* config/xtensa/xtensa.c (xtensa_secondary_reload_class): Revert
[official-gcc.git] / gcc / config / xtensa / xtensa.h
blob1c23b8d568c26aae67535f8b7aba75a2efb511a4
1 /* Definitions of Tensilica's Xtensa target machine for GNU compiler.
2 Copyright 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
3 Free Software Foundation, Inc.
4 Contributed by Bob Wilson (bwilson@tensilica.com) at Tensilica.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 /* Get Xtensa configuration settings */
23 #include "xtensa-config.h"
25 /* Standard GCC variables that we reference. */
26 extern int optimize;
28 /* External variables defined in xtensa.c. */
30 /* comparison type */
31 enum cmp_type {
32 CMP_SI, /* four byte integers */
33 CMP_DI, /* eight byte integers */
34 CMP_SF, /* single precision floats */
35 CMP_DF, /* double precision floats */
36 CMP_MAX /* max comparison type */
39 extern struct rtx_def * branch_cmp[2]; /* operands for compare */
40 extern enum cmp_type branch_type; /* what type of branch to use */
41 extern unsigned xtensa_current_frame_size;
43 /* Macros used in the machine description to select various Xtensa
44 configuration options. */
45 #ifndef XCHAL_HAVE_MUL32_HIGH
46 #define XCHAL_HAVE_MUL32_HIGH 0
47 #endif
48 #ifndef XCHAL_HAVE_RELEASE_SYNC
49 #define XCHAL_HAVE_RELEASE_SYNC 0
50 #endif
51 #ifndef XCHAL_HAVE_S32C1I
52 #define XCHAL_HAVE_S32C1I 0
53 #endif
54 #define TARGET_BIG_ENDIAN XCHAL_HAVE_BE
55 #define TARGET_DENSITY XCHAL_HAVE_DENSITY
56 #define TARGET_MAC16 XCHAL_HAVE_MAC16
57 #define TARGET_MUL16 XCHAL_HAVE_MUL16
58 #define TARGET_MUL32 XCHAL_HAVE_MUL32
59 #define TARGET_MUL32_HIGH XCHAL_HAVE_MUL32_HIGH
60 #define TARGET_DIV32 XCHAL_HAVE_DIV32
61 #define TARGET_NSA XCHAL_HAVE_NSA
62 #define TARGET_MINMAX XCHAL_HAVE_MINMAX
63 #define TARGET_SEXT XCHAL_HAVE_SEXT
64 #define TARGET_BOOLEANS XCHAL_HAVE_BOOLEANS
65 #define TARGET_HARD_FLOAT XCHAL_HAVE_FP
66 #define TARGET_HARD_FLOAT_DIV XCHAL_HAVE_FP_DIV
67 #define TARGET_HARD_FLOAT_RECIP XCHAL_HAVE_FP_RECIP
68 #define TARGET_HARD_FLOAT_SQRT XCHAL_HAVE_FP_SQRT
69 #define TARGET_HARD_FLOAT_RSQRT XCHAL_HAVE_FP_RSQRT
70 #define TARGET_ABS XCHAL_HAVE_ABS
71 #define TARGET_ADDX XCHAL_HAVE_ADDX
72 #define TARGET_RELEASE_SYNC XCHAL_HAVE_RELEASE_SYNC
73 #define TARGET_S32C1I XCHAL_HAVE_S32C1I
74 #define TARGET_ABSOLUTE_LITERALS XSHAL_USE_ABSOLUTE_LITERALS
76 #define TARGET_DEFAULT \
77 ((XCHAL_HAVE_L32R ? 0 : MASK_CONST16) | \
78 MASK_SERIALIZE_VOLATILE)
80 #define OVERRIDE_OPTIONS override_options ()
82 /* Reordering blocks for Xtensa is not a good idea unless the compiler
83 understands the range of conditional branches. Currently all branch
84 relaxation for Xtensa is handled in the assembler, so GCC cannot do a
85 good job of reordering blocks. Do not enable reordering unless it is
86 explicitly requested. */
87 #define OPTIMIZATION_OPTIONS(LEVEL, SIZE) \
88 do \
89 { \
90 flag_reorder_blocks = 0; \
91 } \
92 while (0)
95 /* Target CPU builtins. */
96 #define TARGET_CPU_CPP_BUILTINS() \
97 do { \
98 builtin_assert ("cpu=xtensa"); \
99 builtin_assert ("machine=xtensa"); \
100 builtin_define ("__xtensa__"); \
101 builtin_define ("__XTENSA__"); \
102 builtin_define ("__XTENSA_WINDOWED_ABI__"); \
103 builtin_define (TARGET_BIG_ENDIAN ? "__XTENSA_EB__" : "__XTENSA_EL__"); \
104 if (!TARGET_HARD_FLOAT) \
105 builtin_define ("__XTENSA_SOFT_FLOAT__"); \
106 } while (0)
108 #define CPP_SPEC " %(subtarget_cpp_spec) "
110 #ifndef SUBTARGET_CPP_SPEC
111 #define SUBTARGET_CPP_SPEC ""
112 #endif
114 #define EXTRA_SPECS \
115 { "subtarget_cpp_spec", SUBTARGET_CPP_SPEC },
117 #ifdef __XTENSA_EB__
118 #define LIBGCC2_WORDS_BIG_ENDIAN 1
119 #else
120 #define LIBGCC2_WORDS_BIG_ENDIAN 0
121 #endif
123 /* Show we can debug even without a frame pointer. */
124 #define CAN_DEBUG_WITHOUT_FP
127 /* Target machine storage layout */
129 /* Define this if most significant bit is lowest numbered
130 in instructions that operate on numbered bit-fields. */
131 #define BITS_BIG_ENDIAN (TARGET_BIG_ENDIAN != 0)
133 /* Define this if most significant byte of a word is the lowest numbered. */
134 #define BYTES_BIG_ENDIAN (TARGET_BIG_ENDIAN != 0)
136 /* Define this if most significant word of a multiword number is the lowest. */
137 #define WORDS_BIG_ENDIAN (TARGET_BIG_ENDIAN != 0)
139 #define MAX_BITS_PER_WORD 32
141 /* Width of a word, in units (bytes). */
142 #define UNITS_PER_WORD 4
143 #define MIN_UNITS_PER_WORD 4
145 /* Width of a floating point register. */
146 #define UNITS_PER_FPREG 4
148 /* Size in bits of various types on the target machine. */
149 #define INT_TYPE_SIZE 32
150 #define SHORT_TYPE_SIZE 16
151 #define LONG_TYPE_SIZE 32
