Fix a bug that broke -freorder-functions
[official-gcc.git] / gcc / cfgcleanup.c
blob717301354e730d25d98a0764eeb4be16b16d9406
1 /* Control flow optimization code for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2010, 2011
4 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 /* This file contains optimizer of the control flow. The main entry point is
23 cleanup_cfg. Following optimizations are performed:
25 - Unreachable blocks removal
26 - Edge forwarding (edge to the forwarder block is forwarded to its
27 successor. Simplification of the branch instruction is performed by
28 underlying infrastructure so branch can be converted to simplejump or
29 eliminated).
30 - Cross jumping (tail merging)
31 - Conditional jump-around-simplejump simplification
32 - Basic block merging. */
34 #include "config.h"
35 #include "system.h"
36 #include "coretypes.h"
37 #include "tm.h"
38 #include "rtl.h"
39 #include "hard-reg-set.h"
40 #include "regs.h"
41 #include "timevar.h"
42 #include "output.h"
43 #include "insn-config.h"
44 #include "flags.h"
45 #include "recog.h"
46 #include "diagnostic-core.h"
47 #include "cselib.h"
48 #include "params.h"
49 #include "tm_p.h"
50 #include "target.h"
51 #include "cfglayout.h"
52 #include "emit-rtl.h"
53 #include "tree-pass.h"
54 #include "cfgloop.h"
55 #include "expr.h"
56 #include "df.h"
57 #include "dce.h"
58 #include "dbgcnt.h"
60 #define FORWARDER_BLOCK_P(BB) ((BB)->flags & BB_FORWARDER_BLOCK)
62 /* Set to true when we are running first pass of try_optimize_cfg loop. */
63 static bool first_pass;
65 /* Set to true if crossjumps occured in the latest run of try_optimize_cfg. */
66 static bool crossjumps_occured;
68 /* Set to true if we couldn't run an optimization due to stale liveness
69 information; we should run df_analyze to enable more opportunities. */
70 static bool block_was_dirty;
72 static bool try_crossjump_to_edge (int, edge, edge, enum replace_direction);
73 static bool try_crossjump_bb (int, basic_block);
74 static bool outgoing_edges_match (int, basic_block, basic_block);
75 static enum replace_direction old_insns_match_p (int, rtx, rtx);
77 static void merge_blocks_move_predecessor_nojumps (basic_block, basic_block);
78 static void merge_blocks_move_successor_nojumps (basic_block, basic_block);
79 static bool try_optimize_cfg (int);
80 static bool try_simplify_condjump (basic_block);
81 static bool try_forward_edges (int, basic_block);
82 static edge thread_jump (edge, basic_block);
83 static bool mark_effect (rtx, bitmap);
84 static void notice_new_block (basic_block);
85 static void update_forwarder_flag (basic_block);
86 static int mentions_nonequal_regs (rtx *, void *);
87 static void merge_memattrs (rtx, rtx);
89 /* Set flags for newly created block. */
91 static void
92 notice_new_block (basic_block bb)
94 if (!bb)
95 return;
97 if (forwarder_block_p (bb))
98 bb->flags |= BB_FORWARDER_BLOCK;
101 /* Recompute forwarder flag after block has been modified. */
103 static void
104 update_forwarder_flag (basic_block bb)
106 if (forwarder_block_p (bb))
107 bb->flags |= BB_FORWARDER_BLOCK;
108 else
109 bb->flags &= ~BB_FORWARDER_BLOCK;
112 /* Simplify a conditional jump around an unconditional jump.
113 Return true if something changed. */
115 static bool
116 try_simplify_condjump (basic_block cbranch_block)
118 basic_block jump_block, jump_dest_block, cbranch_dest_block;
119 edge cbranch_jump_edge, cbranch_fallthru_edge;
120 rtx cbranch_insn;
122 /* Verify that there are exactly two successors. */
123 if (EDGE_COUNT (cbranch_block->succs) != 2)
124 return false;
126 /* Verify that we've got a normal conditional branch at the end
127 of the block. */
128 cbranch_insn = BB_END (cbranch_block);
129 if (!any_condjump_p (cbranch_insn))
130 return false;
132 cbranch_fallthru_edge = FALLTHRU_EDGE (cbranch_block);
133 cbranch_jump_edge = BRANCH_EDGE (cbranch_block);
135 /* The next block must not have multiple predecessors, must not
136 be the last block in the function, and must contain just the
137 unconditional jump. */
138 jump_block = cbranch_fallthru_edge->dest;
139 if (!single_pred_p (jump_block)
140 || jump_block->next_bb == EXIT_BLOCK_PTR
141 || !FORWARDER_BLOCK_P (jump_block))
142 return false;
143 jump_dest_block = single_succ (jump_block);
145 /* If we are partitioning hot/cold basic blocks, we don't want to
146 mess up unconditional or indirect jumps that cross between hot
147 and cold sections.
149 Basic block partitioning may result in some jumps that appear to
150 be optimizable (or blocks that appear to be mergeable), but which really
151 must be left untouched (they are required to make it safely across
152 partition boundaries). See the comments at the top of
153 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
155 if (BB_PARTITION (jump_block) != BB_PARTITION (jump_dest_block)
156 || (cbranch_jump_edge->flags & EDGE_CROSSING))
157 return false;
159 /* The conditional branch must target the block after the
160 unconditional branch. */
161 cbranch_dest_block = cbranch_jump_edge->dest;
163 if (cbranch_dest_block == EXIT_BLOCK_PTR
164 || !can_fallthru (jump_block, cbranch_dest_block))
165 return false;
167 /* Invert the conditional branch. */
168 if (!invert_jump (cbranch_insn, block_label (jump_dest_block), 0))
169 return false;
171 if (dump_file)
172 fprintf (dump_file, "Simplifying condjump %i around jump %i\n",
173 INSN_UID (cbranch_insn), INSN_UID (BB_END (jump_block)));
175 /* Success. Update the CFG to match. Note that after this point
176 the edge variable names appear backwards; the redirection is done
177 this way to preserve edge profile data. */
178 cbranch_jump_edge = redirect_edge_succ_nodup (cbranch_jump_edge,
179 cbranch_dest_block);
180 cbranch_fallthru_edge = redirect_edge_succ_nodup (cbranch_fallthru_edge,
181 jump_dest_block);
182 cbranch_jump_edge->flags |= EDGE_FALLTHRU;
183 cbranch_fallthru_edge->flags &= ~EDGE_FALLTHRU;
184 update_br_prob_note (cbranch_block);
186 /* Delete the block with the unconditional jump, and clean up the mess. */
187 delete_basic_block (jump_block);
188 tidy_fallthru_edge (cbranch_jump_edge);
189 update_forwarder_flag (cbranch_block);
191 return true;
194 /* Attempt to prove that operation is NOOP using CSElib or mark the effect
195 on register. Used by jump threading. */
197 static bool
198 mark_effect (rtx exp, regset nonequal)
200 int regno;
201 rtx dest;
202 switch (GET_CODE (exp))
204 /* In case we do clobber the register, mark it as equal, as we know the
205 value is dead so it don't have to match. */
206 case CLOBBER:
207 if (REG_P (XEXP (exp, 0)))
209 dest = XEXP (exp, 0);
210 regno = REGNO (dest);
211 if (HARD_REGISTER_NUM_P (regno))
212 bitmap_clear_range (nonequal, regno,
213 hard_regno_nregs[regno][GET_MODE (dest)]);
214 else
215 bitmap_clear_bit (nonequal, regno);
217 return false;
219 case SET:
220 if (rtx_equal_for_cselib_p (SET_DEST (exp), SET_SRC (exp)))
221 return false;
222 dest = SET_DEST (exp);
223 if (dest == pc_rtx)
224 return false;
225 if (!REG_P (dest))
226 return true;
227 regno = REGNO (dest);
228 if (HARD_REGISTER_NUM_P (regno))
229 bitmap_set_range (nonequal, regno,
230 hard_regno_nregs[regno][GET_MODE (dest)]);
231 else
232 bitmap_set_bit (nonequal, regno);
233 return false;
235 default:
236 return false;
240 /* Return nonzero if X is a register set in regset DATA.
241 Called via for_each_rtx. */
242 static int
243 mentions_nonequal_regs (rtx *x, void *data)
245 regset nonequal = (regset) data;
246 if (REG_P (*x))
248 int regno;
250 regno = REGNO (*x);
251 if (REGNO_REG_SET_P (nonequal, regno))
252 return 1;
253 if (regno < FIRST_PSEUDO_REGISTER)
255 int n = hard_regno_nregs[regno][GET_MODE (*x)];
256 while (--n > 0)
257 if (REGNO_REG_SET_P (nonequal, regno + n))
258 return 1;
261 return 0;
263 /* Attempt to prove that the basic block B will have no side effects and
264 always continues in the same edge if reached via E. Return the edge
265 if exist, NULL otherwise. */
267 static edge
268 thread_jump (edge e, basic_block b)
270 rtx set1, set2, cond1, cond2, insn;
271 enum rtx_code code1, code2, reversed_code2;
272 bool reverse1 = false;
273 unsigned i;
274 regset nonequal;
275 bool failed = false;
276 reg_set_iterator rsi;
278 if (b->flags & BB_NONTHREADABLE_BLOCK)
279 return NULL;
281 /* At the moment, we do handle only conditional jumps, but later we may
282 want to extend this code to tablejumps and others. */
283 if (EDGE_COUNT (e->src->succs) != 2)
284 return NULL;
285 if (EDGE_COUNT (b->succs) != 2)
287 b->flags |= BB_NONTHREADABLE_BLOCK;
288 return NULL;
291 /* Second branch must end with onlyjump, as we will eliminate the jump. */
292 if (!any_condjump_p (BB_END (e->src)))
293 return NULL;
295 if (!any_condjump_p (BB_END (b)) || !onlyjump_p (BB_END (b)))
297 b->flags |= BB_NONTHREADABLE_BLOCK;
298 return NULL;
301 set1 = pc_set (BB_END (e->src));
302 set2 = pc_set (BB_END (b));
303 if (((e->flags & EDGE_FALLTHRU) != 0)
304 != (XEXP (SET_SRC (set1), 1) == pc_rtx))
305 reverse1 = true;
307 cond1 = XEXP (SET_SRC (set1), 0);
308 cond2 = XEXP (SET_SRC (set2), 0);
309 if (reverse1)
310 code1 = reversed_comparison_code (cond1, BB_END (e->src));
311 else
312 code1 = GET_CODE (cond1);
314 code2 = GET_CODE (cond2);
315 reversed_code2 = reversed_comparison_code (cond2, BB_END (b));
317 if (!comparison_dominates_p (code1, code2)
318 && !comparison_dominates_p (code1, reversed_code2))
319 return NULL;
321 /* Ensure that the comparison operators are equivalent.
322 ??? This is far too pessimistic. We should allow swapped operands,
323 different CCmodes, or for example comparisons for interval, that
324 dominate even when operands are not equivalent. */
325 if (!rtx_equal_p (XEXP (cond1, 0), XEXP (cond2, 0))
326 || !rtx_equal_p (XEXP (cond1, 1), XEXP (cond2, 1)))
327 return NULL;
329 /* Short circuit cases where block B contains some side effects, as we can't
330 safely bypass it. */
331 for (insn = NEXT_INSN (BB_HEAD (b)); insn != NEXT_INSN (BB_END (b));
332 insn = NEXT_INSN (insn))
333 if (INSN_P (insn) && side_effects_p (PATTERN (insn)))
335 b->flags |= BB_NONTHREADABLE_BLOCK;
336 return NULL;
339 cselib_init (0);
341 /* First process all values computed in the source basic block. */
342 for (insn = NEXT_INSN (BB_HEAD (e->src));
343 insn != NEXT_INSN (BB_END (e->src));
344 insn = NEXT_INSN (insn))
345 if (INSN_P (insn))
346 cselib_process_insn (insn);
348 nonequal = BITMAP_ALLOC (NULL);
349 CLEAR_REG_SET (nonequal);
351 /* Now assume that we've continued by the edge E to B and continue
352 processing as if it were same basic block.
