Fix a bug that broke -freorder-functions
[official-gcc.git] / gcc / expr.c
blob0cfc845c4828968322d57f61fe63ce55b6755007
1 /* Convert tree expression to rtl instructions, for GNU compiler.
2 Copyright (C) 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011
4 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "machmode.h"
27 #include "rtl.h"
28 #include "tree.h"
29 #include "flags.h"
30 #include "regs.h"
31 #include "hard-reg-set.h"
32 #include "except.h"
33 #include "function.h"
34 #include "insn-config.h"
35 #include "insn-attr.h"
36 /* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
37 #include "expr.h"
38 #include "optabs.h"
39 #include "libfuncs.h"
40 #include "recog.h"
41 #include "reload.h"
42 #include "output.h"
43 #include "typeclass.h"
44 #include "toplev.h"
45 #include "langhooks.h"
46 #include "intl.h"
47 #include "tm_p.h"
48 #include "tree-iterator.h"
49 #include "tree-pass.h"
50 #include "tree-flow.h"
51 #include "target.h"
52 #include "common/common-target.h"
53 #include "timevar.h"
54 #include "df.h"
55 #include "diagnostic.h"
56 #include "ssaexpand.h"
57 #include "target-globals.h"
58 #include "params.h"
60 /* Decide whether a function's arguments should be processed
61 from first to last or from last to first.
63 They should if the stack and args grow in opposite directions, but
64 only if we have push insns. */
66 #ifdef PUSH_ROUNDING
68 #ifndef PUSH_ARGS_REVERSED
69 #if defined (STACK_GROWS_DOWNWARD) != defined (ARGS_GROW_DOWNWARD)
70 #define PUSH_ARGS_REVERSED /* If it's last to first. */
71 #endif
72 #endif
74 #endif
76 #ifndef STACK_PUSH_CODE
77 #ifdef STACK_GROWS_DOWNWARD
78 #define STACK_PUSH_CODE PRE_DEC
79 #else
80 #define STACK_PUSH_CODE PRE_INC
81 #endif
82 #endif
85 /* If this is nonzero, we do not bother generating VOLATILE
86 around volatile memory references, and we are willing to
87 output indirect addresses. If cse is to follow, we reject
88 indirect addresses so a useful potential cse is generated;
89 if it is used only once, instruction combination will produce
90 the same indirect address eventually. */
91 int cse_not_expected;
93 /* This structure is used by move_by_pieces to describe the move to
94 be performed. */
95 struct move_by_pieces_d
97 rtx to;
98 rtx to_addr;
99 int autinc_to;
100 int explicit_inc_to;
101 rtx from;
102 rtx from_addr;
103 int autinc_from;
104 int explicit_inc_from;
105 unsigned HOST_WIDE_INT len;
106 HOST_WIDE_INT offset;
107 int reverse;
110 /* This structure is used by store_by_pieces to describe the clear to
111 be performed. */
113 struct store_by_pieces_d
115 rtx to;
116 rtx to_addr;
117 int autinc_to;
118 int explicit_inc_to;
119 unsigned HOST_WIDE_INT len;
120 HOST_WIDE_INT offset;
121 rtx (*constfun) (void *, HOST_WIDE_INT, enum machine_mode);
122 void *constfundata;
123 int reverse;
126 static unsigned HOST_WIDE_INT move_by_pieces_ninsns (unsigned HOST_WIDE_INT,
127 unsigned int,
128 unsigned int);
129 static void move_by_pieces_1 (rtx (*) (rtx, ...), enum machine_mode,
130 struct move_by_pieces_d *);
131 static bool block_move_libcall_safe_for_call_parm (void);
132 static bool emit_block_move_via_movmem (rtx, rtx, rtx, unsigned, unsigned, HOST_WIDE_INT);
133 static tree emit_block_move_libcall_fn (int);
134 static void emit_block_move_via_loop (rtx, rtx, rtx, unsigned);
135 static rtx clear_by_pieces_1 (void *, HOST_WIDE_INT, enum machine_mode);
136 static void clear_by_pieces (rtx, unsigned HOST_WIDE_INT, unsigned int);
137 static void store_by_pieces_1 (struct store_by_pieces_d *, unsigned int);
138 static void store_by_pieces_2 (rtx (*) (rtx, ...), enum machine_mode,
139 struct store_by_pieces_d *);
140 static tree clear_storage_libcall_fn (int);
141 static rtx compress_float_constant (rtx, rtx);
142 static rtx get_subtarget (rtx);
143 static void store_constructor_field (rtx, unsigned HOST_WIDE_INT,
144 HOST_WIDE_INT, enum machine_mode,
145 tree, tree, int, alias_set_type);
146 static void store_constructor (tree, rtx, int, HOST_WIDE_INT);
147 static rtx store_field (rtx, HOST_WIDE_INT, HOST_WIDE_INT,
148 unsigned HOST_WIDE_INT, unsigned HOST_WIDE_INT,
149 enum machine_mode,
150 tree, tree, alias_set_type, bool);
152 static unsigned HOST_WIDE_INT highest_pow2_factor_for_target (const_tree, const_tree);
154 static int is_aligning_offset (const_tree, const_tree);
155 static void expand_operands (tree, tree, rtx, rtx*, rtx*,
156 enum expand_modifier);
157 static rtx reduce_to_bit_field_precision (rtx, rtx, tree);
158 static rtx do_store_flag (sepops, rtx, enum machine_mode);
159 #ifdef PUSH_ROUNDING
160 static void emit_single_push_insn (enum machine_mode, rtx, tree);
161 #endif
162 static void do_tablejump (rtx, enum machine_mode, rtx, rtx, rtx);
163 static rtx const_vector_from_tree (tree);
164 static void write_complex_part (rtx, rtx, bool);
166 /* This macro is used to determine whether move_by_pieces should be called
167 to perform a structure copy. */
168 #ifndef MOVE_BY_PIECES_P
169 #define MOVE_BY_PIECES_P(SIZE, ALIGN) \
170 (move_by_pieces_ninsns (SIZE, ALIGN, MOVE_MAX_PIECES + 1) \
171 < (unsigned int) MOVE_RATIO (optimize_insn_for_speed_p ()))
172 #endif
174 /* This macro is used to determine whether clear_by_pieces should be
175 called to clear storage. */
176 #ifndef CLEAR_BY_PIECES_P
177 #define CLEAR_BY_PIECES_P(SIZE, ALIGN) \
178 (move_by_pieces_ninsns (SIZE, ALIGN, STORE_MAX_PIECES + 1) \
179 < (unsigned int) CLEAR_RATIO (optimize_insn_for_speed_p ()))
180 #endif
182 /* This macro is used to determine whether store_by_pieces should be
183 called to "memset" storage with byte values other than zero. */
184 #ifndef SET_BY_PIECES_P
185 #define SET_BY_PIECES_P(SIZE, ALIGN) \
186 (move_by_pieces_ninsns (SIZE, ALIGN, STORE_MAX_PIECES + 1) \
187 < (unsigned int) SET_RATIO (optimize_insn_for_speed_p ()))
188 #endif
190 /* This macro is used to determine whether store_by_pieces should be
191 called to "memcpy" storage when the source is a constant string. */
192 #ifndef STORE_BY_PIECES_P
193 #define STORE_BY_PIECES_P(SIZE, ALIGN) \
194 (move_by_pieces_ninsns (SIZE, ALIGN, STORE_MAX_PIECES + 1) \
195 < (unsigned int) MOVE_RATIO (optimize_insn_for_speed_p ()))
196 #endif
198 /* SLOW_UNALIGNED_ACCESS is nonzero if unaligned accesses are very slow. */
200 #ifndef SLOW_UNALIGNED_ACCESS
201 #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) STRICT_ALIGNMENT
202 #endif
204 /* This is run to set up which modes can be used
205 directly in memory and to initialize the block move optab. It is run
206 at the beginning of compilation and when the target is reinitialized. */
208 void
209 init_expr_target (void)
211 rtx insn, pat;
212 enum machine_mode mode;
213 int num_clobbers;
214 rtx mem, mem1;
215 rtx reg;
217 /* Try indexing by frame ptr and try by stack ptr.
218 It is known that on the Convex the stack ptr isn't a valid index.
219 With luck, one or the other is valid on any machine. */
220 mem = gen_rtx_MEM (VOIDmode, stack_pointer_rtx);
221 mem1 = gen_rtx_MEM (VOIDmode, frame_pointer_rtx);
223 /* A scratch register we can modify in-place below to avoid
224 useless RTL allocations. */
225 reg = gen_rtx_REG (VOIDmode, -1);
227 insn = rtx_alloc (INSN);
228 pat = gen_rtx_SET (VOIDmode, NULL_RTX, NULL_RTX);
229 PATTERN (insn) = pat;
231 for (mode = VOIDmode; (int) mode < NUM_MACHINE_MODES;
232 mode = (enum machine_mode) ((int) mode + 1))
234 int regno;
236 direct_load[(int) mode] = direct_store[(int) mode] = 0;
237 PUT_MODE (mem, mode);
238 PUT_MODE (mem1, mode);
239 PUT_MODE (reg, mode);
241 /* See if there is some register that can be used in this mode and
242 directly loaded or stored from memory. */
244 if (mode != VOIDmode && mode != BLKmode)
245 for (regno = 0; regno < FIRST_PSEUDO_REGISTER
246 && (direct_load[(int) mode] == 0 || direct_store[(int) mode] == 0);
247 regno++)
249 if (! HARD_REGNO_MODE_OK (regno, mode))
250 continue;
252 SET_REGNO (reg, regno);
254 SET_SRC (pat) = mem;
255 SET_DEST (pat) = reg;
256 if (recog (pat, insn, &num_clobbers) >= 0)
257 direct_load[(int) mode] = 1;
259 SET_SRC (pat) = mem1;
260 SET_DEST (pat) = reg;
261 if (recog (pat, insn, &num_clobbers) >= 0)
262 direct_load[(int) mode] = 1;
264 SET_SRC (pat) = reg;
265 SET_DEST (pat) = mem;
266 if (recog (pat, insn, &num_clobbers) >= 0)
267 direct_store[(int) mode] = 1;
269 SET_SRC (pat) = reg;
270 SET_DEST (pat) = mem1;
271 if (recog (pat, insn, &num_clobbers) >= 0)
272 direct_store[(int) mode] = 1;
276 mem = gen_rtx_MEM (VOIDmode, gen_rtx_raw_REG (Pmode, 10000));
278 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT); mode != VOIDmode;
279 mode = GET_MODE_WIDER_MODE (mode))
281 enum machine_mode srcmode;
282 for (srcmode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT); srcmode != mode;
283 srcmode = GET_MODE_WIDER_MODE (srcmode))
285 enum insn_code ic;
287 ic = can_extend_p (mode, srcmode, 0);
288 if (ic == CODE_FOR_nothing)
289 continue;
291 PUT_MODE (mem, srcmode);
293 if (insn_operand_matches (ic, 1, mem))
294 float_extend_from_mem[mode][srcmode] = true;
299 /* This is run at the start of compiling a function. */
301 void
302 init_expr (void)
304 memset (&crtl->expr, 0, sizeof (crtl->expr));
307 /* Copy data from FROM to TO, where the machine modes are not the same.
308 Both modes may be integer, or both may be floating, or both may be
309 fixed-point.
310 UNSIGNEDP should be nonzero if FROM is an unsigned type.
311 This causes zero-extension instead of sign-extension. */
313 void
314 convert_move (rtx to, rtx from, int unsignedp)
316 enum machine_mode to_mode = GET_MODE (to);
317 enum machine_mode from_mode = GET_MODE (from);
318 int to_real = SCALAR_FLOAT_MODE_P (to_mode);
319 int from_real = SCALAR_FLOAT_MODE_P (from_mode);
320 enum insn_code code;
321 rtx libcall;
323 /* rtx code for making an equivalent value. */
324 enum rtx_code equiv_code = (unsignedp < 0 ? UNKNOWN
325 : (unsignedp ? ZERO_EXTEND : SIGN_EXTEND));
328 gcc_assert (to_real == from_real);
329 gcc_assert (to_mode != BLKmode);
330 gcc_assert (from_mode != BLKmode);
332 /* If the source and destination are already the same, then there's
333 nothing to do. */
334 if (to == from)
335 return;
337 /* If FROM is a SUBREG that indicates that we have already done at least
338 the required extension, strip it. We don't handle such SUBREGs as
339 TO here. */
341 if (GET_CODE (from) == SUBREG && SUBREG_PROMOTED_VAR_P (from)
342 && (GET_MODE_PRECISION (GET_MODE (SUBREG_REG (from)))
343 >= GET_MODE_PRECISION (to_mode))
344 && SUBREG_PROMOTED_UNSIGNED_P (from) == unsignedp)
345 from = gen_lowpart (to_mode, from), from_mode = to_mode;
347 gcc_assert (GET_CODE (to) != SUBREG || !SUBREG_PROMOTED_VAR_P (to));
349 if (to_mode == from_mode
350 || (from_mode == VOIDmode && CONSTANT_P (from)))
352 emit_move_insn (to, from);
353 return;
356 if (VECTOR_MODE_P (to_mode) || VECTOR_MODE_P (from_mode))
358 gcc_assert (GET_MODE_BITSIZE (from_mode) == GET_MODE_BITSIZE (to_mode));
360 if (VECTOR_MODE_P (to_mode))
361 from = simplify_gen_subreg (to_mode, from, GET_MODE (from), 0);
362 else
363 to = simplify_gen_subreg (from_mode, to, GET_MODE (to), 0);
365 emit_move_insn (to, from);
366 return;
369 if (GET_CODE (to) == CONCAT && GET_CODE (from) == CONCAT)
371 convert_move (XEXP (to, 0), XEXP (from, 0), unsignedp);
372 convert_move (XEXP (to, 1), XEXP (from, 1), unsignedp);
373 return;
376 if (to_real)
378 rtx value, insns;
379 convert_optab tab;
381 gcc_assert ((GET_MODE_PRECISION (from_mode)
382 != GET_MODE_PRECISION (to_mode))
383 || (DECIMAL_FLOAT_MODE_P (from_mode)
384 != DECIMAL_FLOAT_MODE_P (to_mode)));
386 if (GET_MODE_PRECISION (from_mode) == GET_MODE_PRECISION (to_mode))
387 /* Conversion between decimal float and binary float, same size. */
388 tab = DECIMAL_FLOAT_MODE_P (from_mode) ? trunc_optab : sext_optab;
389 else if (GET_MODE_PRECISION (from_mode) < GET_MODE_PRECISION (to_mode))
390 tab = sext_optab;
391 else
392 tab = trunc_optab;
394 /* Try converting directly if the insn is supported. */
396 code = convert_optab_handler (tab, to_mode, from_mode);
397 if (code != CODE_FOR_nothing)
399 emit_unop_insn (code, to, from,
400 tab == sext_optab ? FLOAT_EXTEND : FLOAT_TRUNCATE);
401 return;
404 /* Otherwise use a libcall. */
405 libcall = convert_optab_libfunc (tab, to_mode, from_mode);
407 /* Is this conversion implemented yet? */
408 gcc_assert (libcall);
410 start_sequence ();
411 value = emit_library_call_value (libcall, NULL_RTX, LCT_CONST, to_mode,
412 1, from, from_mode);
413 insns = get_insns ();
414 end_sequence ();
415 emit_libcall_block (insns, to, value,
416 tab == trunc_optab ? gen_rtx_FLOAT_TRUNCATE (to_mode,
417 from)
418 : gen_rtx_FLOAT_EXTEND (to_mode, from));
419 return;
422 /* Handle pointer conversion. */ /* SPEE 900220. */
423 /* Targets are expected to provide conversion insns between PxImode and
424 xImode for all MODE_PARTIAL_INT modes they use, but no others. */
425 if (GET_MODE_CLASS (to_mode) == MODE_PARTIAL_INT)
427 enum machine_mode full_mode
428 = smallest_mode_for_size (GET_MODE_BITSIZE (to_mode), MODE_INT);
430 gcc_assert (convert_optab_handler (trunc_optab, to_mode, full_mode)
431 != CODE_FOR_nothing);
433 if (full_mode != from_mode)
434 from = convert_to_mode (full_mode, from, unsignedp);
435 emit_unop_insn (convert_optab_handler (trunc_optab, to_mode, full_mode),
436 to, from, UNKNOWN);
437 return;
439 if (GET_MODE_CLASS (from_mode) == MODE_PARTIAL_INT)
441 rtx new_from;
442 enum machine_mode full_mode
443 = smallest_mode_for_size (GET_MODE_BITSIZE (from_mode), MODE_INT);
445 gcc_assert (convert_optab_handler (sext_optab, full_mode, from_mode)
446 != CODE_FOR_nothing);
448 if (to_mode == full_mode)
450 emit_unop_insn (convert_optab_handler (sext_optab, full_mode,
451 from_mode),
452 to, from, UNKNOWN);
453 return;
456 new_from = gen_reg_rtx (full_mode);
457 emit_unop_insn (convert_optab_handler (sext_optab, full_mode, from_mode),
458 new_from, from, UNKNOWN);
460 /* else proceed to integer conversions below. */
461 from_mode = full_mode;
462 from = new_from;
465 /* Make sure both are fixed-point modes or both are not. */
466 gcc_assert (ALL_SCALAR_FIXED_POINT_MODE_P (from_mode) ==
467 ALL_SCALAR_FIXED_POINT_MODE_P (to_mode));
468 if (ALL_SCALAR_FIXED_POINT_MODE_P (from_mode))
470 /* If we widen from_mode to to_mode and they are in the same class,
471 we won't saturate the result.
472 Otherwise, always saturate the result to play safe. */
473 if (GET_MODE_CLASS (from_mode) == GET_MODE_CLASS (to_mode)
474 && GET_MODE_SIZE (from_mode) < GET_MODE_SIZE (to_mode))
475 expand_fixed_convert (to, from, 0, 0);
476 else
477 expand_fixed_convert (to, from, 0, 1);
478 return;
481 /* Now both modes are integers. */
483 /* Handle expanding beyond a word. */
484 if (GET_MODE_PRECISION (from_mode) < GET_MODE_PRECISION (to_mode)
485 && GET_MODE_PRECISION (to_mode) > BITS_PER_WORD)
487 rtx insns;
488 rtx lowpart;
489 rtx fill_value;
490 rtx lowfrom;
491 int i;
492 enum machine_mode lowpart_mode;
493 int nwords = CEIL (GET_MODE_SIZE (to_mode), UNITS_PER_WORD);
495 /* Try converting directly if the insn is supported. */
496 if ((code = can_extend_p (to_mode, from_mode, unsignedp))
497 != CODE_FOR_nothing)
499 /* If FROM is a SUBREG, put it into a register. Do this
500 so that we always generate the same set of insns for
501 better cse'ing; if an intermediate assignment occurred,
502 we won't be doing the operation directly on the SUBREG. */
503 if (optimize > 0 && GET_CODE (from) == SUBREG)
504 from = force_reg (from_mode, from);
505 emit_unop_insn (code, to, from, equiv_code);
506 return;
508 /* Next, try converting via full word. */
509 else if (GET_MODE_PRECISION (from_mode) < BITS_PER_WORD
510 && ((code = can_extend_p (to_mode, word_mode, unsignedp))
511 != CODE_FOR_nothing))
513 rtx word_to = gen_reg_rtx (word_mode);
514 if (REG_P (to))
516 if (reg_overlap_mentioned_p (to, from))
517 from = force_reg (from_mode, from);
518 emit_clobber (to);
520 convert_move (word_to, from, unsignedp);
521 emit_unop_insn (code, to, word_to, equiv_code);
522 return;
525 /* No special multiword conversion insn; do it by hand. */
526 start_sequence ();
528 /* Since we will turn this into a no conflict block, we must ensure
529 that the source does not overlap the target. */
531 if (reg_overlap_mentioned_p (to, from))
532 from = force_reg (from_mode, from);
534 /* Get a copy of FROM widened to a word, if necessary. */
535 if (GET_MODE_PRECISION (from_mode) < BITS_PER_WORD)
536 lowpart_mode = word_mode;
537 else
538 lowpart_mode = from_mode;
540 lowfrom = convert_to_mode (lowpart_mode, from, unsignedp);
542 lowpart = gen_lowpart (lowpart_mode, to);
543 emit_move_insn (lowpart, lowfrom);
545 /* Compute the value to put in each remaining word. */
546 if (unsignedp)
547 fill_value = const0_rtx;
548 else
549 fill_value = emit_store_flag (gen_reg_rtx (word_mode),
550 LT, lowfrom, const0_rtx,
551 VOIDmode, 0, -1);
553 /* Fill the remaining words. */
554 for (i = GET_MODE_SIZE (lowpart_mode) / UNITS_PER_WORD; i < nwords; i++)
556 int index = (WORDS_BIG_ENDIAN ? nwords - i - 1 : i);
557 rtx subword = operand_subword (to, index, 1, to_mode);
559 gcc_assert (subword);
561 if (fill_value != subword)
562 emit_move_insn (subword, fill_value);
565 insns = get_insns ();
566 end_sequence ();
568 emit_insn (insns);
569 return;
572 /* Truncating multi-word to a word or less. */
573 if (GET_MODE_PRECISION (from_mode) > BITS_PER_WORD
574 && GET_MODE_PRECISION (to_mode) <= BITS_PER_WORD)
576 if (!((MEM_P (from)
577 && ! MEM_VOLATILE_P (from)
578 && direct_load[(int) to_mode]
579 && ! mode_dependent_address_p (XEXP (from, 0)))
580 || REG_P (from)
581 || GET_CODE (from) == SUBREG))
582 from = force_reg (from_mode, from);
583 convert_move (to, gen_lowpart (word_mode, from), 0);
584 return;
587 /* Now follow all the conversions between integers
588 no more than a word long. */
590 /* For truncation, usually we can just refer to FROM in a narrower mode. */
591 if (GET_MODE_BITSIZE (to_mode) < GET_MODE_BITSIZE (from_mode)
592 && TRULY_NOOP_TRUNCATION_MODES_P (to_mode, from_mode))
594 if (!((MEM_P (from)
595 && ! MEM_VOLATILE_P (from)
596 && direct_load[(int) to_mode]
597 && ! mode_dependent_address_p (XEXP (from, 0)))
598 || REG_P (from)
599 || GET_CODE (from) == SUBREG))
600 from = force_reg (from_mode, from);
601 if (REG_P (from) && REGNO (from) < FIRST_PSEUDO_REGISTER
602 && ! HARD_REGNO_MODE_OK (REGNO (from), to_mode))
603 from = copy_to_reg (from);
604 emit_move_insn (to, gen_lowpart (to_mode, from));
605 return;
608 /* Handle extension. */
609 if (GET_MODE_PRECISION (to_mode) > GET_MODE_PRECISION (from_mode))
611 /* Convert directly if that works. */
612 if ((code = can_extend_p (to_mode, from_mode, unsignedp))
613 != CODE_FOR_nothing)
615 emit_unop_insn (code, to, from, equiv_code);
616 return;
618 else
620 enum machine_mode intermediate;
621 rtx tmp;
622 int shift_amount;
624 /* Search for a mode to convert via. */
625 for (intermediate = from_mode; intermediate != VOIDmode;
626 intermediate = GET_MODE_WIDER_MODE (intermediate))
627 if (((can_extend_p (to_mode, intermediate, unsignedp)
628 != CODE_FOR_nothing)
629 || (GET_MODE_SIZE (to_mode) < GET_MODE_SIZE (intermediate)
630 && TRULY_NOOP_TRUNCATION_MODES_P (to_mode, intermediate)))
631 && (can_extend_p (intermediate, from_mode, unsignedp)
632 != CODE_FOR_nothing))
634 convert_move (to, convert_to_mode (intermediate, from,
635 unsignedp), unsignedp);
636 return;
639 /* No suitable intermediate mode.
640 Generate what we need with shifts. */
641 shift_amount = (GET_MODE_PRECISION (to_mode)
642 - GET_MODE_PRECISION (from_mode));
643 from = gen_lowpart (to_mode, force_reg (from_mode, from));
644 tmp = expand_shift (LSHIFT_EXPR, to_mode, from, shift_amount,
645 to, unsignedp);
646 tmp = expand_shift (RSHIFT_EXPR, to_mode, tmp, shift_amount,
647 to, unsignedp);
648 if (tmp != to)
649 emit_move_insn (to, tmp);
650 return;
654 /* Support special truncate insns for certain modes. */
655 if (convert_optab_handler (trunc_optab, to_mode,
656 from_mode) != CODE_FOR_nothing)
658 emit_unop_insn (convert_optab_handler (trunc_optab, to_mode, from_mode),
659 to, from, UNKNOWN);
660 return;
663 /* Handle truncation of volatile memrefs, and so on;
664 the things that couldn't be truncated directly,
665 and for which there was no special instruction.
667 ??? Code above formerly short-circuited this, for most integer
668 mode pairs, with a force_reg in from_mode followed by a recursive
669 call to this routine. Appears always to have been wrong. */
670 if (GET_MODE_PRECISION (to_mode) < GET_MODE_PRECISION (from_mode))
672 rtx temp = force_reg (to_mode, gen_lowpart (to_mode, from));
673 emit_move_insn (to, temp);
674 return;
677 /* Mode combination is not recognized. */
678 gcc_unreachable ();
681 /* Return an rtx for a value that would result
682 from converting X to mode MODE.
683 Both X and MODE may be floating, or both integer.
684 UNSIGNEDP is nonzero if X is an unsigned value.
685 This can be done by referring to a part of X in place
686 or by copying to a new temporary with conversion. */
689 convert_to_mode (enum machine_mode mode, rtx x, int unsignedp)
691 return convert_modes (mode, VOIDmode, x, unsignedp);
694 /* Return an rtx for a value that would result
695 from converting X from mode OLDMODE to mode MODE.
696 Both modes may be floating, or both integer.
697 UNSIGNEDP is nonzero if X is an unsigned value.
699 This can be done by referring to a part of X in place
700 or by copying to a new temporary with conversion.
702 You can give VOIDmode for OLDMODE, if you are sure X has a nonvoid mode. */
705 convert_modes (enum machine_mode mode, enum machine_mode oldmode, rtx x, int unsignedp)
707 rtx temp;
709 /* If FROM is a SUBREG that indicates that we have already done at least
710 the required extension, strip it. */
712 if (GET_CODE (x) == SUBREG && SUBREG_PROMOTED_VAR_P (x)
713 && GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))) >= GET_MODE_SIZE (mode)
714 && SUBREG_PROMOTED_UNSIGNED_P (x) == unsignedp)
715 x = gen_lowpart (mode, x);
717 if (GET_MODE (x) != VOIDmode)
718 oldmode = GET_MODE (x);
720 if (mode == oldmode)
721 return x;
723 /* There is one case that we must handle specially: If we are converting
724 a CONST_INT into a mode whose size is twice HOST_BITS_PER_WIDE_INT and
725 we are to interpret the constant as unsigned, gen_lowpart will do
726 the wrong if the constant appears negative. What we want to do is
727 make the high-order word of the constant zero, not all ones. */
729 if (unsignedp && GET_MODE_CLASS (mode) == MODE_INT
730 && GET_MODE_BITSIZE (mode) == 2 * HOST_BITS_PER_WIDE_INT
731 && CONST_INT_P (x) && INTVAL (x) < 0)
733 double_int val = uhwi_to_double_int (INTVAL (x));
735 /* We need to zero extend VAL. */
736 if (oldmode != VOIDmode)
737 val = double_int_zext (val, GET_MODE_BITSIZE (oldmode));
739 return immed_double_int_const (val, mode);
742 /* We can do this with a gen_lowpart if both desired and current modes
743 are integer, and this is either a constant integer, a register, or a
744 non-volatile MEM. Except for the constant case where MODE is no
745 wider than HOST_BITS_PER_WIDE_INT, we must be narrowing the operand. */
747 if ((CONST_INT_P (x)
748 && GET_MODE_PRECISION (mode) <= HOST_BITS_PER_WIDE_INT)
749 || (GET_MODE_CLASS (mode) == MODE_INT
750 && GET_MODE_CLASS (oldmode) == MODE_INT
751 && (GET_CODE (x) == CONST_DOUBLE
752 || (GET_MODE_PRECISION (mode) <= GET_MODE_PRECISION (oldmode)
753 && ((MEM_P (x) && ! MEM_VOLATILE_P (x)
754 && direct_load[(int) mode])
755 || (REG_P (x)
756 && (! HARD_REGISTER_P (x)
757 || HARD_REGNO_MODE_OK (REGNO (x), mode))
758 && TRULY_NOOP_TRUNCATION_MODES_P (mode,
759 GET_MODE (x))))))))
761 /* ?? If we don't know OLDMODE, we have to assume here that
762 X does not need sign- or zero-extension. This may not be
763 the case, but it's the best we can do. */
764 if (CONST_INT_P (x) && oldmode != VOIDmode
765 && GET_MODE_PRECISION (mode) > GET_MODE_PRECISION (oldmode))
767 HOST_WIDE_INT val = INTVAL (x);
769 /* We must sign or zero-extend in this case. Start by
770 zero-extending, then sign extend if we need to. */
771 val &= GET_MODE_MASK (oldmode);
772 if (! unsignedp
773 && val_signbit_known_set_p (oldmode, val))
774 val |= ~GET_MODE_MASK (oldmode);
776 return gen_int_mode (val, mode);
779 return gen_lowpart (mode, x);
782 /* Converting from integer constant into mode is always equivalent to an
783 subreg operation. */
784 if (VECTOR_MODE_P (mode) && GET_MODE (x) == VOIDmode)
786 gcc_assert (GET_MODE_BITSIZE (mode) == GET_MODE_BITSIZE (oldmode));
787 return simplify_gen_subreg (mode, x, oldmode, 0);
790 temp = gen_reg_rtx (mode);
791 convert_move (temp, x, unsignedp);
792 return temp;
795 /* Return the largest alignment we can use for doing a move (or store)
796 of MAX_PIECES. ALIGN is the largest alignment we could use. */
798 static unsigned int
799 alignment_for_piecewise_move (unsigned int max_pieces, unsigned int align)
801 enum machine_mode tmode;
803 tmode = mode_for_size (max_pieces * BITS_PER_UNIT, MODE_INT, 1);
804 if (align >= GET_MODE_ALIGNMENT (tmode))
805 align = GET_MODE_ALIGNMENT (tmode);
806 else
808 enum machine_mode tmode, xmode;
810 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT), xmode = tmode;
811 tmode != VOIDmode;
812 xmode = tmode, tmode = GET_MODE_WIDER_MODE (tmode))
813 if (GET_MODE_SIZE (tmode) > max_pieces
814 || SLOW_UNALIGNED_ACCESS (tmode, align))
815 break;
817 align = MAX (align, GET_MODE_ALIGNMENT (xmode));
820 return align;
823 /* Return the widest integer mode no wider than SIZE. If no such mode
824 can be found, return VOIDmode. */
826 static enum machine_mode
827 widest_int_mode_for_size (unsigned int size)
829 enum machine_mode tmode, mode = VOIDmode;
831 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
832 tmode != VOIDmode; tmode = GET_MODE_WIDER_MODE (tmode))
833 if (GET_MODE_SIZE (tmode) < size)
834 mode = tmode;
836 return mode;
839 /* STORE_MAX_PIECES is the number of bytes at a time that we can
840 store efficiently. Due to internal GCC limitations, this is
841 MOVE_MAX_PIECES limited by the number of bytes GCC can represent
842 for an immediate constant. */
844 #define STORE_MAX_PIECES MIN (MOVE_MAX_PIECES, 2 * sizeof (HOST_WIDE_INT))
846 /* Determine whether the LEN bytes can be moved by using several move
847 instructions. Return nonzero if a call to move_by_pieces should
848 succeed. */
851 can_move_by_pieces (unsigned HOST_WIDE_INT len,
852 unsigned int align ATTRIBUTE_UNUSED)
854 return MOVE_BY_PIECES_P (len, align);
857 /* Generate several move instructions to copy LEN bytes from block FROM to
858 block TO. (These are MEM rtx's with BLKmode).
860 If PUSH_ROUNDING is defined and TO is NULL, emit_single_push_insn is
861 used to push FROM to the stack.
863 ALIGN is maximum stack alignment we can assume.
865 If ENDP is 0 return to, if ENDP is 1 return memory at the end ala
866 mempcpy, and if ENDP is 2 return memory the end minus one byte ala
867 stpcpy. */
870 move_by_pieces (rtx to, rtx from, unsigned HOST_WIDE_INT len,
871 unsigned int align, int endp)
873 struct move_by_pieces_d data;
874 enum machine_mode to_addr_mode, from_addr_mode
875 = targetm.addr_space.address_mode (MEM_ADDR_SPACE (from));
876 rtx to_addr, from_addr = XEXP (from, 0);
877 unsigned int max_size = MOVE_MAX_PIECES + 1;
878 enum insn_code icode;
880 align = MIN (to ? MEM_ALIGN (to) : align, MEM_ALIGN (from));
882 data.offset = 0;
883 data.from_addr = from_addr;
884 if (to)
886 to_addr_mode = targetm.addr_space.address_mode (MEM_ADDR_SPACE (to));
887 to_addr = XEXP (to, 0);
888 data.to = to;
889 data.autinc_to
890 = (GET_CODE (to_addr) == PRE_INC || GET_CODE (to_addr) == PRE_DEC
891 || GET_CODE (to_addr) == POST_INC || GET_CODE (to_addr) == POST_DEC);
892 data.reverse
893 = (GET_CODE (to_addr) == PRE_DEC || GET_CODE (to_addr) == POST_DEC);
895 else
897 to_addr_mode = VOIDmode;
898 to_addr = NULL_RTX;
899 data.to = NULL_RTX;
900 data.autinc_to = 1;
901 #ifdef STACK_GROWS_DOWNWARD
902 data.reverse = 1;
903 #else
904 data.reverse = 0;
905 #endif
907 data.to_addr = to_addr;
908 data.from = from;
909 data.autinc_from
910 = (GET_CODE (from_addr) == PRE_INC || GET_CODE (from_addr) == PRE_DEC
911 || GET_CODE (from_addr) == POST_INC
912 || GET_CODE (from_addr) == POST_DEC);
914 data.explicit_inc_from = 0;
915 data.explicit_inc_to = 0;
916 if (data.reverse) data.offset = len;
917 data.len = len;
919 /* If copying requires more than two move insns,
920 copy addresses to registers (to make displacements shorter)
921 and use post-increment if available. */
922 if (!(data.autinc_from && data.autinc_to)
923 && move_by_pieces_ninsns (len, align, max_size) > 2)
925 /* Find the mode of the largest move...
926 MODE might not be used depending on the definitions of the
927 USE_* macros below. */
928 enum machine_mode mode ATTRIBUTE_UNUSED
929 = widest_int_mode_for_size (max_size);
931 if (USE_LOAD_PRE_DECREMENT (mode) && data.reverse && ! data.autinc_from)
933 data.from_addr = copy_to_mode_reg (from_addr_mode,
934 plus_constant (from_addr, len));
935 data.autinc_from = 1;
936 data.explicit_inc_from = -1;
938 if (USE_LOAD_POST_INCREMENT (mode) && ! data.autinc_from)
940 data.from_addr = copy_to_mode_reg (from_addr_mode, from_addr);
941 data.autinc_from = 1;
942 data.explicit_inc_from = 1;
944 if (!data.autinc_from && CONSTANT_P (from_addr))
945 data.from_addr = copy_to_mode_reg (from_addr_mode, from_addr);
946 if (USE_STORE_PRE_DECREMENT (mode) && data.reverse && ! data.autinc_to)
948 data.to_addr = copy_to_mode_reg (to_addr_mode,
949 plus_constant (to_addr, len));
950 data.autinc_to = 1;
951 data.explicit_inc_to = -1;
953 if (USE_STORE_POST_INCREMENT (mode) && ! data.reverse && ! data.autinc_to)
955 data.to_addr = copy_to_mode_reg (to_addr_mode, to_addr);
956 data.autinc_to = 1;
957 data.explicit_inc_to = 1;
959 if (!data.autinc_to && CONSTANT_P (to_addr))
960 data.to_addr = copy_to_mode_reg (to_addr_mode, to_addr);
963 align = alignment_for_piecewise_move (MOVE_MAX_PIECES, align);
965 /* First move what we can in the largest integer mode, then go to
966 successively smaller modes. */
968 while (max_size > 1)
970 enum machine_mode mode = widest_int_mode_for_size (max_size);
972 if (mode == VOIDmode)
973 break;
975 icode = optab_handler (mov_optab, mode);
976 if (icode != CODE_FOR_nothing && align >= GET_MODE_ALIGNMENT (mode))
977 move_by_pieces_1 (GEN_FCN (icode), mode, &data);
979 max_size = GET_MODE_SIZE (mode);
982 /* The code above should have handled everything. */
983 gcc_assert (!data.len);
985 if (endp)
987 rtx to1;
989 gcc_assert (!data.reverse);
990 if (data.autinc_to)
992 if (endp == 2)
994 if (HAVE_POST_INCREMENT && data.explicit_inc_to > 0)
995 emit_insn (gen_add2_insn (data.to_addr, constm1_rtx));
996 else
997 data.to_addr = copy_to_mode_reg (to_addr_mode,
998 plus_constant (data.to_addr,
999 -1));
1001 to1 = adjust_automodify_address (data.to, QImode, data.to_addr,
1002 data.offset);
1004 else
1006 if (endp == 2)
1007 --data.offset;
1008 to1 = adjust_address (data.to, QImode, data.offset);
1010 return to1;
1012 else
1013 return data.to;
1016 /* Return number of insns required to move L bytes by pieces.
1017 ALIGN (in bits) is maximum alignment we can assume. */
1019 static unsigned HOST_WIDE_INT
1020 move_by_pieces_ninsns (unsigned HOST_WIDE_INT l, unsigned int align,
1021 unsigned int max_size)
1023 unsigned HOST_WIDE_INT n_insns = 0;
1025 align = alignment_for_piecewise_move (MOVE_MAX_PIECES, align);
1027 while (max_size > 1)
1029 enum machine_mode mode;
1030 enum insn_code icode;
1032 mode = widest_int_mode_for_size (max_size);
1034 if (mode == VOIDmode)
1035 break;
1037 icode = optab_handler (mov_optab, mode);
1038 if (icode != CODE_FOR_nothing && align >= GET_MODE_ALIGNMENT (mode))
1039 n_insns += l / GET_MODE_SIZE (mode), l %= GET_MODE_SIZE (mode);
1041 max_size = GET_MODE_SIZE (mode);
1044 gcc_assert (!l);
1045 return n_insns;
1048 /* Subroutine of move_by_pieces. Move as many bytes as appropriate
1049 with move instructions for mode MODE. GENFUN is the gen_... function
1050 to make a move insn for that mode. DATA has all the other info. */
1052 static void
1053 move_by_pieces_1 (rtx (*genfun) (rtx, ...), enum machine_mode mode,
1054 struct move_by_pieces_d *data)
1056 unsigned int size = GET_MODE_SIZE (mode);
1057 rtx to1 = NULL_RTX, from1;
1059 while (data->len >= size)
1061 if (data->reverse)
1062 data->offset -= size;
1064 if (data->to)
1066 if (data->autinc_to)
1067 to1 = adjust_automodify_address (data->to, mode, data->to_addr,
1068 data->offset);
1069 else
1070 to1 = adjust_address (data->to, mode, data->offset);
1073 if (data->autinc_from)
1074 from1 = adjust_automodify_address (data->from, mode, data->from_addr,
1075 data->offset);
1076 else
1077 from1 = adjust_address (data->from, mode, data->offset);
1079 if (HAVE_PRE_DECREMENT && data->explicit_inc_to < 0)
1080 emit_insn (gen_add2_insn (data->to_addr,
1081 GEN_INT (-(HOST_WIDE_INT)size)));
1082 if (HAVE_PRE_DECREMENT && data->explicit_inc_from < 0)
1083 emit_insn (gen_add2_insn (data->from_addr,
1084 GEN_INT (-(HOST_WIDE_INT)size)));
1086 if (data->to)
1087 emit_insn ((*genfun) (to1, from1));
1088 else
1090 #ifdef PUSH_ROUNDING
1091 emit_single_push_insn (mode, from1, NULL);
1092 #else
1093 gcc_unreachable ();
1094 #endif
1097 if (HAVE_POST_INCREMENT && data->explicit_inc_to > 0)
1098 emit_insn (gen_add2_insn (data->to_addr, GEN_INT (size)));
1099 if (HAVE_POST_INCREMENT && data->explicit_inc_from > 0)
1100 emit_insn (gen_add2_insn (data->from_addr, GEN_INT (size)));
1102 if (! data->reverse)
1103 data->offset += size;
1105 data->len -= size;
1109 /* Emit code to move a block Y to a block X. This may be done with
1110 string-move instructions, with multiple scalar move instructions,
1111 or with a library call.
1113 Both X and Y must be MEM rtx's (perhaps inside VOLATILE) with mode BLKmode.
1114 SIZE is an rtx that says how long they are.
1115 ALIGN is the maximum alignment we can assume they have.
1116 METHOD describes what kind of copy this is, and what mechanisms may be used.
1118 Return the address of the new block, if memcpy is called and returns it,
1119 0 otherwise. */
1122 emit_block_move_hints (rtx x, rtx y, rtx size, enum block_op_methods method,
1123 unsigned int expected_align, HOST_WIDE_INT expected_size)
1125 bool may_use_call;
1126 rtx retval = 0;
1127 unsigned int align;
1129 gcc_assert (size);
1130 if (CONST_INT_P (size)
1131 && INTVAL (size) == 0)
1132 return 0;
1134 switch (method)
1136 case BLOCK_OP_NORMAL:
1137 case BLOCK_OP_TAILCALL:
1138 may_use_call = true;
1139 break;
1141 case BLOCK_OP_CALL_PARM:
1142 may_use_call = block_move_libcall_safe_for_call_parm ();
1144 /* Make inhibit_defer_pop nonzero around the library call
1145 to force it to pop the arguments right away. */
1146 NO_DEFER_POP;
1147 break;
1149 case BLOCK_OP_NO_LIBCALL:
1150 may_use_call = false;
1151 break;
1153 default:
1154 gcc_unreachable ();
1157 gcc_assert (MEM_P (x) && MEM_P (y));
1158 align = MIN (MEM_ALIGN (x), MEM_ALIGN (y));
1159 gcc_assert (align >= BITS_PER_UNIT);
1161 /* Make sure we've got BLKmode addresses; store_one_arg can decide that
1162 block copy is more efficient for other large modes, e.g. DCmode. */
1163 x = adjust_address (x, BLKmode, 0);
1164 y = adjust_address (y, BLKmode, 0);
1166 /* Set MEM_SIZE as appropriate for this block copy. The main place this
1167 can be incorrect is coming from __builtin_memcpy. */
1168 if (CONST_INT_P (size))
1170 x = shallow_copy_rtx (x);
1171 y = shallow_copy_rtx (y);
1172 set_mem_size (x, INTVAL (size));
1173 set_mem_size (y, INTVAL (size));
1176 if (CONST_INT_P (size) && MOVE_BY_PIECES_P (INTVAL (size), align))
1177 move_by_pieces (x, y, INTVAL (size), align, 0);
1178 else if (emit_block_move_via_movmem (x, y, size, align,
1179 expected_align, expected_size))
1181 else if (may_use_call
1182 && ADDR_SPACE_GENERIC_P (MEM_ADDR_SPACE (x))
1183 && ADDR_SPACE_GENERIC_P (MEM_ADDR_SPACE (y)))
1185 /* Since x and y are passed to a libcall, mark the corresponding
1186 tree EXPR as addressable. */
1187 tree y_expr = MEM_EXPR (y);
1188 tree x_expr = MEM_EXPR (x);
1189 if (y_expr)
1190 mark_addressable (y_expr);
1191 if (x_expr)
1192 mark_addressable (x_expr);
1193 retval = emit_block_move_via_libcall (x, y, size,
1194 method == BLOCK_OP_TAILCALL);
1197 else
1198 emit_block_move_via_loop (x, y, size, align);
1200 if (method == BLOCK_OP_CALL_PARM)
1201 OK_DEFER_POP;
1203 return retval;
1207 emit_block_move (rtx x, rtx y, rtx size, enum block_op_methods method)
1209 return emit_block_move_hints (x, y, size, method, 0, -1);
1212 /* A subroutine of emit_block_move. Returns true if calling the
1213 block move libcall will not clobber any parameters which may have
1214 already been placed on the stack. */
1216 static bool
1217 block_move_libcall_safe_for_call_parm (void)
1219 #if defined (REG_PARM_STACK_SPACE)
1220 tree fn;
1221 #endif
1223 /* If arguments are pushed on the stack, then they're safe. */
1224 if (PUSH_ARGS)
1225 return true;
1227 /* If registers go on the stack anyway, any argument is sure to clobber
1228 an outgoing argument. */
1229 #if defined (REG_PARM_STACK_SPACE)
1230 fn = emit_block_move_libcall_fn (false);
1231 /* Avoid set but not used warning if *REG_PARM_STACK_SPACE doesn't
1232 depend on its argument. */
1233 (void) fn;
1234 if (OUTGOING_REG_PARM_STACK_SPACE ((!fn ? NULL_TREE : TREE_TYPE (fn)))
1235 && REG_PARM_STACK_SPACE (fn) != 0)
1236 return false;
1237 #endif
1239 /* If any argument goes in memory, then it might clobber an outgoing
1240 argument. */
1242 CUMULATIVE_ARGS args_so_far_v;
1243 cumulative_args_t args_so_far;
1244 tree fn, arg;
1246 fn = emit_block_move_libcall_fn (false);
1247 INIT_CUMULATIVE_ARGS (args_so_far_v, TREE_TYPE (fn), NULL_RTX, 0, 3);
1248 args_so_far = pack_cumulative_args (&args_so_far_v);
1250 arg = TYPE_ARG_TYPES (TREE_TYPE (fn));
1251 for ( ; arg != void_list_node ; arg = TREE_CHAIN (arg))
1253 enum machine_mode mode = TYPE_MODE (TREE_VALUE (arg));
1254 rtx tmp = targetm.calls.function_arg (args_so_far, mode,
1255 NULL_TREE, true);
1256 if (!tmp || !REG_P (tmp))
1257 return false;
1258 if (targetm.calls.arg_partial_bytes (args_so_far, mode, NULL, 1))
1259 return false;
1260 targetm.calls.function_arg_advance (args_so_far, mode,
1261 NULL_TREE, true);
1264 return true;
1267 /* A subroutine of emit_block_move. Expand a movmem pattern;
1268 return true if successful. */
1270 static bool
1271 emit_block_move_via_movmem (rtx x, rtx y, rtx size, unsigned int align,
1272 unsigned int expected_align, HOST_WIDE_INT expected_size)
1274 int save_volatile_ok = volatile_ok;
1275 enum machine_mode mode;
1277 if (expected_align < align)
1278 expected_align = align;
1280 /* Since this is a move insn, we don't care about volatility. */
1281 volatile_ok = 1;
1283 /* Try the most limited insn first, because there's no point
1284 including more than one in the machine description unless
1285 the more limited one has some advantage. */
1287 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
1288 mode = GET_MODE_WIDER_MODE (mode))
1290 enum insn_code code = direct_optab_handler (movmem_optab, mode);
1292 if (code != CODE_FOR_nothing
1293 /* We don't need MODE to be narrower than BITS_PER_HOST_WIDE_INT
1294 here because if SIZE is less than the mode mask, as it is
1295 returned by the macro, it will definitely be less than the
1296 actual mode mask. */
1297 && ((CONST_INT_P (size)
1298 && ((unsigned HOST_WIDE_INT) INTVAL (size)
1299 <= (GET_MODE_MASK (mode) >> 1)))
1300 || GET_MODE_BITSIZE (mode) >= BITS_PER_WORD))
1302 struct expand_operand ops[6];
1303 unsigned int nops;
1305 /* ??? When called via emit_block_move_for_call, it'd be
1306 nice if there were some way to inform the backend, so
1307 that it doesn't fail the expansion because it thinks
1308 emitting the libcall would be more efficient. */
1309 nops = insn_data[(int) code].n_generator_args;
1310 gcc_assert (nops == 4 || nops == 6);
1312 create_fixed_operand (&ops[0], x);
1313 create_fixed_operand (&ops[1], y);
1314 /* The check above guarantees that this size conversion is valid. */
1315 create_convert_operand_to (&ops[2], size, mode, true);
1316 create_integer_operand (&ops[3], align / BITS_PER_UNIT);
1317 if (nops == 6)
1319 create_integer_operand (&ops[4], expected_align / BITS_PER_UNIT);
1320 create_integer_operand (&ops[5], expected_size);
1322 if (maybe_expand_insn (code, nops, ops))
1324 volatile_ok = save_volatile_ok;
1325 return true;
1330 volatile_ok = save_volatile_ok;
1331 return false;
1334 /* A subroutine of emit_block_move. Expand a call to memcpy.