152 #define LONG_LONG_TYPE_SIZE 64
153 #define FLOAT_TYPE_SIZE 32
154 #define DOUBLE_TYPE_SIZE 64
155 #define LONG_DOUBLE_TYPE_SIZE 64
157 /* Allocation boundary (in *bits*) for storing pointers in memory. */
158 #define POINTER_BOUNDARY 32
160 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
161 #define PARM_BOUNDARY 32
163 /* Allocation boundary (in *bits*) for the code of a function. */
164 #define FUNCTION_BOUNDARY 32
166 /* Alignment of field after 'int : 0' in a structure. */
167 #define EMPTY_FIELD_BOUNDARY 32
169 /* Every structure's size must be a multiple of this. */
170 #define STRUCTURE_SIZE_BOUNDARY 8
172 /* There is no point aligning anything to a rounder boundary than this. */
173 #define BIGGEST_ALIGNMENT 128
175 /* Set this nonzero if move instructions will actually fail to work
176 when given unaligned data. */
177 #define STRICT_ALIGNMENT 1
179 /* Promote integer modes smaller than a word to SImode. Set UNSIGNEDP
180 for QImode, because there is no 8-bit load from memory with sign
181 extension. Otherwise, leave UNSIGNEDP alone, since Xtensa has 16-bit
182 loads both with and without sign extension. */
183 #define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
184 do { \
185 if (GET_MODE_CLASS (MODE) == MODE_INT \
186 && GET_MODE_SIZE (MODE) < UNITS_PER_WORD) \
188 if ((MODE) == QImode) \
189 (UNSIGNEDP) = 1; \
190 (MODE) = SImode; \
192 } while (0)
194 /* Imitate the way many other C compilers handle alignment of
195 bitfields and the structures that contain them. */
196 #define PCC_BITFIELD_TYPE_MATTERS 1
198 /* Disable the use of word-sized or smaller complex modes for structures,
199 and for function arguments in particular, where they cause problems with
200 register a7. The xtensa_copy_incoming_a7 function assumes that there is
201 a single reference to an argument in a7, but with small complex modes the
202 real and imaginary components may be extracted separately, leading to two
203 uses of the register, only one of which would be replaced. */
204 #define MEMBER_TYPE_FORCES_BLK(FIELD, MODE) \
205 ((MODE) == CQImode || (MODE) == CHImode)
207 /* Align string constants and constructors to at least a word boundary.
208 The typical use of this macro is to increase alignment for string
209 constants to be word aligned so that 'strcpy' calls that copy
210 constants can be done inline. */
211 #define CONSTANT_ALIGNMENT(EXP, ALIGN) \
212 ((TREE_CODE (EXP) == STRING_CST || TREE_CODE (EXP) == CONSTRUCTOR) \
213 && (ALIGN) < BITS_PER_WORD \
214 ? BITS_PER_WORD \
215 : (ALIGN))
217 /* Align arrays, unions and records to at least a word boundary.
218 One use of this macro is to increase alignment of medium-size
219 data to make it all fit in fewer cache lines. Another is to
220 cause character arrays to be word-aligned so that 'strcpy' calls
221 that copy constants to character arrays can be done inline. */
222 #undef DATA_ALIGNMENT
223 #define DATA_ALIGNMENT(TYPE, ALIGN) \
224 ((((ALIGN) < BITS_PER_WORD) \
225 && (TREE_CODE (TYPE) == ARRAY_TYPE \
226 || TREE_CODE (TYPE) == UNION_TYPE \
227 || TREE_CODE (TYPE) == RECORD_TYPE)) ? BITS_PER_WORD : (ALIGN))
229 /* Operations between registers always perform the operation
230 on the full register even if a narrower mode is specified. */
231 #define WORD_REGISTER_OPERATIONS
233 /* Xtensa loads are zero-extended by default. */
234 #define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
236 /* Standard register usage. */
238 /* Number of actual hardware registers.
239 The hardware registers are assigned numbers for the compiler
240 from 0 to just below FIRST_PSEUDO_REGISTER.
241 All registers that the compiler knows about must be given numbers,
242 even those that are not normally considered general registers.
244 The fake frame pointer and argument pointer will never appear in
245 the generated code, since they will always be eliminated and replaced
246 by either the stack pointer or the hard frame pointer.
248 0 - 15 AR[0] - AR[15]
249 16 FRAME_POINTER (fake = initial sp)
250 17 ARG_POINTER (fake = initial sp + framesize)
251 18 BR[0] for floating-point CC
252 19 - 34 FR[0] - FR[15]
253 35 MAC16 accumulator */
255 #define FIRST_PSEUDO_REGISTER 36
257 /* Return the stabs register number to use for REGNO. */
258 #define DBX_REGISTER_NUMBER(REGNO) xtensa_dbx_register_number (REGNO)
260 /* 1 for registers that have pervasive standard uses
261 and are not available for the register allocator. */
262 #define FIXED_REGISTERS \
264 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
265 1, 1, 0, \
266 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
267 0, \
270 /* 1 for registers not available across function calls.