353 Our goal is to prove that whole block is an NOOP. */
355 for (insn = NEXT_INSN (BB_HEAD (b));
356 insn != NEXT_INSN (BB_END (b)) && !failed;
357 insn = NEXT_INSN (insn))
359 if (INSN_P (insn))
361 rtx pat = PATTERN (insn);
363 if (GET_CODE (pat) == PARALLEL)
365 for (i = 0; i < (unsigned)XVECLEN (pat, 0); i++)
366 failed |= mark_effect (XVECEXP (pat, 0, i), nonequal);
368 else
369 failed |= mark_effect (pat, nonequal);
372 cselib_process_insn (insn);
375 /* Later we should clear nonequal of dead registers. So far we don't
376 have life information in cfg_cleanup. */
377 if (failed)
379 b->flags |= BB_NONTHREADABLE_BLOCK;
380 goto failed_exit;
383 /* cond2 must not mention any register that is not equal to the
384 former block. */
385 if (for_each_rtx (&cond2, mentions_nonequal_regs, nonequal))
386 goto failed_exit;
388 EXECUTE_IF_SET_IN_REG_SET (nonequal, 0, i, rsi)
389 goto failed_exit;
391 BITMAP_FREE (nonequal);
392 cselib_finish ();
393 if ((comparison_dominates_p (code1, code2) != 0)
394 != (XEXP (SET_SRC (set2), 1) == pc_rtx))
395 return BRANCH_EDGE (b);
396 else
397 return FALLTHRU_EDGE (b);
399 failed_exit:
400 BITMAP_FREE (nonequal);
401 cselib_finish ();
402 return NULL;
405 /* Attempt to forward edges leaving basic block B.
406 Return true if successful. */
408 static bool
409 try_forward_edges (int mode, basic_block b)
411 bool changed = false;
412 edge_iterator ei;
413 edge e, *threaded_edges = NULL;
415 /* If we are partitioning hot/cold basic blocks, we don't want to
416 mess up unconditional or indirect jumps that cross between hot
417 and cold sections.
419 Basic block partitioning may result in some jumps that appear to
420 be optimizable (or blocks that appear to be mergeable), but which really
421 must be left untouched (they are required to make it safely across
422 partition boundaries). See the comments at the top of
423 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
425 if (find_reg_note (BB_END (b), REG_CROSSING_JUMP, NULL_RTX))
426 return false;
428 for (ei = ei_start (b->succs); (e = ei_safe_edge (ei)); )
430 basic_block target, first;
431 int counter, goto_locus;
432 bool threaded = false;
433 int nthreaded_edges = 0;
434 bool may_thread = first_pass || (b->flags & BB_MODIFIED) != 0;
436 /* Skip complex edges because we don't know how to update them.
438 Still handle fallthru edges, as we can succeed to forward fallthru
439 edge to the same place as the branch edge of conditional branch
440 and turn conditional branch to an unconditional branch. */
441 if (e->flags & EDGE_COMPLEX)
443 ei_next (&ei);
444 continue;
447 target = first = e->dest;
448 counter = NUM_FIXED_BLOCKS;
449 goto_locus = e->goto_locus;
451 /* If we are partitioning hot/cold basic_blocks, we don't want to mess
452 up jumps that cross between hot/cold sections.
454 Basic block partitioning may result in some jumps that appear
455 to be optimizable (or blocks that appear to be mergeable), but which
456 really must be left untouched (they are required to make it safely
457 across partition boundaries). See the comments at the top of
458 bb-reorder.c:partition_hot_cold_basic_blocks for complete
459 details. */
461 if (first != EXIT_BLOCK_PTR
462 && find_reg_note (BB_END (first), REG_CROSSING_JUMP, NULL_RTX))
463 return false;
465 while (counter < n_basic_blocks)
467 basic_block new_target = NULL;
468 bool new_target_threaded = false;
469 may_thread |= (target->flags & BB_MODIFIED) != 0;
471 if (FORWARDER_BLOCK_P (target)
472 && !(single_succ_edge (target)->flags & EDGE_CROSSING)
473 && single_succ (target) != EXIT_BLOCK_PTR)
475 /* Bypass trivial infinite loops. */
476 new_target = single_succ (target);
477 if (target == new_target)
478 counter = n_basic_blocks;
479 else if (!optimize)
481 /* When not optimizing, ensure that edges or forwarder
482 blocks with different locus are not optimized out. */
483 int new_locus = single_succ_edge (target)->goto_locus;
484 int locus = goto_locus;
486 if (new_locus && locus && !locator_eq (new_locus, locus))
487 new_target = NULL;
488 else
490 rtx last;
492 if (new_locus)
493 locus = new_locus;
495 last = BB_END (target);
496 if (DEBUG_INSN_P (last))
497 last = prev_nondebug_insn (last);
499 new_locus = last && INSN_P (last)
500 ? INSN_LOCATOR (last) : 0;
502 if (new_locus && locus && !locator_eq (new_locus, locus))
503 new_target = NULL;
504 else
506 if (new_locus)
507 locus = new_locus;
509 goto_locus = locus;
515 /* Allow to thread only over one edge at time to simplify updating
516 of probabilities. */
517 else if ((mode & CLEANUP_THREADING) && may_thread)
519 edge t = thread_jump (e, target);
520 if (t)
522 if (!threaded_edges)
523 threaded_edges = XNEWVEC (edge, n_basic_blocks);
524 else
526 int i;
528 /* Detect an infinite loop across blocks not
529 including the start block. */
530 for (i = 0; i < nthreaded_edges; ++i)
531 if (threaded_edges[i] == t)
532 break;
533 if (i < nthreaded_edges)
535 counter = n_basic_blocks;
536 break;
540 /* Detect an infinite loop across the start block. */
541 if (t->dest == b)
542 break;
544 gcc_assert (nthreaded_edges < n_basic_blocks - NUM_FIXED_BLOCKS);
545 threaded_edges[nthreaded_edges++] = t;
547 new_target = t->dest;
548 new_target_threaded = true;
552 if (!new_target)
553 break;
555 counter++;
556 target = new_target;
557 threaded |= new_target_threaded;
560 if (counter >= n_basic_blocks)
562 if (dump_file)
563 fprintf (dump_file, "Infinite loop in BB %i.\n",
564 target->index);
566 else if (target == first)
567 ; /* We didn't do anything. */
568 else
570 /* Save the values now, as the edge may get removed. */
571 gcov_type edge_count = e->count;
572 int edge_probability = e->probability;
573 int edge_frequency;
574 int n = 0;
576 e->goto_locus = goto_locus;
578 /* Don't force if target is exit block. */
579 if (threaded && target != EXIT_BLOCK_PTR)
581 notice_new_block (redirect_edge_and_branch_force (e, target));
582 if (dump_file)
583 fprintf (dump_file, "Conditionals threaded.\n");
585 else if (!redirect_edge_and_branch (e, target))
587 if (dump_file)
588 fprintf (dump_file,
589 "Forwarding edge %i->%i to %i failed.\n",
590 b->index, e->dest->index, target->index);
591 ei_next (&ei);
592 continue;
595 /* We successfully forwarded the edge. Now update profile
596 data: for each edge we traversed in the chain, remove
597 the original edge's execution count. */
598 edge_frequency = ((edge_probability * b->frequency
599 + REG_BR_PROB_BASE / 2)
600 / REG_BR_PROB_BASE);
604 edge t;
606 if (!single_succ_p (first))
608 gcc_assert (n < nthreaded_edges);
609 t = threaded_edges [n++];
610 gcc_assert (t->src == first);
611 update_bb_profile_for_threading (first, edge_frequency,
612 edge_count, t);
613 update_br_prob_note (first);
615 else
617 first->count -= edge_count;
618 if (first->count < 0)
619 first->count = 0;
620 first->frequency -= edge_frequency;
621 if (first->frequency < 0)
622 first->frequency = 0;
623 /* It is possible that as the result of
624 threading we've removed edge as it is
625 threaded to the fallthru edge. Avoid
626 getting out of sync. */
627 if (n < nthreaded_edges
628 && first == threaded_edges [n]->src)
629 n++;
630 t = single_succ_edge (first);
633 t->count -= edge_count;
634 if (t->count < 0)
635 t->count = 0;
636 first = t->dest;
638 while (first != target);
640 changed = true;
641 continue;
643 ei_next (&ei);
646 free (threaded_edges);
647 return changed;
651 /* Blocks A and B are to be merged into a single block. A has no incoming
652 fallthru edge, so it can be moved before B without adding or modifying
653 any jumps (aside from the jump from A to B). */
655 static void
656 merge_blocks_move_predecessor_nojumps (basic_block a, basic_block b)
658 rtx barrier;
660 /* If we are partitioning hot/cold basic blocks, we don't want to
661 mess up unconditional or indirect jumps that cross between hot
662 and cold sections.
664 Basic block partitioning may result in some jumps that appear to
665 be optimizable (or blocks that appear to be mergeable), but which really
666 must be left untouched (they are required to make it safely across
667 partition boundaries). See the comments at the top of
668 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
670 if (BB_PARTITION (a) != BB_PARTITION (b))
671 return;
673 barrier = next_nonnote_insn (BB_END (a));
674 gcc_assert (BARRIER_P (barrier));
675 delete_insn (barrier);
677 /* Scramble the insn chain. */
678 if (BB_END (a) != PREV_INSN (BB_HEAD (b)))
679 reorder_insns_nobb (BB_HEAD (a), BB_END (a), PREV_INSN (BB_HEAD (b)));
680 df_set_bb_dirty (a);
682 if (dump_file)
683 fprintf (dump_file, "Moved block %d before %d and merged.\n",
684 a->index, b->index);
686 /* Swap the records for the two blocks around. */
688 unlink_block (a);
689 link_block (a, b->prev_bb);
691 /* Now blocks A and B are contiguous. Merge them. */
692 merge_blocks (a, b);
695 /* Blocks A and B are to be merged into a single block. B has no outgoing
696 fallthru edge, so it can be moved after A without adding or modifying
697 any jumps (aside from the jump from A to B). */
699 static void
700 merge_blocks_move_successor_nojumps (basic_block a, basic_block b)
702 rtx barrier, real_b_end;
703 rtx label, table;
705 /* If we are partitioning hot/cold basic blocks, we don't want to
706 mess up unconditional or indirect jumps that cross between hot
707 and cold sections.
709 Basic block partitioning may result in some jumps that appear to
710 be optimizable (or blocks that appear to be mergeable), but which really
711 must be left untouched (they are required to make it safely across
712 partition boundaries). See the comments at the top of
713 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
715 if (BB_PARTITION (a) != BB_PARTITION (b))
716 return;
718 real_b_end = BB_END (b);
720 /* If there is a jump table following block B temporarily add the jump table
721 to block B so that it will also be moved to the correct location. */
722 if (tablejump_p (BB_END (b), &label, &table)
723 && prev_active_insn (label) == BB_END (b))
725 BB_END (b) = table;
728 /* There had better have been a barrier there. Delete it. */
729 barrier = NEXT_INSN (BB_END (b));
730 if (barrier && BARRIER_P (barrier))
731 delete_insn (barrier);
734 /* Scramble the insn chain. */
735 reorder_insns_nobb (BB_HEAD (b), BB_END (b), BB_END (a));
737 /* Restore the real end of b. */
738 BB_END (b) = real_b_end;
740 if (dump_file)
741 fprintf (dump_file, "Moved block %d after %d and merged.\n",
742 b->index, a->index);
744 /* Now blocks A and B are contiguous. Merge them. */
745 merge_blocks (a, b);
748 /* Attempt to merge basic blocks that are potentially non-adjacent.
749 Return NULL iff the attempt failed, otherwise return basic block
750 where cleanup_cfg should continue. Because the merging commonly
751 moves basic block away or introduces another optimization
752 possibility, return basic block just before B so cleanup_cfg don't
753 need to iterate.
755 It may be good idea to return basic block before C in the case
756 C has been moved after B and originally appeared earlier in the
757 insn sequence, but we have no information available about the
758 relative ordering of these two. Hopefully it is not too common. */
760 static basic_block
761 merge_blocks_move (edge e, basic_block b, basic_block c, int mode)
763 basic_block next;
765 /* If we are partitioning hot/cold basic blocks, we don't want to
766 mess up unconditional or indirect jumps that cross between hot
767 and cold sections.
