_ADDRESS_POINTER_REGNUM)
732 return return_address_pointer_rtx;
733 #endif
734 if (regno == (unsigned) PIC_OFFSET_TABLE_REGNUM
735 && PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM
736 && fixed_regs[PIC_OFFSET_TABLE_REGNUM])
737 return pic_offset_table_rtx;
738 if (regno == STACK_POINTER_REGNUM)
739 return stack_pointer_rtx;
742 #if 0
743 /* If the per-function register table has been set up, try to re-use
744 an existing entry in that table to avoid useless generation of RTL.
746 This code is disabled for now until we can fix the various backends
747 which depend on having non-shared hard registers in some cases. Long
748 term we want to re-enable this code as it can significantly cut down
749 on the amount of useless RTL that gets generated.
751 We'll also need to fix some code that runs after reload that wants to
752 set ORIGINAL_REGNO. */
754 if (cfun
755 && cfun->emit
756 && regno_reg_rtx
757 && regno < FIRST_PSEUDO_REGISTER
758 && reg_raw_mode[regno] == mode)
759 return regno_reg_rtx[regno];
760 #endif
762 return gen_raw_REG (mode, regno);
766 gen_rtx_MEM (machine_mode mode, rtx addr)
768 rtx rt = gen_rtx_raw_MEM (mode, addr);
770 /* This field is not cleared by the mere allocation of the rtx, so
771 we clear it here. */
772 MEM_ATTRS (rt) = 0;
774 return rt;
777 /* Generate a memory referring to non-trapping constant memory. */
780 gen_const_mem (machine_mode mode, rtx addr)
782 rtx mem = gen_rtx_MEM (mode, addr);
783 MEM_READONLY_P (mem) = 1;
784 MEM_NOTRAP_P (mem) = 1;
785 return mem;
788 /* Generate a MEM referring to fixed portions of the frame, e.g., register
789 save areas. */
792 gen_frame_mem (machine_mode mode, rtx addr)
794 rtx mem = gen_rtx_MEM (mode, addr);
795 MEM_NOTRAP_P (mem) = 1;
796 set_mem_alias_set (mem, get_frame_alias_set ());
797 return mem;
800 /* Generate a MEM referring to a temporary use of the stack, not part
801 of the fixed stack frame. For example, something which is pushed
802 by a target splitter. */
804 gen_tmp_stack_mem (machine_mode mode, rtx addr)
806 rtx mem = gen_rtx_MEM (mode, addr);
807 MEM_NOTRAP_P (mem) = 1;
808 if (!cfun->calls_alloca)
809 set_mem_alias_set (mem, get_frame_alias_set ());
810 return mem;
813 /* We want to create (subreg:OMODE (obj:IMODE) OFFSET). Return true if
814 this construct would be valid, and false otherwise. */
816 bool
817 validate_subreg (machine_mode omode, machine_mode imode,
818 const_rtx reg, unsigned int offset)
820 unsigned int isize = GET_MODE_SIZE (imode);
821 unsigned int osize = GET_MODE_SIZE (omode);
823 /* All subregs must be aligned. */
824 if (offset % osize != 0)
825 return false;
827 /* The subreg offset cannot be outside the inner object. */
828 if (offset >= isize)
829 return false;
831 /* ??? This should not be here. Temporarily continue to allow word_mode
832 subregs of anything. The most common offender is (subreg:SI (reg:DF)).
833 Generally, backends are doing something sketchy but it'll take time to
834 fix them all. */
835 if (omode == word_mode)
837 /* ??? Similarly, e.g. with (subreg:DF (reg:TI)). Though store_bit_field
838 is the culprit here, and not the backends. */
839 else if (osize >= UNITS_PER_WORD && isize >= osize)
841 /* Allow component subregs of complex and vector. Though given the below
842 extraction rules, it's not always clear what that means. */
843 else if ((COMPLEX_MODE_P (imode) || VECTOR_MODE_P (imode))
844 && GET_MODE_INNER (imode) == omode)
846 /* ??? x86 sse code makes heavy use of *paradoxical* vector subregs,
847 i.e. (subreg:V4SF (reg:SF) 0). This surely isn't the cleanest way to
848 represent this. It's questionable if this ought to be represented at
849 all -- why can't this all be hidden in post-reload splitters that make
850 arbitrarily mode changes to the registers themselves. */
851 else if (VECTOR_MODE_P (omode) && GET_MODE_INNER (omode) == imode)
853 /* Subregs involving floating point modes are not allowed to
854 change size. Therefore (subreg:DI (reg:DF) 0) is fine, but
855 (subreg:SI (reg:DF) 0) isn't. */
856 else if (FLOAT_MODE_P (imode) || FLOAT_MODE_P (omode))
858 if (! (isize == osize
859 /* LRA can use subreg to store a floating point value in
860 an integer mode. Although the floating point and the
861 integer modes need the same number of hard registers,
862 the size of floating point mode can be less than the
863 integer mode. LRA also uses subregs for a register
864 should be used in different mode in on insn. */
865 || lra_in_progress))
866 return false;
869 /* Paradoxical subregs must have offset zero. */
870 if (osize > isize)
871 return offset == 0;
873 /* This is a normal subreg. Verify that the offset is representable. */
875 /* For hard registers, we already have most of these rules collected in
876 subreg_offset_representable_p. */
877 if (reg && REG_P (reg) && HARD_REGISTER_P (reg))
879 unsigned int regno = REGNO (reg);
881 #ifdef CANNOT_CHANGE_MODE_CLASS
882 if ((COMPLEX_MODE_P (imode) || VECTOR_MODE_P (imode))
883 && GET_MODE_INNER (imode) == omode)
885 else if (REG_CANNOT_CHANGE_MODE_P (regno, imode, omode))
886 return false;
887 #endif
889 return subreg_offset_representable_p (regno, imode, offset, omode);
892 /* For pseudo registers, we want most of the same checks. Namely:
893 If the register no larger than a word, the subreg must be lowpart.
894 If the register is larger than a word, the subreg must be the lowpart
895 of a subword. A subreg does *not* perform arbitrary bit extraction.
896 Given that we've already checked mode/offset alignment, we only have
897 to check subword subregs here. */
898 if (osize < UNITS_PER_WORD
899 && ! (lra_in_progress && (FLOAT_MODE_P (imode) || FLOAT_MODE_P (omode))))
901 machine_mode wmode = isize > UNITS_PER_WORD ? word_mode : imode;
902 unsigned int low_off = subreg_lowpart_offset (omode, wmode);
903 if (offset % UNITS_PER_WORD != low_off)
904 return false;
906 return true;
910 gen_rtx_SUBREG (machine_mode mode, rtx reg, int offset)
912 gcc_assert (validate_subreg (mode, GET_MODE (reg), reg, offset));
913 return gen_rtx_raw_SUBREG (mode, reg, offset);
916 /* Generate a SUBREG representing the least-significant part of REG if MODE
917 is smaller than mode of REG, otherwise paradoxical SUBREG. */
920 gen_lowpart_SUBREG (machine_mode mode, rtx reg)
922 machine_mode inmode;
924 inmode = GET_MODE (reg);
925 if (inmode == VOIDmode)
926 inmode = mode;
927 return gen_rtx_SUBREG (mode, reg,
928 subreg_lowpart_offset (mode, inmode));
932 gen_rtx_VAR_LOCATION (machine_mode mode, tree decl, rtx loc,
933 enum var_init_status status)
935 rtx x = gen_rtx_fmt_te (VAR_LOCATION, mode, decl, loc);
936 PAT_VAR_LOCATION_STATUS (x) = status;
937 return x;
941 /* Create an rtvec and stores within it the RTXen passed in the arguments. */
943 rtvec
944 gen_rtvec (int n, ...)
946 int i;
947 rtvec rt_val;
948 va_list p;
950 va_start (p, n);
952 /* Don't allocate an empty rtvec... */
953 if (n == 0)
955 va_end (p);
956 return NULL_RTVEC;
959 rt_val = rtvec_alloc (n);
961 for (i = 0; i < n; i++)
962 rt_val->elem[i] = va_arg (p, rtx);
964 va_end (p);
965 return rt_val;
968 rtvec
969 gen_rtvec_v (int n, rtx *argp)
971 int i;
972 rtvec rt_val;
974 /* Don't allocate an empty rtvec... */
975 if (n == 0)
976 return NULL_RTVEC;
978 rt_val = rtvec_alloc (n);
980 for (i = 0; i < n; i++)
981 rt_val->elem[i] = *argp++;
983 return rt_val;
986 rtvec
987 gen_rtvec_v (int n, rtx_insn **argp)
989 int i;
990 rtvec rt_val;
992 /* Don't allocate an empty rtvec... */
993 if (n == 0)
994 return NULL_RTVEC;
996 rt_val = rtvec_alloc (n);
998 for (i = 0; i < n; i++)
999 rt_val->elem[i] = *argp++;
1001 return rt_val;
1005 /* Return the number of bytes between the start of an OUTER_MODE
1006 in-memory value and the start of an INNER_MODE in-memory value,
1007 given that the former is a lowpart of the latter. It may be a
1008 paradoxical lowpart, in which case the offset will be negative
1009 on big-endian targets. */
1012 byte_lowpart_offset (machine_mode outer_mode,
1013 machine_mode inner_mode)
1015 if (GET_MODE_SIZE (outer_mode) < GET_MODE_SIZE (inner_mode))
1016 return subreg_lowpart_offset (outer_mode, inner_mode);
1017 else
1018 return -subreg_lowpart_offset (inner_mode, outer_mode);
1021 /* Generate a REG rtx for a new pseudo register of mode MODE.
1022 This pseudo is assigned the next sequential register number. */
1025 gen_reg_rtx (machine_mode mode)
1027 rtx val;
1028 unsigned int align = GET_MODE_ALIGNMENT (mode);
1030 gcc_assert (can_create_pseudo_p ());
1032 /* If a virtual register with bigger mode alignment is generated,
1033 increase stack alignment estimation because it might be spilled
1034 to stack later. */
1035 if (SUPPORTS_STACK_ALIGNMENT
1036 && crtl->stack_alignment_estimated < align
1037 && !crtl->stack_realign_processed)
1039 unsigned int min_align = MINIMUM_ALIGNMENT (NULL, mode, align);
1040 if (crtl->stack_alignment_estimated < min_align)
1041 crtl->stack_alignment_estimated = min_align;
1044 if (generating_concat_p
1045 && (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
1046 || GET_MODE_CLASS (mode) == MODE_COMPLEX_INT))
1048 /* For complex modes, don't make a single pseudo.
1049 Instead, make a CONCAT of two pseudos.
1050 This allows noncontiguous allocation of the real and imaginary parts,
1051 which makes much better code. Besides, allocating DCmode
1052 pseudos overstrains reload on some machines like the 386. */
1053 rtx realpart, imagpart;
1054 machine_mode partmode = GET_MODE_INNER (mode);
1056 realpart = gen_reg_rtx (partmode);
1057 imagpart = gen_reg_rtx (partmode);
1058 return gen_rtx_CONCAT (mode, realpart, imagpart);
1061 /* Do not call gen_reg_rtx with uninitialized crtl. */
1062 gcc_assert (crtl->emit.regno_pointer_align_length);
1064 /* Make sure regno_pointer_align, and regno_reg_rtx are large
1065 enough to have an element for this pseudo reg number. */
1067 if (reg_rtx_no == crtl->emit.regno_pointer_align_length)
1069 int old_size = crtl->emit.regno_pointer_align_length;
1070 char *tmp;
1071 rtx *new1;
1073 tmp = XRESIZEVEC (char, crtl->emit.regno_pointer_align, old_size * 2);
1074 memset (tmp + old_size, 0, old_size);
1075 crtl->emit.regno_pointer_align = (unsigned char *) tmp;
1077 new1 = GGC_RESIZEVEC (rtx, regno_reg_rtx, old_size * 2);
1078 memset (new1 + old_size, 0, old_size * sizeof (rtx));
1079 regno_reg_rtx = new1;
1081 crtl->emit.regno_pointer_align_length = old_size * 2;
1084 val = gen_raw_REG (mode, reg_rtx_no);
1085 regno_reg_rtx[reg_rtx_no++] = val;
1086 return val;
1089 /* Return TRUE if REG is a PARM_DECL, FALSE otherwise. */
1091 bool
1092 reg_is_parm_p (rtx reg)
1094 tree decl;
1096 gcc_assert (REG_P (reg));
1097 decl = REG_EXPR (reg);
1098 return (decl && TREE_CODE (decl) == PARM_DECL);
1101 /* Update NEW with the same attributes as REG, but with OFFSET added
1102 to the REG_OFFSET. */
1104 static void
1105 update_reg_offset (rtx new_rtx, rtx reg, int offset)
1107 REG_ATTRS (new_rtx) = get_reg_attrs (REG_EXPR (reg),
1108 REG_OFFSET (reg) + offset);
1111 /* Generate a register with same attributes as REG, but with OFFSET
1112 added to the REG_OFFSET. */
1115 gen_rtx_REG_offset (rtx reg, machine_mode mode, unsigned int regno,
1116 int offset)
1118 rtx new_rtx = gen_rtx_REG (mode, regno);
1120 update_reg_offset (new_rtx, reg, offset);
1121 return new_rtx;
1124 /* Generate a new pseudo-register with the same attributes as REG, but
1125 with OFFSET added to the REG_OFFSET. */
1128 gen_reg_rtx_offset (rtx reg, machine_mode mode, int offset)
1130 rtx new_rtx = gen_reg_rtx (mode);
1132 update_reg_offset (new_rtx, reg, offset);
1133 return new_rtx;
1136 /* Adjust REG in-place so that it has mode MODE. It is assumed that the
1137 new register is a (possibly paradoxical) lowpart of the old one. */
1139 void
1140 adjust_reg_mode (rtx reg, machine_mode mode)
1142 update_reg_offset (reg, reg, byte_lowpart_offset (mode, GET_MODE (reg)));
1143 PUT_MODE (reg, mode);
1146 /* Copy REG's attributes from X, if X has any attributes. If REG and X
1147 have different modes, REG is a (possibly paradoxical) lowpart of X. */
1149 void
1150 set_reg_attrs_from_value (rtx reg, rtx x)
1152 int offset;
1153 bool can_be_reg_pointer = true;
1155 /* Don't call mark_reg_pointer for incompatible pointer sign
1156 extension. */
1157 while (GET_CODE (x) == SIGN_EXTEND
1158 || GET_CODE (x) == ZERO_EXTEND
1159 || GET_CODE (x) == TRUNCATE
1160 || (GET_CODE (x) == SUBREG && subreg_lowpart_p (x)))
1162 #if defined(POINTERS_EXTEND_UNSIGNED)
1163 if (((GET_CODE (x) == SIGN_EXTEND && POINTERS_EXTEND_UNSIGNED)
1164 || (GET_CODE (x) != SIGN_EXTEND && ! POINTERS_EXTEND_UNSIGNED))
1165 && !targetm.have_ptr_extend ())
1166 can_be_reg_pointer = false;
1167 #endif
1168 x = XEXP (x, 0);
1171 /* Hard registers can be reused for multiple purposes within the same
1172 function, so setting REG_ATTRS, REG_POINTER and REG_POINTER_ALIGN
1173 on them is wrong. */
1174 if (HARD_REGISTER_P (reg))
1175 return;
1177 offset = byte_lowpart_offset (GET_MODE (reg), GET_MODE (x));
1178 if (MEM_P (x))
1180 if (MEM_OFFSET_KNOWN_P (x))
1181 REG_ATTRS (reg) = get_reg_attrs (MEM_EXPR (x),
1182 MEM_OFFSET (x) + offset);
1183 if (can_be_reg_pointer && MEM_POINTER (x))
1184 mark_reg_pointer (reg, 0);
1186 else if (REG_P (x))
1188 if (REG_ATTRS (x))
1189 update_reg_offset (reg, x, offset);
1190 if (can_be_reg_pointer && REG_POINTER (x))
1191 mark_reg_pointer (reg, REGNO_POINTER_ALIGN (REGNO (x)));
1195 /* Generate a REG rtx for a new pseudo register, copying the mode
1196 and attributes from X. */
1199 gen_reg_rtx_and_attrs (rtx x)
1201 rtx reg = gen_reg_rtx (GET_MODE (x));
1202 set_reg_attrs_from_value (reg, x);
1203 return reg;
1206 /* Set the register attributes for registers contained in PARM_RTX.
1207 Use needed values from memory attributes of MEM. */
1209 void
1210 set_reg_attrs_for_parm (rtx parm_rtx, rtx mem)
1212 if (REG_P (parm_rtx))
1213 set_reg_attrs_from_value (parm_rtx, mem);
1214 else if (GET_CODE (parm_rtx) == PARALLEL)
1216 /* Check for a NULL entry in the first slot, used to indicate that the
1217 parameter goes both on the stack and in registers. */
1218 int i = XEXP (XVECEXP (parm_rtx, 0, 0), 0) ? 0 : 1;
1219 for (; i < XVECLEN (parm_rtx, 0); i++)
1221 rtx x = XVECEXP (parm_rtx, 0, i);
1222 if (REG_P (XEXP (x, 0)))
1223 REG_ATTRS (XEXP (x, 0))
1224 = get_reg_attrs (MEM_EXPR (mem),
1225 INTVAL (XEXP (x, 1)));
1230 /* Set the REG_ATTRS for registers in value X, given that X represents
1231 decl T. */
1233 void
1234 set_reg_attrs_for_decl_rtl (tree t, rtx x)
1236 if (GET_CODE (x) == SUBREG)
1238 gcc_assert (subreg_lowpart_p (x));
1239 x = SUBREG_REG (x);
1241 if (REG_P (x))
1242 REG_ATTRS (x)
1243 = get_reg_attrs (t, byte_lowpart_offset (GET_MODE (x),
1244 DECL_MODE (t)));
1245 if (GET_CODE (x) == CONCAT)
1247 if (REG_P (XEXP (x, 0)))
1248 REG_ATTRS (XEXP (x, 0)) = get_reg_attrs (t, 0);
1249 if (REG_P (XEXP (x, 1)))
1250 REG_ATTRS (XEXP (x, 1))
1251 = get_reg_attrs (t, GET_MODE_UNIT_SIZE (GET_MODE (XEXP (x, 0))));
1253 if (GET_CODE (x) == PARALLEL)
1255 int i, start;
1257 /* Check for a NULL entry, used to indicate that the parameter goes
1258 both on the stack and in registers. */
1259 if (XEXP (XVECEXP (x, 0, 0), 0))
1260 start = 0;
1261 else
1262 start = 1;
1264 for (i = start; i < XVECLEN (x, 0); i++)
1266 rtx y = XVECEXP (x, 0, i);
1267 if (REG_P (XEXP (y, 0)))
1268 REG_ATTRS (XEXP (y, 0)) = get_reg_attrs (t, INTVAL (XEXP (y, 1)));
1273 /* Assign the RTX X to declaration T. */
1275 void
1276 set_decl_rtl (tree t, rtx x)
1278 DECL_WRTL_CHECK (t)->decl_with_rtl.rtl = x;
1279 if (x)
1280 set_reg_attrs_for_decl_rtl (t, x);
1283 /* Assign the RTX X to parameter declaration T. BY_REFERENCE_P is true
1284 if the ABI requires the parameter to be passed by reference. */
1286 void
1287 set_decl_incoming_rtl (tree t, rtx x, bool by_reference_p)
1289 DECL_INCOMING_RTL (t) = x;
1290 if (x && !by_reference_p)
1291 set_reg_attrs_for_decl_rtl (t, x);
1294 /* Identify REG (which may be a CONCAT) as a user register. */
1296 void
1297 mark_user_reg (rtx reg)
1299 if (GET_CODE (reg) == CONCAT)
1301 REG_USERVAR_P (XEXP (reg, 0)) = 1;
1302 REG_USERVAR_P (XEXP (reg, 1)) = 1;
1304 else
1306 gcc_assert (REG_P (reg));
1307 REG_USERVAR_P (reg) = 1;
1311 /* Identify REG as a probable pointer register and show its alignment
1312 as ALIGN, if nonzero. */
1314 void
1315 mark_reg_pointer (rtx reg, int align)
1317 if (! REG_POINTER (reg))
1319 REG_POINTER (reg) = 1;
1321 if (align)
1322 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
1324 else if (align && align < REGNO_POINTER_ALIGN (REGNO (reg)))
1325 /* We can no-longer be sure just how aligned this pointer is. */
1326 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
1329 /* Return 1 plus largest pseudo reg number used in the current function. */
1332 max_reg_num (void)
1334 return reg_rtx_no;
1337 /* Return 1 + the largest label number used so far in the current function. */
1340 max_label_num (void)
1342 return label_num;
1345 /* Return first label number used in this function (if any were used). */
1348 get_first_label_num (void)
1350 return first_label_num;
1353 /* If the rtx for label was created during the expansion of a nested
1354 function, then first_label_num won't include this label number.
1355 Fix this now so that array indices work later. */
1357 void
1358 maybe_set_first_label_num (rtx x)
1360 if (CODE_LABEL_NUMBER (x) < first_label_num)
1361 first_label_num = CODE_LABEL_NUMBER (x);
1364 /* Return a value representing some low-order bits of X, where the number
1365 of low-order bits is given by MODE. Note that no conversion is done
1366 between floating-point and fixed-point values, rather, the bit
1367 representation is returned.
1369 This function handles the cases in common between gen_lowpart, below,
1370 and two variants in cse.c and combine.c. These are the cases that can
1371 be safely handled at all points in the compilation.
1373 If this is not a case we can handle, return 0. */
1376 gen_lowpart_common (machine_mode mode, rtx x)
1378 int msize = GET_MODE_SIZE (mode);
1379 int xsize;
1380 machine_mode innermode;
1382 /* Unfortunately, this routine doesn't take a parameter for the mode of X,
1383 so we have to make one up. Yuk. */
1384 innermode = GET_MODE (x);
1385 if (CONST_INT_P (x)
1386 && msize * BITS_PER_UNIT <= HOST_BITS_PER_WIDE_INT)
1387 innermode = mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0);
1388 else if (innermode == VOIDmode)
1389 innermode = mode_for_size (HOST_BITS_PER_DOUBLE_INT, MODE_INT, 0);
1391 xsize = GET_MODE_SIZE (innermode);
1393 gcc_assert (innermode != VOIDmode && innermode != BLKmode);
1395 if (innermode == mode)
1396 return x;
1398 /* MODE must occupy no more words than the mode of X. */
1399 if ((msize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD
1400 > ((xsize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))
1401 return 0;
1403 /* Don't allow generating paradoxical FLOAT_MODE subregs. */
1404 if (SCALAR_FLOAT_MODE_P (mode) && msize > xsize)
1405 return 0;
1407 if ((GET_CODE (x) == ZERO_EXTEND || GET_CODE (x) == SIGN_EXTEND)
1408 && (GET_MODE_CLASS (mode) == MODE_INT
1409 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT))
1411 /* If we are getting the low-order part of something that has been
1412 sign- or zero-extended, we can either just use the object being
1413 extended or make a narrower extension. If we want an even smaller
1414 piece than the size of the object being extended, call ourselves
1415 recursively.