271 These must include the FIXED_REGISTERS and also any
272 registers that can be used without being saved.
273 The latter must include the registers where values are returned
274 and the register where structure-value addresses are passed.
275 Aside from that, you can include as many other registers as you like. */
276 #define CALL_USED_REGISTERS \
278 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, \
279 1, 1, 1, \
280 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
281 1, \
284 /* For non-leaf procedures on Xtensa processors, the allocation order
285 is as specified below by REG_ALLOC_ORDER. For leaf procedures, we
286 want to use the lowest numbered registers first to minimize
287 register window overflows. However, local-alloc is not smart
288 enough to consider conflicts with incoming arguments. If an
289 incoming argument in a2 is live throughout the function and
290 local-alloc decides to use a2, then the incoming argument must
291 either be spilled or copied to another register. To get around
292 this, we define ORDER_REGS_FOR_LOCAL_ALLOC to redefine
293 reg_alloc_order for leaf functions such that lowest numbered
294 registers are used first with the exception that the incoming
295 argument registers are not used until after other register choices
296 have been exhausted. */
298 #define REG_ALLOC_ORDER \
299 { 8, 9, 10, 11, 12, 13, 14, 15, 7, 6, 5, 4, 3, 2, \
300 18, \
301 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, \
302 0, 1, 16, 17, \
303 35, \
306 #define ORDER_REGS_FOR_LOCAL_ALLOC order_regs_for_local_alloc ()
308 /* For Xtensa, the only point of this is to prevent GCC from otherwise
309 giving preference to call-used registers. To minimize window
310 overflows for the AR registers, we want to give preference to the
311 lower-numbered AR registers. For other register files, which are
312 not windowed, we still prefer call-used registers, if there are any. */
313 extern const char xtensa_leaf_regs[FIRST_PSEUDO_REGISTER];
314 #define LEAF_REGISTERS xtensa_leaf_regs
316 /* For Xtensa, no remapping is necessary, but this macro must be
317 defined if LEAF_REGISTERS is defined. */
318 #define LEAF_REG_REMAP(REGNO) (REGNO)
320 /* This must be declared if LEAF_REGISTERS is set. */
321 extern int leaf_function;
323 /* Internal macros to classify a register number. */
325 /* 16 address registers + fake registers */
326 #define GP_REG_FIRST 0
327 #define GP_REG_LAST 17
328 #define GP_REG_NUM (GP_REG_LAST - GP_REG_FIRST + 1)
330 /* Coprocessor registers */
331 #define BR_REG_FIRST 18
332 #define BR_REG_LAST 18
333 #define BR_REG_NUM (BR_REG_LAST - BR_REG_FIRST + 1)
335 /* 16 floating-point registers */
336 #define FP_REG_FIRST 19
337 #define FP_REG_LAST 34
338 #define FP_REG_NUM (FP_REG_LAST - FP_REG_FIRST + 1)
340 /* MAC16 accumulator */
341 #define ACC_REG_FIRST 35
342 #define ACC_REG_LAST 35
343 #define ACC_REG_NUM (ACC_REG_LAST - ACC_REG_FIRST + 1)
345 #define GP_REG_P(REGNO) ((unsigned) ((REGNO) - GP_REG_FIRST) < GP_REG_NUM)
346 #define BR_REG_P(REGNO) ((unsigned) ((REGNO) - BR_REG_FIRST) < BR_REG_NUM)
347 #define FP_REG_P(REGNO) ((unsigned) ((REGNO) - FP_REG_FIRST) < FP_REG_NUM)
348 #define ACC_REG_P(REGNO) ((unsigned) ((REGNO) - ACC_REG_FIRST) < ACC_REG_NUM)
350 /* Return number of consecutive hard regs needed starting at reg REGNO
351 to hold something of mode MODE. */
352 #define HARD_REGNO_NREGS(REGNO, MODE) \
353 (FP_REG_P (REGNO) ? \
354 ((GET_MODE_SIZE (MODE) + UNITS_PER_FPREG - 1) / UNITS_PER_FPREG) : \
355 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
357 /* Value is 1 if hard register REGNO can hold a value of machine-mode
358 MODE. */
359 extern char xtensa_hard_regno_mode_ok[][FIRST_PSEUDO_REGISTER];
361 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
362 xtensa_hard_regno_mode_ok[(int) (MODE)][(REGNO)]
364 /* Value is 1 if it is a good idea to tie two pseudo registers
365 when one has mode MODE1 and one has mode MODE2.
366 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
367 for any hard reg, then this must be 0 for correct output. */
368 #define MODES_TIEABLE_P(MODE1, MODE2) \
369 ((GET_MODE_CLASS (MODE1) == MODE_FLOAT || \
370 GET_MODE_CLASS (MODE1) == MODE_COMPLEX_FLOAT) \
371 == (GET_MODE_CLASS (MODE2) == MODE_FLOAT || \
372 GET_MODE_CLASS (MODE2) == MODE_COMPLEX_FLOAT))
374 /* Register to use for pushing function arguments. */
375 #define STACK_POINTER_REGNUM (GP_REG_FIRST + 1)
377 /* Base register for access to local variables of the function. */
378 #define HARD_FRAME_POINTER_REGNUM (GP_REG_FIRST + 7)
380 /* The register number of the frame pointer register, which is used to
381 access automatic variables in the stack frame. For Xtensa, this
382 register never appears in the output. It is always eliminated to
383 either the stack pointer or the hard frame pointer. */
384 #define FRAME_POINTER_REGNUM (GP_REG_FIRST + 16)
386 /* Value should be nonzero if functions must have frame pointers.