769 Basic block partitioning may result in some jumps that appear to
770 be optimizable (or blocks that appear to be mergeable), but which really
771 must be left untouched (they are required to make it safely across
772 partition boundaries). See the comments at the top of
773 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
775 if (BB_PARTITION (b) != BB_PARTITION (c))
776 return NULL;
778 /* If B has a fallthru edge to C, no need to move anything. */
779 if (e->flags & EDGE_FALLTHRU)
781 int b_index = b->index, c_index = c->index;
782 merge_blocks (b, c);
783 update_forwarder_flag (b);
785 if (dump_file)
786 fprintf (dump_file, "Merged %d and %d without moving.\n",
787 b_index, c_index);
789 return b->prev_bb == ENTRY_BLOCK_PTR ? b : b->prev_bb;
792 /* Otherwise we will need to move code around. Do that only if expensive
793 transformations are allowed. */
794 else if (mode & CLEANUP_EXPENSIVE)
796 edge tmp_edge, b_fallthru_edge;
797 bool c_has_outgoing_fallthru;
798 bool b_has_incoming_fallthru;
800 /* Avoid overactive code motion, as the forwarder blocks should be
801 eliminated by edge redirection instead. One exception might have
802 been if B is a forwarder block and C has no fallthru edge, but
803 that should be cleaned up by bb-reorder instead. */
804 if (FORWARDER_BLOCK_P (b) || FORWARDER_BLOCK_P (c))
805 return NULL;
807 /* We must make sure to not munge nesting of lexical blocks,
808 and loop notes. This is done by squeezing out all the notes
809 and leaving them there to lie. Not ideal, but functional. */
811 tmp_edge = find_fallthru_edge (c->succs);
812 c_has_outgoing_fallthru = (tmp_edge != NULL);
814 tmp_edge = find_fallthru_edge (b->preds);
815 b_has_incoming_fallthru = (tmp_edge != NULL);
816 b_fallthru_edge = tmp_edge;
817 next = b->prev_bb;
818 if (next == c)
819 next = next->prev_bb;
821 /* Otherwise, we're going to try to move C after B. If C does
822 not have an outgoing fallthru, then it can be moved
823 immediately after B without introducing or modifying jumps. */
824 if (! c_has_outgoing_fallthru)
826 merge_blocks_move_successor_nojumps (b, c);
827 return next == ENTRY_BLOCK_PTR ? next->next_bb : next;
830 /* If B does not have an incoming fallthru, then it can be moved
831 immediately before C without introducing or modifying jumps.
832 C cannot be the first block, so we do not have to worry about
833 accessing a non-existent block. */
835 if (b_has_incoming_fallthru)
837 basic_block bb;
839 if (b_fallthru_edge->src == ENTRY_BLOCK_PTR)
840 return NULL;
841 bb = force_nonfallthru (b_fallthru_edge);
842 if (bb)
843 notice_new_block (bb);
846 merge_blocks_move_predecessor_nojumps (b, c);
847 return next == ENTRY_BLOCK_PTR ? next->next_bb : next;
850 return NULL;
854 /* Removes the memory attributes of MEM expression
855 if they are not equal. */
857 void
858 merge_memattrs (rtx x, rtx y)
860 int i;
861 int j;
862 enum rtx_code code;
863 const char *fmt;
865 if (x == y)
866 return;
867 if (x == 0 || y == 0)
868 return;
870 code = GET_CODE (x);
872 if (code != GET_CODE (y))
873 return;
875 if (GET_MODE (x) != GET_MODE (y))
876 return;
878 if (code == MEM && MEM_ATTRS (x) != MEM_ATTRS (y))
880 if (! MEM_ATTRS (x))
881 MEM_ATTRS (y) = 0;
882 else if (! MEM_ATTRS (y))
883 MEM_ATTRS (x) = 0;
884 else
886 HOST_WIDE_INT mem_size;
888 if (MEM_ALIAS_SET (x) != MEM_ALIAS_SET (y))
890 set_mem_alias_set (x, 0);
891 set_mem_alias_set (y, 0);
894 if (! mem_expr_equal_p (MEM_EXPR (x), MEM_EXPR (y)))
896 set_mem_expr (x, 0);
897 set_mem_expr (y, 0);
898 clear_mem_offset (x);
899 clear_mem_offset (y);
901 else if (MEM_OFFSET_KNOWN_P (x) != MEM_OFFSET_KNOWN_P (y)
902 || (MEM_OFFSET_KNOWN_P (x)
903 && MEM_OFFSET (x) != MEM_OFFSET (y)))
905 clear_mem_offset (x);
906 clear_mem_offset (y);
909 if (MEM_SIZE_KNOWN_P (x) && MEM_SIZE_KNOWN_P (y))
911 mem_size = MAX (MEM_SIZE (x), MEM_SIZE (y));
912 set_mem_size (x, mem_size);
913 set_mem_size (y, mem_size);
915 else
917 clear_mem_size (x);
918 clear_mem_size (y);
921 set_mem_align (x, MIN (MEM_ALIGN (x), MEM_ALIGN (y)));
922 set_mem_align (y, MEM_ALIGN (x));
926 fmt = GET_RTX_FORMAT (code);
927 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
929 switch (fmt[i])
931 case 'E':
932 /* Two vectors must have the same length. */
933 if (XVECLEN (x, i) != XVECLEN (y, i))
934 return;
936 for (j = 0; j < XVECLEN (x, i); j++)
937 merge_memattrs (XVECEXP (x, i, j), XVECEXP (y, i, j));
939 break;
941 case 'e':
942 merge_memattrs (XEXP (x, i), XEXP (y, i));
945 return;
949 /* Checks if patterns P1 and P2 are equivalent, apart from the possibly
950 different single sets S1 and S2. */
952 static bool
953 equal_different_set_p (rtx p1, rtx s1, rtx p2, rtx s2)
955 int i;
956 rtx e1, e2;
958 if (p1 == s1 && p2 == s2)
959 return true;
961 if (GET_CODE (p1) != PARALLEL || GET_CODE (p2) != PARALLEL)
962 return false;
964 if (XVECLEN (p1, 0) != XVECLEN (p2, 0))
965 return false;
967 for (i = 0; i < XVECLEN (p1, 0); i++)
969 e1 = XVECEXP (p1, 0, i);
970 e2 = XVECEXP (p2, 0, i);
971 if (e1 == s1 && e2 == s2)
972 continue;
973 if (reload_completed
974 ? rtx_renumbered_equal_p (e1, e2) : rtx_equal_p (e1, e2))
975 continue;
977 return false;
980 return true;
983 /* Examine register notes on I1 and I2 and return:
984 - dir_forward if I1 can be replaced by I2, or
985 - dir_backward if I2 can be replaced by I1, or
986 - dir_both if both are the case. */
988 static enum replace_direction
989 can_replace_by (rtx i1, rtx i2)
991 rtx s1, s2, d1, d2, src1, src2, note1, note2;
992 bool c1, c2;
994 /* Check for 2 sets. */
995 s1 = single_set (i1);
996 s2 = single_set (i2);
997 if (s1 == NULL_RTX || s2 == NULL_RTX)
998 return dir_none;
1000 /* Check that the 2 sets set the same dest. */
1001 d1 = SET_DEST (s1);
1002 d2 = SET_DEST (s2);
1003 if (!(reload_completed
1004 ? rtx_renumbered_equal_p (d1, d2) : rtx_equal_p (d1, d2)))
1005 return dir_none;
1007 /* Find identical req_equiv or reg_equal note, which implies that the 2 sets
1008 set dest to the same value. */
1009 note1 = find_reg_equal_equiv_note (i1);
1010 note2 = find_reg_equal_equiv_note (i2);
1011 if (!note1 || !note2 || !rtx_equal_p (XEXP (note1, 0), XEXP (note2, 0))
1012 || !CONST_INT_P (XEXP (note1, 0)))
1013 return dir_none;
1015 if (!equal_different_set_p (PATTERN (i1), s1, PATTERN (i2), s2))
1016 return dir_none;
1018 /* Although the 2 sets set dest to the same value, we cannot replace
1019 (set (dest) (const_int))
1021 (set (dest) (reg))
1022 because we don't know if the reg is live and has the same value at the
1023 location of replacement. */
1024 src1 = SET_SRC (s1);
1025 src2 = SET_SRC (s2);
1026 c1 = CONST_INT_P (src1);
1027 c2 = CONST_INT_P (src2);
1028 if (c1 && c2)
1029 return dir_both;
1030 else if (c2)
1031 return dir_forward;
1032 else if (c1)
1033 return dir_backward;
1035 return dir_none;
1038 /* Merges directions A and B. */
1040 static enum replace_direction
1041 merge_dir (enum replace_direction a, enum replace_direction b)
1043 /* Implements the following table:
1044 |bo fw bw no
1045 ---+-----------
1046 bo |bo fw bw no
1047 fw |-- fw no no
1048 bw |-- -- bw no
1049 no |-- -- -- no. */
1051 if (a == b)
1052 return a;
1054 if (a == dir_both)
1055 return b;
1056 if (b == dir_both)
1057 return a;
1059 return dir_none;
1062 /* Examine I1 and I2 and return:
1063 - dir_forward if I1 can be replaced by I2, or
1064 - dir_backward if I2 can be replaced by I1, or
1065 - dir_both if both are the case. */
1067 static enum replace_direction
1068 old_insns_match_p (int mode ATTRIBUTE_UNUSED, rtx i1, rtx i2)
1070 rtx p1, p2;
1072 /* Verify that I1 and I2 are equivalent. */
1073 if (GET_CODE (i1) != GET_CODE (i2))
1074 return dir_none;
1076 /* __builtin_unreachable() may lead to empty blocks (ending with
1077 NOTE_INSN_BASIC_BLOCK). They may be crossjumped. */
1078 if (NOTE_INSN_BASIC_BLOCK_P (i1) && NOTE_INSN_BASIC_BLOCK_P (i2))
1079 return dir_both;
1081 /* ??? Do not allow cross-jumping between different stack levels. */
1082 p1 = find_reg_note (i1, REG_ARGS_SIZE, NULL);
1083 p2 = find_reg_note (i2, REG_ARGS_SIZE, NULL);
1084 if (p1)
1085 p1 = XEXP (p1, 0);
1086 if (p2)
1087 p2 = XEXP (p2, 0);
1088 if (!rtx_equal_p (p1, p2))
1089 return dir_none;
1091 p1 = PATTERN (i1);
1092 p2 = PATTERN (i2);
1094 if (GET_CODE (p1) != GET_CODE (p2))
1095 return dir_none;
1097 /* If this is a CALL_INSN, compare register usage information.
1098 If we don't check this on stack register machines, the two
1099 CALL_INSNs might be merged leaving reg-stack.c with mismatching
1100 numbers of stack registers in the same basic block.
1101 If we don't check this on machines with delay slots, a delay slot may
1102 be filled that clobbers a parameter expected by the subroutine.
1104 ??? We take the simple route for now and assume that if they're
1105 equal, they were constructed identically.
1107 Also check for identical exception regions. */
1109 if (CALL_P (i1))
1111 /* Ensure the same EH region. */
1112 rtx n1 = find_reg_note (i1, REG_EH_REGION, 0);
1113 rtx n2 = find_reg_note (i2, REG_EH_REGION, 0);
1115 if (!n1 && n2)
1116 return dir_none;
1118 if (n1 && (!n2 || XEXP (n1, 0) != XEXP (n2, 0)))
1119 return dir_none;
1121 if (!rtx_equal_p (CALL_INSN_FUNCTION_USAGE (i1),
1122 CALL_INSN_FUNCTION_USAGE (i2))
1123 || SIBLING_CALL_P (i1) != SIBLING_CALL_P (i2))
1124 return dir_none;
1127 #ifdef STACK_REGS
1128 /* If cross_jump_death_matters is not 0, the insn's mode
1129 indicates whether or not the insn contains any stack-like
1130 regs. */
1132 if ((mode & CLEANUP_POST_REGSTACK) && stack_regs_mentioned (i1))
1134 /* If register stack conversion has already been done, then
1135 death notes must also be compared before it is certain that
1136 the two instruction streams match. */
1138 rtx note;
1139 HARD_REG_SET i1_regset, i2_regset;
1141 CLEAR_HARD_REG_SET (i1_regset);
1142 CLEAR_HARD_REG_SET (i2_regset);
1144 for (note = REG_NOTES (i1); note; note = XEXP (note, 1))
1145 if (REG_NOTE_KIND (note) == REG_DEAD && STACK_REG_P (XEXP (note, 0)))
1146 SET_HARD_REG_BIT (i1_regset, REGNO (XEXP (note, 0)));
1148 for (note = REG_NOTES (i2); note; note = XEXP (note, 1))
1149 if (REG_NOTE_KIND (note) == REG_DEAD && STACK_REG_P (XEXP (note, 0)))
1150 SET_HARD_REG_BIT (i2_regset, REGNO (XEXP (note, 0)));
1152 if (!hard_reg_set_equal_p (i1_regset, i2_regset))
1153 return dir_none;
1155 #endif
1157 if (reload_completed
1158 ? rtx_renumbered_equal_p (p1, p2) : rtx_equal_p (p1, p2))
1159 return dir_both;
1161 return can_replace_by (i1, i2);
1164 /* When comparing insns I1 and I2 in flow_find_cross_jump or
1165 flow_find_head_matching_sequence, ensure the notes match. */
1167 static void
1168 merge_notes (rtx i1, rtx i2)
1170 /* If the merged insns have different REG_EQUAL notes, then
1171 remove them. */
1172 rtx equiv1 = find_reg_equal_equiv_note (i1);
1173 rtx equiv2 = find_reg_equal_equiv_note (i2);
1175 if (equiv1 && !equiv2)
1176 remove_note (i1, equiv1);
1177 else if (!equiv1 && equiv2)
1178 remove_note (i2, equiv2);
1179 else if (equiv1 && equiv2
1180 && !rtx_equal_p (XEXP (equiv1, 0), XEXP (equiv2, 0)))
1182 remove_note (i1, equiv1);
1183 remove_note (i2, equiv2);
1187 /* Walks from I1 in BB1 backward till the next non-debug insn, and returns the
1188 resulting insn in I1, and the corresponding bb in BB1. At the head of a
1189 bb, if there is a predecessor bb that reaches this bb via fallthru, and
1190 FOLLOW_FALLTHRU, walks further in the predecessor bb and registers this in
1191 DID_FALLTHRU. Otherwise, stops at the head of the bb. */
1193 static void
1194 walk_to_nondebug_insn (rtx *i1, basic_block *bb1, bool follow_fallthru,
1195 bool *did_fallthru)
1197 edge fallthru;
1199 *did_fallthru = false;
1201 /* Ignore notes. */
1202 while (!NONDEBUG_INSN_P (*i1))
1204 if (*i1 != BB_HEAD (*bb1))
1206 *i1 = PREV_INSN (*i1);
1207 continue;
1210 if (!follow_fallthru)
1211 return;
1213 fallthru = find_fallthru_edge ((*bb1)->preds);
1214 if (!fallthru || fallthru->src == ENTRY_BLOCK_PTR_FOR_FUNCTION (cfun)
1215 || !single_succ_p (fallthru->src))
1216 return;
1218 *bb1 = fallthru->src;
1219 *i1 = BB_END (*bb1);
1220 *did_fallthru = true;
1224 /* Look through the insns at the end of BB1 and BB2 and find the longest
1225 sequence that are either equivalent, or allow forward or backward
1226 replacement. Store the first insns for that sequence in *F1 and *F2 and
1227 return the sequence length.
