IPA ICF, part 4/5
[official-gcc.git] / gcc / tree-sra.c
blobfb24114fa6b7dfd9c6dcea369b1199e5b34d8f67
1 /* Scalar Replacement of Aggregates (SRA) converts some structure
2 references into scalar references, exposing them to the scalar
3 optimizers.
4 Copyright (C) 2008-2014 Free Software Foundation, Inc.
5 Contributed by Martin Jambor <mjambor@suse.cz>
7 This file is part of GCC.
9 GCC is free software; you can redistribute it and/or modify it under
10 the terms of the GNU General Public License as published by the Free
11 Software Foundation; either version 3, or (at your option) any later
12 version.
14 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
15 WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 for more details.
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING3. If not see
21 <http://www.gnu.org/licenses/>. */
23 /* This file implements Scalar Reduction of Aggregates (SRA). SRA is run
24 twice, once in the early stages of compilation (early SRA) and once in the
25 late stages (late SRA). The aim of both is to turn references to scalar
26 parts of aggregates into uses of independent scalar variables.
28 The two passes are nearly identical, the only difference is that early SRA
29 does not scalarize unions which are used as the result in a GIMPLE_RETURN
30 statement because together with inlining this can lead to weird type
31 conversions.
33 Both passes operate in four stages:
35 1. The declarations that have properties which make them candidates for
36 scalarization are identified in function find_var_candidates(). The
37 candidates are stored in candidate_bitmap.
39 2. The function body is scanned. In the process, declarations which are
40 used in a manner that prevent their scalarization are removed from the
41 candidate bitmap. More importantly, for every access into an aggregate,
42 an access structure (struct access) is created by create_access() and
43 stored in a vector associated with the aggregate. Among other
44 information, the aggregate declaration, the offset and size of the access
45 and its type are stored in the structure.
47 On a related note, assign_link structures are created for every assign
48 statement between candidate aggregates and attached to the related
49 accesses.
51 3. The vectors of accesses are analyzed. They are first sorted according to
52 their offset and size and then scanned for partially overlapping accesses
53 (i.e. those which overlap but one is not entirely within another). Such
54 an access disqualifies the whole aggregate from being scalarized.
56 If there is no such inhibiting overlap, a representative access structure
57 is chosen for every unique combination of offset and size. Afterwards,
58 the pass builds a set of trees from these structures, in which children
59 of an access are within their parent (in terms of offset and size).
61 Then accesses are propagated whenever possible (i.e. in cases when it
62 does not create a partially overlapping access) across assign_links from
63 the right hand side to the left hand side.
65 Then the set of trees for each declaration is traversed again and those
66 accesses which should be replaced by a scalar are identified.
68 4. The function is traversed again, and for every reference into an
69 aggregate that has some component which is about to be scalarized,
70 statements are amended and new statements are created as necessary.
71 Finally, if a parameter got scalarized, the scalar replacements are
72 initialized with values from respective parameter aggregates. */
74 #include "config.h"
75 #include "system.h"
76 #include "coretypes.h"
77 #include "hash-map.h"
78 #include "hash-table.h"
79 #include "alloc-pool.h"
80 #include "tm.h"
81 #include "tree.h"
82 #include "basic-block.h"
83 #include "tree-ssa-alias.h"
84 #include "internal-fn.h"
85 #include "tree-eh.h"
86 #include "gimple-expr.h"
87 #include "is-a.h"
88 #include "gimple.h"
89 #include "stor-layout.h"
90 #include "gimplify.h"
91 #include "gimple-iterator.h"
92 #include "gimplify-me.h"
93 #include "gimple-walk.h"
94 #include "bitmap.h"
95 #include "gimple-ssa.h"
96 #include "tree-cfg.h"
97 #include "tree-phinodes.h"
98 #include "ssa-iterators.h"
99 #include "stringpool.h"
100 #include "tree-ssanames.h"
101 #include "expr.h"
102 #include "tree-dfa.h"
103 #include "tree-ssa.h"
104 #include "tree-pass.h"
105 #include "ipa-prop.h"
106 #include "statistics.h"
107 #include "params.h"
108 #include "target.h"
109 #include "flags.h"
110 #include "dbgcnt.h"
111 #include "tree-inline.h"
112 #include "gimple-pretty-print.h"
113 #include "ipa-inline.h"
114 #include "ipa-utils.h"
115 #include "builtins.h"
117 /* Enumeration of all aggregate reductions we can do. */
118 enum sra_mode { SRA_MODE_EARLY_IPA, /* early call regularization */
119 SRA_MODE_EARLY_INTRA, /* early intraprocedural SRA */
120 SRA_MODE_INTRA }; /* late intraprocedural SRA */
122 /* Global variable describing which aggregate reduction we are performing at
123 the moment. */
124 static enum sra_mode sra_mode;
126 struct assign_link;
128 /* ACCESS represents each access to an aggregate variable (as a whole or a
129 part). It can also represent a group of accesses that refer to exactly the
130 same fragment of an aggregate (i.e. those that have exactly the same offset
131 and size). Such representatives for a single aggregate, once determined,
132 are linked in a linked list and have the group fields set.
134 Moreover, when doing intraprocedural SRA, a tree is built from those
135 representatives (by the means of first_child and next_sibling pointers), in
136 which all items in a subtree are "within" the root, i.e. their offset is
137 greater or equal to offset of the root and offset+size is smaller or equal
138 to offset+size of the root. Children of an access are sorted by offset.
140 Note that accesses to parts of vector and complex number types always
141 represented by an access to the whole complex number or a vector. It is a
142 duty of the modifying functions to replace them appropriately. */
144 struct access
146 /* Values returned by `get_ref_base_and_extent' for each component reference
147 If EXPR isn't a component reference just set `BASE = EXPR', `OFFSET = 0',
148 `SIZE = TREE_SIZE (TREE_TYPE (expr))'. */
149 HOST_WIDE_INT offset;
150 HOST_WIDE_INT size;
151 tree base;
153 /* Expression. It is context dependent so do not use it to create new
154 expressions to access the original aggregate. See PR 42154 for a
155 testcase. */
156 tree expr;
157 /* Type. */
158 tree type;
160 /* The statement this access belongs to. */
161 gimple stmt;
163 /* Next group representative for this aggregate. */
164 struct access *next_grp;
166 /* Pointer to the group representative. Pointer to itself if the struct is
167 the representative. */
168 struct access *group_representative;
170 /* If this access has any children (in terms of the definition above), this
171 points to the first one. */
172 struct access *first_child;
174 /* In intraprocedural SRA, pointer to the next sibling in the access tree as
175 described above. In IPA-SRA this is a pointer to the next access
176 belonging to the same group (having the same representative). */
177 struct access *next_sibling;
179 /* Pointers to the first and last element in the linked list of assign
180 links. */
181 struct assign_link *first_link, *last_link;
183 /* Pointer to the next access in the work queue. */
184 struct access *next_queued;
186 /* Replacement variable for this access "region." Never to be accessed
187 directly, always only by the means of get_access_replacement() and only
188 when grp_to_be_replaced flag is set. */
189 tree replacement_decl;
191 /* Is this particular access write access? */
192 unsigned write : 1;
194 /* Is this access an access to a non-addressable field? */
195 unsigned non_addressable : 1;
197 /* Is this access currently in the work queue? */
198 unsigned grp_queued : 1;
200 /* Does this group contain a write access? This flag is propagated down the
201 access tree. */
202 unsigned grp_write : 1;
204 /* Does this group contain a read access? This flag is propagated down the
205 access tree. */
206 unsigned grp_read : 1;
208 /* Does this group contain a read access that comes from an assignment
209 statement? This flag is propagated down the access tree. */