1335 Return the return value from memcpy, 0 otherwise. */
1338 emit_block_move_via_libcall (rtx dst, rtx src, rtx size, bool tailcall)
1340 rtx dst_addr, src_addr;
1341 tree call_expr, fn, src_tree, dst_tree, size_tree;
1342 enum machine_mode size_mode;
1343 rtx retval;
1345 /* Emit code to copy the addresses of DST and SRC and SIZE into new
1346 pseudos. We can then place those new pseudos into a VAR_DECL and
1347 use them later. */
1349 dst_addr = copy_to_mode_reg (Pmode, XEXP (dst, 0));
1350 src_addr = copy_to_mode_reg (Pmode, XEXP (src, 0));
1352 dst_addr = convert_memory_address (ptr_mode, dst_addr);
1353 src_addr = convert_memory_address (ptr_mode, src_addr);
1355 dst_tree = make_tree (ptr_type_node, dst_addr);
1356 src_tree = make_tree (ptr_type_node, src_addr);
1358 size_mode = TYPE_MODE (sizetype);
1360 size = convert_to_mode (size_mode, size, 1);
1361 size = copy_to_mode_reg (size_mode, size);
1363 /* It is incorrect to use the libcall calling conventions to call
1364 memcpy in this context. This could be a user call to memcpy and
1365 the user may wish to examine the return value from memcpy. For
1366 targets where libcalls and normal calls have different conventions
1367 for returning pointers, we could end up generating incorrect code. */
1369 size_tree = make_tree (sizetype, size);
1371 fn = emit_block_move_libcall_fn (true);
1372 call_expr = build_call_expr (fn, 3, dst_tree, src_tree, size_tree);
1373 CALL_EXPR_TAILCALL (call_expr) = tailcall;
1375 retval = expand_normal (call_expr);
1377 return retval;
1380 /* A subroutine of emit_block_move_via_libcall. Create the tree node
1381 for the function we use for block copies. The first time FOR_CALL
1382 is true, we call assemble_external. */
1384 static GTY(()) tree block_move_fn;
1386 void
1387 init_block_move_fn (const char *asmspec)
1389 if (!block_move_fn)
1391 tree args, fn;
1393 fn = get_identifier ("memcpy");
1394 args = build_function_type_list (ptr_type_node, ptr_type_node,
1395 const_ptr_type_node, sizetype,
1396 NULL_TREE);
1398 fn = build_decl (UNKNOWN_LOCATION, FUNCTION_DECL, fn, args);
1399 DECL_EXTERNAL (fn) = 1;
1400 TREE_PUBLIC (fn) = 1;
1401 DECL_ARTIFICIAL (fn) = 1;
1402 TREE_NOTHROW (fn) = 1;
1403 DECL_VISIBILITY (fn) = VISIBILITY_DEFAULT;
1404 DECL_VISIBILITY_SPECIFIED (fn) = 1;
1406 block_move_fn = fn;
1409 if (asmspec)
1410 set_user_assembler_name (block_move_fn, asmspec);
1413 static tree
1414 emit_block_move_libcall_fn (int for_call)
1416 static bool emitted_extern;
1418 if (!block_move_fn)
1419 init_block_move_fn (NULL);
1421 if (for_call && !emitted_extern)
1423 emitted_extern = true;
1424 make_decl_rtl (block_move_fn);
1425 assemble_external (block_move_fn);
1428 return block_move_fn;
1431 /* A subroutine of emit_block_move. Copy the data via an explicit
1432 loop. This is used only when libcalls are forbidden. */
1433 /* ??? It'd be nice to copy in hunks larger than QImode. */
1435 static void
1436 emit_block_move_via_loop (rtx x, rtx y, rtx size,
1437 unsigned int align ATTRIBUTE_UNUSED)
1439 rtx cmp_label, top_label, iter, x_addr, y_addr, tmp;
1440 enum machine_mode x_addr_mode
1441 = targetm.addr_space.address_mode (MEM_ADDR_SPACE (x));
1442 enum machine_mode y_addr_mode
1443 = targetm.addr_space.address_mode (MEM_ADDR_SPACE (y));
1444 enum machine_mode iter_mode;
1446 iter_mode = GET_MODE (size);
1447 if (iter_mode == VOIDmode)
1448 iter_mode = word_mode;
1450 top_label = gen_label_rtx ();
1451 cmp_label = gen_label_rtx ();
1452 iter = gen_reg_rtx (iter_mode);
1454 emit_move_insn (iter, const0_rtx);
1456 x_addr = force_operand (XEXP (x, 0), NULL_RTX);
1457 y_addr = force_operand (XEXP (y, 0), NULL_RTX);
1458 do_pending_stack_adjust ();
1460 emit_jump (cmp_label);
1461 emit_label (top_label);
1463 tmp = convert_modes (x_addr_mode, iter_mode, iter, true);
1464 x_addr = gen_rtx_PLUS (x_addr_mode, x_addr, tmp);
1466 if (x_addr_mode != y_addr_mode)
1467 tmp = convert_modes (y_addr_mode, iter_mode, iter, true);
1468 y_addr = gen_rtx_PLUS (y_addr_mode, y_addr, tmp);
1470 x = change_address (x, QImode, x_addr);
1471 y = change_address (y, QImode, y_addr);
1473 emit_move_insn (x, y);
1475 tmp = expand_simple_binop (iter_mode, PLUS, iter, const1_rtx, iter,
1476 true, OPTAB_LIB_WIDEN);
1477 if (tmp != iter)
1478 emit_move_insn (iter, tmp);
1480 emit_label (cmp_label);
1482 emit_cmp_and_jump_insns (iter, size, LT, NULL_RTX, iter_mode,
1483 true, top_label);
1486 /* Copy all or part of a value X into registers starting at REGNO.
1487 The number of registers to be filled is NREGS. */
1489 void
1490 move_block_to_reg (int regno, rtx x, int nregs, enum machine_mode mode)
1492 int i;
1493 #ifdef HAVE_load_multiple
1494 rtx pat;
1495 rtx last;
1496 #endif
1498 if (nregs == 0)
1499 return;
1501 if (CONSTANT_P (x) && !targetm.legitimate_constant_p (mode, x))
1502 x = validize_mem (force_const_mem (mode, x));
1504 /* See if the machine can do this with a load multiple insn. */
1505 #ifdef HAVE_load_multiple
1506 if (HAVE_load_multiple)
1508 last = get_last_insn ();
1509 pat = gen_load_multiple (gen_rtx_REG (word_mode, regno), x,
1510 GEN_INT (nregs));
1511 if (pat)
1513 emit_insn (pat);
1514 return;
1516 else
1517 delete_insns_since (last);
1519 #endif
1521 for (i = 0; i < nregs; i++)
1522 emit_move_insn (gen_rtx_REG (word_mode, regno + i),
1523 operand_subword_force (x, i, mode));
1526 /* Copy all or part of a BLKmode value X out of registers starting at REGNO.
1527 The number of registers to be filled is NREGS. */
1529 void
1530 move_block_from_reg (int regno, rtx x, int nregs)
1532 int i;
1534 if (nregs == 0)
1535 return;
1537 /* See if the machine can do this with a store multiple insn. */
1538 #ifdef HAVE_store_multiple
1539 if (HAVE_store_multiple)
1541 rtx last = get_last_insn ();
1542 rtx pat = gen_store_multiple (x, gen_rtx_REG (word_mode, regno),
1543 GEN_INT (nregs));
1544 if (pat)
1546 emit_insn (pat);
1547 return;
1549 else
1550 delete_insns_since (last);
1552 #endif
1554 for (i = 0; i < nregs; i++)
1556 rtx tem = operand_subword (x, i, 1, BLKmode);
1558 gcc_assert (tem);
1560 emit_move_insn (tem, gen_rtx_REG (word_mode, regno + i));
1564 /* Generate a PARALLEL rtx for a new non-consecutive group of registers from
1565 ORIG, where ORIG is a non-consecutive group of registers represented by
1566 a PARALLEL. The clone is identical to the original except in that the
1567 original set of registers is replaced by a new set of pseudo registers.
1568 The new set has the same modes as the original set. */
1571 gen_group_rtx (rtx orig)
1573 int i, length;
1574 rtx *tmps;
1576 gcc_assert (GET_CODE (orig) == PARALLEL);
1578 length = XVECLEN (orig, 0);
1579 tmps = XALLOCAVEC (rtx, length);
1581 /* Skip a NULL entry in first slot. */
1582 i = XEXP (XVECEXP (orig, 0, 0), 0) ? 0 : 1;
1584 if (i)
1585 tmps[0] = 0;
1587 for (; i < length; i++)
1589 enum machine_mode mode = GET_MODE (XEXP (XVECEXP (orig, 0, i), 0));
1590 rtx offset = XEXP (XVECEXP (orig, 0, i), 1);
1592 tmps[i] = gen_rtx_EXPR_LIST (VOIDmode, gen_reg_rtx (mode), offset);
1595 return gen_rtx_PARALLEL (GET_MODE (orig), gen_rtvec_v (length, tmps));
1598 /* A subroutine of emit_group_load. Arguments as for emit_group_load,
1599 except that values are placed in TMPS[i], and must later be moved
1600 into corresponding XEXP (XVECEXP (DST, 0, i), 0) element. */
1602 static void
1603 emit_group_load_1 (rtx *tmps, rtx dst, rtx orig_src, tree type, int ssize)
1605 rtx src;
1606 int start, i;
1607 enum machine_mode m = GET_MODE (orig_src);
1609 gcc_assert (GET_CODE (dst) == PARALLEL);
1611 if (m != VOIDmode
1612 && !SCALAR_INT_MODE_P (m)
1613 && !MEM_P (orig_src)
1614 && GET_CODE (orig_src) != CONCAT)
1616 enum machine_mode imode = int_mode_for_mode (GET_MODE (orig_src));
1617 if (imode == BLKmode)
1618 src = assign_stack_temp (GET_MODE (orig_src), ssize, 0);
1619 else
1620 src = gen_reg_rtx (imode);
1621 if (imode != BLKmode)
1622 src = gen_lowpart (GET_MODE (orig_src), src);
1623 emit_move_insn (src, orig_src);
1624 /* ...and back again. */
1625 if (imode != BLKmode)
1626 src = gen_lowpart (imode, src);
1627 emit_group_load_1 (tmps, dst, src, type, ssize);
1628 return;
1631 /* Check for a NULL entry, used to indicate that the parameter goes
1632 both on the stack and in registers. */
1633 if (XEXP (XVECEXP (dst, 0, 0), 0))
1634 start = 0;
1635 else
1636 start = 1;
1638 /* Process the pieces. */
1639 for (i = start; i < XVECLEN (dst, 0); i++)
1641 enum machine_mode mode = GET_MODE (XEXP (XVECEXP (dst, 0, i), 0));
1642 HOST_WIDE_INT bytepos = INTVAL (XEXP (XVECEXP (dst, 0, i), 1));
1643 unsigned int bytelen = GET_MODE_SIZE (mode);
1644 int shift = 0;
1646 /* Handle trailing fragments that run over the size of the struct. */
1647 if (ssize >= 0 && bytepos + (HOST_WIDE_INT) bytelen > ssize)
1649 /* Arrange to shift the fragment to where it belongs.
1650 extract_bit_field loads to the lsb of the reg. */
1651 if (
1652 #ifdef BLOCK_REG_PADDING
1653 BLOCK_REG_PADDING (GET_MODE (orig_src), type, i == start)
1654 == (BYTES_BIG_ENDIAN ? upward : downward)
1655 #else
1656 BYTES_BIG_ENDIAN
1657 #endif
1659 shift = (bytelen - (ssize - bytepos)) * BITS_PER_UNIT;
1660 bytelen = ssize - bytepos;
1661 gcc_assert (bytelen > 0);
1664 /* If we won't be loading directly from memory, protect the real source
1665 from strange tricks we might play; but make sure that the source can
1666 be loaded directly into the destination. */
1667 src = orig_src;
1668 if (!MEM_P (orig_src)
1669 && (!CONSTANT_P (orig_src)
1670 || (GET_MODE (orig_src) != mode
1671 && GET_MODE (orig_src) != VOIDmode)))
1673 if (GET_MODE (orig_src) == VOIDmode)
1674 src = gen_reg_rtx (mode);
1675 else
1676 src = gen_reg_rtx (GET_MODE (orig_src));
1678 emit_move_insn (src, orig_src);
1681 /* Optimize the access just a bit. */
1682 if (MEM_P (src)
1683 && (! SLOW_UNALIGNED_ACCESS (mode, MEM_ALIGN (src))
1684 || MEM_ALIGN (src) >= GET_MODE_ALIGNMENT (mode))
1685 && bytepos * BITS_PER_UNIT % GET_MODE_ALIGNMENT (mode) == 0
1686 && bytelen == GET_MODE_SIZE (mode))
1688 tmps[i] = gen_reg_rtx (mode);
1689 emit_move_insn (tmps[i], adjust_address (src, mode, bytepos));
1691 else if (COMPLEX_MODE_P (mode)
1692 && GET_MODE (src) == mode
1693 && bytelen == GET_MODE_SIZE (mode))
1694 /* Let emit_move_complex do the bulk of the work. */
1695 tmps[i] = src;
1696 else if (GET_CODE (src) == CONCAT)
1698 unsigned int slen = GET_MODE_SIZE (GET_MODE (src));
1699 unsigned int slen0 = GET_MODE_SIZE (GET_MODE (XEXP (src, 0)));
1701 if ((bytepos == 0 && bytelen == slen0)
1702 || (bytepos != 0 && bytepos + bytelen <= slen))
1704 /* The following assumes that the concatenated objects all
1705 have the same size. In this case, a simple calculation
1706 can be used to determine the object and the bit field
1707 to be extracted. */
1708 tmps[i] = XEXP (src, bytepos / slen0);
1709 if (! CONSTANT_P (tmps[i])
1710 && (!REG_P (tmps[i]) || GET_MODE (tmps[i]) != mode))
1711 tmps[i] = extract_bit_field (tmps[i], bytelen * BITS_PER_UNIT,
1712 (bytepos % slen0) * BITS_PER_UNIT,
1713 1, false, NULL_RTX, mode, mode);
1715 else
1717 rtx mem;
1719 gcc_assert (!bytepos);
1720 mem = assign_stack_temp (GET_MODE (src), slen, 0);
1721 emit_move_insn (mem, src);
1722 tmps[i] = extract_bit_field (mem, bytelen * BITS_PER_UNIT,
1723 0, 1, false, NULL_RTX, mode, mode);
1726 /* FIXME: A SIMD parallel will eventually lead to a subreg of a
1727 SIMD register, which is currently broken. While we get GCC
1728 to emit proper RTL for these cases, let's dump to memory. */
1729 else if (VECTOR_MODE_P (GET_MODE (dst))
1730 && REG_P (src))
1732 int slen = GET_MODE_SIZE (GET_MODE (src));
1733 rtx mem;
1735 mem = assign_stack_temp (GET_MODE (src), slen, 0);
1736 emit_move_insn (mem, src);
1737 tmps[i] = adjust_address (mem, mode, (int) bytepos);
1739 else if (CONSTANT_P (src) && GET_MODE (dst) != BLKmode
1740 && XVECLEN (dst, 0) > 1)
1741 tmps[i] = simplify_gen_subreg (mode, src, GET_MODE(dst), bytepos);
1742 else if (CONSTANT_P (src))
1744 HOST_WIDE_INT len = (HOST_WIDE_INT) bytelen;
1746 if (len == ssize)
1747 tmps[i] = src;
1748 else
1750 rtx first, second;
1752 gcc_assert (2 * len == ssize);
1753 split_double (src, &first, &second);
1754 if (i)
1755 tmps[i] = second;
1756 else
1757 tmps[i] = first;
1760 else if (REG_P (src) && GET_MODE (src) == mode)
1761 tmps[i] = src;
1762 else
1763 tmps[i] = extract_bit_field (src, bytelen * BITS_PER_UNIT,
1764 bytepos * BITS_PER_UNIT, 1, false, NULL_RTX,
1765 mode, mode);
1767 if (shift)
1768 tmps[i] = expand_shift (LSHIFT_EXPR, mode, tmps[i],
1769 shift, tmps[i], 0);
1773 /* Emit code to move a block SRC of type TYPE to a block DST,
1774 where DST is non-consecutive registers represented by a PARALLEL.
1775 SSIZE represents the total size of block ORIG_SRC in bytes, or -1
1776 if not known. */
1778 void
1779 emit_group_load (rtx dst, rtx src, tree type, int ssize)
1781 rtx *tmps;
1782 int i;
1784 tmps = XALLOCAVEC (rtx, XVECLEN (dst, 0));
1785 emit_group_load_1 (tmps, dst, src, type, ssize);
1787 /* Copy the extracted pieces into the proper (probable) hard regs. */
1788 for (i = 0; i < XVECLEN (dst, 0); i++)
1790 rtx d = XEXP (XVECEXP (dst, 0, i), 0);
1791 if (d == NULL)
1792 continue;
1793 emit_move_insn (d, tmps[i]);
1797 /* Similar, but load SRC into new pseudos in a format that looks like
1798 PARALLEL. This can later be fed to emit_group_move to get things
1799 in the right place. */
1802 emit_group_load_into_temps (rtx parallel, rtx src, tree type, int ssize)
1804 rtvec vec;
1805 int i;
1807 vec = rtvec_alloc (XVECLEN (parallel, 0));
1808 emit_group_load_1 (&RTVEC_ELT (vec, 0), parallel, src, type, ssize);
1810 /* Convert the vector to look just like the original PARALLEL, except
1811 with the computed values. */
1812 for (i = 0; i < XVECLEN (parallel, 0); i++)
1814 rtx e = XVECEXP (parallel, 0, i);
1815 rtx d = XEXP (e, 0);
1817 if (d)
1819 d = force_reg (GET_MODE (d), RTVEC_ELT (vec, i));
1820 e = alloc_EXPR_LIST (REG_NOTE_KIND (e), d, XEXP (e, 1));
1822 RTVEC_ELT (vec, i) = e;
1825 return gen_rtx_PARALLEL (GET_MODE (parallel), vec);
1828 /* Emit code to move a block SRC to block DST, where SRC and DST are
1829 non-consecutive groups of registers, each represented by a PARALLEL. */
1831 void
1832 emit_group_move (rtx dst, rtx src)
1834 int i;
1836 gcc_assert (GET_CODE (src) == PARALLEL
1837 && GET_CODE (dst) == PARALLEL
1838 && XVECLEN (src, 0) == XVECLEN (dst, 0));
1840 /* Skip first entry if NULL. */
1841 for (i = XEXP (XVECEXP (src, 0, 0), 0) ? 0 : 1; i < XVECLEN (src, 0); i++)
1842 emit_move_insn (XEXP (XVECEXP (dst, 0, i), 0),
1843 XEXP (XVECEXP (src, 0, i), 0));
1846 /* Move a group of registers represented by a PARALLEL into pseudos. */
1849 emit_group_move_into_temps (rtx src)
1851 rtvec vec = rtvec_alloc (XVECLEN (src, 0));
1852 int i;
1854 for (i = 0; i < XVECLEN (src, 0); i++)
1856 rtx e = XVECEXP (src, 0, i);
1857 rtx d = XEXP (e, 0);
1859 if (d)
1860 e = alloc_EXPR_LIST (REG_NOTE_KIND (e), copy_to_reg (d), XEXP (e, 1));
1861 RTVEC_ELT (vec, i) = e;
1864 return gen_rtx_PARALLEL (GET_MODE (src), vec);
1867 /* Emit code to move a block SRC to a block ORIG_DST of type TYPE,
1868 where SRC is non-consecutive registers represented by a PARALLEL.
1869 SSIZE represents the total size of block ORIG_DST, or -1 if not
1870 known. */
1872 void
1873 emit_group_store (rtx orig_dst, rtx src, tree type ATTRIBUTE_UNUSED, int ssize)
1875 rtx *tmps, dst;
1876 int start, finish, i;
1877 enum machine_mode m = GET_MODE (orig_dst);
1879 gcc_assert (GET_CODE (src) == PARALLEL);
1881 if (!SCALAR_INT_MODE_P (m)
1882 && !MEM_P (orig_dst) && GET_CODE (orig_dst) != CONCAT)
1884 enum machine_mode imode = int_mode_for_mode (GET_MODE (orig_dst));
1885 if (imode == BLKmode)
1886 dst = assign_stack_temp (GET_MODE (orig_dst), ssize, 0);
1887 else
1888 dst = gen_reg_rtx (imode);
1889 emit_group_store (dst, src, type, ssize);
1890 if (imode != BLKmode)
1891 dst = gen_lowpart (GET_MODE (orig_dst), dst);
1892 emit_move_insn (orig_dst, dst);
1893 return;
1896 /* Check for a NULL entry, used to indicate that the parameter goes
1897 both on the stack and in registers. */
1898 if (XEXP (XVECEXP (src, 0, 0), 0))
1899 start = 0;
1900 else
1901 start = 1;
1902 finish = XVECLEN (src, 0);
1904 tmps = XALLOCAVEC (rtx, finish);
1906 /* Copy the (probable) hard regs into pseudos. */
1907 for (i = start; i < finish; i++)
1909 rtx reg = XEXP (XVECEXP (src, 0, i), 0);
1910 if (!REG_P (reg) || REGNO (reg) < FIRST_PSEUDO_REGISTER)
1912 tmps[i] = gen_reg_rtx (GET_MODE (reg));
1913 emit_move_insn (tmps[i], reg);
1915 else
1916 tmps[i] = reg;
1919 /* If we won't be storing directly into memory, protect the real destination
1920 from strange tricks we might play. */
1921 dst = orig_dst;
1922 if (GET_CODE (dst) == PARALLEL)
1924 rtx temp;
1926 /* We can get a PARALLEL dst if there is a conditional expression in
1927 a return statement. In that case, the dst and src are the same,
1928 so no action is necessary. */
1929 if (rtx_equal_p (dst, src))
1930 return;
1932 /* It is unclear if we can ever reach here, but we may as well handle
1933 it. Allocate a temporary, and split this into a store/load to/from
1934 the temporary. */
1936 temp = assign_stack_temp (GET_MODE (dst), ssize, 0);
1937 emit_group_store (temp, src, type, ssize);
1938 emit_group_load (dst, temp, type, ssize);
1939 return;
1941 else if (!MEM_P (dst) && GET_CODE (dst) != CONCAT)
1943 enum machine_mode outer = GET_MODE (dst);
1944 enum machine_mode inner;
1945 HOST_WIDE_INT bytepos;
1946 bool done = false;
1947 rtx temp;
1949 if (!REG_P (dst) || REGNO (dst) < FIRST_PSEUDO_REGISTER)
1950 dst = gen_reg_rtx (outer);
1952 /* Make life a bit easier for combine. */
1953 /* If the first element of the vector is the low part
1954 of the destination mode, use a paradoxical subreg to
1955 initialize the destination. */
1956 if (start < finish)
1958 inner = GET_MODE (tmps[start]);
1959 bytepos = subreg_lowpart_offset (inner, outer);
1960 if (INTVAL (XEXP (XVECEXP (src, 0, start), 1)) == bytepos)
1962 temp = simplify_gen_subreg (outer, tmps[start],
1963 inner, 0);
1964 if (temp)
1966 emit_move_insn (dst, temp);
1967 done = true;
1968 start++;
1973 /* If the first element wasn't the low part, try the last. */
1974 if (!done
1975 && start < finish - 1)
1977 inner = GET_MODE (tmps[finish - 1]);
1978 bytepos = subreg_lowpart_offset (inner, outer);
1979 if (INTVAL (XEXP (XVECEXP (src, 0, finish - 1), 1)) == bytepos)
1981 temp = simplify_gen_subreg (outer, tmps[finish - 1],
1982 inner, 0);
1983 if (temp)
1985 emit_move_insn (dst, temp);
1986 done = true;
1987 finish--;
1992 /* Otherwise, simply initialize the result to zero. */
1993 if (!done)
1994 emit_move_insn (dst, CONST0_RTX (outer));
1997 /* Process the pieces. */
1998 for (i = start; i < finish; i++)
2000 HOST_WIDE_INT bytepos = INTVAL (XEXP (XVECEXP (src, 0, i), 1));
2001 enum machine_mode mode = GET_MODE (tmps[i]);
2002 unsigned int bytelen = GET_MODE_SIZE (mode);
2003 unsigned int adj_bytelen = bytelen;
2004 rtx dest = dst;
2006 /* Handle trailing fragments that run over the size of the struct. */
2007 if (ssize >= 0 && bytepos + (HOST_WIDE_INT) bytelen > ssize)
2008 adj_bytelen = ssize - bytepos;
2010 if (GET_CODE (dst) == CONCAT)
2012 if (bytepos + adj_bytelen
2013 <= GET_MODE_SIZE (GET_MODE (XEXP (dst, 0))))
2014 dest = XEXP (dst, 0);
2015 else if (bytepos >= GET_MODE_SIZE (GET_MODE (XEXP (dst, 0))))
2017 bytepos -= GET_MODE_SIZE (GET_MODE (XEXP (dst, 0)));
2018 dest = XEXP (dst, 1);
2020 else
2022 enum machine_mode dest_mode = GET_MODE (dest);
2023 enum machine_mode tmp_mode = GET_MODE (tmps[i]);
2025 gcc_assert (bytepos == 0 && XVECLEN (src, 0));
2027 if (GET_MODE_ALIGNMENT (dest_mode)
2028 >= GET_MODE_ALIGNMENT (tmp_mode))
2030 dest = assign_stack_temp (dest_mode,
2031 GET_MODE_SIZE (dest_mode),
2033 emit_move_insn (adjust_address (dest,
2034 tmp_mode,
2035 bytepos),
2036 tmps[i]);
2037 dst = dest;
2039 else
2041 dest = assign_stack_temp (tmp_mode,
2042 GET_MODE_SIZE (tmp_mode),
2044 emit_move_insn (dest, tmps[i]);
2045 dst = adjust_address (dest, dest_mode, bytepos);
2047 break;
2051 if (ssize >= 0 && bytepos + (HOST_WIDE_INT) bytelen > ssize)
2053 /* store_bit_field always takes its value from the lsb.
2054 Move the fragment to the lsb if it's not already there. */
2055 if (
2056 #ifdef BLOCK_REG_PADDING
2057 BLOCK_REG_PADDING (GET_MODE (orig_dst), type, i == start)
2058 == (BYTES_BIG_ENDIAN ? upward : downward)
2059 #else
2060 BYTES_BIG_ENDIAN
2061 #endif
2064 int shift = (bytelen - (ssize - bytepos)) * BITS_PER_UNIT;
2065 tmps[i] = expand_shift (RSHIFT_EXPR, mode, tmps[i],
2066 shift, tmps[i], 0);
2068 bytelen = adj_bytelen;
2071 /* Optimize the access just a bit. */
2072 if (MEM_P (dest)
2073 && (! SLOW_UNALIGNED_ACCESS (mode, MEM_ALIGN (dest))
2074 || MEM_ALIGN (dest) >= GET_MODE_ALIGNMENT (mode))
2075 && bytepos * BITS_PER_UNIT % GET_MODE_ALIGNMENT (mode) == 0
2076 && bytelen == GET_MODE_SIZE (mode))
2077 emit_move_insn (adjust_address (dest, mode, bytepos), tmps[i]);
2078 else
2079 store_bit_field (dest, bytelen * BITS_PER_UNIT, bytepos * BITS_PER_UNIT,
2080 0, 0, mode, tmps[i]);
2083 /* Copy from the pseudo into the (probable) hard reg. */
2084 if (orig_dst != dst)
2085 emit_move_insn (orig_dst, dst);
2088 /* Generate code to copy a BLKmode object of TYPE out of a
2089 set of registers starting with SRCREG into TGTBLK. If TGTBLK
2090 is null, a stack temporary is created. TGTBLK is returned.
2092 The purpose of this routine is to handle functions that return
2093 BLKmode structures in registers. Some machines (the PA for example)
2094 want to return all small structures in registers regardless of the
2095 structure's alignment. */
2098 copy_blkmode_from_reg (rtx tgtblk, rtx srcreg, tree type)
2100 unsigned HOST_WIDE_INT bytes = int_size_in_bytes (type);
2101 rtx src = NULL, dst = NULL;
2102 unsigned HOST_WIDE_INT bitsize = MIN (TYPE_ALIGN (type), BITS_PER_WORD);
2103 unsigned HOST_WIDE_INT bitpos, xbitpos, padding_correction = 0;
2104 enum machine_mode copy_mode;
2106 if (tgtblk == 0)
2108 tgtblk = assign_temp (build_qualified_type (type,
2109 (TYPE_QUALS (type)
2110 | TYPE_QUAL_CONST)),
2111 0, 1, 1);
2112 preserve_temp_slots (tgtblk);
2115 /* This code assumes srcreg is at least a full word. If it isn't, copy it
2116 into a new pseudo which is a full word. */
2118 if (GET_MODE (srcreg) != BLKmode
2119 && GET_MODE_SIZE (GET_MODE (srcreg)) < UNITS_PER_WORD)
2120 srcreg = convert_to_mode (word_mode, srcreg, TYPE_UNSIGNED (type));
2122 /* If the structure doesn't take up a whole number of words, see whether
2123 SRCREG is padded on the left or on the right. If it's on the left,
2124 set PADDING_CORRECTION to the number of bits to skip.
2126 In most ABIs, the structure will be returned at the least end of
2127 the register, which translates to right padding on little-endian
2128 targets and left padding on big-endian targets. The opposite
2129 holds if the structure is returned at the most significant
2130 end of the register. */
2131 if (bytes % UNITS_PER_WORD != 0
2132 && (targetm.calls.return_in_msb (type)
2133 ? !BYTES_BIG_ENDIAN
2134 : BYTES_BIG_ENDIAN))
2135 padding_correction
2136 = (BITS_PER_WORD - ((bytes % UNITS_PER_WORD) * BITS_PER_UNIT));
2138 /* Copy the structure BITSIZE bits at a time. If the target lives in
2139 memory, take care of not reading/writing past its end by selecting
2140 a copy mode suited to BITSIZE. This should always be possible given
2141 how it is computed.
2143 We could probably emit more efficient code for machines which do not use
2144 strict alignment, but it doesn't seem worth the effort at the current
2145 time. */
2147 copy_mode = word_mode;
2148 if (MEM_P (tgtblk))
2150 enum machine_mode mem_mode = mode_for_size (bitsize, MODE_INT, 1);
2151 if (mem_mode != BLKmode)
2152 copy_mode = mem_mode;
2155 for (bitpos = 0, xbitpos = padding_correction;
2156 bitpos < bytes * BITS_PER_UNIT;
2157 bitpos += bitsize, xbitpos += bitsize)
2159 /* We need a new source operand each time xbitpos is on a
2160 word boundary and when xbitpos == padding_correction
2161 (the first time through). */
2162 if (xbitpos % BITS_PER_WORD == 0
2163 || xbitpos == padding_correction)
2164 src = operand_subword_force (srcreg, xbitpos / BITS_PER_WORD,
2165 GET_MODE (srcreg));
2167 /* We need a new destination operand each time bitpos is on
2168 a word boundary. */
2169 if (bitpos % BITS_PER_WORD == 0)
2170 dst = operand_subword (tgtblk, bitpos / BITS_PER_WORD, 1, BLKmode);
2172 /* Use xbitpos for the source extraction (right justified) and
2173 bitpos for the destination store (left justified). */
2174 store_bit_field (dst, bitsize, bitpos % BITS_PER_WORD, 0, 0, copy_mode,
2175 extract_bit_field (src, bitsize,
2176 xbitpos % BITS_PER_WORD, 1, false,
2177 NULL_RTX, copy_mode, copy_mode));
2180 return tgtblk;
2183 /* Add a USE expression for REG to the (possibly empty) list pointed
2184 to by CALL_FUSAGE. REG must denote a hard register. */
2186 void
2187 use_reg (rtx *call_fusage, rtx reg)
2189 gcc_assert (REG_P (reg) && REGNO (reg) < FIRST_PSEUDO_REGISTER);
2191 *call_fusage
2192 = gen_rtx_EXPR_LIST (VOIDmode,
2193 gen_rtx_USE (VOIDmode, reg), *call_fusage);
2196 /* Add USE expressions to *CALL_FUSAGE for each of NREGS consecutive regs,
2197 starting at REGNO. All of these registers must be hard registers. */
2199 void
2200 use_regs (rtx *call_fusage, int regno, int nregs)
2202 int i;
2204 gcc_assert (regno + nregs <= FIRST_PSEUDO_REGISTER);
2206 for (i = 0; i < nregs; i++)
2207 use_reg (call_fusage, regno_reg_rtx[regno + i]);
2210 /* Add USE expressions to *CALL_FUSAGE for each REG contained in the
2211 PARALLEL REGS. This is for calls that pass values in multiple
2212 non-contiguous locations. The Irix 6 ABI has examples of this. */
2214 void
2215 use_group_regs (rtx *call_fusage, rtx regs)
2217 int i;
2219 for (i = 0; i < XVECLEN (regs, 0); i++)
2221 rtx reg = XEXP (XVECEXP (regs, 0, i), 0);
2223 /* A NULL entry means the parameter goes both on the stack and in
2224 registers. This can also be a MEM for targets that pass values
2225 partially on the stack and partially in registers. */
2226 if (reg != 0 && REG_P (reg))
2227 use_reg (call_fusage, reg);
2231 /* Return the defining gimple statement for SSA_NAME NAME if it is an
2232 assigment and the code of the expresion on the RHS is CODE. Return
2233 NULL otherwise. */
2235 static gimple
2236 get_def_for_expr (tree name, enum tree_code code)
2238 gimple def_stmt;
2240 if (TREE_CODE (name) != SSA_NAME)
2241 return NULL;
2243 def_stmt = get_gimple_for_ssa_name (name);
2244 if (!def_stmt
2245 || gimple_assign_rhs_code (def_stmt) != code)
2246 return NULL;
2248 return def_stmt;
2252 /* Determine whether the LEN bytes generated by CONSTFUN can be
2253 stored to memory using several move instructions. CONSTFUNDATA is
2254 a pointer which will be passed as argument in every CONSTFUN call.
2255 ALIGN is maximum alignment we can assume. MEMSETP is true if this is
2256 a memset operation and false if it's a copy of a constant string.
2257 Return nonzero if a call to store_by_pieces should succeed. */
2260 can_store_by_pieces (unsigned HOST_WIDE_INT len,
2261 rtx (*constfun) (void *, HOST_WIDE_INT, enum machine_mode),
2262 void *constfundata, unsigned int align, bool memsetp)
2264 unsigned HOST_WIDE_INT l;
2265 unsigned int max_size;
2266 HOST_WIDE_INT offset = 0;
2267 enum machine_mode mode;
2268 enum insn_code icode;
2269 int reverse;
2270 /* cst is set but not used if LEGITIMATE_CONSTANT doesn't use it. */
2271 rtx cst ATTRIBUTE_UNUSED;
2273 if (len == 0)
2274 return 1;
2276 if (! (memsetp
2277 ? SET_BY_PIECES_P (len, align)
2278 : STORE_BY_PIECES_P (len, align)))
2279 return 0;
2281 align = alignment_for_piecewise_move (STORE_MAX_PIECES, align);
2283 /* We would first store what we can in the largest integer mode, then go to
2284 successively smaller modes. */
2286 for (reverse = 0;
2287 reverse <= (HAVE_PRE_DECREMENT || HAVE_POST_DECREMENT);
2288 reverse++)
2290 l = len;
2291 max_size = STORE_MAX_PIECES + 1;
2292 while (max_size > 1)
2294 mode = widest_int_mode_for_size (max_size);
2296 if (mode == VOIDmode)
2297 break;
2299 icode = optab_handler (mov_optab, mode);
2300 if (icode != CODE_FOR_nothing
2301 && align >= GET_MODE_ALIGNMENT (mode))
2303 unsigned int size = GET_MODE_SIZE (mode);
2305 while (l >= size)
2307 if (reverse)
2308 offset -= size;
2310 cst = (*constfun) (constfundata, offset, mode);
2311 if (!targetm.legitimate_constant_p (mode, cst))
2312 return 0;
2314 if (!reverse)
2315 offset += size;
2317 l -= size;
2321 max_size = GET_MODE_SIZE (mode);
2324 /* The code above should have handled everything. */
2325 gcc_assert (!l);
2328 return 1;
2331 /* Generate several move instructions to store LEN bytes generated by
2332 CONSTFUN to block TO. (A MEM rtx with BLKmode). CONSTFUNDATA is a
2333 pointer which will be passed as argument in every CONSTFUN call.
2334 ALIGN is maximum alignment we can assume. MEMSETP is true if this is
2335 a memset operation and false if it's a copy of a constant string.
2336 If ENDP is 0 return to, if ENDP is 1 return memory at the end ala
2337 mempcpy, and if ENDP is 2 return memory the end minus one byte ala
2338 stpcpy. */
2341 store_by_pieces (rtx to, unsigned HOST_WIDE_INT len,
2342 rtx (*constfun) (void *, HOST_WIDE_INT, enum machine_mode),
2343 void *constfundata, unsigned int align, bool memsetp, int endp)
2345 enum machine_mode to_addr_mode
2346 = targetm.addr_space.address_mode (MEM_ADDR_SPACE (to));
2347 struct store_by_pieces_d data;
2349 if (len == 0)
2351 gcc_assert (endp != 2);
2352 return to;
2355 gcc_assert (memsetp
2356 ? SET_BY_PIECES_P (len, align)
2357 : STORE_BY_PIECES_P (len, align));
2358 data.constfun = constfun;
2359 data.constfundata = constfundata;
2360 data.len = len;
2361 data.to = to;
2362 store_by_pieces_1 (&data, align);
2363 if (endp)
2365 rtx to1;
2367 gcc_assert (!data.reverse);
2368 if (data.autinc_to)
2370 if (endp == 2)
2372 if (HAVE_POST_INCREMENT && data.explicit_inc_to > 0)
2373 emit_insn (gen_add2_insn (data.to_addr, constm1_rtx));
2374 else
2375 data.to_addr = copy_to_mode_reg (to_addr_mode,
2376 plus_constant (data.to_addr,
2377 -1));
2379 to1 = adjust_automodify_address (data.to, QImode, data.to_addr,
2380 data.offset);
2382 else
2384 if (endp == 2)
2385 --data.offset;
2386 to1 = adjust_address (data.to, QImode, data.offset);
2388 return to1;
2390 else
2391 return data.to;
2394 /* Generate several move instructions to clear LEN bytes of block TO. (A MEM
2395 rtx with BLKmode). ALIGN is maximum alignment we can assume. */
2397 static void
2398 clear_by_pieces (rtx to, unsigned HOST_WIDE_INT len, unsigned int align)
2400 struct store_by_pieces_d data;
2402 if (len == 0)
2403 return;
2405 data.constfun = clear_by_pieces_1;
2406 data.constfundata = NULL;
2407 data.len = len;
2408 data.to = to;
2409 store_by_pieces_1 (&data, align);
2412 /* Callback routine for clear_by_pieces.
2413 Return const0_rtx unconditionally. */
2415 static rtx
2416 clear_by_pieces_1 (void *data ATTRIBUTE_UNUSED,
2417 HOST_WIDE_INT offset ATTRIBUTE_UNUSED,
2418 enum machine_mode mode ATTRIBUTE_UNUSED)
2420 return const0_rtx;
2423 /* Subroutine of clear_by_pieces and store_by_pieces.
2424 Generate several move instructions to store LEN bytes of block TO. (A MEM
2425 rtx with BLKmode). ALIGN is maximum alignment we can assume. */
2427 static void
2428 store_by_pieces_1 (struct store_by_pieces_d *data ATTRIBUTE_UNUSED,
2429 unsigned int align ATTRIBUTE_UNUSED)
2431 enum machine_mode to_addr_mode
2432 = targetm.addr_space.address_mode (MEM_ADDR_SPACE (data->to));
2433 rtx to_addr = XEXP (data->to, 0);
2434 unsigned int max_size = STORE_MAX_PIECES + 1;
2435 enum insn_code icode;
2437 data->offset = 0;
2438 data->to_addr = to_addr;
2439 data->autinc_to
2440 = (GET_CODE (to_addr) == PRE_INC || GET_CODE (to_addr) == PRE_DEC
2441 || GET_CODE (to_addr) == POST_INC || GET_CODE (to_addr) == POST_DEC);
2443 data->explicit_inc_to = 0;
2444 data->reverse
2445 = (GET_CODE (to_addr) == PRE_DEC || GET_CODE (to_addr) == POST_DEC);
2446 if (data->reverse)
2447 data->offset = data->len;
2449 /* If storing requires more than two move insns,
2450 copy addresses to registers (to make displacements shorter)
2451 and use post-increment if available. */
2452 if (!data->autinc_to
2453 && move_by_pieces_ninsns (data->len, align, max_size) > 2)
2455 /* Determine the main mode we'll be using.
2456 MODE might not be used depending on the definitions of the
2457 USE_* macros below. */
2458 enum machine_mode mode ATTRIBUTE_UNUSED
2459 = widest_int_mode_for_size (max_size);
2461 if (USE_STORE_PRE_DECREMENT (mode) && data->reverse && ! data->autinc_to)
2463 data->to_addr = copy_to_mode_reg (to_addr_mode,
2464 plus_constant (to_addr, data->len));
2465 data->autinc_to = 1;
2466 data->explicit_inc_to = -1;
2469 if (USE_STORE_POST_INCREMENT (mode) && ! data->reverse
2470 && ! data->autinc_to)
2472 data->to_addr = copy_to_mode_reg (to_addr_mode, to_addr);
2473 data->autinc_to = 1;
2474 data->explicit_inc_to = 1;
2477 if ( !data->autinc_to && CONSTANT_P (to_addr))
2478 data->to_addr = copy_to_mode_reg (to_addr_mode, to_addr);
2481 align = alignment_for_piecewise_move (STORE_MAX_PIECES, align);
2483 /* First store what we can in the largest integer mode, then go to
2484 successively smaller modes. */
2486 while (max_size > 1)
2488 enum machine_mode mode = widest_int_mode_for_size (max_size);
2490 if (mode == VOIDmode)
2491 break;
2493 icode = optab_handler (mov_optab, mode);
2494 if (icode != CODE_FOR_nothing && align >= GET_MODE_ALIGNMENT (mode))
2495 store_by_pieces_2 (GEN_FCN (icode), mode, data);
2497 max_size = GET_MODE_SIZE (mode);
2500 /* The code above should have handled everything. */
2501 gcc_assert (!data->len);
2504 /* Subroutine of store_by_pieces_1. Store as many bytes as appropriate
2505 with move instructions for mode MODE. GENFUN is the gen_... function
2506 to make a move insn for that mode. DATA has all the other info. */
2508 static void
2509 store_by_pieces_2 (rtx (*genfun) (rtx, ...), enum machine_mode mode,
2510 struct store_by_pieces_d *data)
2512 unsigned int size = GET_MODE_SIZE (mode);
2513 rtx to1, cst;
2515 while (data->len >= size)
2517 if (data->reverse)
2518 data->offset -= size;
2520 if (data->autinc_to)
2521 to1 = adjust_automodify_address (data->to, mode, data->to_addr,
2522 data->offset);
2523 else
2524 to1 = adjust_address (data->to, mode, data->offset);
2526 if (HAVE_PRE_DECREMENT && data->explicit_inc_to < 0)
2527 emit_insn (gen_add2_insn (data->to_addr,
2528 GEN_INT (-(HOST_WIDE_INT) size)));
2530 cst = (*data->constfun) (data->constfundata, data->offset, mode);
2531 emit_insn ((*genfun) (to1, cst));
2533 if (HAVE_POST_INCREMENT && data->explicit_inc_to > 0)
2534 emit_insn (gen_add2_insn (data->to_addr, GEN_INT (size)));
2536 if (! data->reverse)
2537 data->offset += size;
2539 data->len -= size;
2543 /* Write zeros through the storage of OBJECT. If OBJECT has BLKmode, SIZE is
2544 its length in bytes. */
2547 clear_storage_hints (rtx object, rtx size, enum block_op_methods method,
2548 unsigned int expected_align, HOST_WIDE_INT expected_size)
2550 enum machine_mode mode = GET_MODE (object);
2551 unsigned int align;
2553 gcc_assert (method == BLOCK_OP_NORMAL || method == BLOCK_OP_TAILCALL);
2555 /* If OBJECT is not BLKmode and SIZE is the same size as its mode,
2556 just move a zero. Otherwise, do this a piece at a time. */
2557 if (mode != BLKmode
2558 && CONST_INT_P (size)
2559 && INTVAL (size) == (HOST_WIDE_INT) GET_MODE_SIZE (mode))
2561 rtx zero = CONST0_RTX (mode);
2562 if (zero != NULL)
2564 emit_move_insn (object, zero);
2565 return NULL;
2568 if (COMPLEX_MODE_P (mode))
2570 zero = CONST0_RTX (GET_MODE_INNER (mode));
2571 if (zero != NULL)
2573 write_complex_part (object, zero, 0);
2574 write_complex_part (object, zero, 1);
2575 return NULL;
2580 if (size == const0_rtx)
2581 return NULL;
2583 align = MEM_ALIGN (object);
2585 if (CONST_INT_P (size)
2586 && CLEAR_BY_PIECES_P (INTVAL (size), align))
2587 clear_by_pieces (object, INTVAL (size), align);
2588 else if (set_storage_via_setmem (object, size, const0_rtx, align,
2589 expected_align, expected_size))
2591 else if (ADDR_SPACE_GENERIC_P (MEM_ADDR_SPACE (object)))
2592 return set_storage_via_libcall (object, size, const0_rtx,
2593 method == BLOCK_OP_TAILCALL);
2594 else
2595 gcc_unreachable ();
2597 return NULL;
2601 clear_storage (rtx object, rtx size, enum block_op_methods method)
2603 return clear_storage_hints (object, size, method, 0, -1);
2607 /* A subroutine of clear_storage. Expand a call to memset.
2608 Return the return value of memset, 0 otherwise. */
2611 set_storage_via_libcall (rtx object, rtx size, rtx val, bool tailcall)
2613 tree call_expr, fn, object_tree, size_tree, val_tree;
2614 enum machine_mode size_mode;
2615 rtx retval;
2617 /* Emit code to copy OBJECT and SIZE into new pseudos. We can then
2618 place those into new pseudos into a VAR_DECL and use them later. */
2620 object = copy_to_mode_reg (Pmode, XEXP (object, 0));
2622 size_mode = TYPE_MODE (sizetype);
2623 size = convert_to_mode (size_mode, size, 1);
2624 size = copy_to_mode_reg (size_mode, size);
2626 /* It is incorrect to use the libcall calling conventions to call
2627 memset in this context. This could be a user call to memset and
2628 the user may wish to examine the return value from memset. For
2629 targets where libcalls and normal calls have different conventions
2630 for returning pointers, we could end up generating incorrect code. */
2632 object_tree = make_tree (ptr_type_node, object);
2633 if (!CONST_INT_P (val))
2634 val = convert_to_mode (TYPE_MODE (integer_type_node), val, 1);
2635 size_tree = make_tree (sizetype, size);
2636 val_tree = make_tree (integer_type_node, val);
2638 fn = clear_storage_libcall_fn (true);
2639 call_expr = build_call_expr (fn, 3, object_tree, val_tree, size_tree);
2640 CALL_EXPR_TAILCALL (call_expr) = tailcall;
2642 retval = expand_normal (call_expr);
2644 return retval;
2647 /* A subroutine of set_storage_via_libcall. Create the tree node
2648 for the function we use for block clears. The first time FOR_CALL
2649 is true, we call assemble_external. */
2651 tree block_clear_fn;
2653 void
2654 init_block_clear_fn (const char *asmspec)
2656 if (!block_clear_fn)
2658 tree fn, args;
2660 fn = get_identifier ("memset");
2661 args = build_function_type_list (ptr_type_node, ptr_type_node,
2662 integer_type_node, sizetype,
2663 NULL_TREE);
2665 fn = build_decl (UNKNOWN_LOCATION, FUNCTION_DECL, fn, args);
2666 DECL_EXTERNAL (fn) = 1;
2667 TREE_PUBLIC (fn) = 1;
2668 DECL_ARTIFICIAL (fn) = 1;
2669 TREE_NOTHROW (fn) = 1;
2670 DECL_VISIBILITY (fn) = VISIBILITY_DEFAULT;
2671 DECL_VISIBILITY_SPECIFIED (fn) = 1;
2673 block_clear_fn = fn;
2676 if (asmspec)
2677 set_user_assembler_name (block_clear_fn, asmspec);
2680 static tree
2681 clear_storage_libcall_fn (int for_call)
2683 static bool emitted_extern;
2685 if (!block_clear_fn)
2686 init_block_clear_fn (NULL);
2688 if (for_call && !emitted_extern)
2690 emitted_extern = true;
2691 make_decl_rtl (block_clear_fn);
2692 assemble_external (block_clear_fn);
2695 return block_clear_fn;
2698 /* Expand a setmem pattern; return true if successful. */
2700 bool
2701 set_storage_via_setmem (rtx object, rtx size, rtx val, unsigned int align,
2702 unsigned int expected_align, HOST_WIDE_INT expected_size)
2704 /* Try the most limited insn first, because there's no point
2705 including more than one in the machine description unless
2706 the more limited one has some advantage. */
2708 enum machine_mode mode;
2710 if (expected_align < align)
2711 expected_align = align;
2713 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
2714 mode = GET_MODE_WIDER_MODE (mode))
2716 enum insn_code code = direct_optab_handler (setmem_optab, mode);
2718 if (code != CODE_FOR_nothing
2719 /* We don't need MODE to be narrower than
2720 BITS_PER_HOST_WIDE_INT here because if SIZE is less than
2721 the mode mask, as it is returned by the macro, it will
2722 definitely be less than the actual mode mask. */
2723 && ((CONST_INT_P (size)
2724 && ((unsigned HOST_WIDE_INT) INTVAL (size)
2725 <= (GET_MODE_MASK (mode) >> 1)))
2726 || GET_MODE_BITSIZE (mode) >= BITS_PER_WORD))
2728 struct expand_operand ops[6];
2729 unsigned int nops;
2731 nops = insn_data[(int) code].n_generator_args;
2732 gcc_assert (nops == 4 || nops == 6);
2734 create_fixed_operand (&ops[0], object);
2735 /* The check above guarantees that this size conversion is valid. */
2736 create_convert_operand_to (&ops[1], size, mode, true);
2737 create_convert_operand_from (&ops[2], val, byte_mode, true);
2738 create_integer_operand (&ops[3], align / BITS_PER_UNIT);
2739 if (nops == 6)
2741 create_integer_operand (&ops[4], expected_align / BITS_PER_UNIT);
2742 create_integer_operand (&ops[5], expected_size);
2744 if (maybe_expand_insn (code, nops, ops))
2745 return true;
2749 return false;
2753 /* Write to one of the components of the complex value CPLX. Write VAL to
2754 the real part if IMAG_P is false, and the imaginary part if its true. */
2756 static void
2757 write_complex_part (rtx cplx, rtx val, bool imag_p)
2759 enum machine_mode cmode;
2760 enum machine_mode imode;
2761 unsigned ibitsize;
2763 if (GET_CODE (cplx) == CONCAT)
2765 emit_move_insn (XEXP (cplx, imag_p), val);
2766 return;
2769 cmode = GET_MODE (cplx);
2770 imode = GET_MODE_INNER (cmode);
2771 ibitsize = GET_MODE_BITSIZE (imode);
2773 /* For MEMs simplify_gen_subreg may generate an invalid new address
2774 because, e.g., the original address is considered mode-dependent
2775 by the target, which restricts simplify_subreg from invoking
2776 adjust_address_nv. Instead of preparing fallback support for an
2777 invalid address, we call adjust_address_nv directly. */
2778 if (MEM_P (cplx))
2780 emit_move_insn (adjust_address_nv (cplx, imode,
2781 imag_p ? GET_MODE_SIZE (imode) : 0),
2782 val);
2783 return;
2786 /* If the sub-object is at least word sized, then we know that subregging
2787 will work. This special case is important, since store_bit_field
2788 wants to operate on integer modes, and there's rarely an OImode to
2789 correspond to TCmode. */
2790 if (ibitsize >= BITS_PER_WORD
2791 /* For hard regs we have exact predicates. Assume we can split
2792 the original object if it spans an even number of hard regs.