1229 DIR_P indicates the allowed replacement direction on function entry, and
1230 the actual replacement direction on function exit. If NULL, only equivalent
1231 sequences are allowed.
1233 To simplify callers of this function, if the blocks match exactly,
1234 store the head of the blocks in *F1 and *F2. */
1237 flow_find_cross_jump (basic_block bb1, basic_block bb2, rtx *f1, rtx *f2,
1238 enum replace_direction *dir_p)
1240 rtx i1, i2, last1, last2, afterlast1, afterlast2;
1241 int ninsns = 0;
1242 rtx p1;
1243 enum replace_direction dir, last_dir, afterlast_dir;
1244 bool follow_fallthru, did_fallthru;
1246 if (dir_p)
1247 dir = *dir_p;
1248 else
1249 dir = dir_both;
1250 afterlast_dir = dir;
1251 last_dir = afterlast_dir;
1253 /* Skip simple jumps at the end of the blocks. Complex jumps still
1254 need to be compared for equivalence, which we'll do below. */
1256 i1 = BB_END (bb1);
1257 last1 = afterlast1 = last2 = afterlast2 = NULL_RTX;
1258 if (onlyjump_p (i1)
1259 || (returnjump_p (i1) && !side_effects_p (PATTERN (i1))))
1261 last1 = i1;
1262 i1 = PREV_INSN (i1);
1265 i2 = BB_END (bb2);
1266 if (onlyjump_p (i2)
1267 || (returnjump_p (i2) && !side_effects_p (PATTERN (i2))))
1269 last2 = i2;
1270 /* Count everything except for unconditional jump as insn. */
1271 if (!simplejump_p (i2) && !returnjump_p (i2) && last1)
1272 ninsns++;
1273 i2 = PREV_INSN (i2);
1276 while (true)
1278 /* In the following example, we can replace all jumps to C by jumps to A.
1280 This removes 4 duplicate insns.
1281 [bb A] insn1 [bb C] insn1
1282 insn2 insn2
1283 [bb B] insn3 insn3
1284 insn4 insn4
1285 jump_insn jump_insn
1287 We could also replace all jumps to A by jumps to C, but that leaves B
1288 alive, and removes only 2 duplicate insns. In a subsequent crossjump
1289 step, all jumps to B would be replaced with jumps to the middle of C,
1290 achieving the same result with more effort.
1291 So we allow only the first possibility, which means that we don't allow
1292 fallthru in the block that's being replaced. */
1294 follow_fallthru = dir_p && dir != dir_forward;
1295 walk_to_nondebug_insn (&i1, &bb1, follow_fallthru, &did_fallthru);
1296 if (did_fallthru)
1297 dir = dir_backward;
1299 follow_fallthru = dir_p && dir != dir_backward;
1300 walk_to_nondebug_insn (&i2, &bb2, follow_fallthru, &did_fallthru);
1301 if (did_fallthru)
1302 dir = dir_forward;
1304 if (i1 == BB_HEAD (bb1) || i2 == BB_HEAD (bb2))
1305 break;
1307 dir = merge_dir (dir, old_insns_match_p (0, i1, i2));
1308 if (dir == dir_none || (!dir_p && dir != dir_both))
1309 break;
1311 merge_memattrs (i1, i2);
1313 /* Don't begin a cross-jump with a NOTE insn. */
1314 if (INSN_P (i1))
1316 merge_notes (i1, i2);
1318 afterlast1 = last1, afterlast2 = last2;
1319 last1 = i1, last2 = i2;
1320 afterlast_dir = last_dir;
1321 last_dir = dir;
1322 p1 = PATTERN (i1);
1323 if (!(GET_CODE (p1) == USE || GET_CODE (p1) == CLOBBER))
1324 ninsns++;
1327 i1 = PREV_INSN (i1);
1328 i2 = PREV_INSN (i2);
1331 #ifdef HAVE_cc0
1332 /* Don't allow the insn after a compare to be shared by
1333 cross-jumping unless the compare is also shared. */
1334 if (ninsns && reg_mentioned_p (cc0_rtx, last1) && ! sets_cc0_p (last1))
1335 last1 = afterlast1, last2 = afterlast2, last_dir = afterlast_dir, ninsns--;
1336 #endif
1338 /* Include preceding notes and labels in the cross-jump. One,
1339 this may bring us to the head of the blocks as requested above.
1340 Two, it keeps line number notes as matched as may be. */
1341 if (ninsns)
1343 bb1 = BLOCK_FOR_INSN (last1);
1344 while (last1 != BB_HEAD (bb1) && !NONDEBUG_INSN_P (PREV_INSN (last1)))
1345 last1 = PREV_INSN (last1);
1347 if (last1 != BB_HEAD (bb1) && LABEL_P (PREV_INSN (last1)))
1348 last1 = PREV_INSN (last1);
1350 bb2 = BLOCK_FOR_INSN (last2);
1351 while (last2 != BB_HEAD (bb2) && !NONDEBUG_INSN_P (PREV_INSN (last2)))
1352 last2 = PREV_INSN (last2);
1354 if (last2 != BB_HEAD (bb2) && LABEL_P (PREV_INSN (last2)))
1355 last2 = PREV_INSN (last2);
1357 *f1 = last1;
1358 *f2 = last2;
1361 if (dir_p)
1362 *dir_p = last_dir;
1363 return ninsns;
1366 /* Like flow_find_cross_jump, except start looking for a matching sequence from
1367 the head of the two blocks. Do not include jumps at the end.
1368 If STOP_AFTER is nonzero, stop after finding that many matching
1369 instructions. */
1372 flow_find_head_matching_sequence (basic_block bb1, basic_block bb2, rtx *f1,
1373 rtx *f2, int stop_after)
1375 rtx i1, i2, last1, last2, beforelast1, beforelast2;
1376 int ninsns = 0;
1377 edge e;
1378 edge_iterator ei;
1379 int nehedges1 = 0, nehedges2 = 0;
1381 FOR_EACH_EDGE (e, ei, bb1->succs)
1382 if (e->flags & EDGE_EH)
1383 nehedges1++;
1384 FOR_EACH_EDGE (e, ei, bb2->succs)
1385 if (e->flags & EDGE_EH)
1386 nehedges2++;
1388 i1 = BB_HEAD (bb1);
1389 i2 = BB_HEAD (bb2);
1390 last1 = beforelast1 = last2 = beforelast2 = NULL_RTX;
1392 while (true)
1394 /* Ignore notes, except NOTE_INSN_EPILOGUE_BEG. */
1395 while (!NONDEBUG_INSN_P (i1) && i1 != BB_END (bb1))
1397 if (NOTE_P (i1) && NOTE_KIND (i1) == NOTE_INSN_EPILOGUE_BEG)
1398 break;
1399 i1 = NEXT_INSN (i1);
1402 while (!NONDEBUG_INSN_P (i2) && i2 != BB_END (bb2))
1404 if (NOTE_P (i2) && NOTE_KIND (i2) == NOTE_INSN_EPILOGUE_BEG)
1405 break;
1406 i2 = NEXT_INSN (i2);
1409 if ((i1 == BB_END (bb1) && !NONDEBUG_INSN_P (i1))
1410 || (i2 == BB_END (bb2) && !NONDEBUG_INSN_P (i2)))
1411 break;
1413 if (NOTE_P (i1) || NOTE_P (i2)
1414 || JUMP_P (i1) || JUMP_P (i2))
1415 break;
1417 /* A sanity check to make sure we're not merging insns with different
1418 effects on EH. If only one of them ends a basic block, it shouldn't
1419 have an EH edge; if both end a basic block, there should be the same
1420 number of EH edges. */
1421 if ((i1 == BB_END (bb1) && i2 != BB_END (bb2)
1422 && nehedges1 > 0)
1423 || (i2 == BB_END (bb2) && i1 != BB_END (bb1)
1424 && nehedges2 > 0)
1425 || (i1 == BB_END (bb1) && i2 == BB_END (bb2)
1426 && nehedges1 != nehedges2))
1427 break;
1429 if (old_insns_match_p (0, i1, i2) != dir_both)
1430 break;
1432 merge_memattrs (i1, i2);
1434 /* Don't begin a cross-jump with a NOTE insn. */
1435 if (INSN_P (i1))
1437 merge_notes (i1, i2);
1439 beforelast1 = last1, beforelast2 = last2;
1440 last1 = i1, last2 = i2;
1441 ninsns++;
1444 if (i1 == BB_END (bb1) || i2 == BB_END (bb2)
1445 || (stop_after > 0 && ninsns == stop_after))
1446 break;
1448 i1 = NEXT_INSN (i1);
1449 i2 = NEXT_INSN (i2);
1452 #ifdef HAVE_cc0
1453 /* Don't allow a compare to be shared by cross-jumping unless the insn
1454 after the compare is also shared. */
1455 if (ninsns && reg_mentioned_p (cc0_rtx, last1) && sets_cc0_p (last1))
1456 last1 = beforelast1, last2 = beforelast2, ninsns--;
1457 #endif
1459 if (ninsns)
1461 *f1 = last1;
1462 *f2 = last2;
1465 return ninsns;
1468 /* Return true iff outgoing edges of BB1 and BB2 match, together with
1469 the branch instruction. This means that if we commonize the control
1470 flow before end of the basic block, the semantic remains unchanged.
