2013-11-12 Andrew MacLeod <amacleod@redhat.com>
[official-gcc.git] / gcc / tree-ssa-ccp.c
blob70b22053be7cba419f4b1020c8ed7f03650b0705
1 /* Conditional constant propagation pass for the GNU compiler.
2 Copyright (C) 2000-2013 Free Software Foundation, Inc.
3 Adapted from original RTL SSA-CCP by Daniel Berlin <dberlin@dberlin.org>
4 Adapted to GIMPLE trees by Diego Novillo <dnovillo@redhat.com>
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it
9 under the terms of the GNU General Public License as published by the
10 Free Software Foundation; either version 3, or (at your option) any
11 later version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT
14 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 /* Conditional constant propagation (CCP) is based on the SSA
23 propagation engine (tree-ssa-propagate.c). Constant assignments of
24 the form VAR = CST are propagated from the assignments into uses of
25 VAR, which in turn may generate new constants. The simulation uses
26 a four level lattice to keep track of constant values associated
27 with SSA names. Given an SSA name V_i, it may take one of the
28 following values:
30 UNINITIALIZED -> the initial state of the value. This value
31 is replaced with a correct initial value
32 the first time the value is used, so the
33 rest of the pass does not need to care about
34 it. Using this value simplifies initialization
35 of the pass, and prevents us from needlessly
36 scanning statements that are never reached.
38 UNDEFINED -> V_i is a local variable whose definition
39 has not been processed yet. Therefore we
40 don't yet know if its value is a constant
41 or not.
43 CONSTANT -> V_i has been found to hold a constant
44 value C.
46 VARYING -> V_i cannot take a constant value, or if it
47 does, it is not possible to determine it
48 at compile time.
50 The core of SSA-CCP is in ccp_visit_stmt and ccp_visit_phi_node:
52 1- In ccp_visit_stmt, we are interested in assignments whose RHS
53 evaluates into a constant and conditional jumps whose predicate
54 evaluates into a boolean true or false. When an assignment of
55 the form V_i = CONST is found, V_i's lattice value is set to
56 CONSTANT and CONST is associated with it. This causes the
57 propagation engine to add all the SSA edges coming out the
58 assignment into the worklists, so that statements that use V_i
59 can be visited.
61 If the statement is a conditional with a constant predicate, we
62 mark the outgoing edges as executable or not executable
63 depending on the predicate's value. This is then used when
64 visiting PHI nodes to know when a PHI argument can be ignored.
67 2- In ccp_visit_phi_node, if all the PHI arguments evaluate to the
68 same constant C, then the LHS of the PHI is set to C. This
69 evaluation is known as the "meet operation". Since one of the
70 goals of this evaluation is to optimistically return constant
71 values as often as possible, it uses two main short cuts:
73 - If an argument is flowing in through a non-executable edge, it
74 is ignored. This is useful in cases like this:
76 if (PRED)
77 a_9 = 3;
78 else
79 a_10 = 100;
80 a_11 = PHI (a_9, a_10)
82 If PRED is known to always evaluate to false, then we can
83 assume that a_11 will always take its value from a_10, meaning
84 that instead of consider it VARYING (a_9 and a_10 have
85 different values), we can consider it CONSTANT 100.
87 - If an argument has an UNDEFINED value, then it does not affect
88 the outcome of the meet operation. If a variable V_i has an
89 UNDEFINED value, it means that either its defining statement
90 hasn't been visited yet or V_i has no defining statement, in
91 which case the original symbol 'V' is being used
92 uninitialized. Since 'V' is a local variable, the compiler
93 may assume any initial value for it.
96 After propagation, every variable V_i that ends up with a lattice
97 value of CONSTANT will have the associated constant value in the
98 array CONST_VAL[i].VALUE. That is fed into substitute_and_fold for
99 final substitution and folding.
101 References:
103 Constant propagation with conditional branches,
104 Wegman and Zadeck, ACM TOPLAS 13(2):181-210.
106 Building an Optimizing Compiler,
107 Robert Morgan, Butterworth-Heinemann, 1998, Section 8.9.
109 Advanced Compiler Design and Implementation,
110 Steven Muchnick, Morgan Kaufmann, 1997, Section 12.6 */
112 #include "config.h"
113 #include "system.h"
114 #include "coretypes.h"
115 #include "tm.h"
116 #include "tree.h"
117 #include "flags.h"
118 #include "tm_p.h"
119 #include "basic-block.h"
120 #include "function.h"
121 #include "gimple-pretty-print.h"
122 #include "gimplify.h"
123 #include "gimple-ssa.h"
124 #include "tree-cfg.h"
125 #include "tree-phinodes.h"
126 #include "ssa-iterators.h"
127 #include "tree-ssanames.h"
128 #include "tree-pass.h"
129 #include "tree-ssa-propagate.h"
130 #include "value-prof.h"
131 #include "langhooks.h"
132 #include "target.h"
133 #include "diagnostic-core.h"
134 #include "dbgcnt.h"
135 #include "params.h"
136 #include "hash-table.h"
139 /* Possible lattice values. */
140 typedef enum
142 UNINITIALIZED,
143 UNDEFINED,
144 CONSTANT,
145 VARYING
146 } ccp_lattice_t;
148 struct prop_value_d {
149 /* Lattice value. */
150 ccp_lattice_t lattice_val;
152 /* Propagated value. */
153 tree value;
155 /* Mask that applies to the propagated value during CCP. For
156 X with a CONSTANT lattice value X & ~mask == value & ~mask. */
157 double_int mask;
160 typedef struct prop_value_d prop_value_t;
162 /* Array of propagated constant values. After propagation,
163 CONST_VAL[I].VALUE holds the constant value for SSA_NAME(I). If
164 the constant is held in an SSA name representing a memory store
165 (i.e., a VDEF), CONST_VAL[I].MEM_REF will contain the actual
166 memory reference used to store (i.e., the LHS of the assignment
167 doing the store). */
168 static prop_value_t *const_val;
169 static unsigned n_const_val;
171 static void canonicalize_value (prop_value_t *);
172 static bool ccp_fold_stmt (gimple_stmt_iterator *);
174 /* Dump constant propagation value VAL to file OUTF prefixed by PREFIX. */
176 static void
177 dump_lattice_value (FILE *outf, const char *prefix, prop_value_t val)
179 switch (val.lattice_val)
181 case UNINITIALIZED:
182 fprintf (outf, "%sUNINITIALIZED", prefix);
183 break;
184 case UNDEFINED:
185 fprintf (outf, "%sUNDEFINED", prefix);
186 break;
187 case VARYING:
188 fprintf (outf, "%sVARYING", prefix);
189 break;
190 case CONSTANT:
191 if (TREE_CODE (val.value) != INTEGER_CST
192 || val.mask.is_zero ())
194 fprintf (outf, "%sCONSTANT ", prefix);
195 print_generic_expr (outf, val.value, dump_flags);
197 else
199 double_int cval = tree_to_double_int (val.value).and_not (val.mask);
200 fprintf (outf, "%sCONSTANT " HOST_WIDE_INT_PRINT_DOUBLE_HEX,
201 prefix, cval.high, cval.low);
202 fprintf (outf, " (" HOST_WIDE_INT_PRINT_DOUBLE_HEX ")",
203 val.mask.high, val.mask.low);
205 break;
206 default:
207 gcc_unreachable ();
212 /* Print lattice value VAL to stderr. */
214 void debug_lattice_value (prop_value_t val);
216 DEBUG_FUNCTION void
217 debug_lattice_value (prop_value_t val)
219 dump_lattice_value (stderr, "", val);
220 fprintf (stderr, "\n");
224 /* Compute a default value for variable VAR and store it in the
225 CONST_VAL array. The following rules are used to get default
226 values:
228 1- Global and static variables that are declared constant are
229 considered CONSTANT.
231 2- Any other value is considered UNDEFINED. This is useful when
232 considering PHI nodes. PHI arguments that are undefined do not
233 change the constant value of the PHI node, which allows for more
234 constants to be propagated.
236 3- Variables defined by statements other than assignments and PHI
237 nodes are considered VARYING.
239 4- Initial values of variables that are not GIMPLE registers are
240 considered VARYING. */
242 static prop_value_t
243 get_default_value (tree var)
245 prop_value_t val = { UNINITIALIZED, NULL_TREE, { 0, 0 } };
246 gimple stmt;
248 stmt = SSA_NAME_DEF_STMT (var);
250 if (gimple_nop_p (stmt))
252 /* Variables defined by an empty statement are those used
253 before being initialized. If VAR is a local variable, we
254 can assume initially that it is UNDEFINED, otherwise we must
255 consider it VARYING. */
256 if (!virtual_operand_p (var)
257 && TREE_CODE (SSA_NAME_VAR (var)) == VAR_DECL)
258 val.lattice_val = UNDEFINED;
259 else
261 val.lattice_val = VARYING;
262 val.mask = double_int_minus_one;
263 if (flag_tree_bit_ccp)
265 double_int nonzero_bits = get_nonzero_bits (var);
266 double_int mask
267 = double_int::mask (TYPE_PRECISION (TREE_TYPE (var)));
268 if (nonzero_bits != double_int_minus_one && nonzero_bits != mask)
270 val.lattice_val = CONSTANT;
271 val.value = build_zero_cst (TREE_TYPE (var));
272 /* CCP wants the bits above precision set. */
273 val.mask = nonzero_bits | ~mask;
278 else if (is_gimple_assign (stmt))
280 tree cst;
281 if (gimple_assign_single_p (stmt)
282 && DECL_P (gimple_assign_rhs1 (stmt))
283 && (cst = get_symbol_constant_value (gimple_assign_rhs1 (stmt))))
285 val.lattice_val = CONSTANT;
286 val.value = cst;
288 else
290 /* Any other variable defined by an assignment is considered
291 UNDEFINED. */
292 val.lattice_val = UNDEFINED;
295 else if ((is_gimple_call (stmt)
296 && gimple_call_lhs (stmt) != NULL_TREE)
297 || gimple_code (stmt) == GIMPLE_PHI)
299 /* A variable defined by a call or a PHI node is considered
300 UNDEFINED. */
301 val.lattice_val = UNDEFINED;
303 else
305 /* Otherwise, VAR will never take on a constant value. */
306 val.lattice_val = VARYING;
307 val.mask = double_int_minus_one;
310 return val;
314 /* Get the constant value associated with variable VAR. */
316 static inline prop_value_t *
317 get_value (tree var)
319 prop_value_t *val;
321 if (const_val == NULL
322 || SSA_NAME_VERSION (var) >= n_const_val)
323 return NULL;
325 val = &const_val[SSA_NAME_VERSION (var)];
326 if (val->lattice_val == UNINITIALIZED)
327 *val = get_default_value (var);
329 canonicalize_value (val);
331 return val;
334 /* Return the constant tree value associated with VAR. */
336 static inline tree
337 get_constant_value (tree var)
339 prop_value_t *val;
340 if (TREE_CODE (var) != SSA_NAME)
342 if (is_gimple_min_invariant (var))
343 return var;
344 return NULL_TREE;
346 val = get_value (var);
347 if (val
348 && val->lattice_val == CONSTANT
349 && (TREE_CODE (val->value) != INTEGER_CST
350 || val->mask.is_zero ()))
351 return val->value;
352 return NULL_TREE;
355 /* Sets the value associated with VAR to VARYING. */
357 static inline void
358 set_value_varying (tree var)
360 prop_value_t *val = &const_val[SSA_NAME_VERSION (var)];
362 val->lattice_val = VARYING;
363 val->value = NULL_TREE;
364 val->mask = double_int_minus_one;
367 /* For float types, modify the value of VAL to make ccp work correctly
368 for non-standard values (-0, NaN):
370 If HONOR_SIGNED_ZEROS is false, and VAL = -0, we canonicalize it to 0.
371 If HONOR_NANS is false, and VAL is NaN, we canonicalize it to UNDEFINED.
372 This is to fix the following problem (see PR 29921): Suppose we have
374 x = 0.0 * y
376 and we set value of y to NaN. This causes value of x to be set to NaN.