2793 This special case is important for SCmode on 64-bit platforms
2794 where the natural size of floating-point regs is 32-bit. */
2795 || (REG_P (cplx)
2796 && REGNO (cplx) < FIRST_PSEUDO_REGISTER
2797 && hard_regno_nregs[REGNO (cplx)][cmode] % 2 == 0))
2799 rtx part = simplify_gen_subreg (imode, cplx, cmode,
2800 imag_p ? GET_MODE_SIZE (imode) : 0);
2801 if (part)
2803 emit_move_insn (part, val);
2804 return;
2806 else
2807 /* simplify_gen_subreg may fail for sub-word MEMs. */
2808 gcc_assert (MEM_P (cplx) && ibitsize < BITS_PER_WORD);
2811 store_bit_field (cplx, ibitsize, imag_p ? ibitsize : 0, 0, 0, imode, val);
2814 /* Extract one of the components of the complex value CPLX. Extract the
2815 real part if IMAG_P is false, and the imaginary part if it's true. */
2817 static rtx
2818 read_complex_part (rtx cplx, bool imag_p)
2820 enum machine_mode cmode, imode;
2821 unsigned ibitsize;
2823 if (GET_CODE (cplx) == CONCAT)
2824 return XEXP (cplx, imag_p);
2826 cmode = GET_MODE (cplx);
2827 imode = GET_MODE_INNER (cmode);
2828 ibitsize = GET_MODE_BITSIZE (imode);
2830 /* Special case reads from complex constants that got spilled to memory. */
2831 if (MEM_P (cplx) && GET_CODE (XEXP (cplx, 0)) == SYMBOL_REF)
2833 tree decl = SYMBOL_REF_DECL (XEXP (cplx, 0));
2834 if (decl && TREE_CODE (decl) == COMPLEX_CST)
2836 tree part = imag_p ? TREE_IMAGPART (decl) : TREE_REALPART (decl);
2837 if (CONSTANT_CLASS_P (part))
2838 return expand_expr (part, NULL_RTX, imode, EXPAND_NORMAL);
2842 /* For MEMs simplify_gen_subreg may generate an invalid new address
2843 because, e.g., the original address is considered mode-dependent
2844 by the target, which restricts simplify_subreg from invoking
2845 adjust_address_nv. Instead of preparing fallback support for an
2846 invalid address, we call adjust_address_nv directly. */
2847 if (MEM_P (cplx))
2848 return adjust_address_nv (cplx, imode,
2849 imag_p ? GET_MODE_SIZE (imode) : 0);
2851 /* If the sub-object is at least word sized, then we know that subregging
2852 will work. This special case is important, since extract_bit_field
2853 wants to operate on integer modes, and there's rarely an OImode to
2854 correspond to TCmode. */
2855 if (ibitsize >= BITS_PER_WORD
2856 /* For hard regs we have exact predicates. Assume we can split
2857 the original object if it spans an even number of hard regs.
2858 This special case is important for SCmode on 64-bit platforms
2859 where the natural size of floating-point regs is 32-bit. */
2860 || (REG_P (cplx)
2861 && REGNO (cplx) < FIRST_PSEUDO_REGISTER
2862 && hard_regno_nregs[REGNO (cplx)][cmode] % 2 == 0))
2864 rtx ret = simplify_gen_subreg (imode, cplx, cmode,
2865 imag_p ? GET_MODE_SIZE (imode) : 0);
2866 if (ret)
2867 return ret;
2868 else
2869 /* simplify_gen_subreg may fail for sub-word MEMs. */
2870 gcc_assert (MEM_P (cplx) && ibitsize < BITS_PER_WORD);
2873 return extract_bit_field (cplx, ibitsize, imag_p ? ibitsize : 0,
2874 true, false, NULL_RTX, imode, imode);
2877 /* A subroutine of emit_move_insn_1. Yet another lowpart generator.
2878 NEW_MODE and OLD_MODE are the same size. Return NULL if X cannot be
2879 represented in NEW_MODE. If FORCE is true, this will never happen, as
2880 we'll force-create a SUBREG if needed. */
2882 static rtx
2883 emit_move_change_mode (enum machine_mode new_mode,
2884 enum machine_mode old_mode, rtx x, bool force)
2886 rtx ret;
2888 if (push_operand (x, GET_MODE (x)))
2890 ret = gen_rtx_MEM (new_mode, XEXP (x, 0));
2891 MEM_COPY_ATTRIBUTES (ret, x);
2893 else if (MEM_P (x))
2895 /* We don't have to worry about changing the address since the
2896 size in bytes is supposed to be the same. */
2897 if (reload_in_progress)
2899 /* Copy the MEM to change the mode and move any
2900 substitutions from the old MEM to the new one. */
2901 ret = adjust_address_nv (x, new_mode, 0);
2902 copy_replacements (x, ret);
2904 else
2905 ret = adjust_address (x, new_mode, 0);
2907 else
2909 /* Note that we do want simplify_subreg's behavior of validating
2910 that the new mode is ok for a hard register. If we were to use
2911 simplify_gen_subreg, we would create the subreg, but would
2912 probably run into the target not being able to implement it. */
2913 /* Except, of course, when FORCE is true, when this is exactly what
2914 we want. Which is needed for CCmodes on some targets. */
2915 if (force)
2916 ret = simplify_gen_subreg (new_mode, x, old_mode, 0);
2917 else
2918 ret = simplify_subreg (new_mode, x, old_mode, 0);
2921 return ret;
2924 /* A subroutine of emit_move_insn_1. Generate a move from Y into X using
2925 an integer mode of the same size as MODE. Returns the instruction
2926 emitted, or NULL if such a move could not be generated. */
2928 static rtx
2929 emit_move_via_integer (enum machine_mode mode, rtx x, rtx y, bool force)
2931 enum machine_mode imode;
2932 enum insn_code code;
2934 /* There must exist a mode of the exact size we require. */
2935 imode = int_mode_for_mode (mode);
2936 if (imode == BLKmode)
2937 return NULL_RTX;
2939 /* The target must support moves in this mode. */
2940 code = optab_handler (mov_optab, imode);
2941 if (code == CODE_FOR_nothing)
2942 return NULL_RTX;
2944 x = emit_move_change_mode (imode, mode, x, force);
2945 if (x == NULL_RTX)
2946 return NULL_RTX;
2947 y = emit_move_change_mode (imode, mode, y, force);
2948 if (y == NULL_RTX)
2949 return NULL_RTX;
2950 return emit_insn (GEN_FCN (code) (x, y));
2953 /* A subroutine of emit_move_insn_1. X is a push_operand in MODE.
2954 Return an equivalent MEM that does not use an auto-increment. */
2956 static rtx
2957 emit_move_resolve_push (enum machine_mode mode, rtx x)
2959 enum rtx_code code = GET_CODE (XEXP (x, 0));
2960 HOST_WIDE_INT adjust;
2961 rtx temp;
2963 adjust = GET_MODE_SIZE (mode);
2964 #ifdef PUSH_ROUNDING
2965 adjust = PUSH_ROUNDING (adjust);
2966 #endif
2967 if (code == PRE_DEC || code == POST_DEC)
2968 adjust = -adjust;
2969 else if (code == PRE_MODIFY || code == POST_MODIFY)
2971 rtx expr = XEXP (XEXP (x, 0), 1);
2972 HOST_WIDE_INT val;
2974 gcc_assert (GET_CODE (expr) == PLUS || GET_CODE (expr) == MINUS);
2975 gcc_assert (CONST_INT_P (XEXP (expr, 1)));
2976 val = INTVAL (XEXP (expr, 1));
2977 if (GET_CODE (expr) == MINUS)
2978 val = -val;
2979 gcc_assert (adjust == val || adjust == -val);
2980 adjust = val;
2983 /* Do not use anti_adjust_stack, since we don't want to update
2984 stack_pointer_delta. */
2985 temp = expand_simple_binop (Pmode, PLUS, stack_pointer_rtx,
2986 GEN_INT (adjust), stack_pointer_rtx,
2987 0, OPTAB_LIB_WIDEN);
2988 if (temp != stack_pointer_rtx)
2989 emit_move_insn (stack_pointer_rtx, temp);
2991 switch (code)
2993 case PRE_INC:
2994 case PRE_DEC:
2995 case PRE_MODIFY:
2996 temp = stack_pointer_rtx;
2997 break;
2998 case POST_INC:
2999 case POST_DEC:
3000 case POST_MODIFY:
3001 temp = plus_constant (stack_pointer_rtx, -adjust);
3002 break;
3003 default:
3004 gcc_unreachable ();
3007 return replace_equiv_address (x, temp);
3010 /* A subroutine of emit_move_complex. Generate a move from Y into X.
3011 X is known to satisfy push_operand, and MODE is known to be complex.
3012 Returns the last instruction emitted. */
3015 emit_move_complex_push (enum machine_mode mode, rtx x, rtx y)
3017 enum machine_mode submode = GET_MODE_INNER (mode);
3018 bool imag_first;
3020 #ifdef PUSH_ROUNDING
3021 unsigned int submodesize = GET_MODE_SIZE (submode);
3023 /* In case we output to the stack, but the size is smaller than the
3024 machine can push exactly, we need to use move instructions. */
3025 if (PUSH_ROUNDING (submodesize) != submodesize)
3027 x = emit_move_resolve_push (mode, x);
3028 return emit_move_insn (x, y);
3030 #endif
3032 /* Note that the real part always precedes the imag part in memory
3033 regardless of machine's endianness. */
3034 switch (GET_CODE (XEXP (x, 0)))
3036 case PRE_DEC:
3037 case POST_DEC:
3038 imag_first = true;
3039 break;
3040 case PRE_INC:
3041 case POST_INC:
3042 imag_first = false;
3043 break;
3044 default:
3045 gcc_unreachable ();
3048 emit_move_insn (gen_rtx_MEM (submode, XEXP (x, 0)),
3049 read_complex_part (y, imag_first));
3050 return emit_move_insn (gen_rtx_MEM (submode, XEXP (x, 0)),
3051 read_complex_part (y, !imag_first));
3054 /* A subroutine of emit_move_complex. Perform the move from Y to X
3055 via two moves of the parts. Returns the last instruction emitted. */
3058 emit_move_complex_parts (rtx x, rtx y)
3060 /* Show the output dies here. This is necessary for SUBREGs
3061 of pseudos since we cannot track their lifetimes correctly;
3062 hard regs shouldn't appear here except as return values. */
3063 if (!reload_completed && !reload_in_progress
3064 && REG_P (x) && !reg_overlap_mentioned_p (x, y))
3065 emit_clobber (x);
3067 write_complex_part (x, read_complex_part (y, false), false);
3068 write_complex_part (x, read_complex_part (y, true), true);
3070 return get_last_insn ();
3073 /* A subroutine of emit_move_insn_1. Generate a move from Y into X.
3074 MODE is known to be complex. Returns the last instruction emitted. */
3076 static rtx
3077 emit_move_complex (enum machine_mode mode, rtx x, rtx y)
3079 bool try_int;
3081 /* Need to take special care for pushes, to maintain proper ordering
3082 of the data, and possibly extra padding. */
3083 if (push_operand (x, mode))
3084 return emit_move_complex_push (mode, x, y);
3086 /* See if we can coerce the target into moving both values at once. */
3088 /* Move floating point as parts. */
3089 if (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
3090 && optab_handler (mov_optab, GET_MODE_INNER (mode)) != CODE_FOR_nothing)
3091 try_int = false;
3092 /* Not possible if the values are inherently not adjacent. */
3093 else if (GET_CODE (x) == CONCAT || GET_CODE (y) == CONCAT)
3094 try_int = false;
3095 /* Is possible if both are registers (or subregs of registers). */
3096 else if (register_operand (x, mode) && register_operand (y, mode))
3097 try_int = true;
3098 /* If one of the operands is a memory, and alignment constraints
3099 are friendly enough, we may be able to do combined memory operations.
3100 We do not attempt this if Y is a constant because that combination is
3101 usually better with the by-parts thing below. */
3102 else if ((MEM_P (x) ? !CONSTANT_P (y) : MEM_P (y))
3103 && (!STRICT_ALIGNMENT
3104 || get_mode_alignment (mode) == BIGGEST_ALIGNMENT))
3105 try_int = true;
3106 else
3107 try_int = false;
3109 if (try_int)
3111 rtx ret;
3113 /* For memory to memory moves, optimal behavior can be had with the
3114 existing block move logic. */
3115 if (MEM_P (x) && MEM_P (y))
3117 emit_block_move (x, y, GEN_INT (GET_MODE_SIZE (mode)),
3118 BLOCK_OP_NO_LIBCALL);
3119 return get_last_insn ();
3122 ret = emit_move_via_integer (mode, x, y, true);
3123 if (ret)
3124 return ret;
3127 return emit_move_complex_parts (x, y);
3130 /* A subroutine of emit_move_insn_1. Generate a move from Y into X.
3131 MODE is known to be MODE_CC. Returns the last instruction emitted. */
3133 static rtx
3134 emit_move_ccmode (enum machine_mode mode, rtx x, rtx y)
3136 rtx ret;
3138 /* Assume all MODE_CC modes are equivalent; if we have movcc, use it. */
3139 if (mode != CCmode)
3141 enum insn_code code = optab_handler (mov_optab, CCmode);
3142 if (code != CODE_FOR_nothing)
3144 x = emit_move_change_mode (CCmode, mode, x, true);
3145 y = emit_move_change_mode (CCmode, mode, y, true);
3146 return emit_insn (GEN_FCN (code) (x, y));
3150 /* Otherwise, find the MODE_INT mode of the same width. */
3151 ret = emit_move_via_integer (mode, x, y, false);
3152 gcc_assert (ret != NULL);
3153 return ret;
3156 /* Return true if word I of OP lies entirely in the
3157 undefined bits of a paradoxical subreg. */
3159 static bool
3160 undefined_operand_subword_p (const_rtx op, int i)
3162 enum machine_mode innermode, innermostmode;
3163 int offset;
3164 if (GET_CODE (op) != SUBREG)
3165 return false;
3166 innermode = GET_MODE (op);
3167 innermostmode = GET_MODE (SUBREG_REG (op));
3168 offset = i * UNITS_PER_WORD + SUBREG_BYTE (op);
3169 /* The SUBREG_BYTE represents offset, as if the value were stored in
3170 memory, except for a paradoxical subreg where we define
3171 SUBREG_BYTE to be 0; undo this exception as in
3172 simplify_subreg. */
3173 if (SUBREG_BYTE (op) == 0
3174 && GET_MODE_SIZE (innermostmode) < GET_MODE_SIZE (innermode))
3176 int difference = (GET_MODE_SIZE (innermostmode) - GET_MODE_SIZE (innermode));
3177 if (WORDS_BIG_ENDIAN)
3178 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
3179 if (BYTES_BIG_ENDIAN)
3180 offset += difference % UNITS_PER_WORD;
3182 if (offset >= GET_MODE_SIZE (innermostmode)
3183 || offset <= -GET_MODE_SIZE (word_mode))
3184 return true;
3185 return false;
3188 /* A subroutine of emit_move_insn_1. Generate a move from Y into X.
3189 MODE is any multi-word or full-word mode that lacks a move_insn
3190 pattern. Note that you will get better code if you define such
3191 patterns, even if they must turn into multiple assembler instructions. */
3193 static rtx
3194 emit_move_multi_word (enum machine_mode mode, rtx x, rtx y)
3196 rtx last_insn = 0;
3197 rtx seq, inner;
3198 bool need_clobber;
3199 int i;
3201 gcc_assert (GET_MODE_SIZE (mode) >= UNITS_PER_WORD);
3203 /* If X is a push on the stack, do the push now and replace
3204 X with a reference to the stack pointer. */
3205 if (push_operand (x, mode))
3206 x = emit_move_resolve_push (mode, x);
3208 /* If we are in reload, see if either operand is a MEM whose address
3209 is scheduled for replacement. */
3210 if (reload_in_progress && MEM_P (x)
3211 && (inner = find_replacement (&XEXP (x, 0))) != XEXP (x, 0))
3212 x = replace_equiv_address_nv (x, inner);
3213 if (reload_in_progress && MEM_P (y)
3214 && (inner = find_replacement (&XEXP (y, 0))) != XEXP (y, 0))
3215 y = replace_equiv_address_nv (y, inner);
3217 start_sequence ();
3219 need_clobber = false;
3220 for (i = 0;
3221 i < (GET_MODE_SIZE (mode) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD;
3222 i++)
3224 rtx xpart = operand_subword (x, i, 1, mode);
3225 rtx ypart;
3227 /* Do not generate code for a move if it would come entirely
3228 from the undefined bits of a paradoxical subreg. */
3229 if (undefined_operand_subword_p (y, i))
3230 continue;
3232 ypart = operand_subword (y, i, 1, mode);
3234 /* If we can't get a part of Y, put Y into memory if it is a
3235 constant. Otherwise, force it into a register. Then we must
3236 be able to get a part of Y. */
3237 if (ypart == 0 && CONSTANT_P (y))
3239 y = use_anchored_address (force_const_mem (mode, y));
3240 ypart = operand_subword (y, i, 1, mode);
3242 else if (ypart == 0)
3243 ypart = operand_subword_force (y, i, mode);
3245 gcc_assert (xpart && ypart);
3247 need_clobber |= (GET_CODE (xpart) == SUBREG);
3249 last_insn = emit_move_insn (xpart, ypart);
3252 seq = get_insns ();
3253 end_sequence ();
3255 /* Show the output dies here. This is necessary for SUBREGs
3256 of pseudos since we cannot track their lifetimes correctly;
3257 hard regs shouldn't appear here except as return values.
3258 We never want to emit such a clobber after reload. */
3259 if (x != y
3260 && ! (reload_in_progress || reload_completed)
3261 && need_clobber != 0)
3262 emit_clobber (x);
3264 emit_insn (seq);
3266 return last_insn;
3269 /* Low level part of emit_move_insn.
3270 Called just like emit_move_insn, but assumes X and Y
3271 are basically valid. */
3274 emit_move_insn_1 (rtx x, rtx y)
3276 enum machine_mode mode = GET_MODE (x);
3277 enum insn_code code;
3279 gcc_assert ((unsigned int) mode < (unsigned int) MAX_MACHINE_MODE);
3281 code = optab_handler (mov_optab, mode);
3282 if (code != CODE_FOR_nothing)
3283 return emit_insn (GEN_FCN (code) (x, y));
3285 /* Expand complex moves by moving real part and imag part. */
3286 if (COMPLEX_MODE_P (mode))
3287 return emit_move_complex (mode, x, y);
3289 if (GET_MODE_CLASS (mode) == MODE_DECIMAL_FLOAT
3290 || ALL_FIXED_POINT_MODE_P (mode))
3292 rtx result = emit_move_via_integer (mode, x, y, true);
3294 /* If we can't find an integer mode, use multi words. */
3295 if (result)
3296 return result;
3297 else
3298 return emit_move_multi_word (mode, x, y);
3301 if (GET_MODE_CLASS (mode) == MODE_CC)
3302 return emit_move_ccmode (mode, x, y);
3304 /* Try using a move pattern for the corresponding integer mode. This is
3305 only safe when simplify_subreg can convert MODE constants into integer
3306 constants. At present, it can only do this reliably if the value
3307 fits within a HOST_WIDE_INT. */
3308 if (!CONSTANT_P (y) || GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
3310 rtx ret = emit_move_via_integer (mode, x, y, false);
3311 if (ret)
3312 return ret;
3315 return emit_move_multi_word (mode, x, y);
3318 /* Generate code to copy Y into X.
3319 Both Y and X must have the same mode, except that
3320 Y can be a constant with VOIDmode.
3321 This mode cannot be BLKmode; use emit_block_move for that.
3323 Return the last instruction emitted. */
3326 emit_move_insn (rtx x, rtx y)
3328 enum machine_mode mode = GET_MODE (x);
3329 rtx y_cst = NULL_RTX;
3330 rtx last_insn, set;
3332 gcc_assert (mode != BLKmode
3333 && (GET_MODE (y) == mode || GET_MODE (y) == VOIDmode));
3335 if (CONSTANT_P (y))
3337 if (optimize
3338 && SCALAR_FLOAT_MODE_P (GET_MODE (x))
3339 && (last_insn = compress_float_constant (x, y)))
3340 return last_insn;
3342 y_cst = y;
3344 if (!targetm.legitimate_constant_p (mode, y))
3346 y = force_const_mem (mode, y);
3348 /* If the target's cannot_force_const_mem prevented the spill,
3349 assume that the target's move expanders will also take care
3350 of the non-legitimate constant. */
3351 if (!y)
3352 y = y_cst;
3353 else
3354 y = use_anchored_address (y);
3358 /* If X or Y are memory references, verify that their addresses are valid
3359 for the machine. */
3360 if (MEM_P (x)
3361 && (! memory_address_addr_space_p (GET_MODE (x), XEXP (x, 0),
3362 MEM_ADDR_SPACE (x))
3363 && ! push_operand (x, GET_MODE (x))))
3364 x = validize_mem (x);
3366 if (MEM_P (y)
3367 && ! memory_address_addr_space_p (GET_MODE (y), XEXP (y, 0),
3368 MEM_ADDR_SPACE (y)))
3369 y = validize_mem (y);
3371 gcc_assert (mode != BLKmode);
3373 last_insn = emit_move_insn_1 (x, y);
3375 if (y_cst && REG_P (x)
3376 && (set = single_set (last_insn)) != NULL_RTX
3377 && SET_DEST (set) == x
3378 && ! rtx_equal_p (y_cst, SET_SRC (set)))
3379 set_unique_reg_note (last_insn, REG_EQUAL, copy_rtx (y_cst));
3381 return last_insn;
3384 /* If Y is representable exactly in a narrower mode, and the target can
3385 perform the extension directly from constant or memory, then emit the
3386 move as an extension. */
3388 static rtx
3389 compress_float_constant (rtx x, rtx y)
3391 enum machine_mode dstmode = GET_MODE (x);
3392 enum machine_mode orig_srcmode = GET_MODE (y);
3393 enum machine_mode srcmode;
3394 REAL_VALUE_TYPE r;
3395 int oldcost, newcost;
3396 bool speed = optimize_insn_for_speed_p ();
3398 REAL_VALUE_FROM_CONST_DOUBLE (r, y);
3400 if (targetm.legitimate_constant_p (dstmode, y))
3401 oldcost = rtx_cost (y, SET, speed);
3402 else
3403 oldcost = rtx_cost (force_const_mem (dstmode, y), SET, speed);
3405 for (srcmode = GET_CLASS_NARROWEST_MODE (GET_MODE_CLASS (orig_srcmode));
3406 srcmode != orig_srcmode;
3407 srcmode = GET_MODE_WIDER_MODE (srcmode))
3409 enum insn_code ic;
3410 rtx trunc_y, last_insn;
3412 /* Skip if the target can't extend this way. */
3413 ic = can_extend_p (dstmode, srcmode, 0);
3414 if (ic == CODE_FOR_nothing)
3415 continue;
3417 /* Skip if the narrowed value isn't exact. */
3418 if (! exact_real_truncate (srcmode, &r))
3419 continue;
3421 trunc_y = CONST_DOUBLE_FROM_REAL_VALUE (r, srcmode);
3423 if (targetm.legitimate_constant_p (srcmode, trunc_y))
3425 /* Skip if the target needs extra instructions to perform
3426 the extension. */
3427 if (!insn_operand_matches (ic, 1, trunc_y))
3428 continue;
3429 /* This is valid, but may not be cheaper than the original. */
3430 newcost = rtx_cost (gen_rtx_FLOAT_EXTEND (dstmode, trunc_y), SET, speed);
3431 if (oldcost < newcost)
3432 continue;
3434 else if (float_extend_from_mem[dstmode][srcmode])
3436 trunc_y = force_const_mem (srcmode, trunc_y);
3437 /* This is valid, but may not be cheaper than the original. */
3438 newcost = rtx_cost (gen_rtx_FLOAT_EXTEND (dstmode, trunc_y), SET, speed);
3439 if (oldcost < newcost)
3440 continue;
3441 trunc_y = validize_mem (trunc_y);
3443 else
3444 continue;
3446 /* For CSE's benefit, force the compressed constant pool entry
3447 into a new pseudo. This constant may be used in different modes,
3448 and if not, combine will put things back together for us. */
3449 trunc_y = force_reg (srcmode, trunc_y);
3450 emit_unop_insn (ic, x, trunc_y, UNKNOWN);
3451 last_insn = get_last_insn ();
3453 if (REG_P (x))
3454 set_unique_reg_note (last_insn, REG_EQUAL, y);
3456 return last_insn;
3459 return NULL_RTX;
3462 /* Pushing data onto the stack. */
3464 /* Push a block of length SIZE (perhaps variable)
3465 and return an rtx to address the beginning of the block.
3466 The value may be virtual_outgoing_args_rtx.
3468 EXTRA is the number of bytes of padding to push in addition to SIZE.
3469 BELOW nonzero means this padding comes at low addresses;
3470 otherwise, the padding comes at high addresses. */
3473 push_block (rtx size, int extra, int below)
3475 rtx temp;
3477 size = convert_modes (Pmode, ptr_mode, size, 1);
3478 if (CONSTANT_P (size))
3479 anti_adjust_stack (plus_constant (size, extra));
3480 else if (REG_P (size) && extra == 0)
3481 anti_adjust_stack (size);
3482 else
3484 temp = copy_to_mode_reg (Pmode, size);
3485 if (extra != 0)
3486 temp = expand_binop (Pmode, add_optab, temp, GEN_INT (extra),
3487 temp, 0, OPTAB_LIB_WIDEN);
3488 anti_adjust_stack (temp);
3491 #ifndef STACK_GROWS_DOWNWARD
3492 if (0)
3493 #else
3494 if (1)
3495 #endif
3497 temp = virtual_outgoing_args_rtx;
3498 if (extra != 0 && below)
3499 temp = plus_constant (temp, extra);
3501 else
3503 if (CONST_INT_P (size))
3504 temp = plus_constant (virtual_outgoing_args_rtx,
3505 -INTVAL (size) - (below ? 0 : extra));
3506 else if (extra != 0 && !below)
3507 temp = gen_rtx_PLUS (Pmode, virtual_outgoing_args_rtx,
3508 negate_rtx (Pmode, plus_constant (size, extra)));
3509 else
3510 temp = gen_rtx_PLUS (Pmode, virtual_outgoing_args_rtx,
3511 negate_rtx (Pmode, size));
3514 return memory_address (GET_CLASS_NARROWEST_MODE (MODE_INT), temp);
3517 /* A utility routine that returns the base of an auto-inc memory, or NULL. */
3519 static rtx
3520 mem_autoinc_base (rtx mem)
3522 if (MEM_P (mem))
3524 rtx addr = XEXP (mem, 0);
3525 if (GET_RTX_CLASS (GET_CODE (addr)) == RTX_AUTOINC)
3526 return XEXP (addr, 0);
3528 return NULL;
3531 /* A utility routine used here, in reload, and in try_split. The insns
3532 after PREV up to and including LAST are known to adjust the stack,
3533 with a final value of END_ARGS_SIZE. Iterate backward from LAST
3534 placing notes as appropriate. PREV may be NULL, indicating the
3535 entire insn sequence prior to LAST should be scanned.
3537 The set of allowed stack pointer modifications is small:
3538 (1) One or more auto-inc style memory references (aka pushes),
3539 (2) One or more addition/subtraction with the SP as destination,
3540 (3) A single move insn with the SP as destination,
3541 (4) A call_pop insn.
3543 Insns in the sequence that do not modify the SP are ignored.
3545 The return value is the amount of adjustment that can be trivially
3546 verified, via immediate operand or auto-inc. If the adjustment
3547 cannot be trivially extracted, the return value is INT_MIN. */
3550 fixup_args_size_notes (rtx prev, rtx last, int end_args_size)
3552 int args_size = end_args_size;
3553 bool saw_unknown = false;
3554 rtx insn;
3556 for (insn = last; insn != prev; insn = PREV_INSN (insn))
3558 rtx dest, set, pat;
3559 HOST_WIDE_INT this_delta = 0;
3560 int i;
3562 if (!NONDEBUG_INSN_P (insn))
3563 continue;
3564 pat = PATTERN (insn);
3565 set = NULL;
3567 /* Look for a call_pop pattern. */
3568 if (CALL_P (insn))
3570 /* We're not supposed to see non-pop call patterns here. */
3571 gcc_assert (GET_CODE (pat) == PARALLEL);
3573 /* All call_pop have a stack pointer adjust in the parallel.
3574 The call itself is always first, and the stack adjust is
3575 usually last, so search from the end. */
3576 for (i = XVECLEN (pat, 0) - 1; i > 0; --i)
3578 set = XVECEXP (pat, 0, i);
3579 if (GET_CODE (set) != SET)
3580 continue;
3581 dest = SET_DEST (set);
3582 if (dest == stack_pointer_rtx)
3583 break;
3585 /* We'd better have found the stack pointer adjust. */
3586 gcc_assert (i > 0);
3587 /* Fall through to process the extracted SET and DEST
3588 as if it was a standalone insn. */
3590 else if (GET_CODE (pat) == SET)
3591 set = pat;
3592 else if ((set = single_set (insn)) != NULL)
3594 else if (GET_CODE (pat) == PARALLEL)
3596 /* ??? Some older ports use a parallel with a stack adjust
3597 and a store for a PUSH_ROUNDING pattern, rather than a
3598 PRE/POST_MODIFY rtx. Don't force them to update yet... */
3599 /* ??? See h8300 and m68k, pushqi1. */
3600 for (i = XVECLEN (pat, 0) - 1; i >= 0; --i)
3602 set = XVECEXP (pat, 0, i);
3603 if (GET_CODE (set) != SET)
3604 continue;
3605 dest = SET_DEST (set);
3606 if (dest == stack_pointer_rtx)
3607 break;
3609 /* We do not expect an auto-inc of the sp in the parallel. */
3610 gcc_checking_assert (mem_autoinc_base (dest)
3611 != stack_pointer_rtx);
3612 gcc_checking_assert (mem_autoinc_base (SET_SRC (set))
3613 != stack_pointer_rtx);
3615 if (i < 0)
3616 continue;
3618 else
3619 continue;
3620 dest = SET_DEST (set);
3622 /* Look for direct modifications of the stack pointer. */
3623 if (dest == stack_pointer_rtx)
3625 gcc_assert (!saw_unknown);
3626 /* Look for a trivial adjustment, otherwise assume nothing. */
3627 if (GET_CODE (SET_SRC (set)) == PLUS
3628 && XEXP (SET_SRC (set), 0) == stack_pointer_rtx
3629 && CONST_INT_P (XEXP (SET_SRC (set), 1)))
3630 this_delta = INTVAL (XEXP (SET_SRC (set), 1));
3631 else
3632 saw_unknown = true;
3634 /* Otherwise only think about autoinc patterns. */
3635 else if (mem_autoinc_base (dest) == stack_pointer_rtx)
3637 rtx addr = XEXP (dest, 0);
3638 gcc_assert (!saw_unknown);
3639 switch (GET_CODE (addr))
3641 case PRE_INC:
3642 case POST_INC:
3643 this_delta = GET_MODE_SIZE (GET_MODE (dest));
3644 break;
3645 case PRE_DEC:
3646 case POST_DEC:
3647 this_delta = -GET_MODE_SIZE (GET_MODE (dest));
3648 break;
3649 case PRE_MODIFY:
3650 case POST_MODIFY:
3651 addr = XEXP (addr, 1);
3652 gcc_assert (GET_CODE (addr) == PLUS);
3653 gcc_assert (XEXP (addr, 0) == stack_pointer_rtx);
3654 gcc_assert (CONST_INT_P (XEXP (addr, 1)));
3655 this_delta = INTVAL (XEXP (addr, 1));
3656 break;
3657 default:
3658 gcc_unreachable ();
3661 else
3662 continue;
3664 add_reg_note (insn, REG_ARGS_SIZE, GEN_INT (args_size));
3665 #ifdef STACK_GROWS_DOWNWARD
3666 this_delta = -this_delta;
3667 #endif
3668 args_size -= this_delta;
3671 return saw_unknown ? INT_MIN : args_size;
3674 #ifdef PUSH_ROUNDING
3675 /* Emit single push insn. */
3677 static void
3678 emit_single_push_insn_1 (enum machine_mode mode, rtx x, tree type)
3680 rtx dest_addr;
3681 unsigned rounded_size = PUSH_ROUNDING (GET_MODE_SIZE (mode));
3682 rtx dest;
3683 enum insn_code icode;
3685 stack_pointer_delta += PUSH_ROUNDING (GET_MODE_SIZE (mode));
3686 /* If there is push pattern, use it. Otherwise try old way of throwing
3687 MEM representing push operation to move expander. */
3688 icode = optab_handler (push_optab, mode);
3689 if (icode != CODE_FOR_nothing)
3691 struct expand_operand ops[1];
3693 create_input_operand (&ops[0], x, mode);
3694 if (maybe_expand_insn (icode, 1, ops))
3695 return;
3697 if (GET_MODE_SIZE (mode) == rounded_size)
3698 dest_addr = gen_rtx_fmt_e (STACK_PUSH_CODE, Pmode, stack_pointer_rtx);
3699 /* If we are to pad downward, adjust the stack pointer first and
3700 then store X into the stack location using an offset. This is
3701 because emit_move_insn does not know how to pad; it does not have
3702 access to type. */
3703 else if (FUNCTION_ARG_PADDING (mode, type) == downward)
3705 unsigned padding_size = rounded_size - GET_MODE_SIZE (mode);
3706 HOST_WIDE_INT offset;
3708 emit_move_insn (stack_pointer_rtx,
3709 expand_binop (Pmode,
3710 #ifdef STACK_GROWS_DOWNWARD
3711 sub_optab,
3712 #else
3713 add_optab,
3714 #endif
3715 stack_pointer_rtx,
3716 GEN_INT (rounded_size),
3717 NULL_RTX, 0, OPTAB_LIB_WIDEN));
3719 offset = (HOST_WIDE_INT) padding_size;
3720 #ifdef STACK_GROWS_DOWNWARD
3721 if (STACK_PUSH_CODE == POST_DEC)
3722 /* We have already decremented the stack pointer, so get the
3723 previous value. */
3724 offset += (HOST_WIDE_INT) rounded_size;
3725 #else
3726 if (STACK_PUSH_CODE == POST_INC)
3727 /* We have already incremented the stack pointer, so get the
3728 previous value. */
3729 offset -= (HOST_WIDE_INT) rounded_size;
3730 #endif
3731 dest_addr = gen_rtx_PLUS (Pmode, stack_pointer_rtx, GEN_INT (offset));
3733 else
3735 #ifdef STACK_GROWS_DOWNWARD
3736 /* ??? This seems wrong if STACK_PUSH_CODE == POST_DEC. */
3737 dest_addr = gen_rtx_PLUS (Pmode, stack_pointer_rtx,
3738 GEN_INT (-(HOST_WIDE_INT) rounded_size));
3739 #else
3740 /* ??? This seems wrong if STACK_PUSH_CODE == POST_INC. */
3741 dest_addr = gen_rtx_PLUS (Pmode, stack_pointer_rtx,
3742 GEN_INT (rounded_size));
3743 #endif
3744 dest_addr = gen_rtx_PRE_MODIFY (Pmode, stack_pointer_rtx, dest_addr);
3747 dest = gen_rtx_MEM (mode, dest_addr);
3749 if (type != 0)
3751 set_mem_attributes (dest, type, 1);
3753 if (flag_optimize_sibling_calls)
3754 /* Function incoming arguments may overlap with sibling call
3755 outgoing arguments and we cannot allow reordering of reads
3756 from function arguments with stores to outgoing arguments
3757 of sibling calls. */
3758 set_mem_alias_set (dest, 0);
3760 emit_move_insn (dest, x);
3763 /* Emit and annotate a single push insn. */
3765 static void
3766 emit_single_push_insn (enum machine_mode mode, rtx x, tree type)
3768 int delta, old_delta = stack_pointer_delta;
3769 rtx prev = get_last_insn ();
3770 rtx last;
3772 emit_single_push_insn_1 (mode, x, type);
3774 last = get_last_insn ();
3776 /* Notice the common case where we emitted exactly one insn. */
3777 if (PREV_INSN (last) == prev)
3779 add_reg_note (last, REG_ARGS_SIZE, GEN_INT (stack_pointer_delta));
3780 return;
3783 delta = fixup_args_size_notes (prev, last, stack_pointer_delta);
3784 gcc_assert (delta == INT_MIN || delta == old_delta);
3786 #endif
3788 /* Generate code to push X onto the stack, assuming it has mode MODE and
3789 type TYPE.
3790 MODE is redundant except when X is a CONST_INT (since they don't
3791 carry mode info).
3792 SIZE is an rtx for the size of data to be copied (in bytes),
3793 needed only if X is BLKmode.
3795 ALIGN (in bits) is maximum alignment we can assume.
3797 If PARTIAL and REG are both nonzero, then copy that many of the first
3798 bytes of X into registers starting with REG, and push the rest of X.
3799 The amount of space pushed is decreased by PARTIAL bytes.
3800 REG must be a hard register in this case.
3801 If REG is zero but PARTIAL is not, take any all others actions for an
3802 argument partially in registers, but do not actually load any
3803 registers.
3805 EXTRA is the amount in bytes of extra space to leave next to this arg.
3806 This is ignored if an argument block has already been allocated.
3808 On a machine that lacks real push insns, ARGS_ADDR is the address of
3809 the bottom of the argument block for this call. We use indexing off there
3810 to store the arg. On machines with push insns, ARGS_ADDR is 0 when a
3811 argument block has not been preallocated.
3813 ARGS_SO_FAR is the size of args previously pushed for this call.
3815 REG_PARM_STACK_SPACE is nonzero if functions require stack space
3816 for arguments passed in registers. If nonzero, it will be the number
3817 of bytes required. */
3819 void
3820 emit_push_insn (rtx x, enum machine_mode mode, tree type, rtx size,
3821 unsigned int align, int partial, rtx reg, int extra,
3822 rtx args_addr, rtx args_so_far, int reg_parm_stack_space,
3823 rtx alignment_pad)
3825 rtx xinner;
3826 enum direction stack_direction
3827 #ifdef STACK_GROWS_DOWNWARD
3828 = downward;
3829 #else
3830 = upward;
3831 #endif
3833 /* Decide where to pad the argument: `downward' for below,
3834 `upward' for above, or `none' for don't pad it.
3835 Default is below for small data on big-endian machines; else above. */
3836 enum direction where_pad = FUNCTION_ARG_PADDING (mode, type);
3838 /* Invert direction if stack is post-decrement.
3839 FIXME: why? */
3840 if (STACK_PUSH_CODE == POST_DEC)
3841 if (where_pad != none)
3842 where_pad = (where_pad == downward ? upward : downward);
3844 xinner = x;
3846 if (mode == BLKmode
3847 || (STRICT_ALIGNMENT && align < GET_MODE_ALIGNMENT (mode)))
3849 /* Copy a block into the stack, entirely or partially. */
3851 rtx temp;
3852 int used;
3853 int offset;
3854 int skip;
3856 offset = partial % (PARM_BOUNDARY / BITS_PER_UNIT);
3857 used = partial - offset;
3859 if (mode != BLKmode)
3861 /* A value is to be stored in an insufficiently aligned
3862 stack slot; copy via a suitably aligned slot if
3863 necessary. */
3864 size = GEN_INT (GET_MODE_SIZE (mode));
3865 if (!MEM_P (xinner))
3867 temp = assign_temp (type, 0, 1, 1);
3868 emit_move_insn (temp, xinner);
3869 xinner = temp;
3873 gcc_assert (size);
3875 /* USED is now the # of bytes we need not copy to the stack
3876 because registers will take care of them. */
3878 if (partial != 0)
3879 xinner = adjust_address (xinner, BLKmode, used);
3881 /* If the partial register-part of the arg counts in its stack size,
3882 skip the part of stack space corresponding to the registers.
3883 Otherwise, start copying to the beginning of the stack space,
3884 by setting SKIP to 0. */
3885 skip = (reg_parm_stack_space == 0) ? 0 : used;
3887 #ifdef PUSH_ROUNDING
3888 /* Do it with several push insns if that doesn't take lots of insns
3889 and if there is no difficulty with push insns that skip bytes
3890 on the stack for alignment purposes. */
3891 if (args_addr == 0
3892 && PUSH_ARGS
3893 && CONST_INT_P (size)
3894 && skip == 0
3895 && MEM_ALIGN (xinner) >= align
3896 && (MOVE_BY_PIECES_P ((unsigned) INTVAL (size) - used, align))
3897 /* Here we avoid the case of a structure whose weak alignment
3898 forces many pushes of a small amount of data,
3899 and such small pushes do rounding that causes trouble. */
3900 && ((! SLOW_UNALIGNED_ACCESS (word_mode, align))
3901 || align >= BIGGEST_ALIGNMENT
3902 || (PUSH_ROUNDING (align / BITS_PER_UNIT)
3903 == (align / BITS_PER_UNIT)))
3904 && (HOST_WIDE_INT) PUSH_ROUNDING (INTVAL (size)) == INTVAL (size))
3906 /* Push padding now if padding above and stack grows down,
3907 or if padding below and stack grows up.
3908 But if space already allocated, this has already been done. */
3909 if (extra && args_addr == 0
3910 && where_pad != none && where_pad != stack_direction)
3911 anti_adjust_stack (GEN_INT (extra));
3913 move_by_pieces (NULL, xinner, INTVAL (size) - used, align, 0);
3915 else
3916 #endif /* PUSH_ROUNDING */
3918 rtx target;
3920 /* Otherwise make space on the stack and copy the data
3921 to the address of that space. */
3923 /* Deduct words put into registers from the size we must copy. */
3924 if (partial != 0)
3926 if (CONST_INT_P (size))
3927 size = GEN_INT (INTVAL (size) - used);
3928 else
3929 size = expand_binop (GET_MODE (size), sub_optab, size,
3930 GEN_INT (used), NULL_RTX, 0,
3931 OPTAB_LIB_WIDEN);
3934 /* Get the address of the stack space.
3935 In this case, we do not deal with EXTRA separately.
3936 A single stack adjust will do. */
3937 if (! args_addr)
3939 temp = push_block (size, extra, where_pad == downward);
3940 extra = 0;
3942 else if (CONST_INT_P (args_so_far))
3943 temp = memory_address (BLKmode,
3944 plus_constant (args_addr,
3945 skip + INTVAL (args_so_far)));
3946 else
3947 temp = memory_address (BLKmode,
3948 plus_constant (gen_rtx_PLUS (Pmode,
3949 args_addr,
3950 args_so_far),
3951 skip));
3953 if (!ACCUMULATE_OUTGOING_ARGS)
3955 /* If the source is referenced relative to the stack pointer,
3956 copy it to another register to stabilize it. We do not need
3957 to do this if we know that we won't be changing sp. */
3959 if (reg_mentioned_p (virtual_stack_dynamic_rtx, temp)
3960 || reg_mentioned_p (virtual_outgoing_args_rtx, temp))
3961 temp = copy_to_reg (temp);
3964 target = gen_rtx_MEM (BLKmode, temp);
3966 /* We do *not* set_mem_attributes here, because incoming arguments
3967 may overlap with sibling call outgoing arguments and we cannot
3968 allow reordering of reads from function arguments with stores
3969 to outgoing arguments of sibling calls. We do, however, want
3970 to record the alignment of the stack slot. */
3971 /* ALIGN may well be better aligned than TYPE, e.g. due to
3972 PARM_BOUNDARY. Assume the caller isn't lying. */
3973 set_mem_align (target, align);
3975 emit_block_move (target, xinner, size, BLOCK_OP_CALL_PARM);
3978 else if (partial > 0)
3980 /* Scalar partly in registers. */
3982 int size = GET_MODE_SIZE (mode) / UNITS_PER_WORD;
3983 int i;
3984 int not_stack;
3985 /* # bytes of start of argument
3986 that we must make space for but need not store. */
3987 int offset = partial % (PARM_BOUNDARY / BITS_PER_UNIT);
3988 int args_offset = INTVAL (args_so_far);
3989 int skip;
3991 /* Push padding now if padding above and stack grows down,
3992 or if padding below and stack grows up.
3993 But if space already allocated, this has already been done. */
3994 if (extra && args_addr == 0
3995 && where_pad != none && where_pad != stack_direction)
3996 anti_adjust_stack (GEN_INT (extra));
3998 /* If we make space by pushing it, we might as well push
3999 the real data. Otherwise, we can leave OFFSET nonzero
4000 and leave the space uninitialized. */
4001 if (args_addr == 0)
4002 offset = 0;
4004 /* Now NOT_STACK gets the number of words that we don't need to
4005 allocate on the stack. Convert OFFSET to words too. */
4006 not_stack = (partial - offset) / UNITS_PER_WORD;
4007 offset /= UNITS_PER_WORD;
4009 /* If the partial register-part of the arg counts in its stack size,
4010 skip the part of stack space corresponding to the registers.
4011 Otherwise, start copying to the beginning of the stack space,
4012 by setting SKIP to 0. */
4013 skip = (reg_parm_stack_space == 0) ? 0 : not_stack;
4015 if (CONSTANT_P (x) && !targetm.legitimate_constant_p (mode, x))
4016 x = validize_mem (force_const_mem (mode, x));
4018 /* If X is a hard register in a non-integer mode, copy it into a pseudo;
4019 SUBREGs of such registers are not allowed. */
4020 if ((REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER
4021 && GET_MODE_CLASS (GET_MODE (x)) != MODE_INT))
4022 x = copy_to_reg (x);
4024 /* Loop over all the words allocated on the stack for this arg. */
4025 /* We can do it by words, because any scalar bigger than a word
4026 has a size a multiple of a word. */
4027 #ifndef PUSH_ARGS_REVERSED
4028 for (i = not_stack; i < size; i++)
4029 #else
4030 for (i = size - 1; i >= not_stack; i--)
4031 #endif
4032 if (i >= not_stack + offset)
4033 emit_push_insn (operand_subword_force (x, i, mode),
4034 word_mode, NULL_TREE, NULL_RTX, align, 0, NULL_RTX,
4035 0, args_addr,
4036 GEN_INT (args_offset + ((i - not_stack + skip)
4037 * UNITS_PER_WORD)),
4038 reg_parm_stack_space, alignment_pad);
4040 else
4042 rtx addr;
4043 rtx dest;
4045 /* Push padding now if padding above and stack grows down,
4046 or if padding below and stack grows up.
4047 But if space already allocated, this has already been done. */
4048 if (extra && args_addr == 0
4049 && where_pad != none && where_pad != stack_direction)
4050 anti_adjust_stack (GEN_INT (extra));
4052 #ifdef PUSH_ROUNDING
4053 if (args_addr == 0 && PUSH_ARGS)
4054 emit_single_push_insn (mode, x, type);
4055 else
4056 #endif
4058 if (CONST_INT_P (args_so_far))
4059 addr
4060 = memory_address (mode,
4061 plus_constant (args_addr,
4062 INTVAL (args_so_far)));
4063 else
4064 addr = memory_address (mode, gen_rtx_PLUS (Pmode, args_addr,
4065 args_so_far));
4066 dest = gen_rtx_MEM (mode, addr);
4068 /* We do *not* set_mem_attributes here, because incoming arguments
4069 may overlap with sibling call outgoing arguments and we cannot
4070 allow reordering of reads from function arguments with stores
4071 to outgoing arguments of sibling calls. We do, however, want
4072 to record the alignment of the stack slot. */
4073 /* ALIGN may well be better aligned than TYPE, e.g. due to
4074 PARM_BOUNDARY. Assume the caller isn't lying. */
4075 set_mem_align (dest, align);
4077 emit_move_insn (dest, x);
4081 /* If part should go in registers, copy that part
4082 into the appropriate registers. Do this now, at the end,
4083 since mem-to-mem copies above may do function calls. */
4084 if (partial > 0 && reg != 0)
4086 /* Handle calls that pass values in multiple non-contiguous locations.