1417 This case is used mostly by combine and cse. */
1419 if (GET_MODE (XEXP (x, 0)) == mode)
1420 return XEXP (x, 0);
1421 else if (msize < GET_MODE_SIZE (GET_MODE (XEXP (x, 0))))
1422 return gen_lowpart_common (mode, XEXP (x, 0));
1423 else if (msize < xsize)
1424 return gen_rtx_fmt_e (GET_CODE (x), mode, XEXP (x, 0));
1426 else if (GET_CODE (x) == SUBREG || REG_P (x)
1427 || GET_CODE (x) == CONCAT || GET_CODE (x) == CONST_VECTOR
1428 || CONST_DOUBLE_AS_FLOAT_P (x) || CONST_SCALAR_INT_P (x))
1429 return lowpart_subreg (mode, x, innermode);
1431 /* Otherwise, we can't do this. */
1432 return 0;
1436 gen_highpart (machine_mode mode, rtx x)
1438 unsigned int msize = GET_MODE_SIZE (mode);
1439 rtx result;
1441 /* This case loses if X is a subreg. To catch bugs early,
1442 complain if an invalid MODE is used even in other cases. */
1443 gcc_assert (msize <= UNITS_PER_WORD
1444 || msize == (unsigned int) GET_MODE_UNIT_SIZE (GET_MODE (x)));
1446 result = simplify_gen_subreg (mode, x, GET_MODE (x),
1447 subreg_highpart_offset (mode, GET_MODE (x)));
1448 gcc_assert (result);
1450 /* simplify_gen_subreg is not guaranteed to return a valid operand for
1451 the target if we have a MEM. gen_highpart must return a valid operand,
1452 emitting code if necessary to do so. */
1453 if (MEM_P (result))
1455 result = validize_mem (result);
1456 gcc_assert (result);
1459 return result;
1462 /* Like gen_highpart, but accept mode of EXP operand in case EXP can
1463 be VOIDmode constant. */
1465 gen_highpart_mode (machine_mode outermode, machine_mode innermode, rtx exp)
1467 if (GET_MODE (exp) != VOIDmode)
1469 gcc_assert (GET_MODE (exp) == innermode);
1470 return gen_highpart (outermode, exp);
1472 return simplify_gen_subreg (outermode, exp, innermode,
1473 subreg_highpart_offset (outermode, innermode));
1476 /* Return the SUBREG_BYTE for an OUTERMODE lowpart of an INNERMODE value. */
1478 unsigned int
1479 subreg_lowpart_offset (machine_mode outermode, machine_mode innermode)
1481 unsigned int offset = 0;
1482 int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
1484 if (difference > 0)
1486 if (WORDS_BIG_ENDIAN)
1487 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
1488 if (BYTES_BIG_ENDIAN)
1489 offset += difference % UNITS_PER_WORD;
1492 return offset;
1495 /* Return offset in bytes to get OUTERMODE high part
1496 of the value in mode INNERMODE stored in memory in target format. */
1497 unsigned int
1498 subreg_highpart_offset (machine_mode outermode, machine_mode innermode)
1500 unsigned int offset = 0;
1501 int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
1503 gcc_assert (GET_MODE_SIZE (innermode) >= GET_MODE_SIZE (outermode));
1505 if (difference > 0)
1507 if (! WORDS_BIG_ENDIAN)
1508 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
1509 if (! BYTES_BIG_ENDIAN)
1510 offset += difference % UNITS_PER_WORD;
1513 return offset;
1516 /* Return 1 iff X, assumed to be a SUBREG,
1517 refers to the least significant part of its containing reg.
1518 If X is not a SUBREG, always return 1 (it is its own low part!). */
1521 subreg_lowpart_p (const_rtx x)
1523 if (GET_CODE (x) != SUBREG)
1524 return 1;
1525 else if (GET_MODE (SUBREG_REG (x)) == VOIDmode)
1526 return 0;
1528 return (subreg_lowpart_offset (GET_MODE (x), GET_MODE (SUBREG_REG (x)))
1529 == SUBREG_BYTE (x));
1532 /* Return true if X is a paradoxical subreg, false otherwise. */
1533 bool
1534 paradoxical_subreg_p (const_rtx x)
1536 if (GET_CODE (x) != SUBREG)
1537 return false;
1538 return (GET_MODE_PRECISION (GET_MODE (x))
1539 > GET_MODE_PRECISION (GET_MODE (SUBREG_REG (x))));
1542 /* Return subword OFFSET of operand OP.
1543 The word number, OFFSET, is interpreted as the word number starting
1544 at the low-order address. OFFSET 0 is the low-order word if not
1545 WORDS_BIG_ENDIAN, otherwise it is the high-order word.
1547 If we cannot extract the required word, we return zero. Otherwise,
1548 an rtx corresponding to the requested word will be returned.
1550 VALIDATE_ADDRESS is nonzero if the address should be validated. Before
1551 reload has completed, a valid address will always be returned. After
1552 reload, if a valid address cannot be returned, we return zero.
1554 If VALIDATE_ADDRESS is zero, we simply form the required address; validating
1555 it is the responsibility of the caller.
1557 MODE is the mode of OP in case it is a CONST_INT.
1559 ??? This is still rather broken for some cases. The problem for the
1560 moment is that all callers of this thing provide no 'goal mode' to
1561 tell us to work with. This exists because all callers were written
1562 in a word based SUBREG world.
1563 Now use of this function can be deprecated by simplify_subreg in most
1564 cases.
1568 operand_subword (rtx op, unsigned int offset, int validate_address, machine_mode mode)
1570 if (mode == VOIDmode)
1571 mode = GET_MODE (op);
1573 gcc_assert (mode != VOIDmode);
1575 /* If OP is narrower than a word, fail. */
1576 if (mode != BLKmode
1577 && (GET_MODE_SIZE (mode) < UNITS_PER_WORD))
1578 return 0;
1580 /* If we want a word outside OP, return zero. */
1581 if (mode != BLKmode
1582 && (offset + 1) * UNITS_PER_WORD > GET_MODE_SIZE (mode))
1583 return const0_rtx;
1585 /* Form a new MEM at the requested address. */
1586 if (MEM_P (op))
1588 rtx new_rtx = adjust_address_nv (op, word_mode, offset * UNITS_PER_WORD);
1590 if (! validate_address)
1591 return new_rtx;
1593 else if (reload_completed)
1595 if (! strict_memory_address_addr_space_p (word_mode,
1596 XEXP (new_rtx, 0),
1597 MEM_ADDR_SPACE (op)))
1598 return 0;
1600 else
1601 return replace_equiv_address (new_rtx, XEXP (new_rtx, 0));
1604 /* Rest can be handled by simplify_subreg. */
1605 return simplify_gen_subreg (word_mode, op, mode, (offset * UNITS_PER_WORD));
1608 /* Similar to `operand_subword', but never return 0. If we can't
1609 extract the required subword, put OP into a register and try again.
1610 The second attempt must succeed. We always validate the address in
1611 this case.
1613 MODE is the mode of OP, in case it is CONST_INT. */
1616 operand_subword_force (rtx op, unsigned int offset, machine_mode mode)
1618 rtx result = operand_subword (op, offset, 1, mode);
1620 if (result)
1621 return result;
1623 if (mode != BLKmode && mode != VOIDmode)
1625 /* If this is a register which can not be accessed by words, copy it
1626 to a pseudo register. */
1627 if (REG_P (op))
1628 op = copy_to_reg (op);
1629 else
1630 op = force_reg (mode, op);
1633 result = operand_subword (op, offset, 1, mode);
1634 gcc_assert (result);
1636 return result;
1639 /* Returns 1 if both MEM_EXPR can be considered equal
1640 and 0 otherwise. */
1643 mem_expr_equal_p (const_tree expr1, const_tree expr2)
1645 if (expr1 == expr2)
1646 return 1;
1648 if (! expr1 || ! expr2)
1649 return 0;
1651 if (TREE_CODE (expr1) != TREE_CODE (expr2))
1652 return 0;
1654 return operand_equal_p (expr1, expr2, 0);
1657 /* Return OFFSET if XEXP (MEM, 0) - OFFSET is known to be ALIGN
1658 bits aligned for 0 <= OFFSET < ALIGN / BITS_PER_UNIT, or
1659 -1 if not known. */
1662 get_mem_align_offset (rtx mem, unsigned int align)
1664 tree expr;
1665 unsigned HOST_WIDE_INT offset;
1667 /* This function can't use
1668 if (!MEM_EXPR (mem) || !MEM_OFFSET_KNOWN_P (mem)
1669 || (MAX (MEM_ALIGN (mem),
1670 MAX (align, get_object_alignment (MEM_EXPR (mem))))
1671 < align))
1672 return -1;
1673 else
1674 return (- MEM_OFFSET (mem)) & (align / BITS_PER_UNIT - 1);
1675 for two reasons:
1676 - COMPONENT_REFs in MEM_EXPR can have NULL first operand,
1677 for <variable>. get_inner_reference doesn't handle it and
1678 even if it did, the alignment in that case needs to be determined
1679 from DECL_FIELD_CONTEXT's TYPE_ALIGN.
1680 - it would do suboptimal job for COMPONENT_REFs, even if MEM_EXPR
1681 isn't sufficiently aligned, the object it is in might be. */
1682 gcc_assert (MEM_P (mem));
1683 expr = MEM_EXPR (mem);
1684 if (expr == NULL_TREE || !MEM_OFFSET_KNOWN_P (mem))
1685 return -1;
1687 offset = MEM_OFFSET (mem);
1688 if (DECL_P (expr))
1690 if (DECL_ALIGN (expr) < align)
1691 return -1;
1693 else if (INDIRECT_REF_P (expr))
1695 if (TYPE_ALIGN (TREE_TYPE (expr)) < (unsigned int) align)
1696 return -1;
1698 else if (TREE_CODE (expr) == COMPONENT_REF)
1700 while (1)
1702 tree inner = TREE_OPERAND (expr, 0);
1703 tree field = TREE_OPERAND (expr, 1);
1704 tree byte_offset = component_ref_field_offset (expr);
1705 tree bit_offset = DECL_FIELD_BIT_OFFSET (field);
1707 if (!byte_offset
1708 || !tree_fits_uhwi_p (byte_offset)
1709 || !tree_fits_uhwi_p (bit_offset))
1710 return -1;
1712 offset += tree_to_uhwi (byte_offset);
1713 offset += tree_to_uhwi (bit_offset) / BITS_PER_UNIT;
1715 if (inner == NULL_TREE)
1717 if (TYPE_ALIGN (DECL_FIELD_CONTEXT (field))
1718 < (unsigned int) align)
1719 return -1;
1720 break;
1722 else if (DECL_P (inner))
1724 if (DECL_ALIGN (inner) < align)
1725 return -1;
1726 break;
1728 else if (TREE_CODE (inner) != COMPONENT_REF)
1729 return -1;
1730 expr = inner;
1733 else
1734 return -1;
1736 return offset & ((align / BITS_PER_UNIT) - 1);
1739 /* Given REF (a MEM) and T, either the type of X or the expression
1740 corresponding to REF, set the memory attributes. OBJECTP is nonzero
1741 if we are making a new object of this type. BITPOS is nonzero if
1742 there is an offset outstanding on T that will be applied later. */
1744 void
1745 set_mem_attributes_minus_bitpos (rtx ref, tree t, int objectp,
1746 HOST_WIDE_INT bitpos)
1748 HOST_WIDE_INT apply_bitpos = 0;
1749 tree type;
1750 struct mem_attrs attrs, *defattrs, *refattrs;
1751 addr_space_t as;
1753 /* It can happen that type_for_mode was given a mode for which there
1754 is no language-level type. In which case it returns NULL, which
1755 we can see here. */
1756 if (t == NULL_TREE)
1757 return;
1759 type = TYPE_P (t) ? t : TREE_TYPE (t);
1760 if (type == error_mark_node)
1761 return;
1763 /* If we have already set DECL_RTL = ref, get_alias_set will get the
1764 wrong answer, as it assumes that DECL_RTL already has the right alias
1765 info. Callers should not set DECL_RTL until after the call to
1766 set_mem_attributes. */
1767 gcc_assert (!DECL_P (t) || ref != DECL_RTL_IF_SET (t));
1769 memset (&attrs, 0, sizeof (attrs));
1771 /* Get the alias set from the expression or type (perhaps using a
1772 front-end routine) and use it. */
1773 attrs.alias = get_alias_set (t);
1775 MEM_VOLATILE_P (ref) |= TYPE_VOLATILE (type);
1776 MEM_POINTER (ref) = POINTER_TYPE_P (type);
1778 /* Default values from pre-existing memory attributes if present. */
1779 refattrs = MEM_ATTRS (ref);
1780 if (refattrs)
1782 /* ??? Can this ever happen? Calling this routine on a MEM that
1783 already carries memory attributes should probably be invalid. */
1784 attrs.expr = refattrs->expr;
1785 attrs.offset_known_p = refattrs->offset_known_p;
1786 attrs.offset = refattrs->offset;
1787 attrs.size_known_p = refattrs->size_known_p;
1788 attrs.size = refattrs->size;
1789 attrs.align = refattrs->align;
1792 /* Otherwise, default values from the mode of the MEM reference. */
1793 else
1795 defattrs = mode_mem_attrs[(int) GET_MODE (ref)];
1796 gcc_assert (!defattrs->expr);
1797 gcc_assert (!defattrs->offset_known_p);
1799 /* Respect mode size. */
1800 attrs.size_known_p = defattrs->size_known_p;
1801 attrs.size = defattrs->size;
1802 /* ??? Is this really necessary? We probably should always get
1803 the size from the type below. */
1805 /* Respect mode alignment for STRICT_ALIGNMENT targets if T is a type;
1806 if T is an object, always compute the object alignment below. */
1807 if (TYPE_P (t))
1808 attrs.align = defattrs->align;
1809 else
1810 attrs.align = BITS_PER_UNIT;
1811 /* ??? If T is a type, respecting mode alignment may *also* be wrong
1812 e.g. if the type carries an alignment attribute. Should we be
1813 able to simply always use TYPE_ALIGN? */
1816 /* We can set the alignment from the type if we are making an object,
1817 this is an INDIRECT_REF, or if TYPE_ALIGN_OK. */
1818 if (objectp || TREE_CODE (t) == INDIRECT_REF || TYPE_ALIGN_OK (type))
1819 attrs.align = MAX (attrs.align, TYPE_ALIGN (type));
1821 /* If the size is known, we can set that. */
1822 tree new_size = TYPE_SIZE_UNIT (type);
1824 /* The address-space is that of the type. */
1825 as = TYPE_ADDR_SPACE (type);
1827 /* If T is not a type, we may be able to deduce some more information about
1828 the expression. */
1829 if (! TYPE_P (t))
1831 tree base;
1833 if (TREE_THIS_VOLATILE (t))
1834 MEM_VOLATILE_P (ref) = 1;
1836 /* Now remove any conversions: they don't change what the underlying
1837 object is. Likewise for SAVE_EXPR. */
1838 while (CONVERT_EXPR_P (t)
1839 || TREE_CODE (t) == VIEW_CONVERT_EXPR
1840 || TREE_CODE (t) == SAVE_EXPR)
1841 t = TREE_OPERAND (t, 0);
1843 /* Note whether this expression can trap. */
1844 MEM_NOTRAP_P (ref) = !tree_could_trap_p (t);
1846 base = get_base_address (t);
1847 if (base)
1849 if (DECL_P (base)
1850 && TREE_READONLY (base)
1851 && (TREE_STATIC (base) || DECL_EXTERNAL (base))
1852 && !TREE_THIS_VOLATILE (base))
1853 MEM_READONLY_P (ref) = 1;
1855 /* Mark static const strings readonly as well. */
1856 if (TREE_CODE (base) == STRING_CST
1857 && TREE_READONLY (base)
1858 && TREE_STATIC (base))
1859 MEM_READONLY_P (ref) = 1;
1861 /* Address-space information is on the base object. */
1862 if (TREE_CODE (base) == MEM_REF
1863 || TREE_CODE (base) == TARGET_MEM_REF)
1864 as = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (base,
1865 0))));
1866 else
1867 as = TYPE_ADDR_SPACE (TREE_TYPE (base));
1870 /* If this expression uses it's parent's alias set, mark it such
1871 that we won't change it. */
1872 if (component_uses_parent_alias_set_from (t) != NULL_TREE)
1873 MEM_KEEP_ALIAS_SET_P (ref) = 1;
1875 /* If this is a decl, set the attributes of the MEM from it. */
1876 if (DECL_P (t))
1878 attrs.expr = t;
1879 attrs.offset_known_p = true;
1880 attrs.offset = 0;
1881 apply_bitpos = bitpos;
1882 new_size = DECL_SIZE_UNIT (t);
1885 /* ??? If we end up with a constant here do record a MEM_EXPR. */
1886 else if (CONSTANT_CLASS_P (t))
1889 /* If this is a field reference, record it. */
1890 else if (TREE_CODE (t) == COMPONENT_REF)
1892 attrs.expr = t;
1893 attrs.offset_known_p = true;
1894 attrs.offset = 0;
1895 apply_bitpos = bitpos;
1896 if (DECL_BIT_FIELD (TREE_OPERAND (t, 1)))
1897 new_size = DECL_SIZE_UNIT (TREE_OPERAND (t, 1));
1900 /* If this is an array reference, look for an outer field reference. */
1901 else if (TREE_CODE (t) == ARRAY_REF)
1903 tree off_tree = size_zero_node;
1904 /* We can't modify t, because we use it at the end of the
1905 function. */
1906 tree t2 = t;
1910 tree index = TREE_OPERAND (t2, 1);
1911 tree low_bound = array_ref_low_bound (t2);
1912 tree unit_size = array_ref_element_size (t2);
1914 /* We assume all arrays have sizes that are a multiple of a byte.
1915 First subtract the lower bound, if any, in the type of the
1916 index, then convert to sizetype and multiply by the size of
1917 the array element. */
1918 if (! integer_zerop (low_bound))
1919 index = fold_build2 (MINUS_EXPR, TREE_TYPE (index),
1920 index, low_bound);
1922 off_tree = size_binop (PLUS_EXPR,
1923 size_binop (MULT_EXPR,
1924 fold_convert (sizetype,
1925 index),
1926 unit_size),
1927 off_tree);
1928 t2 = TREE_OPERAND (t2, 0);
1930 while (TREE_CODE (t2) == ARRAY_REF);
1932 if (DECL_P (t2)
1933 || TREE_CODE (t2) == COMPONENT_REF)
1935 attrs.expr = t2;
1936 attrs.offset_known_p = false;
1937 if (tree_fits_uhwi_p (off_tree))
1939 attrs.offset_known_p = true;
1940 attrs.offset = tree_to_uhwi (off_tree);
1941 apply_bitpos = bitpos;
1944 /* Else do not record a MEM_EXPR. */
1947 /* If this is an indirect reference, record it. */
1948 else if (TREE_CODE (t) == MEM_REF
1949 || TREE_CODE (t) == TARGET_MEM_REF)
1951 attrs.expr = t;
1952 attrs.offset_known_p = true;
1953 attrs.offset = 0;
1954 apply_bitpos = bitpos;
1957 /* Compute the alignment. */
1958 unsigned int obj_align;
1959 unsigned HOST_WIDE_INT obj_bitpos;
1960 get_object_alignment_1 (t, &obj_align, &obj_bitpos);
1961 obj_bitpos = (obj_bitpos - bitpos) & (obj_align - 1);
1962 if (obj_bitpos != 0)
1963 obj_align = (obj_bitpos & -obj_bitpos);
1964 attrs.align = MAX (attrs.align, obj_align);
1967 if (tree_fits_uhwi_p (new_size))
1969 attrs.size_known_p = true;
1970 attrs.size = tree_to_uhwi (new_size);
1973 /* If we modified OFFSET based on T, then subtract the outstanding
1974 bit position offset. Similarly, increase the size of the accessed
1975 object to contain the negative offset. */
1976 if (apply_bitpos)
1978 gcc_assert (attrs.offset_known_p);
1979 attrs.offset -= apply_bitpos / BITS_PER_UNIT;
1980 if (attrs.size_known_p)
1981 attrs.size += apply_bitpos / BITS_PER_UNIT;
1984 /* Now set the attributes we computed above. */
1985 attrs.addrspace = as;
1986 set_mem_attrs (ref, &attrs);
1989 void
1990 set_mem_attributes (rtx ref, tree t, int objectp)
1992 set_mem_attributes_minus_bitpos (ref, t, objectp, 0);
1995 /* Set the alias set of MEM to SET. */
1997 void
1998 set_mem_alias_set (rtx mem, alias_set_type set)
2000 struct mem_attrs attrs;
2002 /* If the new and old alias sets don't conflict, something is wrong. */
2003 gcc_checking_assert (alias_sets_conflict_p (set, MEM_ALIAS_SET (mem)));
2004 attrs = *get_mem_attrs (mem);
2005 attrs.alias = set;
2006 set_mem_attrs (mem, &attrs);
2009 /* Set the address space of MEM to ADDRSPACE (target-defined). */
2011 void
2012 set_mem_addr_space (rtx mem, addr_space_t addrspace)
2014 struct mem_attrs attrs;
2016 attrs = *get_mem_attrs (mem);
2017 attrs.addrspace = addrspace;
2018 set_mem_attrs (mem, &attrs);
2021 /* Set the alignment of MEM to ALIGN bits. */
2023 void
2024 set_mem_align (rtx mem, unsigned int align)
2026 struct mem_attrs attrs;
2028 attrs = *get_mem_attrs (mem);
2029 attrs.align = align;
2030 set_mem_attrs (mem, &attrs);
2033 /* Set the expr for MEM to EXPR. */
2035 void
2036 set_mem_expr (rtx mem, tree expr)
2038 struct mem_attrs attrs;
2040 attrs = *get_mem_attrs (mem);
2041 attrs.expr = expr;
2042 set_mem_attrs (mem, &attrs);
2045 /* Set the offset of MEM to OFFSET. */
2047 void
2048 set_mem_offset (rtx mem, HOST_WIDE_INT offset)
2050 struct mem_attrs attrs;
2052 attrs = *get_mem_attrs (mem);
2053 attrs.offset_known_p = true;
2054 attrs.offset = offset;
2055 set_mem_attrs (mem, &attrs);
2058 /* Clear the offset of MEM. */
2060 void
2061 clear_mem_offset (rtx mem)
2063 struct mem_attrs attrs;
2065 attrs = *get_mem_attrs (mem);
2066 attrs.offset_known_p = false;
2067 set_mem_attrs (mem, &attrs);
2070 /* Set the size of MEM to SIZE. */
2072 void
2073 set_mem_size (rtx mem, HOST_WIDE_INT size)
2075 struct mem_attrs attrs;
2077 attrs = *get_mem_attrs (mem);
2078 attrs.size_known_p = true;
2079 attrs.size = size;
2080 set_mem_attrs (mem, &attrs);
2083 /* Clear the size of MEM. */
2085 void
2086 clear_mem_size (rtx mem)
2088 struct mem_attrs attrs;
2090 attrs = *get_mem_attrs (mem);
2091 attrs.size_known_p = false;
2092 set_mem_attrs (mem, &attrs);
2095 /* Return a memory reference like MEMREF, but with its mode changed to MODE
2096 and its address changed to ADDR. (VOIDmode means don't change the mode.