387 Zero means the frame pointer need not be set up (and parms
388 may be accessed via the stack pointer) in functions that seem suitable.
389 This is computed in 'reload', in reload1.c. */
390 #define FRAME_POINTER_REQUIRED xtensa_frame_pointer_required ()
392 /* Base register for access to arguments of the function. */
393 #define ARG_POINTER_REGNUM (GP_REG_FIRST + 17)
395 /* If the static chain is passed in memory, these macros provide rtx
396 giving 'mem' expressions that denote where they are stored.
397 'STATIC_CHAIN' and 'STATIC_CHAIN_INCOMING' give the locations as
398 seen by the calling and called functions, respectively. */
400 #define STATIC_CHAIN \
401 gen_rtx_MEM (Pmode, plus_constant (stack_pointer_rtx, -5 * UNITS_PER_WORD))
403 #define STATIC_CHAIN_INCOMING \
404 gen_rtx_MEM (Pmode, plus_constant (arg_pointer_rtx, -5 * UNITS_PER_WORD))
406 /* For now we don't try to use the full set of boolean registers. Without
407 software pipelining of FP operations, there's not much to gain and it's
408 a real pain to get them reloaded. */
409 #define FPCC_REGNUM (BR_REG_FIRST + 0)
411 /* It is as good or better to call a constant function address than to
412 call an address kept in a register. */
413 #define NO_FUNCTION_CSE 1
415 /* Xtensa processors have "register windows". GCC does not currently
416 take advantage of the possibility for variable-sized windows; instead,
417 we use a fixed window size of 8. */
419 #define INCOMING_REGNO(OUT) \
420 ((GP_REG_P (OUT) && \
421 ((unsigned) ((OUT) - GP_REG_FIRST) >= WINDOW_SIZE)) ? \
422 (OUT) - WINDOW_SIZE : (OUT))
424 #define OUTGOING_REGNO(IN) \
425 ((GP_REG_P (IN) && \
426 ((unsigned) ((IN) - GP_REG_FIRST) < WINDOW_SIZE)) ? \
427 (IN) + WINDOW_SIZE : (IN))
430 /* Define the classes of registers for register constraints in the
431 machine description. */
432 enum reg_class
434 NO_REGS, /* no registers in set */
435 BR_REGS, /* coprocessor boolean registers */
436 FP_REGS, /* floating point registers */
437 ACC_REG, /* MAC16 accumulator */
438 SP_REG, /* sp register (aka a1) */
439 RL_REGS, /* preferred reload regs (not sp or fp) */
440 GR_REGS, /* integer registers except sp */
441 AR_REGS, /* all integer registers */
442 ALL_REGS, /* all registers */
443 LIM_REG_CLASSES /* max value + 1 */
446 #define N_REG_CLASSES (int) LIM_REG_CLASSES
448 #define GENERAL_REGS AR_REGS
450 /* An initializer containing the names of the register classes as C
451 string constants. These names are used in writing some of the
452 debugging dumps. */
453 #define REG_CLASS_NAMES \
455 "NO_REGS", \
456 "BR_REGS", \
457 "FP_REGS", \
458 "ACC_REG", \
459 "SP_REG", \
460 "RL_REGS", \
461 "GR_REGS", \
462 "AR_REGS", \
463 "ALL_REGS" \
466 /* Contents of the register classes. The Nth integer specifies the
467 contents of class N. The way the integer MASK is interpreted is
468 that register R is in the class if 'MASK & (1 << R)' is 1. */
469 #define REG_CLASS_CONTENTS \
471 { 0x00000000, 0x00000000 }, /* no registers */ \
472 { 0x00040000, 0x00000000 }, /* coprocessor boolean registers */ \
473 { 0xfff80000, 0x00000007 }, /* floating-point registers */ \
474 { 0x00000000, 0x00000008 }, /* MAC16 accumulator */ \
475 { 0x00000002, 0x00000000 }, /* stack pointer register */ \
476 { 0x0000ff7d, 0x00000000 }, /* preferred reload registers */ \
477 { 0x0000fffd, 0x00000000 }, /* general-purpose registers */ \
478 { 0x0003ffff, 0x00000000 }, /* integer registers */ \
479 { 0xffffffff, 0x0000000f } /* all registers */ \
482 #define IRA_COVER_CLASSES \
484 BR_REGS, FP_REGS, ACC_REG, AR_REGS, LIM_REG_CLASSES \
487 /* A C expression whose value is a register class containing hard
488 register REGNO. In general there is more that one such class;
489 choose a class which is "minimal", meaning that no smaller class
490 also contains the register. */
491 extern const enum reg_class xtensa_regno_to_class[FIRST_PSEUDO_REGISTER];
493 #define REGNO_REG_CLASS(REGNO) xtensa_regno_to_class[ (REGNO) ]
495 /* Use the Xtensa AR register file for base registers.