4087 The Irix 6 ABI has examples of this. */
4088 if (GET_CODE (reg) == PARALLEL)
4089 emit_group_load (reg, x, type, -1);
4090 else
4092 gcc_assert (partial % UNITS_PER_WORD == 0);
4093 move_block_to_reg (REGNO (reg), x, partial / UNITS_PER_WORD, mode);
4097 if (extra && args_addr == 0 && where_pad == stack_direction)
4098 anti_adjust_stack (GEN_INT (extra));
4100 if (alignment_pad && args_addr == 0)
4101 anti_adjust_stack (alignment_pad);
4104 /* Return X if X can be used as a subtarget in a sequence of arithmetic
4105 operations. */
4107 static rtx
4108 get_subtarget (rtx x)
4110 return (optimize
4111 || x == 0
4112 /* Only registers can be subtargets. */
4113 || !REG_P (x)
4114 /* Don't use hard regs to avoid extending their life. */
4115 || REGNO (x) < FIRST_PSEUDO_REGISTER
4116 ? 0 : x);
4119 /* A subroutine of expand_assignment. Optimize FIELD op= VAL, where
4120 FIELD is a bitfield. Returns true if the optimization was successful,
4121 and there's nothing else to do. */
4123 static bool
4124 optimize_bitfield_assignment_op (unsigned HOST_WIDE_INT bitsize,
4125 unsigned HOST_WIDE_INT bitpos,
4126 unsigned HOST_WIDE_INT bitregion_start,
4127 unsigned HOST_WIDE_INT bitregion_end,
4128 enum machine_mode mode1, rtx str_rtx,
4129 tree to, tree src)
4131 enum machine_mode str_mode = GET_MODE (str_rtx);
4132 unsigned int str_bitsize = GET_MODE_BITSIZE (str_mode);
4133 tree op0, op1;
4134 rtx value, result;
4135 optab binop;
4136 gimple srcstmt;
4137 enum tree_code code;
4139 if (mode1 != VOIDmode
4140 || bitsize >= BITS_PER_WORD
4141 || str_bitsize > BITS_PER_WORD
4142 || TREE_SIDE_EFFECTS (to)
4143 || TREE_THIS_VOLATILE (to))
4144 return false;
4146 STRIP_NOPS (src);
4147 if (TREE_CODE (src) != SSA_NAME)
4148 return false;
4149 if (TREE_CODE (TREE_TYPE (src)) != INTEGER_TYPE)
4150 return false;
4152 srcstmt = get_gimple_for_ssa_name (src);
4153 if (!srcstmt
4154 || TREE_CODE_CLASS (gimple_assign_rhs_code (srcstmt)) != tcc_binary)
4155 return false;
4157 code = gimple_assign_rhs_code (srcstmt);
4159 op0 = gimple_assign_rhs1 (srcstmt);
4161 /* If OP0 is an SSA_NAME, then we want to walk the use-def chain
4162 to find its initialization. Hopefully the initialization will
4163 be from a bitfield load. */
4164 if (TREE_CODE (op0) == SSA_NAME)
4166 gimple op0stmt = get_gimple_for_ssa_name (op0);
4168 /* We want to eventually have OP0 be the same as TO, which
4169 should be a bitfield. */
4170 if (!op0stmt
4171 || !is_gimple_assign (op0stmt)
4172 || gimple_assign_rhs_code (op0stmt) != TREE_CODE (to))
4173 return false;
4174 op0 = gimple_assign_rhs1 (op0stmt);
4177 op1 = gimple_assign_rhs2 (srcstmt);
4179 if (!operand_equal_p (to, op0, 0))
4180 return false;
4182 if (MEM_P (str_rtx))
4184 unsigned HOST_WIDE_INT offset1;
4186 if (str_bitsize == 0 || str_bitsize > BITS_PER_WORD)
4187 str_mode = word_mode;
4188 str_mode = get_best_mode (bitsize, bitpos,
4189 bitregion_start, bitregion_end,
4190 MEM_ALIGN (str_rtx), str_mode, 0);
4191 if (str_mode == VOIDmode)
4192 return false;
4193 str_bitsize = GET_MODE_BITSIZE (str_mode);
4195 offset1 = bitpos;
4196 bitpos %= str_bitsize;
4197 offset1 = (offset1 - bitpos) / BITS_PER_UNIT;
4198 str_rtx = adjust_address (str_rtx, str_mode, offset1);
4200 else if (!REG_P (str_rtx) && GET_CODE (str_rtx) != SUBREG)
4201 return false;
4203 /* If the bit field covers the whole REG/MEM, store_field
4204 will likely generate better code. */
4205 if (bitsize >= str_bitsize)
4206 return false;
4208 /* We can't handle fields split across multiple entities. */
4209 if (bitpos + bitsize > str_bitsize)
4210 return false;
4212 if (BYTES_BIG_ENDIAN)
4213 bitpos = str_bitsize - bitpos - bitsize;
4215 switch (code)
4217 case PLUS_EXPR:
4218 case MINUS_EXPR:
4219 /* For now, just optimize the case of the topmost bitfield
4220 where we don't need to do any masking and also
4221 1 bit bitfields where xor can be used.
4222 We might win by one instruction for the other bitfields
4223 too if insv/extv instructions aren't used, so that
4224 can be added later. */
4225 if (bitpos + bitsize != str_bitsize
4226 && (bitsize != 1 || TREE_CODE (op1) != INTEGER_CST))
4227 break;
4229 value = expand_expr (op1, NULL_RTX, str_mode, EXPAND_NORMAL);
4230 value = convert_modes (str_mode,
4231 TYPE_MODE (TREE_TYPE (op1)), value,
4232 TYPE_UNSIGNED (TREE_TYPE (op1)));
4234 /* We may be accessing data outside the field, which means
4235 we can alias adjacent data. */
4236 if (MEM_P (str_rtx))
4238 str_rtx = shallow_copy_rtx (str_rtx);
4239 set_mem_alias_set (str_rtx, 0);
4240 set_mem_expr (str_rtx, 0);
4243 binop = code == PLUS_EXPR ? add_optab : sub_optab;
4244 if (bitsize == 1 && bitpos + bitsize != str_bitsize)
4246 value = expand_and (str_mode, value, const1_rtx, NULL);
4247 binop = xor_optab;
4249 value = expand_shift (LSHIFT_EXPR, str_mode, value,
4250 bitpos, NULL_RTX, 1);
4251 result = expand_binop (str_mode, binop, str_rtx,
4252 value, str_rtx, 1, OPTAB_WIDEN);
4253 if (result != str_rtx)
4254 emit_move_insn (str_rtx, result);
4255 return true;
4257 case BIT_IOR_EXPR:
4258 case BIT_XOR_EXPR:
4259 if (TREE_CODE (op1) != INTEGER_CST)
4260 break;
4261 value = expand_expr (op1, NULL_RTX, GET_MODE (str_rtx), EXPAND_NORMAL);
4262 value = convert_modes (GET_MODE (str_rtx),
4263 TYPE_MODE (TREE_TYPE (op1)), value,
4264 TYPE_UNSIGNED (TREE_TYPE (op1)));
4266 /* We may be accessing data outside the field, which means
4267 we can alias adjacent data. */
4268 if (MEM_P (str_rtx))
4270 str_rtx = shallow_copy_rtx (str_rtx);
4271 set_mem_alias_set (str_rtx, 0);
4272 set_mem_expr (str_rtx, 0);
4275 binop = code == BIT_IOR_EXPR ? ior_optab : xor_optab;
4276 if (bitpos + bitsize != GET_MODE_BITSIZE (GET_MODE (str_rtx)))
4278 rtx mask = GEN_INT (((unsigned HOST_WIDE_INT) 1 << bitsize)
4279 - 1);
4280 value = expand_and (GET_MODE (str_rtx), value, mask,
4281 NULL_RTX);
4283 value = expand_shift (LSHIFT_EXPR, GET_MODE (str_rtx), value,
4284 bitpos, NULL_RTX, 1);
4285 result = expand_binop (GET_MODE (str_rtx), binop, str_rtx,
4286 value, str_rtx, 1, OPTAB_WIDEN);
4287 if (result != str_rtx)
4288 emit_move_insn (str_rtx, result);
4289 return true;
4291 default:
4292 break;
4295 return false;
4298 /* In the C++ memory model, consecutive bit fields in a structure are
4299 considered one memory location.
4301 Given a COMPONENT_REF, this function returns the bit range of
4302 consecutive bits in which this COMPONENT_REF belongs in. The
4303 values are returned in *BITSTART and *BITEND. If either the C++
4304 memory model is not activated, or this memory access is not thread
4305 visible, 0 is returned in *BITSTART and *BITEND.
4307 EXP is the COMPONENT_REF.
4308 INNERDECL is the actual object being referenced.
4309 BITPOS is the position in bits where the bit starts within the structure.
4310 BITSIZE is size in bits of the field being referenced in EXP.
4312 For example, while storing into FOO.A here...
4314 struct {
4315 BIT 0:
4316 unsigned int a : 4;
4317 unsigned int b : 1;
4318 BIT 8:
4319 unsigned char c;
4320 unsigned int d : 6;
4321 } foo;
4323 ...we are not allowed to store past <b>, so for the layout above, a
4324 range of 0..7 (because no one cares if we store into the
4325 padding). */
4327 static void
4328 get_bit_range (unsigned HOST_WIDE_INT *bitstart,
4329 unsigned HOST_WIDE_INT *bitend,
4330 tree exp, tree innerdecl,
4331 HOST_WIDE_INT bitpos, HOST_WIDE_INT bitsize)
4333 tree field, record_type, fld;
4334 bool found_field = false;
4335 bool prev_field_is_bitfield;
4337 gcc_assert (TREE_CODE (exp) == COMPONENT_REF);
4339 /* If other threads can't see this value, no need to restrict stores. */
4340 if (ALLOW_STORE_DATA_RACES
4341 || ((TREE_CODE (innerdecl) == MEM_REF
4342 || TREE_CODE (innerdecl) == TARGET_MEM_REF)
4343 && !ptr_deref_may_alias_global_p (TREE_OPERAND (innerdecl, 0)))
4344 || (DECL_P (innerdecl)
4345 && (DECL_THREAD_LOCAL_P (innerdecl)
4346 || !TREE_STATIC (innerdecl))))
4348 *bitstart = *bitend = 0;
4349 return;
4352 /* Bit field we're storing into. */
4353 field = TREE_OPERAND (exp, 1);
4354 record_type = DECL_FIELD_CONTEXT (field);
4356 /* Count the contiguous bitfields for the memory location that
4357 contains FIELD. */
4358 *bitstart = 0;
4359 prev_field_is_bitfield = true;
4360 for (fld = TYPE_FIELDS (record_type); fld; fld = DECL_CHAIN (fld))
4362 tree t, offset;
4363 enum machine_mode mode;
4364 int unsignedp, volatilep;
4366 if (TREE_CODE (fld) != FIELD_DECL)
4367 continue;
4369 t = build3 (COMPONENT_REF, TREE_TYPE (exp),
4370 unshare_expr (TREE_OPERAND (exp, 0)),
4371 fld, NULL_TREE);
4372 get_inner_reference (t, &bitsize, &bitpos, &offset,
4373 &mode, &unsignedp, &volatilep, true);
4375 if (field == fld)
4376 found_field = true;
4378 if (DECL_BIT_FIELD_TYPE (fld) && bitsize > 0)
4380 if (prev_field_is_bitfield == false)
4382 *bitstart = bitpos;
4383 prev_field_is_bitfield = true;
4386 else
4388 prev_field_is_bitfield = false;
4389 if (found_field)
4390 break;
4393 gcc_assert (found_field);
4395 if (fld)
4397 /* We found the end of the bit field sequence. Include the
4398 padding up to the next field and be done. */
4399 *bitend = bitpos - 1;
4401 else
4403 /* If this is the last element in the structure, include the padding
4404 at the end of structure. */
4405 *bitend = TREE_INT_CST_LOW (TYPE_SIZE (record_type)) - 1;
4409 /* Expand an assignment that stores the value of FROM into TO. If NONTEMPORAL
4410 is true, try generating a nontemporal store. */
4412 void
4413 expand_assignment (tree to, tree from, bool nontemporal)
4415 rtx to_rtx = 0;
4416 rtx result;
4417 enum machine_mode mode;
4418 int align;
4419 enum insn_code icode;
4421 /* Don't crash if the lhs of the assignment was erroneous. */
4422 if (TREE_CODE (to) == ERROR_MARK)
4424 expand_normal (from);
4425 return;
4428 /* Optimize away no-op moves without side-effects. */
4429 if (operand_equal_p (to, from, 0))
4430 return;
4432 mode = TYPE_MODE (TREE_TYPE (to));
4433 if ((TREE_CODE (to) == MEM_REF
4434 || TREE_CODE (to) == TARGET_MEM_REF)
4435 && mode != BLKmode
4436 && ((align = MAX (TYPE_ALIGN (TREE_TYPE (to)),
4437 get_object_alignment (to, BIGGEST_ALIGNMENT)))
4438 < (signed) GET_MODE_ALIGNMENT (mode))
4439 && ((icode = optab_handler (movmisalign_optab, mode))
4440 != CODE_FOR_nothing))
4442 struct expand_operand ops[2];
4443 enum machine_mode address_mode;
4444 rtx reg, op0, mem;
4446 reg = expand_expr (from, NULL_RTX, VOIDmode, EXPAND_NORMAL);
4447 reg = force_not_mem (reg);
4449 if (TREE_CODE (to) == MEM_REF)
4451 addr_space_t as
4452 = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (to, 1))));
4453 tree base = TREE_OPERAND (to, 0);
4454 address_mode = targetm.addr_space.address_mode (as);
4455 op0 = expand_expr (base, NULL_RTX, VOIDmode, EXPAND_NORMAL);
4456 op0 = convert_memory_address_addr_space (address_mode, op0, as);
4457 if (!integer_zerop (TREE_OPERAND (to, 1)))
4459 rtx off
4460 = immed_double_int_const (mem_ref_offset (to), address_mode);
4461 op0 = simplify_gen_binary (PLUS, address_mode, op0, off);
4463 op0 = memory_address_addr_space (mode, op0, as);
4464 mem = gen_rtx_MEM (mode, op0);
4465 set_mem_attributes (mem, to, 0);
4466 set_mem_addr_space (mem, as);
4468 else if (TREE_CODE (to) == TARGET_MEM_REF)
4470 addr_space_t as = TYPE_ADDR_SPACE (TREE_TYPE (to));
4471 struct mem_address addr;
4473 get_address_description (to, &addr);
4474 op0 = addr_for_mem_ref (&addr, as, true);
4475 op0 = memory_address_addr_space (mode, op0, as);
4476 mem = gen_rtx_MEM (mode, op0);
4477 set_mem_attributes (mem, to, 0);
4478 set_mem_addr_space (mem, as);
4480 else
4481 gcc_unreachable ();
4482 if (TREE_THIS_VOLATILE (to))
4483 MEM_VOLATILE_P (mem) = 1;
4485 create_fixed_operand (&ops[0], mem);
4486 create_input_operand (&ops[1], reg, mode);
4487 /* The movmisalign<mode> pattern cannot fail, else the assignment would
4488 silently be omitted. */
4489 expand_insn (icode, 2, ops);
4490 return;
4493 /* Assignment of a structure component needs special treatment
4494 if the structure component's rtx is not simply a MEM.
4495 Assignment of an array element at a constant index, and assignment of
4496 an array element in an unaligned packed structure field, has the same
4497 problem. */
4498 if (handled_component_p (to)
4499 /* ??? We only need to handle MEM_REF here if the access is not
4500 a full access of the base object. */
4501 || (TREE_CODE (to) == MEM_REF
4502 && TREE_CODE (TREE_OPERAND (to, 0)) == ADDR_EXPR)
4503 || TREE_CODE (TREE_TYPE (to)) == ARRAY_TYPE)
4505 enum machine_mode mode1;
4506 HOST_WIDE_INT bitsize, bitpos;
4507 unsigned HOST_WIDE_INT bitregion_start = 0;
4508 unsigned HOST_WIDE_INT bitregion_end = 0;
4509 tree offset;
4510 int unsignedp;
4511 int volatilep = 0;
4512 tree tem;
4514 push_temp_slots ();
4515 tem = get_inner_reference (to, &bitsize, &bitpos, &offset, &mode1,
4516 &unsignedp, &volatilep, true);
4518 if (TREE_CODE (to) == COMPONENT_REF
4519 && DECL_BIT_FIELD_TYPE (TREE_OPERAND (to, 1)))
4520 get_bit_range (&bitregion_start, &bitregion_end,
4521 to, tem, bitpos, bitsize);
4523 /* If we are going to use store_bit_field and extract_bit_field,
4524 make sure to_rtx will be safe for multiple use. */
4526 to_rtx = expand_normal (tem);
4528 /* If the bitfield is volatile, we want to access it in the
4529 field's mode, not the computed mode.
4530 If a MEM has VOIDmode (external with incomplete type),
4531 use BLKmode for it instead. */
4532 if (MEM_P (to_rtx))
4534 if (volatilep && flag_strict_volatile_bitfields > 0)
4535 to_rtx = adjust_address (to_rtx, mode1, 0);
4536 else if (GET_MODE (to_rtx) == VOIDmode)
4537 to_rtx = adjust_address (to_rtx, BLKmode, 0);
4540 if (offset != 0)
4542 enum machine_mode address_mode;
4543 rtx offset_rtx;
4545 if (!MEM_P (to_rtx))
4547 /* We can get constant negative offsets into arrays with broken
4548 user code. Translate this to a trap instead of ICEing. */
4549 gcc_assert (TREE_CODE (offset) == INTEGER_CST);
4550 expand_builtin_trap ();
4551 to_rtx = gen_rtx_MEM (BLKmode, const0_rtx);
4554 offset_rtx = expand_expr (offset, NULL_RTX, VOIDmode, EXPAND_SUM);
4555 address_mode
4556 = targetm.addr_space.address_mode (MEM_ADDR_SPACE (to_rtx));
4557 if (GET_MODE (offset_rtx) != address_mode)
4558 offset_rtx = convert_to_mode (address_mode, offset_rtx, 0);
4560 /* A constant address in TO_RTX can have VOIDmode, we must not try
4561 to call force_reg for that case. Avoid that case. */
4562 if (MEM_P (to_rtx)
4563 && GET_MODE (to_rtx) == BLKmode
4564 && GET_MODE (XEXP (to_rtx, 0)) != VOIDmode
4565 && bitsize > 0
4566 && (bitpos % bitsize) == 0
4567 && (bitsize % GET_MODE_ALIGNMENT (mode1)) == 0
4568 && MEM_ALIGN (to_rtx) == GET_MODE_ALIGNMENT (mode1))
4570 to_rtx = adjust_address (to_rtx, mode1, bitpos / BITS_PER_UNIT);
4571 bitpos = 0;
4574 to_rtx = offset_address (to_rtx, offset_rtx,
4575 highest_pow2_factor_for_target (to,
4576 offset));
4579 /* No action is needed if the target is not a memory and the field
4580 lies completely outside that target. This can occur if the source
4581 code contains an out-of-bounds access to a small array. */
4582 if (!MEM_P (to_rtx)
4583 && GET_MODE (to_rtx) != BLKmode
4584 && (unsigned HOST_WIDE_INT) bitpos
4585 >= GET_MODE_PRECISION (GET_MODE (to_rtx)))
4587 expand_normal (from);
4588 result = NULL;
4590 /* Handle expand_expr of a complex value returning a CONCAT. */
4591 else if (GET_CODE (to_rtx) == CONCAT)
4593 unsigned short mode_bitsize = GET_MODE_BITSIZE (GET_MODE (to_rtx));
4594 if (COMPLEX_MODE_P (TYPE_MODE (TREE_TYPE (from)))
4595 && bitpos == 0
4596 && bitsize == mode_bitsize)
4597 result = store_expr (from, to_rtx, false, nontemporal);
4598 else if (bitsize == mode_bitsize / 2
4599 && (bitpos == 0 || bitpos == mode_bitsize / 2))
4600 result = store_expr (from, XEXP (to_rtx, bitpos != 0), false,
4601 nontemporal);
4602 else if (bitpos + bitsize <= mode_bitsize / 2)
4603 result = store_field (XEXP (to_rtx, 0), bitsize, bitpos,
4604 bitregion_start, bitregion_end,
4605 mode1, from, TREE_TYPE (tem),
4606 get_alias_set (to), nontemporal);
4607 else if (bitpos >= mode_bitsize / 2)
4608 result = store_field (XEXP (to_rtx, 1), bitsize,
4609 bitpos - mode_bitsize / 2,
4610 bitregion_start, bitregion_end,
4611 mode1, from,
4612 TREE_TYPE (tem), get_alias_set (to),
4613 nontemporal);
4614 else if (bitpos == 0 && bitsize == mode_bitsize)
4616 rtx from_rtx;
4617 result = expand_normal (from);
4618 from_rtx = simplify_gen_subreg (GET_MODE (to_rtx), result,
4619 TYPE_MODE (TREE_TYPE (from)), 0);
4620 emit_move_insn (XEXP (to_rtx, 0),
4621 read_complex_part (from_rtx, false));
4622 emit_move_insn (XEXP (to_rtx, 1),
4623 read_complex_part (from_rtx, true));
4625 else
4627 rtx temp = assign_stack_temp (GET_MODE (to_rtx),
4628 GET_MODE_SIZE (GET_MODE (to_rtx)),
4630 write_complex_part (temp, XEXP (to_rtx, 0), false);
4631 write_complex_part (temp, XEXP (to_rtx, 1), true);
4632 result = store_field (temp, bitsize, bitpos,
4633 bitregion_start, bitregion_end,
4634 mode1, from,
4635 TREE_TYPE (tem), get_alias_set (to),
4636 nontemporal);
4637 emit_move_insn (XEXP (to_rtx, 0), read_complex_part (temp, false));
4638 emit_move_insn (XEXP (to_rtx, 1), read_complex_part (temp, true));
4641 else
4643 if (MEM_P (to_rtx))
4645 /* If the field is at offset zero, we could have been given the
4646 DECL_RTX of the parent struct. Don't munge it. */
4647 to_rtx = shallow_copy_rtx (to_rtx);
4649 set_mem_attributes_minus_bitpos (to_rtx, to, 0, bitpos);
4651 /* Deal with volatile and readonly fields. The former is only
4652 done for MEM. Also set MEM_KEEP_ALIAS_SET_P if needed. */
4653 if (volatilep)
4654 MEM_VOLATILE_P (to_rtx) = 1;
4655 if (component_uses_parent_alias_set (to))
4656 MEM_KEEP_ALIAS_SET_P (to_rtx) = 1;
4659 if (optimize_bitfield_assignment_op (bitsize, bitpos,
4660 bitregion_start, bitregion_end,
4661 mode1,
4662 to_rtx, to, from))
4663 result = NULL;
4664 else
4665 result = store_field (to_rtx, bitsize, bitpos,
4666 bitregion_start, bitregion_end,
4667 mode1, from,
4668 TREE_TYPE (tem), get_alias_set (to),
4669 nontemporal);
4672 if (result)
4673 preserve_temp_slots (result);
4674 free_temp_slots ();
4675 pop_temp_slots ();
4676 return;
4679 /* If the rhs is a function call and its value is not an aggregate,
4680 call the function before we start to compute the lhs.
4681 This is needed for correct code for cases such as
4682 val = setjmp (buf) on machines where reference to val
4683 requires loading up part of an address in a separate insn.
4685 Don't do this if TO is a VAR_DECL or PARM_DECL whose DECL_RTL is REG
4686 since it might be a promoted variable where the zero- or sign- extension
4687 needs to be done. Handling this in the normal way is safe because no
4688 computation is done before the call. The same is true for SSA names. */
4689 if (TREE_CODE (from) == CALL_EXPR && ! aggregate_value_p (from, from)
4690 && COMPLETE_TYPE_P (TREE_TYPE (from))
4691 && TREE_CODE (TYPE_SIZE (TREE_TYPE (from))) == INTEGER_CST
4692 && ! (((TREE_CODE (to) == VAR_DECL || TREE_CODE (to) == PARM_DECL)
4693 && REG_P (DECL_RTL (to)))
4694 || TREE_CODE (to) == SSA_NAME))
4696 rtx value;
4698 push_temp_slots ();
4699 value = expand_normal (from);
4700 if (to_rtx == 0)
4701 to_rtx = expand_expr (to, NULL_RTX, VOIDmode, EXPAND_WRITE);
4703 /* Handle calls that return values in multiple non-contiguous locations.
4704 The Irix 6 ABI has examples of this. */
4705 if (GET_CODE (to_rtx) == PARALLEL)
4706 emit_group_load (to_rtx, value, TREE_TYPE (from),
4707 int_size_in_bytes (TREE_TYPE (from)));
4708 else if (GET_MODE (to_rtx) == BLKmode)
4709 emit_block_move (to_rtx, value, expr_size (from), BLOCK_OP_NORMAL);
4710 else
4712 if (POINTER_TYPE_P (TREE_TYPE (to)))
4713 value = convert_memory_address_addr_space
4714 (GET_MODE (to_rtx), value,
4715 TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (to))));
4717 emit_move_insn (to_rtx, value);
4719 preserve_temp_slots (to_rtx);
4720 free_temp_slots ();
4721 pop_temp_slots ();
4722 return;
4725 /* Ordinary treatment. Expand TO to get a REG or MEM rtx.
4726 Don't re-expand if it was expanded already (in COMPONENT_REF case). */
4728 if (to_rtx == 0)
4729 to_rtx = expand_expr (to, NULL_RTX, VOIDmode, EXPAND_WRITE);
4731 /* Don't move directly into a return register. */
4732 if (TREE_CODE (to) == RESULT_DECL
4733 && (REG_P (to_rtx) || GET_CODE (to_rtx) == PARALLEL))
4735 rtx temp;
4737 push_temp_slots ();
4738 temp = expand_expr (from, NULL_RTX, GET_MODE (to_rtx), EXPAND_NORMAL);
4740 if (GET_CODE (to_rtx) == PARALLEL)
4741 emit_group_load (to_rtx, temp, TREE_TYPE (from),
4742 int_size_in_bytes (TREE_TYPE (from)));
4743 else
4744 emit_move_insn (to_rtx, temp);
4746 preserve_temp_slots (to_rtx);
4747 free_temp_slots ();
4748 pop_temp_slots ();
4749 return;
4752 /* In case we are returning the contents of an object which overlaps
4753 the place the value is being stored, use a safe function when copying
4754 a value through a pointer into a structure value return block. */
4755 if (TREE_CODE (to) == RESULT_DECL
4756 && TREE_CODE (from) == INDIRECT_REF
4757 && ADDR_SPACE_GENERIC_P
4758 (TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (from, 0)))))
4759 && refs_may_alias_p (to, from)
4760 && cfun->returns_struct
4761 && !cfun->returns_pcc_struct)
4763 rtx from_rtx, size;
4765 push_temp_slots ();
4766 size = expr_size (from);
4767 from_rtx = expand_normal (from);
4769 emit_library_call (memmove_libfunc, LCT_NORMAL,
4770 VOIDmode, 3, XEXP (to_rtx, 0), Pmode,
4771 XEXP (from_rtx, 0), Pmode,
4772 convert_to_mode (TYPE_MODE (sizetype),
4773 size, TYPE_UNSIGNED (sizetype)),
4774 TYPE_MODE (sizetype));
4776 preserve_temp_slots (to_rtx);
4777 free_temp_slots ();
4778 pop_temp_slots ();
4779 return;
4782 /* Compute FROM and store the value in the rtx we got. */
4784 push_temp_slots ();
4785 result = store_expr (from, to_rtx, 0, nontemporal);
4786 preserve_temp_slots (result);
4787 free_temp_slots ();
4788 pop_temp_slots ();
4789 return;
4792 /* Emits nontemporal store insn that moves FROM to TO. Returns true if this
4793 succeeded, false otherwise. */
4795 bool
4796 emit_storent_insn (rtx to, rtx from)
4798 struct expand_operand ops[2];
4799 enum machine_mode mode = GET_MODE (to);
4800 enum insn_code code = optab_handler (storent_optab, mode);
4802 if (code == CODE_FOR_nothing)
4803 return false;
4805 create_fixed_operand (&ops[0], to);
4806 create_input_operand (&ops[1], from, mode);
4807 return maybe_expand_insn (code, 2, ops);
4810 /* Generate code for computing expression EXP,
4811 and storing the value into TARGET.
4813 If the mode is BLKmode then we may return TARGET itself.
4814 It turns out that in BLKmode it doesn't cause a problem.
4815 because C has no operators that could combine two different
4816 assignments into the same BLKmode object with different values
4817 with no sequence point. Will other languages need this to
4818 be more thorough?
4820 If CALL_PARAM_P is nonzero, this is a store into a call param on the
4821 stack, and block moves may need to be treated specially.
4823 If NONTEMPORAL is true, try using a nontemporal store instruction. */
4826 store_expr (tree exp, rtx target, int call_param_p, bool nontemporal)
4828 rtx temp;
4829 rtx alt_rtl = NULL_RTX;
4830 location_t loc = EXPR_LOCATION (exp);
4832 if (VOID_TYPE_P (TREE_TYPE (exp)))
4834 /* C++ can generate ?: expressions with a throw expression in one
4835 branch and an rvalue in the other. Here, we resolve attempts to
4836 store the throw expression's nonexistent result. */
4837 gcc_assert (!call_param_p);
4838 expand_expr (exp, const0_rtx, VOIDmode, EXPAND_NORMAL);
4839 return NULL_RTX;
4841 if (TREE_CODE (exp) == COMPOUND_EXPR)
4843 /* Perform first part of compound expression, then assign from second
4844 part. */
4845 expand_expr (TREE_OPERAND (exp, 0), const0_rtx, VOIDmode,
4846 call_param_p ? EXPAND_STACK_PARM : EXPAND_NORMAL);
4847 return store_expr (TREE_OPERAND (exp, 1), target, call_param_p,
4848 nontemporal);
4850 else if (TREE_CODE (exp) == COND_EXPR && GET_MODE (target) == BLKmode)
4852 /* For conditional expression, get safe form of the target. Then
4853 test the condition, doing the appropriate assignment on either
4854 side. This avoids the creation of unnecessary temporaries.
4855 For non-BLKmode, it is more efficient not to do this. */
4857 rtx lab1 = gen_label_rtx (), lab2 = gen_label_rtx ();
4859 do_pending_stack_adjust ();
4860 NO_DEFER_POP;
4861 jumpifnot (TREE_OPERAND (exp, 0), lab1, -1);
4862 store_expr (TREE_OPERAND (exp, 1), target, call_param_p,
4863 nontemporal);
4864 emit_jump_insn (gen_jump (lab2));
4865 emit_barrier ();
4866 emit_label (lab1);
4867 store_expr (TREE_OPERAND (exp, 2), target, call_param_p,
4868 nontemporal);
4869 emit_label (lab2);
4870 OK_DEFER_POP;
4872 return NULL_RTX;
4874 else if (GET_CODE (target) == SUBREG && SUBREG_PROMOTED_VAR_P (target))
4875 /* If this is a scalar in a register that is stored in a wider mode
4876 than the declared mode, compute the result into its declared mode
4877 and then convert to the wider mode. Our value is the computed
4878 expression. */
4880 rtx inner_target = 0;
4882 /* We can do the conversion inside EXP, which will often result
4883 in some optimizations. Do the conversion in two steps: first
4884 change the signedness, if needed, then the extend. But don't
4885 do this if the type of EXP is a subtype of something else
4886 since then the conversion might involve more than just
4887 converting modes. */
4888 if (INTEGRAL_TYPE_P (TREE_TYPE (exp))
4889 && TREE_TYPE (TREE_TYPE (exp)) == 0
4890 && GET_MODE_PRECISION (GET_MODE (target))
4891 == TYPE_PRECISION (TREE_TYPE (exp)))
4893 if (TYPE_UNSIGNED (TREE_TYPE (exp))
4894 != SUBREG_PROMOTED_UNSIGNED_P (target))
4896 /* Some types, e.g. Fortran's logical*4, won't have a signed
4897 version, so use the mode instead. */
4898 tree ntype
4899 = (signed_or_unsigned_type_for
4900 (SUBREG_PROMOTED_UNSIGNED_P (target), TREE_TYPE (exp)));
4901 if (ntype == NULL)
4902 ntype = lang_hooks.types.type_for_mode
4903 (TYPE_MODE (TREE_TYPE (exp)),
4904 SUBREG_PROMOTED_UNSIGNED_P (target));
4906 exp = fold_convert_loc (loc, ntype, exp);
4909 exp = fold_convert_loc (loc, lang_hooks.types.type_for_mode
4910 (GET_MODE (SUBREG_REG (target)),
4911 SUBREG_PROMOTED_UNSIGNED_P (target)),
4912 exp);
4914 inner_target = SUBREG_REG (target);
4917 temp = expand_expr (exp, inner_target, VOIDmode,
4918 call_param_p ? EXPAND_STACK_PARM : EXPAND_NORMAL);
4920 /* If TEMP is a VOIDmode constant, use convert_modes to make
4921 sure that we properly convert it. */
4922 if (CONSTANT_P (temp) && GET_MODE (temp) == VOIDmode)
4924 temp = convert_modes (GET_MODE (target), TYPE_MODE (TREE_TYPE (exp)),
4925 temp, SUBREG_PROMOTED_UNSIGNED_P (target));
4926 temp = convert_modes (GET_MODE (SUBREG_REG (target)),
4927 GET_MODE (target), temp,
4928 SUBREG_PROMOTED_UNSIGNED_P (target));
4931 convert_move (SUBREG_REG (target), temp,
4932 SUBREG_PROMOTED_UNSIGNED_P (target));
4934 return NULL_RTX;
4936 else if ((TREE_CODE (exp) == STRING_CST
4937 || (TREE_CODE (exp) == MEM_REF
4938 && TREE_CODE (TREE_OPERAND (exp, 0)) == ADDR_EXPR
4939 && TREE_CODE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0))
4940 == STRING_CST
4941 && integer_zerop (TREE_OPERAND (exp, 1))))
4942 && !nontemporal && !call_param_p
4943 && MEM_P (target))
4945 /* Optimize initialization of an array with a STRING_CST. */
4946 HOST_WIDE_INT exp_len, str_copy_len;
4947 rtx dest_mem;
4948 tree str = TREE_CODE (exp) == STRING_CST
4949 ? exp : TREE_OPERAND (TREE_OPERAND (exp, 0), 0);
4951 exp_len = int_expr_size (exp);
4952 if (exp_len <= 0)
4953 goto normal_expr;
4955 if (TREE_STRING_LENGTH (str) <= 0)
4956 goto normal_expr;
4958 str_copy_len = strlen (TREE_STRING_POINTER (str));
4959 if (str_copy_len < TREE_STRING_LENGTH (str) - 1)
4960 goto normal_expr;
4962 str_copy_len = TREE_STRING_LENGTH (str);
4963 if ((STORE_MAX_PIECES & (STORE_MAX_PIECES - 1)) == 0
4964 && TREE_STRING_POINTER (str)[TREE_STRING_LENGTH (str) - 1] == '\0')
4966 str_copy_len += STORE_MAX_PIECES - 1;
4967 str_copy_len &= ~(STORE_MAX_PIECES - 1);
4969 str_copy_len = MIN (str_copy_len, exp_len);
4970 if (!can_store_by_pieces (str_copy_len, builtin_strncpy_read_str,
4971 CONST_CAST (char *, TREE_STRING_POINTER (str)),
4972 MEM_ALIGN (target), false))
4973 goto normal_expr;
4975 dest_mem = target;
4977 dest_mem = store_by_pieces (dest_mem,
4978 str_copy_len, builtin_strncpy_read_str,
4979 CONST_CAST (char *,
4980 TREE_STRING_POINTER (str)),
4981 MEM_ALIGN (target), false,
4982 exp_len > str_copy_len ? 1 : 0);
4983 if (exp_len > str_copy_len)
4984 clear_storage (adjust_address (dest_mem, BLKmode, 0),
4985 GEN_INT (exp_len - str_copy_len),
4986 BLOCK_OP_NORMAL);
4987 return NULL_RTX;
4989 else
4991 rtx tmp_target;
4993 normal_expr:
4994 /* If we want to use a nontemporal store, force the value to
4995 register first. */
4996 tmp_target = nontemporal ? NULL_RTX : target;
4997 temp = expand_expr_real (exp, tmp_target, GET_MODE (target),
4998 (call_param_p
4999 ? EXPAND_STACK_PARM : EXPAND_NORMAL),
5000 &alt_rtl);
5003 /* If TEMP is a VOIDmode constant and the mode of the type of EXP is not
5004 the same as that of TARGET, adjust the constant. This is needed, for
5005 example, in case it is a CONST_DOUBLE and we want only a word-sized
5006 value. */
5007 if (CONSTANT_P (temp) && GET_MODE (temp) == VOIDmode
5008 && TREE_CODE (exp) != ERROR_MARK
5009 && GET_MODE (target) != TYPE_MODE (TREE_TYPE (exp)))
5010 temp = convert_modes (GET_MODE (target), TYPE_MODE (TREE_TYPE (exp)),
5011 temp, TYPE_UNSIGNED (TREE_TYPE (exp)));
5013 /* If value was not generated in the target, store it there.
5014 Convert the value to TARGET's type first if necessary and emit the
5015 pending incrementations that have been queued when expanding EXP.
5016 Note that we cannot emit the whole queue blindly because this will
5017 effectively disable the POST_INC optimization later.
5019 If TEMP and TARGET compare equal according to rtx_equal_p, but
5020 one or both of them are volatile memory refs, we have to distinguish
5021 two cases:
5022 - expand_expr has used TARGET. In this case, we must not generate
5023 another copy. This can be detected by TARGET being equal according
5024 to == .
5025 - expand_expr has not used TARGET - that means that the source just
5026 happens to have the same RTX form. Since temp will have been created
5027 by expand_expr, it will compare unequal according to == .
5028 We must generate a copy in this case, to reach the correct number
5029 of volatile memory references. */
5031 if ((! rtx_equal_p (temp, target)
5032 || (temp != target && (side_effects_p (temp)
5033 || side_effects_p (target))))
5034 && TREE_CODE (exp) != ERROR_MARK
5035 /* If store_expr stores a DECL whose DECL_RTL(exp) == TARGET,
5036 but TARGET is not valid memory reference, TEMP will differ
5037 from TARGET although it is really the same location. */
5038 && !(alt_rtl
5039 && rtx_equal_p (alt_rtl, target)
5040 && !side_effects_p (alt_rtl)
5041 && !side_effects_p (target))
5042 /* If there's nothing to copy, don't bother. Don't call
5043 expr_size unless necessary, because some front-ends (C++)
5044 expr_size-hook must not be given objects that are not
5045 supposed to be bit-copied or bit-initialized. */
5046 && expr_size (exp) != const0_rtx)
5048 if (GET_MODE (temp) != GET_MODE (target)
5049 && GET_MODE (temp) != VOIDmode)
5051 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (exp));
5052 if (GET_MODE (target) == BLKmode
5053 && GET_MODE (temp) == BLKmode)
5054 emit_block_move (target, temp, expr_size (exp),
5055 (call_param_p
5056 ? BLOCK_OP_CALL_PARM
5057 : BLOCK_OP_NORMAL));
5058 else if (GET_MODE (target) == BLKmode)
5059 store_bit_field (target, INTVAL (expr_size (exp)) * BITS_PER_UNIT,
5060 0, 0, 0, GET_MODE (temp), temp);
5061 else
5062 convert_move (target, temp, unsignedp);
5065 else if (GET_MODE (temp) == BLKmode && TREE_CODE (exp) == STRING_CST)
5067 /* Handle copying a string constant into an array. The string
5068 constant may be shorter than the array. So copy just the string's
5069 actual length, and clear the rest. First get the size of the data
5070 type of the string, which is actually the size of the target. */
5071 rtx size = expr_size (exp);
5073 if (CONST_INT_P (size)
5074 && INTVAL (size) < TREE_STRING_LENGTH (exp))
5075 emit_block_move (target, temp, size,
5076 (call_param_p
5077 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
5078 else
5080 enum machine_mode pointer_mode
5081 = targetm.addr_space.pointer_mode (MEM_ADDR_SPACE (target));
5082 enum machine_mode address_mode
5083 = targetm.addr_space.address_mode (MEM_ADDR_SPACE (target));
5085 /* Compute the size of the data to copy from the string. */
5086 tree copy_size
5087 = size_binop_loc (loc, MIN_EXPR,
5088 make_tree (sizetype, size),
5089 size_int (TREE_STRING_LENGTH (exp)));
5090 rtx copy_size_rtx
5091 = expand_expr (copy_size, NULL_RTX, VOIDmode,
5092 (call_param_p
5093 ? EXPAND_STACK_PARM : EXPAND_NORMAL));
5094 rtx label = 0;
5096 /* Copy that much. */
5097 copy_size_rtx = convert_to_mode (pointer_mode, copy_size_rtx,
5098 TYPE_UNSIGNED (sizetype));
5099 emit_block_move (target, temp, copy_size_rtx,
5100 (call_param_p
5101 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
5103 /* Figure out how much is left in TARGET that we have to clear.
5104 Do all calculations in pointer_mode. */
5105 if (CONST_INT_P (copy_size_rtx))
5107 size = plus_constant (size, -INTVAL (copy_size_rtx));
5108 target = adjust_address (target, BLKmode,
5109 INTVAL (copy_size_rtx));
5111 else
5113 size = expand_binop (TYPE_MODE (sizetype), sub_optab, size,
5114 copy_size_rtx, NULL_RTX, 0,
5115 OPTAB_LIB_WIDEN);
5117 if (GET_MODE (copy_size_rtx) != address_mode)
5118 copy_size_rtx = convert_to_mode (address_mode,
5119 copy_size_rtx,
5120 TYPE_UNSIGNED (sizetype));
5122 target = offset_address (target, copy_size_rtx,
5123 highest_pow2_factor (copy_size));
5124 label = gen_label_rtx ();
5125 emit_cmp_and_jump_insns (size, const0_rtx, LT, NULL_RTX,
5126 GET_MODE (size), 0, label);
5129 if (size != const0_rtx)
5130 clear_storage (target, size, BLOCK_OP_NORMAL);
5132 if (label)
5133 emit_label (label);
5136 /* Handle calls that return values in multiple non-contiguous locations.
5137 The Irix 6 ABI has examples of this. */
5138 else if (GET_CODE (target) == PARALLEL)
5139 emit_group_load (target, temp, TREE_TYPE (exp),
5140 int_size_in_bytes (TREE_TYPE (exp)));
5141 else if (GET_MODE (temp) == BLKmode)
5142 emit_block_move (target, temp, expr_size (exp),
5143 (call_param_p
5144 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
5145 else if (nontemporal
5146 && emit_storent_insn (target, temp))
5147 /* If we managed to emit a nontemporal store, there is nothing else to
5148 do. */
5150 else
5152 temp = force_operand (temp, target);
5153 if (temp != target)
5154 emit_move_insn (target, temp);
5158 return NULL_RTX;
5161 /* Return true if field F of structure TYPE is a flexible array. */
5163 static bool
5164 flexible_array_member_p (const_tree f, const_tree type)
5166 const_tree tf;
5168 tf = TREE_TYPE (f);
5169 return (DECL_CHAIN (f) == NULL
5170 && TREE_CODE (tf) == ARRAY_TYPE
5171 && TYPE_DOMAIN (tf)
5172 && TYPE_MIN_VALUE (TYPE_DOMAIN (tf))
5173 && integer_zerop (TYPE_MIN_VALUE (TYPE_DOMAIN (tf)))
5174 && !TYPE_MAX_VALUE (TYPE_DOMAIN (tf))
5175 && int_size_in_bytes (type) >= 0);
5178 /* If FOR_CTOR_P, return the number of top-level elements that a constructor
5179 must have in order for it to completely initialize a value of type TYPE.
5180 Return -1 if the number isn't known.
5182 If !FOR_CTOR_P, return an estimate of the number of scalars in TYPE. */
5184 static HOST_WIDE_INT
5185 count_type_elements (const_tree type, bool for_ctor_p)
5187 switch (TREE_CODE (type))
5189 case ARRAY_TYPE:
5191 tree nelts;
5193 nelts = array_type_nelts (type);
5194 if (nelts && host_integerp (nelts, 1))
5196 unsigned HOST_WIDE_INT n;
5198 n = tree_low_cst (nelts, 1) + 1;
5199 if (n == 0 || for_ctor_p)
5200 return n;
5201 else
5202 return n * count_type_elements (TREE_TYPE (type), false);
5204 return for_ctor_p ? -1 : 1;
5207 case RECORD_TYPE:
5209 unsigned HOST_WIDE_INT n;
5210 tree f;
5212 n = 0;
5213 for (f = TYPE_FIELDS (type); f ; f = DECL_CHAIN (f))
5214 if (TREE_CODE (f) == FIELD_DECL)
5216 if (!for_ctor_p)
5217 n += count_type_elements (TREE_TYPE (f), false);
5218 else if (!flexible_array_member_p (f, type))
5219 /* Don't count flexible arrays, which are not supposed
5220 to be initialized. */
5221 n += 1;
5224 return n;
5227 case UNION_TYPE:
5228 case QUAL_UNION_TYPE:
5230 tree f;
5231 HOST_WIDE_INT n, m;
5233 gcc_assert (!for_ctor_p);
5234 /* Estimate the number of scalars in each field and pick the
5235 maximum. Other estimates would do instead; the idea is simply
5236 to make sure that the estimate is not sensitive to the ordering
5237 of the fields. */
5238 n = 1;
5239 for (f = TYPE_FIELDS (type); f ; f = DECL_CHAIN (f))
5240 if (TREE_CODE (f) == FIELD_DECL)
5242 m = count_type_elements (TREE_TYPE (f), false);
5243 /* If the field doesn't span the whole union, add an extra
5244 scalar for the rest. */
5245 if (simple_cst_equal (TYPE_SIZE (TREE_TYPE (f)),
5246 TYPE_SIZE (type)) != 1)
5247 m++;
5248 if (n < m)
5249 n = m;
5251 return n;
5254 case COMPLEX_TYPE:
5255 return 2;
5257 case VECTOR_TYPE:
5258 return TYPE_VECTOR_SUBPARTS (type);
5260 case INTEGER_TYPE:
5261 case REAL_TYPE:
5262 case FIXED_POINT_TYPE:
5263 case ENUMERAL_TYPE:
5264 case BOOLEAN_TYPE:
5265 case POINTER_TYPE:
5266 case OFFSET_TYPE:
5267 case REFERENCE_TYPE:
5268 return 1;
5270 case ERROR_MARK:
5271 return 0;
5273 case VOID_TYPE:
5274 case METHOD_TYPE:
5275 case FUNCTION_TYPE:
5276 case LANG_TYPE:
5277 default:
5278 gcc_unreachable ();
5282 /* Helper for categorize_ctor_elements. Identical interface. */
5284 static bool
5285 categorize_ctor_elements_1 (const_tree ctor, HOST_WIDE_INT *p_nz_elts,
5286 HOST_WIDE_INT *p_init_elts, bool *p_complete)
5288 unsigned HOST_WIDE_INT idx;
5289 HOST_WIDE_INT nz_elts, init_elts, num_fields;
5290 tree value, purpose, elt_type;
5292 /* Whether CTOR is a valid constant initializer, in accordance with what
5293 initializer_constant_valid_p does. If inferred from the constructor
5294 elements, true until proven otherwise. */
5295 bool const_from_elts_p = constructor_static_from_elts_p (ctor);
5296 bool const_p = const_from_elts_p ? true : TREE_STATIC (ctor);
5298 nz_elts = 0;
5299 init_elts = 0;
5300 num_fields = 0;
5301 elt_type = NULL_TREE;
5303 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (ctor), idx, purpose, value)
5305 HOST_WIDE_INT mult = 1;
5307 if (TREE_CODE (purpose) == RANGE_EXPR)
5309 tree lo_index = TREE_OPERAND (purpose, 0);
5310 tree hi_index = TREE_OPERAND (purpose, 1);
5312 if (host_integerp (lo_index, 1) && host_integerp (hi_index, 1))
5313 mult = (tree_low_cst (hi_index, 1)
5314 - tree_low_cst (lo_index, 1) + 1);
5316 num_fields += mult;
5317 elt_type = TREE_TYPE (value);
5319 switch (TREE_CODE (value))
5321 case CONSTRUCTOR:
5323 HOST_WIDE_INT nz = 0, ic = 0;
5325 bool const_elt_p = categorize_ctor_elements_1 (value, &nz, &ic,
5326 p_complete);
5328 nz_elts += mult * nz;
5329 init_elts += mult * ic;
5331 if (const_from_elts_p && const_p)
5332 const_p = const_elt_p;
5334 break;
5336 case INTEGER_CST:
5337 case REAL_CST:
5338 case FIXED_CST:
5339 if (!initializer_zerop (value))
5340 nz_elts += mult;
5341 init_elts += mult;
5342 break;
5344 case STRING_CST:
5345 nz_elts += mult * TREE_STRING_LENGTH (value);
5346 init_elts += mult * TREE_STRING_LENGTH (value);
5347 break;
5349 case COMPLEX_CST:
5350 if (!initializer_zerop (TREE_REALPART (value)))
5351 nz_elts += mult;
5352 if (!initializer_zerop (TREE_IMAGPART (value)))
5353 nz_elts += mult;
5354 init_elts += mult;
5355 break;
5357 case VECTOR_CST:
5359 tree v;
5360 for (v = TREE_VECTOR_CST_ELTS (value); v; v = TREE_CHAIN (v))
5362 if (!initializer_zerop (TREE_VALUE (v)))
5363 nz_elts += mult;
5364 init_elts += mult;
5367 break;
5369 default:
5371 HOST_WIDE_INT tc = count_type_elements (elt_type, false);
5372 nz_elts += mult * tc;
5373 init_elts += mult * tc;
5375 if (const_from_elts_p && const_p)
5376 const_p = initializer_constant_valid_p (value, elt_type)
5377 != NULL_TREE;
5379 break;
5383 if (*p_complete && !complete_ctor_at_level_p (TREE_TYPE (ctor),
5384 num_fields, elt_type))
5385 *p_complete = false;
5387 *p_nz_elts += nz_elts;
5388 *p_init_elts += init_elts;
5390 return const_p;
5393 /* Examine CTOR to discover:
5394 * how many scalar fields are set to nonzero values,
5395 and place it in *P_NZ_ELTS;
5396 * how many scalar fields in total are in CTOR,
5397 and place it in *P_ELT_COUNT.
5398 * whether the constructor is complete -- in the sense that every
5399 meaningful byte is explicitly given a value --
5400 and place it in *P_COMPLETE.
5402 Return whether or not CTOR is a valid static constant initializer, the same
5403 as "initializer_constant_valid_p (CTOR, TREE_TYPE (CTOR)) != 0". */
5405 bool
5406 categorize_ctor_elements (const_tree ctor, HOST_WIDE_INT *p_nz_elts,
5407 HOST_WIDE_INT *p_init_elts, bool *p_complete)
5409 *p_nz_elts = 0;
5410 *p_init_elts = 0;
5411 *p_complete = true;
5413 return categorize_ctor_elements_1 (ctor, p_nz_elts, p_init_elts, p_complete);
5416 /* TYPE is initialized by a constructor with NUM_ELTS elements, the last
5417 of which had type LAST_TYPE. Each element was itself a complete
5418 initializer, in the sense that every meaningful byte was explicitly
5419 given a value. Return true if the same is true for the constructor
5420 as a whole. */
5422 bool
5423 complete_ctor_at_level_p (const_tree type, HOST_WIDE_INT num_elts,
5424 const_tree last_type)
5426 if (TREE_CODE (type) == UNION_TYPE
5427 || TREE_CODE (type) == QUAL_UNION_TYPE)
5429 if (num_elts == 0)
5430 return false;
5432 gcc_assert (num_elts == 1 && last_type);
5434 /* ??? We could look at each element of the union, and find the
5435 largest element. Which would avoid comparing the size of the
5436 initialized element against any tail padding in the union.
5437 Doesn't seem worth the effort... */
5438 return simple_cst_equal (TYPE_SIZE (type), TYPE_SIZE (last_type)) == 1;
5441 return count_type_elements (type, true) == num_elts;
5444 /* Return 1 if EXP contains mostly (3/4) zeros. */
5446 static int
5447 mostly_zeros_p (const_tree exp)
5449 if (TREE_CODE (exp) == CONSTRUCTOR)
5451 HOST_WIDE_INT nz_elts, init_elts;
5452 bool complete_p;
5454 categorize_ctor_elements (exp, &nz_elts, &init_elts, &complete_p);
5455 return !complete_p || nz_elts < init_elts / 4;
5458 return initializer_zerop (exp);
5461 /* Return 1 if EXP contains all zeros. */
5463 static int
5464 all_zeros_p (const_tree exp)
5466 if (TREE_CODE (exp) == CONSTRUCTOR)
5468 HOST_WIDE_INT nz_elts, init_elts;
5469 bool complete_p;
5471 categorize_ctor_elements (exp, &nz_elts, &init_elts, &complete_p);
5472 return nz_elts == 0;
5475 return initializer_zerop (exp);
5478 /* Helper function for store_constructor.