210 unsigned grp_assignment_read : 1;
212 /* Does this group contain a write access that comes from an assignment
213 statement? This flag is propagated down the access tree. */
214 unsigned grp_assignment_write : 1;
216 /* Does this group contain a read access through a scalar type? This flag is
217 not propagated in the access tree in any direction. */
218 unsigned grp_scalar_read : 1;
220 /* Does this group contain a write access through a scalar type? This flag
221 is not propagated in the access tree in any direction. */
222 unsigned grp_scalar_write : 1;
224 /* Is this access an artificial one created to scalarize some record
225 entirely? */
226 unsigned grp_total_scalarization : 1;
228 /* Other passes of the analysis use this bit to make function
229 analyze_access_subtree create scalar replacements for this group if
230 possible. */
231 unsigned grp_hint : 1;
233 /* Is the subtree rooted in this access fully covered by scalar
234 replacements? */
235 unsigned grp_covered : 1;
237 /* If set to true, this access and all below it in an access tree must not be
238 scalarized. */
239 unsigned grp_unscalarizable_region : 1;
241 /* Whether data have been written to parts of the aggregate covered by this
242 access which is not to be scalarized. This flag is propagated up in the
243 access tree. */
244 unsigned grp_unscalarized_data : 1;
246 /* Does this access and/or group contain a write access through a
247 BIT_FIELD_REF? */
248 unsigned grp_partial_lhs : 1;
250 /* Set when a scalar replacement should be created for this variable. */
251 unsigned grp_to_be_replaced : 1;
253 /* Set when we want a replacement for the sole purpose of having it in
254 generated debug statements. */
255 unsigned grp_to_be_debug_replaced : 1;
257 /* Should TREE_NO_WARNING of a replacement be set? */
258 unsigned grp_no_warning : 1;
260 /* Is it possible that the group refers to data which might be (directly or
261 otherwise) modified? */
262 unsigned grp_maybe_modified : 1;
264 /* Set when this is a representative of a pointer to scalar (i.e. by
265 reference) parameter which we consider for turning into a plain scalar
266 (i.e. a by value parameter). */
267 unsigned grp_scalar_ptr : 1;
269 /* Set when we discover that this pointer is not safe to dereference in the
270 caller. */
271 unsigned grp_not_necessarilly_dereferenced : 1;
274 typedef struct access *access_p;
277 /* Alloc pool for allocating access structures. */
278 static alloc_pool access_pool;
280 /* A structure linking lhs and rhs accesses from an aggregate assignment. They
281 are used to propagate subaccesses from rhs to lhs as long as they don't
282 conflict with what is already there. */
283 struct assign_link
285 struct access *lacc, *racc;
286 struct assign_link *next;
289 /* Alloc pool for allocating assign link structures. */
290 static alloc_pool link_pool;
292 /* Base (tree) -> Vector (vec<access_p> *) map. */
293 static hash_map<tree, auto_vec<access_p> > *base_access_vec;
295 /* Candidate hash table helpers. */
297 struct uid_decl_hasher : typed_noop_remove <tree_node>
299 typedef tree_node value_type;
300 typedef tree_node compare_type;
301 static inline hashval_t hash (const value_type *);
302 static inline bool equal (const value_type *, const compare_type *);
305 /* Hash a tree in a uid_decl_map. */
307 inline hashval_t
308 uid_decl_hasher::hash (const value_type *item)
310 return item->decl_minimal.uid;
313 /* Return true if the DECL_UID in both trees are equal. */
315 inline bool
316 uid_decl_hasher::equal (const value_type *a, const compare_type *b)
318 return (a->decl_minimal.uid == b->decl_minimal.uid);
321 /* Set of candidates. */
322 static bitmap candidate_bitmap;
323 static hash_table<uid_decl_hasher> *candidates;
325 /* For a candidate UID return the candidates decl. */
327 static inline tree
328 candidate (unsigned uid)
330 tree_node t;
331 t.decl_minimal.uid = uid;
332 return candidates->find_with_hash (&t, static_cast <hashval_t> (uid));
335 /* Bitmap of candidates which we should try to entirely scalarize away and
336 those which cannot be (because they are and need be used as a whole). */
337 static bitmap should_scalarize_away_bitmap, cannot_scalarize_away_bitmap;
339 /* Obstack for creation of fancy names. */
340 static struct obstack name_obstack;
342 /* Head of a linked list of accesses that need to have its subaccesses
343 propagated to their assignment counterparts. */
344 static struct access *work_queue_head;
346 /* Number of parameters of the analyzed function when doing early ipa SRA. */
347 static int func_param_count;
349 /* scan_function sets the following to true if it encounters a call to
350 __builtin_apply_args. */
351 static bool encountered_apply_args;
353 /* Set by scan_function when it finds a recursive call. */
354 static bool encountered_recursive_call;
356 /* Set by scan_function when it finds a recursive call with less actual
357 arguments than formal parameters.. */
358 static bool encountered_unchangable_recursive_call;
360 /* This is a table in which for each basic block and parameter there is a
361 distance (offset + size) in that parameter which is dereferenced and
362 accessed in that BB. */
363 static HOST_WIDE_INT *bb_dereferences;
364 /* Bitmap of BBs that can cause the function to "stop" progressing by
365 returning, throwing externally, looping infinitely or calling a function
366 which might abort etc.. */
367 static bitmap final_bbs;
369 /* Representative of no accesses at all. */
370 static struct access no_accesses_representant;
372 /* Predicate to test the special value. */
374 static inline bool
375 no_accesses_p (struct access *access)
377 return access == &no_accesses_representant;
380 /* Dump contents of ACCESS to file F in a human friendly way. If GRP is true,
381 representative fields are dumped, otherwise those which only describe the
382 individual access are. */
384 static struct
386 /* Number of processed aggregates is readily available in
387 analyze_all_variable_accesses and so is not stored here. */
389 /* Number of created scalar replacements. */
390 int replacements;
392 /* Number of times sra_modify_expr or sra_modify_assign themselves changed an
393 expression. */
394 int exprs;
396 /* Number of statements created by generate_subtree_copies. */
397 int subtree_copies;
399 /* Number of statements created by load_assign_lhs_subreplacements. */
400 int subreplacements;
402 /* Number of times sra_modify_assign has deleted a statement. */
403 int deleted;
405 /* Number of times sra_modify_assign has to deal with subaccesses of LHS and
406 RHS reparately due to type conversions or nonexistent matching
407 references. */
408 int separate_lhs_rhs_handling;
410 /* Number of parameters that were removed because they were unused. */
411 int deleted_unused_parameters;
413 /* Number of scalars passed as parameters by reference that have been
414 converted to be passed by value. */
415 int scalar_by_ref_to_by_val;
417 /* Number of aggregate parameters that were replaced by one or more of their
418 components. */
419 int aggregate_params_reduced;
421 /* Numbber of components created when splitting aggregate parameters. */
422 int param_reductions_created;
423 } sra_stats;
425 static void
426 dump_access (FILE *f, struct access *access, bool grp)
428 fprintf (f, "access { ");
429 fprintf (f, "base = (%d)'", DECL_UID (access->base));
430 print_generic_expr (f, access->base, 0);
431 fprintf (f, "', offset = " HOST_WIDE_INT_PRINT_DEC, access->offset);
432 fprintf (f, ", size = " HOST_WIDE_INT_PRINT_DEC, access->size);
433 fprintf (f, ", expr = ");
434 print_generic_expr (f, access->expr, 0);
435 fprintf (f, ", type = ");
436 print_generic_expr (f, access->type, 0);
437 if (grp)
438 fprintf (f, ", grp_read = %d, grp_write = %d, grp_assignment_read = %d, "
439 "grp_assignment_write = %d, grp_scalar_read = %d, "
440 "grp_scalar_write = %d, grp_total_scalarization = %d, "
441 "grp_hint = %d, grp_covered = %d, "
442 "grp_unscalarizable_region = %d, grp_unscalarized_data = %d, "
443 "grp_partial_lhs = %d, grp_to_be_replaced = %d, "
444 "grp_to_be_debug_replaced = %d, grp_maybe_modified = %d, "
445 "grp_not_necessarilly_dereferenced = %d\n",
446 access->grp_read, access->grp_write, access->grp_assignment_read,