377 When we later determine that y is in fact VARYING, fold uses the fact
378 that HONOR_NANS is false, and we try to change the value of x to 0,
379 causing an ICE. With HONOR_NANS being false, the real appearance of
380 NaN would cause undefined behavior, though, so claiming that y (and x)
381 are UNDEFINED initially is correct.
383 For other constants, make sure to drop TREE_OVERFLOW. */
385 static void
386 canonicalize_value (prop_value_t *val)
388 enum machine_mode mode;
389 tree type;
390 REAL_VALUE_TYPE d;
392 if (val->lattice_val != CONSTANT)
393 return;
395 if (TREE_OVERFLOW_P (val->value))
396 val->value = drop_tree_overflow (val->value);
398 if (TREE_CODE (val->value) != REAL_CST)
399 return;
401 d = TREE_REAL_CST (val->value);
402 type = TREE_TYPE (val->value);
403 mode = TYPE_MODE (type);
405 if (!HONOR_SIGNED_ZEROS (mode)
406 && REAL_VALUE_MINUS_ZERO (d))
408 val->value = build_real (type, dconst0);
409 return;
412 if (!HONOR_NANS (mode)
413 && REAL_VALUE_ISNAN (d))
415 val->lattice_val = UNDEFINED;
416 val->value = NULL;
417 return;
421 /* Return whether the lattice transition is valid. */
423 static bool
424 valid_lattice_transition (prop_value_t old_val, prop_value_t new_val)
426 /* Lattice transitions must always be monotonically increasing in
427 value. */
428 if (old_val.lattice_val < new_val.lattice_val)
429 return true;
431 if (old_val.lattice_val != new_val.lattice_val)
432 return false;
434 if (!old_val.value && !new_val.value)
435 return true;
437 /* Now both lattice values are CONSTANT. */
439 /* Allow transitioning from PHI <&x, not executable> == &x
440 to PHI <&x, &y> == common alignment. */
441 if (TREE_CODE (old_val.value) != INTEGER_CST
442 && TREE_CODE (new_val.value) == INTEGER_CST)
443 return true;
445 /* Bit-lattices have to agree in the still valid bits. */
446 if (TREE_CODE (old_val.value) == INTEGER_CST
447 && TREE_CODE (new_val.value) == INTEGER_CST)
448 return tree_to_double_int (old_val.value).and_not (new_val.mask)
449 == tree_to_double_int (new_val.value).and_not (new_val.mask);
451 /* Otherwise constant values have to agree. */
452 return operand_equal_p (old_val.value, new_val.value, 0);
455 /* Set the value for variable VAR to NEW_VAL. Return true if the new
456 value is different from VAR's previous value. */
458 static bool
459 set_lattice_value (tree var, prop_value_t new_val)
461 /* We can deal with old UNINITIALIZED values just fine here. */
462 prop_value_t *old_val = &const_val[SSA_NAME_VERSION (var)];
464 canonicalize_value (&new_val);
466 /* We have to be careful to not go up the bitwise lattice
467 represented by the mask.
468 ??? This doesn't seem to be the best place to enforce this. */
469 if (new_val.lattice_val == CONSTANT
470 && old_val->lattice_val == CONSTANT
471 && TREE_CODE (new_val.value) == INTEGER_CST
472 && TREE_CODE (old_val->value) == INTEGER_CST)
474 double_int diff;
475 diff = tree_to_double_int (new_val.value)
476 ^ tree_to_double_int (old_val->value);
477 new_val.mask = new_val.mask | old_val->mask | diff;
480 gcc_assert (valid_lattice_transition (*old_val, new_val));
482 /* If *OLD_VAL and NEW_VAL are the same, return false to inform the
483 caller that this was a non-transition. */
484 if (old_val->lattice_val != new_val.lattice_val
485 || (new_val.lattice_val == CONSTANT
486 && TREE_CODE (new_val.value) == INTEGER_CST
487 && (TREE_CODE (old_val->value) != INTEGER_CST
488 || new_val.mask != old_val->mask)))
490 /* ??? We would like to delay creation of INTEGER_CSTs from
491 partially constants here. */
493 if (dump_file && (dump_flags & TDF_DETAILS))
495 dump_lattice_value (dump_file, "Lattice value changed to ", new_val);
496 fprintf (dump_file, ". Adding SSA edges to worklist.\n");
499 *old_val = new_val;
501 gcc_assert (new_val.lattice_val != UNINITIALIZED);
502 return true;
505 return false;
508 static prop_value_t get_value_for_expr (tree, bool);
509 static prop_value_t bit_value_binop (enum tree_code, tree, tree, tree);
510 static void bit_value_binop_1 (enum tree_code, tree, double_int *, double_int *,
511 tree, double_int, double_int,
512 tree, double_int, double_int);
514 /* Return a double_int that can be used for bitwise simplifications
515 from VAL. */
517 static double_int
518 value_to_double_int (prop_value_t val)
520 if (val.value
521 && TREE_CODE (val.value) == INTEGER_CST)
522 return tree_to_double_int (val.value);
523 else
524 return double_int_zero;
527 /* Return the value for the address expression EXPR based on alignment
528 information. */
530 static prop_value_t
531 get_value_from_alignment (tree expr)
533 tree type = TREE_TYPE (expr);
534 prop_value_t val;
535 unsigned HOST_WIDE_INT bitpos;
536 unsigned int align;
538 gcc_assert (TREE_CODE (expr) == ADDR_EXPR);
540 get_pointer_alignment_1 (expr, &align, &bitpos);
541 val.mask = (POINTER_TYPE_P (type) || TYPE_UNSIGNED (type)
542 ? double_int::mask (TYPE_PRECISION (type))
543 : double_int_minus_one)
544 .and_not (double_int::from_uhwi (align / BITS_PER_UNIT - 1));
545 val.lattice_val = val.mask.is_minus_one () ? VARYING : CONSTANT;
546 if (val.lattice_val == CONSTANT)
547 val.value
548 = double_int_to_tree (type,
549 double_int::from_uhwi (bitpos / BITS_PER_UNIT));
550 else
551 val.value = NULL_TREE;
553 return val;
556 /* Return the value for the tree operand EXPR. If FOR_BITS_P is true
557 return constant bits extracted from alignment information for
558 invariant addresses. */
560 static prop_value_t
561 get_value_for_expr (tree expr, bool for_bits_p)
563 prop_value_t val;
565 if (TREE_CODE (expr) == SSA_NAME)
567 val = *get_value (expr);
568 if (for_bits_p
569 && val.lattice_val == CONSTANT
570 && TREE_CODE (val.value) == ADDR_EXPR)
571 val = get_value_from_alignment (val.value);
573 else if (is_gimple_min_invariant (expr)
574 && (!for_bits_p || TREE_CODE (expr) != ADDR_EXPR))
576 val.lattice_val = CONSTANT;
577 val.value = expr;
578 val.mask = double_int_zero;
579 canonicalize_value (&val);
581 else if (TREE_CODE (expr) == ADDR_EXPR)
582 val = get_value_from_alignment (expr);
583 else
585 val.lattice_val = VARYING;
586 val.mask = double_int_minus_one;
587 val.value = NULL_TREE;
589 return val;
592 /* Return the likely CCP lattice value for STMT.
594 If STMT has no operands, then return CONSTANT.
596 Else if undefinedness of operands of STMT cause its value to be
597 undefined, then return UNDEFINED.
599 Else if any operands of STMT are constants, then return CONSTANT.
601 Else return VARYING. */
603 static ccp_lattice_t
604 likely_value (gimple stmt)
606 bool has_constant_operand, has_undefined_operand, all_undefined_operands;
607 tree use;
608 ssa_op_iter iter;
609 unsigned i;
611 enum gimple_code code = gimple_code (stmt);
613 /* This function appears to be called only for assignments, calls,
614 conditionals, and switches, due to the logic in visit_stmt. */
615 gcc_assert (code == GIMPLE_ASSIGN
616 || code == GIMPLE_CALL
617 || code == GIMPLE_COND
618 || code == GIMPLE_SWITCH);
620 /* If the statement has volatile operands, it won't fold to a
621 constant value. */
622 if (gimple_has_volatile_ops (stmt))
623 return VARYING;
625 /* Arrive here for more complex cases. */
626 has_constant_operand = false;
627 has_undefined_operand = false;
628 all_undefined_operands = true;
629 FOR_EACH_SSA_TREE_OPERAND (use, stmt, iter, SSA_OP_USE)
631 prop_value_t *val = get_value (use);
633 if (val->lattice_val == UNDEFINED)
634 has_undefined_operand = true;
635 else
636 all_undefined_operands = false;
638 if (val->lattice_val == CONSTANT)
639 has_constant_operand = true;
642 /* There may be constants in regular rhs operands. For calls we
643 have to ignore lhs, fndecl and static chain, otherwise only
644 the lhs. */
645 for (i = (is_gimple_call (stmt) ? 2 : 0) + gimple_has_lhs (stmt);
646 i < gimple_num_ops (stmt); ++i)
648 tree op = gimple_op (stmt, i);
649 if (!op || TREE_CODE (op) == SSA_NAME)
650 continue;
651 if (is_gimple_min_invariant (op))
652 has_constant_operand = true;
655 if (has_constant_operand)
656 all_undefined_operands = false;
658 if (has_undefined_operand
659 && code == GIMPLE_CALL
660 && gimple_call_internal_p (stmt))
661 switch (gimple_call_internal_fn (stmt))
663 /* These 3 builtins use the first argument just as a magic
664 way how to find out a decl uid. */
665 case IFN_GOMP_SIMD_LANE:
666 case IFN_GOMP_SIMD_VF:
667 case IFN_GOMP_SIMD_LAST_LANE:
668 has_undefined_operand = false;
669 break;
670 default:
671 break;
674 /* If the operation combines operands like COMPLEX_EXPR make sure to
675 not mark the result UNDEFINED if only one part of the result is
676 undefined. */
677 if (has_undefined_operand && all_undefined_operands)
678 return UNDEFINED;
679 else if (code == GIMPLE_ASSIGN && has_undefined_operand)
681 switch (gimple_assign_rhs_code (stmt))
683 /* Unary operators are handled with all_undefined_operands. */
684 case PLUS_EXPR:
685 case MINUS_EXPR:
686 case POINTER_PLUS_EXPR:
687 /* Not MIN_EXPR, MAX_EXPR. One VARYING operand may be selected.
688 Not bitwise operators, one VARYING operand may specify the
689 result completely. Not logical operators for the same reason.