1472 We may assume that there exists one edge with a common destination. */
1474 static bool
1475 outgoing_edges_match (int mode, basic_block bb1, basic_block bb2)
1477 int nehedges1 = 0, nehedges2 = 0;
1478 edge fallthru1 = 0, fallthru2 = 0;
1479 edge e1, e2;
1480 edge_iterator ei;
1482 /* If BB1 has only one successor, we may be looking at either an
1483 unconditional jump, or a fake edge to exit. */
1484 if (single_succ_p (bb1)
1485 && (single_succ_edge (bb1)->flags & (EDGE_COMPLEX | EDGE_FAKE)) == 0
1486 && (!JUMP_P (BB_END (bb1)) || simplejump_p (BB_END (bb1))))
1487 return (single_succ_p (bb2)
1488 && (single_succ_edge (bb2)->flags
1489 & (EDGE_COMPLEX | EDGE_FAKE)) == 0
1490 && (!JUMP_P (BB_END (bb2)) || simplejump_p (BB_END (bb2))));
1492 /* Match conditional jumps - this may get tricky when fallthru and branch
1493 edges are crossed. */
1494 if (EDGE_COUNT (bb1->succs) == 2
1495 && any_condjump_p (BB_END (bb1))
1496 && onlyjump_p (BB_END (bb1)))
1498 edge b1, f1, b2, f2;
1499 bool reverse, match;
1500 rtx set1, set2, cond1, cond2;
1501 enum rtx_code code1, code2;
1503 if (EDGE_COUNT (bb2->succs) != 2
1504 || !any_condjump_p (BB_END (bb2))
1505 || !onlyjump_p (BB_END (bb2)))
1506 return false;
1508 b1 = BRANCH_EDGE (bb1);
1509 b2 = BRANCH_EDGE (bb2);
1510 f1 = FALLTHRU_EDGE (bb1);
1511 f2 = FALLTHRU_EDGE (bb2);
1513 /* Get around possible forwarders on fallthru edges. Other cases
1514 should be optimized out already. */
1515 if (FORWARDER_BLOCK_P (f1->dest))
1516 f1 = single_succ_edge (f1->dest);
1518 if (FORWARDER_BLOCK_P (f2->dest))
1519 f2 = single_succ_edge (f2->dest);
1521 /* To simplify use of this function, return false if there are
1522 unneeded forwarder blocks. These will get eliminated later
1523 during cleanup_cfg. */
1524 if (FORWARDER_BLOCK_P (f1->dest)
1525 || FORWARDER_BLOCK_P (f2->dest)
1526 || FORWARDER_BLOCK_P (b1->dest)
1527 || FORWARDER_BLOCK_P (b2->dest))
1528 return false;
1530 if (f1->dest == f2->dest && b1->dest == b2->dest)
1531 reverse = false;
1532 else if (f1->dest == b2->dest && b1->dest == f2->dest)
1533 reverse = true;
1534 else
1535 return false;
1537 set1 = pc_set (BB_END (bb1));
1538 set2 = pc_set (BB_END (bb2));
1539 if ((XEXP (SET_SRC (set1), 1) == pc_rtx)
1540 != (XEXP (SET_SRC (set2), 1) == pc_rtx))
1541 reverse = !reverse;
1543 cond1 = XEXP (SET_SRC (set1), 0);
1544 cond2 = XEXP (SET_SRC (set2), 0);
1545 code1 = GET_CODE (cond1);
1546 if (reverse)
1547 code2 = reversed_comparison_code (cond2, BB_END (bb2));
1548 else
1549 code2 = GET_CODE (cond2);
1551 if (code2 == UNKNOWN)
1552 return false;
1554 /* Verify codes and operands match. */
1555 match = ((code1 == code2
1556 && rtx_renumbered_equal_p (XEXP (cond1, 0), XEXP (cond2, 0))
1557 && rtx_renumbered_equal_p (XEXP (cond1, 1), XEXP (cond2, 1)))
1558 || (code1 == swap_condition (code2)
1559 && rtx_renumbered_equal_p (XEXP (cond1, 1),
1560 XEXP (cond2, 0))
1561 && rtx_renumbered_equal_p (XEXP (cond1, 0),
1562 XEXP (cond2, 1))));
1564 /* If we return true, we will join the blocks. Which means that
1565 we will only have one branch prediction bit to work with. Thus
1566 we require the existing branches to have probabilities that are
1567 roughly similar. */
1568 if (match
1569 && optimize_bb_for_speed_p (bb1)
1570 && optimize_bb_for_speed_p (bb2))
1572 int prob2;
1574 if (b1->dest == b2->dest)
1575 prob2 = b2->probability;
1576 else
1577 /* Do not use f2 probability as f2 may be forwarded. */
1578 prob2 = REG_BR_PROB_BASE - b2->probability;
1580 /* Fail if the difference in probabilities is greater than 50%.
1581 This rules out two well-predicted branches with opposite
1582 outcomes. */
1583 if (abs (b1->probability - prob2) > REG_BR_PROB_BASE / 2)
1585 if (dump_file)
1586 fprintf (dump_file,
1587 "Outcomes of branch in bb %i and %i differ too much (%i %i)\n",
1588 bb1->index, bb2->index, b1->probability, prob2);
1590 return false;
1594 if (dump_file && match)
1595 fprintf (dump_file, "Conditionals in bb %i and %i match.\n",
1596 bb1->index, bb2->index);
1598 return match;
1601 /* Generic case - we are seeing a computed jump, table jump or trapping
1602 instruction. */
1604 /* Check whether there are tablejumps in the end of BB1 and BB2.
1605 Return true if they are identical. */
1607 rtx label1, label2;
1608 rtx table1, table2;
1610 if (tablejump_p (BB_END (bb1), &label1, &table1)
1611 && tablejump_p (BB_END (bb2), &label2, &table2)
1612 && GET_CODE (PATTERN (table1)) == GET_CODE (PATTERN (table2)))
1614 /* The labels should never be the same rtx. If they really are same
1615 the jump tables are same too. So disable crossjumping of blocks BB1
1616 and BB2 because when deleting the common insns in the end of BB1
1617 by delete_basic_block () the jump table would be deleted too. */
1618 /* If LABEL2 is referenced in BB1->END do not do anything
1619 because we would loose information when replacing
1620 LABEL1 by LABEL2 and then LABEL2 by LABEL1 in BB1->END. */
1621 if (label1 != label2 && !rtx_referenced_p (label2, BB_END (bb1)))
1623 /* Set IDENTICAL to true when the tables are identical. */
1624 bool identical = false;
1625 rtx p1, p2;
1627 p1 = PATTERN (table1);
1628 p2 = PATTERN (table2);
1629 if (GET_CODE (p1) == ADDR_VEC && rtx_equal_p (p1, p2))
1631 identical = true;
1633 else if (GET_CODE (p1) == ADDR_DIFF_VEC
1634 && (XVECLEN (p1, 1) == XVECLEN (p2, 1))
1635 && rtx_equal_p (XEXP (p1, 2), XEXP (p2, 2))
1636 && rtx_equal_p (XEXP (p1, 3), XEXP (p2, 3)))
1638 int i;
1640 identical = true;
1641 for (i = XVECLEN (p1, 1) - 1; i >= 0 && identical; i--)
1642 if (!rtx_equal_p (XVECEXP (p1, 1, i), XVECEXP (p2, 1, i)))
1643 identical = false;
1646 if (identical)
1648 replace_label_data rr;
1649 bool match;
1651 /* Temporarily replace references to LABEL1 with LABEL2
1652 in BB1->END so that we could compare the instructions. */
1653 rr.r1 = label1;
1654 rr.r2 = label2;
1655 rr.update_label_nuses = false;
1656 for_each_rtx (&BB_END (bb1), replace_label, &rr);
1658 match = (old_insns_match_p (mode, BB_END (bb1), BB_END (bb2))
1659 == dir_both);
1660 if (dump_file && match)
1661 fprintf (dump_file,
1662 "Tablejumps in bb %i and %i match.\n",
1663 bb1->index, bb2->index);
1665 /* Set the original label in BB1->END because when deleting
1666 a block whose end is a tablejump, the tablejump referenced
1667 from the instruction is deleted too. */
1668 rr.r1 = label2;
1669 rr.r2 = label1;
1670 for_each_rtx (&BB_END (bb1), replace_label, &rr);
1672 return match;
1675 return false;
1679 /* First ensure that the instructions match. There may be many outgoing
1680 edges so this test is generally cheaper. */
1681 if (old_insns_match_p (mode, BB_END (bb1), BB_END (bb2)) != dir_both)
1682 return false;
1684 /* Search the outgoing edges, ensure that the counts do match, find possible
1685 fallthru and exception handling edges since these needs more
1686 validation. */
1687 if (EDGE_COUNT (bb1->succs) != EDGE_COUNT (bb2->succs))
1688 return false;
1690 FOR_EACH_EDGE (e1, ei, bb1->succs)
1692 e2 = EDGE_SUCC (bb2, ei.index);
1694 if (e1->flags & EDGE_EH)
1695 nehedges1++;
1697 if (e2->flags & EDGE_EH)
1698 nehedges2++;
1700 if (e1->flags & EDGE_FALLTHRU)
1701 fallthru1 = e1;
1702 if (e2->flags & EDGE_FALLTHRU)
1703 fallthru2 = e2;
1706 /* If number of edges of various types does not match, fail. */
1707 if (nehedges1 != nehedges2
1708 || (fallthru1 != 0) != (fallthru2 != 0))
1709 return false;
1711 /* fallthru edges must be forwarded to the same destination. */
1712 if (fallthru1)
1714 basic_block d1 = (forwarder_block_p (fallthru1->dest)
1715 ? single_succ (fallthru1->dest): fallthru1->dest);
1716 basic_block d2 = (forwarder_block_p (fallthru2->dest)
1717 ? single_succ (fallthru2->dest): fallthru2->dest);
1719 if (d1 != d2)
1720 return false;
1723 /* Ensure the same EH region. */
1725 rtx n1 = find_reg_note (BB_END (bb1), REG_EH_REGION, 0);
1726 rtx n2 = find_reg_note (BB_END (bb2), REG_EH_REGION, 0);
1728 if (!n1 && n2)
1729 return false;
1731 if (n1 && (!n2 || XEXP (n1, 0) != XEXP (n2, 0)))
1732 return false;
1735 /* The same checks as in try_crossjump_to_edge. It is required for RTL
1736 version of sequence abstraction. */
1737 FOR_EACH_EDGE (e1, ei, bb2->succs)
1739 edge e2;
1740 edge_iterator ei;
1741 basic_block d1 = e1->dest;
1743 if (FORWARDER_BLOCK_P (d1))
1744 d1 = EDGE_SUCC (d1, 0)->dest;
1746 FOR_EACH_EDGE (e2, ei, bb1->succs)
1748 basic_block d2 = e2->dest;
1749 if (FORWARDER_BLOCK_P (d2))
1750 d2 = EDGE_SUCC (d2, 0)->dest;
1751 if (d1 == d2)
1752 break;
1755 if (!e2)
1756 return false;
1759 return true;
1762 /* Returns true if BB basic block has a preserve label. */
1764 static bool
1765 block_has_preserve_label (basic_block bb)
1767 return (bb
1768 && block_label (bb)
1769 && LABEL_PRESERVE_P (block_label (bb)));
1772 /* E1 and E2 are edges with the same destination block. Search their
1773 predecessors for common code. If found, redirect control flow from
1774 (maybe the middle of) E1->SRC to (maybe the middle of) E2->SRC (dir_forward),
1775 or the other way around (dir_backward). DIR specifies the allowed
1776 replacement direction. */
1778 static bool
1779 try_crossjump_to_edge (int mode, edge e1, edge e2,
1780 enum replace_direction dir)
1782 int nmatch;
1783 basic_block src1 = e1->src, src2 = e2->src;
1784 basic_block redirect_to, redirect_from, to_remove;
1785 basic_block osrc1, osrc2, redirect_edges_to, tmp;
1786 rtx newpos1, newpos2;
1787 edge s;
1788 edge_iterator ei;
1790 newpos1 = newpos2 = NULL_RTX;
1792 /* If we have partitioned hot/cold basic blocks, it is a bad idea
1793 to try this optimization.
1795 Basic block partitioning may result in some jumps that appear to
1796 be optimizable (or blocks that appear to be mergeable), but which really
1797 must be left untouched (they are required to make it safely across
1798 partition boundaries). See the comments at the top of
1799 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
1801 if (flag_reorder_blocks_and_partition && reload_completed)
1802 return false;
1804 /* Search backward through forwarder blocks. We don't need to worry
1805 about multiple entry or chained forwarders, as they will be optimized
1806 away. We do this to look past the unconditional jump following a
1807 conditional jump that is required due to the current CFG shape. */
1808 if (single_pred_p (src1)
1809 && FORWARDER_BLOCK_P (src1))
1810 e1 = single_pred_edge (src1), src1 = e1->src;
1812 if (single_pred_p (src2)
1813 && FORWARDER_BLOCK_P (src2))
1814 e2 = single_pred_edge (src2), src2 = e2->src;
1816 /* Nothing to do if we reach ENTRY, or a common source block. */
1817 if (src1 == ENTRY_BLOCK_PTR || src2 == ENTRY_BLOCK_PTR)
1818 return false;
1819 if (src1 == src2)
1820 return false;
1822 /* Seeing more than 1 forwarder blocks would confuse us later... */
1823 if (FORWARDER_BLOCK_P (e1->dest)
1824 && FORWARDER_BLOCK_P (single_succ (e1->dest)))
1825 return false;
1827 if (FORWARDER_BLOCK_P (e2->dest)
1828 && FORWARDER_BLOCK_P (single_succ (e2->dest)))
1829 return false;
1831 /* Likewise with dead code (possibly newly created by the other optimizations
1832 of cfg_cleanup). */
1833 if (EDGE_COUNT (src1->preds) == 0 || EDGE_COUNT (src2->preds) == 0)
1834 return false;
1836 /* Look for the common insn sequence, part the first ... */
1837 if (!outgoing_edges_match (mode, src1, src2))
1838 return false;
1840 /* ... and part the second. */
1841 nmatch = flow_find_cross_jump (src1, src2, &newpos1, &newpos2, &dir);
1843 osrc1 = src1;
1844 osrc2 = src2;
1845 if (newpos1 != NULL_RTX)
1846 src1 = BLOCK_FOR_INSN (newpos1);
1847 if (newpos2 != NULL_RTX)
1848 src2 = BLOCK_FOR_INSN (newpos2);
1850 if (dir == dir_backward)
1852 #define SWAP(T, X, Y) do { T tmp = (X); (X) = (Y); (Y) = tmp; } while (0)
1853 SWAP (basic_block, osrc1, osrc2);
1854 SWAP (basic_block, src1, src2);
1855 SWAP (edge, e1, e2);
1856 SWAP (rtx, newpos1, newpos2);
1857 #undef SWAP
1860 /* Don't proceed with the crossjump unless we found a sufficient number
1861 of matching instructions or the 'from' block was totally matched
1862 (such that its predecessors will hopefully be redirected and the
1863 block removed). */
1864 if ((nmatch < PARAM_VALUE (PARAM_MIN_CROSSJUMP_INSNS))
1865 && (newpos1 != BB_HEAD (src1)))
1866 return false;
1868 /* Avoid deleting preserve label when redirecting ABNORMAL edges. */
1869 if (block_has_preserve_label (e1->dest)
1870 && (e1->flags & EDGE_ABNORMAL))
1871 return false;
1873 /* Here we know that the insns in the end of SRC1 which are common with SRC2
1874 will be deleted.