5479 TARGET, BITSIZE, BITPOS, MODE, EXP are as for store_field.
5480 TYPE is the type of the CONSTRUCTOR, not the element type.
5481 CLEARED is as for store_constructor.
5482 ALIAS_SET is the alias set to use for any stores.
5484 This provides a recursive shortcut back to store_constructor when it isn't
5485 necessary to go through store_field. This is so that we can pass through
5486 the cleared field to let store_constructor know that we may not have to
5487 clear a substructure if the outer structure has already been cleared. */
5489 static void
5490 store_constructor_field (rtx target, unsigned HOST_WIDE_INT bitsize,
5491 HOST_WIDE_INT bitpos, enum machine_mode mode,
5492 tree exp, tree type, int cleared,
5493 alias_set_type alias_set)
5495 if (TREE_CODE (exp) == CONSTRUCTOR
5496 /* We can only call store_constructor recursively if the size and
5497 bit position are on a byte boundary. */
5498 && bitpos % BITS_PER_UNIT == 0
5499 && (bitsize > 0 && bitsize % BITS_PER_UNIT == 0)
5500 /* If we have a nonzero bitpos for a register target, then we just
5501 let store_field do the bitfield handling. This is unlikely to
5502 generate unnecessary clear instructions anyways. */
5503 && (bitpos == 0 || MEM_P (target)))
5505 if (MEM_P (target))
5506 target
5507 = adjust_address (target,
5508 GET_MODE (target) == BLKmode
5509 || 0 != (bitpos
5510 % GET_MODE_ALIGNMENT (GET_MODE (target)))
5511 ? BLKmode : VOIDmode, bitpos / BITS_PER_UNIT);
5514 /* Update the alias set, if required. */
5515 if (MEM_P (target) && ! MEM_KEEP_ALIAS_SET_P (target)
5516 && MEM_ALIAS_SET (target) != 0)
5518 target = copy_rtx (target);
5519 set_mem_alias_set (target, alias_set);
5522 store_constructor (exp, target, cleared, bitsize / BITS_PER_UNIT);
5524 else
5525 store_field (target, bitsize, bitpos, 0, 0, mode, exp, type, alias_set,
5526 false);
5529 /* Store the value of constructor EXP into the rtx TARGET.
5530 TARGET is either a REG or a MEM; we know it cannot conflict, since
5531 safe_from_p has been called.
5532 CLEARED is true if TARGET is known to have been zero'd.
5533 SIZE is the number of bytes of TARGET we are allowed to modify: this
5534 may not be the same as the size of EXP if we are assigning to a field
5535 which has been packed to exclude padding bits. */
5537 static void
5538 store_constructor (tree exp, rtx target, int cleared, HOST_WIDE_INT size)
5540 tree type = TREE_TYPE (exp);
5541 #ifdef WORD_REGISTER_OPERATIONS
5542 HOST_WIDE_INT exp_size = int_size_in_bytes (type);
5543 #endif
5545 switch (TREE_CODE (type))
5547 case RECORD_TYPE:
5548 case UNION_TYPE:
5549 case QUAL_UNION_TYPE:
5551 unsigned HOST_WIDE_INT idx;
5552 tree field, value;
5554 /* If size is zero or the target is already cleared, do nothing. */
5555 if (size == 0 || cleared)
5556 cleared = 1;
5557 /* We either clear the aggregate or indicate the value is dead. */
5558 else if ((TREE_CODE (type) == UNION_TYPE
5559 || TREE_CODE (type) == QUAL_UNION_TYPE)
5560 && ! CONSTRUCTOR_ELTS (exp))
5561 /* If the constructor is empty, clear the union. */
5563 clear_storage (target, expr_size (exp), BLOCK_OP_NORMAL);
5564 cleared = 1;
5567 /* If we are building a static constructor into a register,
5568 set the initial value as zero so we can fold the value into
5569 a constant. But if more than one register is involved,
5570 this probably loses. */
5571 else if (REG_P (target) && TREE_STATIC (exp)
5572 && GET_MODE_SIZE (GET_MODE (target)) <= UNITS_PER_WORD)
5574 emit_move_insn (target, CONST0_RTX (GET_MODE (target)));
5575 cleared = 1;
5578 /* If the constructor has fewer fields than the structure or
5579 if we are initializing the structure to mostly zeros, clear
5580 the whole structure first. Don't do this if TARGET is a
5581 register whose mode size isn't equal to SIZE since
5582 clear_storage can't handle this case. */
5583 else if (size > 0
5584 && (((int)VEC_length (constructor_elt, CONSTRUCTOR_ELTS (exp))
5585 != fields_length (type))
5586 || mostly_zeros_p (exp))
5587 && (!REG_P (target)
5588 || ((HOST_WIDE_INT) GET_MODE_SIZE (GET_MODE (target))
5589 == size)))
5591 clear_storage (target, GEN_INT (size), BLOCK_OP_NORMAL);
5592 cleared = 1;
5595 if (REG_P (target) && !cleared)
5596 emit_clobber (target);
5598 /* Store each element of the constructor into the
5599 corresponding field of TARGET. */
5600 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp), idx, field, value)
5602 enum machine_mode mode;
5603 HOST_WIDE_INT bitsize;
5604 HOST_WIDE_INT bitpos = 0;
5605 tree offset;
5606 rtx to_rtx = target;
5608 /* Just ignore missing fields. We cleared the whole
5609 structure, above, if any fields are missing. */
5610 if (field == 0)
5611 continue;
5613 if (cleared && initializer_zerop (value))
5614 continue;
5616 if (host_integerp (DECL_SIZE (field), 1))
5617 bitsize = tree_low_cst (DECL_SIZE (field), 1);
5618 else
5619 bitsize = -1;
5621 mode = DECL_MODE (field);
5622 if (DECL_BIT_FIELD (field))
5623 mode = VOIDmode;
5625 offset = DECL_FIELD_OFFSET (field);
5626 if (host_integerp (offset, 0)
5627 && host_integerp (bit_position (field), 0))
5629 bitpos = int_bit_position (field);
5630 offset = 0;
5632 else
5633 bitpos = tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 0);
5635 if (offset)
5637 enum machine_mode address_mode;
5638 rtx offset_rtx;
5640 offset
5641 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (offset,
5642 make_tree (TREE_TYPE (exp),
5643 target));
5645 offset_rtx = expand_normal (offset);
5646 gcc_assert (MEM_P (to_rtx));
5648 address_mode
5649 = targetm.addr_space.address_mode (MEM_ADDR_SPACE (to_rtx));
5650 if (GET_MODE (offset_rtx) != address_mode)
5651 offset_rtx = convert_to_mode (address_mode, offset_rtx, 0);
5653 to_rtx = offset_address (to_rtx, offset_rtx,
5654 highest_pow2_factor (offset));
5657 #ifdef WORD_REGISTER_OPERATIONS
5658 /* If this initializes a field that is smaller than a
5659 word, at the start of a word, try to widen it to a full
5660 word. This special case allows us to output C++ member
5661 function initializations in a form that the optimizers
5662 can understand. */
5663 if (REG_P (target)
5664 && bitsize < BITS_PER_WORD
5665 && bitpos % BITS_PER_WORD == 0
5666 && GET_MODE_CLASS (mode) == MODE_INT
5667 && TREE_CODE (value) == INTEGER_CST
5668 && exp_size >= 0
5669 && bitpos + BITS_PER_WORD <= exp_size * BITS_PER_UNIT)
5671 tree type = TREE_TYPE (value);
5673 if (TYPE_PRECISION (type) < BITS_PER_WORD)
5675 type = lang_hooks.types.type_for_size
5676 (BITS_PER_WORD, TYPE_UNSIGNED (type));
5677 value = fold_convert (type, value);
5680 if (BYTES_BIG_ENDIAN)
5681 value
5682 = fold_build2 (LSHIFT_EXPR, type, value,
5683 build_int_cst (type,
5684 BITS_PER_WORD - bitsize));
5685 bitsize = BITS_PER_WORD;
5686 mode = word_mode;
5688 #endif
5690 if (MEM_P (to_rtx) && !MEM_KEEP_ALIAS_SET_P (to_rtx)
5691 && DECL_NONADDRESSABLE_P (field))
5693 to_rtx = copy_rtx (to_rtx);
5694 MEM_KEEP_ALIAS_SET_P (to_rtx) = 1;
5697 store_constructor_field (to_rtx, bitsize, bitpos, mode,
5698 value, type, cleared,
5699 get_alias_set (TREE_TYPE (field)));
5701 break;
5703 case ARRAY_TYPE:
5705 tree value, index;
5706 unsigned HOST_WIDE_INT i;
5707 int need_to_clear;
5708 tree domain;
5709 tree elttype = TREE_TYPE (type);
5710 int const_bounds_p;
5711 HOST_WIDE_INT minelt = 0;
5712 HOST_WIDE_INT maxelt = 0;
5714 domain = TYPE_DOMAIN (type);
5715 const_bounds_p = (TYPE_MIN_VALUE (domain)
5716 && TYPE_MAX_VALUE (domain)
5717 && host_integerp (TYPE_MIN_VALUE (domain), 0)
5718 && host_integerp (TYPE_MAX_VALUE (domain), 0));
5720 /* If we have constant bounds for the range of the type, get them. */
5721 if (const_bounds_p)
5723 minelt = tree_low_cst (TYPE_MIN_VALUE (domain), 0);
5724 maxelt = tree_low_cst (TYPE_MAX_VALUE (domain), 0);
5727 /* If the constructor has fewer elements than the array, clear
5728 the whole array first. Similarly if this is static
5729 constructor of a non-BLKmode object. */
5730 if (cleared)
5731 need_to_clear = 0;
5732 else if (REG_P (target) && TREE_STATIC (exp))
5733 need_to_clear = 1;
5734 else
5736 unsigned HOST_WIDE_INT idx;
5737 tree index, value;
5738 HOST_WIDE_INT count = 0, zero_count = 0;
5739 need_to_clear = ! const_bounds_p;
5741 /* This loop is a more accurate version of the loop in
5742 mostly_zeros_p (it handles RANGE_EXPR in an index). It
5743 is also needed to check for missing elements. */
5744 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp), idx, index, value)
5746 HOST_WIDE_INT this_node_count;
5748 if (need_to_clear)
5749 break;
5751 if (index != NULL_TREE && TREE_CODE (index) == RANGE_EXPR)
5753 tree lo_index = TREE_OPERAND (index, 0);
5754 tree hi_index = TREE_OPERAND (index, 1);
5756 if (! host_integerp (lo_index, 1)
5757 || ! host_integerp (hi_index, 1))
5759 need_to_clear = 1;
5760 break;
5763 this_node_count = (tree_low_cst (hi_index, 1)
5764 - tree_low_cst (lo_index, 1) + 1);
5766 else
5767 this_node_count = 1;
5769 count += this_node_count;
5770 if (mostly_zeros_p (value))
5771 zero_count += this_node_count;
5774 /* Clear the entire array first if there are any missing
5775 elements, or if the incidence of zero elements is >=
5776 75%. */
5777 if (! need_to_clear
5778 && (count < maxelt - minelt + 1
5779 || 4 * zero_count >= 3 * count))
5780 need_to_clear = 1;
5783 if (need_to_clear && size > 0)
5785 if (REG_P (target))
5786 emit_move_insn (target, CONST0_RTX (GET_MODE (target)));
5787 else
5788 clear_storage (target, GEN_INT (size), BLOCK_OP_NORMAL);
5789 cleared = 1;
5792 if (!cleared && REG_P (target))
5793 /* Inform later passes that the old value is dead. */
5794 emit_clobber (target);
5796 /* Store each element of the constructor into the
5797 corresponding element of TARGET, determined by counting the
5798 elements. */
5799 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp), i, index, value)
5801 enum machine_mode mode;
5802 HOST_WIDE_INT bitsize;
5803 HOST_WIDE_INT bitpos;
5804 rtx xtarget = target;
5806 if (cleared && initializer_zerop (value))
5807 continue;
5809 mode = TYPE_MODE (elttype);
5810 if (mode == BLKmode)
5811 bitsize = (host_integerp (TYPE_SIZE (elttype), 1)
5812 ? tree_low_cst (TYPE_SIZE (elttype), 1)
5813 : -1);
5814 else
5815 bitsize = GET_MODE_BITSIZE (mode);
5817 if (index != NULL_TREE && TREE_CODE (index) == RANGE_EXPR)
5819 tree lo_index = TREE_OPERAND (index, 0);
5820 tree hi_index = TREE_OPERAND (index, 1);
5821 rtx index_r, pos_rtx;
5822 HOST_WIDE_INT lo, hi, count;
5823 tree position;
5825 /* If the range is constant and "small", unroll the loop. */
5826 if (const_bounds_p
5827 && host_integerp (lo_index, 0)
5828 && host_integerp (hi_index, 0)
5829 && (lo = tree_low_cst (lo_index, 0),
5830 hi = tree_low_cst (hi_index, 0),
5831 count = hi - lo + 1,
5832 (!MEM_P (target)
5833 || count <= 2
5834 || (host_integerp (TYPE_SIZE (elttype), 1)
5835 && (tree_low_cst (TYPE_SIZE (elttype), 1) * count
5836 <= 40 * 8)))))
5838 lo -= minelt; hi -= minelt;
5839 for (; lo <= hi; lo++)
5841 bitpos = lo * tree_low_cst (TYPE_SIZE (elttype), 0);
5843 if (MEM_P (target)
5844 && !MEM_KEEP_ALIAS_SET_P (target)
5845 && TREE_CODE (type) == ARRAY_TYPE
5846 && TYPE_NONALIASED_COMPONENT (type))
5848 target = copy_rtx (target);
5849 MEM_KEEP_ALIAS_SET_P (target) = 1;
5852 store_constructor_field
5853 (target, bitsize, bitpos, mode, value, type, cleared,
5854 get_alias_set (elttype));
5857 else
5859 rtx loop_start = gen_label_rtx ();
5860 rtx loop_end = gen_label_rtx ();
5861 tree exit_cond;
5863 expand_normal (hi_index);
5865 index = build_decl (EXPR_LOCATION (exp),
5866 VAR_DECL, NULL_TREE, domain);
5867 index_r = gen_reg_rtx (promote_decl_mode (index, NULL));
5868 SET_DECL_RTL (index, index_r);
5869 store_expr (lo_index, index_r, 0, false);
5871 /* Build the head of the loop. */
5872 do_pending_stack_adjust ();
5873 emit_label (loop_start);
5875 /* Assign value to element index. */
5876 position =
5877 fold_convert (ssizetype,
5878 fold_build2 (MINUS_EXPR,
5879 TREE_TYPE (index),
5880 index,
5881 TYPE_MIN_VALUE (domain)));
5883 position =
5884 size_binop (MULT_EXPR, position,
5885 fold_convert (ssizetype,
5886 TYPE_SIZE_UNIT (elttype)));
5888 pos_rtx = expand_normal (position);
5889 xtarget = offset_address (target, pos_rtx,
5890 highest_pow2_factor (position));
5891 xtarget = adjust_address (xtarget, mode, 0);
5892 if (TREE_CODE (value) == CONSTRUCTOR)
5893 store_constructor (value, xtarget, cleared,
5894 bitsize / BITS_PER_UNIT);
5895 else
5896 store_expr (value, xtarget, 0, false);
5898 /* Generate a conditional jump to exit the loop. */
5899 exit_cond = build2 (LT_EXPR, integer_type_node,
5900 index, hi_index);
5901 jumpif (exit_cond, loop_end, -1);
5903 /* Update the loop counter, and jump to the head of
5904 the loop. */
5905 expand_assignment (index,
5906 build2 (PLUS_EXPR, TREE_TYPE (index),
5907 index, integer_one_node),
5908 false);
5910 emit_jump (loop_start);
5912 /* Build the end of the loop. */
5913 emit_label (loop_end);
5916 else if ((index != 0 && ! host_integerp (index, 0))
5917 || ! host_integerp (TYPE_SIZE (elttype), 1))
5919 tree position;
5921 if (index == 0)
5922 index = ssize_int (1);
5924 if (minelt)
5925 index = fold_convert (ssizetype,
5926 fold_build2 (MINUS_EXPR,
5927 TREE_TYPE (index),
5928 index,
5929 TYPE_MIN_VALUE (domain)));
5931 position =
5932 size_binop (MULT_EXPR, index,
5933 fold_convert (ssizetype,
5934 TYPE_SIZE_UNIT (elttype)));
5935 xtarget = offset_address (target,
5936 expand_normal (position),
5937 highest_pow2_factor (position));
5938 xtarget = adjust_address (xtarget, mode, 0);
5939 store_expr (value, xtarget, 0, false);
5941 else
5943 if (index != 0)
5944 bitpos = ((tree_low_cst (index, 0) - minelt)
5945 * tree_low_cst (TYPE_SIZE (elttype), 1));
5946 else
5947 bitpos = (i * tree_low_cst (TYPE_SIZE (elttype), 1));
5949 if (MEM_P (target) && !MEM_KEEP_ALIAS_SET_P (target)
5950 && TREE_CODE (type) == ARRAY_TYPE
5951 && TYPE_NONALIASED_COMPONENT (type))
5953 target = copy_rtx (target);
5954 MEM_KEEP_ALIAS_SET_P (target) = 1;
5956 store_constructor_field (target, bitsize, bitpos, mode, value,
5957 type, cleared, get_alias_set (elttype));
5960 break;
5963 case VECTOR_TYPE:
5965 unsigned HOST_WIDE_INT idx;
5966 constructor_elt *ce;
5967 int i;
5968 int need_to_clear;
5969 int icode = 0;
5970 tree elttype = TREE_TYPE (type);
5971 int elt_size = tree_low_cst (TYPE_SIZE (elttype), 1);
5972 enum machine_mode eltmode = TYPE_MODE (elttype);
5973 HOST_WIDE_INT bitsize;
5974 HOST_WIDE_INT bitpos;
5975 rtvec vector = NULL;
5976 unsigned n_elts;
5977 alias_set_type alias;
5979 gcc_assert (eltmode != BLKmode);
5981 n_elts = TYPE_VECTOR_SUBPARTS (type);
5982 if (REG_P (target) && VECTOR_MODE_P (GET_MODE (target)))
5984 enum machine_mode mode = GET_MODE (target);
5986 icode = (int) optab_handler (vec_init_optab, mode);
5987 if (icode != CODE_FOR_nothing)
5989 unsigned int i;
5991 vector = rtvec_alloc (n_elts);
5992 for (i = 0; i < n_elts; i++)
5993 RTVEC_ELT (vector, i) = CONST0_RTX (GET_MODE_INNER (mode));
5997 /* If the constructor has fewer elements than the vector,
5998 clear the whole array first. Similarly if this is static
5999 constructor of a non-BLKmode object. */
6000 if (cleared)
6001 need_to_clear = 0;
6002 else if (REG_P (target) && TREE_STATIC (exp))
6003 need_to_clear = 1;
6004 else
6006 unsigned HOST_WIDE_INT count = 0, zero_count = 0;
6007 tree value;
6009 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (exp), idx, value)
6011 int n_elts_here = tree_low_cst
6012 (int_const_binop (TRUNC_DIV_EXPR,
6013 TYPE_SIZE (TREE_TYPE (value)),
6014 TYPE_SIZE (elttype)), 1);
6016 count += n_elts_here;
6017 if (mostly_zeros_p (value))
6018 zero_count += n_elts_here;
6021 /* Clear the entire vector first if there are any missing elements,
6022 or if the incidence of zero elements is >= 75%. */
6023 need_to_clear = (count < n_elts || 4 * zero_count >= 3 * count);
6026 if (need_to_clear && size > 0 && !vector)
6028 if (REG_P (target))
6029 emit_move_insn (target, CONST0_RTX (GET_MODE (target)));
6030 else
6031 clear_storage (target, GEN_INT (size), BLOCK_OP_NORMAL);
6032 cleared = 1;
6035 /* Inform later passes that the old value is dead. */
6036 if (!cleared && !vector && REG_P (target))
6037 emit_move_insn (target, CONST0_RTX (GET_MODE (target)));
6039 if (MEM_P (target))
6040 alias = MEM_ALIAS_SET (target);
6041 else
6042 alias = get_alias_set (elttype);
6044 /* Store each element of the constructor into the corresponding
6045 element of TARGET, determined by counting the elements. */
6046 for (idx = 0, i = 0;
6047 VEC_iterate (constructor_elt, CONSTRUCTOR_ELTS (exp), idx, ce);
6048 idx++, i += bitsize / elt_size)
6050 HOST_WIDE_INT eltpos;
6051 tree value = ce->value;
6053 bitsize = tree_low_cst (TYPE_SIZE (TREE_TYPE (value)), 1);
6054 if (cleared && initializer_zerop (value))
6055 continue;
6057 if (ce->index)
6058 eltpos = tree_low_cst (ce->index, 1);
6059 else
6060 eltpos = i;
6062 if (vector)
6064 /* Vector CONSTRUCTORs should only be built from smaller
6065 vectors in the case of BLKmode vectors. */
6066 gcc_assert (TREE_CODE (TREE_TYPE (value)) != VECTOR_TYPE);
6067 RTVEC_ELT (vector, eltpos)
6068 = expand_normal (value);
6070 else
6072 enum machine_mode value_mode =
6073 TREE_CODE (TREE_TYPE (value)) == VECTOR_TYPE
6074 ? TYPE_MODE (TREE_TYPE (value))
6075 : eltmode;
6076 bitpos = eltpos * elt_size;
6077 store_constructor_field (target, bitsize, bitpos,
6078 value_mode, value, type,
6079 cleared, alias);
6083 if (vector)
6084 emit_insn (GEN_FCN (icode)
6085 (target,
6086 gen_rtx_PARALLEL (GET_MODE (target), vector)));
6087 break;
6090 default:
6091 gcc_unreachable ();
6095 /* Store the value of EXP (an expression tree)
6096 into a subfield of TARGET which has mode MODE and occupies
6097 BITSIZE bits, starting BITPOS bits from the start of TARGET.
6098 If MODE is VOIDmode, it means that we are storing into a bit-field.
6100 BITREGION_START is bitpos of the first bitfield in this region.
6101 BITREGION_END is the bitpos of the ending bitfield in this region.
6102 These two fields are 0, if the C++ memory model does not apply,
6103 or we are not interested in keeping track of bitfield regions.
6105 Always return const0_rtx unless we have something particular to
6106 return.
6108 TYPE is the type of the underlying object,
6110 ALIAS_SET is the alias set for the destination. This value will
6111 (in general) be different from that for TARGET, since TARGET is a
6112 reference to the containing structure.
6114 If NONTEMPORAL is true, try generating a nontemporal store. */
6116 static rtx
6117 store_field (rtx target, HOST_WIDE_INT bitsize, HOST_WIDE_INT bitpos,
6118 unsigned HOST_WIDE_INT bitregion_start,
6119 unsigned HOST_WIDE_INT bitregion_end,
6120 enum machine_mode mode, tree exp, tree type,
6121 alias_set_type alias_set, bool nontemporal)
6123 if (TREE_CODE (exp) == ERROR_MARK)
6124 return const0_rtx;
6126 /* If we have nothing to store, do nothing unless the expression has
6127 side-effects. */
6128 if (bitsize == 0)
6129 return expand_expr (exp, const0_rtx, VOIDmode, EXPAND_NORMAL);
6131 /* If we are storing into an unaligned field of an aligned union that is
6132 in a register, we may have the mode of TARGET being an integer mode but
6133 MODE == BLKmode. In that case, get an aligned object whose size and
6134 alignment are the same as TARGET and store TARGET into it (we can avoid
6135 the store if the field being stored is the entire width of TARGET). Then
6136 call ourselves recursively to store the field into a BLKmode version of
6137 that object. Finally, load from the object into TARGET. This is not
6138 very efficient in general, but should only be slightly more expensive
6139 than the otherwise-required unaligned accesses. Perhaps this can be
6140 cleaned up later. It's tempting to make OBJECT readonly, but it's set
6141 twice, once with emit_move_insn and once via store_field. */
6143 if (mode == BLKmode
6144 && (REG_P (target) || GET_CODE (target) == SUBREG))
6146 rtx object = assign_temp (type, 0, 1, 1);
6147 rtx blk_object = adjust_address (object, BLKmode, 0);
6149 if (bitsize != (HOST_WIDE_INT) GET_MODE_BITSIZE (GET_MODE (target)))
6150 emit_move_insn (object, target);
6152 store_field (blk_object, bitsize, bitpos,
6153 bitregion_start, bitregion_end,
6154 mode, exp, type, alias_set, nontemporal);
6156 emit_move_insn (target, object);
6158 /* We want to return the BLKmode version of the data. */
6159 return blk_object;
6162 if (GET_CODE (target) == CONCAT)
6164 /* We're storing into a struct containing a single __complex. */
6166 gcc_assert (!bitpos);
6167 return store_expr (exp, target, 0, nontemporal);
6170 /* If the structure is in a register or if the component
6171 is a bit field, we cannot use addressing to access it.
6172 Use bit-field techniques or SUBREG to store in it. */
6174 if (mode == VOIDmode
6175 || (mode != BLKmode && ! direct_store[(int) mode]
6176 && GET_MODE_CLASS (mode) != MODE_COMPLEX_INT
6177 && GET_MODE_CLASS (mode) != MODE_COMPLEX_FLOAT)
6178 || REG_P (target)
6179 || GET_CODE (target) == SUBREG
6180 /* If the field isn't aligned enough to store as an ordinary memref,
6181 store it as a bit field. */
6182 || (mode != BLKmode
6183 && ((((MEM_ALIGN (target) < GET_MODE_ALIGNMENT (mode))
6184 || bitpos % GET_MODE_ALIGNMENT (mode))
6185 && SLOW_UNALIGNED_ACCESS (mode, MEM_ALIGN (target)))
6186 || (bitpos % BITS_PER_UNIT != 0)))
6187 /* If the RHS and field are a constant size and the size of the
6188 RHS isn't the same size as the bitfield, we must use bitfield
6189 operations. */
6190 || (bitsize >= 0
6191 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp))) == INTEGER_CST
6192 && compare_tree_int (TYPE_SIZE (TREE_TYPE (exp)), bitsize) != 0)
6193 /* If we are expanding a MEM_REF of a non-BLKmode non-addressable
6194 decl we must use bitfield operations. */
6195 || (bitsize >= 0
6196 && TREE_CODE (exp) == MEM_REF
6197 && TREE_CODE (TREE_OPERAND (exp, 0)) == ADDR_EXPR
6198 && DECL_P (TREE_OPERAND (TREE_OPERAND (exp, 0), 0))
6199 && !TREE_ADDRESSABLE (TREE_OPERAND (TREE_OPERAND (exp, 0),0 ))
6200 && DECL_MODE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0)) != BLKmode))
6202 rtx temp;
6203 gimple nop_def;
6205 /* If EXP is a NOP_EXPR of precision less than its mode, then that
6206 implies a mask operation. If the precision is the same size as
6207 the field we're storing into, that mask is redundant. This is
6208 particularly common with bit field assignments generated by the
6209 C front end. */
6210 nop_def = get_def_for_expr (exp, NOP_EXPR);
6211 if (nop_def)
6213 tree type = TREE_TYPE (exp);
6214 if (INTEGRAL_TYPE_P (type)
6215 && TYPE_PRECISION (type) < GET_MODE_BITSIZE (TYPE_MODE (type))
6216 && bitsize == TYPE_PRECISION (type))
6218 tree op = gimple_assign_rhs1 (nop_def);
6219 type = TREE_TYPE (op);
6220 if (INTEGRAL_TYPE_P (type) && TYPE_PRECISION (type) >= bitsize)
6221 exp = op;
6225 temp = expand_normal (exp);
6227 /* If BITSIZE is narrower than the size of the type of EXP
6228 we will be narrowing TEMP. Normally, what's wanted are the
6229 low-order bits. However, if EXP's type is a record and this is
6230 big-endian machine, we want the upper BITSIZE bits. */
6231 if (BYTES_BIG_ENDIAN && GET_MODE_CLASS (GET_MODE (temp)) == MODE_INT
6232 && bitsize < (HOST_WIDE_INT) GET_MODE_BITSIZE (GET_MODE (temp))
6233 && TREE_CODE (TREE_TYPE (exp)) == RECORD_TYPE)
6234 temp = expand_shift (RSHIFT_EXPR, GET_MODE (temp), temp,
6235 GET_MODE_BITSIZE (GET_MODE (temp)) - bitsize,
6236 NULL_RTX, 1);
6238 /* Unless MODE is VOIDmode or BLKmode, convert TEMP to
6239 MODE. */
6240 if (mode != VOIDmode && mode != BLKmode
6241 && mode != TYPE_MODE (TREE_TYPE (exp)))
6242 temp = convert_modes (mode, TYPE_MODE (TREE_TYPE (exp)), temp, 1);
6244 /* If the modes of TEMP and TARGET are both BLKmode, both
6245 must be in memory and BITPOS must be aligned on a byte
6246 boundary. If so, we simply do a block copy. Likewise
6247 for a BLKmode-like TARGET. */
6248 if (GET_MODE (temp) == BLKmode
6249 && (GET_MODE (target) == BLKmode
6250 || (MEM_P (target)
6251 && GET_MODE_CLASS (GET_MODE (target)) == MODE_INT
6252 && (bitpos % BITS_PER_UNIT) == 0
6253 && (bitsize % BITS_PER_UNIT) == 0)))
6255 gcc_assert (MEM_P (target) && MEM_P (temp)
6256 && (bitpos % BITS_PER_UNIT) == 0);
6258 target = adjust_address (target, VOIDmode, bitpos / BITS_PER_UNIT);
6259 emit_block_move (target, temp,
6260 GEN_INT ((bitsize + BITS_PER_UNIT - 1)
6261 / BITS_PER_UNIT),
6262 BLOCK_OP_NORMAL);
6264 return const0_rtx;
6267 /* Store the value in the bitfield. */
6268 store_bit_field (target, bitsize, bitpos,
6269 bitregion_start, bitregion_end,
6270 mode, temp);
6272 return const0_rtx;
6274 else
6276 /* Now build a reference to just the desired component. */
6277 rtx to_rtx = adjust_address (target, mode, bitpos / BITS_PER_UNIT);
6279 if (to_rtx == target)
6280 to_rtx = copy_rtx (to_rtx);
6282 if (!MEM_SCALAR_P (to_rtx))
6283 MEM_IN_STRUCT_P (to_rtx) = 1;
6284 if (!MEM_KEEP_ALIAS_SET_P (to_rtx) && MEM_ALIAS_SET (to_rtx) != 0)
6285 set_mem_alias_set (to_rtx, alias_set);
6287 return store_expr (exp, to_rtx, 0, nontemporal);
6291 /* Given an expression EXP that may be a COMPONENT_REF, a BIT_FIELD_REF,
6292 an ARRAY_REF, or an ARRAY_RANGE_REF, look for nested operations of these
6293 codes and find the ultimate containing object, which we return.
6295 We set *PBITSIZE to the size in bits that we want, *PBITPOS to the
6296 bit position, and *PUNSIGNEDP to the signedness of the field.
6297 If the position of the field is variable, we store a tree
6298 giving the variable offset (in units) in *POFFSET.
6299 This offset is in addition to the bit position.
6300 If the position is not variable, we store 0 in *POFFSET.
6302 If any of the extraction expressions is volatile,
6303 we store 1 in *PVOLATILEP. Otherwise we don't change that.
6305 If the field is a non-BLKmode bit-field, *PMODE is set to VOIDmode.
6306 Otherwise, it is a mode that can be used to access the field.
6308 If the field describes a variable-sized object, *PMODE is set to
6309 BLKmode and *PBITSIZE is set to -1. An access cannot be made in
6310 this case, but the address of the object can be found.
6312 If KEEP_ALIGNING is true and the target is STRICT_ALIGNMENT, we don't
6313 look through nodes that serve as markers of a greater alignment than
6314 the one that can be deduced from the expression. These nodes make it
6315 possible for front-ends to prevent temporaries from being created by
6316 the middle-end on alignment considerations. For that purpose, the
6317 normal operating mode at high-level is to always pass FALSE so that
6318 the ultimate containing object is really returned; moreover, the
6319 associated predicate handled_component_p will always return TRUE
6320 on these nodes, thus indicating that they are essentially handled
6321 by get_inner_reference. TRUE should only be passed when the caller
6322 is scanning the expression in order to build another representation
6323 and specifically knows how to handle these nodes; as such, this is
6324 the normal operating mode in the RTL expanders. */
6326 tree
6327 get_inner_reference (tree exp, HOST_WIDE_INT *pbitsize,
6328 HOST_WIDE_INT *pbitpos, tree *poffset,
6329 enum machine_mode *pmode, int *punsignedp,
6330 int *pvolatilep, bool keep_aligning)
6332 tree size_tree = 0;
6333 enum machine_mode mode = VOIDmode;
6334 bool blkmode_bitfield = false;
6335 tree offset = size_zero_node;
6336 double_int bit_offset = double_int_zero;
6338 /* First get the mode, signedness, and size. We do this from just the
6339 outermost expression. */
6340 *pbitsize = -1;
6341 if (TREE_CODE (exp) == COMPONENT_REF)
6343 tree field = TREE_OPERAND (exp, 1);
6344 size_tree = DECL_SIZE (field);
6345 if (!DECL_BIT_FIELD (field))
6346 mode = DECL_MODE (field);
6347 else if (DECL_MODE (field) == BLKmode)
6348 blkmode_bitfield = true;
6349 else if (TREE_THIS_VOLATILE (exp)
6350 && flag_strict_volatile_bitfields > 0)
6351 /* Volatile bitfields should be accessed in the mode of the
6352 field's type, not the mode computed based on the bit
6353 size. */
6354 mode = TYPE_MODE (DECL_BIT_FIELD_TYPE (field));
6356 *punsignedp = DECL_UNSIGNED (field);
6358 else if (TREE_CODE (exp) == BIT_FIELD_REF)
6360 size_tree = TREE_OPERAND (exp, 1);
6361 *punsignedp = (! INTEGRAL_TYPE_P (TREE_TYPE (exp))
6362 || TYPE_UNSIGNED (TREE_TYPE (exp)));
6364 /* For vector types, with the correct size of access, use the mode of
6365 inner type. */
6366 if (TREE_CODE (TREE_TYPE (TREE_OPERAND (exp, 0))) == VECTOR_TYPE
6367 && TREE_TYPE (exp) == TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 0)))
6368 && tree_int_cst_equal (size_tree, TYPE_SIZE (TREE_TYPE (exp))))
6369 mode = TYPE_MODE (TREE_TYPE (exp));
6371 else
6373 mode = TYPE_MODE (TREE_TYPE (exp));
6374 *punsignedp = TYPE_UNSIGNED (TREE_TYPE (exp));
6376 if (mode == BLKmode)
6377 size_tree = TYPE_SIZE (TREE_TYPE (exp));
6378 else
6379 *pbitsize = GET_MODE_BITSIZE (mode);
6382 if (size_tree != 0)
6384 if (! host_integerp (size_tree, 1))
6385 mode = BLKmode, *pbitsize = -1;
6386 else
6387 *pbitsize = tree_low_cst (size_tree, 1);
6390 /* Compute cumulative bit-offset for nested component-refs and array-refs,
6391 and find the ultimate containing object. */
6392 while (1)
6394 switch (TREE_CODE (exp))
6396 case BIT_FIELD_REF:
6397 bit_offset
6398 = double_int_add (bit_offset,
6399 tree_to_double_int (TREE_OPERAND (exp, 2)));
6400 break;
6402 case COMPONENT_REF:
6404 tree field = TREE_OPERAND (exp, 1);
6405 tree this_offset = component_ref_field_offset (exp);
6407 /* If this field hasn't been filled in yet, don't go past it.
6408 This should only happen when folding expressions made during
6409 type construction. */
6410 if (this_offset == 0)
6411 break;
6413 offset = size_binop (PLUS_EXPR, offset, this_offset);
6414 bit_offset = double_int_add (bit_offset,
6415 tree_to_double_int
6416 (DECL_FIELD_BIT_OFFSET (field)));
6418 /* ??? Right now we don't do anything with DECL_OFFSET_ALIGN. */
6420 break;
6422 case ARRAY_REF:
6423 case ARRAY_RANGE_REF:
6425 tree index = TREE_OPERAND (exp, 1);
6426 tree low_bound = array_ref_low_bound (exp);
6427 tree unit_size = array_ref_element_size (exp);
6429 /* We assume all arrays have sizes that are a multiple of a byte.
6430 First subtract the lower bound, if any, in the type of the
6431 index, then convert to sizetype and multiply by the size of
6432 the array element. */
6433 if (! integer_zerop (low_bound))
6434 index = fold_build2 (MINUS_EXPR, TREE_TYPE (index),
6435 index, low_bound);
6437 offset = size_binop (PLUS_EXPR, offset,
6438 size_binop (MULT_EXPR,
6439 fold_convert (sizetype, index),
6440 unit_size));
6442 break;
6444 case REALPART_EXPR:
6445 break;
6447 case IMAGPART_EXPR:
6448 bit_offset = double_int_add (bit_offset,
6449 uhwi_to_double_int (*pbitsize));
6450 break;
6452 case VIEW_CONVERT_EXPR:
6453 if (keep_aligning && STRICT_ALIGNMENT
6454 && (TYPE_ALIGN (TREE_TYPE (exp))
6455 > TYPE_ALIGN (TREE_TYPE (TREE_OPERAND (exp, 0))))
6456 && (TYPE_ALIGN (TREE_TYPE (TREE_OPERAND (exp, 0)))
6457 < BIGGEST_ALIGNMENT)
6458 && (TYPE_ALIGN_OK (TREE_TYPE (exp))
6459 || TYPE_ALIGN_OK (TREE_TYPE (TREE_OPERAND (exp, 0)))))
6460 goto done;
6461 break;
6463 case MEM_REF:
6464 /* Hand back the decl for MEM[&decl, off]. */
6465 if (TREE_CODE (TREE_OPERAND (exp, 0)) == ADDR_EXPR)
6467 tree off = TREE_OPERAND (exp, 1);
6468 if (!integer_zerop (off))
6470 double_int boff, coff = mem_ref_offset (exp);
6471 boff = double_int_lshift (coff,
6472 BITS_PER_UNIT == 8
6473 ? 3 : exact_log2 (BITS_PER_UNIT),
6474 HOST_BITS_PER_DOUBLE_INT, true);
6475 bit_offset = double_int_add (bit_offset, boff);
6477 exp = TREE_OPERAND (TREE_OPERAND (exp, 0), 0);
6479 goto done;
6481 default:
6482 goto done;
6485 /* If any reference in the chain is volatile, the effect is volatile. */
6486 if (TREE_THIS_VOLATILE (exp))
6487 *pvolatilep = 1;
6489 exp = TREE_OPERAND (exp, 0);
6491 done:
6493 /* If OFFSET is constant, see if we can return the whole thing as a
6494 constant bit position. Make sure to handle overflow during
6495 this conversion. */
6496 if (host_integerp (offset, 0))
6498 double_int tem = double_int_lshift (tree_to_double_int (offset),
6499 BITS_PER_UNIT == 8
6500 ? 3 : exact_log2 (BITS_PER_UNIT),
6501 HOST_BITS_PER_DOUBLE_INT, true);
6502 tem = double_int_add (tem, bit_offset);
6503 if (double_int_fits_in_shwi_p (tem))
6505 *pbitpos = double_int_to_shwi (tem);
6506 *poffset = offset = NULL_TREE;
6510 /* Otherwise, split it up. */
6511 if (offset)
6513 *pbitpos = double_int_to_shwi (bit_offset);
6514 *poffset = offset;
6517 /* We can use BLKmode for a byte-aligned BLKmode bitfield. */
6518 if (mode == VOIDmode
6519 && blkmode_bitfield
6520 && (*pbitpos % BITS_PER_UNIT) == 0
6521 && (*pbitsize % BITS_PER_UNIT) == 0)
6522 *pmode = BLKmode;
6523 else
6524 *pmode = mode;
6526 return exp;
6529 /* Given an expression EXP that may be a COMPONENT_REF, an ARRAY_REF or an
6530 ARRAY_RANGE_REF, look for whether EXP or any nested component-refs within
6531 EXP is marked as PACKED. */
6533 bool
6534 contains_packed_reference (const_tree exp)
6536 bool packed_p = false;
6538 while (1)
6540 switch (TREE_CODE (exp))
6542 case COMPONENT_REF:
6544 tree field = TREE_OPERAND (exp, 1);
6545 packed_p = DECL_PACKED (field)
6546 || TYPE_PACKED (TREE_TYPE (field))
6547 || TYPE_PACKED (TREE_TYPE (exp));
6548 if (packed_p)
6549 goto done;
6551 break;
6553 case BIT_FIELD_REF:
6554 case ARRAY_REF:
6555 case ARRAY_RANGE_REF:
6556 case REALPART_EXPR:
6557 case IMAGPART_EXPR:
6558 case VIEW_CONVERT_EXPR:
6559 break;
6561 default:
6562 goto done;
6564 exp = TREE_OPERAND (exp, 0);
6566 done:
6567 return packed_p;
6570 /* Return a tree of sizetype representing the size, in bytes, of the element
6571 of EXP, an ARRAY_REF or an ARRAY_RANGE_REF. */
6573 tree
6574 array_ref_element_size (tree exp)
6576 tree aligned_size = TREE_OPERAND (exp, 3);
6577 tree elmt_type = TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 0)));
6578 location_t loc = EXPR_LOCATION (exp);
6580 /* If a size was specified in the ARRAY_REF, it's the size measured
6581 in alignment units of the element type. So multiply by that value. */
6582 if (aligned_size)
6584 /* ??? tree_ssa_useless_type_conversion will eliminate casts to
6585 sizetype from another type of the same width and signedness. */
6586 if (TREE_TYPE (aligned_size) != sizetype)
6587 aligned_size = fold_convert_loc (loc, sizetype, aligned_size);
6588 return size_binop_loc (loc, MULT_EXPR, aligned_size,
6589 size_int (TYPE_ALIGN_UNIT (elmt_type)));
6592 /* Otherwise, take the size from that of the element type. Substitute
6593 any PLACEHOLDER_EXPR that we have. */
6594 else
6595 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_SIZE_UNIT (elmt_type), exp);
6598 /* Return a tree representing the lower bound of the array mentioned in
6599 EXP, an ARRAY_REF or an ARRAY_RANGE_REF. */
6601 tree
6602 array_ref_low_bound (tree exp)
6604 tree domain_type = TYPE_DOMAIN (TREE_TYPE (TREE_OPERAND (exp, 0)));
6606 /* If a lower bound is specified in EXP, use it. */
6607 if (TREE_OPERAND (exp, 2))
6608 return TREE_OPERAND (exp, 2);
6610 /* Otherwise, if there is a domain type and it has a lower bound, use it,
6611 substituting for a PLACEHOLDER_EXPR as needed. */
6612 if (domain_type && TYPE_MIN_VALUE (domain_type))
6613 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_MIN_VALUE (domain_type), exp);
6615 /* Otherwise, return a zero of the appropriate type. */
6616 return build_int_cst (TREE_TYPE (TREE_OPERAND (exp, 1)), 0);
6619 /* Return a tree representing the upper bound of the array mentioned in
6620 EXP, an ARRAY_REF or an ARRAY_RANGE_REF. */
6622 tree
6623 array_ref_up_bound (tree exp)
6625 tree domain_type = TYPE_DOMAIN (TREE_TYPE (TREE_OPERAND (exp, 0)));
6627 /* If there is a domain type and it has an upper bound, use it, substituting
6628 for a PLACEHOLDER_EXPR as needed. */
6629 if (domain_type && TYPE_MAX_VALUE (domain_type))
6630 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_MAX_VALUE (domain_type), exp);
6632 /* Otherwise fail. */
6633 return NULL_TREE;
6636 /* Return a tree representing the offset, in bytes, of the field referenced
6637 by EXP. This does not include any offset in DECL_FIELD_BIT_OFFSET. */
6639 tree
6640 component_ref_field_offset (tree exp)
6642 tree aligned_offset = TREE_OPERAND (exp, 2);
6643 tree field = TREE_OPERAND (exp, 1);
6644 location_t loc = EXPR_LOCATION (exp);
6646 /* If an offset was specified in the COMPONENT_REF, it's the offset measured
6647 in units of DECL_OFFSET_ALIGN / BITS_PER_UNIT. So multiply by that
6648 value. */
6649 if (aligned_offset)
6651 /* ??? tree_ssa_useless_type_conversion will eliminate casts to
6652 sizetype from another type of the same width and signedness. */
6653 if (TREE_TYPE (aligned_offset) != sizetype)
6654 aligned_offset = fold_convert_loc (loc, sizetype, aligned_offset);
6655 return size_binop_loc (loc, MULT_EXPR, aligned_offset,
6656 size_int (DECL_OFFSET_ALIGN (field)
6657 / BITS_PER_UNIT));
6660 /* Otherwise, take the offset from that of the field. Substitute
6661 any PLACEHOLDER_EXPR that we have. */
6662 else
6663 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (DECL_FIELD_OFFSET (field), exp);
6666 /* Alignment in bits the TARGET of an assignment may be assumed to have. */
6668 static unsigned HOST_WIDE_INT
6669 target_align (const_tree target)
6671 /* We might have a chain of nested references with intermediate misaligning
6672 bitfields components, so need to recurse to find out. */
6674 unsigned HOST_WIDE_INT this_align, outer_align;
6676 switch (TREE_CODE (target))
6678 case BIT_FIELD_REF:
6679 return 1;
6681 case COMPONENT_REF:
6682 this_align = DECL_ALIGN (TREE_OPERAND (target, 1));
6683 outer_align = target_align (TREE_OPERAND (target, 0));
6684 return MIN (this_align, outer_align);
6686 case ARRAY_REF:
6687 case ARRAY_RANGE_REF:
6688 this_align = TYPE_ALIGN (TREE_TYPE (target));
6689 outer_align = target_align (TREE_OPERAND (target, 0));
6690 return MIN (this_align, outer_align);
6692 CASE_CONVERT:
6693 case NON_LVALUE_EXPR:
6694 case VIEW_CONVERT_EXPR:
6695 this_align = TYPE_ALIGN (TREE_TYPE (target));
6696 outer_align = target_align (TREE_OPERAND (target, 0));
6697 return MAX (this_align, outer_align);
6699 default:
6700 return TYPE_ALIGN (TREE_TYPE (target));
6705 /* Given an rtx VALUE that may contain additions and multiplications, return
6706 an equivalent value that just refers to a register, memory, or constant.
6707 This is done by generating instructions to perform the arithmetic and
6708 returning a pseudo-register containing the value.
6710 The returned value may be a REG, SUBREG, MEM or constant. */
6713 force_operand (rtx value, rtx target)
6715 rtx op1, op2;
6716 /* Use subtarget as the target for operand 0 of a binary operation. */
6717 rtx subtarget = get_subtarget (target);
6718 enum rtx_code code = GET_CODE (value);
6720 /* Check for subreg applied to an expression produced by loop optimizer. */
6721 if (code == SUBREG
6722 && !REG_P (SUBREG_REG (value))
6723 && !MEM_P (SUBREG_REG (value)))
6725 value
6726 = simplify_gen_subreg (GET_MODE (value),
6727 force_reg (GET_MODE (SUBREG_REG (value)),
6728 force_operand (SUBREG_REG (value),
6729 NULL_RTX)),
6730 GET_MODE (SUBREG_REG (value)),
6731 SUBREG_BYTE (value));
6732 code = GET_CODE (value);
6735 /* Check for a PIC address load. */
6736 if ((code == PLUS || code == MINUS)
6737 && XEXP (value, 0) == pic_offset_table_rtx
6738 && (GET_CODE (XEXP (value, 1)) == SYMBOL_REF
6739 || GET_CODE (XEXP (value, 1)) == LABEL_REF
6740 || GET_CODE (XEXP (value, 1)) == CONST))
6742 if (!subtarget)
6743 subtarget = gen_reg_rtx (GET_MODE (value));
6744 emit_move_insn (subtarget, value);
6745 return subtarget;
6748 if (ARITHMETIC_P (value))
6750 op2 = XEXP (value, 1);
6751 if (!CONSTANT_P (op2) && !(REG_P (op2) && op2 != subtarget))
6752 subtarget = 0;
6753 if (code == MINUS && CONST_INT_P (op2))
6755 code = PLUS;
6756 op2 = negate_rtx (GET_MODE (value), op2);
6759 /* Check for an addition with OP2 a constant integer and our first
6760 operand a PLUS of a virtual register and something else. In that
6761 case, we want to emit the sum of the virtual register and the
6762 constant first and then add the other value. This allows virtual
6763 register instantiation to simply modify the constant rather than
6764 creating another one around this addition. */
6765 if (code == PLUS && CONST_INT_P (op2)
6766 && GET_CODE (XEXP (value, 0)) == PLUS
6767 && REG_P (XEXP (XEXP (value, 0), 0))
6768 && REGNO (XEXP (XEXP (value, 0), 0)) >= FIRST_VIRTUAL_REGISTER
6769 && REGNO (XEXP (XEXP (value, 0), 0)) <= LAST_VIRTUAL_REGISTER)
6771 rtx temp = expand_simple_binop (GET_MODE (value), code,
6772 XEXP (XEXP (value, 0), 0), op2,
6773 subtarget, 0, OPTAB_LIB_WIDEN);
6774 return expand_simple_binop (GET_MODE (value), code, temp,
6775 force_operand (XEXP (XEXP (value,
6776 0), 1), 0),
6777 target, 0, OPTAB_LIB_WIDEN);
6780 op1 = force_operand (XEXP (value, 0), subtarget);
6781 op2 = force_operand (op2, NULL_RTX);
6782 switch (code)
6784 case MULT:
6785 return expand_mult (GET_MODE (value), op1, op2, target, 1);
6786 case DIV:
6787 if (!INTEGRAL_MODE_P (GET_MODE (value)))
6788 return expand_simple_binop (GET_MODE (value), code, op1, op2,
6789 target, 1, OPTAB_LIB_WIDEN);
6790 else
6791 return expand_divmod (0,
6792 FLOAT_MODE_P (GET_MODE (value))
6793 ? RDIV_EXPR : TRUNC_DIV_EXPR,
6794 GET_MODE (value), op1, op2, target, 0);
6795 case MOD:
6796 return expand_divmod (1, TRUNC_MOD_EXPR, GET_MODE (value), op1, op2,
6797 target, 0);
6798 case UDIV:
6799 return expand_divmod (0, TRUNC_DIV_EXPR, GET_MODE (value), op1, op2,
6800 target, 1);
6801 case UMOD:
6802 return expand_divmod (1, TRUNC_MOD_EXPR, GET_MODE (value), op1, op2,
6803 target, 1);
6804 case ASHIFTRT:
6805 return expand_simple_binop (GET_MODE (value), code, op1, op2,
6806 target, 0, OPTAB_LIB_WIDEN);
6807 default:
6808 return expand_simple_binop (GET_MODE (value), code, op1, op2,
6809 target, 1, OPTAB_LIB_WIDEN);
6812 if (UNARY_P (value))
6814 if (!target)
6815 target = gen_reg_rtx (GET_MODE (value));
6816 op1 = force_operand (XEXP (value, 0), NULL_RTX);
6817 switch (code)
6819 case ZERO_EXTEND:
6820 case SIGN_EXTEND:
6821 case TRUNCATE:
6822 case FLOAT_EXTEND:
6823 case FLOAT_TRUNCATE:
6824 convert_move (target, op1, code == ZERO_EXTEND);
6825 return target;
6827 case FIX:
6828 case UNSIGNED_FIX:
6829 expand_fix (target, op1, code == UNSIGNED_FIX);
6830 return target;
6832 case FLOAT:
6833 case UNSIGNED_FLOAT:
6834 expand_float (target, op1, code == UNSIGNED_FLOAT);
6835 return target;
6837 default:
6838 return expand_simple_unop (GET_MODE (value), code, op1, target, 0);
6842 #ifdef INSN_SCHEDULING
6843 /* On machines that have insn scheduling, we want all memory reference to be
6844 explicit, so we need to deal with such paradoxical SUBREGs. */
6845 if (paradoxical_subreg_p (value) && MEM_P (SUBREG_REG (value)))
6846 value
6847 = simplify_gen_subreg (GET_MODE (value),
6848 force_reg (GET_MODE (SUBREG_REG (value)),
6849 force_operand (SUBREG_REG (value),
6850 NULL_RTX)),
6851 GET_MODE (SUBREG_REG (value)),
6852 SUBREG_BYTE (value));
6853 #endif
6855 return value;
6858 /* Subroutine of expand_expr: return nonzero iff there is no way that
6859 EXP can reference X, which is being modified. TOP_P is nonzero if this
6860 call is going to be used to determine whether we need a temporary
6861 for EXP, as opposed to a recursive call to this function.
