* tree-ssa-loop-ivopts.c (rewrite_use_address): Simple refactor.
[official-gcc.git] / gcc / tree-data-ref.h
blob9003ea54a2d75cd7b1939d253f8457984213a54c
1 /* Data references and dependences detectors.
2 Copyright (C) 2003-2017 Free Software Foundation, Inc.
3 Contributed by Sebastian Pop <pop@cri.ensmp.fr>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #ifndef GCC_TREE_DATA_REF_H
22 #define GCC_TREE_DATA_REF_H
24 #include "graphds.h"
25 #include "tree-chrec.h"
28 innermost_loop_behavior describes the evolution of the address of the memory
29 reference in the innermost enclosing loop. The address is expressed as
30 BASE + STEP * # of iteration, and base is further decomposed as the base
31 pointer (BASE_ADDRESS), loop invariant offset (OFFSET) and
32 constant offset (INIT). Examples, in loop nest
34 for (i = 0; i < 100; i++)
35 for (j = 3; j < 100; j++)
37 Example 1 Example 2
38 data-ref a[j].b[i][j] *(p + x + 16B + 4B * j)
41 innermost_loop_behavior
42 base_address &a p
43 offset i * D_i x
44 init 3 * D_j + offsetof (b) 28
45 step D_j 4
48 struct innermost_loop_behavior
50 tree base_address;
51 tree offset;
52 tree init;
53 tree step;
55 /* Alignment information. ALIGNED_TO is set to the largest power of two
56 that divides OFFSET. */
57 tree aligned_to;
60 /* Describes the evolutions of indices of the memory reference. The indices
61 are indices of the ARRAY_REFs, indexes in artificial dimensions
62 added for member selection of records and the operands of MEM_REFs.
63 BASE_OBJECT is the part of the reference that is loop-invariant
64 (note that this reference does not have to cover the whole object
65 being accessed, in which case UNCONSTRAINED_BASE is set; hence it is
66 not recommended to use BASE_OBJECT in any code generation).
67 For the examples above,
69 base_object: a *(p + x + 4B * j_0)
70 indices: {j_0, +, 1}_2 {16, +, 4}_2
72 {i_0, +, 1}_1
73 {j_0, +, 1}_2
76 struct indices
78 /* The object. */
79 tree base_object;
81 /* A list of chrecs. Access functions of the indices. */
82 vec<tree> access_fns;
84 /* Whether BASE_OBJECT is an access representing the whole object
85 or whether the access could not be constrained. */
86 bool unconstrained_base;
89 struct dr_alias
91 /* The alias information that should be used for new pointers to this
92 location. */
93 struct ptr_info_def *ptr_info;
96 /* An integer vector. A vector formally consists of an element of a vector
97 space. A vector space is a set that is closed under vector addition
98 and scalar multiplication. In this vector space, an element is a list of
99 integers. */
100 typedef int *lambda_vector;
102 /* An integer matrix. A matrix consists of m vectors of length n (IE
103 all vectors are the same length). */
104 typedef lambda_vector *lambda_matrix;
108 struct data_reference
110 /* A pointer to the statement that contains this DR. */
111 gimple *stmt;
113 /* A pointer to the memory reference. */
114 tree ref;
116 /* Auxiliary info specific to a pass. */
117 void *aux;
119 /* True when the data reference is in RHS of a stmt. */
120 bool is_read;
122 /* Behavior of the memory reference in the innermost loop. */
123 struct innermost_loop_behavior innermost;
125 /* Subscripts of this data reference. */
126 struct indices indices;
128 /* Alias information for the data reference. */