2097 NULL for ADDR means don't change the address.) VALIDATE is nonzero if the
2098 returned memory location is required to be valid. INPLACE is true if any
2099 changes can be made directly to MEMREF or false if MEMREF must be treated
2100 as immutable.
2102 The memory attributes are not changed. */
2104 static rtx
2105 change_address_1 (rtx memref, machine_mode mode, rtx addr, int validate,
2106 bool inplace)
2108 addr_space_t as;
2109 rtx new_rtx;
2111 gcc_assert (MEM_P (memref));
2112 as = MEM_ADDR_SPACE (memref);
2113 if (mode == VOIDmode)
2114 mode = GET_MODE (memref);
2115 if (addr == 0)
2116 addr = XEXP (memref, 0);
2117 if (mode == GET_MODE (memref) && addr == XEXP (memref, 0)
2118 && (!validate || memory_address_addr_space_p (mode, addr, as)))
2119 return memref;
2121 /* Don't validate address for LRA. LRA can make the address valid
2122 by itself in most efficient way. */
2123 if (validate && !lra_in_progress)
2125 if (reload_in_progress || reload_completed)
2126 gcc_assert (memory_address_addr_space_p (mode, addr, as));
2127 else
2128 addr = memory_address_addr_space (mode, addr, as);
2131 if (rtx_equal_p (addr, XEXP (memref, 0)) && mode == GET_MODE (memref))
2132 return memref;
2134 if (inplace)
2136 XEXP (memref, 0) = addr;
2137 return memref;
2140 new_rtx = gen_rtx_MEM (mode, addr);
2141 MEM_COPY_ATTRIBUTES (new_rtx, memref);
2142 return new_rtx;
2145 /* Like change_address_1 with VALIDATE nonzero, but we are not saying in what
2146 way we are changing MEMREF, so we only preserve the alias set. */
2149 change_address (rtx memref, machine_mode mode, rtx addr)
2151 rtx new_rtx = change_address_1 (memref, mode, addr, 1, false);
2152 machine_mode mmode = GET_MODE (new_rtx);
2153 struct mem_attrs attrs, *defattrs;
2155 attrs = *get_mem_attrs (memref);
2156 defattrs = mode_mem_attrs[(int) mmode];
2157 attrs.expr = NULL_TREE;
2158 attrs.offset_known_p = false;
2159 attrs.size_known_p = defattrs->size_known_p;
2160 attrs.size = defattrs->size;
2161 attrs.align = defattrs->align;
2163 /* If there are no changes, just return the original memory reference. */
2164 if (new_rtx == memref)
2166 if (mem_attrs_eq_p (get_mem_attrs (memref), &attrs))
2167 return new_rtx;
2169 new_rtx = gen_rtx_MEM (mmode, XEXP (memref, 0));
2170 MEM_COPY_ATTRIBUTES (new_rtx, memref);
2173 set_mem_attrs (new_rtx, &attrs);
2174 return new_rtx;
2177 /* Return a memory reference like MEMREF, but with its mode changed
2178 to MODE and its address offset by OFFSET bytes. If VALIDATE is
2179 nonzero, the memory address is forced to be valid.
2180 If ADJUST_ADDRESS is zero, OFFSET is only used to update MEM_ATTRS
2181 and the caller is responsible for adjusting MEMREF base register.
2182 If ADJUST_OBJECT is zero, the underlying object associated with the
2183 memory reference is left unchanged and the caller is responsible for
2184 dealing with it. Otherwise, if the new memory reference is outside
2185 the underlying object, even partially, then the object is dropped.
2186 SIZE, if nonzero, is the size of an access in cases where MODE
2187 has no inherent size. */
2190 adjust_address_1 (rtx memref, machine_mode mode, HOST_WIDE_INT offset,
2191 int validate, int adjust_address, int adjust_object,
2192 HOST_WIDE_INT size)
2194 rtx addr = XEXP (memref, 0);
2195 rtx new_rtx;
2196 machine_mode address_mode;
2197 int pbits;
2198 struct mem_attrs attrs = *get_mem_attrs (memref), *defattrs;
2199 unsigned HOST_WIDE_INT max_align;
2200 #ifdef POINTERS_EXTEND_UNSIGNED
2201 machine_mode pointer_mode
2202 = targetm.addr_space.pointer_mode (attrs.addrspace);
2203 #endif
2205 /* VOIDmode means no mode change for change_address_1. */
2206 if (mode == VOIDmode)
2207 mode = GET_MODE (memref);
2209 /* Take the size of non-BLKmode accesses from the mode. */
2210 defattrs = mode_mem_attrs[(int) mode];
2211 if (defattrs->size_known_p)
2212 size = defattrs->size;
2214 /* If there are no changes, just return the original memory reference. */
2215 if (mode == GET_MODE (memref) && !offset
2216 && (size == 0 || (attrs.size_known_p && attrs.size == size))
2217 && (!validate || memory_address_addr_space_p (mode, addr,
2218 attrs.addrspace)))
2219 return memref;
2221 /* ??? Prefer to create garbage instead of creating shared rtl.
2222 This may happen even if offset is nonzero -- consider
2223 (plus (plus reg reg) const_int) -- so do this always. */
2224 addr = copy_rtx (addr);
2226 /* Convert a possibly large offset to a signed value within the
2227 range of the target address space. */
2228 address_mode = get_address_mode (memref);
2229 pbits = GET_MODE_BITSIZE (address_mode);
2230 if (HOST_BITS_PER_WIDE_INT > pbits)
2232 int shift = HOST_BITS_PER_WIDE_INT - pbits;
2233 offset = (((HOST_WIDE_INT) ((unsigned HOST_WIDE_INT) offset << shift))
2234 >> shift);
2237 if (adjust_address)
2239 /* If MEMREF is a LO_SUM and the offset is within the alignment of the
2240 object, we can merge it into the LO_SUM. */
2241 if (GET_MODE (memref) != BLKmode && GET_CODE (addr) == LO_SUM
2242 && offset >= 0
2243 && (unsigned HOST_WIDE_INT) offset
2244 < GET_MODE_ALIGNMENT (GET_MODE (memref)) / BITS_PER_UNIT)
2245 addr = gen_rtx_LO_SUM (address_mode, XEXP (addr, 0),
2246 plus_constant (address_mode,
2247 XEXP (addr, 1), offset));
2248 #ifdef POINTERS_EXTEND_UNSIGNED
2249 /* If MEMREF is a ZERO_EXTEND from pointer_mode and the offset is valid
2250 in that mode, we merge it into the ZERO_EXTEND. We take advantage of
2251 the fact that pointers are not allowed to overflow. */
2252 else if (POINTERS_EXTEND_UNSIGNED > 0
2253 && GET_CODE (addr) == ZERO_EXTEND
2254 && GET_MODE (XEXP (addr, 0)) == pointer_mode
2255 && trunc_int_for_mode (offset, pointer_mode) == offset)
2256 addr = gen_rtx_ZERO_EXTEND (address_mode,
2257 plus_constant (pointer_mode,
2258 XEXP (addr, 0), offset));
2259 #endif
2260 else
2261 addr = plus_constant (address_mode, addr, offset);
2264 new_rtx = change_address_1 (memref, mode, addr, validate, false);
2266 /* If the address is a REG, change_address_1 rightfully returns memref,
2267 but this would destroy memref's MEM_ATTRS. */
2268 if (new_rtx == memref && offset != 0)
2269 new_rtx = copy_rtx (new_rtx);
2271 /* Conservatively drop the object if we don't know where we start from. */
2272 if (adjust_object && (!attrs.offset_known_p || !attrs.size_known_p))
2274 attrs.expr = NULL_TREE;
2275 attrs.alias = 0;
2278 /* Compute the new values of the memory attributes due to this adjustment.
2279 We add the offsets and update the alignment. */
2280 if (attrs.offset_known_p)
2282 attrs.offset += offset;
2284 /* Drop the object if the new left end is not within its bounds. */
2285 if (adjust_object && attrs.offset < 0)
2287 attrs.expr = NULL_TREE;
2288 attrs.alias = 0;
2292 /* Compute the new alignment by taking the MIN of the alignment and the
2293 lowest-order set bit in OFFSET, but don't change the alignment if OFFSET
2294 if zero. */
2295 if (offset != 0)
2297 max_align = (offset & -offset) * BITS_PER_UNIT;
2298 attrs.align = MIN (attrs.align, max_align);
2301 if (size)
2303 /* Drop the object if the new right end is not within its bounds. */
2304 if (adjust_object && (offset + size) > attrs.size)
2306 attrs.expr = NULL_TREE;
2307 attrs.alias = 0;
2309 attrs.size_known_p = true;
2310 attrs.size = size;
2312 else if (attrs.size_known_p)
2314 gcc_assert (!adjust_object);
2315 attrs.size -= offset;
2316 /* ??? The store_by_pieces machinery generates negative sizes,
2317 so don't assert for that here. */
2320 set_mem_attrs (new_rtx, &attrs);
2322 return new_rtx;
2325 /* Return a memory reference like MEMREF, but with its mode changed
2326 to MODE and its address changed to ADDR, which is assumed to be
2327 MEMREF offset by OFFSET bytes. If VALIDATE is
2328 nonzero, the memory address is forced to be valid. */
2331 adjust_automodify_address_1 (rtx memref, machine_mode mode, rtx addr,
2332 HOST_WIDE_INT offset, int validate)
2334 memref = change_address_1 (memref, VOIDmode, addr, validate, false);
2335 return adjust_address_1 (memref, mode, offset, validate, 0, 0, 0);
2338 /* Return a memory reference like MEMREF, but whose address is changed by
2339 adding OFFSET, an RTX, to it. POW2 is the highest power of two factor
2340 known to be in OFFSET (possibly 1). */
2343 offset_address (rtx memref, rtx offset, unsigned HOST_WIDE_INT pow2)
2345 rtx new_rtx, addr = XEXP (memref, 0);
2346 machine_mode address_mode;
2347 struct mem_attrs attrs, *defattrs;
2349 attrs = *get_mem_attrs (memref);
2350 address_mode = get_address_mode (memref);
2351 new_rtx = simplify_gen_binary (PLUS, address_mode, addr, offset);
2353 /* At this point we don't know _why_ the address is invalid. It
2354 could have secondary memory references, multiplies or anything.
2356 However, if we did go and rearrange things, we can wind up not
2357 being able to recognize the magic around pic_offset_table_rtx.
2358 This stuff is fragile, and is yet another example of why it is
2359 bad to expose PIC machinery too early. */
2360 if (! memory_address_addr_space_p (GET_MODE (memref), new_rtx,
2361 attrs.addrspace)
2362 && GET_CODE (addr) == PLUS
2363 && XEXP (addr, 0) == pic_offset_table_rtx)
2365 addr = force_reg (GET_MODE (addr), addr);
2366 new_rtx = simplify_gen_binary (PLUS, address_mode, addr, offset);
2369 update_temp_slot_address (XEXP (memref, 0), new_rtx);
2370 new_rtx = change_address_1 (memref, VOIDmode, new_rtx, 1, false);
2372 /* If there are no changes, just return the original memory reference. */
2373 if (new_rtx == memref)
2374 return new_rtx;
2376 /* Update the alignment to reflect the offset. Reset the offset, which
2377 we don't know. */
2378 defattrs = mode_mem_attrs[(int) GET_MODE (new_rtx)];
2379 attrs.offset_known_p = false;
2380 attrs.size_known_p = defattrs->size_known_p;
2381 attrs.size = defattrs->size;
2382 attrs.align = MIN (attrs.align, pow2 * BITS_PER_UNIT);
2383 set_mem_attrs (new_rtx, &attrs);
2384 return new_rtx;
2387 /* Return a memory reference like MEMREF, but with its address changed to
2388 ADDR. The caller is asserting that the actual piece of memory pointed
2389 to is the same, just the form of the address is being changed, such as
2390 by putting something into a register. INPLACE is true if any changes
2391 can be made directly to MEMREF or false if MEMREF must be treated as
2392 immutable. */
2395 replace_equiv_address (rtx memref, rtx addr, bool inplace)
2397 /* change_address_1 copies the memory attribute structure without change
2398 and that's exactly what we want here. */
2399 update_temp_slot_address (XEXP (memref, 0), addr);
2400 return change_address_1 (memref, VOIDmode, addr, 1, inplace);
2403 /* Likewise, but the reference is not required to be valid. */
2406 replace_equiv_address_nv (rtx memref, rtx addr, bool inplace)
2408 return change_address_1 (memref, VOIDmode, addr, 0, inplace);
2411 /* Return a memory reference like MEMREF, but with its mode widened to
2412 MODE and offset by OFFSET. This would be used by targets that e.g.
2413 cannot issue QImode memory operations and have to use SImode memory
2414 operations plus masking logic. */
2417 widen_memory_access (rtx memref, machine_mode mode, HOST_WIDE_INT offset)
2419 rtx new_rtx = adjust_address_1 (memref, mode, offset, 1, 1, 0, 0);
2420 struct mem_attrs attrs;
2421 unsigned int size = GET_MODE_SIZE (mode);
2423 /* If there are no changes, just return the original memory reference. */
2424 if (new_rtx == memref)
2425 return new_rtx;
2427 attrs = *get_mem_attrs (new_rtx);
2429 /* If we don't know what offset we were at within the expression, then
2430 we can't know if we've overstepped the bounds. */
2431 if (! attrs.offset_known_p)
2432 attrs.expr = NULL_TREE;
2434 while (attrs.expr)
2436 if (TREE_CODE (attrs.expr) == COMPONENT_REF)
2438 tree field = TREE_OPERAND (attrs.expr, 1);
2439 tree offset = component_ref_field_offset (attrs.expr);
2441 if (! DECL_SIZE_UNIT (field))
2443 attrs.expr = NULL_TREE;
2444 break;
2447 /* Is the field at least as large as the access? If so, ok,
2448 otherwise strip back to the containing structure. */
2449 if (TREE_CODE (DECL_SIZE_UNIT (field)) == INTEGER_CST
2450 && compare_tree_int (DECL_SIZE_UNIT (field), size) >= 0
2451 && attrs.offset >= 0)
2452 break;
2454 if (! tree_fits_uhwi_p (offset))
2456 attrs.expr = NULL_TREE;
2457 break;
2460 attrs.expr = TREE_OPERAND (attrs.expr, 0);
2461 attrs.offset += tree_to_uhwi (offset);
2462 attrs.offset += (tree_to_uhwi (DECL_FIELD_BIT_OFFSET (field))
2463 / BITS_PER_UNIT);
2465 /* Similarly for the decl. */
2466 else if (DECL_P (attrs.expr)
2467 && DECL_SIZE_UNIT (attrs.expr)
2468 && TREE_CODE (DECL_SIZE_UNIT (attrs.expr)) == INTEGER_CST
2469 && compare_tree_int (DECL_SIZE_UNIT (attrs.expr), size) >= 0
2470 && (! attrs.offset_known_p || attrs.offset >= 0))
2471 break;
2472 else
2474 /* The widened memory access overflows the expression, which means
2475 that it could alias another expression. Zap it. */
2476 attrs.expr = NULL_TREE;
2477 break;
2481 if (! attrs.expr)
2482 attrs.offset_known_p = false;
2484 /* The widened memory may alias other stuff, so zap the alias set. */
2485 /* ??? Maybe use get_alias_set on any remaining expression. */
2486 attrs.alias = 0;
2487 attrs.size_known_p = true;
2488 attrs.size = size;
2489 set_mem_attrs (new_rtx, &attrs);
2490 return new_rtx;
2493 /* A fake decl that is used as the MEM_EXPR of spill slots. */
2494 static GTY(()) tree spill_slot_decl;
2496 tree
2497 get_spill_slot_decl (bool force_build_p)
2499 tree d = spill_slot_decl;
2500 rtx rd;
2501 struct mem_attrs attrs;
2503 if (d || !force_build_p)
2504 return d;
2506 d = build_decl (DECL_SOURCE_LOCATION (current_function_decl),
2507 VAR_DECL, get_identifier ("%sfp"), void_type_node);
2508 DECL_ARTIFICIAL (d) = 1;
2509 DECL_IGNORED_P (d) = 1;
2510 TREE_USED (d) = 1;
2511 spill_slot_decl = d;
2513 rd = gen_rtx_MEM (BLKmode, frame_pointer_rtx);
2514 MEM_NOTRAP_P (rd) = 1;
2515 attrs = *mode_mem_attrs[(int) BLKmode];
2516 attrs.alias = new_alias_set ();
2517 attrs.expr = d;
2518 set_mem_attrs (rd, &attrs);
2519 SET_DECL_RTL (d, rd);
2521 return d;
2524 /* Given MEM, a result from assign_stack_local, fill in the memory
2525 attributes as appropriate for a register allocator spill slot.
2526 These slots are not aliasable by other memory. We arrange for
2527 them all to use a single MEM_EXPR, so that the aliasing code can
2528 work properly in the case of shared spill slots. */
2530 void
2531 set_mem_attrs_for_spill (rtx mem)
2533 struct mem_attrs attrs;
2534 rtx addr;
2536 attrs = *get_mem_attrs (mem);
2537 attrs.expr = get_spill_slot_decl (true);
2538 attrs.alias = MEM_ALIAS_SET (DECL_RTL (attrs.expr));
2539 attrs.addrspace = ADDR_SPACE_GENERIC;
2541 /* We expect the incoming memory to be of the form:
2542 (mem:MODE (plus (reg sfp) (const_int offset)))
2543 with perhaps the plus missing for offset = 0. */
2544 addr = XEXP (mem, 0);
2545 attrs.offset_known_p = true;
2546 attrs.offset = 0;
2547 if (GET_CODE (addr) == PLUS
2548 && CONST_INT_P (XEXP (addr, 1)))
2549 attrs.offset = INTVAL (XEXP (addr, 1));
2551 set_mem_attrs (mem, &attrs);
2552 MEM_NOTRAP_P (mem) = 1;
2555 /* Return a newly created CODE_LABEL rtx with a unique label number. */
2557 rtx_code_label *
2558 gen_label_rtx (void)
2560 return as_a <rtx_code_label *> (
2561 gen_rtx_CODE_LABEL (VOIDmode, NULL_RTX, NULL_RTX,
2562 NULL, label_num++, NULL));
2565 /* For procedure integration. */
2567 /* Install new pointers to the first and last insns in the chain.
2568 Also, set cur_insn_uid to one higher than the last in use.
2569 Used for an inline-procedure after copying the insn chain. */
2571 void
2572 set_new_first_and_last_insn (rtx_insn *first, rtx_insn *last)
2574 rtx_insn *insn;
2576 set_first_insn (first);
2577 set_last_insn (last);
2578 cur_insn_uid = 0;
2580 if (MIN_NONDEBUG_INSN_UID || MAY_HAVE_DEBUG_INSNS)
2582 int debug_count = 0;
2584 cur_insn_uid = MIN_NONDEBUG_INSN_UID - 1;
2585 cur_debug_insn_uid = 0;
2587 for (insn = first; insn; insn = NEXT_INSN (insn))
2588 if (INSN_UID (insn) < MIN_NONDEBUG_INSN_UID)
2589 cur_debug_insn_uid = MAX (cur_debug_insn_uid, INSN_UID (insn));
2590 else
2592 cur_insn_uid = MAX (cur_insn_uid, INSN_UID (insn));
2593 if (DEBUG_INSN_P (insn))
2594 debug_count++;
2597 if (debug_count)
2598 cur_debug_insn_uid = MIN_NONDEBUG_INSN_UID + debug_count;
2599 else
2600 cur_debug_insn_uid++;
2602 else
2603 for (insn = first; insn; insn = NEXT_INSN (insn))
2604 cur_insn_uid = MAX (cur_insn_uid, INSN_UID (insn));
2606 cur_insn_uid++;
2609 /* Go through all the RTL insn bodies and copy any invalid shared
2610 structure. This routine should only be called once. */
2612 static void
2613 unshare_all_rtl_1 (rtx_insn *insn)
2615 /* Unshare just about everything else. */
2616 unshare_all_rtl_in_chain (insn);
2618 /* Make sure the addresses of stack slots found outside the insn chain
2619 (such as, in DECL_RTL of a variable) are not shared
2620 with the insn chain.
2622 This special care is necessary when the stack slot MEM does not
2623 actually appear in the insn chain. If it does appear, its address
2624 is unshared from all else at that point. */
2625 stack_slot_list = safe_as_a <rtx_expr_list *> (
2626 copy_rtx_if_shared (stack_slot_list));
2629 /* Go through all the RTL insn bodies and copy any invalid shared
2630 structure, again. This is a fairly expensive thing to do so it
2631 should be done sparingly. */
2633 void
2634 unshare_all_rtl_again (rtx_insn *insn)
2636 rtx_insn *p;
2637 tree decl;
2639 for (p = insn; p; p = NEXT_INSN (p))
2640 if (INSN_P (p))
2642 reset_used_flags (PATTERN (p));
2643 reset_used_flags (REG_NOTES (p));
2644 if (CALL_P (p))
2645 reset_used_flags (CALL_INSN_FUNCTION_USAGE (p));
2648 /* Make sure that virtual stack slots are not shared. */
2649 set_used_decls (DECL_INITIAL (cfun->decl));
2651 /* Make sure that virtual parameters are not shared. */
2652 for (decl = DECL_ARGUMENTS (cfun->decl); decl; decl = DECL_CHAIN (decl))
2653 set_used_flags (DECL_RTL (decl));
2655 reset_used_flags (stack_slot_list);
2657 unshare_all_rtl_1 (insn);
2660 unsigned int
2661 unshare_all_rtl (void)
2663 unshare_all_rtl_1 (get_insns ());
2664 return 0;
2668 /* Check that ORIG is not marked when it should not be and mark ORIG as in use,
2669 Recursively does the same for subexpressions. */
2671 static void
2672 verify_rtx_sharing (rtx orig, rtx insn)
2674 rtx x = orig;
2675 int i;
2676 enum rtx_code code;
2677 const char *format_ptr;
2679 if (x == 0)
2680 return;
2682 code = GET_CODE (x);
2684 /* These types may be freely shared. */
2686 switch (code)
2688 case REG:
2689 case DEBUG_EXPR:
2690 case VALUE:
2691 CASE_CONST_ANY:
2692 case SYMBOL_REF:
2693 case LABEL_REF:
2694 case CODE_LABEL:
2695 case PC:
2696 case CC0:
2697 case RETURN:
2698 case SIMPLE_RETURN:
2699 case SCRATCH:
2700 /* SCRATCH must be shared because they represent distinct values. */
2701 return;
2702 case CLOBBER:
2703 /* Share clobbers of hard registers (like cc0), but do not share pseudo reg
2704 clobbers or clobbers of hard registers that originated as pseudos.