496 No index registers. */
497 #define BASE_REG_CLASS AR_REGS
498 #define INDEX_REG_CLASS NO_REGS
500 /* SMALL_REGISTER_CLASSES is required for Xtensa, because all of the
501 16 AR registers may be explicitly used in the RTL, as either
502 incoming or outgoing arguments. */
503 #define SMALL_REGISTER_CLASSES 1
505 #define PREFERRED_RELOAD_CLASS(X, CLASS) \
506 xtensa_preferred_reload_class (X, CLASS, 0)
508 #define PREFERRED_OUTPUT_RELOAD_CLASS(X, CLASS) \
509 xtensa_preferred_reload_class (X, CLASS, 1)
511 #define SECONDARY_INPUT_RELOAD_CLASS(CLASS, MODE, X) \
512 xtensa_secondary_reload_class (CLASS, MODE, X, 0)
514 #define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, X) \
515 xtensa_secondary_reload_class (CLASS, MODE, X, 1)
517 /* Return the maximum number of consecutive registers
518 needed to represent mode MODE in a register of class CLASS. */
519 #define CLASS_UNITS(mode, size) \
520 ((GET_MODE_SIZE (mode) + (size) - 1) / (size))
522 #define CLASS_MAX_NREGS(CLASS, MODE) \
523 (CLASS_UNITS (MODE, UNITS_PER_WORD))
526 /* Stack layout; function entry, exit and calling. */
528 #define STACK_GROWS_DOWNWARD
530 /* Offset within stack frame to start allocating local variables at. */
531 #define STARTING_FRAME_OFFSET \
532 crtl->outgoing_args_size
534 /* The ARG_POINTER and FRAME_POINTER are not real Xtensa registers, so
535 they are eliminated to either the stack pointer or hard frame pointer. */
536 #define ELIMINABLE_REGS \
537 {{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
538 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
539 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
540 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}}
542 #define CAN_ELIMINATE(FROM, TO) 1
544 /* Specify the initial difference between the specified pair of registers. */
545 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
546 do { \
547 compute_frame_size (get_frame_size ()); \
548 switch (FROM) \
550 case FRAME_POINTER_REGNUM: \
551 (OFFSET) = 0; \
552 break; \
553 case ARG_POINTER_REGNUM: \
554 (OFFSET) = xtensa_current_frame_size; \
555 break; \
556 default: \
557 gcc_unreachable (); \
559 } while (0)
561 /* If defined, the maximum amount of space required for outgoing
562 arguments will be computed and placed into the variable
563 'crtl->outgoing_args_size'. No space will be pushed
564 onto the stack for each call; instead, the function prologue
565 should increase the stack frame size by this amount. */
566 #define ACCUMULATE_OUTGOING_ARGS 1
568 /* Offset from the argument pointer register to the first argument's
569 address. On some machines it may depend on the data type of the
570 function. If 'ARGS_GROW_DOWNWARD', this is the offset to the
571 location above the first argument's address. */
572 #define FIRST_PARM_OFFSET(FNDECL) 0
574 /* Align stack frames on 128 bits for Xtensa. This is necessary for
575 128-bit datatypes defined in TIE (e.g., for Vectra). */
576 #define STACK_BOUNDARY 128
578 /* Functions do not pop arguments off the stack. */
579 #define RETURN_POPS_ARGS(FUNDECL, FUNTYPE, SIZE) 0
581 /* Use a fixed register window size of 8. */
582 #define WINDOW_SIZE 8
584 /* Symbolic macros for the registers used to return integer, floating
585 point, and values of coprocessor and user-defined modes. */
586 #define GP_RETURN (GP_REG_FIRST + 2 + WINDOW_SIZE)
587 #define GP_OUTGOING_RETURN (GP_REG_FIRST + 2)
589 /* Symbolic macros for the first/last argument registers. */
590 #define GP_ARG_FIRST (GP_REG_FIRST + 2)
591 #define GP_ARG_LAST (GP_REG_FIRST + 7)
592 #define GP_OUTGOING_ARG_FIRST (GP_REG_FIRST + 2 + WINDOW_SIZE)
593 #define GP_OUTGOING_ARG_LAST (GP_REG_FIRST + 7 + WINDOW_SIZE)
595 #define MAX_ARGS_IN_REGISTERS 6
597 /* Don't worry about compatibility with PCC. */
598 #define DEFAULT_PCC_STRUCT_RETURN 0
600 /* Define how to find the value returned by a library function
601 assuming the value has mode MODE. Because we have defined
602 TARGET_PROMOTE_FUNCTION_RETURN that returns true, we have to
603 perform the same promotions as PROMOTE_MODE. */
604 #define XTENSA_LIBCALL_VALUE(MODE, OUTGOINGP) \
605 gen_rtx_REG ((GET_MODE_CLASS (MODE) == MODE_INT \
606 && GET_MODE_SIZE (MODE) < UNITS_PER_WORD) \
607 ? SImode : (MODE), \
608 OUTGOINGP ? GP_OUTGOING_RETURN : GP_RETURN)
610 #define LIBCALL_VALUE(MODE) \
611 XTENSA_LIBCALL_VALUE ((MODE), 0)
613 #define LIBCALL_OUTGOING_VALUE(MODE) \
614 XTENSA_LIBCALL_VALUE ((MODE), 1)
616 /* A C expression that is nonzero if REGNO is the number of a hard
617 register in which the values of called function may come back. A
618 register whose use for returning values is limited to serving as
619 the second of a pair (for a value of type 'double', say) need not
620 be recognized by this macro. If the machine has register windows,
621 so that the caller and the called function use different registers
622 for the return value, this macro should recognize only the caller's
623 register numbers. */
624 #define FUNCTION_VALUE_REGNO_P(N) \
625 ((N) == GP_RETURN)
627 /* A C expression that is nonzero if REGNO is the number of a hard
628 register in which function arguments are sometimes passed. This
629 does *not* include implicit arguments such as the static chain and
630 the structure-value address. On many machines, no registers can be
631 used for this purpose since all function arguments are pushed on
632 the stack. */
633 #define FUNCTION_ARG_REGNO_P(N) \
634 ((N) >= GP_OUTGOING_ARG_FIRST && (N) <= GP_OUTGOING_ARG_LAST)
636 /* Record the number of argument words seen so far, along with a flag to
637 indicate whether these are incoming arguments. (FUNCTION_INCOMING_ARG
638 is used for both incoming and outgoing args, so a separate flag is
639 needed. */
640 typedef struct xtensa_args
642 int arg_words;
643 int incoming;
644 } CUMULATIVE_ARGS;
646 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT, N_NAMED_ARGS) \
647 init_cumulative_args (&CUM, 0)
649 #define INIT_CUMULATIVE_INCOMING_ARGS(CUM, FNTYPE, LIBNAME) \
650 init_cumulative_args (&CUM, 1)
652 /* Update the data in CUM to advance over an argument
653 of mode MODE and data type TYPE.