447 access->grp_assignment_write, access->grp_scalar_read,
448 access->grp_scalar_write, access->grp_total_scalarization,
449 access->grp_hint, access->grp_covered,
450 access->grp_unscalarizable_region, access->grp_unscalarized_data,
451 access->grp_partial_lhs, access->grp_to_be_replaced,
452 access->grp_to_be_debug_replaced, access->grp_maybe_modified,
453 access->grp_not_necessarilly_dereferenced);
454 else
455 fprintf (f, ", write = %d, grp_total_scalarization = %d, "
456 "grp_partial_lhs = %d\n",
457 access->write, access->grp_total_scalarization,
458 access->grp_partial_lhs);
461 /* Dump a subtree rooted in ACCESS to file F, indent by LEVEL. */
463 static void
464 dump_access_tree_1 (FILE *f, struct access *access, int level)
468 int i;
470 for (i = 0; i < level; i++)
471 fputs ("* ", dump_file);
473 dump_access (f, access, true);
475 if (access->first_child)
476 dump_access_tree_1 (f, access->first_child, level + 1);
478 access = access->next_sibling;
480 while (access);
483 /* Dump all access trees for a variable, given the pointer to the first root in
484 ACCESS. */
486 static void
487 dump_access_tree (FILE *f, struct access *access)
489 for (; access; access = access->next_grp)
490 dump_access_tree_1 (f, access, 0);
493 /* Return true iff ACC is non-NULL and has subaccesses. */
495 static inline bool
496 access_has_children_p (struct access *acc)
498 return acc && acc->first_child;
501 /* Return true iff ACC is (partly) covered by at least one replacement. */
503 static bool
504 access_has_replacements_p (struct access *acc)
506 struct access *child;
507 if (acc->grp_to_be_replaced)
508 return true;
509 for (child = acc->first_child; child; child = child->next_sibling)
510 if (access_has_replacements_p (child))
511 return true;
512 return false;
515 /* Return a vector of pointers to accesses for the variable given in BASE or
516 NULL if there is none. */
518 static vec<access_p> *
519 get_base_access_vector (tree base)
521 return base_access_vec->get (base);
524 /* Find an access with required OFFSET and SIZE in a subtree of accesses rooted
525 in ACCESS. Return NULL if it cannot be found. */
527 static struct access *
528 find_access_in_subtree (struct access *access, HOST_WIDE_INT offset,
529 HOST_WIDE_INT size)
531 while (access && (access->offset != offset || access->size != size))
533 struct access *child = access->first_child;
535 while (child && (child->offset + child->size <= offset))
536 child = child->next_sibling;
537 access = child;
540 return access;
543 /* Return the first group representative for DECL or NULL if none exists. */
545 static struct access *
546 get_first_repr_for_decl (tree base)
548 vec<access_p> *access_vec;
550 access_vec = get_base_access_vector (base);
551 if (!access_vec)
552 return NULL;
554 return (*access_vec)[0];
557 /* Find an access representative for the variable BASE and given OFFSET and
558 SIZE. Requires that access trees have already been built. Return NULL if
559 it cannot be found. */
561 static struct access *
562 get_var_base_offset_size_access (tree base, HOST_WIDE_INT offset,
563 HOST_WIDE_INT size)
565 struct access *access;
567 access = get_first_repr_for_decl (base);
568 while (access && (access->offset + access->size <= offset))
569 access = access->next_grp;
570 if (!access)
571 return NULL;
573 return find_access_in_subtree (access, offset, size);
576 /* Add LINK to the linked list of assign links of RACC. */
577 static void
578 add_link_to_rhs (struct access *racc, struct assign_link *link)
580 gcc_assert (link->racc == racc);
582 if (!racc->first_link)
584 gcc_assert (!racc->last_link);
585 racc->first_link = link;
587 else
588 racc->last_link->next = link;
590 racc->last_link = link;
591 link->next = NULL;
594 /* Move all link structures in their linked list in OLD_RACC to the linked list
595 in NEW_RACC. */
596 static void
597 relink_to_new_repr (struct access *new_racc, struct access *old_racc)
599 if (!old_racc->first_link)
601 gcc_assert (!old_racc->last_link);
602 return;
605 if (new_racc->first_link)
607 gcc_assert (!new_racc->last_link->next);
608 gcc_assert (!old_racc->last_link || !old_racc->last_link->next);
610 new_racc->last_link->next = old_racc->first_link;
611 new_racc->last_link = old_racc->last_link;
613 else
615 gcc_assert (!new_racc->last_link);
617 new_racc->first_link = old_racc->first_link;
618 new_racc->last_link = old_racc->last_link;
620 old_racc->first_link = old_racc->last_link = NULL;
623 /* Add ACCESS to the work queue (which is actually a stack). */
625 static void
626 add_access_to_work_queue (struct access *access)
628 if (!access->grp_queued)
630 gcc_assert (!access->next_queued);
631 access->next_queued = work_queue_head;
632 access->grp_queued = 1;
633 work_queue_head = access;
637 /* Pop an access from the work queue, and return it, assuming there is one. */
639 static struct access *
640 pop_access_from_work_queue (void)
642 struct access *access = work_queue_head;
644 work_queue_head = access->next_queued;
645 access->next_queued = NULL;
646 access->grp_queued = 0;
647 return access;
651 /* Allocate necessary structures. */
653 static void
654 sra_initialize (void)
656 candidate_bitmap = BITMAP_ALLOC (NULL);
657 candidates = new hash_table<uid_decl_hasher>
658 (vec_safe_length (cfun->local_decls) / 2);
659 should_scalarize_away_bitmap = BITMAP_ALLOC (NULL);
660 cannot_scalarize_away_bitmap = BITMAP_ALLOC (NULL);
661 gcc_obstack_init (&name_obstack);
662 access_pool = create_alloc_pool ("SRA accesses", sizeof (struct access), 16);
663 link_pool = create_alloc_pool ("SRA links", sizeof (struct assign_link), 16);
664 base_access_vec = new hash_map<tree, auto_vec<access_p> >;
665 memset (&sra_stats, 0, sizeof (sra_stats));
666 encountered_apply_args = false;
667 encountered_recursive_call = false;
668 encountered_unchangable_recursive_call = false;
671 /* Deallocate all general structures. */
673 static void
674 sra_deinitialize (void)
676 BITMAP_FREE (candidate_bitmap);
677 delete candidates;
678 candidates = NULL;
679 BITMAP_FREE (should_scalarize_away_bitmap);
680 BITMAP_FREE (cannot_scalarize_away_bitmap);
681 free_alloc_pool (access_pool);
682 free_alloc_pool (link_pool);
683 obstack_free (&name_obstack, NULL);
685 delete base_access_vec;
688 /* Remove DECL from candidates for SRA and write REASON to the dump file if
689 there is one. */
690 static void
691 disqualify_candidate (tree decl, const char *reason)
693 if (bitmap_clear_bit (candidate_bitmap, DECL_UID (decl)))
694 candidates->remove_elt_with_hash (decl, DECL_UID (decl));
696 if (dump_file && (dump_flags & TDF_DETAILS))
698 fprintf (dump_file, "! Disqualifying ");
699 print_generic_expr (dump_file, decl, 0);
700 fprintf (dump_file, " - %s\n", reason);
704 /* Return true iff the type contains a field or an element which does not allow
705 scalarization. */
707 static bool
708 type_internals_preclude_sra_p (tree type, const char **msg)
710 tree fld;
711 tree et;
713 switch (TREE_CODE (type))
715 case RECORD_TYPE:
716 case UNION_TYPE:
717 case QUAL_UNION_TYPE:
718 for (fld = TYPE_FIELDS (type); fld; fld = DECL_CHAIN (fld))
719 if (TREE_CODE (fld) == FIELD_DECL)
721 tree ft = TREE_TYPE (fld);
723 if (TREE_THIS_VOLATILE (fld))
725 *msg = "volatile structure field";
726 return true;
728 if (!DECL_FIELD_OFFSET (fld))
730 *msg = "no structure field offset";
731 return true;
733 if (!DECL_SIZE (fld))
735 *msg = "zero structure field size";
736 return true;
738 if (!tree_fits_uhwi_p (DECL_FIELD_OFFSET (fld)))
740 *msg = "structure field offset not fixed";
741 return true;
743 if (!tree_fits_uhwi_p (DECL_SIZE (fld)))
745 *msg = "structure field size not fixed";
746 return true;
748 if (!tree_fits_shwi_p (bit_position (fld)))
750 *msg = "structure field size too big";
751 return true;
753 if (AGGREGATE_TYPE_P (ft)
754 && int_bit_position (fld) % BITS_PER_UNIT != 0)
756 *msg = "structure field is bit field";
757 return true;
760 if (AGGREGATE_TYPE_P (ft) && type_internals_preclude_sra_p (ft, msg))
761 return true;
764 return false;
766 case ARRAY_TYPE:
767 et = TREE_TYPE (type);
769 if (TYPE_VOLATILE (et))
771 *msg = "element type is volatile";
772 return true;
775 if (AGGREGATE_TYPE_P (et) && type_internals_preclude_sra_p (et, msg))
776 return true;
778 return false;