690 Not COMPLEX_EXPR as one VARYING operand makes the result partly
691 not UNDEFINED. Not *DIV_EXPR, comparisons and shifts because
692 the undefined operand may be promoted. */
693 return UNDEFINED;
695 case ADDR_EXPR:
696 /* If any part of an address is UNDEFINED, like the index
697 of an ARRAY_EXPR, then treat the result as UNDEFINED. */
698 return UNDEFINED;
700 default:
704 /* If there was an UNDEFINED operand but the result may be not UNDEFINED
705 fall back to CONSTANT. During iteration UNDEFINED may still drop
706 to CONSTANT. */
707 if (has_undefined_operand)
708 return CONSTANT;
710 /* We do not consider virtual operands here -- load from read-only
711 memory may have only VARYING virtual operands, but still be
712 constant. */
713 if (has_constant_operand
714 || gimple_references_memory_p (stmt))
715 return CONSTANT;
717 return VARYING;
720 /* Returns true if STMT cannot be constant. */
722 static bool
723 surely_varying_stmt_p (gimple stmt)
725 /* If the statement has operands that we cannot handle, it cannot be
726 constant. */
727 if (gimple_has_volatile_ops (stmt))
728 return true;
730 /* If it is a call and does not return a value or is not a
731 builtin and not an indirect call, it is varying. */
732 if (is_gimple_call (stmt))
734 tree fndecl;
735 if (!gimple_call_lhs (stmt)
736 || ((fndecl = gimple_call_fndecl (stmt)) != NULL_TREE
737 && !DECL_BUILT_IN (fndecl)))
738 return true;
741 /* Any other store operation is not interesting. */
742 else if (gimple_vdef (stmt))
743 return true;
745 /* Anything other than assignments and conditional jumps are not
746 interesting for CCP. */
747 if (gimple_code (stmt) != GIMPLE_ASSIGN
748 && gimple_code (stmt) != GIMPLE_COND
749 && gimple_code (stmt) != GIMPLE_SWITCH
750 && gimple_code (stmt) != GIMPLE_CALL)
751 return true;
753 return false;
756 /* Initialize local data structures for CCP. */
758 static void
759 ccp_initialize (void)
761 basic_block bb;
763 n_const_val = num_ssa_names;
764 const_val = XCNEWVEC (prop_value_t, n_const_val);
766 /* Initialize simulation flags for PHI nodes and statements. */
767 FOR_EACH_BB (bb)
769 gimple_stmt_iterator i;
771 for (i = gsi_start_bb (bb); !gsi_end_p (i); gsi_next (&i))
773 gimple stmt = gsi_stmt (i);
774 bool is_varying;
776 /* If the statement is a control insn, then we do not
777 want to avoid simulating the statement once. Failure
778 to do so means that those edges will never get added. */
779 if (stmt_ends_bb_p (stmt))
780 is_varying = false;
781 else
782 is_varying = surely_varying_stmt_p (stmt);
784 if (is_varying)
786 tree def;
787 ssa_op_iter iter;
789 /* If the statement will not produce a constant, mark
790 all its outputs VARYING. */
791 FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_ALL_DEFS)
792 set_value_varying (def);
794 prop_set_simulate_again (stmt, !is_varying);
798 /* Now process PHI nodes. We never clear the simulate_again flag on
799 phi nodes, since we do not know which edges are executable yet,
800 except for phi nodes for virtual operands when we do not do store ccp. */
801 FOR_EACH_BB (bb)
803 gimple_stmt_iterator i;
805 for (i = gsi_start_phis (bb); !gsi_end_p (i); gsi_next (&i))
807 gimple phi = gsi_stmt (i);
809 if (virtual_operand_p (gimple_phi_result (phi)))
810 prop_set_simulate_again (phi, false);
811 else
812 prop_set_simulate_again (phi, true);
817 /* Debug count support. Reset the values of ssa names
818 VARYING when the total number ssa names analyzed is
819 beyond the debug count specified. */
821 static void
822 do_dbg_cnt (void)
824 unsigned i;
825 for (i = 0; i < num_ssa_names; i++)
827 if (!dbg_cnt (ccp))
829 const_val[i].lattice_val = VARYING;
830 const_val[i].mask = double_int_minus_one;
831 const_val[i].value = NULL_TREE;
837 /* Do final substitution of propagated values, cleanup the flowgraph and
838 free allocated storage.
840 Return TRUE when something was optimized. */
842 static bool
843 ccp_finalize (void)
845 bool something_changed;
846 unsigned i;
848 do_dbg_cnt ();
850 /* Derive alignment and misalignment information from partially
851 constant pointers in the lattice or nonzero bits from partially
852 constant integers. */
853 for (i = 1; i < num_ssa_names; ++i)
855 tree name = ssa_name (i);
856 prop_value_t *val;
857 unsigned int tem, align;
859 if (!name
860 || (!POINTER_TYPE_P (TREE_TYPE (name))
861 && (!INTEGRAL_TYPE_P (TREE_TYPE (name))
862 /* Don't record nonzero bits before IPA to avoid
863 using too much memory. */
864 || first_pass_instance)))
865 continue;
867 val = get_value (name);
868 if (val->lattice_val != CONSTANT
869 || TREE_CODE (val->value) != INTEGER_CST)
870 continue;
872 if (POINTER_TYPE_P (TREE_TYPE (name)))
874 /* Trailing mask bits specify the alignment, trailing value
875 bits the misalignment. */
876 tem = val->mask.low;
877 align = (tem & -tem);
878 if (align > 1)
879 set_ptr_info_alignment (get_ptr_info (name), align,
880 (TREE_INT_CST_LOW (val->value)
881 & (align - 1)));
883 else
885 double_int nonzero_bits = val->mask;
886 nonzero_bits = nonzero_bits | tree_to_double_int (val->value);
887 nonzero_bits &= get_nonzero_bits (name);
888 set_nonzero_bits (name, nonzero_bits);
892 /* Perform substitutions based on the known constant values. */
893 something_changed = substitute_and_fold (get_constant_value,
894 ccp_fold_stmt, true);
896 free (const_val);
897 const_val = NULL;
898 return something_changed;;
902 /* Compute the meet operator between *VAL1 and *VAL2. Store the result
903 in VAL1.
905 any M UNDEFINED = any
906 any M VARYING = VARYING
907 Ci M Cj = Ci if (i == j)
908 Ci M Cj = VARYING if (i != j)
911 static void
912 ccp_lattice_meet (prop_value_t *val1, prop_value_t *val2)
914 if (val1->lattice_val == UNDEFINED)
916 /* UNDEFINED M any = any */
917 *val1 = *val2;
919 else if (val2->lattice_val == UNDEFINED)
921 /* any M UNDEFINED = any
922 Nothing to do. VAL1 already contains the value we want. */
925 else if (val1->lattice_val == VARYING
926 || val2->lattice_val == VARYING)
928 /* any M VARYING = VARYING. */
929 val1->lattice_val = VARYING;
930 val1->mask = double_int_minus_one;
931 val1->value = NULL_TREE;
933 else if (val1->lattice_val == CONSTANT
934 && val2->lattice_val == CONSTANT
935 && TREE_CODE (val1->value) == INTEGER_CST
936 && TREE_CODE (val2->value) == INTEGER_CST)
938 /* Ci M Cj = Ci if (i == j)
939 Ci M Cj = VARYING if (i != j)
941 For INTEGER_CSTs mask unequal bits. If no equal bits remain,
942 drop to varying. */
943 val1->mask = val1->mask | val2->mask
944 | (tree_to_double_int (val1->value)
945 ^ tree_to_double_int (val2->value));
946 if (val1->mask.is_minus_one ())
948 val1->lattice_val = VARYING;
949 val1->value = NULL_TREE;
952 else if (val1->lattice_val == CONSTANT
953 && val2->lattice_val == CONSTANT
954 && simple_cst_equal (val1->value, val2->value) == 1)
956 /* Ci M Cj = Ci if (i == j)
957 Ci M Cj = VARYING if (i != j)
959 VAL1 already contains the value we want for equivalent values. */
961 else if (val1->lattice_val == CONSTANT
962 && val2->lattice_val == CONSTANT
963 && (TREE_CODE (val1->value) == ADDR_EXPR
964 || TREE_CODE (val2->value) == ADDR_EXPR))
966 /* When not equal addresses are involved try meeting for
967 alignment. */
968 prop_value_t tem = *val2;
969 if (TREE_CODE (val1->value) == ADDR_EXPR)
970 *val1 = get_value_for_expr (val1->value, true);
971 if (TREE_CODE (val2->value) == ADDR_EXPR)
972 tem = get_value_for_expr (val2->value, true);
973 ccp_lattice_meet (val1, &tem);
975 else
977 /* Any other combination is VARYING. */
978 val1->lattice_val = VARYING;
979 val1->mask = double_int_minus_one;
980 val1->value = NULL_TREE;
985 /* Loop through the PHI_NODE's parameters for BLOCK and compare their
986 lattice values to determine PHI_NODE's lattice value. The value of a
987 PHI node is determined calling ccp_lattice_meet with all the arguments
988 of the PHI node that are incoming via executable edges. */
990 static enum ssa_prop_result
991 ccp_visit_phi_node (gimple phi)
993 unsigned i;
994 prop_value_t *old_val, new_val;
996 if (dump_file && (dump_flags & TDF_DETAILS))
998 fprintf (dump_file, "\nVisiting PHI node: ");
999 print_gimple_stmt (dump_file, phi, 0, dump_flags);
1002 old_val = get_value (gimple_phi_result (phi));
1003 switch (old_val->lattice_val)
1005 case VARYING:
1006 return SSA_PROP_VARYING;
1008 case CONSTANT:
1009 new_val = *old_val;
1010 break;
1012 case UNDEFINED:
1013 new_val.lattice_val = UNDEFINED;
1014 new_val.value = NULL_TREE;
1015 break;
1017 default:
1018 gcc_unreachable ();
1021 for (i = 0; i < gimple_phi_num_args (phi); i++)
1023 /* Compute the meet operator over all the PHI arguments flowing
1024 through executable edges. */
1025 edge e = gimple_phi_arg_edge (phi, i);
1027 if (dump_file && (dump_flags & TDF_DETAILS))
1029 fprintf (dump_file,
1030 "\n Argument #%d (%d -> %d %sexecutable)\n",
1031 i, e->src->index, e->dest->index,
1032 (e->flags & EDGE_EXECUTABLE) ? "" : "not ");
1035 /* If the incoming edge is executable, Compute the meet operator for
1036 the existing value of the PHI node and the current PHI argument. */
1037 if (e->flags & EDGE_EXECUTABLE)
1039 tree arg = gimple_phi_arg (phi, i)->def;
1040 prop_value_t arg_val = get_value_for_expr (arg, false);
1042 ccp_lattice_meet (&new_val, &arg_val);
1044 if (dump_file && (dump_flags & TDF_DETAILS))
1046 fprintf (dump_file, "\t");
1047 print_generic_expr (dump_file, arg, dump_flags);
1048 dump_lattice_value (dump_file, "\tValue: ", arg_val);
1049 fprintf (dump_file, "\n");
1052 if (new_val.lattice_val == VARYING)
1053 break;
1057 if (dump_file && (dump_flags & TDF_DETAILS))
1059 dump_lattice_value (dump_file, "\n PHI node value: ", new_val);
1060 fprintf (dump_file, "\n\n");
1063 /* Make the transition to the new value. */
1064 if (set_lattice_value (gimple_phi_result (phi), new_val))
1066 if (new_val.lattice_val == VARYING)
1067 return SSA_PROP_VARYING;
1068 else
1069 return SSA_PROP_INTERESTING;
1071 else
1072 return SSA_PROP_NOT_INTERESTING;
1075 /* Return the constant value for OP or OP otherwise. */
1077 static tree
1078 valueize_op (tree op)
1080 if (TREE_CODE (op) == SSA_NAME)
1082 tree tem = get_constant_value (op);
1083 if (tem)
1084 return tem;
1086 return op;
1089 /* CCP specific front-end to the non-destructive constant folding
1090 routines.