1875 If we have tablejumps in the end of SRC1 and SRC2
1876 they have been already compared for equivalence in outgoing_edges_match ()
1877 so replace the references to TABLE1 by references to TABLE2. */
1879 rtx label1, label2;
1880 rtx table1, table2;
1882 if (tablejump_p (BB_END (osrc1), &label1, &table1)
1883 && tablejump_p (BB_END (osrc2), &label2, &table2)
1884 && label1 != label2)
1886 replace_label_data rr;
1887 rtx insn;
1889 /* Replace references to LABEL1 with LABEL2. */
1890 rr.r1 = label1;
1891 rr.r2 = label2;
1892 rr.update_label_nuses = true;
1893 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
1895 /* Do not replace the label in SRC1->END because when deleting
1896 a block whose end is a tablejump, the tablejump referenced
1897 from the instruction is deleted too. */
1898 if (insn != BB_END (osrc1))
1899 for_each_rtx (&insn, replace_label, &rr);
1904 /* Avoid splitting if possible. We must always split when SRC2 has
1905 EH predecessor edges, or we may end up with basic blocks with both
1906 normal and EH predecessor edges. */
1907 if (newpos2 == BB_HEAD (src2)
1908 && !(EDGE_PRED (src2, 0)->flags & EDGE_EH))
1909 redirect_to = src2;
1910 else
1912 if (newpos2 == BB_HEAD (src2))
1914 /* Skip possible basic block header. */
1915 if (LABEL_P (newpos2))
1916 newpos2 = NEXT_INSN (newpos2);
1917 while (DEBUG_INSN_P (newpos2))
1918 newpos2 = NEXT_INSN (newpos2);
1919 if (NOTE_P (newpos2))
1920 newpos2 = NEXT_INSN (newpos2);
1921 while (DEBUG_INSN_P (newpos2))
1922 newpos2 = NEXT_INSN (newpos2);
1925 if (dump_file)
1926 fprintf (dump_file, "Splitting bb %i before %i insns\n",
1927 src2->index, nmatch);
1928 redirect_to = split_block (src2, PREV_INSN (newpos2))->dest;
1931 if (dump_file)
1932 fprintf (dump_file,
1933 "Cross jumping from bb %i to bb %i; %i common insns\n",
1934 src1->index, src2->index, nmatch);
1936 /* We may have some registers visible through the block. */
1937 df_set_bb_dirty (redirect_to);
1939 if (osrc2 == src2)
1940 redirect_edges_to = redirect_to;
1941 else
1942 redirect_edges_to = osrc2;
1944 /* Recompute the frequencies and counts of outgoing edges. */
1945 FOR_EACH_EDGE (s, ei, redirect_edges_to->succs)
1947 edge s2;
1948 edge_iterator ei;
1949 basic_block d = s->dest;
1951 if (FORWARDER_BLOCK_P (d))
1952 d = single_succ (d);
1954 FOR_EACH_EDGE (s2, ei, src1->succs)
1956 basic_block d2 = s2->dest;
1957 if (FORWARDER_BLOCK_P (d2))
1958 d2 = single_succ (d2);
1959 if (d == d2)
1960 break;
1963 s->count += s2->count;
1965 /* Take care to update possible forwarder blocks. We verified
1966 that there is no more than one in the chain, so we can't run
1967 into infinite loop. */
1968 if (FORWARDER_BLOCK_P (s->dest))
1970 single_succ_edge (s->dest)->count += s2->count;
1971 s->dest->count += s2->count;
1972 s->dest->frequency += EDGE_FREQUENCY (s);
1975 if (FORWARDER_BLOCK_P (s2->dest))
1977 single_succ_edge (s2->dest)->count -= s2->count;
1978 if (single_succ_edge (s2->dest)->count < 0)
1979 single_succ_edge (s2->dest)->count = 0;
1980 s2->dest->count -= s2->count;
1981 s2->dest->frequency -= EDGE_FREQUENCY (s);
1982 if (s2->dest->frequency < 0)
1983 s2->dest->frequency = 0;
1984 if (s2->dest->count < 0)
1985 s2->dest->count = 0;
1988 if (!redirect_edges_to->frequency && !src1->frequency)
1989 s->probability = (s->probability + s2->probability) / 2;
1990 else
1991 s->probability
1992 = ((s->probability * redirect_edges_to->frequency +
1993 s2->probability * src1->frequency)
1994 / (redirect_edges_to->frequency + src1->frequency));
1997 /* Adjust count and frequency for the block. An earlier jump
1998 threading pass may have left the profile in an inconsistent
1999 state (see update_bb_profile_for_threading) so we must be
2000 prepared for overflows. */
2001 tmp = redirect_to;
2004 tmp->count += src1->count;
2005 tmp->frequency += src1->frequency;
2006 if (tmp->frequency > BB_FREQ_MAX)
2007 tmp->frequency = BB_FREQ_MAX;
2008 if (tmp == redirect_edges_to)
2009 break;
2010 tmp = find_fallthru_edge (tmp->succs)->dest;
2012 while (true);
2013 update_br_prob_note (redirect_edges_to);
2015 /* Edit SRC1 to go to REDIRECT_TO at NEWPOS1. */
2017 /* Skip possible basic block header. */
2018 if (LABEL_P (newpos1))
2019 newpos1 = NEXT_INSN (newpos1);
2021 while (DEBUG_INSN_P (newpos1))
2022 newpos1 = NEXT_INSN (newpos1);
2024 if (NOTE_INSN_BASIC_BLOCK_P (newpos1))
2025 newpos1 = NEXT_INSN (newpos1);
2027 while (DEBUG_INSN_P (newpos1))
2028 newpos1 = NEXT_INSN (newpos1);
2030 redirect_from = split_block (src1, PREV_INSN (newpos1))->src;
2031 to_remove = single_succ (redirect_from);
2033 redirect_edge_and_branch_force (single_succ_edge (redirect_from), redirect_to);
2034 delete_basic_block (to_remove);
2036 update_forwarder_flag (redirect_from);
2037 if (redirect_to != src2)
2038 update_forwarder_flag (src2);
2040 return true;
2043 /* Search the predecessors of BB for common insn sequences. When found,
2044 share code between them by redirecting control flow. Return true if
2045 any changes made. */
2047 static bool
2048 try_crossjump_bb (int mode, basic_block bb)
2050 edge e, e2, fallthru;
2051 bool changed;
2052 unsigned max, ix, ix2;
2054 /* Nothing to do if there is not at least two incoming edges. */
2055 if (EDGE_COUNT (bb->preds) < 2)
2056 return false;
2058 /* Don't crossjump if this block ends in a computed jump,
2059 unless we are optimizing for size. */
2060 if (optimize_bb_for_size_p (bb)
2061 && bb != EXIT_BLOCK_PTR
2062 && computed_jump_p (BB_END (bb)))
2063 return false;
2065 /* If we are partitioning hot/cold basic blocks, we don't want to
2066 mess up unconditional or indirect jumps that cross between hot
2067 and cold sections.
2069 Basic block partitioning may result in some jumps that appear to
2070 be optimizable (or blocks that appear to be mergeable), but which really
2071 must be left untouched (they are required to make it safely across
2072 partition boundaries). See the comments at the top of
2073 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
2075 if (BB_PARTITION (EDGE_PRED (bb, 0)->src) !=
2076 BB_PARTITION (EDGE_PRED (bb, 1)->src)
2077 || (EDGE_PRED (bb, 0)->flags & EDGE_CROSSING))
2078 return false;
2080 /* It is always cheapest to redirect a block that ends in a branch to
2081 a block that falls through into BB, as that adds no branches to the
2082 program. We'll try that combination first. */
2083 fallthru = NULL;
2084 max = PARAM_VALUE (PARAM_MAX_CROSSJUMP_EDGES);
2086 if (EDGE_COUNT (bb->preds) > max)
2087 return false;
2089 fallthru = find_fallthru_edge (bb->preds);
2091 changed = false;
2092 for (ix = 0; ix < EDGE_COUNT (bb->preds);)
2094 e = EDGE_PRED (bb, ix);
2095 ix++;
2097 /* As noted above, first try with the fallthru predecessor (or, a
2098 fallthru predecessor if we are in cfglayout mode). */
2099 if (fallthru)
2101 /* Don't combine the fallthru edge into anything else.
2102 If there is a match, we'll do it the other way around. */
2103 if (e == fallthru)
2104 continue;
2105 /* If nothing changed since the last attempt, there is nothing
2106 we can do. */
2107 if (!first_pass
2108 && !((e->src->flags & BB_MODIFIED)
2109 || (fallthru->src->flags & BB_MODIFIED)))
2110 continue;
2112 if (try_crossjump_to_edge (mode, e, fallthru, dir_forward))
2114 changed = true;
2115 ix = 0;
2116 continue;
2120 /* Non-obvious work limiting check: Recognize that we're going
2121 to call try_crossjump_bb on every basic block. So if we have
2122 two blocks with lots of outgoing edges (a switch) and they
2123 share lots of common destinations, then we would do the
2124 cross-jump check once for each common destination.
2126 Now, if the blocks actually are cross-jump candidates, then
2127 all of their destinations will be shared. Which means that
2128 we only need check them for cross-jump candidacy once. We
2129 can eliminate redundant checks of crossjump(A,B) by arbitrarily
2130 choosing to do the check from the block for which the edge
2131 in question is the first successor of A. */
2132 if (EDGE_SUCC (e->src, 0) != e)
2133 continue;
2135 for (ix2 = 0; ix2 < EDGE_COUNT (bb->preds); ix2++)
2137 e2 = EDGE_PRED (bb, ix2);
2139 if (e2 == e)
2140 continue;
2142 /* We've already checked the fallthru edge above. */
2143 if (e2 == fallthru)
2144 continue;
2146 /* The "first successor" check above only prevents multiple
2147 checks of crossjump(A,B). In order to prevent redundant
2148 checks of crossjump(B,A), require that A be the block
2149 with the lowest index. */
2150 if (e->src->index > e2->src->index)
2151 continue;
2153 /* If nothing changed since the last attempt, there is nothing
2154 we can do. */
2155 if (!first_pass
2156 && !((e->src->flags & BB_MODIFIED)
2157 || (e2->src->flags & BB_MODIFIED)))
2158 continue;
2160 /* Both e and e2 are not fallthru edges, so we can crossjump in either
2161 direction. */
2162 if (try_crossjump_to_edge (mode, e, e2, dir_both))
2164 changed = true;
2165 ix = 0;
2166 break;
2171 if (changed)
2172 crossjumps_occured = true;
2174 return changed;
2177 /* Search the successors of BB for common insn sequences. When found,
2178 share code between them by moving it across the basic block
2179 boundary. Return true if any changes made. */
2181 static bool
2182 try_head_merge_bb (basic_block bb)
2184 basic_block final_dest_bb = NULL;
2185 int max_match = INT_MAX;
2186 edge e0;
2187 rtx *headptr, *currptr, *nextptr;
2188 bool changed, moveall;
2189 unsigned ix;
2190 rtx e0_last_head, cond, move_before;
2191 unsigned nedges = EDGE_COUNT (bb->succs);
2192 rtx jump = BB_END (bb);
2193 regset live, live_union;
2195 /* Nothing to do if there is not at least two outgoing edges. */
2196 if (nedges < 2)
2197 return false;
2199 /* Don't crossjump if this block ends in a computed jump,
2200 unless we are optimizing for size. */
2201 if (optimize_bb_for_size_p (bb)
2202 && bb != EXIT_BLOCK_PTR
2203 && computed_jump_p (BB_END (bb)))
2204 return false;
2206 cond = get_condition (jump, &move_before, true, false);
2207 if (cond == NULL_RTX)
2208 move_before = jump;
2210 for (ix = 0; ix < nedges; ix++)
2211 if (EDGE_SUCC (bb, ix)->dest == EXIT_BLOCK_PTR)
2212 return false;
2214 for (ix = 0; ix < nedges; ix++)
2216 edge e = EDGE_SUCC (bb, ix);
2217 basic_block other_bb = e->dest;
2219 if (df_get_bb_dirty (other_bb))
2221 block_was_dirty = true;
2222 return false;
2225 if (e->flags & EDGE_ABNORMAL)
2226 return false;
2228 /* Normally, all destination blocks must only be reachable from this
2229 block, i.e. they must have one incoming edge.