780 default:
781 return false;
785 /* If T is an SSA_NAME, return NULL if it is not a default def or return its
786 base variable if it is. Return T if it is not an SSA_NAME. */
788 static tree
789 get_ssa_base_param (tree t)
791 if (TREE_CODE (t) == SSA_NAME)
793 if (SSA_NAME_IS_DEFAULT_DEF (t))
794 return SSA_NAME_VAR (t);
795 else
796 return NULL_TREE;
798 return t;
801 /* Mark a dereference of BASE of distance DIST in a basic block tht STMT
802 belongs to, unless the BB has already been marked as a potentially
803 final. */
805 static void
806 mark_parm_dereference (tree base, HOST_WIDE_INT dist, gimple stmt)
808 basic_block bb = gimple_bb (stmt);
809 int idx, parm_index = 0;
810 tree parm;
812 if (bitmap_bit_p (final_bbs, bb->index))
813 return;
815 for (parm = DECL_ARGUMENTS (current_function_decl);
816 parm && parm != base;
817 parm = DECL_CHAIN (parm))
818 parm_index++;
820 gcc_assert (parm_index < func_param_count);
822 idx = bb->index * func_param_count + parm_index;
823 if (bb_dereferences[idx] < dist)
824 bb_dereferences[idx] = dist;
827 /* Allocate an access structure for BASE, OFFSET and SIZE, clear it, fill in
828 the three fields. Also add it to the vector of accesses corresponding to
829 the base. Finally, return the new access. */
831 static struct access *
832 create_access_1 (tree base, HOST_WIDE_INT offset, HOST_WIDE_INT size)
834 struct access *access;
836 access = (struct access *) pool_alloc (access_pool);
837 memset (access, 0, sizeof (struct access));
838 access->base = base;
839 access->offset = offset;
840 access->size = size;
842 base_access_vec->get_or_insert (base).safe_push (access);
844 return access;
847 /* Create and insert access for EXPR. Return created access, or NULL if it is
848 not possible. */
850 static struct access *
851 create_access (tree expr, gimple stmt, bool write)
853 struct access *access;
854 HOST_WIDE_INT offset, size, max_size;
855 tree base = expr;
856 bool ptr, unscalarizable_region = false;
858 base = get_ref_base_and_extent (expr, &offset, &size, &max_size);
860 if (sra_mode == SRA_MODE_EARLY_IPA
861 && TREE_CODE (base) == MEM_REF)
863 base = get_ssa_base_param (TREE_OPERAND (base, 0));
864 if (!base)
865 return NULL;
866 ptr = true;
868 else
869 ptr = false;
871 if (!DECL_P (base) || !bitmap_bit_p (candidate_bitmap, DECL_UID (base)))
872 return NULL;
874 if (sra_mode == SRA_MODE_EARLY_IPA)
876 if (size < 0 || size != max_size)
878 disqualify_candidate (base, "Encountered a variable sized access.");
879 return NULL;
881 if (TREE_CODE (expr) == COMPONENT_REF
882 && DECL_BIT_FIELD (TREE_OPERAND (expr, 1)))
884 disqualify_candidate (base, "Encountered a bit-field access.");
885 return NULL;
887 gcc_checking_assert ((offset % BITS_PER_UNIT) == 0);
889 if (ptr)
890 mark_parm_dereference (base, offset + size, stmt);
892 else
894 if (size != max_size)
896 size = max_size;
897 unscalarizable_region = true;
899 if (size < 0)
901 disqualify_candidate (base, "Encountered an unconstrained access.");
902 return NULL;
906 access = create_access_1 (base, offset, size);
907 access->expr = expr;
908 access->type = TREE_TYPE (expr);
909 access->write = write;
910 access->grp_unscalarizable_region = unscalarizable_region;
911 access->stmt = stmt;
913 if (TREE_CODE (expr) == COMPONENT_REF
914 && DECL_NONADDRESSABLE_P (TREE_OPERAND (expr, 1)))
915 access->non_addressable = 1;
917 return access;
921 /* Return true iff TYPE is a RECORD_TYPE with fields that are either of gimple
922 register types or (recursively) records with only these two kinds of fields.
923 It also returns false if any of these records contains a bit-field. */
925 static bool
926 type_consists_of_records_p (tree type)
928 tree fld;
930 if (TREE_CODE (type) != RECORD_TYPE)
931 return false;
933 for (fld = TYPE_FIELDS (type); fld; fld = DECL_CHAIN (fld))
934 if (TREE_CODE (fld) == FIELD_DECL)
936 tree ft = TREE_TYPE (fld);
938 if (DECL_BIT_FIELD (fld))
939 return false;
941 if (!is_gimple_reg_type (ft)
942 && !type_consists_of_records_p (ft))
943 return false;
946 return true;
949 /* Create total_scalarization accesses for all scalar type fields in DECL that
950 must be of a RECORD_TYPE conforming to type_consists_of_records_p. BASE
951 must be the top-most VAR_DECL representing the variable, OFFSET must be the
952 offset of DECL within BASE. REF must be the memory reference expression for
953 the given decl. */
955 static void
956 completely_scalarize_record (tree base, tree decl, HOST_WIDE_INT offset,
957 tree ref)
959 tree fld, decl_type = TREE_TYPE (decl);
961 for (fld = TYPE_FIELDS (decl_type); fld; fld = DECL_CHAIN (fld))
962 if (TREE_CODE (fld) == FIELD_DECL)
964 HOST_WIDE_INT pos = offset + int_bit_position (fld);
965 tree ft = TREE_TYPE (fld);
966 tree nref = build3 (COMPONENT_REF, TREE_TYPE (fld), ref, fld,
967 NULL_TREE);
969 if (is_gimple_reg_type (ft))
971 struct access *access;
972 HOST_WIDE_INT size;
974 size = tree_to_uhwi (DECL_SIZE (fld));
975 access = create_access_1 (base, pos, size);
976 access->expr = nref;
977 access->type = ft;
978 access->grp_total_scalarization = 1;
979 /* Accesses for intraprocedural SRA can have their stmt NULL. */
981 else
982 completely_scalarize_record (base, fld, pos, nref);
986 /* Create total_scalarization accesses for all scalar type fields in VAR and
987 for VAR a a whole. VAR must be of a RECORD_TYPE conforming to
988 type_consists_of_records_p. */
990 static void
991 completely_scalarize_var (tree var)
993 HOST_WIDE_INT size = tree_to_uhwi (DECL_SIZE (var));
994 struct access *access;
996 access = create_access_1 (var, 0, size);
997 access->expr = var;
998 access->type = TREE_TYPE (var);
999 access->grp_total_scalarization = 1;
1001 completely_scalarize_record (var, var, 0, var);
1004 /* Return true if REF has an VIEW_CONVERT_EXPR somewhere in it. */
1006 static inline bool
1007 contains_view_convert_expr_p (const_tree ref)
1009 while (handled_component_p (ref))
1011 if (TREE_CODE (ref) == VIEW_CONVERT_EXPR)
1012 return true;
1013 ref = TREE_OPERAND (ref, 0);
1016 return false;
1019 /* Search the given tree for a declaration by skipping handled components and
1020 exclude it from the candidates. */
1022 static void
1023 disqualify_base_of_expr (tree t, const char *reason)
1025 t = get_base_address (t);
1026 if (sra_mode == SRA_MODE_EARLY_IPA
1027 && TREE_CODE (t) == MEM_REF)
1028 t = get_ssa_base_param (TREE_OPERAND (t, 0));
1030 if (t && DECL_P (t))
1031 disqualify_candidate (t, reason);
1034 /* Scan expression EXPR and create access structures for all accesses to
1035 candidates for scalarization. Return the created access or NULL if none is
1036 created. */
1038 static struct access *
1039 build_access_from_expr_1 (tree expr, gimple stmt, bool write)
1041 struct access *ret = NULL;
1042 bool partial_ref;
1044 if (TREE_CODE (expr) == BIT_FIELD_REF
1045 || TREE_CODE (expr) == IMAGPART_EXPR
1046 || TREE_CODE (expr) == REALPART_EXPR)
1048 expr = TREE_OPERAND (expr, 0);
1049 partial_ref = true;
1051 else
1052 partial_ref = false;
1054 /* We need to dive through V_C_Es in order to get the size of its parameter
1055 and not the result type. Ada produces such statements. We are also
1056 capable of handling the topmost V_C_E but not any of those buried in other
1057 handled components. */
1058 if (TREE_CODE (expr) == VIEW_CONVERT_EXPR)
1059 expr = TREE_OPERAND (expr, 0);
1061 if (contains_view_convert_expr_p (expr))
1063 disqualify_base_of_expr (expr, "V_C_E under a different handled "
1064 "component.");
1065 return NULL;
1067 if (TREE_THIS_VOLATILE (expr))
1069 disqualify_base_of_expr (expr, "part of a volatile reference.");
1070 return NULL;
1073 switch (TREE_CODE (expr))
1075 case MEM_REF:
1076 if (TREE_CODE (TREE_OPERAND (expr, 0)) != ADDR_EXPR
1077 && sra_mode != SRA_MODE_EARLY_IPA)
1078 return NULL;
1079 /* fall through */
1080 case VAR_DECL:
1081 case PARM_DECL:
1082 case RESULT_DECL:
1083 case COMPONENT_REF:
1084 case ARRAY_REF:
1085 case ARRAY_RANGE_REF:
1086 ret = create_access (expr, stmt, write);
1087 break;
1089 default:
1090 break;
1093 if (write && partial_ref && ret)
1094 ret->grp_partial_lhs = 1;
1096 return ret;
1099 /* Scan expression EXPR and create access structures for all accesses to
1100 candidates for scalarization. Return true if any access has been inserted.