1092 Attempt to simplify the RHS of STMT knowing that one or more
1093 operands are constants.
1095 If simplification is possible, return the simplified RHS,
1096 otherwise return the original RHS or NULL_TREE. */
1098 static tree
1099 ccp_fold (gimple stmt)
1101 location_t loc = gimple_location (stmt);
1102 switch (gimple_code (stmt))
1104 case GIMPLE_COND:
1106 /* Handle comparison operators that can appear in GIMPLE form. */
1107 tree op0 = valueize_op (gimple_cond_lhs (stmt));
1108 tree op1 = valueize_op (gimple_cond_rhs (stmt));
1109 enum tree_code code = gimple_cond_code (stmt);
1110 return fold_binary_loc (loc, code, boolean_type_node, op0, op1);
1113 case GIMPLE_SWITCH:
1115 /* Return the constant switch index. */
1116 return valueize_op (gimple_switch_index (stmt));
1119 case GIMPLE_ASSIGN:
1120 case GIMPLE_CALL:
1121 return gimple_fold_stmt_to_constant_1 (stmt, valueize_op);
1123 default:
1124 gcc_unreachable ();
1128 /* Apply the operation CODE in type TYPE to the value, mask pair
1129 RVAL and RMASK representing a value of type RTYPE and set
1130 the value, mask pair *VAL and *MASK to the result. */
1132 static void
1133 bit_value_unop_1 (enum tree_code code, tree type,
1134 double_int *val, double_int *mask,
1135 tree rtype, double_int rval, double_int rmask)
1137 switch (code)
1139 case BIT_NOT_EXPR:
1140 *mask = rmask;
1141 *val = ~rval;
1142 break;
1144 case NEGATE_EXPR:
1146 double_int temv, temm;
1147 /* Return ~rval + 1. */
1148 bit_value_unop_1 (BIT_NOT_EXPR, type, &temv, &temm, type, rval, rmask);
1149 bit_value_binop_1 (PLUS_EXPR, type, val, mask,
1150 type, temv, temm,
1151 type, double_int_one, double_int_zero);
1152 break;
1155 CASE_CONVERT:
1157 bool uns;
1159 /* First extend mask and value according to the original type. */
1160 uns = TYPE_UNSIGNED (rtype);
1161 *mask = rmask.ext (TYPE_PRECISION (rtype), uns);
1162 *val = rval.ext (TYPE_PRECISION (rtype), uns);
1164 /* Then extend mask and value according to the target type. */
1165 uns = TYPE_UNSIGNED (type);
1166 *mask = (*mask).ext (TYPE_PRECISION (type), uns);
1167 *val = (*val).ext (TYPE_PRECISION (type), uns);
1168 break;
1171 default:
1172 *mask = double_int_minus_one;
1173 break;
1177 /* Apply the operation CODE in type TYPE to the value, mask pairs
1178 R1VAL, R1MASK and R2VAL, R2MASK representing a values of type R1TYPE
1179 and R2TYPE and set the value, mask pair *VAL and *MASK to the result. */
1181 static void
1182 bit_value_binop_1 (enum tree_code code, tree type,
1183 double_int *val, double_int *mask,
1184 tree r1type, double_int r1val, double_int r1mask,
1185 tree r2type, double_int r2val, double_int r2mask)
1187 bool uns = TYPE_UNSIGNED (type);
1188 /* Assume we'll get a constant result. Use an initial varying value,
1189 we fall back to varying in the end if necessary. */
1190 *mask = double_int_minus_one;
1191 switch (code)
1193 case BIT_AND_EXPR:
1194 /* The mask is constant where there is a known not
1195 set bit, (m1 | m2) & ((v1 | m1) & (v2 | m2)) */
1196 *mask = (r1mask | r2mask) & (r1val | r1mask) & (r2val | r2mask);
1197 *val = r1val & r2val;
1198 break;
1200 case BIT_IOR_EXPR:
1201 /* The mask is constant where there is a known
1202 set bit, (m1 | m2) & ~((v1 & ~m1) | (v2 & ~m2)). */
1203 *mask = (r1mask | r2mask)
1204 .and_not (r1val.and_not (r1mask) | r2val.and_not (r2mask));
1205 *val = r1val | r2val;
1206 break;
1208 case BIT_XOR_EXPR:
1209 /* m1 | m2 */
1210 *mask = r1mask | r2mask;
1211 *val = r1val ^ r2val;
1212 break;
1214 case LROTATE_EXPR:
1215 case RROTATE_EXPR:
1216 if (r2mask.is_zero ())
1218 HOST_WIDE_INT shift = r2val.low;
1219 if (code == RROTATE_EXPR)
1220 shift = -shift;
1221 *mask = r1mask.lrotate (shift, TYPE_PRECISION (type));
1222 *val = r1val.lrotate (shift, TYPE_PRECISION (type));
1224 break;
1226 case LSHIFT_EXPR:
1227 case RSHIFT_EXPR:
1228 /* ??? We can handle partially known shift counts if we know
1229 its sign. That way we can tell that (x << (y | 8)) & 255
1230 is zero. */
1231 if (r2mask.is_zero ())
1233 HOST_WIDE_INT shift = r2val.low;
1234 if (code == RSHIFT_EXPR)
1235 shift = -shift;
1236 /* We need to know if we are doing a left or a right shift
1237 to properly shift in zeros for left shift and unsigned
1238 right shifts and the sign bit for signed right shifts.
1239 For signed right shifts we shift in varying in case
1240 the sign bit was varying. */
1241 if (shift > 0)
1243 *mask = r1mask.llshift (shift, TYPE_PRECISION (type));
1244 *val = r1val.llshift (shift, TYPE_PRECISION (type));
1246 else if (shift < 0)
1248 shift = -shift;
1249 *mask = r1mask.rshift (shift, TYPE_PRECISION (type), !uns);
1250 *val = r1val.rshift (shift, TYPE_PRECISION (type), !uns);
1252 else
1254 *mask = r1mask;
1255 *val = r1val;
1258 break;
1260 case PLUS_EXPR:
1261 case POINTER_PLUS_EXPR:
1263 double_int lo, hi;
1264 /* Do the addition with unknown bits set to zero, to give carry-ins of
1265 zero wherever possible. */
1266 lo = r1val.and_not (r1mask) + r2val.and_not (r2mask);
1267 lo = lo.ext (TYPE_PRECISION (type), uns);
1268 /* Do the addition with unknown bits set to one, to give carry-ins of
1269 one wherever possible. */
1270 hi = (r1val | r1mask) + (r2val | r2mask);
1271 hi = hi.ext (TYPE_PRECISION (type), uns);
1272 /* Each bit in the result is known if (a) the corresponding bits in
1273 both inputs are known, and (b) the carry-in to that bit position
1274 is known. We can check condition (b) by seeing if we got the same
1275 result with minimised carries as with maximised carries. */
1276 *mask = r1mask | r2mask | (lo ^ hi);
1277 *mask = (*mask).ext (TYPE_PRECISION (type), uns);
1278 /* It shouldn't matter whether we choose lo or hi here. */
1279 *val = lo;
1280 break;
1283 case MINUS_EXPR:
1285 double_int temv, temm;
1286 bit_value_unop_1 (NEGATE_EXPR, r2type, &temv, &temm,
1287 r2type, r2val, r2mask);
1288 bit_value_binop_1 (PLUS_EXPR, type, val, mask,
1289 r1type, r1val, r1mask,
1290 r2type, temv, temm);
1291 break;
1294 case MULT_EXPR:
1296 /* Just track trailing zeros in both operands and transfer
1297 them to the other. */
1298 int r1tz = (r1val | r1mask).trailing_zeros ();
1299 int r2tz = (r2val | r2mask).trailing_zeros ();
1300 if (r1tz + r2tz >= HOST_BITS_PER_DOUBLE_INT)
1302 *mask = double_int_zero;
1303 *val = double_int_zero;
1305 else if (r1tz + r2tz > 0)
1307 *mask = ~double_int::mask (r1tz + r2tz);
1308 *mask = (*mask).ext (TYPE_PRECISION (type), uns);
1309 *val = double_int_zero;
1311 break;
1314 case EQ_EXPR:
1315 case NE_EXPR:
1317 double_int m = r1mask | r2mask;
1318 if (r1val.and_not (m) != r2val.and_not (m))
1320 *mask = double_int_zero;
1321 *val = ((code == EQ_EXPR) ? double_int_zero : double_int_one);
1323 else
1325 /* We know the result of a comparison is always one or zero. */
1326 *mask = double_int_one;
1327 *val = double_int_zero;
1329 break;
1332 case GE_EXPR:
1333 case GT_EXPR:
1335 double_int tem = r1val;
1336 r1val = r2val;
1337 r2val = tem;
1338 tem = r1mask;
1339 r1mask = r2mask;
1340 r2mask = tem;
1341 code = swap_tree_comparison (code);
1343 /* Fallthru. */
1344 case LT_EXPR:
1345 case LE_EXPR:
1347 int minmax, maxmin;
1348 /* If the most significant bits are not known we know nothing. */
1349 if (r1mask.is_negative () || r2mask.is_negative ())
1350 break;
1352 /* For comparisons the signedness is in the comparison operands. */
1353 uns = TYPE_UNSIGNED (r1type);
1355 /* If we know the most significant bits we know the values
1356 value ranges by means of treating varying bits as zero
1357 or one. Do a cross comparison of the max/min pairs. */
1358 maxmin = (r1val | r1mask).cmp (r2val.and_not (r2mask), uns);
1359 minmax = r1val.and_not (r1mask).cmp (r2val | r2mask, uns);
1360 if (maxmin < 0) /* r1 is less than r2. */
1362 *mask = double_int_zero;
1363 *val = double_int_one;
1365 else if (minmax > 0) /* r1 is not less or equal to r2. */
1367 *mask = double_int_zero;
1368 *val = double_int_zero;
1370 else if (maxmin == minmax) /* r1 and r2 are equal. */
1372 /* This probably should never happen as we'd have
1373 folded the thing during fully constant value folding. */
1374 *mask = double_int_zero;
1375 *val = (code == LE_EXPR ? double_int_one : double_int_zero);
1377 else
1379 /* We know the result of a comparison is always one or zero. */
1380 *mask = double_int_one;
1381 *val = double_int_zero;
1383 break;
1386 default:;
1390 /* Return the propagation value when applying the operation CODE to
1391 the value RHS yielding type TYPE. */
1393 static prop_value_t
1394 bit_value_unop (enum tree_code code, tree type, tree rhs)
1396 prop_value_t rval = get_value_for_expr (rhs, true);
1397 double_int value, mask;
1398 prop_value_t val;
1400 if (rval.lattice_val == UNDEFINED)
1401 return rval;
1403 gcc_assert ((rval.lattice_val == CONSTANT
1404 && TREE_CODE (rval.value) == INTEGER_CST)
1405 || rval.mask.is_minus_one ());
1406 bit_value_unop_1 (code, type, &value, &mask,
1407 TREE_TYPE (rhs), value_to_double_int (rval), rval.mask);
1408 if (!mask.is_minus_one ())
1410 val.lattice_val = CONSTANT;
1411 val.mask = mask;
1412 /* ??? Delay building trees here. */
1413 val.value = double_int_to_tree (type, value);
1415 else
1417 val.lattice_val = VARYING;
1418 val.value = NULL_TREE;
1419 val.mask = double_int_minus_one;
1421 return val;
1424 /* Return the propagation value when applying the operation CODE to
1425 the values RHS1 and RHS2 yielding type TYPE. */