129 struct dr_alias alias;
132 #define DR_STMT(DR) (DR)->stmt
133 #define DR_REF(DR) (DR)->ref
134 #define DR_BASE_OBJECT(DR) (DR)->indices.base_object
135 #define DR_UNCONSTRAINED_BASE(DR) (DR)->indices.unconstrained_base
136 #define DR_ACCESS_FNS(DR) (DR)->indices.access_fns
137 #define DR_ACCESS_FN(DR, I) DR_ACCESS_FNS (DR)[I]
138 #define DR_NUM_DIMENSIONS(DR) DR_ACCESS_FNS (DR).length ()
139 #define DR_IS_READ(DR) (DR)->is_read
140 #define DR_IS_WRITE(DR) (!DR_IS_READ (DR))
141 #define DR_BASE_ADDRESS(DR) (DR)->innermost.base_address
142 #define DR_OFFSET(DR) (DR)->innermost.offset
143 #define DR_INIT(DR) (DR)->innermost.init
144 #define DR_STEP(DR) (DR)->innermost.step
145 #define DR_PTR_INFO(DR) (DR)->alias.ptr_info
146 #define DR_ALIGNED_TO(DR) (DR)->innermost.aligned_to
147 #define DR_INNERMOST(DR) (DR)->innermost
149 typedef struct data_reference *data_reference_p;
151 enum data_dependence_direction {
152 dir_positive,
153 dir_negative,
154 dir_equal,
155 dir_positive_or_negative,
156 dir_positive_or_equal,
157 dir_negative_or_equal,
158 dir_star,
159 dir_independent
162 /* The description of the grid of iterations that overlap. At most
163 two loops are considered at the same time just now, hence at most
164 two functions are needed. For each of the functions, we store
165 the vector of coefficients, f[0] + x * f[1] + y * f[2] + ...,
166 where x, y, ... are variables. */
168 #define MAX_DIM 2
170 /* Special values of N. */
171 #define NO_DEPENDENCE 0
172 #define NOT_KNOWN (MAX_DIM + 1)
173 #define CF_NONTRIVIAL_P(CF) ((CF)->n != NO_DEPENDENCE && (CF)->n != NOT_KNOWN)
174 #define CF_NOT_KNOWN_P(CF) ((CF)->n == NOT_KNOWN)
175 #define CF_NO_DEPENDENCE_P(CF) ((CF)->n == NO_DEPENDENCE)
177 typedef vec<tree> affine_fn;
179 struct conflict_function
181 unsigned n;
182 affine_fn fns[MAX_DIM];
185 /* What is a subscript? Given two array accesses a subscript is the
186 tuple composed of the access functions for a given dimension.
187 Example: Given A[f1][f2][f3] and B[g1][g2][g3], there are three
188 subscripts: (f1, g1), (f2, g2), (f3, g3). These three subscripts
189 are stored in the data_dependence_relation structure under the form
190 of an array of subscripts. */
192 struct subscript
194 /* A description of the iterations for which the elements are
195 accessed twice. */
196 conflict_function *conflicting_iterations_in_a;
197 conflict_function *conflicting_iterations_in_b;
199 /* This field stores the information about the iteration domain
200 validity of the dependence relation. */
201 tree last_conflict;
203 /* Distance from the iteration that access a conflicting element in
204 A to the iteration that access this same conflicting element in
205 B. The distance is a tree scalar expression, i.e. a constant or a
206 symbolic expression, but certainly not a chrec function. */
207 tree distance;
210 typedef struct subscript *subscript_p;
212 #define SUB_CONFLICTS_IN_A(SUB) SUB->conflicting_iterations_in_a
213 #define SUB_CONFLICTS_IN_B(SUB) SUB->conflicting_iterations_in_b
214 #define SUB_LAST_CONFLICT(SUB) SUB->last_conflict
215 #define SUB_DISTANCE(SUB) SUB->distance
217 /* A data_dependence_relation represents a relation between two
218 data_references A and B. */
220 struct data_dependence_relation