1101 STMT must be the statement from which the expression is taken, WRITE must be
1102 true if the expression is a store and false otherwise. */
1104 static bool
1105 build_access_from_expr (tree expr, gimple stmt, bool write)
1107 struct access *access;
1109 access = build_access_from_expr_1 (expr, stmt, write);
1110 if (access)
1112 /* This means the aggregate is accesses as a whole in a way other than an
1113 assign statement and thus cannot be removed even if we had a scalar
1114 replacement for everything. */
1115 if (cannot_scalarize_away_bitmap)
1116 bitmap_set_bit (cannot_scalarize_away_bitmap, DECL_UID (access->base));
1117 return true;
1119 return false;
1122 /* Return the single non-EH successor edge of BB or NULL if there is none or
1123 more than one. */
1125 static edge
1126 single_non_eh_succ (basic_block bb)
1128 edge e, res = NULL;
1129 edge_iterator ei;
1131 FOR_EACH_EDGE (e, ei, bb->succs)
1132 if (!(e->flags & EDGE_EH))
1134 if (res)
1135 return NULL;
1136 res = e;
1139 return res;
1142 /* Disqualify LHS and RHS for scalarization if STMT has to terminate its BB and
1143 there is no alternative spot where to put statements SRA might need to
1144 generate after it. The spot we are looking for is an edge leading to a
1145 single non-EH successor, if it exists and is indeed single. RHS may be
1146 NULL, in that case ignore it. */
1148 static bool
1149 disqualify_if_bad_bb_terminating_stmt (gimple stmt, tree lhs, tree rhs)
1151 if ((sra_mode == SRA_MODE_EARLY_INTRA || sra_mode == SRA_MODE_INTRA)
1152 && stmt_ends_bb_p (stmt))
1154 if (single_non_eh_succ (gimple_bb (stmt)))
1155 return false;
1157 disqualify_base_of_expr (lhs, "LHS of a throwing stmt.");
1158 if (rhs)
1159 disqualify_base_of_expr (rhs, "RHS of a throwing stmt.");
1160 return true;
1162 return false;
1165 /* Scan expressions occurring in STMT, create access structures for all accesses
1166 to candidates for scalarization and remove those candidates which occur in
1167 statements or expressions that prevent them from being split apart. Return
1168 true if any access has been inserted. */
1170 static bool
1171 build_accesses_from_assign (gimple stmt)
1173 tree lhs, rhs;
1174 struct access *lacc, *racc;
1176 if (!gimple_assign_single_p (stmt)
1177 /* Scope clobbers don't influence scalarization. */
1178 || gimple_clobber_p (stmt))
1179 return false;
1181 lhs = gimple_assign_lhs (stmt);
1182 rhs = gimple_assign_rhs1 (stmt);
1184 if (disqualify_if_bad_bb_terminating_stmt (stmt, lhs, rhs))
1185 return false;
1187 racc = build_access_from_expr_1 (rhs, stmt, false);
1188 lacc = build_access_from_expr_1 (lhs, stmt, true);
1190 if (lacc)
1191 lacc->grp_assignment_write = 1;
1193 if (racc)
1195 racc->grp_assignment_read = 1;
1196 if (should_scalarize_away_bitmap && !gimple_has_volatile_ops (stmt)
1197 && !is_gimple_reg_type (racc->type))
1198 bitmap_set_bit (should_scalarize_away_bitmap, DECL_UID (racc->base));
1201 if (lacc && racc
1202 && (sra_mode == SRA_MODE_EARLY_INTRA || sra_mode == SRA_MODE_INTRA)
1203 && !lacc->grp_unscalarizable_region
1204 && !racc->grp_unscalarizable_region
1205 && AGGREGATE_TYPE_P (TREE_TYPE (lhs))
1206 && lacc->size == racc->size
1207 && useless_type_conversion_p (lacc->type, racc->type))
1209 struct assign_link *link;
1211 link = (struct assign_link *) pool_alloc (link_pool);
1212 memset (link, 0, sizeof (struct assign_link));
1214 link->lacc = lacc;
1215 link->racc = racc;
1217 add_link_to_rhs (racc, link);
1220 return lacc || racc;
1223 /* Callback of walk_stmt_load_store_addr_ops visit_addr used to determine
1224 GIMPLE_ASM operands with memory constrains which cannot be scalarized. */
1226 static bool
1227 asm_visit_addr (gimple, tree op, tree, void *)
1229 op = get_base_address (op);
1230 if (op
1231 && DECL_P (op))
1232 disqualify_candidate (op, "Non-scalarizable GIMPLE_ASM operand.");
1234 return false;
1237 /* Return true iff callsite CALL has at least as many actual arguments as there
1238 are formal parameters of the function currently processed by IPA-SRA and
1239 that their types match. */
1241 static inline bool
1242 callsite_arguments_match_p (gimple call)
1244 if (gimple_call_num_args (call) < (unsigned) func_param_count)
1245 return false;
1247 tree parm;
1248 int i;
1249 for (parm = DECL_ARGUMENTS (current_function_decl), i = 0;
1250 parm;
1251 parm = DECL_CHAIN (parm), i++)
1253 tree arg = gimple_call_arg (call, i);
1254 if (!useless_type_conversion_p (TREE_TYPE (parm), TREE_TYPE (arg)))
1255 return false;
1257 return true;
1260 /* Scan function and look for interesting expressions and create access
1261 structures for them. Return true iff any access is created. */
1263 static bool
1264 scan_function (void)
1266 basic_block bb;
1267 bool ret = false;
1269 FOR_EACH_BB_FN (bb, cfun)
1271 gimple_stmt_iterator gsi;
1272 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1274 gimple stmt = gsi_stmt (gsi);
1275 tree t;
1276 unsigned i;
1278 if (final_bbs && stmt_can_throw_external (stmt))
1279 bitmap_set_bit (final_bbs, bb->index);
1280 switch (gimple_code (stmt))
1282 case GIMPLE_RETURN:
1283 t = gimple_return_retval (stmt);
1284 if (t != NULL_TREE)
1285 ret |= build_access_from_expr (t, stmt, false);
1286 if (final_bbs)
1287 bitmap_set_bit (final_bbs, bb->index);
1288 break;
1290 case GIMPLE_ASSIGN:
1291 ret |= build_accesses_from_assign (stmt);
1292 break;
1294 case GIMPLE_CALL:
1295 for (i = 0; i < gimple_call_num_args (stmt); i++)
1296 ret |= build_access_from_expr (gimple_call_arg (stmt, i),
1297 stmt, false);
1299 if (sra_mode == SRA_MODE_EARLY_IPA)
1301 tree dest = gimple_call_fndecl (stmt);
1302 int flags = gimple_call_flags (stmt);
1304 if (dest)
1306 if (DECL_BUILT_IN_CLASS (dest) == BUILT_IN_NORMAL