1427 static prop_value_t
1428 bit_value_binop (enum tree_code code, tree type, tree rhs1, tree rhs2)
1430 prop_value_t r1val = get_value_for_expr (rhs1, true);
1431 prop_value_t r2val = get_value_for_expr (rhs2, true);
1432 double_int value, mask;
1433 prop_value_t val;
1435 if (r1val.lattice_val == UNDEFINED
1436 || r2val.lattice_val == UNDEFINED)
1438 val.lattice_val = VARYING;
1439 val.value = NULL_TREE;
1440 val.mask = double_int_minus_one;
1441 return val;
1444 gcc_assert ((r1val.lattice_val == CONSTANT
1445 && TREE_CODE (r1val.value) == INTEGER_CST)
1446 || r1val.mask.is_minus_one ());
1447 gcc_assert ((r2val.lattice_val == CONSTANT
1448 && TREE_CODE (r2val.value) == INTEGER_CST)
1449 || r2val.mask.is_minus_one ());
1450 bit_value_binop_1 (code, type, &value, &mask,
1451 TREE_TYPE (rhs1), value_to_double_int (r1val), r1val.mask,
1452 TREE_TYPE (rhs2), value_to_double_int (r2val), r2val.mask);
1453 if (!mask.is_minus_one ())
1455 val.lattice_val = CONSTANT;
1456 val.mask = mask;
1457 /* ??? Delay building trees here. */
1458 val.value = double_int_to_tree (type, value);
1460 else
1462 val.lattice_val = VARYING;
1463 val.value = NULL_TREE;
1464 val.mask = double_int_minus_one;
1466 return val;
1469 /* Return the propagation value when applying __builtin_assume_aligned to
1470 its arguments. */
1472 static prop_value_t
1473 bit_value_assume_aligned (gimple stmt)
1475 tree ptr = gimple_call_arg (stmt, 0), align, misalign = NULL_TREE;
1476 tree type = TREE_TYPE (ptr);
1477 unsigned HOST_WIDE_INT aligni, misaligni = 0;
1478 prop_value_t ptrval = get_value_for_expr (ptr, true);
1479 prop_value_t alignval;
1480 double_int value, mask;
1481 prop_value_t val;
1482 if (ptrval.lattice_val == UNDEFINED)
1483 return ptrval;
1484 gcc_assert ((ptrval.lattice_val == CONSTANT
1485 && TREE_CODE (ptrval.value) == INTEGER_CST)
1486 || ptrval.mask.is_minus_one ());
1487 align = gimple_call_arg (stmt, 1);
1488 if (!host_integerp (align, 1))
1489 return ptrval;
1490 aligni = tree_low_cst (align, 1);
1491 if (aligni <= 1
1492 || (aligni & (aligni - 1)) != 0)
1493 return ptrval;
1494 if (gimple_call_num_args (stmt) > 2)
1496 misalign = gimple_call_arg (stmt, 2);
1497 if (!host_integerp (misalign, 1))
1498 return ptrval;
1499 misaligni = tree_low_cst (misalign, 1);
1500 if (misaligni >= aligni)
1501 return ptrval;
1503 align = build_int_cst_type (type, -aligni);
1504 alignval = get_value_for_expr (align, true);
1505 bit_value_binop_1 (BIT_AND_EXPR, type, &value, &mask,
1506 type, value_to_double_int (ptrval), ptrval.mask,
1507 type, value_to_double_int (alignval), alignval.mask);
1508 if (!mask.is_minus_one ())
1510 val.lattice_val = CONSTANT;
1511 val.mask = mask;
1512 gcc_assert ((mask.low & (aligni - 1)) == 0);
1513 gcc_assert ((value.low & (aligni - 1)) == 0);
1514 value.low |= misaligni;
1515 /* ??? Delay building trees here. */
1516 val.value = double_int_to_tree (type, value);
1518 else
1520 val.lattice_val = VARYING;
1521 val.value = NULL_TREE;
1522 val.mask = double_int_minus_one;
1524 return val;
1527 /* Evaluate statement STMT.
1528 Valid only for assignments, calls, conditionals, and switches. */
1530 static prop_value_t
1531 evaluate_stmt (gimple stmt)
1533 prop_value_t val;
1534 tree simplified = NULL_TREE;
1535 ccp_lattice_t likelyvalue = likely_value (stmt);
1536 bool is_constant = false;
1537 unsigned int align;
1539 if (dump_file && (dump_flags & TDF_DETAILS))
1541 fprintf (dump_file, "which is likely ");
1542 switch (likelyvalue)
1544 case CONSTANT:
1545 fprintf (dump_file, "CONSTANT");
1546 break;
1547 case UNDEFINED:
1548 fprintf (dump_file, "UNDEFINED");
1549 break;
1550 case VARYING:
1551 fprintf (dump_file, "VARYING");
1552 break;
1553 default:;
1555 fprintf (dump_file, "\n");
1558 /* If the statement is likely to have a CONSTANT result, then try
1559 to fold the statement to determine the constant value. */
1560 /* FIXME. This is the only place that we call ccp_fold.
1561 Since likely_value never returns CONSTANT for calls, we will
1562 not attempt to fold them, including builtins that may profit. */
1563 if (likelyvalue == CONSTANT)
1565 fold_defer_overflow_warnings ();
1566 simplified = ccp_fold (stmt);
1567 is_constant = simplified && is_gimple_min_invariant (simplified);
1568 fold_undefer_overflow_warnings (is_constant, stmt, 0);
1569 if (is_constant)
1571 /* The statement produced a constant value. */
1572 val.lattice_val = CONSTANT;
1573 val.value = simplified;
1574 val.mask = double_int_zero;
1577 /* If the statement is likely to have a VARYING result, then do not
1578 bother folding the statement. */
1579 else if (likelyvalue == VARYING)
1581 enum gimple_code code = gimple_code (stmt);
1582 if (code == GIMPLE_ASSIGN)
1584 enum tree_code subcode = gimple_assign_rhs_code (stmt);
1586 /* Other cases cannot satisfy is_gimple_min_invariant
1587 without folding. */
1588 if (get_gimple_rhs_class (subcode) == GIMPLE_SINGLE_RHS)
1589 simplified = gimple_assign_rhs1 (stmt);
1591 else if (code == GIMPLE_SWITCH)
1592 simplified = gimple_switch_index (stmt);
1593 else
1594 /* These cannot satisfy is_gimple_min_invariant without folding. */
1595 gcc_assert (code == GIMPLE_CALL || code == GIMPLE_COND);
1596 is_constant = simplified && is_gimple_min_invariant (simplified);
1597 if (is_constant)
1599 /* The statement produced a constant value. */
1600 val.lattice_val = CONSTANT;
1601 val.value = simplified;
1602 val.mask = double_int_zero;
1606 /* Resort to simplification for bitwise tracking. */
1607 if (flag_tree_bit_ccp
1608 && (likelyvalue == CONSTANT || is_gimple_call (stmt))
1609 && !is_constant)
1611 enum gimple_code code = gimple_code (stmt);
1612 val.lattice_val = VARYING;
1613 val.value = NULL_TREE;
1614 val.mask = double_int_minus_one;
1615 if (code == GIMPLE_ASSIGN)
1617 enum tree_code subcode = gimple_assign_rhs_code (stmt);
1618 tree rhs1 = gimple_assign_rhs1 (stmt);
1619 switch (get_gimple_rhs_class (subcode))
1621 case GIMPLE_SINGLE_RHS:
1622 if (INTEGRAL_TYPE_P (TREE_TYPE (rhs1))
1623 || POINTER_TYPE_P (TREE_TYPE (rhs1)))
1624 val = get_value_for_expr (rhs1, true);
1625 break;
1627 case GIMPLE_UNARY_RHS:
1628 if ((INTEGRAL_TYPE_P (TREE_TYPE (rhs1))
1629 || POINTER_TYPE_P (TREE_TYPE (rhs1)))
1630 && (INTEGRAL_TYPE_P (gimple_expr_type (stmt))
1631 || POINTER_TYPE_P (gimple_expr_type (stmt))))
1632 val = bit_value_unop (subcode, gimple_expr_type (stmt), rhs1);
1633 break;
1635 case GIMPLE_BINARY_RHS:
1636 if (INTEGRAL_TYPE_P (TREE_TYPE (rhs1))
1637 || POINTER_TYPE_P (TREE_TYPE (rhs1)))
1639 tree lhs = gimple_assign_lhs (stmt);
1640 tree rhs2 = gimple_assign_rhs2 (stmt);
1641 val = bit_value_binop (subcode,
1642 TREE_TYPE (lhs), rhs1, rhs2);
1644 break;
1646 default:;
1649 else if (code == GIMPLE_COND)
1651 enum tree_code code = gimple_cond_code (stmt);
1652 tree rhs1 = gimple_cond_lhs (stmt);
1653 tree rhs2 = gimple_cond_rhs (stmt);
1654 if (INTEGRAL_TYPE_P (TREE_TYPE (rhs1))
1655 || POINTER_TYPE_P (TREE_TYPE (rhs1)))
1656 val = bit_value_binop (code, TREE_TYPE (rhs1), rhs1, rhs2);
1658 else if (gimple_call_builtin_p (stmt, BUILT_IN_NORMAL))
1660 tree fndecl = gimple_call_fndecl (stmt);
1661 switch (DECL_FUNCTION_CODE (fndecl))
1663 case BUILT_IN_MALLOC:
1664 case BUILT_IN_REALLOC:
1665 case BUILT_IN_CALLOC:
1666 case BUILT_IN_STRDUP:
1667 case BUILT_IN_STRNDUP:
1668 val.lattice_val = CONSTANT;
1669 val.value = build_int_cst (TREE_TYPE (gimple_get_lhs (stmt)), 0);
1670 val.mask = double_int::from_shwi
1671 (~(((HOST_WIDE_INT) MALLOC_ABI_ALIGNMENT)
1672 / BITS_PER_UNIT - 1));
1673 break;
1675 case BUILT_IN_ALLOCA:
1676 case BUILT_IN_ALLOCA_WITH_ALIGN:
1677 align = (DECL_FUNCTION_CODE (fndecl) == BUILT_IN_ALLOCA_WITH_ALIGN
1678 ? TREE_INT_CST_LOW (gimple_call_arg (stmt, 1))
1679 : BIGGEST_ALIGNMENT);
1680 val.lattice_val = CONSTANT;
1681 val.value = build_int_cst (TREE_TYPE (gimple_get_lhs (stmt)), 0);
1682 val.mask = double_int::from_shwi (~(((HOST_WIDE_INT) align)
1683 / BITS_PER_UNIT - 1));
1684 break;
1686 /* These builtins return their first argument, unmodified. */
1687 case BUILT_IN_MEMCPY:
1688 case BUILT_IN_MEMMOVE:
1689 case BUILT_IN_MEMSET:
1690 case BUILT_IN_STRCPY:
1691 case BUILT_IN_STRNCPY:
1692 case BUILT_IN_MEMCPY_CHK:
1693 case BUILT_IN_MEMMOVE_CHK:
1694 case BUILT_IN_MEMSET_CHK:
1695 case BUILT_IN_STRCPY_CHK:
1696 case BUILT_IN_STRNCPY_CHK:
1697 val = get_value_for_expr (gimple_call_arg (stmt, 0), true);
1698 break;
1700 case BUILT_IN_ASSUME_ALIGNED:
1701 val = bit_value_assume_aligned (stmt);
1702 break;
1704 default:;
1707 is_constant = (val.lattice_val == CONSTANT);
1710 if (flag_tree_bit_ccp
1711 && ((is_constant && TREE_CODE (val.value) == INTEGER_CST)
1712 || (!is_constant && likelyvalue != UNDEFINED))
1713 && gimple_get_lhs (stmt)
1714 && TREE_CODE (gimple_get_lhs (stmt)) == SSA_NAME)
1716 tree lhs = gimple_get_lhs (stmt);
1717 double_int nonzero_bits = get_nonzero_bits (lhs);
1718 double_int mask = double_int::mask (TYPE_PRECISION (TREE_TYPE (lhs)));
1719 if (nonzero_bits != double_int_minus_one && nonzero_bits != mask)
1721 if (!is_constant)
1723 val.lattice_val = CONSTANT;
1724 val.value = build_zero_cst (TREE_TYPE (lhs));
1725 /* CCP wants the bits above precision set. */
1726 val.mask = nonzero_bits | ~mask;
1727 is_constant = true;
1729 else
1731 double_int valv = tree_to_double_int (val.value);
1732 if (!(valv & ~nonzero_bits & mask).is_zero ())