2705 This is needed to allow safe register renaming. */
2706 if (REG_P (XEXP (x, 0)) && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER
2707 && ORIGINAL_REGNO (XEXP (x, 0)) == REGNO (XEXP (x, 0)))
2708 return;
2709 break;
2711 case CONST:
2712 if (shared_const_p (orig))
2713 return;
2714 break;
2716 case MEM:
2717 /* A MEM is allowed to be shared if its address is constant. */
2718 if (CONSTANT_ADDRESS_P (XEXP (x, 0))
2719 || reload_completed || reload_in_progress)
2720 return;
2722 break;
2724 default:
2725 break;
2728 /* This rtx may not be shared. If it has already been seen,
2729 replace it with a copy of itself. */
2730 #ifdef ENABLE_CHECKING
2731 if (RTX_FLAG (x, used))
2733 error ("invalid rtl sharing found in the insn");
2734 debug_rtx (insn);
2735 error ("shared rtx");
2736 debug_rtx (x);
2737 internal_error ("internal consistency failure");
2739 #endif
2740 gcc_assert (!RTX_FLAG (x, used));
2742 RTX_FLAG (x, used) = 1;
2744 /* Now scan the subexpressions recursively. */
2746 format_ptr = GET_RTX_FORMAT (code);
2748 for (i = 0; i < GET_RTX_LENGTH (code); i++)
2750 switch (*format_ptr++)
2752 case 'e':
2753 verify_rtx_sharing (XEXP (x, i), insn);
2754 break;
2756 case 'E':
2757 if (XVEC (x, i) != NULL)
2759 int j;
2760 int len = XVECLEN (x, i);
2762 for (j = 0; j < len; j++)
2764 /* We allow sharing of ASM_OPERANDS inside single
2765 instruction. */
2766 if (j && GET_CODE (XVECEXP (x, i, j)) == SET
2767 && (GET_CODE (SET_SRC (XVECEXP (x, i, j)))
2768 == ASM_OPERANDS))
2769 verify_rtx_sharing (SET_DEST (XVECEXP (x, i, j)), insn);
2770 else
2771 verify_rtx_sharing (XVECEXP (x, i, j), insn);
2774 break;
2777 return;
2780 /* Reset used-flags for INSN. */
2782 static void
2783 reset_insn_used_flags (rtx insn)
2785 gcc_assert (INSN_P (insn));
2786 reset_used_flags (PATTERN (insn));
2787 reset_used_flags (REG_NOTES (insn));
2788 if (CALL_P (insn))
2789 reset_used_flags (CALL_INSN_FUNCTION_USAGE (insn));
2792 /* Go through all the RTL insn bodies and clear all the USED bits. */
2794 static void
2795 reset_all_used_flags (void)
2797 rtx_insn *p;
2799 for (p = get_insns (); p; p = NEXT_INSN (p))
2800 if (INSN_P (p))
2802 rtx pat = PATTERN (p);
2803 if (GET_CODE (pat) != SEQUENCE)
2804 reset_insn_used_flags (p);
2805 else
2807 gcc_assert (REG_NOTES (p) == NULL);
2808 for (int i = 0; i < XVECLEN (pat, 0); i++)
2810 rtx insn = XVECEXP (pat, 0, i);
2811 if (INSN_P (insn))
2812 reset_insn_used_flags (insn);
2818 /* Verify sharing in INSN. */
2820 static void
2821 verify_insn_sharing (rtx insn)
2823 gcc_assert (INSN_P (insn));
2824 reset_used_flags (PATTERN (insn));
2825 reset_used_flags (REG_NOTES (insn));
2826 if (CALL_P (insn))
2827 reset_used_flags (CALL_INSN_FUNCTION_USAGE (insn));
2830 /* Go through all the RTL insn bodies and check that there is no unexpected
2831 sharing in between the subexpressions. */
2833 DEBUG_FUNCTION void
2834 verify_rtl_sharing (void)
2836 rtx_insn *p;
2838 timevar_push (TV_VERIFY_RTL_SHARING);
2840 reset_all_used_flags ();
2842 for (p = get_insns (); p; p = NEXT_INSN (p))
2843 if (INSN_P (p))
2845 rtx pat = PATTERN (p);
2846 if (GET_CODE (pat) != SEQUENCE)
2847 verify_insn_sharing (p);
2848 else
2849 for (int i = 0; i < XVECLEN (pat, 0); i++)
2851 rtx insn = XVECEXP (pat, 0, i);
2852 if (INSN_P (insn))
2853 verify_insn_sharing (insn);
2857 reset_all_used_flags ();
2859 timevar_pop (TV_VERIFY_RTL_SHARING);
2862 /* Go through all the RTL insn bodies and copy any invalid shared structure.
2863 Assumes the mark bits are cleared at entry. */
2865 void
2866 unshare_all_rtl_in_chain (rtx_insn *insn)
2868 for (; insn; insn = NEXT_INSN (insn))
2869 if (INSN_P (insn))
2871 PATTERN (insn) = copy_rtx_if_shared (PATTERN (insn));
2872 REG_NOTES (insn) = copy_rtx_if_shared (REG_NOTES (insn));
2873 if (CALL_P (insn))
2874 CALL_INSN_FUNCTION_USAGE (insn)
2875 = copy_rtx_if_shared (CALL_INSN_FUNCTION_USAGE (insn));
2879 /* Go through all virtual stack slots of a function and mark them as
2880 shared. We never replace the DECL_RTLs themselves with a copy,
2881 but expressions mentioned into a DECL_RTL cannot be shared with
2882 expressions in the instruction stream.
2884 Note that reload may convert pseudo registers into memories in-place.
2885 Pseudo registers are always shared, but MEMs never are. Thus if we
2886 reset the used flags on MEMs in the instruction stream, we must set
2887 them again on MEMs that appear in DECL_RTLs. */
2889 static void
2890 set_used_decls (tree blk)
2892 tree t;
2894 /* Mark decls. */
2895 for (t = BLOCK_VARS (blk); t; t = DECL_CHAIN (t))
2896 if (DECL_RTL_SET_P (t))
2897 set_used_flags (DECL_RTL (t));
2899 /* Now process sub-blocks. */
2900 for (t = BLOCK_SUBBLOCKS (blk); t; t = BLOCK_CHAIN (t))
2901 set_used_decls (t);
2904 /* Mark ORIG as in use, and return a copy of it if it was already in use.
2905 Recursively does the same for subexpressions. Uses
2906 copy_rtx_if_shared_1 to reduce stack space. */
2909 copy_rtx_if_shared (rtx orig)
2911 copy_rtx_if_shared_1 (&orig);
2912 return orig;
2915 /* Mark *ORIG1 as in use, and set it to a copy of it if it was already in
2916 use. Recursively does the same for subexpressions. */
2918 static void
2919 copy_rtx_if_shared_1 (rtx *orig1)
2921 rtx x;
2922 int i;
2923 enum rtx_code code;
2924 rtx *last_ptr;
2925 const char *format_ptr;
2926 int copied = 0;
2927 int length;
2929 /* Repeat is used to turn tail-recursion into iteration. */
2930 repeat:
2931 x = *orig1;
2933 if (x == 0)
2934 return;
2936 code = GET_CODE (x);
2938 /* These types may be freely shared. */
2940 switch (code)
2942 case REG:
2943 case DEBUG_EXPR:
2944 case VALUE:
2945 CASE_CONST_ANY:
2946 case SYMBOL_REF:
2947 case LABEL_REF:
2948 case CODE_LABEL:
2949 case PC:
2950 case CC0:
2951 case RETURN:
2952 case SIMPLE_RETURN:
2953 case SCRATCH:
2954 /* SCRATCH must be shared because they represent distinct values. */
2955 return;
2956 case CLOBBER:
2957 /* Share clobbers of hard registers (like cc0), but do not share pseudo reg
2958 clobbers or clobbers of hard registers that originated as pseudos.
2959 This is needed to allow safe register renaming. */
2960 if (REG_P (XEXP (x, 0)) && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER
2961 && ORIGINAL_REGNO (XEXP (x, 0)) == REGNO (XEXP (x, 0)))
2962 return;
2963 break;
2965 case CONST:
2966 if (shared_const_p (x))
2967 return;
2968 break;
2970 case DEBUG_INSN:
2971 case INSN:
2972 case JUMP_INSN:
2973 case CALL_INSN:
2974 case NOTE:
2975 case BARRIER:
2976 /* The chain of insns is not being copied. */
2977 return;
2979 default:
2980 break;
2983 /* This rtx may not be shared. If it has already been seen,
2984 replace it with a copy of itself. */
2986 if (RTX_FLAG (x, used))
2988 x = shallow_copy_rtx (x);
2989 copied = 1;
2991 RTX_FLAG (x, used) = 1;
2993 /* Now scan the subexpressions recursively.
2994 We can store any replaced subexpressions directly into X
2995 since we know X is not shared! Any vectors in X
2996 must be copied if X was copied. */
2998 format_ptr = GET_RTX_FORMAT (code);
2999 length = GET_RTX_LENGTH (code);
3000 last_ptr = NULL;
3002 for (i = 0; i < length; i++)
3004 switch (*format_ptr++)
3006 case 'e':
3007 if (last_ptr)
3008 copy_rtx_if_shared_1 (last_ptr);
3009 last_ptr = &XEXP (x, i);
3010 break;
3012 case 'E':
3013 if (XVEC (x, i) != NULL)
3015 int j;
3016 int len = XVECLEN (x, i);
3018 /* Copy the vector iff I copied the rtx and the length
3019 is nonzero. */
3020 if (copied && len > 0)
3021 XVEC (x, i) = gen_rtvec_v (len, XVEC (x, i)->elem);
3023 /* Call recursively on all inside the vector. */
3024 for (j = 0; j < len; j++)
3026 if (last_ptr)
3027 copy_rtx_if_shared_1 (last_ptr);
3028 last_ptr = &XVECEXP (x, i, j);
3031 break;
3034 *orig1 = x;
3035 if (last_ptr)
3037 orig1 = last_ptr;
3038 goto repeat;
3040 return;
3043 /* Set the USED bit in X and its non-shareable subparts to FLAG. */
3045 static void
3046 mark_used_flags (rtx x, int flag)
3048 int i, j;
3049 enum rtx_code code;
3050 const char *format_ptr;
3051 int length;
3053 /* Repeat is used to turn tail-recursion into iteration. */
3054 repeat:
3055 if (x == 0)
3056 return;
3058 code = GET_CODE (x);
3060 /* These types may be freely shared so we needn't do any resetting
3061 for them. */
3063 switch (code)
3065 case REG:
3066 case DEBUG_EXPR:
3067 case VALUE:
3068 CASE_CONST_ANY:
3069 case SYMBOL_REF:
3070 case CODE_LABEL:
3071 case PC:
3072 case CC0:
3073 case RETURN:
3074 case SIMPLE_RETURN:
3075 return;
3077 case DEBUG_INSN:
3078 case INSN:
3079 case JUMP_INSN:
3080 case CALL_INSN:
3081 case NOTE:
3082 case LABEL_REF:
3083 case BARRIER:
3084 /* The chain of insns is not being copied. */
3085 return;
3087 default:
3088 break;
3091 RTX_FLAG (x, used) = flag;
3093 format_ptr = GET_RTX_FORMAT (code);
3094 length = GET_RTX_LENGTH (code);
3096 for (i = 0; i < length; i++)
3098 switch (*format_ptr++)
3100 case 'e':
3101 if (i == length-1)
3103 x = XEXP (x, i);
3104 goto repeat;
3106 mark_used_flags (XEXP (x, i), flag);
3107 break;
3109 case 'E':
3110 for (j = 0; j < XVECLEN (x, i); j++)
3111 mark_used_flags (XVECEXP (x, i, j), flag);
3112 break;
3117 /* Clear all the USED bits in X to allow copy_rtx_if_shared to be used
3118 to look for shared sub-parts. */
3120 void
3121 reset_used_flags (rtx x)
3123 mark_used_flags (x, 0);
3126 /* Set all the USED bits in X to allow copy_rtx_if_shared to be used
3127 to look for shared sub-parts. */
3129 void
3130 set_used_flags (rtx x)
3132 mark_used_flags (x, 1);
3135 /* Copy X if necessary so that it won't be altered by changes in OTHER.
3136 Return X or the rtx for the pseudo reg the value of X was copied into.
3137 OTHER must be valid as a SET_DEST. */
3140 make_safe_from (rtx x, rtx other)
3142 while (1)
3143 switch (GET_CODE (other))
3145 case SUBREG:
3146 other = SUBREG_REG (other);
3147 break;
3148 case STRICT_LOW_PART:
3149 case SIGN_EXTEND:
3150 case ZERO_EXTEND:
3151 other = XEXP (other, 0);
3152 break;
3153 default:
3154 goto done;
3156 done:
3157 if ((MEM_P (other)
3158 && ! CONSTANT_P (x)
3159 && !REG_P (x)
3160 && GET_CODE (x) != SUBREG)
3161 || (REG_P (other)
3162 && (REGNO (other) < FIRST_PSEUDO_REGISTER
3163 || reg_mentioned_p (other, x))))
3165 rtx temp = gen_reg_rtx (GET_MODE (x));
3166 emit_move_insn (temp, x);
3167 return temp;
3169 return x;
3172 /* Emission of insns (adding them to the doubly-linked list). */
3174 /* Return the last insn emitted, even if it is in a sequence now pushed. */
3176 rtx_insn *
3177 get_last_insn_anywhere (void)
3179 struct sequence_stack *seq;
3180 for (seq = get_current_sequence (); seq; seq = seq->next)
3181 if (seq->last != 0)
3182 return seq->last;
3183 return 0;
3186 /* Return the first nonnote insn emitted in current sequence or current
3187 function. This routine looks inside SEQUENCEs. */
3189 rtx_insn *
3190 get_first_nonnote_insn (void)
3192 rtx_insn *insn = get_insns ();
3194 if (insn)
3196 if (NOTE_P (insn))
3197 for (insn = next_insn (insn);
3198 insn && NOTE_P (insn);
3199 insn = next_insn (insn))
3200 continue;
3201 else
3203 if (NONJUMP_INSN_P (insn)
3204 && GET_CODE (PATTERN (insn)) == SEQUENCE)
3205 insn = as_a <rtx_sequence *> (PATTERN (insn))->insn (0);
3209 return insn;
3212 /* Return the last nonnote insn emitted in current sequence or current
3213 function. This routine looks inside SEQUENCEs. */
3215 rtx_insn *
3216 get_last_nonnote_insn (void)
3218 rtx_insn *insn = get_last_insn ();
3220 if (insn)
3222 if (NOTE_P (insn))
3223 for (insn = previous_insn (insn);
3224 insn && NOTE_P (insn);
3225 insn = previous_insn (insn))
3226 continue;
3227 else
3229 if (NONJUMP_INSN_P (insn))
3230 if (rtx_sequence *seq = dyn_cast <rtx_sequence *> (PATTERN (insn)))
3231 insn = seq->insn (seq->len () - 1);
3235 return insn;
3238 /* Return the number of actual (non-debug) insns emitted in this
3239 function. */
3242 get_max_insn_count (void)
3244 int n = cur_insn_uid;
3246 /* The table size must be stable across -g, to avoid codegen
3247 differences due to debug insns, and not be affected by
3248 -fmin-insn-uid, to avoid excessive table size and to simplify
3249 debugging of -fcompare-debug failures. */
3250 if (cur_debug_insn_uid > MIN_NONDEBUG_INSN_UID)
3251 n -= cur_debug_insn_uid;
3252 else
3253 n -= MIN_NONDEBUG_INSN_UID;
3255 return n;
3259 /* Return the next insn. If it is a SEQUENCE, return the first insn
3260 of the sequence. */
3262 rtx_insn *
3263 next_insn (rtx_insn *insn)
3265 if (insn)
3267 insn = NEXT_INSN (insn);
3268 if (insn && NONJUMP_INSN_P (insn)
3269 && GET_CODE (PATTERN (insn)) == SEQUENCE)
3270 insn = as_a <rtx_sequence *> (PATTERN (insn))->insn (0);
3273 return insn;
3276 /* Return the previous insn. If it is a SEQUENCE, return the last insn
3277 of the sequence. */
3279 rtx_insn *
3280 previous_insn (rtx_insn *insn)
3282 if (insn)
3284 insn = PREV_INSN (insn);
3285 if (insn && NONJUMP_INSN_P (insn))
3286 if (rtx_sequence *seq = dyn_cast <rtx_sequence *> (PATTERN (insn)))
3287 insn = seq->insn (seq->len () - 1);
3290 return insn;
3293 /* Return the next insn after INSN that is not a NOTE. This routine does not
3294 look inside SEQUENCEs. */
3296 rtx_insn *
3297 next_nonnote_insn (rtx uncast_insn)
3299 rtx_insn *insn = safe_as_a <rtx_insn *> (uncast_insn);
3300 while (insn)
3302 insn = NEXT_INSN (insn);
3303 if (insn == 0 || !NOTE_P (insn))
3304 break;
3307 return insn;
3310 /* Return the next insn after INSN that is not a NOTE, but stop the
3311 search before we enter another basic block. This routine does not
3312 look inside SEQUENCEs. */
3314 rtx_insn *
3315 next_nonnote_insn_bb (rtx_insn *insn)
3317 while (insn)
3319 insn = NEXT_INSN (insn);
3320 if (insn == 0 || !NOTE_P (insn))
3321 break;
3322 if (NOTE_INSN_BASIC_BLOCK_P (insn))
3323 return NULL;
3326 return insn;
3329 /* Return the previous insn before INSN that is not a NOTE. This routine does
3330 not look inside SEQUENCEs. */
3332 rtx_insn *
3333 prev_nonnote_insn (rtx uncast_insn)
3335 rtx_insn *insn = safe_as_a <rtx_insn *> (uncast_insn);
3337 while (insn)
3339 insn = PREV_INSN (insn);
3340 if (insn == 0 || !NOTE_P (insn))
3341 break;
3344 return insn;
3347 /* Return the previous insn before INSN that is not a NOTE, but stop
3348 the search before we enter another basic block. This routine does
3349 not look inside SEQUENCEs. */
3351 rtx_insn *
3352 prev_nonnote_insn_bb (rtx uncast_insn)
3354 rtx_insn *insn = safe_as_a <rtx_insn *> (uncast_insn);
3356 while (insn)
3358 insn = PREV_INSN (insn);
3359 if (insn == 0 || !NOTE_P (insn))
3360 break;
3361 if (NOTE_INSN_BASIC_BLOCK_P (insn))
3362 return NULL;
3365 return insn;
3368 /* Return the next insn after INSN that is not a DEBUG_INSN. This
3369 routine does not look inside SEQUENCEs. */
3371 rtx_insn *
3372 next_nondebug_insn (rtx uncast_insn)
3374 rtx_insn *insn = safe_as_a <rtx_insn *> (uncast_insn);
3376 while (insn)
3378 insn = NEXT_INSN (insn);
3379 if (insn == 0 || !DEBUG_INSN_P (insn))
3380 break;
3383 return insn;
3386 /* Return the previous insn before INSN that is not a DEBUG_INSN.
3387 This routine does not look inside SEQUENCEs. */
3389 rtx_insn *
3390 prev_nondebug_insn (rtx uncast_insn)
3392 rtx_insn *insn = safe_as_a <rtx_insn *> (uncast_insn);
3394 while (insn)
3396 insn = PREV_INSN (insn);
3397 if (insn == 0 || !DEBUG_INSN_P (insn))
3398 break;
3401 return insn;
3404 /* Return the next insn after INSN that is not a NOTE nor DEBUG_INSN.
3405 This routine does not look inside SEQUENCEs. */
3407 rtx_insn *
3408 next_nonnote_nondebug_insn (rtx uncast_insn)
3410 rtx_insn *insn = safe_as_a <rtx_insn *> (uncast_insn);
3412 while (insn)
3414 insn = NEXT_INSN (insn);
3415 if (insn == 0 || (!NOTE_P (insn) && !DEBUG_INSN_P (insn)))
3416 break;
3419 return insn;
3422 /* Return the previous insn before INSN that is not a NOTE nor DEBUG_INSN.
3423 This routine does not look inside SEQUENCEs. */
3425 rtx_insn *
3426 prev_nonnote_nondebug_insn (rtx uncast_insn)
3428 rtx_insn *insn = safe_as_a <rtx_insn *> (uncast_insn);
3430 while (insn)
3432 insn = PREV_INSN (insn);
3433 if (insn == 0 || (!NOTE_P (insn) && !DEBUG_INSN_P (insn)))
3434 break;
3437 return insn;
3440 /* Return the next INSN, CALL_INSN or JUMP_INSN after INSN;
3441 or 0, if there is none. This routine does not look inside
3442 SEQUENCEs. */
3444 rtx_insn *
3445 next_real_insn (rtx uncast_insn)
3447 rtx_insn *insn = safe_as_a <rtx_insn *> (uncast_insn);
3449 while (insn)
3451 insn = NEXT_INSN (insn);
3452 if (insn == 0 || INSN_P (insn))
3453 break;
3456 return insn;
3459 /* Return the last INSN, CALL_INSN or JUMP_INSN before INSN;
3460 or 0, if there is none. This routine does not look inside
3461 SEQUENCEs. */
3463 rtx_insn *
3464 prev_real_insn (rtx uncast_insn)
3466 rtx_insn *insn = safe_as_a <rtx_insn *> (uncast_insn);
3468 while (insn)
3470 insn = PREV_INSN (insn);
3471 if (insn == 0 || INSN_P (insn))
3472 break;
3475 return insn;
3478 /* Return the last CALL_INSN in the current list, or 0 if there is none.
3479 This routine does not look inside SEQUENCEs. */
3481 rtx_call_insn *
3482 last_call_insn (void)
3484 rtx_insn *insn;
3486 for (insn = get_last_insn ();
3487 insn && !CALL_P (insn);
3488 insn = PREV_INSN (insn))
3491 return safe_as_a <rtx_call_insn *> (insn);
3494 /* Find the next insn after INSN that really does something. This routine
3495 does not look inside SEQUENCEs. After reload this also skips over
3496 standalone USE and CLOBBER insn. */
3499 active_insn_p (const_rtx insn)
3501 return (CALL_P (insn) || JUMP_P (insn)
3502 || JUMP_TABLE_DATA_P (insn) /* FIXME */
3503 || (NONJUMP_INSN_P (insn)
3504 && (! reload_completed
3505 || (GET_CODE (PATTERN (insn)) != USE
3506 && GET_CODE (PATTERN (insn)) != CLOBBER))));
3509 rtx_insn *
3510 next_active_insn (rtx uncast_insn)
3512 rtx_insn *insn = safe_as_a <rtx_insn *> (uncast_insn);
3514 while (insn)
3516 insn = NEXT_INSN (insn);
3517 if (insn == 0 || active_insn_p (insn))
3518 break;
3521 return insn;
3524 /* Find the last insn before INSN that really does something. This routine
3525 does not look inside SEQUENCEs. After reload this also skips over
3526 standalone USE and CLOBBER insn. */
3528 rtx_insn *
3529 prev_active_insn (rtx uncast_insn)
3531 rtx_insn *insn = safe_as_a <rtx_insn *> (uncast_insn);
3533 while (insn)
3535 insn = PREV_INSN (insn);
3536 if (insn == 0 || active_insn_p (insn))
3537 break;
3540 return insn;
3543 /* Return the next insn that uses CC0 after INSN, which is assumed to
3544 set it. This is the inverse of prev_cc0_setter (i.e., prev_cc0_setter
3545 applied to the result of this function should yield INSN).