6863 It is always safe for this routine to return zero since it merely
6864 searches for optimization opportunities. */
6867 safe_from_p (const_rtx x, tree exp, int top_p)
6869 rtx exp_rtl = 0;
6870 int i, nops;
6872 if (x == 0
6873 /* If EXP has varying size, we MUST use a target since we currently
6874 have no way of allocating temporaries of variable size
6875 (except for arrays that have TYPE_ARRAY_MAX_SIZE set).
6876 So we assume here that something at a higher level has prevented a
6877 clash. This is somewhat bogus, but the best we can do. Only
6878 do this when X is BLKmode and when we are at the top level. */
6879 || (top_p && TREE_TYPE (exp) != 0 && COMPLETE_TYPE_P (TREE_TYPE (exp))
6880 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp))) != INTEGER_CST
6881 && (TREE_CODE (TREE_TYPE (exp)) != ARRAY_TYPE
6882 || TYPE_ARRAY_MAX_SIZE (TREE_TYPE (exp)) == NULL_TREE
6883 || TREE_CODE (TYPE_ARRAY_MAX_SIZE (TREE_TYPE (exp)))
6884 != INTEGER_CST)
6885 && GET_MODE (x) == BLKmode)
6886 /* If X is in the outgoing argument area, it is always safe. */
6887 || (MEM_P (x)
6888 && (XEXP (x, 0) == virtual_outgoing_args_rtx
6889 || (GET_CODE (XEXP (x, 0)) == PLUS
6890 && XEXP (XEXP (x, 0), 0) == virtual_outgoing_args_rtx))))
6891 return 1;
6893 /* If this is a subreg of a hard register, declare it unsafe, otherwise,
6894 find the underlying pseudo. */
6895 if (GET_CODE (x) == SUBREG)
6897 x = SUBREG_REG (x);
6898 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
6899 return 0;
6902 /* Now look at our tree code and possibly recurse. */
6903 switch (TREE_CODE_CLASS (TREE_CODE (exp)))
6905 case tcc_declaration:
6906 exp_rtl = DECL_RTL_IF_SET (exp);
6907 break;
6909 case tcc_constant:
6910 return 1;
6912 case tcc_exceptional:
6913 if (TREE_CODE (exp) == TREE_LIST)
6915 while (1)
6917 if (TREE_VALUE (exp) && !safe_from_p (x, TREE_VALUE (exp), 0))
6918 return 0;
6919 exp = TREE_CHAIN (exp);
6920 if (!exp)
6921 return 1;
6922 if (TREE_CODE (exp) != TREE_LIST)
6923 return safe_from_p (x, exp, 0);
6926 else if (TREE_CODE (exp) == CONSTRUCTOR)
6928 constructor_elt *ce;
6929 unsigned HOST_WIDE_INT idx;
6931 FOR_EACH_VEC_ELT (constructor_elt, CONSTRUCTOR_ELTS (exp), idx, ce)
6932 if ((ce->index != NULL_TREE && !safe_from_p (x, ce->index, 0))
6933 || !safe_from_p (x, ce->value, 0))
6934 return 0;
6935 return 1;
6937 else if (TREE_CODE (exp) == ERROR_MARK)
6938 return 1; /* An already-visited SAVE_EXPR? */
6939 else
6940 return 0;
6942 case tcc_statement:
6943 /* The only case we look at here is the DECL_INITIAL inside a
6944 DECL_EXPR. */
6945 return (TREE_CODE (exp) != DECL_EXPR
6946 || TREE_CODE (DECL_EXPR_DECL (exp)) != VAR_DECL
6947 || !DECL_INITIAL (DECL_EXPR_DECL (exp))
6948 || safe_from_p (x, DECL_INITIAL (DECL_EXPR_DECL (exp)), 0));
6950 case tcc_binary:
6951 case tcc_comparison:
6952 if (!safe_from_p (x, TREE_OPERAND (exp, 1), 0))
6953 return 0;
6954 /* Fall through. */
6956 case tcc_unary:
6957 return safe_from_p (x, TREE_OPERAND (exp, 0), 0);
6959 case tcc_expression:
6960 case tcc_reference:
6961 case tcc_vl_exp:
6962 /* Now do code-specific tests. EXP_RTL is set to any rtx we find in
6963 the expression. If it is set, we conflict iff we are that rtx or
6964 both are in memory. Otherwise, we check all operands of the
6965 expression recursively. */
6967 switch (TREE_CODE (exp))
6969 case ADDR_EXPR:
6970 /* If the operand is static or we are static, we can't conflict.
6971 Likewise if we don't conflict with the operand at all. */
6972 if (staticp (TREE_OPERAND (exp, 0))
6973 || TREE_STATIC (exp)
6974 || safe_from_p (x, TREE_OPERAND (exp, 0), 0))
6975 return 1;
6977 /* Otherwise, the only way this can conflict is if we are taking
6978 the address of a DECL a that address if part of X, which is
6979 very rare. */
6980 exp = TREE_OPERAND (exp, 0);
6981 if (DECL_P (exp))
6983 if (!DECL_RTL_SET_P (exp)
6984 || !MEM_P (DECL_RTL (exp)))
6985 return 0;
6986 else
6987 exp_rtl = XEXP (DECL_RTL (exp), 0);
6989 break;
6991 case MEM_REF:
6992 if (MEM_P (x)
6993 && alias_sets_conflict_p (MEM_ALIAS_SET (x),
6994 get_alias_set (exp)))
6995 return 0;
6996 break;
6998 case CALL_EXPR:
6999 /* Assume that the call will clobber all hard registers and
7000 all of memory. */
7001 if ((REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
7002 || MEM_P (x))
7003 return 0;
7004 break;
7006 case WITH_CLEANUP_EXPR:
7007 case CLEANUP_POINT_EXPR:
7008 /* Lowered by gimplify.c. */
7009 gcc_unreachable ();
7011 case SAVE_EXPR:
7012 return safe_from_p (x, TREE_OPERAND (exp, 0), 0);
7014 default:
7015 break;
7018 /* If we have an rtx, we do not need to scan our operands. */
7019 if (exp_rtl)
7020 break;
7022 nops = TREE_OPERAND_LENGTH (exp);
7023 for (i = 0; i < nops; i++)
7024 if (TREE_OPERAND (exp, i) != 0
7025 && ! safe_from_p (x, TREE_OPERAND (exp, i), 0))
7026 return 0;
7028 break;
7030 case tcc_type:
7031 /* Should never get a type here. */
7032 gcc_unreachable ();
7035 /* If we have an rtl, find any enclosed object. Then see if we conflict
7036 with it. */
7037 if (exp_rtl)
7039 if (GET_CODE (exp_rtl) == SUBREG)
7041 exp_rtl = SUBREG_REG (exp_rtl);
7042 if (REG_P (exp_rtl)
7043 && REGNO (exp_rtl) < FIRST_PSEUDO_REGISTER)
7044 return 0;
7047 /* If the rtl is X, then it is not safe. Otherwise, it is unless both
7048 are memory and they conflict. */
7049 return ! (rtx_equal_p (x, exp_rtl)
7050 || (MEM_P (x) && MEM_P (exp_rtl)
7051 && true_dependence (exp_rtl, VOIDmode, x,
7052 rtx_addr_varies_p)));
7055 /* If we reach here, it is safe. */
7056 return 1;
7060 /* Return the highest power of two that EXP is known to be a multiple of.
7061 This is used in updating alignment of MEMs in array references. */
7063 unsigned HOST_WIDE_INT
7064 highest_pow2_factor (const_tree exp)
7066 unsigned HOST_WIDE_INT c0, c1;
7068 switch (TREE_CODE (exp))
7070 case INTEGER_CST:
7071 /* We can find the lowest bit that's a one. If the low
7072 HOST_BITS_PER_WIDE_INT bits are zero, return BIGGEST_ALIGNMENT.
7073 We need to handle this case since we can find it in a COND_EXPR,
7074 a MIN_EXPR, or a MAX_EXPR. If the constant overflows, we have an
7075 erroneous program, so return BIGGEST_ALIGNMENT to avoid any
7076 later ICE. */
7077 if (TREE_OVERFLOW (exp))
7078 return BIGGEST_ALIGNMENT;
7079 else
7081 /* Note: tree_low_cst is intentionally not used here,
7082 we don't care about the upper bits. */
7083 c0 = TREE_INT_CST_LOW (exp);
7084 c0 &= -c0;
7085 return c0 ? c0 : BIGGEST_ALIGNMENT;
7087 break;
7089 case PLUS_EXPR: case MINUS_EXPR: case MIN_EXPR: case MAX_EXPR:
7090 c0 = highest_pow2_factor (TREE_OPERAND (exp, 0));
7091 c1 = highest_pow2_factor (TREE_OPERAND (exp, 1));
7092 return MIN (c0, c1);
7094 case MULT_EXPR:
7095 c0 = highest_pow2_factor (TREE_OPERAND (exp, 0));
7096 c1 = highest_pow2_factor (TREE_OPERAND (exp, 1));
7097 return c0 * c1;
7099 case ROUND_DIV_EXPR: case TRUNC_DIV_EXPR: case FLOOR_DIV_EXPR:
7100 case CEIL_DIV_EXPR:
7101 if (integer_pow2p (TREE_OPERAND (exp, 1))
7102 && host_integerp (TREE_OPERAND (exp, 1), 1))
7104 c0 = highest_pow2_factor (TREE_OPERAND (exp, 0));
7105 c1 = tree_low_cst (TREE_OPERAND (exp, 1), 1);
7106 return MAX (1, c0 / c1);
7108 break;
7110 case BIT_AND_EXPR:
7111 /* The highest power of two of a bit-and expression is the maximum of
7112 that of its operands. We typically get here for a complex LHS and
7113 a constant negative power of two on the RHS to force an explicit
7114 alignment, so don't bother looking at the LHS. */
7115 return highest_pow2_factor (TREE_OPERAND (exp, 1));
7117 CASE_CONVERT:
7118 case SAVE_EXPR:
7119 return highest_pow2_factor (TREE_OPERAND (exp, 0));
7121 case COMPOUND_EXPR:
7122 return highest_pow2_factor (TREE_OPERAND (exp, 1));
7124 case COND_EXPR:
7125 c0 = highest_pow2_factor (TREE_OPERAND (exp, 1));
7126 c1 = highest_pow2_factor (TREE_OPERAND (exp, 2));
7127 return MIN (c0, c1);
7129 default:
7130 break;
7133 return 1;
7136 /* Similar, except that the alignment requirements of TARGET are
7137 taken into account. Assume it is at least as aligned as its
7138 type, unless it is a COMPONENT_REF in which case the layout of
7139 the structure gives the alignment. */
7141 static unsigned HOST_WIDE_INT
7142 highest_pow2_factor_for_target (const_tree target, const_tree exp)
7144 unsigned HOST_WIDE_INT talign = target_align (target) / BITS_PER_UNIT;
7145 unsigned HOST_WIDE_INT factor = highest_pow2_factor (exp);
7147 return MAX (factor, talign);
7150 /* Subroutine of expand_expr. Expand the two operands of a binary
7151 expression EXP0 and EXP1 placing the results in OP0 and OP1.
7152 The value may be stored in TARGET if TARGET is nonzero. The
7153 MODIFIER argument is as documented by expand_expr. */
7155 static void
7156 expand_operands (tree exp0, tree exp1, rtx target, rtx *op0, rtx *op1,
7157 enum expand_modifier modifier)
7159 if (! safe_from_p (target, exp1, 1))
7160 target = 0;
7161 if (operand_equal_p (exp0, exp1, 0))
7163 *op0 = expand_expr (exp0, target, VOIDmode, modifier);
7164 *op1 = copy_rtx (*op0);
7166 else
7168 /* If we need to preserve evaluation order, copy exp0 into its own
7169 temporary variable so that it can't be clobbered by exp1. */
7170 if (flag_evaluation_order && TREE_SIDE_EFFECTS (exp1))
7171 exp0 = save_expr (exp0);
7172 *op0 = expand_expr (exp0, target, VOIDmode, modifier);
7173 *op1 = expand_expr (exp1, NULL_RTX, VOIDmode, modifier);
7178 /* Return a MEM that contains constant EXP. DEFER is as for
7179 output_constant_def and MODIFIER is as for expand_expr. */
7181 static rtx
7182 expand_expr_constant (tree exp, int defer, enum expand_modifier modifier)
7184 rtx mem;
7186 mem = output_constant_def (exp, defer);
7187 if (modifier != EXPAND_INITIALIZER)
7188 mem = use_anchored_address (mem);
7189 return mem;
7192 /* A subroutine of expand_expr_addr_expr. Evaluate the address of EXP.
7193 The TARGET, TMODE and MODIFIER arguments are as for expand_expr. */
7195 static rtx
7196 expand_expr_addr_expr_1 (tree exp, rtx target, enum machine_mode tmode,
7197 enum expand_modifier modifier, addr_space_t as)
7199 rtx result, subtarget;
7200 tree inner, offset;
7201 HOST_WIDE_INT bitsize, bitpos;
7202 int volatilep, unsignedp;
7203 enum machine_mode mode1;
7205 /* If we are taking the address of a constant and are at the top level,
7206 we have to use output_constant_def since we can't call force_const_mem
7207 at top level. */
7208 /* ??? This should be considered a front-end bug. We should not be
7209 generating ADDR_EXPR of something that isn't an LVALUE. The only
7210 exception here is STRING_CST. */
7211 if (CONSTANT_CLASS_P (exp))
7212 return XEXP (expand_expr_constant (exp, 0, modifier), 0);
7214 /* Everything must be something allowed by is_gimple_addressable. */
7215 switch (TREE_CODE (exp))
7217 case INDIRECT_REF:
7218 /* This case will happen via recursion for &a->b. */
7219 return expand_expr (TREE_OPERAND (exp, 0), target, tmode, modifier);
7221 case MEM_REF:
7223 tree tem = TREE_OPERAND (exp, 0);
7224 if (!integer_zerop (TREE_OPERAND (exp, 1)))
7225 tem = build2 (POINTER_PLUS_EXPR, TREE_TYPE (TREE_OPERAND (exp, 1)),
7226 tem,
7227 double_int_to_tree (sizetype, mem_ref_offset (exp)));
7228 return expand_expr (tem, target, tmode, modifier);
7231 case CONST_DECL:
7232 /* Expand the initializer like constants above. */
7233 return XEXP (expand_expr_constant (DECL_INITIAL (exp), 0, modifier), 0);
7235 case REALPART_EXPR:
7236 /* The real part of the complex number is always first, therefore
7237 the address is the same as the address of the parent object. */
7238 offset = 0;
7239 bitpos = 0;
7240 inner = TREE_OPERAND (exp, 0);
7241 break;
7243 case IMAGPART_EXPR:
7244 /* The imaginary part of the complex number is always second.
7245 The expression is therefore always offset by the size of the
7246 scalar type. */
7247 offset = 0;
7248 bitpos = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (exp)));
7249 inner = TREE_OPERAND (exp, 0);
7250 break;
7252 default:
7253 /* If the object is a DECL, then expand it for its rtl. Don't bypass
7254 expand_expr, as that can have various side effects; LABEL_DECLs for
7255 example, may not have their DECL_RTL set yet. Expand the rtl of
7256 CONSTRUCTORs too, which should yield a memory reference for the
7257 constructor's contents. Assume language specific tree nodes can
7258 be expanded in some interesting way. */
7259 gcc_assert (TREE_CODE (exp) < LAST_AND_UNUSED_TREE_CODE);
7260 if (DECL_P (exp)
7261 || TREE_CODE (exp) == CONSTRUCTOR
7262 || TREE_CODE (exp) == COMPOUND_LITERAL_EXPR)
7264 result = expand_expr (exp, target, tmode,
7265 modifier == EXPAND_INITIALIZER
7266 ? EXPAND_INITIALIZER : EXPAND_CONST_ADDRESS);
7268 /* If the DECL isn't in memory, then the DECL wasn't properly
7269 marked TREE_ADDRESSABLE, which will be either a front-end
7270 or a tree optimizer bug. */
7272 if (TREE_ADDRESSABLE (exp)
7273 && ! MEM_P (result)
7274 && ! targetm.calls.allocate_stack_slots_for_args())
7276 error ("local frame unavailable (naked function?)");
7277 return result;
7279 else
7280 gcc_assert (MEM_P (result));
7281 result = XEXP (result, 0);
7283 /* ??? Is this needed anymore? */
7284 if (DECL_P (exp) && !TREE_USED (exp) == 0)
7286 assemble_external (exp);
7287 TREE_USED (exp) = 1;
7290 if (modifier != EXPAND_INITIALIZER
7291 && modifier != EXPAND_CONST_ADDRESS)
7292 result = force_operand (result, target);
7293 return result;
7296 /* Pass FALSE as the last argument to get_inner_reference although
7297 we are expanding to RTL. The rationale is that we know how to
7298 handle "aligning nodes" here: we can just bypass them because
7299 they won't change the final object whose address will be returned
7300 (they actually exist only for that purpose). */
7301 inner = get_inner_reference (exp, &bitsize, &bitpos, &offset,
7302 &mode1, &unsignedp, &volatilep, false);
7303 break;
7306 /* We must have made progress. */
7307 gcc_assert (inner != exp);
7309 subtarget = offset || bitpos ? NULL_RTX : target;
7310 /* For VIEW_CONVERT_EXPR, where the outer alignment is bigger than
7311 inner alignment, force the inner to be sufficiently aligned. */
7312 if (CONSTANT_CLASS_P (inner)
7313 && TYPE_ALIGN (TREE_TYPE (inner)) < TYPE_ALIGN (TREE_TYPE (exp)))
7315 inner = copy_node (inner);
7316 TREE_TYPE (inner) = copy_node (TREE_TYPE (inner));
7317 TYPE_ALIGN (TREE_TYPE (inner)) = TYPE_ALIGN (TREE_TYPE (exp));
7318 TYPE_USER_ALIGN (TREE_TYPE (inner)) = 1;
7320 result = expand_expr_addr_expr_1 (inner, subtarget, tmode, modifier, as);
7322 if (offset)
7324 rtx tmp;
7326 if (modifier != EXPAND_NORMAL)
7327 result = force_operand (result, NULL);
7328 tmp = expand_expr (offset, NULL_RTX, tmode,
7329 modifier == EXPAND_INITIALIZER
7330 ? EXPAND_INITIALIZER : EXPAND_NORMAL);
7332 result = convert_memory_address_addr_space (tmode, result, as);
7333 tmp = convert_memory_address_addr_space (tmode, tmp, as);
7335 if (modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER)
7336 result = simplify_gen_binary (PLUS, tmode, result, tmp);
7337 else
7339 subtarget = bitpos ? NULL_RTX : target;
7340 result = expand_simple_binop (tmode, PLUS, result, tmp, subtarget,
7341 1, OPTAB_LIB_WIDEN);
7345 if (bitpos)
7347 /* Someone beforehand should have rejected taking the address
7348 of such an object. */
7349 gcc_assert ((bitpos % BITS_PER_UNIT) == 0);
7351 result = plus_constant (result, bitpos / BITS_PER_UNIT);
7352 if (modifier < EXPAND_SUM)
7353 result = force_operand (result, target);
7356 return result;
7359 /* A subroutine of expand_expr. Evaluate EXP, which is an ADDR_EXPR.
7360 The TARGET, TMODE and MODIFIER arguments are as for expand_expr. */
7362 static rtx
7363 expand_expr_addr_expr (tree exp, rtx target, enum machine_mode tmode,
7364 enum expand_modifier modifier)
7366 addr_space_t as = ADDR_SPACE_GENERIC;
7367 enum machine_mode address_mode = Pmode;
7368 enum machine_mode pointer_mode = ptr_mode;
7369 enum machine_mode rmode;
7370 rtx result;
7372 /* Target mode of VOIDmode says "whatever's natural". */
7373 if (tmode == VOIDmode)
7374 tmode = TYPE_MODE (TREE_TYPE (exp));
7376 if (POINTER_TYPE_P (TREE_TYPE (exp)))
7378 as = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (exp)));
7379 address_mode = targetm.addr_space.address_mode (as);
7380 pointer_mode = targetm.addr_space.pointer_mode (as);
7383 /* We can get called with some Weird Things if the user does silliness
7384 like "(short) &a". In that case, convert_memory_address won't do
7385 the right thing, so ignore the given target mode. */
7386 if (tmode != address_mode && tmode != pointer_mode)
7387 tmode = address_mode;
7389 result = expand_expr_addr_expr_1 (TREE_OPERAND (exp, 0), target,
7390 tmode, modifier, as);
7392 /* Despite expand_expr claims concerning ignoring TMODE when not
7393 strictly convenient, stuff breaks if we don't honor it. Note
7394 that combined with the above, we only do this for pointer modes. */
7395 rmode = GET_MODE (result);
7396 if (rmode == VOIDmode)
7397 rmode = tmode;
7398 if (rmode != tmode)
7399 result = convert_memory_address_addr_space (tmode, result, as);
7401 return result;
7404 /* Generate code for computing CONSTRUCTOR EXP.
7405 An rtx for the computed value is returned. If AVOID_TEMP_MEM
7406 is TRUE, instead of creating a temporary variable in memory
7407 NULL is returned and the caller needs to handle it differently. */
7409 static rtx
7410 expand_constructor (tree exp, rtx target, enum expand_modifier modifier,
7411 bool avoid_temp_mem)
7413 tree type = TREE_TYPE (exp);
7414 enum machine_mode mode = TYPE_MODE (type);
7416 /* Try to avoid creating a temporary at all. This is possible
7417 if all of the initializer is zero.
7418 FIXME: try to handle all [0..255] initializers we can handle
7419 with memset. */
7420 if (TREE_STATIC (exp)
7421 && !TREE_ADDRESSABLE (exp)
7422 && target != 0 && mode == BLKmode
7423 && all_zeros_p (exp))
7425 clear_storage (target, expr_size (exp), BLOCK_OP_NORMAL);
7426 return target;
7429 /* All elts simple constants => refer to a constant in memory. But
7430 if this is a non-BLKmode mode, let it store a field at a time
7431 since that should make a CONST_INT or CONST_DOUBLE when we
7432 fold. Likewise, if we have a target we can use, it is best to
7433 store directly into the target unless the type is large enough
7434 that memcpy will be used. If we are making an initializer and
7435 all operands are constant, put it in memory as well.
7437 FIXME: Avoid trying to fill vector constructors piece-meal.
7438 Output them with output_constant_def below unless we're sure
7439 they're zeros. This should go away when vector initializers
7440 are treated like VECTOR_CST instead of arrays. */
7441 if ((TREE_STATIC (exp)
7442 && ((mode == BLKmode
7443 && ! (target != 0 && safe_from_p (target, exp, 1)))
7444 || TREE_ADDRESSABLE (exp)
7445 || (host_integerp (TYPE_SIZE_UNIT (type), 1)
7446 && (! MOVE_BY_PIECES_P
7447 (tree_low_cst (TYPE_SIZE_UNIT (type), 1),
7448 TYPE_ALIGN (type)))
7449 && ! mostly_zeros_p (exp))))
7450 || ((modifier == EXPAND_INITIALIZER || modifier == EXPAND_CONST_ADDRESS)
7451 && TREE_CONSTANT (exp)))
7453 rtx constructor;
7455 if (avoid_temp_mem)
7456 return NULL_RTX;
7458 constructor = expand_expr_constant (exp, 1, modifier);
7460 if (modifier != EXPAND_CONST_ADDRESS
7461 && modifier != EXPAND_INITIALIZER
7462 && modifier != EXPAND_SUM)
7463 constructor = validize_mem (constructor);
7465 return constructor;
7468 /* Handle calls that pass values in multiple non-contiguous
7469 locations. The Irix 6 ABI has examples of this. */
7470 if (target == 0 || ! safe_from_p (target, exp, 1)
7471 || GET_CODE (target) == PARALLEL || modifier == EXPAND_STACK_PARM)
7473 if (avoid_temp_mem)
7474 return NULL_RTX;
7476 target
7477 = assign_temp (build_qualified_type (type, (TYPE_QUALS (type)
7478 | (TREE_READONLY (exp)
7479 * TYPE_QUAL_CONST))),
7480 0, TREE_ADDRESSABLE (exp), 1);
7483 store_constructor (exp, target, 0, int_expr_size (exp));
7484 return target;
7488 /* expand_expr: generate code for computing expression EXP.
7489 An rtx for the computed value is returned. The value is never null.
7490 In the case of a void EXP, const0_rtx is returned.
7492 The value may be stored in TARGET if TARGET is nonzero.
7493 TARGET is just a suggestion; callers must assume that
7494 the rtx returned may not be the same as TARGET.
7496 If TARGET is CONST0_RTX, it means that the value will be ignored.
7498 If TMODE is not VOIDmode, it suggests generating the
7499 result in mode TMODE. But this is done only when convenient.
7500 Otherwise, TMODE is ignored and the value generated in its natural mode.
7501 TMODE is just a suggestion; callers must assume that
7502 the rtx returned may not have mode TMODE.
7504 Note that TARGET may have neither TMODE nor MODE. In that case, it
7505 probably will not be used.
7507 If MODIFIER is EXPAND_SUM then when EXP is an addition
7508 we can return an rtx of the form (MULT (REG ...) (CONST_INT ...))
7509 or a nest of (PLUS ...) and (MINUS ...) where the terms are
7510 products as above, or REG or MEM, or constant.
7511 Ordinarily in such cases we would output mul or add instructions
7512 and then return a pseudo reg containing the sum.
7514 EXPAND_INITIALIZER is much like EXPAND_SUM except that
7515 it also marks a label as absolutely required (it can't be dead).
7516 It also makes a ZERO_EXTEND or SIGN_EXTEND instead of emitting extend insns.
7517 This is used for outputting expressions used in initializers.
7519 EXPAND_CONST_ADDRESS says that it is okay to return a MEM
7520 with a constant address even if that address is not normally legitimate.
7521 EXPAND_INITIALIZER and EXPAND_SUM also have this effect.
7523 EXPAND_STACK_PARM is used when expanding to a TARGET on the stack for
7524 a call parameter. Such targets require special care as we haven't yet
7525 marked TARGET so that it's safe from being trashed by libcalls. We
7526 don't want to use TARGET for anything but the final result;
7527 Intermediate values must go elsewhere. Additionally, calls to
7528 emit_block_move will be flagged with BLOCK_OP_CALL_PARM.
7530 If EXP is a VAR_DECL whose DECL_RTL was a MEM with an invalid
7531 address, and ALT_RTL is non-NULL, then *ALT_RTL is set to the
7532 DECL_RTL of the VAR_DECL. *ALT_RTL is also set if EXP is a
7533 COMPOUND_EXPR whose second argument is such a VAR_DECL, and so on
7534 recursively. */
7537 expand_expr_real (tree exp, rtx target, enum machine_mode tmode,
7538 enum expand_modifier modifier, rtx *alt_rtl)
7540 rtx ret;
7542 /* Handle ERROR_MARK before anybody tries to access its type. */
7543 if (TREE_CODE (exp) == ERROR_MARK
7544 || (TREE_CODE (TREE_TYPE (exp)) == ERROR_MARK))
7546 ret = CONST0_RTX (tmode);
7547 return ret ? ret : const0_rtx;
7550 /* If this is an expression of some kind and it has an associated line
7551 number, then emit the line number before expanding the expression.
7553 We need to save and restore the file and line information so that
7554 errors discovered during expansion are emitted with the right
7555 information. It would be better of the diagnostic routines
7556 used the file/line information embedded in the tree nodes rather
7557 than globals. */
7558 if (cfun && EXPR_HAS_LOCATION (exp))
7560 location_t saved_location = input_location;
7561 location_t saved_curr_loc = get_curr_insn_source_location ();
7562 tree saved_block = get_curr_insn_block ();
7563 input_location = EXPR_LOCATION (exp);
7564 set_curr_insn_source_location (input_location);
7566 /* Record where the insns produced belong. */
7567 set_curr_insn_block (TREE_BLOCK (exp));
7569 ret = expand_expr_real_1 (exp, target, tmode, modifier, alt_rtl);
7571 input_location = saved_location;
7572 set_curr_insn_block (saved_block);
7573 set_curr_insn_source_location (saved_curr_loc);
7575 else
7577 ret = expand_expr_real_1 (exp, target, tmode, modifier, alt_rtl);
7580 return ret;
7584 expand_expr_real_2 (sepops ops, rtx target, enum machine_mode tmode,
7585 enum expand_modifier modifier)
7587 rtx op0, op1, op2, temp;
7588 tree type;
7589 int unsignedp;
7590 enum machine_mode mode;
7591 enum tree_code code = ops->code;
7592 optab this_optab;
7593 rtx subtarget, original_target;
7594 int ignore;
7595 bool reduce_bit_field;
7596 location_t loc = ops->location;
7597 tree treeop0, treeop1, treeop2;
7598 #define REDUCE_BIT_FIELD(expr) (reduce_bit_field \
7599 ? reduce_to_bit_field_precision ((expr), \
7600 target, \
7601 type) \
7602 : (expr))
7604 type = ops->type;
7605 mode = TYPE_MODE (type);
7606 unsignedp = TYPE_UNSIGNED (type);
7608 treeop0 = ops->op0;
7609 treeop1 = ops->op1;
7610 treeop2 = ops->op2;
7612 /* We should be called only on simple (binary or unary) expressions,
7613 exactly those that are valid in gimple expressions that aren't
7614 GIMPLE_SINGLE_RHS (or invalid). */
7615 gcc_assert (get_gimple_rhs_class (code) == GIMPLE_UNARY_RHS
7616 || get_gimple_rhs_class (code) == GIMPLE_BINARY_RHS
7617 || get_gimple_rhs_class (code) == GIMPLE_TERNARY_RHS);
7619 ignore = (target == const0_rtx
7620 || ((CONVERT_EXPR_CODE_P (code)
7621 || code == COND_EXPR || code == VIEW_CONVERT_EXPR)
7622 && TREE_CODE (type) == VOID_TYPE));
7624 /* We should be called only if we need the result. */
7625 gcc_assert (!ignore);
7627 /* An operation in what may be a bit-field type needs the
7628 result to be reduced to the precision of the bit-field type,
7629 which is narrower than that of the type's mode. */
7630 reduce_bit_field = (INTEGRAL_TYPE_P (type)
7631 && GET_MODE_PRECISION (mode) > TYPE_PRECISION (type));
7633 if (reduce_bit_field && modifier == EXPAND_STACK_PARM)
7634 target = 0;
7636 /* Use subtarget as the target for operand 0 of a binary operation. */
7637 subtarget = get_subtarget (target);
7638 original_target = target;
7640 switch (code)
7642 case NON_LVALUE_EXPR:
7643 case PAREN_EXPR:
7644 CASE_CONVERT:
7645 if (treeop0 == error_mark_node)
7646 return const0_rtx;
7648 if (TREE_CODE (type) == UNION_TYPE)
7650 tree valtype = TREE_TYPE (treeop0);
7652 /* If both input and output are BLKmode, this conversion isn't doing
7653 anything except possibly changing memory attribute. */
7654 if (mode == BLKmode && TYPE_MODE (valtype) == BLKmode)
7656 rtx result = expand_expr (treeop0, target, tmode,
7657 modifier);
7659 result = copy_rtx (result);
7660 set_mem_attributes (result, type, 0);
7661 return result;
7664 if (target == 0)
7666 if (TYPE_MODE (type) != BLKmode)
7667 target = gen_reg_rtx (TYPE_MODE (type));
7668 else
7669 target = assign_temp (type, 0, 1, 1);
7672 if (MEM_P (target))
7673 /* Store data into beginning of memory target. */
7674 store_expr (treeop0,
7675 adjust_address (target, TYPE_MODE (valtype), 0),
7676 modifier == EXPAND_STACK_PARM,
7677 false);
7679 else
7681 gcc_assert (REG_P (target));
7683 /* Store this field into a union of the proper type. */
7684 store_field (target,
7685 MIN ((int_size_in_bytes (TREE_TYPE
7686 (treeop0))
7687 * BITS_PER_UNIT),
7688 (HOST_WIDE_INT) GET_MODE_BITSIZE (mode)),
7689 0, 0, 0, TYPE_MODE (valtype), treeop0,
7690 type, 0, false);
7693 /* Return the entire union. */
7694 return target;
7697 if (mode == TYPE_MODE (TREE_TYPE (treeop0)))
7699 op0 = expand_expr (treeop0, target, VOIDmode,
7700 modifier);
7702 /* If the signedness of the conversion differs and OP0 is
7703 a promoted SUBREG, clear that indication since we now
7704 have to do the proper extension. */
7705 if (TYPE_UNSIGNED (TREE_TYPE (treeop0)) != unsignedp
7706 && GET_CODE (op0) == SUBREG)
7707 SUBREG_PROMOTED_VAR_P (op0) = 0;
7709 return REDUCE_BIT_FIELD (op0);
7712 op0 = expand_expr (treeop0, NULL_RTX, mode,
7713 modifier == EXPAND_SUM ? EXPAND_NORMAL : modifier);
7714 if (GET_MODE (op0) == mode)
7717 /* If OP0 is a constant, just convert it into the proper mode. */
7718 else if (CONSTANT_P (op0))
7720 tree inner_type = TREE_TYPE (treeop0);
7721 enum machine_mode inner_mode = GET_MODE (op0);
7723 if (inner_mode == VOIDmode)
7724 inner_mode = TYPE_MODE (inner_type);
7726 if (modifier == EXPAND_INITIALIZER)
7727 op0 = simplify_gen_subreg (mode, op0, inner_mode,
7728 subreg_lowpart_offset (mode,
7729 inner_mode));
7730 else
7731 op0= convert_modes (mode, inner_mode, op0,
7732 TYPE_UNSIGNED (inner_type));
7735 else if (modifier == EXPAND_INITIALIZER)
7736 op0 = gen_rtx_fmt_e (unsignedp ? ZERO_EXTEND : SIGN_EXTEND, mode, op0);
7738 else if (target == 0)
7739 op0 = convert_to_mode (mode, op0,
7740 TYPE_UNSIGNED (TREE_TYPE
7741 (treeop0)));
7742 else
7744 convert_move (target, op0,
7745 TYPE_UNSIGNED (TREE_TYPE (treeop0)));
7746 op0 = target;
7749 return REDUCE_BIT_FIELD (op0);
7751 case ADDR_SPACE_CONVERT_EXPR:
7753 tree treeop0_type = TREE_TYPE (treeop0);
7754 addr_space_t as_to;
7755 addr_space_t as_from;
7757 gcc_assert (POINTER_TYPE_P (type));
7758 gcc_assert (POINTER_TYPE_P (treeop0_type));
7760 as_to = TYPE_ADDR_SPACE (TREE_TYPE (type));
7761 as_from = TYPE_ADDR_SPACE (TREE_TYPE (treeop0_type));
7763 /* Conversions between pointers to the same address space should
7764 have been implemented via CONVERT_EXPR / NOP_EXPR. */
7765 gcc_assert (as_to != as_from);
7767 /* Ask target code to handle conversion between pointers
7768 to overlapping address spaces. */
7769 if (targetm.addr_space.subset_p (as_to, as_from)
7770 || targetm.addr_space.subset_p (as_from, as_to))
7772 op0 = expand_expr (treeop0, NULL_RTX, VOIDmode, modifier);
7773 op0 = targetm.addr_space.convert (op0, treeop0_type, type);
7774 gcc_assert (op0);
7775 return op0;
7778 /* For disjoint address spaces, converting anything but
7779 a null pointer invokes undefined behaviour. We simply
7780 always return a null pointer here. */
7781 return CONST0_RTX (mode);
7784 case POINTER_PLUS_EXPR:
7785 /* Even though the sizetype mode and the pointer's mode can be different
7786 expand is able to handle this correctly and get the correct result out
7787 of the PLUS_EXPR code. */
7788 /* Make sure to sign-extend the sizetype offset in a POINTER_PLUS_EXPR
7789 if sizetype precision is smaller than pointer precision. */
7790 if (TYPE_PRECISION (sizetype) < TYPE_PRECISION (type))
7791 treeop1 = fold_convert_loc (loc, type,
7792 fold_convert_loc (loc, ssizetype,
7793 treeop1));
7794 case PLUS_EXPR:
7795 /* If we are adding a constant, a VAR_DECL that is sp, fp, or ap, and
7796 something else, make sure we add the register to the constant and
7797 then to the other thing. This case can occur during strength
7798 reduction and doing it this way will produce better code if the
7799 frame pointer or argument pointer is eliminated.
7801 fold-const.c will ensure that the constant is always in the inner
7802 PLUS_EXPR, so the only case we need to do anything about is if
7803 sp, ap, or fp is our second argument, in which case we must swap
7804 the innermost first argument and our second argument. */
7806 if (TREE_CODE (treeop0) == PLUS_EXPR
7807 && TREE_CODE (TREE_OPERAND (treeop0, 1)) == INTEGER_CST
7808 && TREE_CODE (treeop1) == VAR_DECL
7809 && (DECL_RTL (treeop1) == frame_pointer_rtx
7810 || DECL_RTL (treeop1) == stack_pointer_rtx
7811 || DECL_RTL (treeop1) == arg_pointer_rtx))
7813 tree t = treeop1;
7815 treeop1 = TREE_OPERAND (treeop0, 0);
7816 TREE_OPERAND (treeop0, 0) = t;
7819 /* If the result is to be ptr_mode and we are adding an integer to
7820 something, we might be forming a constant. So try to use
7821 plus_constant. If it produces a sum and we can't accept it,
7822 use force_operand. This allows P = &ARR[const] to generate
7823 efficient code on machines where a SYMBOL_REF is not a valid
7824 address.
7826 If this is an EXPAND_SUM call, always return the sum. */
7827 if (modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER
7828 || (mode == ptr_mode && (unsignedp || ! flag_trapv)))
7830 if (modifier == EXPAND_STACK_PARM)
7831 target = 0;
7832 if (TREE_CODE (treeop0) == INTEGER_CST
7833 && GET_MODE_PRECISION (mode) <= HOST_BITS_PER_WIDE_INT
7834 && TREE_CONSTANT (treeop1))
7836 rtx constant_part;
7838 op1 = expand_expr (treeop1, subtarget, VOIDmode,
7839 EXPAND_SUM);
7840 /* Use immed_double_const to ensure that the constant is
7841 truncated according to the mode of OP1, then sign extended
7842 to a HOST_WIDE_INT. Using the constant directly can result
7843 in non-canonical RTL in a 64x32 cross compile. */
7844 constant_part
7845 = immed_double_const (TREE_INT_CST_LOW (treeop0),
7846 (HOST_WIDE_INT) 0,
7847 TYPE_MODE (TREE_TYPE (treeop1)));
7848 op1 = plus_constant (op1, INTVAL (constant_part));
7849 if (modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER)
7850 op1 = force_operand (op1, target);
7851 return REDUCE_BIT_FIELD (op1);
7854 else if (TREE_CODE (treeop1) == INTEGER_CST
7855 && GET_MODE_PRECISION (mode) <= HOST_BITS_PER_WIDE_INT
7856 && TREE_CONSTANT (treeop0))
7858 rtx constant_part;
7860 op0 = expand_expr (treeop0, subtarget, VOIDmode,
7861 (modifier == EXPAND_INITIALIZER
7862 ? EXPAND_INITIALIZER : EXPAND_SUM));
7863 if (! CONSTANT_P (op0))
7865 op1 = expand_expr (treeop1, NULL_RTX,
7866 VOIDmode, modifier);
7867 /* Return a PLUS if modifier says it's OK. */
7868 if (modifier == EXPAND_SUM
7869 || modifier == EXPAND_INITIALIZER)
7870 return simplify_gen_binary (PLUS, mode, op0, op1);
7871 goto binop2;
7873 /* Use immed_double_const to ensure that the constant is
7874 truncated according to the mode of OP1, then sign extended
7875 to a HOST_WIDE_INT. Using the constant directly can result
7876 in non-canonical RTL in a 64x32 cross compile. */
7877 constant_part
7878 = immed_double_const (TREE_INT_CST_LOW (treeop1),
7879 (HOST_WIDE_INT) 0,
7880 TYPE_MODE (TREE_TYPE (treeop0)));
7881 op0 = plus_constant (op0, INTVAL (constant_part));
7882 if (modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER)
7883 op0 = force_operand (op0, target);
7884 return REDUCE_BIT_FIELD (op0);
7888 /* Use TER to expand pointer addition of a negated value
7889 as pointer subtraction. */
7890 if ((POINTER_TYPE_P (TREE_TYPE (treeop0))
7891 || (TREE_CODE (TREE_TYPE (treeop0)) == VECTOR_TYPE
7892 && POINTER_TYPE_P (TREE_TYPE (TREE_TYPE (treeop0)))))
7893 && TREE_CODE (treeop1) == SSA_NAME
7894 && TYPE_MODE (TREE_TYPE (treeop0))
7895 == TYPE_MODE (TREE_TYPE (treeop1)))
7897 gimple def = get_def_for_expr (treeop1, NEGATE_EXPR);
7898 if (def)
7900 treeop1 = gimple_assign_rhs1 (def);
7901 code = MINUS_EXPR;
7902 goto do_minus;
7906 /* No sense saving up arithmetic to be done
7907 if it's all in the wrong mode to form part of an address.
7908 And force_operand won't know whether to sign-extend or
7909 zero-extend. */
7910 if ((modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER)
7911 || mode != ptr_mode)
7913 expand_operands (treeop0, treeop1,
7914 subtarget, &op0, &op1, EXPAND_NORMAL);
7915 if (op0 == const0_rtx)
7916 return op1;
7917 if (op1 == const0_rtx)
7918 return op0;
7919 goto binop2;
7922 expand_operands (treeop0, treeop1,
7923 subtarget, &op0, &op1, modifier);
7924 return REDUCE_BIT_FIELD (simplify_gen_binary (PLUS, mode, op0, op1));
7926 case MINUS_EXPR:
7927 do_minus:
7928 /* For initializers, we are allowed to return a MINUS of two
7929 symbolic constants. Here we handle all cases when both operands
7930 are constant. */
7931 /* Handle difference of two symbolic constants,
7932 for the sake of an initializer. */
7933 if ((modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER)
7934 && really_constant_p (treeop0)
7935 && really_constant_p (treeop1))
7937 expand_operands (treeop0, treeop1,
7938 NULL_RTX, &op0, &op1, modifier);
7940 /* If the last operand is a CONST_INT, use plus_constant of
7941 the negated constant. Else make the MINUS. */
7942 if (CONST_INT_P (op1))
7943 return REDUCE_BIT_FIELD (plus_constant (op0, - INTVAL (op1)));
7944 else
7945 return REDUCE_BIT_FIELD (gen_rtx_MINUS (mode, op0, op1));
7948 /* No sense saving up arithmetic to be done
7949 if it's all in the wrong mode to form part of an address.
7950 And force_operand won't know whether to sign-extend or
7951 zero-extend. */
7952 if ((modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER)
7953 || mode != ptr_mode)
7954 goto binop;
7956 expand_operands (treeop0, treeop1,
7957 subtarget, &op0, &op1, modifier);
7959 /* Convert A - const to A + (-const). */
7960 if (CONST_INT_P (op1))
7962 op1 = negate_rtx (mode, op1);
7963 return REDUCE_BIT_FIELD (simplify_gen_binary (PLUS, mode, op0, op1));
7966 goto binop2;
7968 case WIDEN_MULT_PLUS_EXPR:
7969 case WIDEN_MULT_MINUS_EXPR:
7970 expand_operands (treeop0, treeop1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
7971 op2 = expand_normal (treeop2);
7972 target = expand_widen_pattern_expr (ops, op0, op1, op2,
7973 target, unsignedp);
7974 return target;
7976 case WIDEN_MULT_EXPR:
7977 /* If first operand is constant, swap them.
7978 Thus the following special case checks need only
7979 check the second operand. */
7980 if (TREE_CODE (treeop0) == INTEGER_CST)
7982 tree t1 = treeop0;
7983 treeop0 = treeop1;
7984 treeop1 = t1;
7987 /* First, check if we have a multiplication of one signed and one
7988 unsigned operand. */
7989 if (TREE_CODE (treeop1) != INTEGER_CST
7990 && (TYPE_UNSIGNED (TREE_TYPE (treeop0))
7991 != TYPE_UNSIGNED (TREE_TYPE (treeop1))))
7993 enum machine_mode innermode = TYPE_MODE (TREE_TYPE (treeop0));
7994 this_optab = usmul_widen_optab;
7995 if (mode == GET_MODE_2XWIDER_MODE (innermode))
7997 if (optab_handler (this_optab, mode) != CODE_FOR_nothing)
7999 if (TYPE_UNSIGNED (TREE_TYPE (treeop0)))
8000 expand_operands (treeop0, treeop1, NULL_RTX, &op0, &op1,
8001 EXPAND_NORMAL);
8002 else
8003 expand_operands (treeop0, treeop1, NULL_RTX, &op1, &op0,
8004 EXPAND_NORMAL);
8005 goto binop3;
8009 /* Check for a multiplication with matching signedness. */
8010 else if ((TREE_CODE (treeop1) == INTEGER_CST
8011 && int_fits_type_p (treeop1, TREE_TYPE (treeop0)))
8012 || (TYPE_UNSIGNED (TREE_TYPE (treeop1))
8013 == TYPE_UNSIGNED (TREE_TYPE (treeop0))))
8015 tree op0type = TREE_TYPE (treeop0);
8016 enum machine_mode innermode = TYPE_MODE (op0type);
8017 bool zextend_p = TYPE_UNSIGNED (op0type);
8018 optab other_optab = zextend_p ? smul_widen_optab : umul_widen_optab;
8019 this_optab = zextend_p ? umul_widen_optab : smul_widen_optab;
8021 if (mode == GET_MODE_2XWIDER_MODE (innermode)
8022 && TREE_CODE (treeop0) != INTEGER_CST)
8024 if (optab_handler (this_optab, mode) != CODE_FOR_nothing)
8026 expand_operands (treeop0, treeop1, NULL_RTX, &op0, &op1,
8027 EXPAND_NORMAL);
8028 temp = expand_widening_mult (mode, op0, op1, target,
8029 unsignedp, this_optab);
8030 return REDUCE_BIT_FIELD (temp);
8032 if (optab_handler (other_optab, mode) != CODE_FOR_nothing
8033 && innermode == word_mode)
8035 rtx htem, hipart;
8036 op0 = expand_normal (treeop0);
8037 if (TREE_CODE (treeop1) == INTEGER_CST)
8038 op1 = convert_modes (innermode, mode,
8039 expand_normal (treeop1), unsignedp);
8040 else
8041 op1 = expand_normal (treeop1);
8042 temp = expand_binop (mode, other_optab, op0, op1, target,
8043 unsignedp, OPTAB_LIB_WIDEN);
8044 hipart = gen_highpart (innermode, temp);
8045 htem = expand_mult_highpart_adjust (innermode, hipart,
8046 op0, op1, hipart,
8047 zextend_p);
8048 if (htem != hipart)
8049 emit_move_insn (hipart, htem);
8050 return REDUCE_BIT_FIELD (temp);
8054 treeop0 = fold_build1 (CONVERT_EXPR, type, treeop0);
8055 treeop1 = fold_build1 (CONVERT_EXPR, type, treeop1);
8056 expand_operands (treeop0, treeop1, subtarget, &op0, &op1, EXPAND_NORMAL);
8057 return REDUCE_BIT_FIELD (expand_mult (mode, op0, op1, target, unsignedp));
8059 case FMA_EXPR:
8061 optab opt = fma_optab;
8062 gimple def0, def2;
8064 /* If there is no insn for FMA, emit it as __builtin_fma{,f,l}
8065 call. */
8066 if (optab_handler (fma_optab, mode) == CODE_FOR_nothing)
8068 tree fn = mathfn_built_in (TREE_TYPE (treeop0), BUILT_IN_FMA);
8069 tree call_expr;
8071 gcc_assert (fn != NULL_TREE);
8072 call_expr = build_call_expr (fn, 3, treeop0, treeop1, treeop2);
8073 return expand_builtin (call_expr, target, subtarget, mode, false);
8076 def0 = get_def_for_expr (treeop0, NEGATE_EXPR);
8077 def2 = get_def_for_expr (treeop2, NEGATE_EXPR);
8079 op0 = op2 = NULL;
8081 if (def0 && def2
8082 && optab_handler (fnms_optab, mode) != CODE_FOR_nothing)
8084 opt = fnms_optab;
8085 op0 = expand_normal (gimple_assign_rhs1 (def0));
8086 op2 = expand_normal (gimple_assign_rhs1 (def2));
8088 else if (def0
8089 && optab_handler (fnma_optab, mode) != CODE_FOR_nothing)
8091 opt = fnma_optab;
8092 op0 = expand_normal (gimple_assign_rhs1 (def0));
8094 else if (def2
8095 && optab_handler (fms_optab, mode) != CODE_FOR_nothing)
8097 opt = fms_optab;
8098 op2 = expand_normal (gimple_assign_rhs1 (def2));
8101 if (op0 == NULL)
8102 op0 = expand_expr (treeop0, subtarget, VOIDmode, EXPAND_NORMAL);
8103 if (op2 == NULL)
8104 op2 = expand_normal (treeop2);
8105 op1 = expand_normal (treeop1);
8107 return expand_ternary_op (TYPE_MODE (type), opt,
8108 op0, op1, op2, target, 0);
8111 case MULT_EXPR:
8112 /* If this is a fixed-point operation, then we cannot use the code
8113 below because "expand_mult" doesn't support sat/no-sat fixed-point
8114 multiplications. */
8115 if (ALL_FIXED_POINT_MODE_P (mode))
8116 goto binop;
8118 /* If first operand is constant, swap them.