1733 val.value = double_int_to_tree (TREE_TYPE (lhs),
1734 valv & nonzero_bits);
1735 if (nonzero_bits.is_zero ())
1736 val.mask = double_int_zero;
1737 else
1738 val.mask = val.mask & (nonzero_bits | ~mask);
1743 if (!is_constant)
1745 /* The statement produced a nonconstant value. If the statement
1746 had UNDEFINED operands, then the result of the statement
1747 should be UNDEFINED. Otherwise, the statement is VARYING. */
1748 if (likelyvalue == UNDEFINED)
1750 val.lattice_val = likelyvalue;
1751 val.mask = double_int_zero;
1753 else
1755 val.lattice_val = VARYING;
1756 val.mask = double_int_minus_one;
1759 val.value = NULL_TREE;
1762 return val;
1765 typedef hash_table <pointer_hash <gimple_statement_d> > gimple_htab;
1767 /* Given a BUILT_IN_STACK_SAVE value SAVED_VAL, insert a clobber of VAR before
1768 each matching BUILT_IN_STACK_RESTORE. Mark visited phis in VISITED. */
1770 static void
1771 insert_clobber_before_stack_restore (tree saved_val, tree var,
1772 gimple_htab *visited)
1774 gimple stmt, clobber_stmt;
1775 tree clobber;
1776 imm_use_iterator iter;
1777 gimple_stmt_iterator i;
1778 gimple *slot;
1780 FOR_EACH_IMM_USE_STMT (stmt, iter, saved_val)
1781 if (gimple_call_builtin_p (stmt, BUILT_IN_STACK_RESTORE))
1783 clobber = build_constructor (TREE_TYPE (var),
1784 NULL);
1785 TREE_THIS_VOLATILE (clobber) = 1;
1786 clobber_stmt = gimple_build_assign (var, clobber);
1788 i = gsi_for_stmt (stmt);
1789 gsi_insert_before (&i, clobber_stmt, GSI_SAME_STMT);
1791 else if (gimple_code (stmt) == GIMPLE_PHI)
1793 if (!visited->is_created ())
1794 visited->create (10);
1796 slot = visited->find_slot (stmt, INSERT);
1797 if (*slot != NULL)
1798 continue;
1800 *slot = stmt;
1801 insert_clobber_before_stack_restore (gimple_phi_result (stmt), var,
1802 visited);
1804 else if (gimple_assign_ssa_name_copy_p (stmt))
1805 insert_clobber_before_stack_restore (gimple_assign_lhs (stmt), var,
1806 visited);
1807 else
1808 gcc_assert (is_gimple_debug (stmt));
1811 /* Advance the iterator to the previous non-debug gimple statement in the same
1812 or dominating basic block. */
1814 static inline void
1815 gsi_prev_dom_bb_nondebug (gimple_stmt_iterator *i)
1817 basic_block dom;
1819 gsi_prev_nondebug (i);
1820 while (gsi_end_p (*i))
1822 dom = get_immediate_dominator (CDI_DOMINATORS, i->bb);
1823 if (dom == NULL || dom == ENTRY_BLOCK_PTR)
1824 return;
1826 *i = gsi_last_bb (dom);
1830 /* Find a BUILT_IN_STACK_SAVE dominating gsi_stmt (I), and insert
1831 a clobber of VAR before each matching BUILT_IN_STACK_RESTORE.
1833 It is possible that BUILT_IN_STACK_SAVE cannot be find in a dominator when a
1834 previous pass (such as DOM) duplicated it along multiple paths to a BB. In
1835 that case the function gives up without inserting the clobbers. */
1837 static void
1838 insert_clobbers_for_var (gimple_stmt_iterator i, tree var)
1840 gimple stmt;
1841 tree saved_val;
1842 gimple_htab visited;
1844 for (; !gsi_end_p (i); gsi_prev_dom_bb_nondebug (&i))
1846 stmt = gsi_stmt (i);
1848 if (!gimple_call_builtin_p (stmt, BUILT_IN_STACK_SAVE))
1849 continue;
1851 saved_val = gimple_call_lhs (stmt);
1852 if (saved_val == NULL_TREE)
1853 continue;
1855 insert_clobber_before_stack_restore (saved_val, var, &visited);
1856 break;
1859 if (visited.is_created ())
1860 visited.dispose ();
1863 /* Detects a __builtin_alloca_with_align with constant size argument. Declares
1864 fixed-size array and returns the address, if found, otherwise returns
1865 NULL_TREE. */
1867 static tree
1868 fold_builtin_alloca_with_align (gimple stmt)
1870 unsigned HOST_WIDE_INT size, threshold, n_elem;
1871 tree lhs, arg, block, var, elem_type, array_type;
1873 /* Get lhs. */
1874 lhs = gimple_call_lhs (stmt);
1875 if (lhs == NULL_TREE)
1876 return NULL_TREE;
1878 /* Detect constant argument. */
1879 arg = get_constant_value (gimple_call_arg (stmt, 0));
1880 if (arg == NULL_TREE
1881 || TREE_CODE (arg) != INTEGER_CST
1882 || !host_integerp (arg, 1))
1883 return NULL_TREE;
1885 size = TREE_INT_CST_LOW (arg);
1887 /* Heuristic: don't fold large allocas. */
1888 threshold = (unsigned HOST_WIDE_INT)PARAM_VALUE (PARAM_LARGE_STACK_FRAME);
1889 /* In case the alloca is located at function entry, it has the same lifetime
1890 as a declared array, so we allow a larger size. */
1891 block = gimple_block (stmt);
1892 if (!(cfun->after_inlining
1893 && TREE_CODE (BLOCK_SUPERCONTEXT (block)) == FUNCTION_DECL))
1894 threshold /= 10;
1895 if (size > threshold)
1896 return NULL_TREE;
1898 /* Declare array. */
1899 elem_type = build_nonstandard_integer_type (BITS_PER_UNIT, 1);
1900 n_elem = size * 8 / BITS_PER_UNIT;
1901 array_type = build_array_type_nelts (elem_type, n_elem);
1902 var = create_tmp_var (array_type, NULL);
1903 DECL_ALIGN (var) = TREE_INT_CST_LOW (gimple_call_arg (stmt, 1));
1905 struct ptr_info_def *pi = SSA_NAME_PTR_INFO (lhs);
1906 if (pi != NULL && !pi->pt.anything)
1908 bool singleton_p;
1909 unsigned uid;
1910 singleton_p = pt_solution_singleton_p (&pi->pt, &uid);
1911 gcc_assert (singleton_p);
1912 SET_DECL_PT_UID (var, uid);
1916 /* Fold alloca to the address of the array. */
1917 return fold_convert (TREE_TYPE (lhs), build_fold_addr_expr (var));
1920 /* Fold the stmt at *GSI with CCP specific information that propagating
1921 and regular folding does not catch. */
1923 static bool
1924 ccp_fold_stmt (gimple_stmt_iterator *gsi)
1926 gimple stmt = gsi_stmt (*gsi);
1928 switch (gimple_code (stmt))
1930 case GIMPLE_COND:
1932 prop_value_t val;
1933 /* Statement evaluation will handle type mismatches in constants
1934 more gracefully than the final propagation. This allows us to
1935 fold more conditionals here. */
1936 val = evaluate_stmt (stmt);
1937 if (val.lattice_val != CONSTANT
1938 || !val.mask.is_zero ())
1939 return false;
1941 if (dump_file)
1943 fprintf (dump_file, "Folding predicate ");
1944 print_gimple_expr (dump_file, stmt, 0, 0);
1945 fprintf (dump_file, " to ");
1946 print_generic_expr (dump_file, val.value, 0);
1947 fprintf (dump_file, "\n");
1950 if (integer_zerop (val.value))
1951 gimple_cond_make_false (stmt);
1952 else
1953 gimple_cond_make_true (stmt);
1955 return true;
1958 case GIMPLE_CALL:
1960 tree lhs = gimple_call_lhs (stmt);
1961 int flags = gimple_call_flags (stmt);
1962 tree val;
1963 tree argt;
1964 bool changed = false;
1965 unsigned i;
1967 /* If the call was folded into a constant make sure it goes
1968 away even if we cannot propagate into all uses because of
1969 type issues. */
1970 if (lhs
1971 && TREE_CODE (lhs) == SSA_NAME
1972 && (val = get_constant_value (lhs))
1973 /* Don't optimize away calls that have side-effects. */
1974 && (flags & (ECF_CONST|ECF_PURE)) != 0
1975 && (flags & ECF_LOOPING_CONST_OR_PURE) == 0)
1977 tree new_rhs = unshare_expr (val);
1978 bool res;
1979 if (!useless_type_conversion_p (TREE_TYPE (lhs),
1980 TREE_TYPE (new_rhs)))
1981 new_rhs = fold_convert (TREE_TYPE (lhs), new_rhs);
1982 res = update_call_from_tree (gsi, new_rhs);
1983 gcc_assert (res);
1984 return true;
1987 /* Internal calls provide no argument types, so the extra laxity
1988 for normal calls does not apply. */
1989 if (gimple_call_internal_p (stmt))
1990 return false;
1992 /* The heuristic of fold_builtin_alloca_with_align differs before and
1993 after inlining, so we don't require the arg to be changed into a
1994 constant for folding, but just to be constant. */
1995 if (gimple_call_builtin_p (stmt, BUILT_IN_ALLOCA_WITH_ALIGN))
1997 tree new_rhs = fold_builtin_alloca_with_align (stmt);
1998 if (new_rhs)
2000 bool res = update_call_from_tree (gsi, new_rhs);
2001 tree var = TREE_OPERAND (TREE_OPERAND (new_rhs, 0),0);
2002 gcc_assert (res);
2003 insert_clobbers_for_var (*gsi, var);
2004 return true;
2008 /* Propagate into the call arguments. Compared to replace_uses_in
2009 this can use the argument slot types for type verification
2010 instead of the current argument type. We also can safely
2011 drop qualifiers here as we are dealing with constants anyway. */
2012 argt = TYPE_ARG_TYPES (gimple_call_fntype (stmt));
2013 for (i = 0; i < gimple_call_num_args (stmt) && argt;
2014 ++i, argt = TREE_CHAIN (argt))
2016 tree arg = gimple_call_arg (stmt, i);
2017 if (TREE_CODE (arg) == SSA_NAME
2018 && (val = get_constant_value (arg))
2019 && useless_type_conversion_p
2020 (TYPE_MAIN_VARIANT (TREE_VALUE (argt)),
2021 TYPE_MAIN_VARIANT (TREE_TYPE (val))))
2023 gimple_call_set_arg (stmt, i, unshare_expr (val));
2024 changed = true;
2028 return changed;
2031 case GIMPLE_ASSIGN:
2033 tree lhs = gimple_assign_lhs (stmt);
2034 tree val;
2036 /* If we have a load that turned out to be constant replace it
2037 as we cannot propagate into all uses in all cases. */
2038 if (gimple_assign_single_p (stmt)
2039 && TREE_CODE (lhs) == SSA_NAME
2040 && (val = get_constant_value (lhs)))
2042 tree rhs = unshare_expr (val);
2043 if (!useless_type_conversion_p (TREE_TYPE (lhs), TREE_TYPE (rhs)))
2044 rhs = fold_build1 (VIEW_CONVERT_EXPR, TREE_TYPE (lhs), rhs);
2045 gimple_assign_set_rhs_from_tree (gsi, rhs);
2046 return true;
2049 return false;
2052 default:
2053 return false;
2057 /* Visit the assignment statement STMT. Set the value of its LHS to the
2058 value computed by the RHS and store LHS in *OUTPUT_P. If STMT
2059 creates virtual definitions, set the value of each new name to that
2060 of the RHS (if we can derive a constant out of the RHS).