223 struct data_reference *a;
224 struct data_reference *b;
226 /* A "yes/no/maybe" field for the dependence relation:
228 - when "ARE_DEPENDENT == NULL_TREE", there exist a dependence
229 relation between A and B, and the description of this relation
230 is given in the SUBSCRIPTS array,
232 - when "ARE_DEPENDENT == chrec_known", there is no dependence and
233 SUBSCRIPTS is empty,
235 - when "ARE_DEPENDENT == chrec_dont_know", there may be a dependence,
236 but the analyzer cannot be more specific. */
237 tree are_dependent;
239 /* For each subscript in the dependence test, there is an element in
240 this array. This is the attribute that labels the edge A->B of
241 the data_dependence_relation. */
242 vec<subscript_p> subscripts;
244 /* The analyzed loop nest. */
245 vec<loop_p> loop_nest;
247 /* The classic direction vector. */
248 vec<lambda_vector> dir_vects;
250 /* The classic distance vector. */
251 vec<lambda_vector> dist_vects;
253 /* An index in loop_nest for the innermost loop that varies for
254 this data dependence relation. */
255 unsigned inner_loop;
257 /* Is the dependence reversed with respect to the lexicographic order? */
258 bool reversed_p;
260 /* When the dependence relation is affine, it can be represented by
261 a distance vector. */
262 bool affine_p;
264 /* Set to true when the dependence relation is on the same data
265 access. */
266 bool self_reference_p;
269 typedef struct data_dependence_relation *ddr_p;
271 #define DDR_A(DDR) DDR->a
272 #define DDR_B(DDR) DDR->b
273 #define DDR_AFFINE_P(DDR) DDR->affine_p
274 #define DDR_ARE_DEPENDENT(DDR) DDR->are_dependent
275 #define DDR_SUBSCRIPTS(DDR) DDR->subscripts
276 #define DDR_SUBSCRIPT(DDR, I) DDR_SUBSCRIPTS (DDR)[I]
277 #define DDR_NUM_SUBSCRIPTS(DDR) DDR_SUBSCRIPTS (DDR).length ()
279 #define DDR_LOOP_NEST(DDR) DDR->loop_nest
280 /* The size of the direction/distance vectors: the number of loops in
281 the loop nest. */
282 #define DDR_NB_LOOPS(DDR) (DDR_LOOP_NEST (DDR).length ())
283 #define DDR_INNER_LOOP(DDR) DDR->inner_loop
284 #define DDR_SELF_REFERENCE(DDR) DDR->self_reference_p
286 #define DDR_DIST_VECTS(DDR) ((DDR)->dist_vects)
287 #define DDR_DIR_VECTS(DDR) ((DDR)->dir_vects)
288 #define DDR_NUM_DIST_VECTS(DDR) \
289 (DDR_DIST_VECTS (DDR).length ())
290 #define DDR_NUM_DIR_VECTS(DDR) \
291 (DDR_DIR_VECTS (DDR).length ())
292 #define DDR_DIR_VECT(DDR, I) \
293 DDR_DIR_VECTS (DDR)[I]
294 #define DDR_DIST_VECT(DDR, I) \
295 DDR_DIST_VECTS (DDR)[I]
296 #define DDR_REVERSED_P(DDR) DDR->reversed_p
299 bool dr_analyze_innermost (struct data_reference *, struct loop *);
300 extern bool compute_data_dependences_for_loop (struct loop *, bool,
301 vec<loop_p> *,
302 vec<data_reference_p> *,
303 vec<ddr_p> *);
304 extern void debug_ddrs (vec<ddr_p> );
305 extern void dump_data_reference (FILE *, struct data_reference *);
306 extern void debug (data_reference &ref);
307 extern void debug (data_reference *ptr);
308 extern void debug_data_reference (struct data_reference *);
309 extern void debug_data_references (vec<data_reference_p> );
310 extern void debug (vec<data_reference_p> &ref);
311 extern void debug (vec<data_reference_p> *ptr);
312 extern void debug_data_dependence_relation (struct data_dependence_relation *);
313 extern void dump_data_dependence_relations (FILE *, vec<ddr_p> );