8119 Thus the following special case checks need only
8120 check the second operand. */
8121 if (TREE_CODE (treeop0) == INTEGER_CST)
8123 tree t1 = treeop0;
8124 treeop0 = treeop1;
8125 treeop1 = t1;
8128 /* Attempt to return something suitable for generating an
8129 indexed address, for machines that support that. */
8131 if (modifier == EXPAND_SUM && mode == ptr_mode
8132 && host_integerp (treeop1, 0))
8134 tree exp1 = treeop1;
8136 op0 = expand_expr (treeop0, subtarget, VOIDmode,
8137 EXPAND_SUM);
8139 if (!REG_P (op0))
8140 op0 = force_operand (op0, NULL_RTX);
8141 if (!REG_P (op0))
8142 op0 = copy_to_mode_reg (mode, op0);
8144 return REDUCE_BIT_FIELD (gen_rtx_MULT (mode, op0,
8145 gen_int_mode (tree_low_cst (exp1, 0),
8146 TYPE_MODE (TREE_TYPE (exp1)))));
8149 if (modifier == EXPAND_STACK_PARM)
8150 target = 0;
8152 expand_operands (treeop0, treeop1, subtarget, &op0, &op1, EXPAND_NORMAL);
8153 return REDUCE_BIT_FIELD (expand_mult (mode, op0, op1, target, unsignedp));
8155 case TRUNC_DIV_EXPR:
8156 case FLOOR_DIV_EXPR:
8157 case CEIL_DIV_EXPR:
8158 case ROUND_DIV_EXPR:
8159 case EXACT_DIV_EXPR:
8160 /* If this is a fixed-point operation, then we cannot use the code
8161 below because "expand_divmod" doesn't support sat/no-sat fixed-point
8162 divisions. */
8163 if (ALL_FIXED_POINT_MODE_P (mode))
8164 goto binop;
8166 if (modifier == EXPAND_STACK_PARM)
8167 target = 0;
8168 /* Possible optimization: compute the dividend with EXPAND_SUM
8169 then if the divisor is constant can optimize the case
8170 where some terms of the dividend have coeffs divisible by it. */
8171 expand_operands (treeop0, treeop1,
8172 subtarget, &op0, &op1, EXPAND_NORMAL);
8173 return expand_divmod (0, code, mode, op0, op1, target, unsignedp);
8175 case RDIV_EXPR:
8176 goto binop;
8178 case TRUNC_MOD_EXPR:
8179 case FLOOR_MOD_EXPR:
8180 case CEIL_MOD_EXPR:
8181 case ROUND_MOD_EXPR:
8182 if (modifier == EXPAND_STACK_PARM)
8183 target = 0;
8184 expand_operands (treeop0, treeop1,
8185 subtarget, &op0, &op1, EXPAND_NORMAL);
8186 return expand_divmod (1, code, mode, op0, op1, target, unsignedp);
8188 case FIXED_CONVERT_EXPR:
8189 op0 = expand_normal (treeop0);
8190 if (target == 0 || modifier == EXPAND_STACK_PARM)
8191 target = gen_reg_rtx (mode);
8193 if ((TREE_CODE (TREE_TYPE (treeop0)) == INTEGER_TYPE
8194 && TYPE_UNSIGNED (TREE_TYPE (treeop0)))
8195 || (TREE_CODE (type) == INTEGER_TYPE && TYPE_UNSIGNED (type)))
8196 expand_fixed_convert (target, op0, 1, TYPE_SATURATING (type));
8197 else
8198 expand_fixed_convert (target, op0, 0, TYPE_SATURATING (type));
8199 return target;
8201 case FIX_TRUNC_EXPR:
8202 op0 = expand_normal (treeop0);
8203 if (target == 0 || modifier == EXPAND_STACK_PARM)
8204 target = gen_reg_rtx (mode);
8205 expand_fix (target, op0, unsignedp);
8206 return target;
8208 case FLOAT_EXPR:
8209 op0 = expand_normal (treeop0);
8210 if (target == 0 || modifier == EXPAND_STACK_PARM)
8211 target = gen_reg_rtx (mode);
8212 /* expand_float can't figure out what to do if FROM has VOIDmode.
8213 So give it the correct mode. With -O, cse will optimize this. */
8214 if (GET_MODE (op0) == VOIDmode)
8215 op0 = copy_to_mode_reg (TYPE_MODE (TREE_TYPE (treeop0)),
8216 op0);
8217 expand_float (target, op0,
8218 TYPE_UNSIGNED (TREE_TYPE (treeop0)));
8219 return target;
8221 case NEGATE_EXPR:
8222 op0 = expand_expr (treeop0, subtarget,
8223 VOIDmode, EXPAND_NORMAL);
8224 if (modifier == EXPAND_STACK_PARM)
8225 target = 0;
8226 temp = expand_unop (mode,
8227 optab_for_tree_code (NEGATE_EXPR, type,
8228 optab_default),
8229 op0, target, 0);
8230 gcc_assert (temp);
8231 return REDUCE_BIT_FIELD (temp);
8233 case ABS_EXPR:
8234 op0 = expand_expr (treeop0, subtarget,
8235 VOIDmode, EXPAND_NORMAL);
8236 if (modifier == EXPAND_STACK_PARM)
8237 target = 0;
8239 /* ABS_EXPR is not valid for complex arguments. */
8240 gcc_assert (GET_MODE_CLASS (mode) != MODE_COMPLEX_INT
8241 && GET_MODE_CLASS (mode) != MODE_COMPLEX_FLOAT);
8243 /* Unsigned abs is simply the operand. Testing here means we don't
8244 risk generating incorrect code below. */
8245 if (TYPE_UNSIGNED (type))
8246 return op0;
8248 return expand_abs (mode, op0, target, unsignedp,
8249 safe_from_p (target, treeop0, 1));
8251 case MAX_EXPR:
8252 case MIN_EXPR:
8253 target = original_target;
8254 if (target == 0
8255 || modifier == EXPAND_STACK_PARM
8256 || (MEM_P (target) && MEM_VOLATILE_P (target))
8257 || GET_MODE (target) != mode
8258 || (REG_P (target)
8259 && REGNO (target) < FIRST_PSEUDO_REGISTER))
8260 target = gen_reg_rtx (mode);
8261 expand_operands (treeop0, treeop1,
8262 target, &op0, &op1, EXPAND_NORMAL);
8264 /* First try to do it with a special MIN or MAX instruction.
8265 If that does not win, use a conditional jump to select the proper
8266 value. */
8267 this_optab = optab_for_tree_code (code, type, optab_default);
8268 temp = expand_binop (mode, this_optab, op0, op1, target, unsignedp,
8269 OPTAB_WIDEN);
8270 if (temp != 0)
8271 return temp;
8273 /* At this point, a MEM target is no longer useful; we will get better
8274 code without it. */
8276 if (! REG_P (target))
8277 target = gen_reg_rtx (mode);
8279 /* If op1 was placed in target, swap op0 and op1. */
8280 if (target != op0 && target == op1)
8282 temp = op0;
8283 op0 = op1;
8284 op1 = temp;
8287 /* We generate better code and avoid problems with op1 mentioning
8288 target by forcing op1 into a pseudo if it isn't a constant. */
8289 if (! CONSTANT_P (op1))
8290 op1 = force_reg (mode, op1);
8293 enum rtx_code comparison_code;
8294 rtx cmpop1 = op1;
8296 if (code == MAX_EXPR)
8297 comparison_code = unsignedp ? GEU : GE;
8298 else
8299 comparison_code = unsignedp ? LEU : LE;
8301 /* Canonicalize to comparisons against 0. */
8302 if (op1 == const1_rtx)
8304 /* Converting (a >= 1 ? a : 1) into (a > 0 ? a : 1)
8305 or (a != 0 ? a : 1) for unsigned.
8306 For MIN we are safe converting (a <= 1 ? a : 1)
8307 into (a <= 0 ? a : 1) */
8308 cmpop1 = const0_rtx;
8309 if (code == MAX_EXPR)
8310 comparison_code = unsignedp ? NE : GT;
8312 if (op1 == constm1_rtx && !unsignedp)
8314 /* Converting (a >= -1 ? a : -1) into (a >= 0 ? a : -1)
8315 and (a <= -1 ? a : -1) into (a < 0 ? a : -1) */
8316 cmpop1 = const0_rtx;
8317 if (code == MIN_EXPR)
8318 comparison_code = LT;
8320 #ifdef HAVE_conditional_move
8321 /* Use a conditional move if possible. */
8322 if (can_conditionally_move_p (mode))
8324 rtx insn;
8326 /* ??? Same problem as in expmed.c: emit_conditional_move
8327 forces a stack adjustment via compare_from_rtx, and we
8328 lose the stack adjustment if the sequence we are about
8329 to create is discarded. */
8330 do_pending_stack_adjust ();
8332 start_sequence ();
8334 /* Try to emit the conditional move. */
8335 insn = emit_conditional_move (target, comparison_code,
8336 op0, cmpop1, mode,
8337 op0, op1, mode,
8338 unsignedp);
8340 /* If we could do the conditional move, emit the sequence,
8341 and return. */
8342 if (insn)
8344 rtx seq = get_insns ();
8345 end_sequence ();
8346 emit_insn (seq);
8347 return target;
8350 /* Otherwise discard the sequence and fall back to code with
8351 branches. */
8352 end_sequence ();
8354 #endif
8355 if (target != op0)
8356 emit_move_insn (target, op0);
8358 temp = gen_label_rtx ();
8359 do_compare_rtx_and_jump (target, cmpop1, comparison_code,
8360 unsignedp, mode, NULL_RTX, NULL_RTX, temp,
8361 -1);
8363 emit_move_insn (target, op1);
8364 emit_label (temp);
8365 return target;
8367 case BIT_NOT_EXPR:
8368 op0 = expand_expr (treeop0, subtarget,
8369 VOIDmode, EXPAND_NORMAL);
8370 if (modifier == EXPAND_STACK_PARM)
8371 target = 0;
8372 /* In case we have to reduce the result to bitfield precision
8373 expand this as XOR with a proper constant instead. */
8374 if (reduce_bit_field)
8375 temp = expand_binop (mode, xor_optab, op0,
8376 immed_double_int_const
8377 (double_int_mask (TYPE_PRECISION (type)), mode),
8378 target, 1, OPTAB_LIB_WIDEN);
8379 else
8380 temp = expand_unop (mode, one_cmpl_optab, op0, target, 1);
8381 gcc_assert (temp);
8382 return temp;
8384 /* ??? Can optimize bitwise operations with one arg constant.
8385 Can optimize (a bitwise1 n) bitwise2 (a bitwise3 b)
8386 and (a bitwise1 b) bitwise2 b (etc)
8387 but that is probably not worth while. */
8389 case BIT_AND_EXPR:
8390 case BIT_IOR_EXPR:
8391 case BIT_XOR_EXPR:
8392 goto binop;
8394 case LROTATE_EXPR:
8395 case RROTATE_EXPR:
8396 gcc_assert (VECTOR_MODE_P (TYPE_MODE (type))
8397 || (GET_MODE_PRECISION (TYPE_MODE (type))
8398 == TYPE_PRECISION (type)));
8399 /* fall through */
8401 case LSHIFT_EXPR:
8402 case RSHIFT_EXPR:
8403 /* If this is a fixed-point operation, then we cannot use the code
8404 below because "expand_shift" doesn't support sat/no-sat fixed-point
8405 shifts. */
8406 if (ALL_FIXED_POINT_MODE_P (mode))
8407 goto binop;
8409 if (! safe_from_p (subtarget, treeop1, 1))
8410 subtarget = 0;
8411 if (modifier == EXPAND_STACK_PARM)
8412 target = 0;
8413 op0 = expand_expr (treeop0, subtarget,
8414 VOIDmode, EXPAND_NORMAL);
8415 temp = expand_variable_shift (code, mode, op0, treeop1, target,
8416 unsignedp);
8417 if (code == LSHIFT_EXPR)
8418 temp = REDUCE_BIT_FIELD (temp);
8419 return temp;
8421 /* Could determine the answer when only additive constants differ. Also,
8422 the addition of one can be handled by changing the condition. */
8423 case LT_EXPR:
8424 case LE_EXPR:
8425 case GT_EXPR:
8426 case GE_EXPR:
8427 case EQ_EXPR:
8428 case NE_EXPR:
8429 case UNORDERED_EXPR:
8430 case ORDERED_EXPR:
8431 case UNLT_EXPR:
8432 case UNLE_EXPR:
8433 case UNGT_EXPR:
8434 case UNGE_EXPR:
8435 case UNEQ_EXPR:
8436 case LTGT_EXPR:
8437 temp = do_store_flag (ops,
8438 modifier != EXPAND_STACK_PARM ? target : NULL_RTX,
8439 tmode != VOIDmode ? tmode : mode);
8440 if (temp)
8441 return temp;
8443 /* Use a compare and a jump for BLKmode comparisons, or for function
8444 type comparisons is HAVE_canonicalize_funcptr_for_compare. */
8446 if ((target == 0
8447 || modifier == EXPAND_STACK_PARM
8448 || ! safe_from_p (target, treeop0, 1)
8449 || ! safe_from_p (target, treeop1, 1)
8450 /* Make sure we don't have a hard reg (such as function's return
8451 value) live across basic blocks, if not optimizing. */
8452 || (!optimize && REG_P (target)
8453 && REGNO (target) < FIRST_PSEUDO_REGISTER)))
8454 target = gen_reg_rtx (tmode != VOIDmode ? tmode : mode);
8456 emit_move_insn (target, const0_rtx);
8458 op1 = gen_label_rtx ();
8459 jumpifnot_1 (code, treeop0, treeop1, op1, -1);
8461 if (TYPE_PRECISION (type) == 1 && !TYPE_UNSIGNED (type))
8462 emit_move_insn (target, constm1_rtx);
8463 else
8464 emit_move_insn (target, const1_rtx);
8466 emit_label (op1);
8467 return target;
8469 case COMPLEX_EXPR:
8470 /* Get the rtx code of the operands. */
8471 op0 = expand_normal (treeop0);
8472 op1 = expand_normal (treeop1);
8474 if (!target)
8475 target = gen_reg_rtx (TYPE_MODE (type));
8477 /* Move the real (op0) and imaginary (op1) parts to their location. */
8478 write_complex_part (target, op0, false);
8479 write_complex_part (target, op1, true);
8481 return target;
8483 case WIDEN_SUM_EXPR:
8485 tree oprnd0 = treeop0;
8486 tree oprnd1 = treeop1;
8488 expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
8489 target = expand_widen_pattern_expr (ops, op0, NULL_RTX, op1,
8490 target, unsignedp);
8491 return target;
8494 case REDUC_MAX_EXPR:
8495 case REDUC_MIN_EXPR:
8496 case REDUC_PLUS_EXPR:
8498 op0 = expand_normal (treeop0);
8499 this_optab = optab_for_tree_code (code, type, optab_default);
8500 temp = expand_unop (mode, this_optab, op0, target, unsignedp);
8501 gcc_assert (temp);
8502 return temp;
8505 case VEC_EXTRACT_EVEN_EXPR:
8506 case VEC_EXTRACT_ODD_EXPR:
8508 expand_operands (treeop0, treeop1,
8509 NULL_RTX, &op0, &op1, EXPAND_NORMAL);
8510 this_optab = optab_for_tree_code (code, type, optab_default);
8511 temp = expand_binop (mode, this_optab, op0, op1, target, unsignedp,
8512 OPTAB_WIDEN);
8513 gcc_assert (temp);
8514 return temp;
8517 case VEC_INTERLEAVE_HIGH_EXPR:
8518 case VEC_INTERLEAVE_LOW_EXPR:
8520 expand_operands (treeop0, treeop1,
8521 NULL_RTX, &op0, &op1, EXPAND_NORMAL);
8522 this_optab = optab_for_tree_code (code, type, optab_default);
8523 temp = expand_binop (mode, this_optab, op0, op1, target, unsignedp,
8524 OPTAB_WIDEN);
8525 gcc_assert (temp);
8526 return temp;
8529 case VEC_LSHIFT_EXPR:
8530 case VEC_RSHIFT_EXPR:
8532 target = expand_vec_shift_expr (ops, target);
8533 return target;
8536 case VEC_UNPACK_HI_EXPR:
8537 case VEC_UNPACK_LO_EXPR:
8539 op0 = expand_normal (treeop0);
8540 temp = expand_widen_pattern_expr (ops, op0, NULL_RTX, NULL_RTX,
8541 target, unsignedp);
8542 gcc_assert (temp);
8543 return temp;
8546 case VEC_UNPACK_FLOAT_HI_EXPR:
8547 case VEC_UNPACK_FLOAT_LO_EXPR:
8549 op0 = expand_normal (treeop0);
8550 /* The signedness is determined from input operand. */
8551 temp = expand_widen_pattern_expr
8552 (ops, op0, NULL_RTX, NULL_RTX,
8553 target, TYPE_UNSIGNED (TREE_TYPE (treeop0)));
8555 gcc_assert (temp);
8556 return temp;
8559 case VEC_WIDEN_MULT_HI_EXPR:
8560 case VEC_WIDEN_MULT_LO_EXPR:
8562 tree oprnd0 = treeop0;
8563 tree oprnd1 = treeop1;
8565 expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
8566 target = expand_widen_pattern_expr (ops, op0, op1, NULL_RTX,
8567 target, unsignedp);
8568 gcc_assert (target);
8569 return target;
8572 case VEC_PACK_TRUNC_EXPR:
8573 case VEC_PACK_SAT_EXPR:
8574 case VEC_PACK_FIX_TRUNC_EXPR:
8575 mode = TYPE_MODE (TREE_TYPE (treeop0));
8576 goto binop;
8578 case DOT_PROD_EXPR:
8580 tree oprnd0 = treeop0;
8581 tree oprnd1 = treeop1;
8582 tree oprnd2 = treeop2;
8583 rtx op2;
8585 expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
8586 op2 = expand_normal (oprnd2);
8587 target = expand_widen_pattern_expr (ops, op0, op1, op2,
8588 target, unsignedp);
8589 return target;
8592 case REALIGN_LOAD_EXPR:
8594 tree oprnd0 = treeop0;
8595 tree oprnd1 = treeop1;
8596 tree oprnd2 = treeop2;
8597 rtx op2;
8599 this_optab = optab_for_tree_code (code, type, optab_default);
8600 expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
8601 op2 = expand_normal (oprnd2);
8602 temp = expand_ternary_op (mode, this_optab, op0, op1, op2,
8603 target, unsignedp);
8604 gcc_assert (temp);
8605 return temp;
8608 default:
8609 gcc_unreachable ();
8612 /* Here to do an ordinary binary operator. */
8613 binop:
8614 expand_operands (treeop0, treeop1,
8615 subtarget, &op0, &op1, EXPAND_NORMAL);
8616 binop2:
8617 this_optab = optab_for_tree_code (code, type, optab_default);
8618 binop3:
8619 if (modifier == EXPAND_STACK_PARM)
8620 target = 0;
8621 temp = expand_binop (mode, this_optab, op0, op1, target,
8622 unsignedp, OPTAB_LIB_WIDEN);
8623 gcc_assert (temp);
8624 /* Bitwise operations do not need bitfield reduction as we expect their
8625 operands being properly truncated. */
8626 if (code == BIT_XOR_EXPR
8627 || code == BIT_AND_EXPR
8628 || code == BIT_IOR_EXPR)
8629 return temp;
8630 return REDUCE_BIT_FIELD (temp);
8632 #undef REDUCE_BIT_FIELD
8635 expand_expr_real_1 (tree exp, rtx target, enum machine_mode tmode,
8636 enum expand_modifier modifier, rtx *alt_rtl)
8638 rtx op0, op1, temp, decl_rtl;
8639 tree type;
8640 int unsignedp;
8641 enum machine_mode mode;
8642 enum tree_code code = TREE_CODE (exp);
8643 rtx subtarget, original_target;
8644 int ignore;
8645 tree context;
8646 bool reduce_bit_field;
8647 location_t loc = EXPR_LOCATION (exp);
8648 struct separate_ops ops;
8649 tree treeop0, treeop1, treeop2;
8650 tree ssa_name = NULL_TREE;
8651 gimple g;
8653 type = TREE_TYPE (exp);
8654 mode = TYPE_MODE (type);
8655 unsignedp = TYPE_UNSIGNED (type);
8657 treeop0 = treeop1 = treeop2 = NULL_TREE;
8658 if (!VL_EXP_CLASS_P (exp))
8659 switch (TREE_CODE_LENGTH (code))
8661 default:
8662 case 3: treeop2 = TREE_OPERAND (exp, 2);
8663 case 2: treeop1 = TREE_OPERAND (exp, 1);
8664 case 1: treeop0 = TREE_OPERAND (exp, 0);
8665 case 0: break;
8667 ops.code = code;
8668 ops.type = type;
8669 ops.op0 = treeop0;
8670 ops.op1 = treeop1;
8671 ops.op2 = treeop2;
8672 ops.location = loc;
8674 ignore = (target == const0_rtx
8675 || ((CONVERT_EXPR_CODE_P (code)
8676 || code == COND_EXPR || code == VIEW_CONVERT_EXPR)
8677 && TREE_CODE (type) == VOID_TYPE));
8679 /* An operation in what may be a bit-field type needs the
8680 result to be reduced to the precision of the bit-field type,
8681 which is narrower than that of the type's mode. */
8682 reduce_bit_field = (!ignore
8683 && INTEGRAL_TYPE_P (type)
8684 && GET_MODE_PRECISION (mode) > TYPE_PRECISION (type));
8686 /* If we are going to ignore this result, we need only do something
8687 if there is a side-effect somewhere in the expression. If there
8688 is, short-circuit the most common cases here. Note that we must
8689 not call expand_expr with anything but const0_rtx in case this
8690 is an initial expansion of a size that contains a PLACEHOLDER_EXPR. */
8692 if (ignore)
8694 if (! TREE_SIDE_EFFECTS (exp))
8695 return const0_rtx;
8697 /* Ensure we reference a volatile object even if value is ignored, but
8698 don't do this if all we are doing is taking its address. */
8699 if (TREE_THIS_VOLATILE (exp)
8700 && TREE_CODE (exp) != FUNCTION_DECL
8701 && mode != VOIDmode && mode != BLKmode
8702 && modifier != EXPAND_CONST_ADDRESS)
8704 temp = expand_expr (exp, NULL_RTX, VOIDmode, modifier);
8705 if (MEM_P (temp))
8706 copy_to_reg (temp);
8707 return const0_rtx;
8710 if (TREE_CODE_CLASS (code) == tcc_unary
8711 || code == COMPONENT_REF || code == INDIRECT_REF)
8712 return expand_expr (treeop0, const0_rtx, VOIDmode,
8713 modifier);
8715 else if (TREE_CODE_CLASS (code) == tcc_binary
8716 || TREE_CODE_CLASS (code) == tcc_comparison
8717 || code == ARRAY_REF || code == ARRAY_RANGE_REF)
8719 expand_expr (treeop0, const0_rtx, VOIDmode, modifier);
8720 expand_expr (treeop1, const0_rtx, VOIDmode, modifier);
8721 return const0_rtx;
8723 else if (code == BIT_FIELD_REF)
8725 expand_expr (treeop0, const0_rtx, VOIDmode, modifier);
8726 expand_expr (treeop1, const0_rtx, VOIDmode, modifier);
8727 expand_expr (treeop2, const0_rtx, VOIDmode, modifier);
8728 return const0_rtx;
8731 target = 0;
8734 if (reduce_bit_field && modifier == EXPAND_STACK_PARM)
8735 target = 0;
8737 /* Use subtarget as the target for operand 0 of a binary operation. */
8738 subtarget = get_subtarget (target);
8739 original_target = target;
8741 switch (code)
8743 case LABEL_DECL:
8745 tree function = decl_function_context (exp);
8747 temp = label_rtx (exp);
8748 temp = gen_rtx_LABEL_REF (Pmode, temp);
8750 if (function != current_function_decl
8751 && function != 0)
8752 LABEL_REF_NONLOCAL_P (temp) = 1;
8754 temp = gen_rtx_MEM (FUNCTION_MODE, temp);
8755 return temp;
8758 case SSA_NAME:
8759 /* ??? ivopts calls expander, without any preparation from
8760 out-of-ssa. So fake instructions as if this was an access to the
8761 base variable. This unnecessarily allocates a pseudo, see how we can
8762 reuse it, if partition base vars have it set already. */
8763 if (!currently_expanding_to_rtl)
8764 return expand_expr_real_1 (SSA_NAME_VAR (exp), target, tmode, modifier,
8765 NULL);
8767 g = get_gimple_for_ssa_name (exp);
8768 /* For EXPAND_INITIALIZER try harder to get something simpler. */
8769 if (g == NULL
8770 && modifier == EXPAND_INITIALIZER
8771 && !SSA_NAME_IS_DEFAULT_DEF (exp)
8772 && (optimize || DECL_IGNORED_P (SSA_NAME_VAR (exp)))
8773 && stmt_is_replaceable_p (SSA_NAME_DEF_STMT (exp)))
8774 g = SSA_NAME_DEF_STMT (exp);
8775 if (g)
8776 return expand_expr_real (gimple_assign_rhs_to_tree (g), target, tmode,
8777 modifier, NULL);
8779 ssa_name = exp;
8780 decl_rtl = get_rtx_for_ssa_name (ssa_name);
8781 exp = SSA_NAME_VAR (ssa_name);
8782 goto expand_decl_rtl;
8784 case PARM_DECL:
8785 case VAR_DECL:
8786 /* If a static var's type was incomplete when the decl was written,
8787 but the type is complete now, lay out the decl now. */
8788 if (DECL_SIZE (exp) == 0
8789 && COMPLETE_OR_UNBOUND_ARRAY_TYPE_P (TREE_TYPE (exp))
8790 && (TREE_STATIC (exp) || DECL_EXTERNAL (exp)))
8791 layout_decl (exp, 0);
8793 /* ... fall through ... */
8795 case FUNCTION_DECL:
8796 case RESULT_DECL:
8797 decl_rtl = DECL_RTL (exp);
8798 expand_decl_rtl:
8799 gcc_assert (decl_rtl);
8800 decl_rtl = copy_rtx (decl_rtl);
8801 /* Record writes to register variables. */
8802 if (modifier == EXPAND_WRITE
8803 && REG_P (decl_rtl)
8804 && HARD_REGISTER_P (decl_rtl))
8805 add_to_hard_reg_set (&crtl->asm_clobbers,
8806 GET_MODE (decl_rtl), REGNO (decl_rtl));
8808 /* Ensure variable marked as used even if it doesn't go through
8809 a parser. If it hasn't be used yet, write out an external
8810 definition. */
8811 if (! TREE_USED (exp))
8813 assemble_external (exp);
8814 TREE_USED (exp) = 1;
8817 /* Show we haven't gotten RTL for this yet. */
8818 temp = 0;
8820 /* Variables inherited from containing functions should have
8821 been lowered by this point. */
8822 context = decl_function_context (exp);
8823 gcc_assert (!context
8824 || context == current_function_decl
8825 || TREE_STATIC (exp)
8826 || DECL_EXTERNAL (exp)
8827 /* ??? C++ creates functions that are not TREE_STATIC. */
8828 || TREE_CODE (exp) == FUNCTION_DECL);
8830 /* This is the case of an array whose size is to be determined
8831 from its initializer, while the initializer is still being parsed.
8832 See expand_decl. */
8834 if (MEM_P (decl_rtl) && REG_P (XEXP (decl_rtl, 0)))
8835 temp = validize_mem (decl_rtl);
8837 /* If DECL_RTL is memory, we are in the normal case and the
8838 address is not valid, get the address into a register. */
8840 else if (MEM_P (decl_rtl) && modifier != EXPAND_INITIALIZER)
8842 if (alt_rtl)
8843 *alt_rtl = decl_rtl;
8844 decl_rtl = use_anchored_address (decl_rtl);
8845 if (modifier != EXPAND_CONST_ADDRESS
8846 && modifier != EXPAND_SUM
8847 && !memory_address_addr_space_p (DECL_MODE (exp),
8848 XEXP (decl_rtl, 0),
8849 MEM_ADDR_SPACE (decl_rtl)))
8850 temp = replace_equiv_address (decl_rtl,
8851 copy_rtx (XEXP (decl_rtl, 0)));
8854 /* If we got something, return it. But first, set the alignment
8855 if the address is a register. */
8856 if (temp != 0)
8858 if (MEM_P (temp) && REG_P (XEXP (temp, 0)))
8859 mark_reg_pointer (XEXP (temp, 0), DECL_ALIGN (exp));
8861 return temp;
8864 /* If the mode of DECL_RTL does not match that of the decl, it
8865 must be a promoted value. We return a SUBREG of the wanted mode,
8866 but mark it so that we know that it was already extended. */
8867 if (REG_P (decl_rtl) && GET_MODE (decl_rtl) != DECL_MODE (exp))
8869 enum machine_mode pmode;
8871 /* Get the signedness to be used for this variable. Ensure we get
8872 the same mode we got when the variable was declared. */
8873 if (code == SSA_NAME
8874 && (g = SSA_NAME_DEF_STMT (ssa_name))
8875 && gimple_code (g) == GIMPLE_CALL)
8877 gcc_assert (!gimple_call_internal_p (g));
8878 pmode = promote_function_mode (type, mode, &unsignedp,
8879 gimple_call_fntype (g),
8882 else
8883 pmode = promote_decl_mode (exp, &unsignedp);
8884 gcc_assert (GET_MODE (decl_rtl) == pmode);
8886 temp = gen_lowpart_SUBREG (mode, decl_rtl);
8887 SUBREG_PROMOTED_VAR_P (temp) = 1;
8888 SUBREG_PROMOTED_UNSIGNED_SET (temp, unsignedp);
8889 return temp;
8892 return decl_rtl;
8894 case INTEGER_CST:
8895 temp = immed_double_const (TREE_INT_CST_LOW (exp),
8896 TREE_INT_CST_HIGH (exp), mode);
8898 return temp;
8900 case VECTOR_CST:
8902 tree tmp = NULL_TREE;
8903 if (GET_MODE_CLASS (mode) == MODE_VECTOR_INT
8904 || GET_MODE_CLASS (mode) == MODE_VECTOR_FLOAT
8905 || GET_MODE_CLASS (mode) == MODE_VECTOR_FRACT
8906 || GET_MODE_CLASS (mode) == MODE_VECTOR_UFRACT
8907 || GET_MODE_CLASS (mode) == MODE_VECTOR_ACCUM
8908 || GET_MODE_CLASS (mode) == MODE_VECTOR_UACCUM)
8909 return const_vector_from_tree (exp);
8910 if (GET_MODE_CLASS (mode) == MODE_INT)
8912 tree type_for_mode = lang_hooks.types.type_for_mode (mode, 1);
8913 if (type_for_mode)
8914 tmp = fold_unary_loc (loc, VIEW_CONVERT_EXPR, type_for_mode, exp);
8916 if (!tmp)
8917 tmp = build_constructor_from_list (type,
8918 TREE_VECTOR_CST_ELTS (exp));
8919 return expand_expr (tmp, ignore ? const0_rtx : target,
8920 tmode, modifier);
8923 case CONST_DECL:
8924 return expand_expr (DECL_INITIAL (exp), target, VOIDmode, modifier);
8926 case REAL_CST:
8927 /* If optimized, generate immediate CONST_DOUBLE
8928 which will be turned into memory by reload if necessary.
8930 We used to force a register so that loop.c could see it. But
8931 this does not allow gen_* patterns to perform optimizations with
8932 the constants. It also produces two insns in cases like "x = 1.0;".
8933 On most machines, floating-point constants are not permitted in
8934 many insns, so we'd end up copying it to a register in any case.
8936 Now, we do the copying in expand_binop, if appropriate. */
8937 return CONST_DOUBLE_FROM_REAL_VALUE (TREE_REAL_CST (exp),
8938 TYPE_MODE (TREE_TYPE (exp)));
8940 case FIXED_CST:
8941 return CONST_FIXED_FROM_FIXED_VALUE (TREE_FIXED_CST (exp),
8942 TYPE_MODE (TREE_TYPE (exp)));
8944 case COMPLEX_CST:
8945 /* Handle evaluating a complex constant in a CONCAT target. */
8946 if (original_target && GET_CODE (original_target) == CONCAT)
8948 enum machine_mode mode = TYPE_MODE (TREE_TYPE (TREE_TYPE (exp)));
8949 rtx rtarg, itarg;
8951 rtarg = XEXP (original_target, 0);
8952 itarg = XEXP (original_target, 1);
8954 /* Move the real and imaginary parts separately. */
8955 op0 = expand_expr (TREE_REALPART (exp), rtarg, mode, EXPAND_NORMAL);
8956 op1 = expand_expr (TREE_IMAGPART (exp), itarg, mode, EXPAND_NORMAL);
8958 if (op0 != rtarg)
8959 emit_move_insn (rtarg, op0);
8960 if (op1 != itarg)
8961 emit_move_insn (itarg, op1);
8963 return original_target;
8966 /* ... fall through ... */
8968 case STRING_CST:
8969 temp = expand_expr_constant (exp, 1, modifier);
8971 /* temp contains a constant address.
8972 On RISC machines where a constant address isn't valid,
8973 make some insns to get that address into a register. */
8974 if (modifier != EXPAND_CONST_ADDRESS
8975 && modifier != EXPAND_INITIALIZER
8976 && modifier != EXPAND_SUM
8977 && ! memory_address_addr_space_p (mode, XEXP (temp, 0),
8978 MEM_ADDR_SPACE (temp)))
8979 return replace_equiv_address (temp,
8980 copy_rtx (XEXP (temp, 0)));
8981 return temp;
8983 case SAVE_EXPR:
8985 tree val = treeop0;
8986 rtx ret = expand_expr_real_1 (val, target, tmode, modifier, alt_rtl);
8988 if (!SAVE_EXPR_RESOLVED_P (exp))
8990 /* We can indeed still hit this case, typically via builtin
8991 expanders calling save_expr immediately before expanding
8992 something. Assume this means that we only have to deal
8993 with non-BLKmode values. */
8994 gcc_assert (GET_MODE (ret) != BLKmode);
8996 val = build_decl (EXPR_LOCATION (exp),
8997 VAR_DECL, NULL, TREE_TYPE (exp));
8998 DECL_ARTIFICIAL (val) = 1;
8999 DECL_IGNORED_P (val) = 1;
9000 treeop0 = val;
9001 TREE_OPERAND (exp, 0) = treeop0;
9002 SAVE_EXPR_RESOLVED_P (exp) = 1;
9004 if (!CONSTANT_P (ret))
9005 ret = copy_to_reg (ret);
9006 SET_DECL_RTL (val, ret);
9009 return ret;
9013 case CONSTRUCTOR:
9014 /* If we don't need the result, just ensure we evaluate any
9015 subexpressions. */
9016 if (ignore)
9018 unsigned HOST_WIDE_INT idx;
9019 tree value;
9021 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (exp), idx, value)
9022 expand_expr (value, const0_rtx, VOIDmode, EXPAND_NORMAL);
9024 return const0_rtx;
9027 return expand_constructor (exp, target, modifier, false);
9029 case TARGET_MEM_REF:
9031 addr_space_t as = TYPE_ADDR_SPACE (TREE_TYPE (exp));
9032 struct mem_address addr;
9033 enum insn_code icode;
9034 int align;
9036 get_address_description (exp, &addr);
9037 op0 = addr_for_mem_ref (&addr, as, true);
9038 op0 = memory_address_addr_space (mode, op0, as);
9039 temp = gen_rtx_MEM (mode, op0);
9040 set_mem_attributes (temp, exp, 0);
9041 set_mem_addr_space (temp, as);
9042 align = MAX (TYPE_ALIGN (TREE_TYPE (exp)),
9043 get_object_alignment (exp, BIGGEST_ALIGNMENT));
9044 if (mode != BLKmode
9045 && (unsigned) align < GET_MODE_ALIGNMENT (mode)
9046 /* If the target does not have special handling for unaligned
9047 loads of mode then it can use regular moves for them. */
9048 && ((icode = optab_handler (movmisalign_optab, mode))
9049 != CODE_FOR_nothing))
9051 struct expand_operand ops[2];
9053 /* We've already validated the memory, and we're creating a
9054 new pseudo destination. The predicates really can't fail,
9055 nor can the generator. */
9056 create_output_operand (&ops[0], NULL_RTX, mode);
9057 create_fixed_operand (&ops[1], temp);
9058 expand_insn (icode, 2, ops);
9059 return ops[0].value;
9061 return temp;
9064 case MEM_REF:
9066 addr_space_t as
9067 = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 1))));
9068 enum machine_mode address_mode;
9069 tree base = TREE_OPERAND (exp, 0);
9070 gimple def_stmt;
9071 enum insn_code icode;
9072 int align;
9073 /* Handle expansion of non-aliased memory with non-BLKmode. That
9074 might end up in a register. */
9075 if (TREE_CODE (base) == ADDR_EXPR)
9077 HOST_WIDE_INT offset = mem_ref_offset (exp).low;
9078 tree bit_offset;
9079 base = TREE_OPERAND (base, 0);
9080 if (!DECL_P (base))
9082 HOST_WIDE_INT off;
9083 base = get_addr_base_and_unit_offset (base, &off);
9084 gcc_assert (base);
9085 offset += off;
9087 /* If we are expanding a MEM_REF of a non-BLKmode non-addressable
9088 decl we must use bitfield operations. */
9089 if (DECL_P (base)
9090 && !TREE_ADDRESSABLE (base)
9091 && DECL_MODE (base) != BLKmode
9092 && DECL_RTL_SET_P (base)
9093 && !MEM_P (DECL_RTL (base)))
9095 tree bftype;
9096 if (offset == 0
9097 && host_integerp (TYPE_SIZE (TREE_TYPE (exp)), 1)
9098 && (GET_MODE_BITSIZE (DECL_MODE (base))
9099 == TREE_INT_CST_LOW (TYPE_SIZE (TREE_TYPE (exp)))))
9100 return expand_expr (build1 (VIEW_CONVERT_EXPR,
9101 TREE_TYPE (exp), base),
9102 target, tmode, modifier);
9103 bit_offset = bitsize_int (offset * BITS_PER_UNIT);
9104 bftype = TREE_TYPE (base);
9105 if (TYPE_MODE (TREE_TYPE (exp)) != BLKmode)
9106 bftype = TREE_TYPE (exp);
9107 return expand_expr (build3 (BIT_FIELD_REF, bftype,
9108 base,
9109 TYPE_SIZE (TREE_TYPE (exp)),
9110 bit_offset),
9111 target, tmode, modifier);
9114 address_mode = targetm.addr_space.address_mode (as);
9115 base = TREE_OPERAND (exp, 0);
9116 if ((def_stmt = get_def_for_expr (base, BIT_AND_EXPR)))
9118 tree mask = gimple_assign_rhs2 (def_stmt);
9119 base = build2 (BIT_AND_EXPR, TREE_TYPE (base),
9120 gimple_assign_rhs1 (def_stmt), mask);
9121 TREE_OPERAND (exp, 0) = base;
9123 align = MAX (TYPE_ALIGN (TREE_TYPE (exp)),
9124 get_object_alignment (exp, BIGGEST_ALIGNMENT));
9125 op0 = expand_expr (base, NULL_RTX, VOIDmode, EXPAND_SUM);
9126 op0 = memory_address_addr_space (address_mode, op0, as);
9127 if (!integer_zerop (TREE_OPERAND (exp, 1)))
9129 rtx off
9130 = immed_double_int_const (mem_ref_offset (exp), address_mode);
9131 op0 = simplify_gen_binary (PLUS, address_mode, op0, off);
9133 op0 = memory_address_addr_space (mode, op0, as);
9134 temp = gen_rtx_MEM (mode, op0);
9135 set_mem_attributes (temp, exp, 0);
9136 set_mem_addr_space (temp, as);
9137 if (TREE_THIS_VOLATILE (exp))
9138 MEM_VOLATILE_P (temp) = 1;
9139 if (mode != BLKmode
9140 && (unsigned) align < GET_MODE_ALIGNMENT (mode)
9141 /* If the target does not have special handling for unaligned
9142 loads of mode then it can use regular moves for them. */
9143 && ((icode = optab_handler (movmisalign_optab, mode))
9144 != CODE_FOR_nothing))
9146 struct expand_operand ops[2];
9148 /* We've already validated the memory, and we're creating a
9149 new pseudo destination. The predicates really can't fail,
9150 nor can the generator. */
9151 create_output_operand (&ops[0], NULL_RTX, mode);
9152 create_fixed_operand (&ops[1], temp);
9153 expand_insn (icode, 2, ops);
9154 return ops[0].value;
9156 return temp;
9159 case ARRAY_REF:
9162 tree array = treeop0;
9163 tree index = treeop1;
9165 /* Fold an expression like: "foo"[2].
9166 This is not done in fold so it won't happen inside &.
9167 Don't fold if this is for wide characters since it's too
9168 difficult to do correctly and this is a very rare case. */
9170 if (modifier != EXPAND_CONST_ADDRESS
9171 && modifier != EXPAND_INITIALIZER
9172 && modifier != EXPAND_MEMORY)
9174 tree t = fold_read_from_constant_string (exp);
9176 if (t)
9177 return expand_expr (t, target, tmode, modifier);
9180 /* If this is a constant index into a constant array,
9181 just get the value from the array. Handle both the cases when
9182 we have an explicit constructor and when our operand is a variable
9183 that was declared const. */
9185 if (modifier != EXPAND_CONST_ADDRESS
9186 && modifier != EXPAND_INITIALIZER
9187 && modifier != EXPAND_MEMORY
9188 && TREE_CODE (array) == CONSTRUCTOR
9189 && ! TREE_SIDE_EFFECTS (array)
9190 && TREE_CODE (index) == INTEGER_CST)
9192 unsigned HOST_WIDE_INT ix;
9193 tree field, value;
9195 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (array), ix,
9196 field, value)
9197 if (tree_int_cst_equal (field, index))
9199 if (!TREE_SIDE_EFFECTS (value))
9200 return expand_expr (fold (value), target, tmode, modifier);
9201 break;
9205 else if (optimize >= 1
9206 && modifier != EXPAND_CONST_ADDRESS
9207 && modifier != EXPAND_INITIALIZER
9208 && modifier != EXPAND_MEMORY
9209 && TREE_READONLY (array) && ! TREE_SIDE_EFFECTS (array)
9210 && TREE_CODE (array) == VAR_DECL && DECL_INITIAL (array)
9211 && TREE_CODE (DECL_INITIAL (array)) != ERROR_MARK
9212 && const_value_known_p (array))
9214 if (TREE_CODE (index) == INTEGER_CST)
9216 tree init = DECL_INITIAL (array);
9218 if (TREE_CODE (init) == CONSTRUCTOR)
9220 unsigned HOST_WIDE_INT ix;
9221 tree field, value;
9223 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (init), ix,
9224 field, value)
9225 if (tree_int_cst_equal (field, index))
9227 if (TREE_SIDE_EFFECTS (value))
9228 break;
9230 if (TREE_CODE (value) == CONSTRUCTOR)
9232 /* If VALUE is a CONSTRUCTOR, this
9233 optimization is only useful if
9234 this doesn't store the CONSTRUCTOR
9235 into memory. If it does, it is more
9236 efficient to just load the data from
9237 the array directly. */
9238 rtx ret = expand_constructor (value, target,
9239 modifier, true);
9240 if (ret == NULL_RTX)
9241 break;
9244 return expand_expr (fold (value), target, tmode,
9245 modifier);
9248 else if(TREE_CODE (init) == STRING_CST)
9250 tree index1 = index;
9251 tree low_bound = array_ref_low_bound (exp);
9252 index1 = fold_convert_loc (loc, sizetype,
9253 treeop1);
9255 /* Optimize the special-case of a zero lower bound.
9257 We convert the low_bound to sizetype to avoid some problems
9258 with constant folding. (E.g. suppose the lower bound is 1,
9259 and its mode is QI. Without the conversion,l (ARRAY
9260 +(INDEX-(unsigned char)1)) becomes ((ARRAY+(-(unsigned char)1))
9261 +INDEX), which becomes (ARRAY+255+INDEX). Opps!) */
9263 if (! integer_zerop (low_bound))
9264 index1 = size_diffop_loc (loc, index1,
9265 fold_convert_loc (loc, sizetype,
9266 low_bound));
9268 if (0 > compare_tree_int (index1,
9269 TREE_STRING_LENGTH (init)))
9271 tree type = TREE_TYPE (TREE_TYPE (init));
9272 enum machine_mode mode = TYPE_MODE (type);
9274 if (GET_MODE_CLASS (mode) == MODE_INT
9275 && GET_MODE_SIZE (mode) == 1)
9276 return gen_int_mode (TREE_STRING_POINTER (init)
9277 [TREE_INT_CST_LOW (index1)],
9278 mode);
9284 goto normal_inner_ref;
9286 case COMPONENT_REF:
9287 /* If the operand is a CONSTRUCTOR, we can just extract the
9288 appropriate field if it is present. */
9289 if (TREE_CODE (treeop0) == CONSTRUCTOR)
9291 unsigned HOST_WIDE_INT idx;
9292 tree field, value;
9294 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (treeop0),
9295 idx, field, value)
9296 if (field == treeop1
9297 /* We can normally use the value of the field in the
9298 CONSTRUCTOR. However, if this is a bitfield in
9299 an integral mode that we can fit in a HOST_WIDE_INT,
9300 we must mask only the number of bits in the bitfield,
9301 since this is done implicitly by the constructor. If
9302 the bitfield does not meet either of those conditions,
9303 we can't do this optimization. */
9304 && (! DECL_BIT_FIELD (field)
9305 || ((GET_MODE_CLASS (DECL_MODE (field)) == MODE_INT)
9306 && (GET_MODE_PRECISION (DECL_MODE (field))
9307 <= HOST_BITS_PER_WIDE_INT))))
9309 if (DECL_BIT_FIELD (field)
9310 && modifier == EXPAND_STACK_PARM)
9311 target = 0;
9312 op0 = expand_expr (value, target, tmode, modifier);
9313 if (DECL_BIT_FIELD (field))
9315 HOST_WIDE_INT bitsize = TREE_INT_CST_LOW (DECL_SIZE (field));
9316 enum machine_mode imode = TYPE_MODE (TREE_TYPE (field));
9318 if (TYPE_UNSIGNED (TREE_TYPE (field)))
9320 op1 = GEN_INT (((HOST_WIDE_INT) 1 << bitsize) - 1);
9321 op0 = expand_and (imode, op0, op1, target);
9323 else
9325 int count = GET_MODE_PRECISION (imode) - bitsize;
9327 op0 = expand_shift (LSHIFT_EXPR, imode, op0, count,
9328 target, 0);
9329 op0 = expand_shift (RSHIFT_EXPR, imode, op0, count,
9330 target, 0);
9334 return op0;
9337 goto normal_inner_ref;
9339 case BIT_FIELD_REF:
9340 case ARRAY_RANGE_REF:
9341 normal_inner_ref:
9343 enum machine_mode mode1, mode2;
9344 HOST_WIDE_INT bitsize, bitpos;
9345 tree offset;
9346 int volatilep = 0, must_force_mem;
9347 bool packedp = false;
9348 tree tem = get_inner_reference (exp, &bitsize, &bitpos, &offset,
9349 &mode1, &unsignedp, &volatilep, true);
9350 rtx orig_op0, memloc;
9352 /* If we got back the original object, something is wrong. Perhaps
9353 we are evaluating an expression too early. In any event, don't
9354 infinitely recurse. */
9355 gcc_assert (tem != exp);
9357 if (TYPE_PACKED (TREE_TYPE (TREE_OPERAND (exp, 0)))
9358 || (TREE_CODE (TREE_OPERAND (exp, 1)) == FIELD_DECL
9359 && DECL_PACKED (TREE_OPERAND (exp, 1))))
9360 packedp = true;
9362 /* If TEM's type is a union of variable size, pass TARGET to the inner
9363 computation, since it will need a temporary and TARGET is known
9364 to have to do. This occurs in unchecked conversion in Ada. */
9365 orig_op0 = op0
9366 = expand_expr (tem,
9367 (TREE_CODE (TREE_TYPE (tem)) == UNION_TYPE
9368 && (TREE_CODE (TYPE_SIZE (TREE_TYPE (tem)))
9369 != INTEGER_CST)
9370 && modifier != EXPAND_STACK_PARM
9371 ? target : NULL_RTX),
9372 VOIDmode,
9373 (modifier == EXPAND_INITIALIZER
9374 || modifier == EXPAND_CONST_ADDRESS
9375 || modifier == EXPAND_STACK_PARM)
9376 ? modifier : EXPAND_NORMAL);
9379 /* If the bitfield is volatile, we want to access it in the
9380 field's mode, not the computed mode.