2231 There is one special case we can handle, that of multiple consecutive
2232 jumps where the first jumps to one of the targets of the second jump.
2233 This happens frequently in switch statements for default labels.
2234 The structure is as follows:
2235 FINAL_DEST_BB
2236 ....
2237 if (cond) jump A;
2238 fall through
2240 jump with targets A, B, C, D...
2242 has two incoming edges, from FINAL_DEST_BB and BB
2244 In this case, we can try to move the insns through BB and into
2245 FINAL_DEST_BB. */
2246 if (EDGE_COUNT (other_bb->preds) != 1)
2248 edge incoming_edge, incoming_bb_other_edge;
2249 edge_iterator ei;
2251 if (final_dest_bb != NULL
2252 || EDGE_COUNT (other_bb->preds) != 2)
2253 return false;
2255 /* We must be able to move the insns across the whole block. */
2256 move_before = BB_HEAD (bb);
2257 while (!NONDEBUG_INSN_P (move_before))
2258 move_before = NEXT_INSN (move_before);
2260 if (EDGE_COUNT (bb->preds) != 1)
2261 return false;
2262 incoming_edge = EDGE_PRED (bb, 0);
2263 final_dest_bb = incoming_edge->src;
2264 if (EDGE_COUNT (final_dest_bb->succs) != 2)
2265 return false;
2266 FOR_EACH_EDGE (incoming_bb_other_edge, ei, final_dest_bb->succs)
2267 if (incoming_bb_other_edge != incoming_edge)
2268 break;
2269 if (incoming_bb_other_edge->dest != other_bb)
2270 return false;
2274 e0 = EDGE_SUCC (bb, 0);
2275 e0_last_head = NULL_RTX;
2276 changed = false;
2278 for (ix = 1; ix < nedges; ix++)
2280 edge e = EDGE_SUCC (bb, ix);
2281 rtx e0_last, e_last;
2282 int nmatch;
2284 nmatch = flow_find_head_matching_sequence (e0->dest, e->dest,
2285 &e0_last, &e_last, 0);
2286 if (nmatch == 0)
2287 return false;
2289 if (nmatch < max_match)
2291 max_match = nmatch;
2292 e0_last_head = e0_last;
2296 /* If we matched an entire block, we probably have to avoid moving the
2297 last insn. */
2298 if (max_match > 0
2299 && e0_last_head == BB_END (e0->dest)
2300 && (find_reg_note (e0_last_head, REG_EH_REGION, 0)
2301 || control_flow_insn_p (e0_last_head)))
2303 max_match--;
2304 if (max_match == 0)
2305 return false;
2307 e0_last_head = prev_real_insn (e0_last_head);
2308 while (DEBUG_INSN_P (e0_last_head));
2311 if (max_match == 0)
2312 return false;
2314 /* We must find a union of the live registers at each of the end points. */
2315 live = BITMAP_ALLOC (NULL);
2316 live_union = BITMAP_ALLOC (NULL);
2318 currptr = XNEWVEC (rtx, nedges);
2319 headptr = XNEWVEC (rtx, nedges);
2320 nextptr = XNEWVEC (rtx, nedges);
2322 for (ix = 0; ix < nedges; ix++)
2324 int j;
2325 basic_block merge_bb = EDGE_SUCC (bb, ix)->dest;
2326 rtx head = BB_HEAD (merge_bb);
2328 while (!NONDEBUG_INSN_P (head))
2329 head = NEXT_INSN (head);
2330 headptr[ix] = head;
2331 currptr[ix] = head;
2333 /* Compute the end point and live information */
2334 for (j = 1; j < max_match; j++)
2336 head = NEXT_INSN (head);
2337 while (!NONDEBUG_INSN_P (head));
2338 simulate_backwards_to_point (merge_bb, live, head);
2339 IOR_REG_SET (live_union, live);
2342 /* If we're moving across two blocks, verify the validity of the
2343 first move, then adjust the target and let the loop below deal
2344 with the final move. */
2345 if (final_dest_bb != NULL)
2347 rtx move_upto;
2349 moveall = can_move_insns_across (currptr[0], e0_last_head, move_before,
2350 jump, e0->dest, live_union,
2351 NULL, &move_upto);
2352 if (!moveall)
2354 if (move_upto == NULL_RTX)
2355 goto out;
2357 while (e0_last_head != move_upto)
2359 df_simulate_one_insn_backwards (e0->dest, e0_last_head,
2360 live_union);
2361 e0_last_head = PREV_INSN (e0_last_head);
2364 if (e0_last_head == NULL_RTX)
2365 goto out;
2367 jump = BB_END (final_dest_bb);
2368 cond = get_condition (jump, &move_before, true, false);
2369 if (cond == NULL_RTX)
2370 move_before = jump;
2375 rtx move_upto;
2376 moveall = can_move_insns_across (currptr[0], e0_last_head,
2377 move_before, jump, e0->dest, live_union,
2378 NULL, &move_upto);
2379 if (!moveall && move_upto == NULL_RTX)
2381 if (jump == move_before)
2382 break;
2384 /* Try again, using a different insertion point. */
2385 move_before = jump;
2387 #ifdef HAVE_cc0
2388 /* Don't try moving before a cc0 user, as that may invalidate
2389 the cc0. */
2390 if (reg_mentioned_p (cc0_rtx, jump))
2391 break;
2392 #endif
2394 continue;
2397 if (final_dest_bb && !moveall)
2398 /* We haven't checked whether a partial move would be OK for the first
2399 move, so we have to fail this case. */
2400 break;
2402 changed = true;
2403 for (;;)
2405 if (currptr[0] == move_upto)
2406 break;
2407 for (ix = 0; ix < nedges; ix++)
2409 rtx curr = currptr[ix];
2411 curr = NEXT_INSN (curr);
2412 while (!NONDEBUG_INSN_P (curr));
2413 currptr[ix] = curr;
2417 /* If we can't currently move all of the identical insns, remember
2418 each insn after the range that we'll merge. */
2419 if (!moveall)
2420 for (ix = 0; ix < nedges; ix++)
2422 rtx curr = currptr[ix];
2424 curr = NEXT_INSN (curr);
2425 while (!NONDEBUG_INSN_P (curr));
2426 nextptr[ix] = curr;
2429 reorder_insns (headptr[0], currptr[0], PREV_INSN (move_before));
2430 df_set_bb_dirty (EDGE_SUCC (bb, 0)->dest);
2431 if (final_dest_bb != NULL)
2432 df_set_bb_dirty (final_dest_bb);
2433 df_set_bb_dirty (bb);
2434 for (ix = 1; ix < nedges; ix++)
2436 df_set_bb_dirty (EDGE_SUCC (bb, ix)->dest);
2437 delete_insn_chain (headptr[ix], currptr[ix], false);
2439 if (!moveall)
2441 if (jump == move_before)
2442 break;
2444 /* For the unmerged insns, try a different insertion point. */
2445 move_before = jump;
2447 #ifdef HAVE_cc0
2448 /* Don't try moving before a cc0 user, as that may invalidate
2449 the cc0. */
2450 if (reg_mentioned_p (cc0_rtx, jump))
2451 break;
2452 #endif
2454 for (ix = 0; ix < nedges; ix++)
2455 currptr[ix] = headptr[ix] = nextptr[ix];
2458 while (!moveall);
2460 out:
2461 free (currptr);
2462 free (headptr);
2463 free (nextptr);
2465 crossjumps_occured |= changed;
2467 return changed;
2470 /* Return true if BB contains just bb note, or bb note followed
2471 by only DEBUG_INSNs. */
2473 static bool
2474 trivially_empty_bb_p (basic_block bb)
2476 rtx insn = BB_END (bb);
2478 while (1)
2480 if (insn == BB_HEAD (bb))
2481 return true;
2482 if (!DEBUG_INSN_P (insn))
2483 return false;
2484 insn = PREV_INSN (insn);
2488 /* Do simple CFG optimizations - basic block merging, simplifying of jump
2489 instructions etc. Return nonzero if changes were made. */
2491 static bool
2492 try_optimize_cfg (int mode)
2494 bool changed_overall = false;
2495 bool changed;
2496 int iterations = 0;
2497 basic_block bb, b, next;
2499 if (mode & (CLEANUP_CROSSJUMP | CLEANUP_THREADING))
2500 clear_bb_flags ();
2502 crossjumps_occured = false;
2504 FOR_EACH_BB (bb)
2505 update_forwarder_flag (bb);
2507 if (! targetm.cannot_modify_jumps_p ())
2509 first_pass = true;
2510 /* Attempt to merge blocks as made possible by edge removal. If
2511 a block has only one successor, and the successor has only
2512 one predecessor, they may be combined. */
2515 block_was_dirty = false;
2516 changed = false;
2517 iterations++;
2519 if (dump_file)
2520 fprintf (dump_file,
2521 "\n\ntry_optimize_cfg iteration %i\n\n",
2522 iterations);
2524 for (b = ENTRY_BLOCK_PTR->next_bb; b != EXIT_BLOCK_PTR;)
2526 basic_block c;
2527 edge s;
2528 bool changed_here = false;
2530 /* Delete trivially dead basic blocks. This is either
2531 blocks with no predecessors, or empty blocks with no
2532 successors. However if the empty block with no
2533 successors is the successor of the ENTRY_BLOCK, it is
2534 kept. This ensures that the ENTRY_BLOCK will have a
2535 successor which is a precondition for many RTL
2536 passes. Empty blocks may result from expanding
2537 __builtin_unreachable (). */
2538 if (EDGE_COUNT (b->preds) == 0
2539 || (EDGE_COUNT (b->succs) == 0
2540 && trivially_empty_bb_p (b)
2541 && single_succ_edge (ENTRY_BLOCK_PTR)->dest != b))
2543 c = b->prev_bb;
2544 if (EDGE_COUNT (b->preds) > 0)
2546 edge e;
2547 edge_iterator ei;
2549 if (current_ir_type () == IR_RTL_CFGLAYOUT)
2551 if (b->il.rtl->footer
2552 && BARRIER_P (b->il.rtl->footer))
2553 FOR_EACH_EDGE (e, ei, b->preds)
2554 if ((e->flags & EDGE_FALLTHRU)
2555 && e->src->il.rtl->footer == NULL)
2557 if (b->il.rtl->footer)
2559 e->src->il.rtl->footer = b->il.rtl->footer;
2560 b->il.rtl->footer = NULL;
2562 else
2564 start_sequence ();
2565 e->src->il.rtl->footer = emit_barrier ();
2566 end_sequence ();
2570 else
2572 rtx last = get_last_bb_insn (b);
2573 if (last && BARRIER_P (last))
2574 FOR_EACH_EDGE (e, ei, b->preds)
2575 if ((e->flags & EDGE_FALLTHRU))
2576 emit_barrier_after (BB_END (e->src));
2579 delete_basic_block (b);
2580 changed = true;
2581 /* Avoid trying to remove ENTRY_BLOCK_PTR. */
2582 b = (c == ENTRY_BLOCK_PTR ? c->next_bb : c);
2583 continue;
2586 /* Remove code labels no longer used. */
2587 if (single_pred_p (b)
2588 && (single_pred_edge (b)->flags & EDGE_FALLTHRU)
2589 && !(single_pred_edge (b)->flags & EDGE_COMPLEX)
2590 && LABEL_P (BB_HEAD (b))
2591 /* If the previous block ends with a branch to this
2592 block, we can't delete the label. Normally this
2593 is a condjump that is yet to be simplified, but
2594 if CASE_DROPS_THRU, this can be a tablejump with
2595 some element going to the same place as the
2596 default (fallthru). */
2597 && (single_pred (b) == ENTRY_BLOCK_PTR
2598 || !JUMP_P (BB_END (single_pred (b)))
2599 || ! label_is_jump_target_p (BB_HEAD (b),
2600 BB_END (single_pred (b)))))
2602 rtx label = BB_HEAD (b);
2604 delete_insn_chain (label, label, false);
2605 /* If the case label is undeletable, move it after the
2606 BASIC_BLOCK note. */
2607 if (NOTE_KIND (BB_HEAD (b)) == NOTE_INSN_DELETED_LABEL)
2609 rtx bb_note = NEXT_INSN (BB_HEAD (b));
2611 reorder_insns_nobb (label, label, bb_note);
2612 BB_HEAD (b) = bb_note;
2613 if (BB_END (b) == bb_note)
2614 BB_END (b) = label;
2616 if (dump_file)
2617 fprintf (dump_file, "Deleted label in block %i.\n",
2618 b->index);
2621 /* If we fall through an empty block, we can remove it. */
2622 if (!(mode & CLEANUP_CFGLAYOUT)
2623 && single_pred_p (b)
2624 && (single_pred_edge (b)->flags & EDGE_FALLTHRU)