2061 Value-returning call statements also perform an assignment, and
2062 are handled here. */
2064 static enum ssa_prop_result
2065 visit_assignment (gimple stmt, tree *output_p)
2067 prop_value_t val;
2068 enum ssa_prop_result retval;
2070 tree lhs = gimple_get_lhs (stmt);
2072 gcc_assert (gimple_code (stmt) != GIMPLE_CALL
2073 || gimple_call_lhs (stmt) != NULL_TREE);
2075 if (gimple_assign_single_p (stmt)
2076 && gimple_assign_rhs_code (stmt) == SSA_NAME)
2077 /* For a simple copy operation, we copy the lattice values. */
2078 val = *get_value (gimple_assign_rhs1 (stmt));
2079 else
2080 /* Evaluate the statement, which could be
2081 either a GIMPLE_ASSIGN or a GIMPLE_CALL. */
2082 val = evaluate_stmt (stmt);
2084 retval = SSA_PROP_NOT_INTERESTING;
2086 /* Set the lattice value of the statement's output. */
2087 if (TREE_CODE (lhs) == SSA_NAME)
2089 /* If STMT is an assignment to an SSA_NAME, we only have one
2090 value to set. */
2091 if (set_lattice_value (lhs, val))
2093 *output_p = lhs;
2094 if (val.lattice_val == VARYING)
2095 retval = SSA_PROP_VARYING;
2096 else
2097 retval = SSA_PROP_INTERESTING;
2101 return retval;
2105 /* Visit the conditional statement STMT. Return SSA_PROP_INTERESTING
2106 if it can determine which edge will be taken. Otherwise, return
2107 SSA_PROP_VARYING. */
2109 static enum ssa_prop_result
2110 visit_cond_stmt (gimple stmt, edge *taken_edge_p)
2112 prop_value_t val;
2113 basic_block block;
2115 block = gimple_bb (stmt);
2116 val = evaluate_stmt (stmt);
2117 if (val.lattice_val != CONSTANT
2118 || !val.mask.is_zero ())
2119 return SSA_PROP_VARYING;
2121 /* Find which edge out of the conditional block will be taken and add it
2122 to the worklist. If no single edge can be determined statically,
2123 return SSA_PROP_VARYING to feed all the outgoing edges to the
2124 propagation engine. */
2125 *taken_edge_p = find_taken_edge (block, val.value);
2126 if (*taken_edge_p)
2127 return SSA_PROP_INTERESTING;
2128 else
2129 return SSA_PROP_VARYING;
2133 /* Evaluate statement STMT. If the statement produces an output value and
2134 its evaluation changes the lattice value of its output, return
2135 SSA_PROP_INTERESTING and set *OUTPUT_P to the SSA_NAME holding the
2136 output value.
2138 If STMT is a conditional branch and we can determine its truth
2139 value, set *TAKEN_EDGE_P accordingly. If STMT produces a varying
2140 value, return SSA_PROP_VARYING. */
2142 static enum ssa_prop_result
2143 ccp_visit_stmt (gimple stmt, edge *taken_edge_p, tree *output_p)
2145 tree def;
2146 ssa_op_iter iter;
2148 if (dump_file && (dump_flags & TDF_DETAILS))
2150 fprintf (dump_file, "\nVisiting statement:\n");
2151 print_gimple_stmt (dump_file, stmt, 0, dump_flags);
2154 switch (gimple_code (stmt))
2156 case GIMPLE_ASSIGN:
2157 /* If the statement is an assignment that produces a single
2158 output value, evaluate its RHS to see if the lattice value of
2159 its output has changed. */
2160 return visit_assignment (stmt, output_p);
2162 case GIMPLE_CALL:
2163 /* A value-returning call also performs an assignment. */
2164 if (gimple_call_lhs (stmt) != NULL_TREE)
2165 return visit_assignment (stmt, output_p);
2166 break;
2168 case GIMPLE_COND:
2169 case GIMPLE_SWITCH:
2170 /* If STMT is a conditional branch, see if we can determine
2171 which branch will be taken. */
2172 /* FIXME. It appears that we should be able to optimize
2173 computed GOTOs here as well. */
2174 return visit_cond_stmt (stmt, taken_edge_p);
2176 default:
2177 break;
2180 /* Any other kind of statement is not interesting for constant
2181 propagation and, therefore, not worth simulating. */
2182 if (dump_file && (dump_flags & TDF_DETAILS))
2183 fprintf (dump_file, "No interesting values produced. Marked VARYING.\n");
2185 /* Definitions made by statements other than assignments to
2186 SSA_NAMEs represent unknown modifications to their outputs.
2187 Mark them VARYING. */
2188 FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_ALL_DEFS)
2190 prop_value_t v = { VARYING, NULL_TREE, { -1, (HOST_WIDE_INT) -1 } };
2191 set_lattice_value (def, v);
2194 return SSA_PROP_VARYING;
2198 /* Main entry point for SSA Conditional Constant Propagation. */
2200 static unsigned int
2201 do_ssa_ccp (void)
2203 unsigned int todo = 0;
2204 calculate_dominance_info (CDI_DOMINATORS);
2205 ccp_initialize ();
2206 ssa_propagate (ccp_visit_stmt, ccp_visit_phi_node);
2207 if (ccp_finalize ())
2208 todo = (TODO_cleanup_cfg | TODO_update_ssa);
2209 free_dominance_info (CDI_DOMINATORS);
2210 return todo;
2214 static bool
2215 gate_ccp (void)
2217 return flag_tree_ccp != 0;
2221 namespace {
2223 const pass_data pass_data_ccp =
2225 GIMPLE_PASS, /* type */
2226 "ccp", /* name */
2227 OPTGROUP_NONE, /* optinfo_flags */
2228 true, /* has_gate */
2229 true, /* has_execute */
2230 TV_TREE_CCP, /* tv_id */
2231 ( PROP_cfg | PROP_ssa ), /* properties_required */
2232 0, /* properties_provided */
2233 0, /* properties_destroyed */
2234 0, /* todo_flags_start */
2235 ( TODO_verify_ssa | TODO_update_address_taken
2236 | TODO_verify_stmts ), /* todo_flags_finish */
2239 class pass_ccp : public gimple_opt_pass
2241 public:
2242 pass_ccp (gcc::context *ctxt)
2243 : gimple_opt_pass (pass_data_ccp, ctxt)
2246 /* opt_pass methods: */
2247 opt_pass * clone () { return new pass_ccp (m_ctxt); }
2248 bool gate () { return gate_ccp (); }
2249 unsigned int execute () { return do_ssa_ccp (); }
2251 }; // class pass_ccp
2253 } // anon namespace
2255 gimple_opt_pass *
2256 make_pass_ccp (gcc::context *ctxt)
2258 return new pass_ccp (ctxt);
2263 /* Try to optimize out __builtin_stack_restore. Optimize it out
2264 if there is another __builtin_stack_restore in the same basic
2265 block and no calls or ASM_EXPRs are in between, or if this block's
2266 only outgoing edge is to EXIT_BLOCK and there are no calls or
2267 ASM_EXPRs after this __builtin_stack_restore. */
2269 static tree
2270 optimize_stack_restore (gimple_stmt_iterator i)
2272 tree callee;
2273 gimple stmt;
2275 basic_block bb = gsi_bb (i);
2276 gimple call = gsi_stmt (i);
2278 if (gimple_code (call) != GIMPLE_CALL
2279 || gimple_call_num_args (call) != 1
2280 || TREE_CODE (gimple_call_arg (call, 0)) != SSA_NAME
2281 || !POINTER_TYPE_P (TREE_TYPE (gimple_call_arg (call, 0))))
2282 return NULL_TREE;
2284 for (gsi_next (&i); !gsi_end_p (i); gsi_next (&i))
2286 stmt = gsi_stmt (i);
2287 if (gimple_code (stmt) == GIMPLE_ASM)
2288 return NULL_TREE;
2289 if (gimple_code (stmt) != GIMPLE_CALL)
2290 continue;
2292 callee = gimple_call_fndecl (stmt);
2293 if (!callee
2294 || DECL_BUILT_IN_CLASS (callee) != BUILT_IN_NORMAL
2295 /* All regular builtins are ok, just obviously not alloca. */
2296 || DECL_FUNCTION_CODE (callee) == BUILT_IN_ALLOCA
2297 || DECL_FUNCTION_CODE (callee) == BUILT_IN_ALLOCA_WITH_ALIGN)
2298 return NULL_TREE;
2300 if (DECL_FUNCTION_CODE (callee) == BUILT_IN_STACK_RESTORE)
2301 goto second_stack_restore;
2304 if (!gsi_end_p (i))
2305 return NULL_TREE;
2307 /* Allow one successor of the exit block, or zero successors. */
2308 switch (EDGE_COUNT (bb->succs))
2310 case 0:
2311 break;
2312 case 1:
2313 if (single_succ_edge (bb)->dest != EXIT_BLOCK_PTR)
2314 return NULL_TREE;
2315 break;
2316 default:
2317 return NULL_TREE;
2319 second_stack_restore:
2321 /* If there's exactly one use, then zap the call to __builtin_stack_save.