3547 Normally, this is simply the next insn. However, if a REG_CC_USER note
3548 is present, it contains the insn that uses CC0.
3550 Return 0 if we can't find the insn. */
3552 rtx_insn *
3553 next_cc0_user (rtx uncast_insn)
3555 rtx_insn *insn = safe_as_a <rtx_insn *> (uncast_insn);
3557 rtx note = find_reg_note (insn, REG_CC_USER, NULL_RTX);
3559 if (note)
3560 return safe_as_a <rtx_insn *> (XEXP (note, 0));
3562 insn = next_nonnote_insn (insn);
3563 if (insn && NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
3564 insn = as_a <rtx_sequence *> (PATTERN (insn))->insn (0);
3566 if (insn && INSN_P (insn) && reg_mentioned_p (cc0_rtx, PATTERN (insn)))
3567 return insn;
3569 return 0;
3572 /* Find the insn that set CC0 for INSN. Unless INSN has a REG_CC_SETTER
3573 note, it is the previous insn. */
3575 rtx_insn *
3576 prev_cc0_setter (rtx_insn *insn)
3578 rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
3580 if (note)
3581 return safe_as_a <rtx_insn *> (XEXP (note, 0));
3583 insn = prev_nonnote_insn (insn);
3584 gcc_assert (sets_cc0_p (PATTERN (insn)));
3586 return insn;
3589 /* Find a RTX_AUTOINC class rtx which matches DATA. */
3591 static int
3592 find_auto_inc (const_rtx x, const_rtx reg)
3594 subrtx_iterator::array_type array;
3595 FOR_EACH_SUBRTX (iter, array, x, NONCONST)
3597 const_rtx x = *iter;
3598 if (GET_RTX_CLASS (GET_CODE (x)) == RTX_AUTOINC
3599 && rtx_equal_p (reg, XEXP (x, 0)))
3600 return true;
3602 return false;
3605 /* Increment the label uses for all labels present in rtx. */
3607 static void
3608 mark_label_nuses (rtx x)
3610 enum rtx_code code;
3611 int i, j;
3612 const char *fmt;
3614 code = GET_CODE (x);
3615 if (code == LABEL_REF && LABEL_P (LABEL_REF_LABEL (x)))
3616 LABEL_NUSES (LABEL_REF_LABEL (x))++;
3618 fmt = GET_RTX_FORMAT (code);
3619 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3621 if (fmt[i] == 'e')
3622 mark_label_nuses (XEXP (x, i));
3623 else if (fmt[i] == 'E')
3624 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3625 mark_label_nuses (XVECEXP (x, i, j));
3630 /* Try splitting insns that can be split for better scheduling.
3631 PAT is the pattern which might split.
3632 TRIAL is the insn providing PAT.
3633 LAST is nonzero if we should return the last insn of the sequence produced.
3635 If this routine succeeds in splitting, it returns the first or last
3636 replacement insn depending on the value of LAST. Otherwise, it
3637 returns TRIAL. If the insn to be returned can be split, it will be. */
3639 rtx_insn *
3640 try_split (rtx pat, rtx_insn *trial, int last)
3642 rtx_insn *before = PREV_INSN (trial);
3643 rtx_insn *after = NEXT_INSN (trial);
3644 rtx note;
3645 rtx_insn *seq, *tem;
3646 int probability;
3647 rtx_insn *insn_last, *insn;
3648 int njumps = 0;
3649 rtx_insn *call_insn = NULL;
3651 /* We're not good at redistributing frame information. */
3652 if (RTX_FRAME_RELATED_P (trial))
3653 return trial;
3655 if (any_condjump_p (trial)
3656 && (note = find_reg_note (trial, REG_BR_PROB, 0)))
3657 split_branch_probability = XINT (note, 0);
3658 probability = split_branch_probability;
3660 seq = split_insns (pat, trial);
3662 split_branch_probability = -1;
3664 if (!seq)
3665 return trial;
3667 /* Avoid infinite loop if any insn of the result matches
3668 the original pattern. */
3669 insn_last = seq;
3670 while (1)
3672 if (INSN_P (insn_last)
3673 && rtx_equal_p (PATTERN (insn_last), pat))
3674 return trial;
3675 if (!NEXT_INSN (insn_last))
3676 break;
3677 insn_last = NEXT_INSN (insn_last);
3680 /* We will be adding the new sequence to the function. The splitters
3681 may have introduced invalid RTL sharing, so unshare the sequence now. */
3682 unshare_all_rtl_in_chain (seq);
3684 /* Mark labels and copy flags. */
3685 for (insn = insn_last; insn ; insn = PREV_INSN (insn))
3687 if (JUMP_P (insn))
3689 if (JUMP_P (trial))
3690 CROSSING_JUMP_P (insn) = CROSSING_JUMP_P (trial);
3691 mark_jump_label (PATTERN (insn), insn, 0);
3692 njumps++;
3693 if (probability != -1
3694 && any_condjump_p (insn)
3695 && !find_reg_note (insn, REG_BR_PROB, 0))
3697 /* We can preserve the REG_BR_PROB notes only if exactly
3698 one jump is created, otherwise the machine description
3699 is responsible for this step using
3700 split_branch_probability variable. */
3701 gcc_assert (njumps == 1);
3702 add_int_reg_note (insn, REG_BR_PROB, probability);
3707 /* If we are splitting a CALL_INSN, look for the CALL_INSN
3708 in SEQ and copy any additional information across. */
3709 if (CALL_P (trial))
3711 for (insn = insn_last; insn ; insn = PREV_INSN (insn))
3712 if (CALL_P (insn))
3714 rtx_insn *next;
3715 rtx *p;
3717 gcc_assert (call_insn == NULL_RTX);
3718 call_insn = insn;
3720 /* Add the old CALL_INSN_FUNCTION_USAGE to whatever the
3721 target may have explicitly specified. */
3722 p = &CALL_INSN_FUNCTION_USAGE (insn);
3723 while (*p)
3724 p = &XEXP (*p, 1);
3725 *p = CALL_INSN_FUNCTION_USAGE (trial);
3727 /* If the old call was a sibling call, the new one must
3728 be too. */
3729 SIBLING_CALL_P (insn) = SIBLING_CALL_P (trial);
3731 /* If the new call is the last instruction in the sequence,
3732 it will effectively replace the old call in-situ. Otherwise
3733 we must move any following NOTE_INSN_CALL_ARG_LOCATION note
3734 so that it comes immediately after the new call. */
3735 if (NEXT_INSN (insn))
3736 for (next = NEXT_INSN (trial);
3737 next && NOTE_P (next);
3738 next = NEXT_INSN (next))
3739 if (NOTE_KIND (next) == NOTE_INSN_CALL_ARG_LOCATION)
3741 remove_insn (next);
3742 add_insn_after (next, insn, NULL);
3743 break;
3748 /* Copy notes, particularly those related to the CFG. */
3749 for (note = REG_NOTES (trial); note; note = XEXP (note, 1))
3751 switch (REG_NOTE_KIND (note))
3753 case REG_EH_REGION:
3754 copy_reg_eh_region_note_backward (note, insn_last, NULL);
3755 break;
3757 case REG_NORETURN:
3758 case REG_SETJMP:
3759 case REG_TM:
3760 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
3762 if (CALL_P (insn))
3763 add_reg_note (insn, REG_NOTE_KIND (note), XEXP (note, 0));
3765 break;
3767 case REG_NON_LOCAL_GOTO:
3768 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
3770 if (JUMP_P (insn))
3771 add_reg_note (insn, REG_NOTE_KIND (note), XEXP (note, 0));
3773 break;
3775 case REG_INC:
3776 if (!AUTO_INC_DEC)
3777 break;
3779 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
3781 rtx reg = XEXP (note, 0);
3782 if (!FIND_REG_INC_NOTE (insn, reg)
3783 && find_auto_inc (PATTERN (insn), reg))
3784 add_reg_note (insn, REG_INC, reg);
3786 break;
3788 case REG_ARGS_SIZE:
3789 fixup_args_size_notes (NULL, insn_last, INTVAL (XEXP (note, 0)));
3790 break;
3792 case REG_CALL_DECL:
3793 gcc_assert (call_insn != NULL_RTX);
3794 add_reg_note (call_insn, REG_NOTE_KIND (note), XEXP (note, 0));
3795 break;
3797 default:
3798 break;
3802 /* If there are LABELS inside the split insns increment the
3803 usage count so we don't delete the label. */
3804 if (INSN_P (trial))
3806 insn = insn_last;
3807 while (insn != NULL_RTX)
3809 /* JUMP_P insns have already been "marked" above. */
3810 if (NONJUMP_INSN_P (insn))
3811 mark_label_nuses (PATTERN (insn));
3813 insn = PREV_INSN (insn);
3817 tem = emit_insn_after_setloc (seq, trial, INSN_LOCATION (trial));
3819 delete_insn (trial);
3821 /* Recursively call try_split for each new insn created; by the
3822 time control returns here that insn will be fully split, so
3823 set LAST and continue from the insn after the one returned.
3824 We can't use next_active_insn here since AFTER may be a note.
3825 Ignore deleted insns, which can be occur if not optimizing. */
3826 for (tem = NEXT_INSN (before); tem != after; tem = NEXT_INSN (tem))
3827 if (! tem->deleted () && INSN_P (tem))
3828 tem = try_split (PATTERN (tem), tem, 1);
3830 /* Return either the first or the last insn, depending on which was
3831 requested. */
3832 return last
3833 ? (after ? PREV_INSN (after) : get_last_insn ())
3834 : NEXT_INSN (before);
3837 /* Make and return an INSN rtx, initializing all its slots.
3838 Store PATTERN in the pattern slots. */
3840 rtx_insn *
3841 make_insn_raw (rtx pattern)
3843 rtx_insn *insn;
3845 insn = as_a <rtx_insn *> (rtx_alloc (INSN));
3847 INSN_UID (insn) = cur_insn_uid++;
3848 PATTERN (insn) = pattern;
3849 INSN_CODE (insn) = -1;
3850 REG_NOTES (insn) = NULL;
3851 INSN_LOCATION (insn) = curr_insn_location ();
3852 BLOCK_FOR_INSN (insn) = NULL;
3854 #ifdef ENABLE_RTL_CHECKING
3855 if (insn
3856 && INSN_P (insn)
3857 && (returnjump_p (insn)
3858 || (GET_CODE (insn) == SET
3859 && SET_DEST (insn) == pc_rtx)))
3861 warning (0, "ICE: emit_insn used where emit_jump_insn needed:\n");
3862 debug_rtx (insn);
3864 #endif
3866 return insn;
3869 /* Like `make_insn_raw' but make a DEBUG_INSN instead of an insn. */
3871 static rtx_insn *
3872 make_debug_insn_raw (rtx pattern)
3874 rtx_debug_insn *insn;
3876 insn = as_a <rtx_debug_insn *> (rtx_alloc (DEBUG_INSN));
3877 INSN_UID (insn) = cur_debug_insn_uid++;
3878 if (cur_debug_insn_uid > MIN_NONDEBUG_INSN_UID)
3879 INSN_UID (insn) = cur_insn_uid++;
3881 PATTERN (insn) = pattern;
3882 INSN_CODE (insn) = -1;
3883 REG_NOTES (insn) = NULL;
3884 INSN_LOCATION (insn) = curr_insn_location ();
3885 BLOCK_FOR_INSN (insn) = NULL;
3887 return insn;
3890 /* Like `make_insn_raw' but make a JUMP_INSN instead of an insn. */
3892 static rtx_insn *
3893 make_jump_insn_raw (rtx pattern)
3895 rtx_jump_insn *insn;
3897 insn = as_a <rtx_jump_insn *> (rtx_alloc (JUMP_INSN));
3898 INSN_UID (insn) = cur_insn_uid++;
3900 PATTERN (insn) = pattern;
3901 INSN_CODE (insn) = -1;
3902 REG_NOTES (insn) = NULL;
3903 JUMP_LABEL (insn) = NULL;
3904 INSN_LOCATION (insn) = curr_insn_location ();
3905 BLOCK_FOR_INSN (insn) = NULL;
3907 return insn;
3910 /* Like `make_insn_raw' but make a CALL_INSN instead of an insn. */
3912 static rtx_insn *
3913 make_call_insn_raw (rtx pattern)
3915 rtx_call_insn *insn;
3917 insn = as_a <rtx_call_insn *> (rtx_alloc (CALL_INSN));
3918 INSN_UID (insn) = cur_insn_uid++;
3920 PATTERN (insn) = pattern;
3921 INSN_CODE (insn) = -1;
3922 REG_NOTES (insn) = NULL;
3923 CALL_INSN_FUNCTION_USAGE (insn) = NULL;
3924 INSN_LOCATION (insn) = curr_insn_location ();
3925 BLOCK_FOR_INSN (insn) = NULL;
3927 return insn;
3930 /* Like `make_insn_raw' but make a NOTE instead of an insn. */
3932 static rtx_note *
3933 make_note_raw (enum insn_note subtype)
3935 /* Some notes are never created this way at all. These notes are
3936 only created by patching out insns. */
3937 gcc_assert (subtype != NOTE_INSN_DELETED_LABEL
3938 && subtype != NOTE_INSN_DELETED_DEBUG_LABEL);
3940 rtx_note *note = as_a <rtx_note *> (rtx_alloc (NOTE));
3941 INSN_UID (note) = cur_insn_uid++;
3942 NOTE_KIND (note) = subtype;
3943 BLOCK_FOR_INSN (note) = NULL;
3944 memset (&NOTE_DATA (note), 0, sizeof (NOTE_DATA (note)));
3945 return note;
3948 /* Add INSN to the end of the doubly-linked list, between PREV and NEXT.
3949 INSN may be any object that can appear in the chain: INSN_P and NOTE_P objects,
3950 but also BARRIERs and JUMP_TABLE_DATAs. PREV and NEXT may be NULL. */
3952 static inline void
3953 link_insn_into_chain (rtx_insn *insn, rtx_insn *prev, rtx_insn *next)
3955 SET_PREV_INSN (insn) = prev;
3956 SET_NEXT_INSN (insn) = next;
3957 if (prev != NULL)
3959 SET_NEXT_INSN (prev) = insn;
3960 if (NONJUMP_INSN_P (prev) && GET_CODE (PATTERN (prev)) == SEQUENCE)
3962 rtx_sequence *sequence = as_a <rtx_sequence *> (PATTERN (prev));
3963 SET_NEXT_INSN (sequence->insn (sequence->len () - 1)) = insn;
3966 if (next != NULL)
3968 SET_PREV_INSN (next) = insn;
3969 if (NONJUMP_INSN_P (next) && GET_CODE (PATTERN (next)) == SEQUENCE)
3971 rtx_sequence *sequence = as_a <rtx_sequence *> (PATTERN (next));
3972 SET_PREV_INSN (sequence->insn (0)) = insn;
3976 if (NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
3978 rtx_sequence *sequence = as_a <rtx_sequence *> (PATTERN (insn));
3979 SET_PREV_INSN (sequence->insn (0)) = prev;
3980 SET_NEXT_INSN (sequence->insn (sequence->len () - 1)) = next;
3984 /* Add INSN to the end of the doubly-linked list.
3985 INSN may be an INSN, JUMP_INSN, CALL_INSN, CODE_LABEL, BARRIER or NOTE. */
3987 void
3988 add_insn (rtx_insn *insn)
3990 rtx_insn *prev = get_last_insn ();
3991 link_insn_into_chain (insn, prev, NULL);
3992 if (NULL == get_insns ())
3993 set_first_insn (insn);
3994 set_last_insn (insn);
3997 /* Add INSN into the doubly-linked list after insn AFTER. */
3999 static void
4000 add_insn_after_nobb (rtx_insn *insn, rtx_insn *after)
4002 rtx_insn *next = NEXT_INSN (after);
4004 gcc_assert (!optimize || !after->deleted ());
4006 link_insn_into_chain (insn, after, next);
4008 if (next == NULL)
4010 struct sequence_stack *seq;
4012 for (seq = get_current_sequence (); seq; seq = seq->next)
4013 if (after == seq->last)
4015 seq->last = insn;
4016 break;
4021 /* Add INSN into the doubly-linked list before insn BEFORE. */
4023 static void
4024 add_insn_before_nobb (rtx_insn *insn, rtx_insn *before)
4026 rtx_insn *prev = PREV_INSN (before);
4028 gcc_assert (!optimize || !before->deleted ());
4030 link_insn_into_chain (insn, prev, before);
4032 if (prev == NULL)
4034 struct sequence_stack *seq;
4036 for (seq = get_current_sequence (); seq; seq = seq->next)
4037 if (before == seq->first)
4039 seq->first = insn;
4040 break;
4043 gcc_assert (seq);
4047 /* Like add_insn_after_nobb, but try to set BLOCK_FOR_INSN.
4048 If BB is NULL, an attempt is made to infer the bb from before.
4050 This and the next function should be the only functions called
4051 to insert an insn once delay slots have been filled since only
4052 they know how to update a SEQUENCE. */
4054 void
4055 add_insn_after (rtx uncast_insn, rtx uncast_after, basic_block bb)
4057 rtx_insn *insn = as_a <rtx_insn *> (uncast_insn);
4058 rtx_insn *after = as_a <rtx_insn *> (uncast_after);
4059 add_insn_after_nobb (insn, after);
4060 if (!BARRIER_P (after)
4061 && !BARRIER_P (insn)
4062 && (bb = BLOCK_FOR_INSN (after)))
4064 set_block_for_insn (insn, bb);
4065 if (INSN_P (insn))
4066 df_insn_rescan (insn);
4067 /* Should not happen as first in the BB is always
4068 either NOTE or LABEL. */
4069 if (BB_END (bb) == after
4070 /* Avoid clobbering of structure when creating new BB. */
4071 && !BARRIER_P (insn)
4072 && !NOTE_INSN_BASIC_BLOCK_P (insn))
4073 BB_END (bb) = insn;
4077 /* Like add_insn_before_nobb, but try to set BLOCK_FOR_INSN.
4078 If BB is NULL, an attempt is made to infer the bb from before.
4080 This and the previous function should be the only functions called
4081 to insert an insn once delay slots have been filled since only
4082 they know how to update a SEQUENCE. */
4084 void
4085 add_insn_before (rtx uncast_insn, rtx uncast_before, basic_block bb)
4087 rtx_insn *insn = as_a <rtx_insn *> (uncast_insn);
4088 rtx_insn *before = as_a <rtx_insn *> (uncast_before);
4089 add_insn_before_nobb (insn, before);
4091 if (!bb
4092 && !BARRIER_P (before)
4093 && !BARRIER_P (insn))
4094 bb = BLOCK_FOR_INSN (before);
4096 if (bb)
4098 set_block_for_insn (insn, bb);
4099 if (INSN_P (insn))
4100 df_insn_rescan (insn);
4101 /* Should not happen as first in the BB is always either NOTE or
4102 LABEL. */
4103 gcc_assert (BB_HEAD (bb) != insn
4104 /* Avoid clobbering of structure when creating new BB. */
4105 || BARRIER_P (insn)
4106 || NOTE_INSN_BASIC_BLOCK_P (insn));
4110 /* Replace insn with an deleted instruction note. */
4112 void
4113 set_insn_deleted (rtx insn)
4115 if (INSN_P (insn))
4116 df_insn_delete (as_a <rtx_insn *> (insn));
4117 PUT_CODE (insn, NOTE);
4118 NOTE_KIND (insn) = NOTE_INSN_DELETED;
4122 /* Unlink INSN from the insn chain.
4124 This function knows how to handle sequences.
4126 This function does not invalidate data flow information associated with
4127 INSN (i.e. does not call df_insn_delete). That makes this function
4128 usable for only disconnecting an insn from the chain, and re-emit it
4129 elsewhere later.
4131 To later insert INSN elsewhere in the insn chain via add_insn and
4132 similar functions, PREV_INSN and NEXT_INSN must be nullified by
4133 the caller. Nullifying them here breaks many insn chain walks.
4135 To really delete an insn and related DF information, use delete_insn. */
4137 void
4138 remove_insn (rtx uncast_insn)
4140 rtx_insn *insn = as_a <rtx_insn *> (uncast_insn);
4141 rtx_insn *next = NEXT_INSN (insn);
4142 rtx_insn *prev = PREV_INSN (insn);
4143 basic_block bb;
4145 if (prev)
4147 SET_NEXT_INSN (prev) = next;
4148 if (NONJUMP_INSN_P (prev) && GET_CODE (PATTERN (prev)) == SEQUENCE)
4150 rtx_sequence *sequence = as_a <rtx_sequence *> (PATTERN (prev));
4151 SET_NEXT_INSN (sequence->insn (sequence->len () - 1)) = next;
4154 else
4156 struct sequence_stack *seq;
4158 for (seq = get_current_sequence (); seq; seq = seq->next)
4159 if (insn == seq->first)
4161 seq->first = next;
4162 break;
4165 gcc_assert (seq);
4168 if (next)
4170 SET_PREV_INSN (next) = prev;
4171 if (NONJUMP_INSN_P (next) && GET_CODE (PATTERN (next)) == SEQUENCE)
4173 rtx_sequence *sequence = as_a <rtx_sequence *> (PATTERN (next));
4174 SET_PREV_INSN (sequence->insn (0)) = prev;
4177 else
4179 struct sequence_stack *seq;
4181 for (seq = get_current_sequence (); seq; seq = seq->next)
4182 if (insn == seq->last)
4184 seq->last = prev;
4185 break;
4188 gcc_assert (seq);
4191 /* Fix up basic block boundaries, if necessary. */
4192 if (!BARRIER_P (insn)
4193 && (bb = BLOCK_FOR_INSN (insn)))
4195 if (BB_HEAD (bb) == insn)
4197 /* Never ever delete the basic block note without deleting whole
4198 basic block. */
4199 gcc_assert (!NOTE_P (insn));
4200 BB_HEAD (bb) = next;
4202 if (BB_END (bb) == insn)
4203 BB_END (bb) = prev;
4207 /* Append CALL_FUSAGE to the CALL_INSN_FUNCTION_USAGE for CALL_INSN. */
4209 void
4210 add_function_usage_to (rtx call_insn, rtx call_fusage)
4212 gcc_assert (call_insn && CALL_P (call_insn));
4214 /* Put the register usage information on the CALL. If there is already
4215 some usage information, put ours at the end. */
4216 if (CALL_INSN_FUNCTION_USAGE (call_insn))
4218 rtx link;
4220 for (link = CALL_INSN_FUNCTION_USAGE (call_insn); XEXP (link, 1) != 0;
4221 link = XEXP (link, 1))
4224 XEXP (link, 1) = call_fusage;
4226 else
4227 CALL_INSN_FUNCTION_USAGE (call_insn) = call_fusage;
4230 /* Delete all insns made since FROM.
4231 FROM becomes the new last instruction. */
4233 void
4234 delete_insns_since (rtx_insn *from)
4236 if (from == 0)
4237 set_first_insn (0);
4238 else
4239 SET_NEXT_INSN (from) = 0;
4240 set_last_insn (from);
4243 /* This function is deprecated, please use sequences instead.