1307 && DECL_FUNCTION_CODE (dest) == BUILT_IN_APPLY_ARGS)
1308 encountered_apply_args = true;
1309 if (recursive_call_p (current_function_decl, dest))
1311 encountered_recursive_call = true;
1312 if (!callsite_arguments_match_p (stmt))
1313 encountered_unchangable_recursive_call = true;
1317 if (final_bbs
1318 && (flags & (ECF_CONST | ECF_PURE)) == 0)
1319 bitmap_set_bit (final_bbs, bb->index);
1322 t = gimple_call_lhs (stmt);
1323 if (t && !disqualify_if_bad_bb_terminating_stmt (stmt, t, NULL))
1324 ret |= build_access_from_expr (t, stmt, true);
1325 break;
1327 case GIMPLE_ASM:
1328 walk_stmt_load_store_addr_ops (stmt, NULL, NULL, NULL,
1329 asm_visit_addr);
1330 if (final_bbs)
1331 bitmap_set_bit (final_bbs, bb->index);
1333 for (i = 0; i < gimple_asm_ninputs (stmt); i++)
1335 t = TREE_VALUE (gimple_asm_input_op (stmt, i));
1336 ret |= build_access_from_expr (t, stmt, false);
1338 for (i = 0; i < gimple_asm_noutputs (stmt); i++)
1340 t = TREE_VALUE (gimple_asm_output_op (stmt, i));
1341 ret |= build_access_from_expr (t, stmt, true);
1343 break;
1345 default:
1346 break;
1351 return ret;
1354 /* Helper of QSORT function. There are pointers to accesses in the array. An
1355 access is considered smaller than another if it has smaller offset or if the
1356 offsets are the same but is size is bigger. */
1358 static int
1359 compare_access_positions (const void *a, const void *b)
1361 const access_p *fp1 = (const access_p *) a;
1362 const access_p *fp2 = (const access_p *) b;
1363 const access_p f1 = *fp1;
1364 const access_p f2 = *fp2;
1366 if (f1->offset != f2->offset)
1367 return f1->offset < f2->offset ? -1 : 1;
1369 if (f1->size == f2->size)
1371 if (f1->type == f2->type)
1372 return 0;
1373 /* Put any non-aggregate type before any aggregate type. */
1374 else if (!is_gimple_reg_type (f1->type)
1375 && is_gimple_reg_type (f2->type))
1376 return 1;
1377 else if (is_gimple_reg_type (f1->type)
1378 && !is_gimple_reg_type (f2->type))
1379 return -1;
1380 /* Put any complex or vector type before any other scalar type. */
1381 else if (TREE_CODE (f1->type) != COMPLEX_TYPE
1382 && TREE_CODE (f1->type) != VECTOR_TYPE
1383 && (TREE_CODE (f2->type) == COMPLEX_TYPE
1384 || TREE_CODE (f2->type) == VECTOR_TYPE))
1385 return 1;
1386 else if ((TREE_CODE (f1->type) == COMPLEX_TYPE
1387 || TREE_CODE (f1->type) == VECTOR_TYPE)
1388 && TREE_CODE (f2->type) != COMPLEX_TYPE
1389 && TREE_CODE (f2->type) != VECTOR_TYPE)
1390 return -1;
1391 /* Put the integral type with the bigger precision first. */
1392 else if (INTEGRAL_TYPE_P (f1->type)
1393 && INTEGRAL_TYPE_P (f2->type))
1394 return TYPE_PRECISION (f2->type) - TYPE_PRECISION (f1->type);
1395 /* Put any integral type with non-full precision last. */
1396 else if (INTEGRAL_TYPE_P (f1->type)
1397 && (TREE_INT_CST_LOW (TYPE_SIZE (f1->type))
1398 != TYPE_PRECISION (f1->type)))
1399 return 1;
1400 else if (INTEGRAL_TYPE_P (f2->type)
1401 && (TREE_INT_CST_LOW (TYPE_SIZE (f2->type))
1402 != TYPE_PRECISION (f2->type)))
1403 return -1;
1404 /* Stabilize the sort. */
1405 return TYPE_UID (f1->type) - TYPE_UID (f2->type);
1408 /* We want the bigger accesses first, thus the opposite operator in the next
1409 line: */
1410 return f1->size > f2->size ? -1 : 1;
1414 /* Append a name of the declaration to the name obstack. A helper function for
1415 make_fancy_name. */
1417 static void
1418 make_fancy_decl_name (tree decl)
1420 char buffer[32];
1422 tree name = DECL_NAME (decl);
1423 if (name)
1424 obstack_grow (&name_obstack, IDENTIFIER_POINTER (name),
1425 IDENTIFIER_LENGTH (name));
1426 else
1428 sprintf (buffer, "D%u", DECL_UID (decl));
1429 obstack_grow (&name_obstack, buffer, strlen (buffer));
1433 /* Helper for make_fancy_name. */
1435 static void
1436 make_fancy_name_1 (tree expr)
1438 char buffer[32];
1439 tree index;
1441 if (DECL_P (expr))
1443 make_fancy_decl_name (expr);
1444 return;
1447 switch (TREE_CODE (expr))
1449 case COMPONENT_REF:
1450 make_fancy_name_1 (TREE_OPERAND (expr, 0));
1451 obstack_1grow (&name_obstack, '$');
1452 make_fancy_decl_name (TREE_OPERAND (expr, 1));
1453 break;
1455 case ARRAY_REF:
1456 make_fancy_name_1 (TREE_OPERAND (expr, 0));
1457 obstack_1grow (&name_obstack, '$');
1458 /* Arrays with only one element may not have a constant as their
1459 index. */
1460 index = TREE_OPERAND (expr, 1);
1461 if (TREE_CODE (index) != INTEGER_CST)
1462 break;
1463 sprintf (buffer, HOST_WIDE_INT_PRINT_DEC, TREE_INT_CST_LOW (index));
1464 obstack_grow (&name_obstack, buffer, strlen (buffer));
1465 break;
1467 case ADDR_EXPR:
1468 make_fancy_name_1 (TREE_OPERAND (expr, 0));
1469 break;
1471 case MEM_REF:
1472 make_fancy_name_1 (TREE_OPERAND (expr, 0));
1473 if (!integer_zerop (TREE_OPERAND (expr, 1)))
1475 obstack_1grow (&name_obstack, '$');
1476 sprintf (buffer, HOST_WIDE_INT_PRINT_DEC,
1477 TREE_INT_CST_LOW (TREE_OPERAND (expr, 1)));
1478 obstack_grow (&name_obstack, buffer, strlen (buffer));
1480 break;
1482 case BIT_FIELD_REF:
1483 case REALPART_EXPR:
1484 case IMAGPART_EXPR:
1485 gcc_unreachable (); /* we treat these as scalars. */
1486 break;
1487 default:
1488 break;
1492 /* Create a human readable name for replacement variable of ACCESS. */
1494 static char *
1495 make_fancy_name (tree expr)
1497 make_fancy_name_1 (expr);
1498 obstack_1grow (&name_obstack, '\0');
1499 return XOBFINISH (&name_obstack, char *);
1502 /* Construct a MEM_REF that would reference a part of aggregate BASE of type
1503 EXP_TYPE at the given OFFSET. If BASE is something for which
1504 get_addr_base_and_unit_offset returns NULL, gsi must be non-NULL and is used
1505 to insert new statements either before or below the current one as specified
1506 by INSERT_AFTER. This function is not capable of handling bitfields.