9381 If a MEM has VOIDmode (external with incomplete type),
9382 use BLKmode for it instead. */
9383 if (MEM_P (op0))
9385 if (volatilep && flag_strict_volatile_bitfields > 0)
9386 op0 = adjust_address (op0, mode1, 0);
9387 else if (GET_MODE (op0) == VOIDmode)
9388 op0 = adjust_address (op0, BLKmode, 0);
9391 mode2
9392 = CONSTANT_P (op0) ? TYPE_MODE (TREE_TYPE (tem)) : GET_MODE (op0);
9394 /* If we have either an offset, a BLKmode result, or a reference
9395 outside the underlying object, we must force it to memory.
9396 Such a case can occur in Ada if we have unchecked conversion
9397 of an expression from a scalar type to an aggregate type or
9398 for an ARRAY_RANGE_REF whose type is BLKmode, or if we were
9399 passed a partially uninitialized object or a view-conversion
9400 to a larger size. */
9401 must_force_mem = (offset
9402 || mode1 == BLKmode
9403 || bitpos + bitsize > GET_MODE_BITSIZE (mode2));
9405 /* Handle CONCAT first. */
9406 if (GET_CODE (op0) == CONCAT && !must_force_mem)
9408 if (bitpos == 0
9409 && bitsize == GET_MODE_BITSIZE (GET_MODE (op0)))
9410 return op0;
9411 if (bitpos == 0
9412 && bitsize == GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0)))
9413 && bitsize)
9415 op0 = XEXP (op0, 0);
9416 mode2 = GET_MODE (op0);
9418 else if (bitpos == GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0)))
9419 && bitsize == GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 1)))
9420 && bitpos
9421 && bitsize)
9423 op0 = XEXP (op0, 1);
9424 bitpos = 0;
9425 mode2 = GET_MODE (op0);
9427 else
9428 /* Otherwise force into memory. */
9429 must_force_mem = 1;
9432 /* If this is a constant, put it in a register if it is a legitimate
9433 constant and we don't need a memory reference. */
9434 if (CONSTANT_P (op0)
9435 && mode2 != BLKmode
9436 && targetm.legitimate_constant_p (mode2, op0)
9437 && !must_force_mem)
9438 op0 = force_reg (mode2, op0);
9440 /* Otherwise, if this is a constant, try to force it to the constant
9441 pool. Note that back-ends, e.g. MIPS, may refuse to do so if it
9442 is a legitimate constant. */
9443 else if (CONSTANT_P (op0) && (memloc = force_const_mem (mode2, op0)))
9444 op0 = validize_mem (memloc);
9446 /* Otherwise, if this is a constant or the object is not in memory
9447 and need be, put it there. */
9448 else if (CONSTANT_P (op0) || (!MEM_P (op0) && must_force_mem))
9450 tree nt = build_qualified_type (TREE_TYPE (tem),
9451 (TYPE_QUALS (TREE_TYPE (tem))
9452 | TYPE_QUAL_CONST));
9453 memloc = assign_temp (nt, 1, 1, 1);
9454 emit_move_insn (memloc, op0);
9455 op0 = memloc;
9458 if (offset)
9460 enum machine_mode address_mode;
9461 rtx offset_rtx = expand_expr (offset, NULL_RTX, VOIDmode,
9462 EXPAND_SUM);
9464 gcc_assert (MEM_P (op0));
9466 address_mode
9467 = targetm.addr_space.address_mode (MEM_ADDR_SPACE (op0));
9468 if (GET_MODE (offset_rtx) != address_mode)
9469 offset_rtx = convert_to_mode (address_mode, offset_rtx, 0);
9471 if (GET_MODE (op0) == BLKmode
9472 /* A constant address in OP0 can have VOIDmode, we must
9473 not try to call force_reg in that case. */
9474 && GET_MODE (XEXP (op0, 0)) != VOIDmode
9475 && bitsize != 0
9476 && (bitpos % bitsize) == 0
9477 && (bitsize % GET_MODE_ALIGNMENT (mode1)) == 0
9478 && MEM_ALIGN (op0) == GET_MODE_ALIGNMENT (mode1))
9480 op0 = adjust_address (op0, mode1, bitpos / BITS_PER_UNIT);
9481 bitpos = 0;
9484 op0 = offset_address (op0, offset_rtx,
9485 highest_pow2_factor (offset));
9488 /* If OFFSET is making OP0 more aligned than BIGGEST_ALIGNMENT,
9489 record its alignment as BIGGEST_ALIGNMENT. */
9490 if (MEM_P (op0) && bitpos == 0 && offset != 0
9491 && is_aligning_offset (offset, tem))
9492 set_mem_align (op0, BIGGEST_ALIGNMENT);
9494 /* Don't forget about volatility even if this is a bitfield. */
9495 if (MEM_P (op0) && volatilep && ! MEM_VOLATILE_P (op0))
9497 if (op0 == orig_op0)
9498 op0 = copy_rtx (op0);
9500 MEM_VOLATILE_P (op0) = 1;
9503 /* In cases where an aligned union has an unaligned object
9504 as a field, we might be extracting a BLKmode value from
9505 an integer-mode (e.g., SImode) object. Handle this case
9506 by doing the extract into an object as wide as the field
9507 (which we know to be the width of a basic mode), then
9508 storing into memory, and changing the mode to BLKmode. */
9509 if (mode1 == VOIDmode
9510 || REG_P (op0) || GET_CODE (op0) == SUBREG
9511 || (mode1 != BLKmode && ! direct_load[(int) mode1]
9512 && GET_MODE_CLASS (mode) != MODE_COMPLEX_INT
9513 && GET_MODE_CLASS (mode) != MODE_COMPLEX_FLOAT
9514 && modifier != EXPAND_CONST_ADDRESS
9515 && modifier != EXPAND_INITIALIZER)
9516 /* If the field is volatile, we always want an aligned
9517 access. Only do this if the access is not already naturally
9518 aligned, otherwise "normal" (non-bitfield) volatile fields
9519 become non-addressable. */
9520 || (volatilep && flag_strict_volatile_bitfields > 0
9521 && (bitpos % GET_MODE_ALIGNMENT (mode) != 0))
9522 /* If the field isn't aligned enough to fetch as a memref,
9523 fetch it as a bit field. */
9524 || (mode1 != BLKmode
9525 && (((TYPE_ALIGN (TREE_TYPE (tem)) < GET_MODE_ALIGNMENT (mode)
9526 || (bitpos % GET_MODE_ALIGNMENT (mode) != 0)
9527 || (MEM_P (op0)
9528 && (MEM_ALIGN (op0) < GET_MODE_ALIGNMENT (mode1)
9529 || (bitpos % GET_MODE_ALIGNMENT (mode1) != 0))))
9530 && ((modifier == EXPAND_CONST_ADDRESS
9531 || modifier == EXPAND_INITIALIZER)
9532 ? STRICT_ALIGNMENT
9533 : SLOW_UNALIGNED_ACCESS (mode1, MEM_ALIGN (op0))))
9534 || (bitpos % BITS_PER_UNIT != 0)))
9535 /* If the type and the field are a constant size and the
9536 size of the type isn't the same size as the bitfield,
9537 we must use bitfield operations. */
9538 || (bitsize >= 0
9539 && TYPE_SIZE (TREE_TYPE (exp))
9540 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp))) == INTEGER_CST
9541 && 0 != compare_tree_int (TYPE_SIZE (TREE_TYPE (exp)),
9542 bitsize)))
9544 enum machine_mode ext_mode = mode;
9546 if (ext_mode == BLKmode
9547 && ! (target != 0 && MEM_P (op0)
9548 && MEM_P (target)
9549 && bitpos % BITS_PER_UNIT == 0))
9550 ext_mode = mode_for_size (bitsize, MODE_INT, 1);
9552 if (ext_mode == BLKmode)
9554 if (target == 0)
9555 target = assign_temp (type, 0, 1, 1);
9557 if (bitsize == 0)
9558 return target;
9560 /* In this case, BITPOS must start at a byte boundary and
9561 TARGET, if specified, must be a MEM. */
9562 gcc_assert (MEM_P (op0)
9563 && (!target || MEM_P (target))
9564 && !(bitpos % BITS_PER_UNIT));
9566 emit_block_move (target,
9567 adjust_address (op0, VOIDmode,
9568 bitpos / BITS_PER_UNIT),
9569 GEN_INT ((bitsize + BITS_PER_UNIT - 1)
9570 / BITS_PER_UNIT),
9571 (modifier == EXPAND_STACK_PARM
9572 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
9574 return target;
9577 op0 = validize_mem (op0);
9579 if (MEM_P (op0) && REG_P (XEXP (op0, 0)))
9580 mark_reg_pointer (XEXP (op0, 0), MEM_ALIGN (op0));
9582 op0 = extract_bit_field (op0, bitsize, bitpos, unsignedp, packedp,
9583 (modifier == EXPAND_STACK_PARM
9584 ? NULL_RTX : target),
9585 ext_mode, ext_mode);
9587 /* If the result is a record type and BITSIZE is narrower than
9588 the mode of OP0, an integral mode, and this is a big endian
9589 machine, we must put the field into the high-order bits. */
9590 if (TREE_CODE (type) == RECORD_TYPE && BYTES_BIG_ENDIAN
9591 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
9592 && bitsize < (HOST_WIDE_INT) GET_MODE_BITSIZE (GET_MODE (op0)))
9593 op0 = expand_shift (LSHIFT_EXPR, GET_MODE (op0), op0,
9594 GET_MODE_BITSIZE (GET_MODE (op0))
9595 - bitsize, op0, 1);
9597 /* If the result type is BLKmode, store the data into a temporary
9598 of the appropriate type, but with the mode corresponding to the
9599 mode for the data we have (op0's mode). It's tempting to make
9600 this a constant type, since we know it's only being stored once,
9601 but that can cause problems if we are taking the address of this
9602 COMPONENT_REF because the MEM of any reference via that address
9603 will have flags corresponding to the type, which will not
9604 necessarily be constant. */
9605 if (mode == BLKmode)
9607 HOST_WIDE_INT size = GET_MODE_BITSIZE (ext_mode);
9608 rtx new_rtx;
9610 /* If the reference doesn't use the alias set of its type,
9611 we cannot create the temporary using that type. */
9612 if (component_uses_parent_alias_set (exp))
9614 new_rtx = assign_stack_local (ext_mode, size, 0);
9615 set_mem_alias_set (new_rtx, get_alias_set (exp));
9617 else
9618 new_rtx = assign_stack_temp_for_type (ext_mode, size, 0, type);
9620 emit_move_insn (new_rtx, op0);
9621 op0 = copy_rtx (new_rtx);
9622 PUT_MODE (op0, BLKmode);
9623 set_mem_attributes (op0, exp, 1);
9626 return op0;
9629 /* If the result is BLKmode, use that to access the object
9630 now as well. */
9631 if (mode == BLKmode)
9632 mode1 = BLKmode;
9634 /* Get a reference to just this component. */
9635 if (modifier == EXPAND_CONST_ADDRESS
9636 || modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER)
9637 op0 = adjust_address_nv (op0, mode1, bitpos / BITS_PER_UNIT);
9638 else
9639 op0 = adjust_address (op0, mode1, bitpos / BITS_PER_UNIT);
9641 if (op0 == orig_op0)
9642 op0 = copy_rtx (op0);
9644 set_mem_attributes (op0, exp, 0);
9645 if (REG_P (XEXP (op0, 0)))
9646 mark_reg_pointer (XEXP (op0, 0), MEM_ALIGN (op0));
9648 MEM_VOLATILE_P (op0) |= volatilep;
9649 if (mode == mode1 || mode1 == BLKmode || mode1 == tmode
9650 || modifier == EXPAND_CONST_ADDRESS
9651 || modifier == EXPAND_INITIALIZER)
9652 return op0;
9653 else if (target == 0)
9654 target = gen_reg_rtx (tmode != VOIDmode ? tmode : mode);
9656 convert_move (target, op0, unsignedp);
9657 return target;
9660 case OBJ_TYPE_REF:
9661 return expand_expr (OBJ_TYPE_REF_EXPR (exp), target, tmode, modifier);
9663 case CALL_EXPR:
9664 /* All valid uses of __builtin_va_arg_pack () are removed during
9665 inlining. */
9666 if (CALL_EXPR_VA_ARG_PACK (exp))
9667 error ("%Kinvalid use of %<__builtin_va_arg_pack ()%>", exp);
9669 tree fndecl = get_callee_fndecl (exp), attr;
9671 if (fndecl
9672 && (attr = lookup_attribute ("error",
9673 DECL_ATTRIBUTES (fndecl))) != NULL)
9674 error ("%Kcall to %qs declared with attribute error: %s",
9675 exp, identifier_to_locale (lang_hooks.decl_printable_name (fndecl, 1)),
9676 TREE_STRING_POINTER (TREE_VALUE (TREE_VALUE (attr))));
9677 if (fndecl
9678 && (attr = lookup_attribute ("warning",
9679 DECL_ATTRIBUTES (fndecl))) != NULL)
9680 warning_at (tree_nonartificial_location (exp),
9681 0, "%Kcall to %qs declared with attribute warning: %s",
9682 exp, identifier_to_locale (lang_hooks.decl_printable_name (fndecl, 1)),
9683 TREE_STRING_POINTER (TREE_VALUE (TREE_VALUE (attr))));
9685 /* Check for a built-in function. */
9686 if (fndecl && DECL_BUILT_IN (fndecl))
9688 gcc_assert (DECL_BUILT_IN_CLASS (fndecl) != BUILT_IN_FRONTEND);
9689 return expand_builtin (exp, target, subtarget, tmode, ignore);
9692 return expand_call (exp, target, ignore);
9694 case VIEW_CONVERT_EXPR:
9695 op0 = NULL_RTX;
9697 /* If we are converting to BLKmode, try to avoid an intermediate
9698 temporary by fetching an inner memory reference. */
9699 if (mode == BLKmode
9700 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp))) == INTEGER_CST
9701 && TYPE_MODE (TREE_TYPE (treeop0)) != BLKmode
9702 && handled_component_p (treeop0))
9704 enum machine_mode mode1;
9705 HOST_WIDE_INT bitsize, bitpos;
9706 tree offset;
9707 int unsignedp;
9708 int volatilep = 0;
9709 tree tem
9710 = get_inner_reference (treeop0, &bitsize, &bitpos,
9711 &offset, &mode1, &unsignedp, &volatilep,
9712 true);
9713 rtx orig_op0;
9715 /* ??? We should work harder and deal with non-zero offsets. */
9716 if (!offset
9717 && (bitpos % BITS_PER_UNIT) == 0
9718 && bitsize >= 0
9719 && compare_tree_int (TYPE_SIZE (TREE_TYPE (exp)), bitsize) == 0)
9721 /* See the normal_inner_ref case for the rationale. */
9722 orig_op0
9723 = expand_expr (tem,
9724 (TREE_CODE (TREE_TYPE (tem)) == UNION_TYPE
9725 && (TREE_CODE (TYPE_SIZE (TREE_TYPE (tem)))
9726 != INTEGER_CST)
9727 && modifier != EXPAND_STACK_PARM
9728 ? target : NULL_RTX),
9729 VOIDmode,
9730 (modifier == EXPAND_INITIALIZER
9731 || modifier == EXPAND_CONST_ADDRESS
9732 || modifier == EXPAND_STACK_PARM)
9733 ? modifier : EXPAND_NORMAL);
9735 if (MEM_P (orig_op0))
9737 op0 = orig_op0;
9739 /* Get a reference to just this component. */
9740 if (modifier == EXPAND_CONST_ADDRESS
9741 || modifier == EXPAND_SUM
9742 || modifier == EXPAND_INITIALIZER)
9743 op0 = adjust_address_nv (op0, mode, bitpos / BITS_PER_UNIT);
9744 else
9745 op0 = adjust_address (op0, mode, bitpos / BITS_PER_UNIT);
9747 if (op0 == orig_op0)
9748 op0 = copy_rtx (op0);
9750 set_mem_attributes (op0, treeop0, 0);
9751 if (REG_P (XEXP (op0, 0)))
9752 mark_reg_pointer (XEXP (op0, 0), MEM_ALIGN (op0));
9754 MEM_VOLATILE_P (op0) |= volatilep;
9759 if (!op0)
9760 op0 = expand_expr (treeop0,
9761 NULL_RTX, VOIDmode, modifier);
9763 /* If the input and output modes are both the same, we are done. */
9764 if (mode == GET_MODE (op0))
9766 /* If neither mode is BLKmode, and both modes are the same size
9767 then we can use gen_lowpart. */
9768 else if (mode != BLKmode && GET_MODE (op0) != BLKmode
9769 && (GET_MODE_PRECISION (mode)
9770 == GET_MODE_PRECISION (GET_MODE (op0)))
9771 && !COMPLEX_MODE_P (GET_MODE (op0)))
9773 if (GET_CODE (op0) == SUBREG)
9774 op0 = force_reg (GET_MODE (op0), op0);
9775 temp = gen_lowpart_common (mode, op0);
9776 if (temp)
9777 op0 = temp;
9778 else
9780 if (!REG_P (op0) && !MEM_P (op0))
9781 op0 = force_reg (GET_MODE (op0), op0);
9782 op0 = gen_lowpart (mode, op0);
9785 /* If both types are integral, convert from one mode to the other. */
9786 else if (INTEGRAL_TYPE_P (type) && INTEGRAL_TYPE_P (TREE_TYPE (treeop0)))
9787 op0 = convert_modes (mode, GET_MODE (op0), op0,
9788 TYPE_UNSIGNED (TREE_TYPE (treeop0)));
9789 /* As a last resort, spill op0 to memory, and reload it in a
9790 different mode. */
9791 else if (!MEM_P (op0))
9793 /* If the operand is not a MEM, force it into memory. Since we
9794 are going to be changing the mode of the MEM, don't call
9795 force_const_mem for constants because we don't allow pool
9796 constants to change mode. */
9797 tree inner_type = TREE_TYPE (treeop0);
9799 gcc_assert (!TREE_ADDRESSABLE (exp));
9801 if (target == 0 || GET_MODE (target) != TYPE_MODE (inner_type))
9802 target
9803 = assign_stack_temp_for_type
9804 (TYPE_MODE (inner_type),
9805 GET_MODE_SIZE (TYPE_MODE (inner_type)), 0, inner_type);
9807 emit_move_insn (target, op0);
9808 op0 = target;
9811 /* At this point, OP0 is in the correct mode. If the output type is
9812 such that the operand is known to be aligned, indicate that it is.
9813 Otherwise, we need only be concerned about alignment for non-BLKmode
9814 results. */
9815 if (MEM_P (op0))
9817 op0 = copy_rtx (op0);
9819 if (TYPE_ALIGN_OK (type))
9820 set_mem_align (op0, MAX (MEM_ALIGN (op0), TYPE_ALIGN (type)));
9821 else if (STRICT_ALIGNMENT
9822 && mode != BLKmode
9823 && MEM_ALIGN (op0) < GET_MODE_ALIGNMENT (mode))
9825 tree inner_type = TREE_TYPE (treeop0);
9826 HOST_WIDE_INT temp_size
9827 = MAX (int_size_in_bytes (inner_type),
9828 (HOST_WIDE_INT) GET_MODE_SIZE (mode));
9829 rtx new_rtx
9830 = assign_stack_temp_for_type (mode, temp_size, 0, type);
9831 rtx new_with_op0_mode
9832 = adjust_address (new_rtx, GET_MODE (op0), 0);
9834 gcc_assert (!TREE_ADDRESSABLE (exp));
9836 if (GET_MODE (op0) == BLKmode)
9837 emit_block_move (new_with_op0_mode, op0,
9838 GEN_INT (GET_MODE_SIZE (mode)),
9839 (modifier == EXPAND_STACK_PARM
9840 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
9841 else
9842 emit_move_insn (new_with_op0_mode, op0);
9844 op0 = new_rtx;
9847 op0 = adjust_address (op0, mode, 0);
9850 return op0;
9852 case COND_EXPR:
9853 /* A COND_EXPR with its type being VOID_TYPE represents a
9854 conditional jump and is handled in
9855 expand_gimple_cond_expr. */
9856 gcc_assert (!VOID_TYPE_P (type));
9858 /* Note that COND_EXPRs whose type is a structure or union
9859 are required to be constructed to contain assignments of
9860 a temporary variable, so that we can evaluate them here
9861 for side effect only. If type is void, we must do likewise. */
9863 gcc_assert (!TREE_ADDRESSABLE (type)
9864 && !ignore
9865 && TREE_TYPE (treeop1) != void_type_node
9866 && TREE_TYPE (treeop2) != void_type_node);
9868 /* If we are not to produce a result, we have no target. Otherwise,
9869 if a target was specified use it; it will not be used as an
9870 intermediate target unless it is safe. If no target, use a
9871 temporary. */
9873 if (modifier != EXPAND_STACK_PARM
9874 && original_target
9875 && safe_from_p (original_target, treeop0, 1)
9876 && GET_MODE (original_target) == mode
9877 #ifdef HAVE_conditional_move
9878 && (! can_conditionally_move_p (mode)
9879 || REG_P (original_target))
9880 #endif
9881 && !MEM_P (original_target))
9882 temp = original_target;
9883 else
9884 temp = assign_temp (type, 0, 0, 1);
9886 do_pending_stack_adjust ();
9887 NO_DEFER_POP;
9888 op0 = gen_label_rtx ();
9889 op1 = gen_label_rtx ();
9890 jumpifnot (treeop0, op0, -1);
9891 store_expr (treeop1, temp,
9892 modifier == EXPAND_STACK_PARM,
9893 false);
9895 emit_jump_insn (gen_jump (op1));
9896 emit_barrier ();
9897 emit_label (op0);
9898 store_expr (treeop2, temp,
9899 modifier == EXPAND_STACK_PARM,
9900 false);
9902 emit_label (op1);
9903 OK_DEFER_POP;
9904 return temp;
9906 case VEC_COND_EXPR:
9907 target = expand_vec_cond_expr (type, treeop0, treeop1, treeop2, target);
9908 return target;
9910 case MODIFY_EXPR:
9912 tree lhs = treeop0;
9913 tree rhs = treeop1;
9914 gcc_assert (ignore);
9916 /* Check for |= or &= of a bitfield of size one into another bitfield
9917 of size 1. In this case, (unless we need the result of the
9918 assignment) we can do this more efficiently with a
9919 test followed by an assignment, if necessary.
9921 ??? At this point, we can't get a BIT_FIELD_REF here. But if
9922 things change so we do, this code should be enhanced to
9923 support it. */
9924 if (TREE_CODE (lhs) == COMPONENT_REF
9925 && (TREE_CODE (rhs) == BIT_IOR_EXPR
9926 || TREE_CODE (rhs) == BIT_AND_EXPR)
9927 && TREE_OPERAND (rhs, 0) == lhs
9928 && TREE_CODE (TREE_OPERAND (rhs, 1)) == COMPONENT_REF
9929 && integer_onep (DECL_SIZE (TREE_OPERAND (lhs, 1)))
9930 && integer_onep (DECL_SIZE (TREE_OPERAND (TREE_OPERAND (rhs, 1), 1))))
9932 rtx label = gen_label_rtx ();
9933 int value = TREE_CODE (rhs) == BIT_IOR_EXPR;
9934 do_jump (TREE_OPERAND (rhs, 1),
9935 value ? label : 0,
9936 value ? 0 : label, -1);
9937 expand_assignment (lhs, build_int_cst (TREE_TYPE (rhs), value),
9938 MOVE_NONTEMPORAL (exp));
9939 do_pending_stack_adjust ();
9940 emit_label (label);
9941 return const0_rtx;
9944 expand_assignment (lhs, rhs, MOVE_NONTEMPORAL (exp));
9945 return const0_rtx;
9948 case ADDR_EXPR:
9949 return expand_expr_addr_expr (exp, target, tmode, modifier);
9951 case REALPART_EXPR:
9952 op0 = expand_normal (treeop0);
9953 return read_complex_part (op0, false);
9955 case IMAGPART_EXPR:
9956 op0 = expand_normal (treeop0);
9957 return read_complex_part (op0, true);
9959 case RETURN_EXPR:
9960 case LABEL_EXPR:
9961 case GOTO_EXPR:
9962 case SWITCH_EXPR:
9963 case ASM_EXPR:
9964 /* Expanded in cfgexpand.c. */
9965 gcc_unreachable ();
9967 case TRY_CATCH_EXPR:
9968 case CATCH_EXPR:
9969 case EH_FILTER_EXPR:
9970 case TRY_FINALLY_EXPR:
9971 /* Lowered by tree-eh.c. */
9972 gcc_unreachable ();
9974 case WITH_CLEANUP_EXPR:
9975 case CLEANUP_POINT_EXPR:
9976 case TARGET_EXPR:
9977 case CASE_LABEL_EXPR:
9978 case VA_ARG_EXPR:
9979 case BIND_EXPR:
9980 case INIT_EXPR:
9981 case CONJ_EXPR:
9982 case COMPOUND_EXPR:
9983 case PREINCREMENT_EXPR:
9984 case PREDECREMENT_EXPR:
9985 case POSTINCREMENT_EXPR:
9986 case POSTDECREMENT_EXPR:
9987 case LOOP_EXPR:
9988 case EXIT_EXPR:
9989 /* Lowered by gimplify.c. */
9990 gcc_unreachable ();
9992 case FDESC_EXPR:
9993 /* Function descriptors are not valid except for as
9994 initialization constants, and should not be expanded. */
9995 gcc_unreachable ();
9997 case WITH_SIZE_EXPR:
9998 /* WITH_SIZE_EXPR expands to its first argument. The caller should
9999 have pulled out the size to use in whatever context it needed. */
10000 return expand_expr_real (treeop0, original_target, tmode,
10001 modifier, alt_rtl);
10003 case COMPOUND_LITERAL_EXPR:
10005 /* Initialize the anonymous variable declared in the compound
10006 literal, then return the variable. */
10007 tree decl = COMPOUND_LITERAL_EXPR_DECL (exp);
10009 /* Create RTL for this variable. */
10010 if (!DECL_RTL_SET_P (decl))
10012 if (DECL_HARD_REGISTER (decl))
10013 /* The user specified an assembler name for this variable.
10014 Set that up now. */
10015 rest_of_decl_compilation (decl, 0, 0);
10016 else
10017 expand_decl (decl);
10020 return expand_expr_real (decl, original_target, tmode,
10021 modifier, alt_rtl);
10024 default:
10025 return expand_expr_real_2 (&ops, target, tmode, modifier);
10029 /* Subroutine of above: reduce EXP to the precision of TYPE (in the
10030 signedness of TYPE), possibly returning the result in TARGET. */
10031 static rtx
10032 reduce_to_bit_field_precision (rtx exp, rtx target, tree type)
10034 HOST_WIDE_INT prec = TYPE_PRECISION (type);
10035 if (target && GET_MODE (target) != GET_MODE (exp))
10036 target = 0;
10037 /* For constant values, reduce using build_int_cst_type. */
10038 if (CONST_INT_P (exp))
10040 HOST_WIDE_INT value = INTVAL (exp);
10041 tree t = build_int_cst_type (type, value);
10042 return expand_expr (t, target, VOIDmode, EXPAND_NORMAL);
10044 else if (TYPE_UNSIGNED (type))
10046 rtx mask = immed_double_int_const (double_int_mask (prec),
10047 GET_MODE (exp));
10048 return expand_and (GET_MODE (exp), exp, mask, target);
10050 else
10052 int count = GET_MODE_PRECISION (GET_MODE (exp)) - prec;
10053 exp = expand_shift (LSHIFT_EXPR, GET_MODE (exp),
10054 exp, count, target, 0);
10055 return expand_shift (RSHIFT_EXPR, GET_MODE (exp),
10056 exp, count, target, 0);
10060 /* Subroutine of above: returns 1 if OFFSET corresponds to an offset that
10061 when applied to the address of EXP produces an address known to be
10062 aligned more than BIGGEST_ALIGNMENT. */
10064 static int
10065 is_aligning_offset (const_tree offset, const_tree exp)
10067 /* Strip off any conversions. */
10068 while (CONVERT_EXPR_P (offset))
10069 offset = TREE_OPERAND (offset, 0);
10071 /* We must now have a BIT_AND_EXPR with a constant that is one less than
10072 power of 2 and which is larger than BIGGEST_ALIGNMENT. */
10073 if (TREE_CODE (offset) != BIT_AND_EXPR
10074 || !host_integerp (TREE_OPERAND (offset, 1), 1)
10075 || compare_tree_int (TREE_OPERAND (offset, 1),
10076 BIGGEST_ALIGNMENT / BITS_PER_UNIT) <= 0
10077 || !exact_log2 (tree_low_cst (TREE_OPERAND (offset, 1), 1) + 1) < 0)
10078 return 0;
10080 /* Look at the first operand of BIT_AND_EXPR and strip any conversion.
10081 It must be NEGATE_EXPR. Then strip any more conversions. */
10082 offset = TREE_OPERAND (offset, 0);
10083 while (CONVERT_EXPR_P (offset))
10084 offset = TREE_OPERAND (offset, 0);
10086 if (TREE_CODE (offset) != NEGATE_EXPR)
10087 return 0;
10089 offset = TREE_OPERAND (offset, 0);
10090 while (CONVERT_EXPR_P (offset))
10091 offset = TREE_OPERAND (offset, 0);
10093 /* This must now be the address of EXP. */
10094 return TREE_CODE (offset) == ADDR_EXPR && TREE_OPERAND (offset, 0) == exp;
10097 /* Return the tree node if an ARG corresponds to a string constant or zero
10098 if it doesn't. If we return nonzero, set *PTR_OFFSET to the offset
10099 in bytes within the string that ARG is accessing. The type of the
10100 offset will be `sizetype'. */
10102 tree
10103 string_constant (tree arg, tree *ptr_offset)
10105 tree array, offset, lower_bound;
10106 STRIP_NOPS (arg);
10108 if (TREE_CODE (arg) == ADDR_EXPR)
10110 if (TREE_CODE (TREE_OPERAND (arg, 0)) == STRING_CST)
10112 *ptr_offset = size_zero_node;
10113 return TREE_OPERAND (arg, 0);
10115 else if (TREE_CODE (TREE_OPERAND (arg, 0)) == VAR_DECL)
10117 array = TREE_OPERAND (arg, 0);
10118 offset = size_zero_node;
10120 else if (TREE_CODE (TREE_OPERAND (arg, 0)) == ARRAY_REF)
10122 array = TREE_OPERAND (TREE_OPERAND (arg, 0), 0);
10123 offset = TREE_OPERAND (TREE_OPERAND (arg, 0), 1);
10124 if (TREE_CODE (array) != STRING_CST
10125 && TREE_CODE (array) != VAR_DECL)
10126 return 0;
10128 /* Check if the array has a nonzero lower bound. */
10129 lower_bound = array_ref_low_bound (TREE_OPERAND (arg, 0));
10130 if (!integer_zerop (lower_bound))
10132 /* If the offset and base aren't both constants, return 0. */
10133 if (TREE_CODE (lower_bound) != INTEGER_CST)
10134 return 0;
10135 if (TREE_CODE (offset) != INTEGER_CST)
10136 return 0;
10137 /* Adjust offset by the lower bound. */
10138 offset = size_diffop (fold_convert (sizetype, offset),
10139 fold_convert (sizetype, lower_bound));
10142 else
10143 return 0;
10145 else if (TREE_CODE (arg) == PLUS_EXPR || TREE_CODE (arg) == POINTER_PLUS_EXPR)
10147 tree arg0 = TREE_OPERAND (arg, 0);
10148 tree arg1 = TREE_OPERAND (arg, 1);
10150 STRIP_NOPS (arg0);
10151 STRIP_NOPS (arg1);
10153 if (TREE_CODE (arg0) == ADDR_EXPR
10154 && (TREE_CODE (TREE_OPERAND (arg0, 0)) == STRING_CST
10155 || TREE_CODE (TREE_OPERAND (arg0, 0)) == VAR_DECL))
10157 array = TREE_OPERAND (arg0, 0);
10158 offset = arg1;
10160 else if (TREE_CODE (arg1) == ADDR_EXPR
10161 && (TREE_CODE (TREE_OPERAND (arg1, 0)) == STRING_CST
10162 || TREE_CODE (TREE_OPERAND (arg1, 0)) == VAR_DECL))
10164 array = TREE_OPERAND (arg1, 0);
10165 offset = arg0;
10167 else
10168 return 0;
10170 else
10171 return 0;
10173 if (TREE_CODE (array) == STRING_CST)
10175 *ptr_offset = fold_convert (sizetype, offset);
10176 return array;
10178 else if (TREE_CODE (array) == VAR_DECL
10179 || TREE_CODE (array) == CONST_DECL)
10181 int length;
10183 /* Variables initialized to string literals can be handled too. */
10184 if (!const_value_known_p (array)
10185 || !DECL_INITIAL (array)
10186 || TREE_CODE (DECL_INITIAL (array)) != STRING_CST)
10187 return 0;
10189 /* Avoid const char foo[4] = "abcde"; */
10190 if (DECL_SIZE_UNIT (array) == NULL_TREE
10191 || TREE_CODE (DECL_SIZE_UNIT (array)) != INTEGER_CST
10192 || (length = TREE_STRING_LENGTH (DECL_INITIAL (array))) <= 0
10193 || compare_tree_int (DECL_SIZE_UNIT (array), length) < 0)
10194 return 0;
10196 /* If variable is bigger than the string literal, OFFSET must be constant
10197 and inside of the bounds of the string literal. */
10198 offset = fold_convert (sizetype, offset);
10199 if (compare_tree_int (DECL_SIZE_UNIT (array), length) > 0
10200 && (! host_integerp (offset, 1)
10201 || compare_tree_int (offset, length) >= 0))
10202 return 0;
10204 *ptr_offset = offset;
10205 return DECL_INITIAL (array);
10208 return 0;
10211 /* Generate code to calculate OPS, and exploded expression
10212 using a store-flag instruction and return an rtx for the result.
10213 OPS reflects a comparison.
10215 If TARGET is nonzero, store the result there if convenient.
10217 Return zero if there is no suitable set-flag instruction
10218 available on this machine.
10220 Once expand_expr has been called on the arguments of the comparison,
10221 we are committed to doing the store flag, since it is not safe to
10222 re-evaluate the expression. We emit the store-flag insn by calling
10223 emit_store_flag, but only expand the arguments if we have a reason
10224 to believe that emit_store_flag will be successful. If we think that
10225 it will, but it isn't, we have to simulate the store-flag with a
10226 set/jump/set sequence. */
10228 static rtx
10229 do_store_flag (sepops ops, rtx target, enum machine_mode mode)
10231 enum rtx_code code;
10232 tree arg0, arg1, type;
10233 tree tem;
10234 enum machine_mode operand_mode;
10235 int unsignedp;
10236 rtx op0, op1;
10237 rtx subtarget = target;
10238 location_t loc = ops->location;
10240 arg0 = ops->op0;
10241 arg1 = ops->op1;
10243 /* Don't crash if the comparison was erroneous. */
10244 if (arg0 == error_mark_node || arg1 == error_mark_node)
10245 return const0_rtx;
10247 type = TREE_TYPE (arg0);
10248 operand_mode = TYPE_MODE (type);
10249 unsignedp = TYPE_UNSIGNED (type);
10251 /* We won't bother with BLKmode store-flag operations because it would mean
10252 passing a lot of information to emit_store_flag. */
10253 if (operand_mode == BLKmode)
10254 return 0;
10256 /* We won't bother with store-flag operations involving function pointers
10257 when function pointers must be canonicalized before comparisons. */
10258 #ifdef HAVE_canonicalize_funcptr_for_compare
10259 if (HAVE_canonicalize_funcptr_for_compare
10260 && ((TREE_CODE (TREE_TYPE (arg0)) == POINTER_TYPE
10261 && (TREE_CODE (TREE_TYPE (TREE_TYPE (arg0)))
10262 == FUNCTION_TYPE))
10263 || (TREE_CODE (TREE_TYPE (arg1)) == POINTER_TYPE
10264 && (TREE_CODE (TREE_TYPE (TREE_TYPE (arg1)))
10265 == FUNCTION_TYPE))))
10266 return 0;
10267 #endif
10269 STRIP_NOPS (arg0);
10270 STRIP_NOPS (arg1);
10272 /* Get the rtx comparison code to use. We know that EXP is a comparison
10273 operation of some type. Some comparisons against 1 and -1 can be
10274 converted to comparisons with zero. Do so here so that the tests
10275 below will be aware that we have a comparison with zero. These
10276 tests will not catch constants in the first operand, but constants
10277 are rarely passed as the first operand. */
10279 switch (ops->code)
10281 case EQ_EXPR:
10282 code = EQ;
10283 break;
10284 case NE_EXPR:
10285 code = NE;
10286 break;
10287 case LT_EXPR:
10288 if (integer_onep (arg1))
10289 arg1 = integer_zero_node, code = unsignedp ? LEU : LE;
10290 else
10291 code = unsignedp ? LTU : LT;
10292 break;
10293 case LE_EXPR:
10294 if (! unsignedp && integer_all_onesp (arg1))
10295 arg1 = integer_zero_node, code = LT;
10296 else
10297 code = unsignedp ? LEU : LE;
10298 break;
10299 case GT_EXPR:
10300 if (! unsignedp && integer_all_onesp (arg1))
10301 arg1 = integer_zero_node, code = GE;
10302 else
10303 code = unsignedp ? GTU : GT;
10304 break;
10305 case GE_EXPR:
10306 if (integer_onep (arg1))
10307 arg1 = integer_zero_node, code = unsignedp ? GTU : GT;
10308 else
10309 code = unsignedp ? GEU : GE;
10310 break;
10312 case UNORDERED_EXPR:
10313 code = UNORDERED;
10314 break;
10315 case ORDERED_EXPR:
10316 code = ORDERED;
10317 break;
10318 case UNLT_EXPR:
10319 code = UNLT;
10320 break;
10321 case UNLE_EXPR:
10322 code = UNLE;
10323 break;
10324 case UNGT_EXPR:
10325 code = UNGT;
10326 break;
10327 case UNGE_EXPR:
10328 code = UNGE;
10329 break;
10330 case UNEQ_EXPR:
10331 code = UNEQ;
10332 break;
10333 case LTGT_EXPR:
10334 code = LTGT;
10335 break;
10337 default:
10338 gcc_unreachable ();
10341 /* Put a constant second. */
10342 if (TREE_CODE (arg0) == REAL_CST || TREE_CODE (arg0) == INTEGER_CST
10343 || TREE_CODE (arg0) == FIXED_CST)
10345 tem = arg0; arg0 = arg1; arg1 = tem;
10346 code = swap_condition (code);
10349 /* If this is an equality or inequality test of a single bit, we can
10350 do this by shifting the bit being tested to the low-order bit and
10351 masking the result with the constant 1. If the condition was EQ,
10352 we xor it with 1. This does not require an scc insn and is faster
10353 than an scc insn even if we have it.
10355 The code to make this transformation was moved into fold_single_bit_test,
10356 so we just call into the folder and expand its result. */
10358 if ((code == NE || code == EQ)
10359 && TREE_CODE (arg0) == BIT_AND_EXPR && integer_zerop (arg1)
10360 && integer_pow2p (TREE_OPERAND (arg0, 1))
10361 && (TYPE_PRECISION (ops->type) != 1 || TYPE_UNSIGNED (ops->type)))
10363 tree type = lang_hooks.types.type_for_mode (mode, unsignedp);
10364 return expand_expr (fold_single_bit_test (loc,
10365 code == NE ? NE_EXPR : EQ_EXPR,
10366 arg0, arg1, type),
10367 target, VOIDmode, EXPAND_NORMAL);
10370 if (! get_subtarget (target)
10371 || GET_MODE (subtarget) != operand_mode)
10372 subtarget = 0;
10374 expand_operands (arg0, arg1, subtarget, &op0, &op1, EXPAND_NORMAL);
10376 if (target == 0)
10377 target = gen_reg_rtx (mode);
10379 /* Try a cstore if possible. */
10380 return emit_store_flag_force (target, code, op0, op1,
10381 operand_mode, unsignedp,
10382 (TYPE_PRECISION (ops->type) == 1
10383 && !TYPE_UNSIGNED (ops->type)) ? -1 : 1);
10387 /* Stubs in case we haven't got a casesi insn. */
10388 #ifndef HAVE_casesi
10389 # define HAVE_casesi 0
10390 # define gen_casesi(a, b, c, d, e) (0)
10391 # define CODE_FOR_casesi CODE_FOR_nothing
10392 #endif
10394 /* Attempt to generate a casesi instruction. Returns 1 if successful,
10395 0 otherwise (i.e. if there is no casesi instruction). */
10397 try_casesi (tree index_type, tree index_expr, tree minval, tree range,
10398 rtx table_label ATTRIBUTE_UNUSED, rtx default_label,
10399 rtx fallback_label ATTRIBUTE_UNUSED)
10401 struct expand_operand ops[5];
10402 enum machine_mode index_mode = SImode;
10403 int index_bits = GET_MODE_BITSIZE (index_mode);
10404 rtx op1, op2, index;
10406 if (! HAVE_casesi)
10407 return 0;
10409 /* Convert the index to SImode. */
10410 if (GET_MODE_BITSIZE (TYPE_MODE (index_type)) > GET_MODE_BITSIZE (index_mode))
10412 enum machine_mode omode = TYPE_MODE (index_type);
10413 rtx rangertx = expand_normal (range);
10415 /* We must handle the endpoints in the original mode. */
10416 index_expr = build2 (MINUS_EXPR, index_type,
10417 index_expr, minval);
10418 minval = integer_zero_node;
10419 index = expand_normal (index_expr);
10420 if (default_label)
10421 emit_cmp_and_jump_insns (rangertx, index, LTU, NULL_RTX,
10422 omode, 1, default_label);
10423 /* Now we can safely truncate. */
10424 index = convert_to_mode (index_mode, index, 0);
10426 else
10428 if (TYPE_MODE (index_type) != index_mode)
10430 index_type = lang_hooks.types.type_for_size (index_bits, 0);
10431 index_expr = fold_convert (index_type, index_expr);
10434 index = expand_normal (index_expr);
10437 do_pending_stack_adjust ();
10439 op1 = expand_normal (minval);
10440 op2 = expand_normal (range);
10442 create_input_operand (&ops[0], index, index_mode);
10443 create_convert_operand_from_type (&ops[1], op1, TREE_TYPE (minval));
10444 create_convert_operand_from_type (&ops[2], op2, TREE_TYPE (range));
10445 create_fixed_operand (&ops[3], table_label);
10446 create_fixed_operand (&ops[4], (default_label
10447 ? default_label
10448 : fallback_label));
10449 expand_jump_insn (CODE_FOR_casesi, 5, ops);
10450 return 1;
10453 /* Attempt to generate a tablejump instruction; same concept. */
10454 #ifndef HAVE_tablejump
10455 #define HAVE_tablejump 0
10456 #define gen_tablejump(x, y) (0)
10457 #endif
10459 /* Subroutine of the next function.
10461 INDEX is the value being switched on, with the lowest value
10462 in the table already subtracted.
10463 MODE is its expected mode (needed if INDEX is constant).
10464 RANGE is the length of the jump table.
10465 TABLE_LABEL is a CODE_LABEL rtx for the table itself.
10467 DEFAULT_LABEL is a CODE_LABEL rtx to jump to if the
10468 index value is out of range. */
10470 static void
10471 do_tablejump (rtx index, enum machine_mode mode, rtx range, rtx table_label,
10472 rtx default_label)
10474 rtx temp, vector;
10476 if (INTVAL (range) > cfun->cfg->max_jumptable_ents)
10477 cfun->cfg->max_jumptable_ents = INTVAL (range);
10479 /* Do an unsigned comparison (in the proper mode) between the index
10480 expression and the value which represents the length of the range.
10481 Since we just finished subtracting the lower bound of the range
10482 from the index expression, this comparison allows us to simultaneously
10483 check that the original index expression value is both greater than
10484 or equal to the minimum value of the range and less than or equal to
10485 the maximum value of the range. */
10487 if (default_label)
10488 emit_cmp_and_jump_insns (index, range, GTU, NULL_RTX, mode, 1,
10489 default_label);
10491 /* If index is in range, it must fit in Pmode.
10492 Convert to Pmode so we can index with it. */
10493 if (mode != Pmode)
10494 index = convert_to_mode (Pmode, index, 1);
10496 /* Don't let a MEM slip through, because then INDEX that comes
10497 out of PIC_CASE_VECTOR_ADDRESS won't be a valid address,
10498 and break_out_memory_refs will go to work on it and mess it up. */
10499 #ifdef PIC_CASE_VECTOR_ADDRESS
10500 if (flag_pic && !REG_P (index))
10501 index = copy_to_mode_reg (Pmode, index);
10502 #endif
10504 /* ??? The only correct use of CASE_VECTOR_MODE is the one inside the
10505 GET_MODE_SIZE, because this indicates how large insns are. The other
10506 uses should all be Pmode, because they are addresses. This code
10507 could fail if addresses and insns are not the same size. */
10508 index = gen_rtx_PLUS (Pmode,
10509 gen_rtx_MULT (Pmode, index,
10510 GEN_INT (GET_MODE_SIZE (CASE_VECTOR_MODE))),
10511 gen_rtx_LABEL_REF (Pmode, table_label));
10512 #ifdef PIC_CASE_VECTOR_ADDRESS
10513 if (flag_pic)
10514 index = PIC_CASE_VECTOR_ADDRESS (index);
10515 else
10516 #endif
10517 index = memory_address (CASE_VECTOR_MODE, index);
10518 temp = gen_reg_rtx (CASE_VECTOR_MODE);
10519 vector = gen_const_mem (CASE_VECTOR_MODE, index);
10520 convert_move (temp, vector, 0);
10522 emit_jump_insn (gen_tablejump (temp, table_label));
10524 /* If we are generating PIC code or if the table is PC-relative, the
10525 table and JUMP_INSN must be adjacent, so don't output a BARRIER. */
10526 if (! CASE_VECTOR_PC_RELATIVE && ! flag_pic)
10527 emit_barrier ();
10531 try_tablejump (tree index_type, tree index_expr, tree minval, tree range,
10532 rtx table_label, rtx default_label)
10534 rtx index;
10536 if (! HAVE_tablejump)
10537 return 0;
10539 index_expr = fold_build2 (MINUS_EXPR, index_type,
10540 fold_convert (index_type, index_expr),
10541 fold_convert (index_type, minval));
10542 index = expand_normal (index_expr);
10543 do_pending_stack_adjust ();
10545 do_tablejump (index, TYPE_MODE (index_type),
10546 convert_modes (TYPE_MODE (index_type),
10547 TYPE_MODE (TREE_TYPE (range)),
10548 expand_normal (range),
10549 TYPE_UNSIGNED (TREE_TYPE (range))),
10550 table_label, default_label);
10551 return 1;
10554 /* Return a CONST_VECTOR rtx for a VECTOR_CST tree. */
10555 static rtx
10556 const_vector_from_tree (tree exp)
10558 rtvec v;
10559 int units, i;
10560 tree link, elt;
10561 enum machine_mode inner, mode;
10563 mode = TYPE_MODE (TREE_TYPE (exp));
10565 if (initializer_zerop (exp))
10566 return CONST0_RTX (mode);
10568 units = GET_MODE_NUNITS (mode);
10569 inner = GET_MODE_INNER (mode);
10571 v = rtvec_alloc (units);
10573 link = TREE_VECTOR_CST_ELTS (exp);
10574 for (i = 0; link; link = TREE_CHAIN (link), ++i)
10576 elt = TREE_VALUE (link);
10578 if (TREE_CODE (elt) == REAL_CST)
10579 RTVEC_ELT (v, i) = CONST_DOUBLE_FROM_REAL_VALUE (TREE_REAL_CST (elt),
10580 inner);
10581 else if (TREE_CODE (elt) == FIXED_CST)
10582 RTVEC_ELT (v, i) = CONST_FIXED_FROM_FIXED_VALUE (TREE_FIXED_CST (elt),
10583 inner);
10584 else
10585 RTVEC_ELT (v, i) = immed_double_int_const (tree_to_double_int (elt),
10586 inner);
10589 /* Initialize remaining elements to 0. */
10590 for (; i < units; ++i)
10591 RTVEC_ELT (v, i) = CONST0_RTX (inner);
10593 return gen_rtx_CONST_VECTOR (mode, v);
10596 /* Build a decl for a personality function given a language prefix. */
10598 tree
10599 build_personality_function (const char *lang)
10601 const char *unwind_and_version;
10602 tree decl, type;
10603 char *name;
10605 switch (targetm_common.except_unwind_info (&global_options))
10607 case UI_NONE:
10608 return NULL;
10609 case UI_SJLJ:
10610 unwind_and_version = "_sj0";
10611 break;
10612 case UI_DWARF2:
10613 case UI_TARGET:
10614 unwind_and_version = "_v0";
10615 break;
10616 default:
10617 gcc_unreachable ();
10620 name = ACONCAT (("__", lang, "_personality", unwind_and_version, NULL));
10622 type = build_function_type_list (integer_type_node, integer_type_node,
10623 long_long_unsigned_type_node,
10624 ptr_type_node, ptr_type_node, NULL_TREE);
10625 decl = build_decl (UNKNOWN_LOCATION, FUNCTION_DECL,
10626 get_identifier (name), type);
10627 DECL_ARTIFICIAL (decl) = 1;
10628 DECL_EXTERNAL (decl) = 1;
10629 TREE_PUBLIC (decl) = 1;
10631 /* Zap the nonsensical SYMBOL_REF_DECL for this. What we're left with
10632 are the flags assigned by targetm.encode_section_info. */
10633 SET_SYMBOL_REF_DECL (XEXP (DECL_RTL (decl), 0), NULL);
10635 return decl;
10638 /* Extracts the personality function of DECL and returns the corresponding
10639 libfunc. */
10642 get_personality_function (tree decl)
10644 tree personality = DECL_FUNCTION_PERSONALITY (decl);
10645 enum eh_personality_kind pk;
10647 pk = function_needs_eh_personality (DECL_STRUCT_FUNCTION (decl));
10648 if (pk == eh_personality_none)
10649 return NULL;
10651 if (!personality
10652 && pk == eh_personality_any)
10653 personality = lang_hooks.eh_personality ();
10655 if (pk == eh_personality_lang)
10656 gcc_assert (personality != NULL_TREE);
10658 return XEXP (DECL_RTL (personality), 0);
10661 #include "gt-expr.h"