4245 Move a consecutive bunch of insns to a different place in the chain.
4246 The insns to be moved are those between FROM and TO.
4247 They are moved to a new position after the insn AFTER.
4248 AFTER must not be FROM or TO or any insn in between.
4250 This function does not know about SEQUENCEs and hence should not be
4251 called after delay-slot filling has been done. */
4253 void
4254 reorder_insns_nobb (rtx_insn *from, rtx_insn *to, rtx_insn *after)
4256 #ifdef ENABLE_CHECKING
4257 rtx_insn *x;
4258 for (x = from; x != to; x = NEXT_INSN (x))
4259 gcc_assert (after != x);
4260 gcc_assert (after != to);
4261 #endif
4263 /* Splice this bunch out of where it is now. */
4264 if (PREV_INSN (from))
4265 SET_NEXT_INSN (PREV_INSN (from)) = NEXT_INSN (to);
4266 if (NEXT_INSN (to))
4267 SET_PREV_INSN (NEXT_INSN (to)) = PREV_INSN (from);
4268 if (get_last_insn () == to)
4269 set_last_insn (PREV_INSN (from));
4270 if (get_insns () == from)
4271 set_first_insn (NEXT_INSN (to));
4273 /* Make the new neighbors point to it and it to them. */
4274 if (NEXT_INSN (after))
4275 SET_PREV_INSN (NEXT_INSN (after)) = to;
4277 SET_NEXT_INSN (to) = NEXT_INSN (after);
4278 SET_PREV_INSN (from) = after;
4279 SET_NEXT_INSN (after) = from;
4280 if (after == get_last_insn ())
4281 set_last_insn (to);
4284 /* Same as function above, but take care to update BB boundaries. */
4285 void
4286 reorder_insns (rtx_insn *from, rtx_insn *to, rtx_insn *after)
4288 rtx_insn *prev = PREV_INSN (from);
4289 basic_block bb, bb2;
4291 reorder_insns_nobb (from, to, after);
4293 if (!BARRIER_P (after)
4294 && (bb = BLOCK_FOR_INSN (after)))
4296 rtx_insn *x;
4297 df_set_bb_dirty (bb);
4299 if (!BARRIER_P (from)
4300 && (bb2 = BLOCK_FOR_INSN (from)))
4302 if (BB_END (bb2) == to)
4303 BB_END (bb2) = prev;
4304 df_set_bb_dirty (bb2);
4307 if (BB_END (bb) == after)
4308 BB_END (bb) = to;
4310 for (x = from; x != NEXT_INSN (to); x = NEXT_INSN (x))
4311 if (!BARRIER_P (x))
4312 df_insn_change_bb (x, bb);
4317 /* Emit insn(s) of given code and pattern
4318 at a specified place within the doubly-linked list.
4320 All of the emit_foo global entry points accept an object
4321 X which is either an insn list or a PATTERN of a single
4322 instruction.
4324 There are thus a few canonical ways to generate code and
4325 emit it at a specific place in the instruction stream. For
4326 example, consider the instruction named SPOT and the fact that
4327 we would like to emit some instructions before SPOT. We might
4328 do it like this:
4330 start_sequence ();
4331 ... emit the new instructions ...
4332 insns_head = get_insns ();
4333 end_sequence ();
4335 emit_insn_before (insns_head, SPOT);
4337 It used to be common to generate SEQUENCE rtl instead, but that
4338 is a relic of the past which no longer occurs. The reason is that
4339 SEQUENCE rtl results in much fragmented RTL memory since the SEQUENCE
4340 generated would almost certainly die right after it was created. */
4342 static rtx_insn *
4343 emit_pattern_before_noloc (rtx x, rtx before, rtx last, basic_block bb,
4344 rtx_insn *(*make_raw) (rtx))
4346 rtx_insn *insn;
4348 gcc_assert (before);
4350 if (x == NULL_RTX)
4351 return safe_as_a <rtx_insn *> (last);
4353 switch (GET_CODE (x))
4355 case DEBUG_INSN:
4356 case INSN:
4357 case JUMP_INSN:
4358 case CALL_INSN:
4359 case CODE_LABEL:
4360 case BARRIER:
4361 case NOTE:
4362 insn = as_a <rtx_insn *> (x);
4363 while (insn)
4365 rtx_insn *next = NEXT_INSN (insn);
4366 add_insn_before (insn, before, bb);
4367 last = insn;
4368 insn = next;
4370 break;
4372 #ifdef ENABLE_RTL_CHECKING
4373 case SEQUENCE:
4374 gcc_unreachable ();
4375 break;
4376 #endif
4378 default:
4379 last = (*make_raw) (x);
4380 add_insn_before (last, before, bb);
4381 break;
4384 return safe_as_a <rtx_insn *> (last);
4387 /* Make X be output before the instruction BEFORE. */
4389 rtx_insn *
4390 emit_insn_before_noloc (rtx x, rtx_insn *before, basic_block bb)
4392 return emit_pattern_before_noloc (x, before, before, bb, make_insn_raw);
4395 /* Make an instruction with body X and code JUMP_INSN
4396 and output it before the instruction BEFORE. */
4398 rtx_jump_insn *
4399 emit_jump_insn_before_noloc (rtx x, rtx_insn *before)
4401 return as_a <rtx_jump_insn *> (
4402 emit_pattern_before_noloc (x, before, NULL_RTX, NULL,
4403 make_jump_insn_raw));
4406 /* Make an instruction with body X and code CALL_INSN
4407 and output it before the instruction BEFORE. */
4409 rtx_insn *
4410 emit_call_insn_before_noloc (rtx x, rtx_insn *before)
4412 return emit_pattern_before_noloc (x, before, NULL_RTX, NULL,
4413 make_call_insn_raw);
4416 /* Make an instruction with body X and code DEBUG_INSN
4417 and output it before the instruction BEFORE. */
4419 rtx_insn *
4420 emit_debug_insn_before_noloc (rtx x, rtx before)
4422 return emit_pattern_before_noloc (x, before, NULL_RTX, NULL,
4423 make_debug_insn_raw);
4426 /* Make an insn of code BARRIER
4427 and output it before the insn BEFORE. */
4429 rtx_barrier *
4430 emit_barrier_before (rtx before)
4432 rtx_barrier *insn = as_a <rtx_barrier *> (rtx_alloc (BARRIER));
4434 INSN_UID (insn) = cur_insn_uid++;
4436 add_insn_before (insn, before, NULL);
4437 return insn;
4440 /* Emit the label LABEL before the insn BEFORE. */
4442 rtx_code_label *
4443 emit_label_before (rtx label, rtx_insn *before)
4445 gcc_checking_assert (INSN_UID (label) == 0);
4446 INSN_UID (label) = cur_insn_uid++;
4447 add_insn_before (label, before, NULL);
4448 return as_a <rtx_code_label *> (label);
4451 /* Helper for emit_insn_after, handles lists of instructions
4452 efficiently. */
4454 static rtx_insn *
4455 emit_insn_after_1 (rtx_insn *first, rtx uncast_after, basic_block bb)
4457 rtx_insn *after = safe_as_a <rtx_insn *> (uncast_after);
4458 rtx_insn *last;
4459 rtx_insn *after_after;
4460 if (!bb && !BARRIER_P (after))
4461 bb = BLOCK_FOR_INSN (after);
4463 if (bb)
4465 df_set_bb_dirty (bb);
4466 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
4467 if (!BARRIER_P (last))
4469 set_block_for_insn (last, bb);
4470 df_insn_rescan (last);
4472 if (!BARRIER_P (last))
4474 set_block_for_insn (last, bb);
4475 df_insn_rescan (last);
4477 if (BB_END (bb) == after)
4478 BB_END (bb) = last;
4480 else
4481 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
4482 continue;
4484 after_after = NEXT_INSN (after);
4486 SET_NEXT_INSN (after) = first;
4487 SET_PREV_INSN (first) = after;
4488 SET_NEXT_INSN (last) = after_after;
4489 if (after_after)
4490 SET_PREV_INSN (after_after) = last;
4492 if (after == get_last_insn ())
4493 set_last_insn (last);
4495 return last;
4498 static rtx_insn *
4499 emit_pattern_after_noloc (rtx x, rtx uncast_after, basic_block bb,
4500 rtx_insn *(*make_raw)(rtx))
4502 rtx_insn *after = safe_as_a <rtx_insn *> (uncast_after);
4503 rtx_insn *last = after;
4505 gcc_assert (after);
4507 if (x == NULL_RTX)
4508 return last;
4510 switch (GET_CODE (x))
4512 case DEBUG_INSN:
4513 case INSN:
4514 case JUMP_INSN:
4515 case CALL_INSN:
4516 case CODE_LABEL:
4517 case BARRIER:
4518 case NOTE:
4519 last = emit_insn_after_1 (as_a <rtx_insn *> (x), after, bb);
4520 break;
4522 #ifdef ENABLE_RTL_CHECKING
4523 case SEQUENCE:
4524 gcc_unreachable ();
4525 break;
4526 #endif
4528 default:
4529 last = (*make_raw) (x);
4530 add_insn_after (last, after, bb);
4531 break;
4534 return last;
4537 /* Make X be output after the insn AFTER and set the BB of insn. If
4538 BB is NULL, an attempt is made to infer the BB from AFTER. */
4540 rtx_insn *
4541 emit_insn_after_noloc (rtx x, rtx after, basic_block bb)
4543 return emit_pattern_after_noloc (x, after, bb, make_insn_raw);
4547 /* Make an insn of code JUMP_INSN with body X
4548 and output it after the insn AFTER. */
4550 rtx_jump_insn *
4551 emit_jump_insn_after_noloc (rtx x, rtx after)
4553 return as_a <rtx_jump_insn *> (
4554 emit_pattern_after_noloc (x, after, NULL, make_jump_insn_raw));
4557 /* Make an instruction with body X and code CALL_INSN
4558 and output it after the instruction AFTER. */
4560 rtx_insn *
4561 emit_call_insn_after_noloc (rtx x, rtx after)
4563 return emit_pattern_after_noloc (x, after, NULL, make_call_insn_raw);
4566 /* Make an instruction with body X and code CALL_INSN
4567 and output it after the instruction AFTER. */
4569 rtx_insn *
4570 emit_debug_insn_after_noloc (rtx x, rtx after)
4572 return emit_pattern_after_noloc (x, after, NULL, make_debug_insn_raw);
4575 /* Make an insn of code BARRIER
4576 and output it after the insn AFTER. */
4578 rtx_barrier *
4579 emit_barrier_after (rtx after)
4581 rtx_barrier *insn = as_a <rtx_barrier *> (rtx_alloc (BARRIER));
4583 INSN_UID (insn) = cur_insn_uid++;
4585 add_insn_after (insn, after, NULL);
4586 return insn;
4589 /* Emit the label LABEL after the insn AFTER. */
4591 rtx_insn *
4592 emit_label_after (rtx label, rtx_insn *after)
4594 gcc_checking_assert (INSN_UID (label) == 0);
4595 INSN_UID (label) = cur_insn_uid++;
4596 add_insn_after (label, after, NULL);
4597 return as_a <rtx_insn *> (label);
4600 /* Notes require a bit of special handling: Some notes need to have their
4601 BLOCK_FOR_INSN set, others should never have it set, and some should
4602 have it set or clear depending on the context. */
4604 /* Return true iff a note of kind SUBTYPE should be emitted with routines
4605 that never set BLOCK_FOR_INSN on NOTE. BB_BOUNDARY is true if the
4606 caller is asked to emit a note before BB_HEAD, or after BB_END. */
4608 static bool
4609 note_outside_basic_block_p (enum insn_note subtype, bool on_bb_boundary_p)
4611 switch (subtype)
4613 /* NOTE_INSN_SWITCH_TEXT_SECTIONS only appears between basic blocks. */
4614 case NOTE_INSN_SWITCH_TEXT_SECTIONS:
4615 return true;
4617 /* Notes for var tracking and EH region markers can appear between or
4618 inside basic blocks. If the caller is emitting on the basic block
4619 boundary, do not set BLOCK_FOR_INSN on the new note. */
4620 case NOTE_INSN_VAR_LOCATION:
4621 case NOTE_INSN_CALL_ARG_LOCATION:
4622 case NOTE_INSN_EH_REGION_BEG:
4623 case NOTE_INSN_EH_REGION_END:
4624 return on_bb_boundary_p;
4626 /* Otherwise, BLOCK_FOR_INSN must be set. */
4627 default:
4628 return false;
4632 /* Emit a note of subtype SUBTYPE after the insn AFTER. */
4634 rtx_note *
4635 emit_note_after (enum insn_note subtype, rtx_insn *after)
4637 rtx_note *note = make_note_raw (subtype);
4638 basic_block bb = BARRIER_P (after) ? NULL : BLOCK_FOR_INSN (after);
4639 bool on_bb_boundary_p = (bb != NULL && BB_END (bb) == after);
4641 if (note_outside_basic_block_p (subtype, on_bb_boundary_p))
4642 add_insn_after_nobb (note, after);
4643 else
4644 add_insn_after (note, after, bb);
4645 return note;
4648 /* Emit a note of subtype SUBTYPE before the insn BEFORE. */
4650 rtx_note *
4651 emit_note_before (enum insn_note subtype, rtx_insn *before)
4653 rtx_note *note = make_note_raw (subtype);
4654 basic_block bb = BARRIER_P (before) ? NULL : BLOCK_FOR_INSN (before);
4655 bool on_bb_boundary_p = (bb != NULL && BB_HEAD (bb) == before);
4657 if (note_outside_basic_block_p (subtype, on_bb_boundary_p))
4658 add_insn_before_nobb (note, before);
4659 else
4660 add_insn_before (note, before, bb);
4661 return note;
4664 /* Insert PATTERN after AFTER, setting its INSN_LOCATION to LOC.
4665 MAKE_RAW indicates how to turn PATTERN into a real insn. */
4667 static rtx_insn *
4668 emit_pattern_after_setloc (rtx pattern, rtx uncast_after, int loc,
4669 rtx_insn *(*make_raw) (rtx))
4671 rtx_insn *after = safe_as_a <rtx_insn *> (uncast_after);
4672 rtx_insn *last = emit_pattern_after_noloc (pattern, after, NULL, make_raw);
4674 if (pattern == NULL_RTX || !loc)
4675 return last;
4677 after = NEXT_INSN (after);
4678 while (1)
4680 if (active_insn_p (after)
4681 && !JUMP_TABLE_DATA_P (after) /* FIXME */
4682 && !INSN_LOCATION (after))
4683 INSN_LOCATION (after) = loc;
4684 if (after == last)
4685 break;
4686 after = NEXT_INSN (after);
4688 return last;
4691 /* Insert PATTERN after AFTER. MAKE_RAW indicates how to turn PATTERN
4692 into a real insn. SKIP_DEBUG_INSNS indicates whether to insert after
4693 any DEBUG_INSNs. */
4695 static rtx_insn *
4696 emit_pattern_after (rtx pattern, rtx uncast_after, bool skip_debug_insns,
4697 rtx_insn *(*make_raw) (rtx))
4699 rtx_insn *after = safe_as_a <rtx_insn *> (uncast_after);
4700 rtx_insn *prev = after;
4702 if (skip_debug_insns)
4703 while (DEBUG_INSN_P (prev))
4704 prev = PREV_INSN (prev);
4706 if (INSN_P (prev))
4707 return emit_pattern_after_setloc (pattern, after, INSN_LOCATION (prev),
4708 make_raw);
4709 else
4710 return emit_pattern_after_noloc (pattern, after, NULL, make_raw);
4713 /* Like emit_insn_after_noloc, but set INSN_LOCATION according to LOC. */
4714 rtx_insn *
4715 emit_insn_after_setloc (rtx pattern, rtx after, int loc)
4717 return emit_pattern_after_setloc (pattern, after, loc, make_insn_raw);
4720 /* Like emit_insn_after_noloc, but set INSN_LOCATION according to AFTER. */
4721 rtx_insn *
4722 emit_insn_after (rtx pattern, rtx after)
4724 return emit_pattern_after (pattern, after, true, make_insn_raw);
4727 /* Like emit_jump_insn_after_noloc, but set INSN_LOCATION according to LOC. */
4728 rtx_jump_insn *
4729 emit_jump_insn_after_setloc (rtx pattern, rtx after, int loc)
4731 return as_a <rtx_jump_insn *> (
4732 emit_pattern_after_setloc (pattern, after, loc, make_jump_insn_raw));
4735 /* Like emit_jump_insn_after_noloc, but set INSN_LOCATION according to AFTER. */
4736 rtx_jump_insn *
4737 emit_jump_insn_after (rtx pattern, rtx after)
4739 return as_a <rtx_jump_insn *> (
4740 emit_pattern_after (pattern, after, true, make_jump_insn_raw));
4743 /* Like emit_call_insn_after_noloc, but set INSN_LOCATION according to LOC. */
4744 rtx_insn *
4745 emit_call_insn_after_setloc (rtx pattern, rtx after, int loc)
4747 return emit_pattern_after_setloc (pattern, after, loc, make_call_insn_raw);
4750 /* Like emit_call_insn_after_noloc, but set INSN_LOCATION according to AFTER. */
4751 rtx_insn *
4752 emit_call_insn_after (rtx pattern, rtx after)
4754 return emit_pattern_after (pattern, after, true, make_call_insn_raw);
4757 /* Like emit_debug_insn_after_noloc, but set INSN_LOCATION according to LOC. */
4758 rtx_insn *
4759 emit_debug_insn_after_setloc (rtx pattern, rtx after, int loc)
4761 return emit_pattern_after_setloc (pattern, after, loc, make_debug_insn_raw);
4764 /* Like emit_debug_insn_after_noloc, but set INSN_LOCATION according to AFTER. */
4765 rtx_insn *
4766 emit_debug_insn_after (rtx pattern, rtx after)
4768 return emit_pattern_after (pattern, after, false, make_debug_insn_raw);
4771 /* Insert PATTERN before BEFORE, setting its INSN_LOCATION to LOC.
4772 MAKE_RAW indicates how to turn PATTERN into a real insn. INSNP
4773 indicates if PATTERN is meant for an INSN as opposed to a JUMP_INSN,
4774 CALL_INSN, etc. */
4776 static rtx_insn *
4777 emit_pattern_before_setloc (rtx pattern, rtx uncast_before, int loc, bool insnp,
4778 rtx_insn *(*make_raw) (rtx))
4780 rtx_insn *before = as_a <rtx_insn *> (uncast_before);
4781 rtx_insn *first = PREV_INSN (before);
4782 rtx_insn *last = emit_pattern_before_noloc (pattern, before,
4783 insnp ? before : NULL_RTX,
4784 NULL, make_raw);
4786 if (pattern == NULL_RTX || !loc)
4787 return last;
4789 if (!first)
4790 first = get_insns ();
4791 else
4792 first = NEXT_INSN (first);
4793 while (1)
4795 if (active_insn_p (first)
4796 && !JUMP_TABLE_DATA_P (first) /* FIXME */
4797 && !INSN_LOCATION (first))
4798 INSN_LOCATION (first) = loc;
4799 if (first == last)
4800 break;
4801 first = NEXT_INSN (first);
4803 return last;
4806 /* Insert PATTERN before BEFORE. MAKE_RAW indicates how to turn PATTERN
4807 into a real insn. SKIP_DEBUG_INSNS indicates whether to insert
4808 before any DEBUG_INSNs. INSNP indicates if PATTERN is meant for an
4809 INSN as opposed to a JUMP_INSN, CALL_INSN, etc. */
4811 static rtx_insn *
4812 emit_pattern_before (rtx pattern, rtx uncast_before, bool skip_debug_insns,
4813 bool insnp, rtx_insn *(*make_raw) (rtx))
4815 rtx_insn *before = safe_as_a <rtx_insn *> (uncast_before);
4816 rtx_insn *next = before;
4818 if (skip_debug_insns)
4819 while (DEBUG_INSN_P (next))
4820 next = PREV_INSN (next);
4822 if (INSN_P (next))
4823 return emit_pattern_before_setloc (pattern, before, INSN_LOCATION (next),
4824 insnp, make_raw);
4825 else
4826 return emit_pattern_before_noloc (pattern, before,
4827 insnp ? before : NULL_RTX,
4828 NULL, make_raw);
4831 /* Like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */
4832 rtx_insn *
4833 emit_insn_before_setloc (rtx pattern, rtx_insn *before, int loc)
4835 return emit_pattern_before_setloc (pattern, before, loc, true,
4836 make_insn_raw);
4839 /* Like emit_insn_before_noloc, but set INSN_LOCATION according to BEFORE. */
4840 rtx_insn *
4841 emit_insn_before (rtx pattern, rtx before)
4843 return emit_pattern_before (pattern, before, true, true, make_insn_raw);
4846 /* like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */
4847 rtx_jump_insn *
4848 emit_jump_insn_before_setloc (rtx pattern, rtx_insn *before, int loc)
4850 return as_a <rtx_jump_insn *> (
4851 emit_pattern_before_setloc (pattern, before, loc, false,
4852 make_jump_insn_raw));
4855 /* Like emit_jump_insn_before_noloc, but set INSN_LOCATION according to BEFORE. */
4856 rtx_jump_insn *
4857 emit_jump_insn_before (rtx pattern, rtx before)
4859 return as_a <rtx_jump_insn *> (
4860 emit_pattern_before (pattern, before, true, false,
4861 make_jump_insn_raw));
4864 /* Like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */
4865 rtx_insn *
4866 emit_call_insn_before_setloc (rtx pattern, rtx_insn *before, int loc)
4868 return emit_pattern_before_setloc (pattern, before, loc, false,
4869 make_call_insn_raw);
4872 /* Like emit_call_insn_before_noloc,
4873 but set insn_location according to BEFORE. */
4874 rtx_insn *
4875 emit_call_insn_before (rtx pattern, rtx_insn *before)
4877 return emit_pattern_before (pattern, before, true, false,
4878 make_call_insn_raw);
4881 /* Like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */
4882 rtx_insn *
4883 emit_debug_insn_before_setloc (rtx pattern, rtx before, int loc)
4885 return emit_pattern_before_setloc (pattern, before, loc, false,
4886 make_debug_insn_raw);
4889 /* Like emit_debug_insn_before_noloc,
4890 but set insn_location according to BEFORE. */
4891 rtx_insn *
4892 emit_debug_insn_before (rtx pattern, rtx_insn *before)
4894 return emit_pattern_before (pattern, before, false, false,
4895 make_debug_insn_raw);