314 extern void debug (vec<ddr_p> &ref);
315 extern void debug (vec<ddr_p> *ptr);
316 extern void debug_data_dependence_relations (vec<ddr_p> );
317 extern void free_dependence_relation (struct data_dependence_relation *);
318 extern void free_dependence_relations (vec<ddr_p> );
319 extern void free_data_ref (data_reference_p);
320 extern void free_data_refs (vec<data_reference_p> );
321 extern bool find_data_references_in_stmt (struct loop *, gimple *,
322 vec<data_reference_p> *);
323 extern bool graphite_find_data_references_in_stmt (loop_p, loop_p, gimple *,
324 vec<data_reference_p> *);
325 tree find_data_references_in_loop (struct loop *, vec<data_reference_p> *);
326 bool loop_nest_has_data_refs (loop_p loop);
327 struct data_reference *create_data_ref (loop_p, loop_p, tree, gimple *, bool);
328 extern bool find_loop_nest (struct loop *, vec<loop_p> *);
329 extern struct data_dependence_relation *initialize_data_dependence_relation
330 (struct data_reference *, struct data_reference *, vec<loop_p>);
331 extern void compute_affine_dependence (struct data_dependence_relation *,
332 loop_p);
333 extern void compute_self_dependence (struct data_dependence_relation *);
334 extern bool compute_all_dependences (vec<data_reference_p> ,
335 vec<ddr_p> *,
336 vec<loop_p>, bool);
337 extern tree find_data_references_in_bb (struct loop *, basic_block,
338 vec<data_reference_p> *);
340 extern bool dr_may_alias_p (const struct data_reference *,
341 const struct data_reference *, bool);
342 extern bool dr_equal_offsets_p (struct data_reference *,
343 struct data_reference *);
345 /* Return true when the base objects of data references A and B are
346 the same memory object. */
348 static inline bool
349 same_data_refs_base_objects (data_reference_p a, data_reference_p b)
351 return DR_NUM_DIMENSIONS (a) == DR_NUM_DIMENSIONS (b)
352 && operand_equal_p (DR_BASE_OBJECT (a), DR_BASE_OBJECT (b), 0);
355 /* Return true when the data references A and B are accessing the same
356 memory object with the same access functions. */
358 static inline bool
359 same_data_refs (data_reference_p a, data_reference_p b)
361 unsigned int i;
363 /* The references are exactly the same. */
364 if (operand_equal_p (DR_REF (a), DR_REF (b), 0))
365 return true;
367 if (!same_data_refs_base_objects (a, b))
368 return false;
370 for (i = 0; i < DR_NUM_DIMENSIONS (a); i++)
371 if (!eq_evolutions_p (DR_ACCESS_FN (a, i), DR_ACCESS_FN (b, i)))
372 return false;
374 return true;
377 /* Return true when the DDR contains two data references that have the
378 same access functions. */
380 static inline bool
381 same_access_functions (const struct data_dependence_relation *ddr)
383 unsigned i;
385 for (i = 0; i < DDR_NUM_SUBSCRIPTS (ddr); i++)
386 if (!eq_evolutions_p (DR_ACCESS_FN (DDR_A (ddr), i),
387 DR_ACCESS_FN (DDR_B (ddr), i)))
388 return false;
390 return true;
393 /* Returns true when all the dependences are computable. */
395 inline bool
396 known_dependences_p (vec<ddr_p> dependence_relations)
398 ddr_p ddr;
399 unsigned int i;
401 FOR_EACH_VEC_ELT (dependence_relations, i, ddr)
402 if (DDR_ARE_DEPENDENT (ddr) == chrec_dont_know)
403 return false;
405 return true;
408 /* Returns the dependence level for a vector DIST of size LENGTH.