654 (TYPE is null for libcalls where that information may not be available.) */
655 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
656 function_arg_advance (&CUM, MODE, TYPE)
658 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
659 function_arg (&CUM, MODE, TYPE, FALSE)
661 #define FUNCTION_INCOMING_ARG(CUM, MODE, TYPE, NAMED) \
662 function_arg (&CUM, MODE, TYPE, TRUE)
664 #define FUNCTION_ARG_BOUNDARY function_arg_boundary
666 /* Profiling Xtensa code is typically done with the built-in profiling
667 feature of Tensilica's instruction set simulator, which does not
668 require any compiler support. Profiling code on a real (i.e.,
669 non-simulated) Xtensa processor is currently only supported by
670 GNU/Linux with glibc. The glibc version of _mcount doesn't require
671 counter variables. The _mcount function needs the current PC and
672 the current return address to identify an arc in the call graph.
673 Pass the current return address as the first argument; the current
674 PC is available as a0 in _mcount's register window. Both of these
675 values contain window size information in the two most significant
676 bits; we assume that _mcount will mask off those bits. The call to
677 _mcount uses a window size of 8 to make sure that it doesn't clobber
678 any incoming argument values. */
680 #define NO_PROFILE_COUNTERS 1
682 #define FUNCTION_PROFILER(FILE, LABELNO) \
683 do { \
684 fprintf (FILE, "\t%s\ta10, a0\n", TARGET_DENSITY ? "mov.n" : "mov"); \
685 if (flag_pic) \
687 fprintf (FILE, "\tmovi\ta8, _mcount@PLT\n"); \
688 fprintf (FILE, "\tcallx8\ta8\n"); \
690 else \
691 fprintf (FILE, "\tcall8\t_mcount\n"); \
692 } while (0)
694 /* Stack pointer value doesn't matter at exit. */
695 #define EXIT_IGNORE_STACK 1
697 #define TRAMPOLINE_TEMPLATE(STREAM) xtensa_trampoline_template (STREAM)
699 /* Size in bytes of the trampoline, as an integer. Make sure this is
700 a multiple of TRAMPOLINE_ALIGNMENT to avoid -Wpadded warnings. */
701 #define TRAMPOLINE_SIZE (TARGET_CONST16 || TARGET_ABSOLUTE_LITERALS ? 60 : 52)
703 /* Alignment required for trampolines, in bits. */
704 #define TRAMPOLINE_ALIGNMENT 32
706 /* A C statement to initialize the variable parts of a trampoline. */
707 #define INITIALIZE_TRAMPOLINE(ADDR, FUNC, CHAIN) \
708 xtensa_initialize_trampoline (ADDR, FUNC, CHAIN)
711 /* If defined, a C expression that produces the machine-specific code
712 to setup the stack so that arbitrary frames can be accessed.
714 On Xtensa, a stack back-trace must always begin from the stack pointer,
715 so that the register overflow save area can be located. However, the
716 stack-walking code in GCC always begins from the hard_frame_pointer
717 register, not the stack pointer. The frame pointer is usually equal
718 to the stack pointer, but the __builtin_return_address and
719 __builtin_frame_address functions will not work if count > 0 and
720 they are called from a routine that uses alloca. These functions
721 are not guaranteed to work at all if count > 0 so maybe that is OK.
723 A nicer solution would be to allow the architecture-specific files to
724 specify whether to start from the stack pointer or frame pointer. That
725 would also allow us to skip the machine->accesses_prev_frame stuff that
726 we currently need to ensure that there is a frame pointer when these
727 builtin functions are used. */
729 #define SETUP_FRAME_ADDRESSES xtensa_setup_frame_addresses
731 /* A C expression whose value is RTL representing the address in a
732 stack frame where the pointer to the caller's frame is stored.
733 Assume that FRAMEADDR is an RTL expression for the address of the
734 stack frame itself.