4898 /* Take X and emit it at the end of the doubly-linked
4899 INSN list.
4901 Returns the last insn emitted. */
4903 rtx_insn *
4904 emit_insn (rtx x)
4906 rtx_insn *last = get_last_insn ();
4907 rtx_insn *insn;
4909 if (x == NULL_RTX)
4910 return last;
4912 switch (GET_CODE (x))
4914 case DEBUG_INSN:
4915 case INSN:
4916 case JUMP_INSN:
4917 case CALL_INSN:
4918 case CODE_LABEL:
4919 case BARRIER:
4920 case NOTE:
4921 insn = as_a <rtx_insn *> (x);
4922 while (insn)
4924 rtx_insn *next = NEXT_INSN (insn);
4925 add_insn (insn);
4926 last = insn;
4927 insn = next;
4929 break;
4931 #ifdef ENABLE_RTL_CHECKING
4932 case JUMP_TABLE_DATA:
4933 case SEQUENCE:
4934 gcc_unreachable ();
4935 break;
4936 #endif
4938 default:
4939 last = make_insn_raw (x);
4940 add_insn (last);
4941 break;
4944 return last;
4947 /* Make an insn of code DEBUG_INSN with pattern X
4948 and add it to the end of the doubly-linked list. */
4950 rtx_insn *
4951 emit_debug_insn (rtx x)
4953 rtx_insn *last = get_last_insn ();
4954 rtx_insn *insn;
4956 if (x == NULL_RTX)
4957 return last;
4959 switch (GET_CODE (x))
4961 case DEBUG_INSN:
4962 case INSN:
4963 case JUMP_INSN:
4964 case CALL_INSN:
4965 case CODE_LABEL:
4966 case BARRIER:
4967 case NOTE:
4968 insn = as_a <rtx_insn *> (x);
4969 while (insn)
4971 rtx_insn *next = NEXT_INSN (insn);
4972 add_insn (insn);
4973 last = insn;
4974 insn = next;
4976 break;
4978 #ifdef ENABLE_RTL_CHECKING
4979 case JUMP_TABLE_DATA:
4980 case SEQUENCE:
4981 gcc_unreachable ();
4982 break;
4983 #endif
4985 default:
4986 last = make_debug_insn_raw (x);
4987 add_insn (last);
4988 break;
4991 return last;
4994 /* Make an insn of code JUMP_INSN with pattern X
4995 and add it to the end of the doubly-linked list. */
4997 rtx_insn *
4998 emit_jump_insn (rtx x)
5000 rtx_insn *last = NULL;
5001 rtx_insn *insn;
5003 switch (GET_CODE (x))
5005 case DEBUG_INSN:
5006 case INSN:
5007 case JUMP_INSN:
5008 case CALL_INSN:
5009 case CODE_LABEL:
5010 case BARRIER:
5011 case NOTE:
5012 insn = as_a <rtx_insn *> (x);
5013 while (insn)
5015 rtx_insn *next = NEXT_INSN (insn);
5016 add_insn (insn);
5017 last = insn;
5018 insn = next;
5020 break;
5022 #ifdef ENABLE_RTL_CHECKING
5023 case JUMP_TABLE_DATA:
5024 case SEQUENCE:
5025 gcc_unreachable ();
5026 break;
5027 #endif
5029 default:
5030 last = make_jump_insn_raw (x);
5031 add_insn (last);
5032 break;
5035 return last;
5038 /* Make an insn of code CALL_INSN with pattern X
5039 and add it to the end of the doubly-linked list. */
5041 rtx_insn *
5042 emit_call_insn (rtx x)
5044 rtx_insn *insn;
5046 switch (GET_CODE (x))
5048 case DEBUG_INSN:
5049 case INSN:
5050 case JUMP_INSN:
5051 case CALL_INSN:
5052 case CODE_LABEL:
5053 case BARRIER:
5054 case NOTE:
5055 insn = emit_insn (x);
5056 break;
5058 #ifdef ENABLE_RTL_CHECKING
5059 case SEQUENCE:
5060 case JUMP_TABLE_DATA:
5061 gcc_unreachable ();
5062 break;
5063 #endif
5065 default:
5066 insn = make_call_insn_raw (x);
5067 add_insn (insn);
5068 break;
5071 return insn;
5074 /* Add the label LABEL to the end of the doubly-linked list. */
5076 rtx_code_label *
5077 emit_label (rtx uncast_label)
5079 rtx_code_label *label = as_a <rtx_code_label *> (uncast_label);
5081 gcc_checking_assert (INSN_UID (label) == 0);
5082 INSN_UID (label) = cur_insn_uid++;
5083 add_insn (label);
5084 return label;
5087 /* Make an insn of code JUMP_TABLE_DATA
5088 and add it to the end of the doubly-linked list. */
5090 rtx_jump_table_data *
5091 emit_jump_table_data (rtx table)
5093 rtx_jump_table_data *jump_table_data =
5094 as_a <rtx_jump_table_data *> (rtx_alloc (JUMP_TABLE_DATA));
5095 INSN_UID (jump_table_data) = cur_insn_uid++;
5096 PATTERN (jump_table_data) = table;
5097 BLOCK_FOR_INSN (jump_table_data) = NULL;
5098 add_insn (jump_table_data);
5099 return jump_table_data;
5102 /* Make an insn of code BARRIER
5103 and add it to the end of the doubly-linked list. */
5105 rtx_barrier *
5106 emit_barrier (void)
5108 rtx_barrier *barrier = as_a <rtx_barrier *> (rtx_alloc (BARRIER));
5109 INSN_UID (barrier) = cur_insn_uid++;
5110 add_insn (barrier);
5111 return barrier;
5114 /* Emit a copy of note ORIG. */
5116 rtx_note *
5117 emit_note_copy (rtx_note *orig)
5119 enum insn_note kind = (enum insn_note) NOTE_KIND (orig);
5120 rtx_note *note = make_note_raw (kind);
5121 NOTE_DATA (note) = NOTE_DATA (orig);
5122 add_insn (note);
5123 return note;
5126 /* Make an insn of code NOTE or type NOTE_NO
5127 and add it to the end of the doubly-linked list. */
5129 rtx_note *
5130 emit_note (enum insn_note kind)
5132 rtx_note *note = make_note_raw (kind);
5133 add_insn (note);
5134 return note;
5137 /* Emit a clobber of lvalue X. */
5139 rtx_insn *
5140 emit_clobber (rtx x)
5142 /* CONCATs should not appear in the insn stream. */
5143 if (GET_CODE (x) == CONCAT)
5145 emit_clobber (XEXP (x, 0));
5146 return emit_clobber (XEXP (x, 1));
5148 return emit_insn (gen_rtx_CLOBBER (VOIDmode, x));
5151 /* Return a sequence of insns to clobber lvalue X. */
5153 rtx_insn *
5154 gen_clobber (rtx x)
5156 rtx_insn *seq;
5158 start_sequence ();
5159 emit_clobber (x);
5160 seq = get_insns ();
5161 end_sequence ();
5162 return seq;
5165 /* Emit a use of rvalue X. */
5167 rtx_insn *
5168 emit_use (rtx x)
5170 /* CONCATs should not appear in the insn stream. */
5171 if (GET_CODE (x) == CONCAT)
5173 emit_use (XEXP (x, 0));
5174 return emit_use (XEXP (x, 1));
5176 return emit_insn (gen_rtx_USE (VOIDmode, x));
5179 /* Return a sequence of insns to use rvalue X. */
5181 rtx_insn *
5182 gen_use (rtx x)
5184 rtx_insn *seq;
5186 start_sequence ();
5187 emit_use (x);
5188 seq = get_insns ();
5189 end_sequence ();
5190 return seq;
5193 /* Notes like REG_EQUAL and REG_EQUIV refer to a set in an instruction.
5194 Return the set in INSN that such notes describe, or NULL if the notes
5195 have no meaning for INSN. */
5198 set_for_reg_notes (rtx insn)
5200 rtx pat, reg;
5202 if (!INSN_P (insn))
5203 return NULL_RTX;
5205 pat = PATTERN (insn);
5206 if (GET_CODE (pat) == PARALLEL)
5208 /* We do not use single_set because that ignores SETs of unused
5209 registers. REG_EQUAL and REG_EQUIV notes really do require the
5210 PARALLEL to have a single SET. */
5211 if (multiple_sets (insn))
5212 return NULL_RTX;
5213 pat = XVECEXP (pat, 0, 0);
5216 if (GET_CODE (pat) != SET)
5217 return NULL_RTX;
5219 reg = SET_DEST (pat);
5221 /* Notes apply to the contents of a STRICT_LOW_PART. */
5222 if (GET_CODE (reg) == STRICT_LOW_PART
5223 || GET_CODE (reg) == ZERO_EXTRACT)
5224 reg = XEXP (reg, 0);
5226 /* Check that we have a register. */
5227 if (!(REG_P (reg) || GET_CODE (reg) == SUBREG))
5228 return NULL_RTX;
5230 return pat;
5233 /* Place a note of KIND on insn INSN with DATUM as the datum. If a
5234 note of this type already exists, remove it first. */
5237 set_unique_reg_note (rtx insn, enum reg_note kind, rtx datum)
5239 rtx note = find_reg_note (insn, kind, NULL_RTX);
5241 switch (kind)
5243 case REG_EQUAL:
5244 case REG_EQUIV:
5245 if (!set_for_reg_notes (insn))
5246 return NULL_RTX;
5248 /* Don't add ASM_OPERAND REG_EQUAL/REG_EQUIV notes.
5249 It serves no useful purpose and breaks eliminate_regs. */
5250 if (GET_CODE (datum) == ASM_OPERANDS)
5251 return NULL_RTX;
5253 /* Notes with side effects are dangerous. Even if the side-effect
5254 initially mirrors one in PATTERN (INSN), later optimizations
5255 might alter the way that the final register value is calculated
5256 and so move or alter the side-effect in some way. The note would
5257 then no longer be a valid substitution for SET_SRC. */
5258 if (side_effects_p (datum))
5259 return NULL_RTX;
5260 break;
5262 default:
5263 break;
5266 if (note)
5267 XEXP (note, 0) = datum;
5268 else
5270 add_reg_note (insn, kind, datum);
5271 note = REG_NOTES (insn);
5274 switch (kind)
5276 case REG_EQUAL:
5277 case REG_EQUIV:
5278 df_notes_rescan (as_a <rtx_insn *> (insn));
5279 break;
5280 default:
5281 break;
5284 return note;
5287 /* Like set_unique_reg_note, but don't do anything unless INSN sets DST. */
5289 set_dst_reg_note (rtx insn, enum reg_note kind, rtx datum, rtx dst)
5291 rtx set = set_for_reg_notes (insn);
5293 if (set && SET_DEST (set) == dst)
5294 return set_unique_reg_note (insn, kind, datum);
5295 return NULL_RTX;
5298 /* Emit the rtl pattern X as an appropriate kind of insn. Also emit a
5299 following barrier if the instruction needs one and if ALLOW_BARRIER_P
5300 is true.
5302 If X is a label, it is simply added into the insn chain. */
5304 rtx_insn *
5305 emit (rtx x, bool allow_barrier_p)
5307 enum rtx_code code = classify_insn (x);
5309 switch (code)
5311 case CODE_LABEL:
5312 return emit_label (x);
5313 case INSN:
5314 return emit_insn (x);
5315 case JUMP_INSN:
5317 rtx_insn *insn = emit_jump_insn (x);
5318 if (allow_barrier_p
5319 && (any_uncondjump_p (insn) || GET_CODE (x) == RETURN))
5320 return emit_barrier ();
5321 return insn;
5323 case CALL_INSN:
5324 return emit_call_insn (x);
5325 case DEBUG_INSN:
5326 return emit_debug_insn (x);
5327 default:
5328 gcc_unreachable ();
5332 /* Space for free sequence stack entries. */
5333 static GTY ((deletable)) struct sequence_stack *free_sequence_stack;
5335 /* Begin emitting insns to a sequence. If this sequence will contain
5336 something that might cause the compiler to pop arguments to function
5337 calls (because those pops have previously been deferred; see
5338 INHIBIT_DEFER_POP for more details), use do_pending_stack_adjust
5339 before calling this function. That will ensure that the deferred
5340 pops are not accidentally emitted in the middle of this sequence. */
5342 void
5343 start_sequence (void)
5345 struct sequence_stack *tem;
5347 if (free_sequence_stack != NULL)
5349 tem = free_sequence_stack;
5350 free_sequence_stack = tem->next;
5352 else
5353 tem = ggc_alloc<sequence_stack> ();
5355 tem->next = get_current_sequence ()->next;
5356 tem->first = get_insns ();
5357 tem->last = get_last_insn ();
5358 get_current_sequence ()->next = tem;
5360 set_first_insn (0);
5361 set_last_insn (0);
5364 /* Set up the insn chain starting with FIRST as the current sequence,
5365 saving the previously current one. See the documentation for
5366 start_sequence for more information about how to use this function. */
5368 void
5369 push_to_sequence (rtx_insn *first)
5371 rtx_insn *last;
5373 start_sequence ();
5375 for (last = first; last && NEXT_INSN (last); last = NEXT_INSN (last))
5378 set_first_insn (first);
5379 set_last_insn (last);
5382 /* Like push_to_sequence, but take the last insn as an argument to avoid
5383 looping through the list. */
5385 void
5386 push_to_sequence2 (rtx_insn *first, rtx_insn *last)
5388 start_sequence ();
5390 set_first_insn (first);
5391 set_last_insn (last);
5394 /* Set up the outer-level insn chain
5395 as the current sequence, saving the previously current one. */
5397 void
5398 push_topmost_sequence (void)
5400 struct sequence_stack *top;
5402 start_sequence ();
5404 top = get_topmost_sequence ();
5405 set_first_insn (top->first);
5406 set_last_insn (top->last);
5409 /* After emitting to the outer-level insn chain, update the outer-level
5410 insn chain, and restore the previous saved state. */
5412 void
5413 pop_topmost_sequence (void)
5415 struct sequence_stack *top;
5417 top = get_topmost_sequence ();
5418 top->first = get_insns ();
5419 top->last = get_last_insn ();
5421 end_sequence ();
5424 /* After emitting to a sequence, restore previous saved state.
5426 To get the contents of the sequence just made, you must call
5427 `get_insns' *before* calling here.
5429 If the compiler might have deferred popping arguments while
5430 generating this sequence, and this sequence will not be immediately
5431 inserted into the instruction stream, use do_pending_stack_adjust
5432 before calling get_insns. That will ensure that the deferred
5433 pops are inserted into this sequence, and not into some random
5434 location in the instruction stream. See INHIBIT_DEFER_POP for more
5435 information about deferred popping of arguments. */
5437 void
5438 end_sequence (void)
5440 struct sequence_stack *tem = get_current_sequence ()->next;
5442 set_first_insn (tem->first);
5443 set_last_insn (tem->last);
5444 get_current_sequence ()->next = tem->next;
5446 memset (tem, 0, sizeof (*tem));
5447 tem->next = free_sequence_stack;
5448 free_sequence_stack = tem;
5451 /* Return 1 if currently emitting into a sequence. */
5454 in_sequence_p (void)
5456 return get_current_sequence ()->next != 0;
5459 /* Put the various virtual registers into REGNO_REG_RTX. */
5461 static void
5462 init_virtual_regs (void)
5464 regno_reg_rtx[VIRTUAL_INCOMING_ARGS_REGNUM] = virtual_incoming_args_rtx;
5465 regno_reg_rtx[VIRTUAL_STACK_VARS_REGNUM] = virtual_stack_vars_rtx;
5466 regno_reg_rtx[VIRTUAL_STACK_DYNAMIC_REGNUM] = virtual_stack_dynamic_rtx;
5467 regno_reg_rtx[VIRTUAL_OUTGOING_ARGS_REGNUM] = virtual_outgoing_args_rtx;
5468 regno_reg_rtx[VIRTUAL_CFA_REGNUM] = virtual_cfa_rtx;
5469 regno_reg_rtx[VIRTUAL_PREFERRED_STACK_BOUNDARY_REGNUM]
5470 = virtual_preferred_stack_boundary_rtx;
5474 /* Used by copy_insn_1 to avoid copying SCRATCHes more than once. */
5475 static rtx copy_insn_scratch_in[MAX_RECOG_OPERANDS];
5476 static rtx copy_insn_scratch_out[MAX_RECOG_OPERANDS];
5477 static int copy_insn_n_scratches;
5479 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
5480 copied an ASM_OPERANDS.
5481 In that case, it is the original input-operand vector. */
5482 static rtvec orig_asm_operands_vector;
5484 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
5485 copied an ASM_OPERANDS.
5486 In that case, it is the copied input-operand vector. */
5487 static rtvec copy_asm_operands_vector;
5489 /* Likewise for the constraints vector. */
5490 static rtvec orig_asm_constraints_vector;
5491 static rtvec copy_asm_constraints_vector;
5493 /* Recursively create a new copy of an rtx for copy_insn.
5494 This function differs from copy_rtx in that it handles SCRATCHes and
5495 ASM_OPERANDs properly.
5496 Normally, this function is not used directly; use copy_insn as front end.
5497 However, you could first copy an insn pattern with copy_insn and then use
5498 this function afterwards to properly copy any REG_NOTEs containing
5499 SCRATCHes. */
5502 copy_insn_1 (rtx orig)
5504 rtx copy;
5505 int i, j;
5506 RTX_CODE code;
5507 const char *format_ptr;
5509 if (orig == NULL)
5510 return NULL;
5512 code = GET_CODE (orig);
5514 switch (code)
5516 case REG:
5517 case DEBUG_EXPR:
5518 CASE_CONST_ANY:
5519 case SYMBOL_REF:
5520 case CODE_LABEL:
5521 case PC:
5522 case CC0:
5523 case RETURN:
5524 case SIMPLE_RETURN:
5525 return orig;
5526 case CLOBBER:
5527 /* Share clobbers of hard registers (like cc0), but do not share pseudo reg
5528 clobbers or clobbers of hard registers that originated as pseudos.
5529 This is needed to allow safe register renaming. */
5530 if (REG_P (XEXP (orig, 0)) && REGNO (XEXP (orig, 0)) < FIRST_PSEUDO_REGISTER
5531 && ORIGINAL_REGNO (XEXP (orig, 0)) == REGNO (XEXP (orig, 0)))
5532 return orig;
5533 break;
5535 case SCRATCH:
5536 for (i = 0; i < copy_insn_n_scratches; i++)
5537 if (copy_insn_scratch_in[i] == orig)
5538 return copy_insn_scratch_out[i];
5539 break;
5541 case CONST:
5542 if (shared_const_p (orig))
5543 return orig;
5544 break;
5546 /* A MEM with a constant address is not sharable. The problem is that
5547 the constant address may need to be reloaded. If the mem is shared,
5548 then reloading one copy of this mem will cause all copies to appear
5549 to have been reloaded. */
5551 default:
5552 break;
5555 /* Copy the various flags, fields, and other information. We assume
5556 that all fields need copying, and then clear the fields that should
5557 not be copied. That is the sensible default behavior, and forces
5558 us to explicitly document why we are *not* copying a flag. */
5559 copy = shallow_copy_rtx (orig);
5561 /* We do not copy the USED flag, which is used as a mark bit during
5562 walks over the RTL. */
5563 RTX_FLAG (copy, used) = 0;
5565 /* We do not copy JUMP, CALL, or FRAME_RELATED for INSNs. */
5566 if (INSN_P (orig))
5568 RTX_FLAG (copy, jump) = 0;
5569 RTX_FLAG (copy, call) = 0;
5570 RTX_FLAG (copy, frame_related) = 0;
5573 format_ptr = GET_RTX_FORMAT (GET_CODE (copy));
5575 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (copy)); i++)
5576 switch (*format_ptr++)
5578 case 'e':
5579 if (XEXP (orig, i) != NULL)
5580 XEXP (copy, i) = copy_insn_1 (XEXP (orig, i));
5581 break;
5583 case 'E':
5584 case 'V':
5585 if (XVEC (orig, i) == orig_asm_constraints_vector)
5586 XVEC (copy, i) = copy_asm_constraints_vector;
5587 else if (XVEC (orig, i) == orig_asm_operands_vector)
5588 XVEC (copy, i) = copy_asm_operands_vector;
5589 else if (XVEC (orig, i) != NULL)
5591 XVEC (copy, i) = rtvec_alloc (XVECLEN (orig, i));
5592 for (j = 0; j < XVECLEN (copy, i); j++)
5593 XVECEXP (copy, i, j) = copy_insn_1 (XVECEXP (orig, i, j));
5595 break;
5597 case 't':
5598 case 'w':
5599 case 'i':
5600 case 's':
5601 case 'S':
5602 case 'u':
5603 case '0':
5604 /* These are left unchanged. */
5605 break;
5607 default:
5608 gcc_unreachable ();
5611 if (code == SCRATCH)
5613 i = copy_insn_n_scratches++;
5614 gcc_assert (i < MAX_RECOG_OPERANDS);
5615 copy_insn_scratch_in[i] = orig;
5616 copy_insn_scratch_out[i] = copy;
5618 else if (code == ASM_OPERANDS)
5620 orig_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (orig);
5621 copy_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (copy);
5622 orig_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (orig);
5623 copy_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (copy);
5626 return copy;
5629 /* Create a new copy of an rtx.