2322 If there are multiple uses, then the last one should remove the call.
2323 In any case, whether the call to __builtin_stack_save can be removed
2324 or not is irrelevant to removing the call to __builtin_stack_restore. */
2325 if (has_single_use (gimple_call_arg (call, 0)))
2327 gimple stack_save = SSA_NAME_DEF_STMT (gimple_call_arg (call, 0));
2328 if (is_gimple_call (stack_save))
2330 callee = gimple_call_fndecl (stack_save);
2331 if (callee
2332 && DECL_BUILT_IN_CLASS (callee) == BUILT_IN_NORMAL
2333 && DECL_FUNCTION_CODE (callee) == BUILT_IN_STACK_SAVE)
2335 gimple_stmt_iterator stack_save_gsi;
2336 tree rhs;
2338 stack_save_gsi = gsi_for_stmt (stack_save);
2339 rhs = build_int_cst (TREE_TYPE (gimple_call_arg (call, 0)), 0);
2340 update_call_from_tree (&stack_save_gsi, rhs);
2345 /* No effect, so the statement will be deleted. */
2346 return integer_zero_node;
2349 /* If va_list type is a simple pointer and nothing special is needed,
2350 optimize __builtin_va_start (&ap, 0) into ap = __builtin_next_arg (0),
2351 __builtin_va_end (&ap) out as NOP and __builtin_va_copy into a simple
2352 pointer assignment. */
2354 static tree
2355 optimize_stdarg_builtin (gimple call)
2357 tree callee, lhs, rhs, cfun_va_list;
2358 bool va_list_simple_ptr;
2359 location_t loc = gimple_location (call);
2361 if (gimple_code (call) != GIMPLE_CALL)
2362 return NULL_TREE;
2364 callee = gimple_call_fndecl (call);
2366 cfun_va_list = targetm.fn_abi_va_list (callee);
2367 va_list_simple_ptr = POINTER_TYPE_P (cfun_va_list)
2368 && (TREE_TYPE (cfun_va_list) == void_type_node
2369 || TREE_TYPE (cfun_va_list) == char_type_node);
2371 switch (DECL_FUNCTION_CODE (callee))
2373 case BUILT_IN_VA_START:
2374 if (!va_list_simple_ptr
2375 || targetm.expand_builtin_va_start != NULL
2376 || !builtin_decl_explicit_p (BUILT_IN_NEXT_ARG))
2377 return NULL_TREE;
2379 if (gimple_call_num_args (call) != 2)
2380 return NULL_TREE;
2382 lhs = gimple_call_arg (call, 0);
2383 if (!POINTER_TYPE_P (TREE_TYPE (lhs))
2384 || TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (lhs)))
2385 != TYPE_MAIN_VARIANT (cfun_va_list))
2386 return NULL_TREE;
2388 lhs = build_fold_indirect_ref_loc (loc, lhs);
2389 rhs = build_call_expr_loc (loc, builtin_decl_explicit (BUILT_IN_NEXT_ARG),
2390 1, integer_zero_node);
2391 rhs = fold_convert_loc (loc, TREE_TYPE (lhs), rhs);
2392 return build2 (MODIFY_EXPR, TREE_TYPE (lhs), lhs, rhs);
2394 case BUILT_IN_VA_COPY:
2395 if (!va_list_simple_ptr)
2396 return NULL_TREE;
2398 if (gimple_call_num_args (call) != 2)
2399 return NULL_TREE;
2401 lhs = gimple_call_arg (call, 0);
2402 if (!POINTER_TYPE_P (TREE_TYPE (lhs))
2403 || TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (lhs)))
2404 != TYPE_MAIN_VARIANT (cfun_va_list))
2405 return NULL_TREE;
2407 lhs = build_fold_indirect_ref_loc (loc, lhs);
2408 rhs = gimple_call_arg (call, 1);
2409 if (TYPE_MAIN_VARIANT (TREE_TYPE (rhs))
2410 != TYPE_MAIN_VARIANT (cfun_va_list))
2411 return NULL_TREE;
2413 rhs = fold_convert_loc (loc, TREE_TYPE (lhs), rhs);
2414 return build2 (MODIFY_EXPR, TREE_TYPE (lhs), lhs, rhs);
2416 case BUILT_IN_VA_END:
2417 /* No effect, so the statement will be deleted. */
2418 return integer_zero_node;
2420 default:
2421 gcc_unreachable ();
2425 /* Attemp to make the block of __builtin_unreachable I unreachable by changing
2426 the incoming jumps. Return true if at least one jump was changed. */
2428 static bool
2429 optimize_unreachable (gimple_stmt_iterator i)
2431 basic_block bb = gsi_bb (i);
2432 gimple_stmt_iterator gsi;
2433 gimple stmt;
2434 edge_iterator ei;
2435 edge e;
2436 bool ret;
2438 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
2440 stmt = gsi_stmt (gsi);
2442 if (is_gimple_debug (stmt))
2443 continue;
2445 if (gimple_code (stmt) == GIMPLE_LABEL)
2447 /* Verify we do not need to preserve the label. */
2448 if (FORCED_LABEL (gimple_label_label (stmt)))
2449 return false;
2451 continue;
2454 /* Only handle the case that __builtin_unreachable is the first statement
2455 in the block. We rely on DCE to remove stmts without side-effects
2456 before __builtin_unreachable. */
2457 if (gsi_stmt (gsi) != gsi_stmt (i))
2458 return false;
2461 ret = false;
2462 FOR_EACH_EDGE (e, ei, bb->preds)
2464 gsi = gsi_last_bb (e->src);
2465 if (gsi_end_p (gsi))
2466 continue;
2468 stmt = gsi_stmt (gsi);
2469 if (gimple_code (stmt) == GIMPLE_COND)
2471 if (e->flags & EDGE_TRUE_VALUE)
2472 gimple_cond_make_false (stmt);
2473 else if (e->flags & EDGE_FALSE_VALUE)
2474 gimple_cond_make_true (stmt);
2475 else
2476 gcc_unreachable ();
2477 update_stmt (stmt);
2479 else
2481 /* Todo: handle other cases, f.i. switch statement. */
2482 continue;
2485 ret = true;
2488 return ret;
2491 /* A simple pass that attempts to fold all builtin functions. This pass
2492 is run after we've propagated as many constants as we can. */
2494 static unsigned int
2495 execute_fold_all_builtins (void)
2497 bool cfg_changed = false;
2498 basic_block bb;
2499 unsigned int todoflags = 0;
2501 FOR_EACH_BB (bb)
2503 gimple_stmt_iterator i;
2504 for (i = gsi_start_bb (bb); !gsi_end_p (i); )
2506 gimple stmt, old_stmt;
2507 tree callee, result;
2508 enum built_in_function fcode;
2510 stmt = gsi_stmt (i);
2512 if (gimple_code (stmt) != GIMPLE_CALL)
2514 /* Remove all *ssaname_N ={v} {CLOBBER}; stmts,
2515 after the last GIMPLE DSE they aren't needed and might
2516 unnecessarily keep the SSA_NAMEs live. */
2517 if (gimple_clobber_p (stmt))
2519 tree lhs = gimple_assign_lhs (stmt);
2520 if (TREE_CODE (lhs) == MEM_REF
2521 && TREE_CODE (TREE_OPERAND (lhs, 0)) == SSA_NAME)
2523 unlink_stmt_vdef (stmt);
2524 gsi_remove (&i, true);
2525 release_defs (stmt);
2526 continue;
2529 gsi_next (&i);
2530 continue;
2532 callee = gimple_call_fndecl (stmt);
2533 if (!callee || DECL_BUILT_IN_CLASS (callee) != BUILT_IN_NORMAL)
2535 gsi_next (&i);
2536 continue;
2538 fcode = DECL_FUNCTION_CODE (callee);
2540 result = gimple_fold_builtin (stmt);
2542 if (result)
2543 gimple_remove_stmt_histograms (cfun, stmt);
2545 if (!result)
2546 switch (DECL_FUNCTION_CODE (callee))
2548 case BUILT_IN_CONSTANT_P:
2549 /* Resolve __builtin_constant_p. If it hasn't been
2550 folded to integer_one_node by now, it's fairly
2551 certain that the value simply isn't constant. */
2552 result = integer_zero_node;
2553 break;
2555 case BUILT_IN_ASSUME_ALIGNED:
2556 /* Remove __builtin_assume_aligned. */
2557 result = gimple_call_arg (stmt, 0);
2558 break;
2560 case BUILT_IN_STACK_RESTORE:
2561 result = optimize_stack_restore (i);
2562 if (result)
2563 break;
2564 gsi_next (&i);
2565 continue;
2567 case BUILT_IN_UNREACHABLE:
2568 if (optimize_unreachable (i))
2569 cfg_changed = true;
2570 break;
2572 case BUILT_IN_VA_START:
2573 case BUILT_IN_VA_END:
2574 case BUILT_IN_VA_COPY:
2575 /* These shouldn't be folded before pass_stdarg. */
2576 result = optimize_stdarg_builtin (stmt);
2577 if (result)
2578 break;
2579 /* FALLTHRU */
2581 default:
2582 gsi_next (&i);
2583 continue;
2586 if (result == NULL_TREE)
2587 break;
2589 if (dump_file && (dump_flags & TDF_DETAILS))
2591 fprintf (dump_file, "Simplified\n ");
2592 print_gimple_stmt (dump_file, stmt, 0, dump_flags);
2595 old_stmt = stmt;
2596 if (!update_call_from_tree (&i, result))
2598 gimplify_and_update_call_from_tree (&i, result);
2599 todoflags |= TODO_update_address_taken;
2602 stmt = gsi_stmt (i);
2603 update_stmt (stmt);
2605 if (maybe_clean_or_replace_eh_stmt (old_stmt, stmt)
2606 && gimple_purge_dead_eh_edges (bb))
2607 cfg_changed = true;
2609 if (dump_file && (dump_flags & TDF_DETAILS))
2611 fprintf (dump_file, "to\n ");
2612 print_gimple_stmt (dump_file, stmt, 0, dump_flags);
2613 fprintf (dump_file, "\n");
2616 /* Retry the same statement if it changed into another
2617 builtin, there might be new opportunities now. */
2618 if (gimple_code (stmt) != GIMPLE_CALL)
2620 gsi_next (&i);
2621 continue;
2623 callee = gimple_call_fndecl (stmt);
2624 if (!callee
2625 || DECL_BUILT_IN_CLASS (callee) != BUILT_IN_NORMAL
2626 || DECL_FUNCTION_CODE (callee) == fcode)
2627 gsi_next (&i);
2631 /* Delete unreachable blocks. */
2632 if (cfg_changed)
2633 todoflags |= TODO_cleanup_cfg;
2635 return todoflags;
2639 namespace {
2641 const pass_data pass_data_fold_builtins =
2643 GIMPLE_PASS, /* type */
2644 "fab", /* name */
2645 OPTGROUP_NONE, /* optinfo_flags */
2646 false, /* has_gate */
2647 true, /* has_execute */
2648 TV_NONE, /* tv_id */
2649 ( PROP_cfg | PROP_ssa ), /* properties_required */
2650 0, /* properties_provided */
2651 0, /* properties_destroyed */
2652 0, /* todo_flags_start */
2653 ( TODO_verify_ssa | TODO_update_ssa ), /* todo_flags_finish */
2656 class pass_fold_builtins : public gimple_opt_pass
2658 public:
2659 pass_fold_builtins (gcc::context *ctxt)
2660 : gimple_opt_pass (pass_data_fold_builtins, ctxt)
2663 /* opt_pass methods: */
2664 opt_pass * clone () { return new pass_fold_builtins (m_ctxt); }
2665 unsigned int execute () { return execute_fold_all_builtins (); }
2667 }; // class pass_fold_builtins
2669 } // anon namespace
2671 gimple_opt_pass *
2672 make_pass_fold_builtins (gcc::context *ctxt)
2674 return new pass_fold_builtins (ctxt);