1508 BASE must be either a declaration or a memory reference that has correct
1509 alignment ifformation embeded in it (e.g. a pre-existing one in SRA). */
1511 tree
1512 build_ref_for_offset (location_t loc, tree base, HOST_WIDE_INT offset,
1513 tree exp_type, gimple_stmt_iterator *gsi,
1514 bool insert_after)
1516 tree prev_base = base;
1517 tree off;
1518 tree mem_ref;
1519 HOST_WIDE_INT base_offset;
1520 unsigned HOST_WIDE_INT misalign;
1521 unsigned int align;
1523 gcc_checking_assert (offset % BITS_PER_UNIT == 0);
1524 get_object_alignment_1 (base, &align, &misalign);
1525 base = get_addr_base_and_unit_offset (base, &base_offset);
1527 /* get_addr_base_and_unit_offset returns NULL for references with a variable
1528 offset such as array[var_index]. */
1529 if (!base)
1531 gimple stmt;
1532 tree tmp, addr;
1534 gcc_checking_assert (gsi);
1535 tmp = make_ssa_name (build_pointer_type (TREE_TYPE (prev_base)), NULL);
1536 addr = build_fold_addr_expr (unshare_expr (prev_base));
1537 STRIP_USELESS_TYPE_CONVERSION (addr);
1538 stmt = gimple_build_assign (tmp, addr);
1539 gimple_set_location (stmt, loc);
1540 if (insert_after)
1541 gsi_insert_after (gsi, stmt, GSI_NEW_STMT);
1542 else
1543 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1545 off = build_int_cst (reference_alias_ptr_type (prev_base),
1546 offset / BITS_PER_UNIT);
1547 base = tmp;
1549 else if (TREE_CODE (base) == MEM_REF)
1551 off = build_int_cst (TREE_TYPE (TREE_OPERAND (base, 1)),
1552 base_offset + offset / BITS_PER_UNIT);
1553 off = int_const_binop (PLUS_EXPR, TREE_OPERAND (base, 1), off);
1554 base = unshare_expr (TREE_OPERAND (base, 0));
1556 else
1558 off = build_int_cst (reference_alias_ptr_type (base),
1559 base_offset + offset / BITS_PER_UNIT);
1560 base = build_fold_addr_expr (unshare_expr (base));
1563 misalign = (misalign + offset) & (align - 1);
1564 if (misalign != 0)
1565 align = (misalign & -misalign);
1566 if (align < TYPE_ALIGN (exp_type))
1567 exp_type = build_aligned_type (exp_type, align);
1569 mem_ref = fold_build2_loc (loc, MEM_REF, exp_type, base, off);
1570 if (TREE_THIS_VOLATILE (prev_base))
1571 TREE_THIS_VOLATILE (mem_ref) = 1;
1572 if (TREE_SIDE_EFFECTS (prev_base))
1573 TREE_SIDE_EFFECTS (mem_ref) = 1;
1574 return mem_ref;
1577 /* Construct a memory reference to a part of an aggregate BASE at the given
1578 OFFSET and of the same type as MODEL. In case this is a reference to a
1579 bit-field, the function will replicate the last component_ref of model's
1580 expr to access it. GSI and INSERT_AFTER have the same meaning as in
1581 build_ref_for_offset. */
1583 static tree
1584 build_ref_for_model (location_t loc, tree base, HOST_WIDE_INT offset,
1585 struct access *model, gimple_stmt_iterator *gsi,
1586 bool insert_after)
1588 if (TREE_CODE (model->expr) == COMPONENT_REF
1589 && DECL_BIT_FIELD (TREE_OPERAND (model->expr, 1)))
1591 /* This access represents a bit-field. */
1592 tree t, exp_type, fld = TREE_OPERAND (model->expr, 1);
1594 offset -= int_bit_position (fld);
1595 exp_type = TREE_TYPE (TREE_OPERAND (model->expr, 0));
1596 t = build_ref_for_offset (loc, base, offset, exp_type, gsi, insert_after);
1597 return fold_build3_loc (loc, COMPONENT_REF, TREE_TYPE (fld), t, fld,
1598 NULL_TREE);
1600 else
1601 return build_ref_for_offset (loc, base, offset, model->type,
1602 gsi, insert_after);
1605 /* Attempt to build a memory reference that we could but into a gimple
1606 debug_bind statement. Similar to build_ref_for_model but punts if it has to
1607 create statements and return s NULL instead. This function also ignores
1608 alignment issues and so its results should never end up in non-debug
1609 statements. */
1611 static tree
1612 build_debug_ref_for_model (location_t loc, tree base, HOST_WIDE_INT offset,
1613 struct access *model)
1615 HOST_WIDE_INT base_offset;
1616 tree off;
1618 if (TREE_CODE (model->expr) == COMPONENT_REF
1619 && DECL_BIT_FIELD (TREE_OPERAND (model->expr, 1)))
1620 return NULL_TREE;
1622 base = get_addr_base_and_unit_offset (base, &base_offset);
1623 if (!base)
1624 return NULL_TREE;
1625 if (TREE_CODE (base) == MEM_REF)
1627 off = build_int_cst (TREE_TYPE (TREE_OPERAND (base, 1)),
1628 base_offset + offset / BITS_PER_UNIT);
1629 off = int_const_binop (PLUS_EXPR, TREE_OPERAND (base, 1), off);
1630 base = unshare_expr (TREE_OPERAND (base, 0));
1632 else
1634 off = build_int_cst (reference_alias_ptr_type (base),
1635 base_offset + offset / BITS_PER_UNIT);
1636 base = build_fold_addr_expr (unshare_expr (base));
1639 return fold_build2_loc (loc, MEM_REF, model->type, base, off);
1642 /* Construct a memory reference consisting of component_refs and array_refs to
1643 a part of an aggregate *RES (which is of type TYPE). The requested part
1644 should have type EXP_TYPE at be the given OFFSET. This function might not
1645 succeed, it returns true when it does and only then *RES points to something
1646 meaningful. This function should be used only to build expressions that we
1647 might need to present to user (e.g. in warnings). In all other situations,
1648 build_ref_for_model or build_ref_for_offset should be used instead. */
1650 static bool
1651 build_user_friendly_ref_for_offset (tree *res, tree type, HOST_WIDE_INT offset,
1652 tree exp_type)
1654 while (1)
1656 tree fld;
1657 tree tr_size, index, minidx;
1658 HOST_WIDE_INT el_size;
1660 if (offset == 0 && exp_type
1661 && types_compatible_p (exp_type, type))
1662 return true;
1664 switch (TREE_CODE (type))
1666 case UNION_TYPE:
1667 case QUAL_UNION_TYPE:
1668 case RECORD_TYPE:
1669 for (fld = TYPE_FIELDS (type); fld; fld = DECL_CHAIN (fld))
1671 HOST_WIDE_INT pos, size;
1672 tree tr_pos, expr, *expr_ptr;
1674 if (TREE_CODE (fld) != FIELD_DECL)
1675 continue;
1677 tr_pos = bit_position (fld);
1678 if (!tr_pos || !tree_fits_uhwi_p (tr_pos))
1679 continue;
1680 pos = tree_to_uhwi (tr_pos);
1681 gcc_assert (TREE_CODE (type) == RECORD_TYPE || pos == 0);
1682 tr_size = DECL_SIZE (fld);
1683 if (!tr_size || !tree_fits_uhwi_p (tr_size))
1684 continue;
1685 size = tree_to_uhwi (tr_size);
1686 if (size == 0)
1688 if (pos != offset)
1689 continue;
1691 else if (pos > offset || (pos + size) <= offset)
1692 continue;
1694 expr = build3 (COMPONENT_REF, TREE_TYPE (fld), *res, fld,
1695 NULL_TREE);
1696 expr_ptr = &expr;
1697 if (build_user_friendly_ref_for_offset (expr_ptr, TREE_TYPE (fld),
1698 offset - pos, exp_type))
1700 *res = expr;
1701 return true;
1704 return false;
1706 case ARRAY_TYPE:
1707 tr_size = TYPE_SIZE (TREE_TYPE (type));
1708 if (!tr_size || !tree_fits_uhwi_p (tr_size))
1709 return false;
1710 el_size = tree_to_uhwi (tr_size);
1712 minidx = TYPE_MIN_VALUE (TYPE_DOMAIN (type));
1713 if (TREE_CODE (minidx) != INTEGER_CST || el_size == 0)
1714 return false;
1715 index = build_int_cst (TYPE_DOMAIN (type), offset / el_size);
1716 if (!integer_zerop (minidx))
1717 index = int_const_binop (PLUS_EXPR, index, minidx);
1718 *res = build4 (ARRAY_REF, TREE_TYPE (type), *res, index,
1719 NULL_TREE, NULL_TREE);
1720 offset = offset % el_size;
1721 type = TREE_TYPE (type);
1722 break;
1724 default:
1725 if (offset != 0)
1726 return false;
1728 if (exp_type)
1729 return false;
1730 else
1731 return true;
1736 /* Return true iff TYPE is stdarg va_list type. */
1738 static inline bool
1739 is_va_list_type (tree type)
1741 return TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (va_list_type_node);
1744 /* Print message to dump file why a variable was rejected. */
1746 static void
1747 reject (tree var, const char *msg)
1749 if (dump_file && (dump_flags & TDF_DETAILS))