736 For Xtensa, there is no easy way to get the frame pointer if it is
737 not equivalent to the stack pointer. Moreover, the result of this
738 macro is used for continuing to walk back up the stack, so it must
739 return the stack pointer address. Thus, there is some inconsistency
740 here in that __builtin_frame_address will return the frame pointer
741 when count == 0 and the stack pointer when count > 0. */
743 #define DYNAMIC_CHAIN_ADDRESS(frame) \
744 gen_rtx_PLUS (Pmode, frame, GEN_INT (-3 * UNITS_PER_WORD))
746 /* Define this if the return address of a particular stack frame is
747 accessed from the frame pointer of the previous stack frame. */
748 #define RETURN_ADDR_IN_PREVIOUS_FRAME
750 /* A C expression whose value is RTL representing the value of the
751 return address for the frame COUNT steps up from the current
752 frame, after the prologue. */
753 #define RETURN_ADDR_RTX xtensa_return_addr
755 /* Addressing modes, and classification of registers for them. */
757 /* C expressions which are nonzero if register number NUM is suitable
758 for use as a base or index register in operand addresses. */
760 #define REGNO_OK_FOR_INDEX_P(NUM) 0
761 #define REGNO_OK_FOR_BASE_P(NUM) \
762 (GP_REG_P (NUM) || GP_REG_P ((unsigned) reg_renumber[NUM]))
764 /* C expressions that are nonzero if X (assumed to be a `reg' RTX) is
765 valid for use as a base or index register. */
767 #ifdef REG_OK_STRICT
768 #define REG_OK_STRICT_FLAG 1
769 #else
770 #define REG_OK_STRICT_FLAG 0
771 #endif
773 #define BASE_REG_P(X, STRICT) \
774 ((!(STRICT) && REGNO (X) >= FIRST_PSEUDO_REGISTER) \
775 || REGNO_OK_FOR_BASE_P (REGNO (X)))
777 #define REG_OK_FOR_INDEX_P(X) 0
778 #define REG_OK_FOR_BASE_P(X) BASE_REG_P (X, REG_OK_STRICT_FLAG)
780 /* Maximum number of registers that can appear in a valid memory address. */
781 #define MAX_REGS_PER_ADDRESS 1
783 /* Identify valid Xtensa addresses. */
784 #define GO_IF_LEGITIMATE_ADDRESS(MODE, ADDR, LABEL) \
785 do { \
786 if (xtensa_legitimate_address_p (MODE, ADDR, REG_OK_STRICT_FLAG)) \
787 goto LABEL; \
788 } while (0)
790 /* A C expression that is 1 if the RTX X is a constant which is a
791 valid address. This is defined to be the same as 'CONSTANT_P (X)',
792 but rejecting CONST_DOUBLE. */
793 #define CONSTANT_ADDRESS_P(X) \
794 ((GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \
795 || GET_CODE (X) == CONST_INT || GET_CODE (X) == HIGH \
796 || (GET_CODE (X) == CONST)))
798 /* Nonzero if the constant value X is a legitimate general operand.
799 It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
800 #define LEGITIMATE_CONSTANT_P(X) 1
802 /* A C expression that is nonzero if X is a legitimate immediate
803 operand on the target machine when generating position independent
804 code. */
805 #define LEGITIMATE_PIC_OPERAND_P(X) \
806 ((GET_CODE (X) != SYMBOL_REF \
807 || (SYMBOL_REF_LOCAL_P (X) && !SYMBOL_REF_EXTERNAL_P (X))) \
808 && GET_CODE (X) != LABEL_REF \
809 && GET_CODE (X) != CONST)
811 #define LEGITIMIZE_ADDRESS(X, OLDX, MODE, WIN) \
812 do { \
813 rtx new_x = xtensa_legitimize_address (X, OLDX, MODE); \
814 if (new_x) \
816 X = new_x; \
817 goto WIN; \
819 } while (0)
822 /* Treat constant-pool references as "mode dependent" since they can
823 only be accessed with SImode loads. This works around a bug in the
824 combiner where a constant pool reference is temporarily converted
825 to an HImode load, which is then assumed to zero-extend based on
826 our definition of LOAD_EXTEND_OP. This is wrong because the high
827 bits of a 16-bit value in the constant pool are now sign-extended
828 by default. */
830 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR, LABEL) \
831 do { \
832 if (constantpool_address_p (ADDR)) \
833 goto LABEL; \
834 } while (0)
836 /* Specify the machine mode that this machine uses
837 for the index in the tablejump instruction. */
838 #define CASE_VECTOR_MODE (SImode)
840 /* Define this as 1 if 'char' should by default be signed; else as 0. */
841 #define DEFAULT_SIGNED_CHAR 0
843 /* Max number of bytes we can move from memory to memory
844 in one reasonably fast instruction. */
845 #define MOVE_MAX 4
846 #define MAX_MOVE_MAX 4
848 /* Prefer word-sized loads. */
849 #define SLOW_BYTE_ACCESS 1
851 /* Shift instructions ignore all but the low-order few bits. */
852 #define SHIFT_COUNT_TRUNCATED 1
854 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
855 is done just by pretending it is already truncated. */
856 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
858 #define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) ((VALUE) = 32, 1)
859 #define CTZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) ((VALUE) = -1, 1)
861 /* Specify the machine mode that pointers have.
862 After generation of rtl, the compiler makes no further distinction
863 between pointers and any other objects of this machine mode. */
864 #define Pmode SImode
866 /* A function address in a call instruction is a word address (for
867 indexing purposes) so give the MEM rtx a words's mode. */
868 #define FUNCTION_MODE SImode
870 /* A C expression for the cost of moving data from a register in
871 class FROM to one in class TO. The classes are expressed using
872 the enumeration values such as 'GENERAL_REGS'. A value of 2 is
873 the default; other values are interpreted relative to that. */
874 #define REGISTER_MOVE_COST(MODE, FROM, TO) \
875 (((FROM) == (TO) && (FROM) != BR_REGS && (TO) != BR_REGS) \
876 ? 2 \
877 : (reg_class_subset_p ((FROM), AR_REGS) \
878 && reg_class_subset_p ((TO), AR_REGS) \
879 ? 2 \
880 : (reg_class_subset_p ((FROM), AR_REGS) \
881 && (TO) == ACC_REG \
882 ? 3 \
883 : ((FROM) == ACC_REG \
884 && reg_class_subset_p ((TO), AR_REGS) \
885 ? 3 \
886 : 10))))
888 #define MEMORY_MOVE_COST(MODE, CLASS, IN) 4
890 #define BRANCH_COST 3
892 /* How to refer to registers in assembler output.