2625 && !LABEL_P (BB_HEAD (b))
2626 && FORWARDER_BLOCK_P (b)
2627 /* Note that forwarder_block_p true ensures that
2628 there is a successor for this block. */
2629 && (single_succ_edge (b)->flags & EDGE_FALLTHRU)
2630 && n_basic_blocks > NUM_FIXED_BLOCKS + 1)
2632 if (dump_file)
2633 fprintf (dump_file,
2634 "Deleting fallthru block %i.\n",
2635 b->index);
2637 c = b->prev_bb == ENTRY_BLOCK_PTR ? b->next_bb : b->prev_bb;
2638 redirect_edge_succ_nodup (single_pred_edge (b),
2639 single_succ (b));
2640 delete_basic_block (b);
2641 changed = true;
2642 b = c;
2643 continue;
2646 /* Merge B with its single successor, if any. */
2647 if (single_succ_p (b)
2648 && (s = single_succ_edge (b))
2649 && !(s->flags & EDGE_COMPLEX)
2650 && (c = s->dest) != EXIT_BLOCK_PTR
2651 && single_pred_p (c)
2652 && b != c)
2654 /* When not in cfg_layout mode use code aware of reordering
2655 INSN. This code possibly creates new basic blocks so it
2656 does not fit merge_blocks interface and is kept here in
2657 hope that it will become useless once more of compiler
2658 is transformed to use cfg_layout mode. */
2660 if ((mode & CLEANUP_CFGLAYOUT)
2661 && can_merge_blocks_p (b, c))
2663 merge_blocks (b, c);
2664 update_forwarder_flag (b);
2665 changed_here = true;
2667 else if (!(mode & CLEANUP_CFGLAYOUT)
2668 /* If the jump insn has side effects,
2669 we can't kill the edge. */
2670 && (!JUMP_P (BB_END (b))
2671 || (reload_completed
2672 ? simplejump_p (BB_END (b))
2673 : (onlyjump_p (BB_END (b))
2674 && !tablejump_p (BB_END (b),
2675 NULL, NULL))))
2676 && (next = merge_blocks_move (s, b, c, mode)))
2678 b = next;
2679 changed_here = true;
2683 /* Simplify branch over branch. */
2684 if ((mode & CLEANUP_EXPENSIVE)
2685 && !(mode & CLEANUP_CFGLAYOUT)
2686 && try_simplify_condjump (b))
2687 changed_here = true;
2689 /* If B has a single outgoing edge, but uses a
2690 non-trivial jump instruction without side-effects, we
2691 can either delete the jump entirely, or replace it
2692 with a simple unconditional jump. */
2693 if (single_succ_p (b)
2694 && single_succ (b) != EXIT_BLOCK_PTR
2695 && onlyjump_p (BB_END (b))
2696 && !find_reg_note (BB_END (b), REG_CROSSING_JUMP, NULL_RTX)
2697 && try_redirect_by_replacing_jump (single_succ_edge (b),
2698 single_succ (b),
2699 (mode & CLEANUP_CFGLAYOUT) != 0))
2701 update_forwarder_flag (b);
2702 changed_here = true;
2705 /* Simplify branch to branch. */
2706 if (try_forward_edges (mode, b))
2708 update_forwarder_flag (b);
2709 changed_here = true;
2712 /* Look for shared code between blocks. */
2713 if ((mode & CLEANUP_CROSSJUMP)
2714 && try_crossjump_bb (mode, b))
2715 changed_here = true;
2717 if ((mode & CLEANUP_CROSSJUMP)
2718 /* This can lengthen register lifetimes. Do it only after
2719 reload. */
2720 && reload_completed
2721 && try_head_merge_bb (b))
2722 changed_here = true;
2724 /* Don't get confused by the index shift caused by
2725 deleting blocks. */
2726 if (!changed_here)
2727 b = b->next_bb;
2728 else
2729 changed = true;
2732 if ((mode & CLEANUP_CROSSJUMP)
2733 && try_crossjump_bb (mode, EXIT_BLOCK_PTR))
2734 changed = true;
2736 if (block_was_dirty)
2738 /* This should only be set by head-merging. */
2739 gcc_assert (mode & CLEANUP_CROSSJUMP);
2740 df_analyze ();
2743 #ifdef ENABLE_CHECKING
2744 if (changed)
2745 verify_flow_info ();
2746 #endif
2748 changed_overall |= changed;
2749 first_pass = false;
2751 while (changed);
2754 FOR_ALL_BB (b)
2755 b->flags &= ~(BB_FORWARDER_BLOCK | BB_NONTHREADABLE_BLOCK);
2757 return changed_overall;
2760 /* Delete all unreachable basic blocks. */
2762 bool
2763 delete_unreachable_blocks (void)
2765 bool changed = false;
2766 basic_block b, prev_bb;
2768 find_unreachable_blocks ();
2770 /* When we're in GIMPLE mode and there may be debug insns, we should
2771 delete blocks in reverse dominator order, so as to get a chance
2772 to substitute all released DEFs into debug stmts. If we don't
2773 have dominators information, walking blocks backward gets us a
2774 better chance of retaining most debug information than
2775 otherwise. */
2776 if (MAY_HAVE_DEBUG_STMTS && current_ir_type () == IR_GIMPLE
2777 && dom_info_available_p (CDI_DOMINATORS))
2779 for (b = EXIT_BLOCK_PTR->prev_bb; b != ENTRY_BLOCK_PTR; b = prev_bb)
2781 prev_bb = b->prev_bb;
2783 if (!(b->flags & BB_REACHABLE))
2785 /* Speed up the removal of blocks that don't dominate
2786 others. Walking backwards, this should be the common
2787 case. */
2788 if (!first_dom_son (CDI_DOMINATORS, b))
2789 delete_basic_block (b);
2790 else
2792 VEC (basic_block, heap) *h
2793 = get_all_dominated_blocks (CDI_DOMINATORS, b);
2795 while (VEC_length (basic_block, h))
2797 b = VEC_pop (basic_block, h);
2799 prev_bb = b->prev_bb;
2801 gcc_assert (!(b->flags & BB_REACHABLE));
2803 delete_basic_block (b);
2806 VEC_free (basic_block, heap, h);
2809 changed = true;
2813 else
2815 for (b = EXIT_BLOCK_PTR->prev_bb; b != ENTRY_BLOCK_PTR; b = prev_bb)
2817 prev_bb = b->prev_bb;
2819 if (!(b->flags & BB_REACHABLE))
2821 delete_basic_block (b);
2822 changed = true;
2827 if (changed)
2828 tidy_fallthru_edges ();
2829 return changed;
2832 /* Delete any jump tables never referenced. We can't delete them at the
2833 time of removing tablejump insn as they are referenced by the preceding
2834 insns computing the destination, so we delay deleting and garbagecollect
2835 them once life information is computed. */
2836 void
2837 delete_dead_jumptables (void)
2839 basic_block bb;
2841 /* A dead jump table does not belong to any basic block. Scan insns
2842 between two adjacent basic blocks. */
2843 FOR_EACH_BB (bb)
2845 rtx insn, next;
2847 for (insn = NEXT_INSN (BB_END (bb));
2848 insn && !NOTE_INSN_BASIC_BLOCK_P (insn);
2849 insn = next)
2851 next = NEXT_INSN (insn);
2852 if (LABEL_P (insn)
2853 && LABEL_NUSES (insn) == LABEL_PRESERVE_P (insn)
2854 && JUMP_TABLE_DATA_P (next))
2856 rtx label = insn, jump = next;
2858 if (dump_file)
2859 fprintf (dump_file, "Dead jumptable %i removed\n",
2860 INSN_UID (insn));
2862 next = NEXT_INSN (next);
2863 delete_insn (jump);
2864 delete_insn (label);
2871 /* Tidy the CFG by deleting unreachable code and whatnot. */
2873 bool
2874 cleanup_cfg (int mode)
2876 bool changed = false;
2878 /* Set the cfglayout mode flag here. We could update all the callers
2879 but that is just inconvenient, especially given that we eventually
2880 want to have cfglayout mode as the default. */
2881 if (current_ir_type () == IR_RTL_CFGLAYOUT)
2882 mode |= CLEANUP_CFGLAYOUT;
2884 timevar_push (TV_CLEANUP_CFG);
2885 if (delete_unreachable_blocks ())
2887 changed = true;
2888 /* We've possibly created trivially dead code. Cleanup it right
2889 now to introduce more opportunities for try_optimize_cfg. */
2890 if (!(mode & (CLEANUP_NO_INSN_DEL))
2891 && !reload_completed)
2892 delete_trivially_dead_insns (get_insns (), max_reg_num ());
2895 compact_blocks ();
2897 /* To tail-merge blocks ending in the same noreturn function (e.g.
2898 a call to abort) we have to insert fake edges to exit. Do this
2899 here once. The fake edges do not interfere with any other CFG
2900 cleanups. */
2901 if (mode & CLEANUP_CROSSJUMP)
2902 add_noreturn_fake_exit_edges ();
2904 if (!dbg_cnt (cfg_cleanup))
2905 return changed;
2907 while (try_optimize_cfg (mode))
2909 delete_unreachable_blocks (), changed = true;
2910 if (!(mode & CLEANUP_NO_INSN_DEL))
2912 /* Try to remove some trivially dead insns when doing an expensive
2913 cleanup. But delete_trivially_dead_insns doesn't work after
2914 reload (it only handles pseudos) and run_fast_dce is too costly
2915 to run in every iteration.
2917 For effective cross jumping, we really want to run a fast DCE to
2918 clean up any dead conditions, or they get in the way of performing
2919 useful tail merges.
2921 Other transformations in cleanup_cfg are not so sensitive to dead
2922 code, so delete_trivially_dead_insns or even doing nothing at all
2923 is good enough. */
2924 if ((mode & CLEANUP_EXPENSIVE) && !reload_completed
2925 && !delete_trivially_dead_insns (get_insns (), max_reg_num ()))
2926 break;
2927 if ((mode & CLEANUP_CROSSJUMP) && crossjumps_occured)
2928 run_fast_dce ();
2930 else
2931 break;
2934 if (mode & CLEANUP_CROSSJUMP)
2935 remove_fake_exit_edges ();
2937 /* Don't call delete_dead_jumptables in cfglayout mode, because
2938 that function assumes that jump tables are in the insns stream.
2939 But we also don't _have_ to delete dead jumptables in cfglayout
2940 mode because we shouldn't even be looking at things that are
2941 not in a basic block. Dead jumptables are cleaned up when
2942 going out of cfglayout mode. */
2943 if (!(mode & CLEANUP_CFGLAYOUT))
2944 delete_dead_jumptables ();
2946 timevar_pop (TV_CLEANUP_CFG);
2948 return changed;
2951 static unsigned int
2952 rest_of_handle_jump (void)
2954 if (crtl->tail_call_emit)
2955 fixup_tail_calls ();
2956 return 0;
2959 struct rtl_opt_pass pass_jump =
2962 RTL_PASS,
2963 "sibling", /* name */
2964 NULL, /* gate */
2965 rest_of_handle_jump, /* execute */
2966 NULL, /* sub */
2967 NULL, /* next */
2968 0, /* static_pass_number */
2969 TV_JUMP, /* tv_id */
2970 0, /* properties_required */
2971 0, /* properties_provided */
2972 0, /* properties_destroyed */
2973 TODO_ggc_collect, /* todo_flags_start */
2974 TODO_verify_flow, /* todo_flags_finish */
2979 static unsigned int
2980 rest_of_handle_jump2 (void)
2982 delete_trivially_dead_insns (get_insns (), max_reg_num ());
2983 if (dump_file)
2984 dump_flow_info (dump_file, dump_flags);
2985 cleanup_cfg ((optimize ? CLEANUP_EXPENSIVE : 0)
2986 | (flag_thread_jumps ? CLEANUP_THREADING : 0));
2987 return 0;
2991 struct rtl_opt_pass pass_jump2 =
2994 RTL_PASS,
2995 "jump", /* name */
2996 NULL, /* gate */
2997 rest_of_handle_jump2, /* execute */
2998 NULL, /* sub */
2999 NULL, /* next */
3000 0, /* static_pass_number */
3001 TV_JUMP, /* tv_id */
3002 0, /* properties_required */
3003 0, /* properties_provided */
3004 0, /* properties_destroyed */
3005 TODO_ggc_collect, /* todo_flags_start */
3006 TODO_verify_rtl_sharing, /* todo_flags_finish */