409 LEVEL = 0 means a lexicographic dependence, i.e. a dependence due
410 to the sequence of statements, not carried by any loop. */
412 static inline unsigned
413 dependence_level (lambda_vector dist_vect, int length)
415 int i;
417 for (i = 0; i < length; i++)
418 if (dist_vect[i] != 0)
419 return i + 1;
421 return 0;
424 /* Return the dependence level for the DDR relation. */
426 static inline unsigned
427 ddr_dependence_level (ddr_p ddr)
429 unsigned vector;
430 unsigned level = 0;
432 if (DDR_DIST_VECTS (ddr).exists ())
433 level = dependence_level (DDR_DIST_VECT (ddr, 0), DDR_NB_LOOPS (ddr));
435 for (vector = 1; vector < DDR_NUM_DIST_VECTS (ddr); vector++)
436 level = MIN (level, dependence_level (DDR_DIST_VECT (ddr, vector),
437 DDR_NB_LOOPS (ddr)));
438 return level;
441 /* Return the index of the variable VAR in the LOOP_NEST array. */
443 static inline int
444 index_in_loop_nest (int var, vec<loop_p> loop_nest)
446 struct loop *loopi;
447 int var_index;
449 for (var_index = 0; loop_nest.iterate (var_index, &loopi);
450 var_index++)
451 if (loopi->num == var)
452 break;
454 return var_index;
457 /* Returns true when the data reference DR the form "A[i] = ..."
458 with a stride equal to its unit type size. */
460 static inline bool
461 adjacent_dr_p (struct data_reference *dr)
463 /* If this is a bitfield store bail out. */
464 if (TREE_CODE (DR_REF (dr)) == COMPONENT_REF
465 && DECL_BIT_FIELD (TREE_OPERAND (DR_REF (dr), 1)))
466 return false;
468 if (!DR_STEP (dr)
469 || TREE_CODE (DR_STEP (dr)) != INTEGER_CST)
470 return false;
472 return tree_int_cst_equal (fold_unary (ABS_EXPR, TREE_TYPE (DR_STEP (dr)),
473 DR_STEP (dr)),
474 TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (dr))));
477 void split_constant_offset (tree , tree *, tree *);
479 /* Compute the greatest common divisor of a VECTOR of SIZE numbers. */
481 static inline int
482 lambda_vector_gcd (lambda_vector vector, int size)
484 int i;
485 int gcd1 = 0;
487 if (size > 0)
489 gcd1 = vector[0];
490 for (i = 1; i < size; i++)
491 gcd1 = gcd (gcd1, vector[i]);
493 return gcd1;
496 /* Allocate a new vector of given SIZE. */
498 static inline lambda_vector
499 lambda_vector_new (int size)
501 /* ??? We shouldn't abuse the GC allocator here. */
502 return ggc_cleared_vec_alloc<int> (size);
505 /* Clear out vector VEC1 of length SIZE. */
507 static inline void
508 lambda_vector_clear (lambda_vector vec1, int size)
510 memset (vec1, 0, size * sizeof (*vec1));
513 /* Returns true when the vector V is lexicographically positive, in
514 other words, when the first nonzero element is positive. */
516 static inline bool
517 lambda_vector_lexico_pos (lambda_vector v,
518 unsigned n)
520 unsigned i;
521 for (i = 0; i < n; i++)
523 if (v[i] == 0)
524 continue;
525 if (v[i] < 0)
526 return false;
527 if (v[i] > 0)
528 return true;
530 return true;
533 /* Return true if vector VEC1 of length SIZE is the zero vector. */
535 static inline bool
536 lambda_vector_zerop (lambda_vector vec1, int size)
538 int i;
539 for (i = 0; i < size; i++)
540 if (vec1[i] != 0)
541 return false;
542 return true;
545 /* Allocate a matrix of M rows x N cols. */
547 static inline lambda_matrix
548 lambda_matrix_new (int m, int n, struct obstack *lambda_obstack)
550 lambda_matrix mat;
551 int i;
553 mat = XOBNEWVEC (lambda_obstack, lambda_vector, m);
555 for (i = 0; i < m; i++)
556 mat[i] = XOBNEWVEC (lambda_obstack, int, n);
558 return mat;
561 #endif /* GCC_TREE_DATA_REF_H */