893 This sequence is indexed by compiler's hard-register-number (see above). */
894 #define REGISTER_NAMES \
896 "a0", "sp", "a2", "a3", "a4", "a5", "a6", "a7", \
897 "a8", "a9", "a10", "a11", "a12", "a13", "a14", "a15", \
898 "fp", "argp", "b0", \
899 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7", \
900 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15", \
901 "acc" \
904 /* If defined, a C initializer for an array of structures containing a
905 name and a register number. This macro defines additional names
906 for hard registers, thus allowing the 'asm' option in declarations
907 to refer to registers using alternate names. */
908 #define ADDITIONAL_REGISTER_NAMES \
910 { "a1", 1 + GP_REG_FIRST } \
913 #define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
914 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address (FILE, ADDR)
916 /* Recognize machine-specific patterns that may appear within
917 constants. Used for PIC-specific UNSPECs. */
918 #define OUTPUT_ADDR_CONST_EXTRA(STREAM, X, FAIL) \
919 do { \
920 if (xtensa_output_addr_const_extra (STREAM, X) == FALSE) \
921 goto FAIL; \
922 } while (0)
924 /* Globalizing directive for a label. */
925 #define GLOBAL_ASM_OP "\t.global\t"
927 /* Declare an uninitialized external linkage data object. */
928 #define ASM_OUTPUT_ALIGNED_BSS(FILE, DECL, NAME, SIZE, ALIGN) \
929 asm_output_aligned_bss (FILE, DECL, NAME, SIZE, ALIGN)
931 /* This is how to output an element of a case-vector that is absolute. */
932 #define ASM_OUTPUT_ADDR_VEC_ELT(STREAM, VALUE) \
933 fprintf (STREAM, "%s%sL%u\n", integer_asm_op (4, TRUE), \
934 LOCAL_LABEL_PREFIX, VALUE)
936 /* This is how to output an element of a case-vector that is relative.
937 This is used for pc-relative code. */
938 #define ASM_OUTPUT_ADDR_DIFF_ELT(STREAM, BODY, VALUE, REL) \
939 do { \
940 fprintf (STREAM, "%s%sL%u-%sL%u\n", integer_asm_op (4, TRUE), \
941 LOCAL_LABEL_PREFIX, (VALUE), \
942 LOCAL_LABEL_PREFIX, (REL)); \
943 } while (0)
945 /* This is how to output an assembler line that says to advance the
946 location counter to a multiple of 2**LOG bytes. */
947 #define ASM_OUTPUT_ALIGN(STREAM, LOG) \
948 do { \
949 if ((LOG) != 0) \
950 fprintf (STREAM, "\t.align\t%d\n", 1 << (LOG)); \
951 } while (0)
953 /* Indicate that jump tables go in the text section. This is
954 necessary when compiling PIC code. */
955 #define JUMP_TABLES_IN_TEXT_SECTION (flag_pic)
958 /* Define the strings to put out for each section in the object file. */
959 #define TEXT_SECTION_ASM_OP "\t.text"
960 #define DATA_SECTION_ASM_OP "\t.data"
961 #define BSS_SECTION_ASM_OP "\t.section\t.bss"
964 /* Define output to appear before the constant pool. */
965 #define ASM_OUTPUT_POOL_PROLOGUE(FILE, FUNNAME, FUNDECL, SIZE) \
966 do { \
967 if ((SIZE) > 0) \
969 resolve_unique_section ((FUNDECL), 0, flag_function_sections); \
970 switch_to_section (function_section (FUNDECL)); \
971 fprintf (FILE, "\t.literal_position\n"); \
973 } while (0)
976 /* A C statement (with or without semicolon) to output a constant in
977 the constant pool, if it needs special treatment. */
978 #define ASM_OUTPUT_SPECIAL_POOL_ENTRY(FILE, X, MODE, ALIGN, LABELNO, JUMPTO) \
979 do { \
980 xtensa_output_literal (FILE, X, MODE, LABELNO); \
981 goto JUMPTO; \
982 } while (0)
984 /* How to start an assembler comment. */
985 #define ASM_COMMENT_START "#"
987 /* Exception handling. Xtensa uses much of the standard DWARF2 unwinding
988 machinery, but the variable size register window save areas are too
989 complicated to efficiently describe with CFI entries. The CFA must
990 still be specified in DWARF so that DW_AT_frame_base is set correctly
991 for debugging. */
992 #define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (Pmode, 0)
993 #define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (0)
994 #define DWARF_FRAME_REGISTERS 16
995 #define EH_RETURN_DATA_REGNO(N) ((N) < 2 ? (N) + 2 : INVALID_REGNUM)
996 #define ASM_PREFERRED_EH_DATA_FORMAT(CODE, GLOBAL) \
997 (flag_pic \
998 ? (((GLOBAL) ? DW_EH_PE_indirect : 0) \
999 | DW_EH_PE_pcrel | DW_EH_PE_sdata4) \
1000 : DW_EH_PE_absptr)
1002 /* Emit a PC-relative relocation. */
1003 #define ASM_OUTPUT_DWARF_PCREL(FILE, SIZE, LABEL) \
1004 do { \
1005 fputs (integer_asm_op (SIZE, FALSE), FILE); \
1006 assemble_name (FILE, LABEL); \
1007 fputs ("@pcrel", FILE); \
1008 } while (0)
1010 /* Xtensa constant pool breaks the devices in crtstuff.c to control
1011 section in where code resides. We have to write it as asm code. Use
1012 a MOVI and let the assembler relax it -- for the .init and .fini
1013 sections, the assembler knows to put the literal in the right
1014 place. */
1015 #define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \
1016 asm (SECTION_OP "\n\
1017 movi\ta8, " USER_LABEL_PREFIX #FUNC "\n\
1018 callx8\ta8\n" \
1019 TEXT_SECTION_ASM_OP);