5630 This function differs from copy_rtx in that it handles SCRATCHes and
5631 ASM_OPERANDs properly.
5632 INSN doesn't really have to be a full INSN; it could be just the
5633 pattern. */
5635 copy_insn (rtx insn)
5637 copy_insn_n_scratches = 0;
5638 orig_asm_operands_vector = 0;
5639 orig_asm_constraints_vector = 0;
5640 copy_asm_operands_vector = 0;
5641 copy_asm_constraints_vector = 0;
5642 return copy_insn_1 (insn);
5645 /* Return a copy of INSN that can be used in a SEQUENCE delay slot,
5646 on that assumption that INSN itself remains in its original place. */
5648 rtx_insn *
5649 copy_delay_slot_insn (rtx_insn *insn)
5651 /* Copy INSN with its rtx_code, all its notes, location etc. */
5652 insn = as_a <rtx_insn *> (copy_rtx (insn));
5653 INSN_UID (insn) = cur_insn_uid++;
5654 return insn;
5657 /* Initialize data structures and variables in this file
5658 before generating rtl for each function. */
5660 void
5661 init_emit (void)
5663 set_first_insn (NULL);
5664 set_last_insn (NULL);
5665 if (MIN_NONDEBUG_INSN_UID)
5666 cur_insn_uid = MIN_NONDEBUG_INSN_UID;
5667 else
5668 cur_insn_uid = 1;
5669 cur_debug_insn_uid = 1;
5670 reg_rtx_no = LAST_VIRTUAL_REGISTER + 1;
5671 first_label_num = label_num;
5672 get_current_sequence ()->next = NULL;
5674 /* Init the tables that describe all the pseudo regs. */
5676 crtl->emit.regno_pointer_align_length = LAST_VIRTUAL_REGISTER + 101;
5678 crtl->emit.regno_pointer_align
5679 = XCNEWVEC (unsigned char, crtl->emit.regno_pointer_align_length);
5681 regno_reg_rtx = ggc_vec_alloc<rtx> (crtl->emit.regno_pointer_align_length);
5683 /* Put copies of all the hard registers into regno_reg_rtx. */
5684 memcpy (regno_reg_rtx,
5685 initial_regno_reg_rtx,
5686 FIRST_PSEUDO_REGISTER * sizeof (rtx));
5688 /* Put copies of all the virtual register rtx into regno_reg_rtx. */
5689 init_virtual_regs ();
5691 /* Indicate that the virtual registers and stack locations are
5692 all pointers. */
5693 REG_POINTER (stack_pointer_rtx) = 1;
5694 REG_POINTER (frame_pointer_rtx) = 1;
5695 REG_POINTER (hard_frame_pointer_rtx) = 1;
5696 REG_POINTER (arg_pointer_rtx) = 1;
5698 REG_POINTER (virtual_incoming_args_rtx) = 1;
5699 REG_POINTER (virtual_stack_vars_rtx) = 1;
5700 REG_POINTER (virtual_stack_dynamic_rtx) = 1;
5701 REG_POINTER (virtual_outgoing_args_rtx) = 1;
5702 REG_POINTER (virtual_cfa_rtx) = 1;
5704 #ifdef STACK_BOUNDARY
5705 REGNO_POINTER_ALIGN (STACK_POINTER_REGNUM) = STACK_BOUNDARY;
5706 REGNO_POINTER_ALIGN (FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5707 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5708 REGNO_POINTER_ALIGN (ARG_POINTER_REGNUM) = STACK_BOUNDARY;
5710 REGNO_POINTER_ALIGN (VIRTUAL_INCOMING_ARGS_REGNUM) = STACK_BOUNDARY;
5711 REGNO_POINTER_ALIGN (VIRTUAL_STACK_VARS_REGNUM) = STACK_BOUNDARY;
5712 REGNO_POINTER_ALIGN (VIRTUAL_STACK_DYNAMIC_REGNUM) = STACK_BOUNDARY;
5713 REGNO_POINTER_ALIGN (VIRTUAL_OUTGOING_ARGS_REGNUM) = STACK_BOUNDARY;
5714 REGNO_POINTER_ALIGN (VIRTUAL_CFA_REGNUM) = BITS_PER_WORD;
5715 #endif
5717 #ifdef INIT_EXPANDERS
5718 INIT_EXPANDERS;
5719 #endif
5722 /* Generate a vector constant for mode MODE and constant value CONSTANT. */
5724 static rtx
5725 gen_const_vector (machine_mode mode, int constant)
5727 rtx tem;
5728 rtvec v;
5729 int units, i;
5730 machine_mode inner;
5732 units = GET_MODE_NUNITS (mode);
5733 inner = GET_MODE_INNER (mode);
5735 gcc_assert (!DECIMAL_FLOAT_MODE_P (inner));
5737 v = rtvec_alloc (units);
5739 /* We need to call this function after we set the scalar const_tiny_rtx
5740 entries. */
5741 gcc_assert (const_tiny_rtx[constant][(int) inner]);
5743 for (i = 0; i < units; ++i)
5744 RTVEC_ELT (v, i) = const_tiny_rtx[constant][(int) inner];
5746 tem = gen_rtx_raw_CONST_VECTOR (mode, v);
5747 return tem;
5750 /* Generate a vector like gen_rtx_raw_CONST_VEC, but use the zero vector when
5751 all elements are zero, and the one vector when all elements are one. */
5753 gen_rtx_CONST_VECTOR (machine_mode mode, rtvec v)
5755 machine_mode inner = GET_MODE_INNER (mode);
5756 int nunits = GET_MODE_NUNITS (mode);
5757 rtx x;
5758 int i;
5760 /* Check to see if all of the elements have the same value. */
5761 x = RTVEC_ELT (v, nunits - 1);
5762 for (i = nunits - 2; i >= 0; i--)
5763 if (RTVEC_ELT (v, i) != x)
5764 break;
5766 /* If the values are all the same, check to see if we can use one of the
5767 standard constant vectors. */
5768 if (i == -1)
5770 if (x == CONST0_RTX (inner))
5771 return CONST0_RTX (mode);
5772 else if (x == CONST1_RTX (inner))
5773 return CONST1_RTX (mode);
5774 else if (x == CONSTM1_RTX (inner))
5775 return CONSTM1_RTX (mode);
5778 return gen_rtx_raw_CONST_VECTOR (mode, v);
5781 /* Initialise global register information required by all functions. */
5783 void
5784 init_emit_regs (void)
5786 int i;
5787 machine_mode mode;
5788 mem_attrs *attrs;
5790 /* Reset register attributes */
5791 reg_attrs_htab->empty ();
5793 /* We need reg_raw_mode, so initialize the modes now. */
5794 init_reg_modes_target ();
5796 /* Assign register numbers to the globally defined register rtx. */
5797 stack_pointer_rtx = gen_raw_REG (Pmode, STACK_POINTER_REGNUM);
5798 frame_pointer_rtx = gen_raw_REG (Pmode, FRAME_POINTER_REGNUM);
5799 hard_frame_pointer_rtx = gen_raw_REG (Pmode, HARD_FRAME_POINTER_REGNUM);
5800 arg_pointer_rtx = gen_raw_REG (Pmode, ARG_POINTER_REGNUM);
5801 virtual_incoming_args_rtx =
5802 gen_raw_REG (Pmode, VIRTUAL_INCOMING_ARGS_REGNUM);
5803 virtual_stack_vars_rtx =
5804 gen_raw_REG (Pmode, VIRTUAL_STACK_VARS_REGNUM);
5805 virtual_stack_dynamic_rtx =
5806 gen_raw_REG (Pmode, VIRTUAL_STACK_DYNAMIC_REGNUM);
5807 virtual_outgoing_args_rtx =
5808 gen_raw_REG (Pmode, VIRTUAL_OUTGOING_ARGS_REGNUM);
5809 virtual_cfa_rtx = gen_raw_REG (Pmode, VIRTUAL_CFA_REGNUM);
5810 virtual_preferred_stack_boundary_rtx =
5811 gen_raw_REG (Pmode, VIRTUAL_PREFERRED_STACK_BOUNDARY_REGNUM);
5813 /* Initialize RTL for commonly used hard registers. These are
5814 copied into regno_reg_rtx as we begin to compile each function. */
5815 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
5816 initial_regno_reg_rtx[i] = gen_raw_REG (reg_raw_mode[i], i);
5818 #ifdef RETURN_ADDRESS_POINTER_REGNUM
5819 return_address_pointer_rtx
5820 = gen_raw_REG (Pmode, RETURN_ADDRESS_POINTER_REGNUM);
5821 #endif
5823 pic_offset_table_rtx = NULL_RTX;
5824 if ((unsigned) PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM)
5825 pic_offset_table_rtx = gen_raw_REG (Pmode, PIC_OFFSET_TABLE_REGNUM);
5827 for (i = 0; i < (int) MAX_MACHINE_MODE; i++)
5829 mode = (machine_mode) i;
5830 attrs = ggc_cleared_alloc<mem_attrs> ();
5831 attrs->align = BITS_PER_UNIT;
5832 attrs->addrspace = ADDR_SPACE_GENERIC;
5833 if (mode != BLKmode)
5835 attrs->size_known_p = true;
5836 attrs->size = GET_MODE_SIZE (mode);
5837 if (STRICT_ALIGNMENT)
5838 attrs->align = GET_MODE_ALIGNMENT (mode);
5840 mode_mem_attrs[i] = attrs;
5844 /* Initialize global machine_mode variables. */
5846 void
5847 init_derived_machine_modes (void)
5849 byte_mode = VOIDmode;
5850 word_mode = VOIDmode;
5852 for (machine_mode mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
5853 mode != VOIDmode;
5854 mode = GET_MODE_WIDER_MODE (mode))
5856 if (GET_MODE_BITSIZE (mode) == BITS_PER_UNIT
5857 && byte_mode == VOIDmode)
5858 byte_mode = mode;
5860 if (GET_MODE_BITSIZE (mode) == BITS_PER_WORD
5861 && word_mode == VOIDmode)
5862 word_mode = mode;
5865 ptr_mode = mode_for_size (POINTER_SIZE, GET_MODE_CLASS (Pmode), 0);
5868 /* Create some permanent unique rtl objects shared between all functions. */
5870 void
5871 init_emit_once (void)
5873 int i;
5874 machine_mode mode;
5875 machine_mode double_mode;
5877 /* Initialize the CONST_INT, CONST_WIDE_INT, CONST_DOUBLE,
5878 CONST_FIXED, and memory attribute hash tables. */
5879 const_int_htab = hash_table<const_int_hasher>::create_ggc (37);
5881 #if TARGET_SUPPORTS_WIDE_INT
5882 const_wide_int_htab = hash_table<const_wide_int_hasher>::create_ggc (37);
5883 #endif
5884 const_double_htab = hash_table<const_double_hasher>::create_ggc (37);
5886 const_fixed_htab = hash_table<const_fixed_hasher>::create_ggc (37);
5888 reg_attrs_htab = hash_table<reg_attr_hasher>::create_ggc (37);
5890 #ifdef INIT_EXPANDERS
5891 /* This is to initialize {init|mark|free}_machine_status before the first
5892 call to push_function_context_to. This is needed by the Chill front
5893 end which calls push_function_context_to before the first call to
5894 init_function_start. */
5895 INIT_EXPANDERS;
5896 #endif
5898 /* Create the unique rtx's for certain rtx codes and operand values. */
5900 /* Don't use gen_rtx_CONST_INT here since gen_rtx_CONST_INT in this case
5901 tries to use these variables. */
5902 for (i = - MAX_SAVED_CONST_INT; i <= MAX_SAVED_CONST_INT; i++)
5903 const_int_rtx[i + MAX_SAVED_CONST_INT] =
5904 gen_rtx_raw_CONST_INT (VOIDmode, (HOST_WIDE_INT) i);
5906 if (STORE_FLAG_VALUE >= - MAX_SAVED_CONST_INT
5907 && STORE_FLAG_VALUE <= MAX_SAVED_CONST_INT)
5908 const_true_rtx = const_int_rtx[STORE_FLAG_VALUE + MAX_SAVED_CONST_INT];
5909 else
5910 const_true_rtx = gen_rtx_CONST_INT (VOIDmode, STORE_FLAG_VALUE);
5912 double_mode = mode_for_size (DOUBLE_TYPE_SIZE, MODE_FLOAT, 0);
5914 real_from_integer (&dconst0, double_mode, 0, SIGNED);
5915 real_from_integer (&dconst1, double_mode, 1, SIGNED);
5916 real_from_integer (&dconst2, double_mode, 2, SIGNED);
5918 dconstm1 = dconst1;
5919 dconstm1.sign = 1;
5921 dconsthalf = dconst1;
5922 SET_REAL_EXP (&dconsthalf, REAL_EXP (&dconsthalf) - 1);
5924 for (i = 0; i < 3; i++)
5926 const REAL_VALUE_TYPE *const r =
5927 (i == 0 ? &dconst0 : i == 1 ? &dconst1 : &dconst2);
5929 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
5930 mode != VOIDmode;
5931 mode = GET_MODE_WIDER_MODE (mode))
5932 const_tiny_rtx[i][(int) mode] =
5933 CONST_DOUBLE_FROM_REAL_VALUE (*r, mode);
5935 for (mode = GET_CLASS_NARROWEST_MODE (MODE_DECIMAL_FLOAT);
5936 mode != VOIDmode;
5937 mode = GET_MODE_WIDER_MODE (mode))
5938 const_tiny_rtx[i][(int) mode] =
5939 CONST_DOUBLE_FROM_REAL_VALUE (*r, mode);
5941 const_tiny_rtx[i][(int) VOIDmode] = GEN_INT (i);
5943 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
5944 mode != VOIDmode;
5945 mode = GET_MODE_WIDER_MODE (mode))
5946 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
5948 for (mode = MIN_MODE_PARTIAL_INT;
5949 mode <= MAX_MODE_PARTIAL_INT;
5950 mode = (machine_mode)((int)(mode) + 1))
5951 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
5954 const_tiny_rtx[3][(int) VOIDmode] = constm1_rtx;
5956 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
5957 mode != VOIDmode;
5958 mode = GET_MODE_WIDER_MODE (mode))
5959 const_tiny_rtx[3][(int) mode] = constm1_rtx;
5961 for (mode = MIN_MODE_PARTIAL_INT;
5962 mode <= MAX_MODE_PARTIAL_INT;
5963 mode = (machine_mode)((int)(mode) + 1))
5964 const_tiny_rtx[3][(int) mode] = constm1_rtx;
5966 for (mode = GET_CLASS_NARROWEST_MODE (MODE_COMPLEX_INT);
5967 mode != VOIDmode;
5968 mode = GET_MODE_WIDER_MODE (mode))
5970 rtx inner = const_tiny_rtx[0][(int)GET_MODE_INNER (mode)];
5971 const_tiny_rtx[0][(int) mode] = gen_rtx_CONCAT (mode, inner, inner);
5974 for (mode = GET_CLASS_NARROWEST_MODE (MODE_COMPLEX_FLOAT);
5975 mode != VOIDmode;
5976 mode = GET_MODE_WIDER_MODE (mode))
5978 rtx inner = const_tiny_rtx[0][(int)GET_MODE_INNER (mode)];
5979 const_tiny_rtx[0][(int) mode] = gen_rtx_CONCAT (mode, inner, inner);
5982 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_INT);
5983 mode != VOIDmode;
5984 mode = GET_MODE_WIDER_MODE (mode))
5986 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5987 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
5988 const_tiny_rtx[3][(int) mode] = gen_const_vector (mode, 3);
5991 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FLOAT);
5992 mode != VOIDmode;
5993 mode = GET_MODE_WIDER_MODE (mode))
5995 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5996 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
5999 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FRACT);
6000 mode != VOIDmode;
6001 mode = GET_MODE_WIDER_MODE (mode))
6003 FCONST0 (mode).data.high = 0;
6004 FCONST0 (mode).data.low = 0;
6005 FCONST0 (mode).mode = mode;
6006 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
6007 FCONST0 (mode), mode);
6010 for (mode = GET_CLASS_NARROWEST_MODE (MODE_UFRACT);
6011 mode != VOIDmode;
6012 mode = GET_MODE_WIDER_MODE (mode))
6014 FCONST0 (mode).data.high = 0;
6015 FCONST0 (mode).data.low = 0;
6016 FCONST0 (mode).mode = mode;
6017 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
6018 FCONST0 (mode), mode);
6021 for (mode = GET_CLASS_NARROWEST_MODE (MODE_ACCUM);
6022 mode != VOIDmode;
6023 mode = GET_MODE_WIDER_MODE (mode))
6025 FCONST0 (mode).data.high = 0;
6026 FCONST0 (mode).data.low = 0;
6027 FCONST0 (mode).mode = mode;
6028 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
6029 FCONST0 (mode), mode);
6031 /* We store the value 1. */
6032 FCONST1 (mode).data.high = 0;
6033 FCONST1 (mode).data.low = 0;
6034 FCONST1 (mode).mode = mode;
6035 FCONST1 (mode).data
6036 = double_int_one.lshift (GET_MODE_FBIT (mode),
6037 HOST_BITS_PER_DOUBLE_INT,
6038 SIGNED_FIXED_POINT_MODE_P (mode));
6039 const_tiny_rtx[1][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
6040 FCONST1 (mode), mode);
6043 for (mode = GET_CLASS_NARROWEST_MODE (MODE_UACCUM);
6044 mode != VOIDmode;
6045 mode = GET_MODE_WIDER_MODE (mode))
6047 FCONST0 (mode).data.high = 0;
6048 FCONST0 (mode).data.low = 0;
6049 FCONST0 (mode).mode = mode;
6050 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
6051 FCONST0 (mode), mode);
6053 /* We store the value 1. */
6054 FCONST1 (mode).data.high = 0;
6055 FCONST1 (mode).data.low = 0;
6056 FCONST1 (mode).mode = mode;
6057 FCONST1 (mode).data
6058 = double_int_one.lshift (GET_MODE_FBIT (mode),
6059 HOST_BITS_PER_DOUBLE_INT,
6060 SIGNED_FIXED_POINT_MODE_P (mode));
6061 const_tiny_rtx[1][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
6062 FCONST1 (mode), mode);
6065 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FRACT);
6066 mode != VOIDmode;
6067 mode = GET_MODE_WIDER_MODE (mode))
6069 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
6072 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_UFRACT);
6073 mode != VOIDmode;
6074 mode = GET_MODE_WIDER_MODE (mode))
6076 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
6079 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_ACCUM);
6080 mode != VOIDmode;
6081 mode = GET_MODE_WIDER_MODE (mode))
6083 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
6084 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
6087 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_UACCUM);
6088 mode != VOIDmode;
6089 mode = GET_MODE_WIDER_MODE (mode))
6091 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
6092 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
6095 for (i = (int) CCmode; i < (int) MAX_MACHINE_MODE; ++i)
6096 if (GET_MODE_CLASS ((machine_mode) i) == MODE_CC)
6097 const_tiny_rtx[0][i] = const0_rtx;
6099 const_tiny_rtx[0][(int) BImode] = const0_rtx;
6100 if (STORE_FLAG_VALUE == 1)
6101 const_tiny_rtx[1][(int) BImode] = const1_rtx;
6103 for (mode = GET_CLASS_NARROWEST_MODE (MODE_POINTER_BOUNDS);
6104 mode != VOIDmode;
6105 mode = GET_MODE_WIDER_MODE (mode))
6107 wide_int wi_zero = wi::zero (GET_MODE_PRECISION (mode));
6108 const_tiny_rtx[0][mode] = immed_wide_int_const (wi_zero, mode);
6111 pc_rtx = gen_rtx_fmt_ (PC, VOIDmode);
6112 ret_rtx = gen_rtx_fmt_ (RETURN, VOIDmode);
6113 simple_return_rtx = gen_rtx_fmt_ (SIMPLE_RETURN, VOIDmode);
6114 cc0_rtx = gen_rtx_fmt_ (CC0, VOIDmode);
6115 invalid_insn_rtx = gen_rtx_INSN (VOIDmode,
6116 /*prev_insn=*/NULL,
6117 /*next_insn=*/NULL,
6118 /*bb=*/NULL,
6119 /*pattern=*/NULL_RTX,
6120 /*location=*/-1,
6121 CODE_FOR_nothing,
6122 /*reg_notes=*/NULL_RTX);
6125 /* Produce exact duplicate of insn INSN after AFTER.
6126 Care updating of libcall regions if present. */
6128 rtx_insn *
6129 emit_copy_of_insn_after (rtx_insn *insn, rtx_insn *after)
6131 rtx_insn *new_rtx;
6132 rtx link;
6134 switch (GET_CODE (insn))
6136 case INSN:
6137 new_rtx = emit_insn_after (copy_insn (PATTERN (insn)), after);
6138 break;
6140 case JUMP_INSN:
6141 new_rtx = emit_jump_insn_after (copy_insn (PATTERN (insn)), after);
6142 CROSSING_JUMP_P (new_rtx) = CROSSING_JUMP_P (insn);
6143 break;
6145 case DEBUG_INSN:
6146 new_rtx = emit_debug_insn_after (copy_insn (PATTERN (insn)), after);
6147 break;
6149 case CALL_INSN:
6150 new_rtx = emit_call_insn_after (copy_insn (PATTERN (insn)), after);
6151 if (CALL_INSN_FUNCTION_USAGE (insn))
6152 CALL_INSN_FUNCTION_USAGE (new_rtx)
6153 = copy_insn (CALL_INSN_FUNCTION_USAGE (insn));
6154 SIBLING_CALL_P (new_rtx) = SIBLING_CALL_P (insn);
6155 RTL_CONST_CALL_P (new_rtx) = RTL_CONST_CALL_P (insn);
6156 RTL_PURE_CALL_P (new_rtx) = RTL_PURE_CALL_P (insn);
6157 RTL_LOOPING_CONST_OR_PURE_CALL_P (new_rtx)
6158 = RTL_LOOPING_CONST_OR_PURE_CALL_P (insn);
6159 break;
6161 default:
6162 gcc_unreachable ();
6165 /* Update LABEL_NUSES. */
6166 mark_jump_label (PATTERN (new_rtx), new_rtx, 0);
6168 INSN_LOCATION (new_rtx) = INSN_LOCATION (insn);
6170 /* If the old insn is frame related, then so is the new one. This is
6171 primarily needed for IA-64 unwind info which marks epilogue insns,
6172 which may be duplicated by the basic block reordering code. */
6173 RTX_FRAME_RELATED_P (new_rtx) = RTX_FRAME_RELATED_P (insn);
6175 /* Copy all REG_NOTES except REG_LABEL_OPERAND since mark_jump_label
6176 will make them. REG_LABEL_TARGETs are created there too, but are
6177 supposed to be sticky, so we copy them. */
6178 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
6179 if (REG_NOTE_KIND (link) != REG_LABEL_OPERAND)
6181 if (GET_CODE (link) == EXPR_LIST)
6182 add_reg_note (new_rtx, REG_NOTE_KIND (link),
6183 copy_insn_1 (XEXP (link, 0)));
6184 else
6185 add_shallow_copy_of_reg_note (new_rtx, link);
6188 INSN_CODE (new_rtx) = INSN_CODE (insn);
6189 return new_rtx;
6192 static GTY((deletable)) rtx hard_reg_clobbers [NUM_MACHINE_MODES][FIRST_PSEUDO_REGISTER];
6194 gen_hard_reg_clobber (machine_mode mode, unsigned int regno)
6196 if (hard_reg_clobbers[mode][regno])
6197 return hard_reg_clobbers[mode][regno];
6198 else
6199 return (hard_reg_clobbers[mode][regno] =
6200 gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (mode, regno)));
6203 location_t prologue_location;
6204 location_t epilogue_location;
6206 /* Hold current location information and last location information, so the
6207 datastructures are built lazily only when some instructions in given
6208 place are needed. */
6209 static location_t curr_location;
6211 /* Allocate insn location datastructure. */
6212 void
6213 insn_locations_init (void)
6215 prologue_location = epilogue_location = 0;
6216 curr_location = UNKNOWN_LOCATION;
6219 /* At the end of emit stage, clear current location. */
6220 void
6221 insn_locations_finalize (void)
6223 epilogue_location = curr_location;
6224 curr_location = UNKNOWN_LOCATION;
6227 /* Set current location. */
6228 void
6229 set_curr_insn_location (location_t location)
6231 curr_location = location;
6234 /* Get current location. */
6235 location_t
6236 curr_insn_location (void)
6238 return curr_location;
6241 /* Return lexical scope block insn belongs to. */
6242 tree
6243 insn_scope (const rtx_insn *insn)
6245 return LOCATION_BLOCK (INSN_LOCATION (insn));
6248 /* Return line number of the statement that produced this insn. */
6250 insn_line (const rtx_insn *insn)
6252 return LOCATION_LINE (INSN_LOCATION (insn));
6255 /* Return source file of the statement that produced this insn. */
6256 const char *
6257 insn_file (const rtx_insn *insn)
6259 return LOCATION_FILE (INSN_LOCATION (insn));
6262 /* Return expanded location of the statement that produced this insn. */
6263 expanded_location
6264 insn_location (const rtx_insn *insn)
6266 return expand_location (INSN_LOCATION (insn));
6269 /* Return true if memory model MODEL requires a pre-operation (release-style)
6270 barrier or a post-operation (acquire-style) barrier. While not universal,
6271 this function matches behavior of several targets. */
6273 bool
6274 need_atomic_barrier_p (enum memmodel model, bool pre)
6276 switch (model & MEMMODEL_BASE_MASK)
6278 case MEMMODEL_RELAXED:
6279 case MEMMODEL_CONSUME:
6280 return false;
6281 case MEMMODEL_RELEASE:
6282 return pre;
6283 case MEMMODEL_ACQUIRE:
6284 return !pre;
6285 case MEMMODEL_ACQ_REL:
6286 case MEMMODEL_SEQ_CST:
6287 return true;
6288 default:
6289 gcc_unreachable ();
6293 #include "gt-emit-rtl.h"