1751 fprintf (dump_file, "Rejected (%d): %s: ", DECL_UID (var), msg);
1752 print_generic_expr (dump_file, var, 0);
1753 fprintf (dump_file, "\n");
1757 /* Return true if VAR is a candidate for SRA. */
1759 static bool
1760 maybe_add_sra_candidate (tree var)
1762 tree type = TREE_TYPE (var);
1763 const char *msg;
1764 tree_node **slot;
1766 if (!AGGREGATE_TYPE_P (type))
1768 reject (var, "not aggregate");
1769 return false;
1771 if (needs_to_live_in_memory (var))
1773 reject (var, "needs to live in memory");
1774 return false;
1776 if (TREE_THIS_VOLATILE (var))
1778 reject (var, "is volatile");
1779 return false;
1781 if (!COMPLETE_TYPE_P (type))
1783 reject (var, "has incomplete type");
1784 return false;
1786 if (!tree_fits_uhwi_p (TYPE_SIZE (type)))
1788 reject (var, "type size not fixed");
1789 return false;
1791 if (tree_to_uhwi (TYPE_SIZE (type)) == 0)
1793 reject (var, "type size is zero");
1794 return false;
1796 if (type_internals_preclude_sra_p (type, &msg))
1798 reject (var, msg);
1799 return false;
1801 if (/* Fix for PR 41089. tree-stdarg.c needs to have va_lists intact but
1802 we also want to schedule it rather late. Thus we ignore it in
1803 the early pass. */
1804 (sra_mode == SRA_MODE_EARLY_INTRA
1805 && is_va_list_type (type)))
1807 reject (var, "is va_list");
1808 return false;
1811 bitmap_set_bit (candidate_bitmap, DECL_UID (var));
1812 slot = candidates->find_slot_with_hash (var, DECL_UID (var), INSERT);
1813 *slot = var;
1815 if (dump_file && (dump_flags & TDF_DETAILS))
1817 fprintf (dump_file, "Candidate (%d): ", DECL_UID (var));
1818 print_generic_expr (dump_file, var, 0);
1819 fprintf (dump_file, "\n");
1822 return true;
1825 /* The very first phase of intraprocedural SRA. It marks in candidate_bitmap
1826 those with type which is suitable for scalarization. */
1828 static bool
1829 find_var_candidates (void)
1831 tree var, parm;
1832 unsigned int i;
1833 bool ret = false;
1835 for (parm = DECL_ARGUMENTS (current_function_decl);
1836 parm;
1837 parm = DECL_CHAIN (parm))
1838 ret |= maybe_add_sra_candidate (parm);
1840 FOR_EACH_LOCAL_DECL (cfun, i, var)
1842 if (TREE_CODE (var) != VAR_DECL)
1843 continue;
1845 ret |= maybe_add_sra_candidate (var);
1848 return ret;
1851 /* Sort all accesses for the given variable, check for partial overlaps and
1852 return NULL if there are any. If there are none, pick a representative for
1853 each combination of offset and size and create a linked list out of them.
1854 Return the pointer to the first representative and make sure it is the first
1855 one in the vector of accesses. */
1857 static struct access *
1858 sort_and_splice_var_accesses (tree var)
1860 int i, j, access_count;
1861 struct access *res, **prev_acc_ptr = &res;
1862 vec<access_p> *access_vec;
1863 bool first = true;
1864 HOST_WIDE_INT low = -1, high = 0;
1866 access_vec = get_base_access_vector (var);
1867 if (!access_vec)
1868 return NULL;
1869 access_count = access_vec->length ();
1871 /* Sort by <OFFSET, SIZE>. */
1872 access_vec->qsort (compare_access_positions);
1874 i = 0;
1875 while (i < access_count)
1877 struct access *access = (*access_vec)[i];
1878 bool grp_write = access->write;
1879 bool grp_read = !access->write;
1880 bool grp_scalar_write = access->write
1881 && is_gimple_reg_type (access->type);
1882 bool grp_scalar_read = !access->write
1883 && is_gimple_reg_type (access->type);
1884 bool grp_assignment_read = access->grp_assignment_read;
1885 bool grp_assignment_write = access->grp_assignment_write;
1886 bool multiple_scalar_reads = false;
1887 bool total_scalarization = access->grp_total_scalarization;
1888 bool grp_partial_lhs = access->grp_partial_lhs;
1889 bool first_scalar = is_gimple_reg_type (access->type);
1890 bool unscalarizable_region = access->grp_unscalarizable_region;
1892 if (first || access->offset >= high)
1894 first = false;
1895 low = access->offset;
1896 high = access->offset + access->size;
1898 else if (access->offset > low && access->offset + access->size > high)
1899 return NULL;
1900 else
1901 gcc_assert (access->offset >= low
1902 && access->offset + access->size <= high);
1904 j = i + 1;
1905 while (j < access_count)
1907 struct access *ac2 = (*access_vec)[j];
1908 if (ac2->offset != access->offset || ac2->size != access->size)
1909 break;
1910 if (ac2->write)
1912 grp_write = true;
1913 grp_scalar_write = (grp_scalar_write
1914 || is_gimple_reg_type (ac2->type));
1916 else
1918 grp_read = true;
1919 if (is_gimple_reg_type (ac2->type))
1921 if (grp_scalar_read)
1922 multiple_scalar_reads = true;
1923 else
1924 grp_scalar_read = true;
1927 grp_assignment_read |= ac2->grp_assignment_read;
1928 grp_assignment_write |= ac2->grp_assignment_write;
1929 grp_partial_lhs |= ac2->grp_partial_lhs;
1930 unscalarizable_region |= ac2->grp_unscalarizable_region;
1931 total_scalarization |= ac2->grp_total_scalarization;
1932 relink_to_new_repr (access, ac2);
1934 /* If there are both aggregate-type and scalar-type accesses with
1935 this combination of size and offset, the comparison function
1936 should have put the scalars first. */
1937 gcc_assert (first_scalar || !is_gimple_reg_type (ac2->type));
1938 ac2->group_representative = access;
1939 j++;
1942 i = j;
1944 access->group_representative = access;
1945 access->grp_write = grp_write;
1946 access->grp_read = grp_read;
1947 access->grp_scalar_read = grp_scalar_read;
1948 access->grp_scalar_write = grp_scalar_write;
1949 access->grp_assignment_read = grp_assignment_read;
1950 access->grp_assignment_write = grp_assignment_write;
1951 access->grp_hint = multiple_scalar_reads || total_scalarization;
1952 access->grp_total_scalarization = total_scalarization;
1953 access->grp_partial_lhs = grp_partial_lhs;
1954 access->grp_unscalarizable_region = unscalarizable_region;
1955 if (access->first_link)
1956 add_access_to_work_queue (access);
1958 *prev_acc_ptr = access;
1959 prev_acc_ptr = &access->next_grp;
1962 gcc_assert (res == (*access_vec)[0]);
1963 return res;
1966 /* Create a variable for the given ACCESS which determines the type, name and a
1967 few other properties. Return the variable declaration and store it also to
1968 ACCESS->replacement. */
1970 static tree
1971 create_access_replacement (struct access *access)
1973 tree repl;
1975 if (access->grp_to_be_debug_replaced)
1977 repl = create_tmp_var_raw (access->type, NULL);
1978 DECL_CONTEXT (repl) = current_function_decl;
1980 else
1981 repl = create_tmp_var (access->type, "SR");
1982 if (TREE_CODE (access->type) == COMPLEX_TYPE
1983 || TREE_CODE (access->type) == VECTOR_TYPE)
1985 if (!access->grp_partial_lhs)
1986 DECL_GIMPLE_REG_P (repl) = 1;
1988 else if (access->grp_partial_lhs
1989 && is_gimple_reg_type (access->type))
1990 TREE_ADDRESSABLE (repl) = 1;
1992 DECL_SOURCE_LOCATION (repl) = DECL_SOURCE_LOCATION (access->base);
1993 DECL_ARTIFICIAL (repl) = 1;
1994 DECL_IGNORED_P (repl) = DECL_IGNORED_P (access->base);
1996 if (DECL_NAME (access->base)
1997 && !DECL_IGNORED_P (access->base)
1998 && !DECL_ARTIFICIAL (access->base))
2000 char *pretty_name = make_fancy_name (access->expr);
2001 tree debug_expr = unshare_expr_without_location (access->expr), d;
2002 bool fail = false;
2004 DECL_NAME (repl) = get_identifier (pretty_name);
2005 obstack_free (&name_obstack, pretty_name);
2007 /* Get rid of any SSA_NAMEs embedded in debug_expr,
2008 as DECL_DEBUG_EXPR isn't considered when looking for still
2009 used SSA_NAMEs and thus they could be freed. All debug info
2010 generation cares is whether something is constant or variable
2011 and that get_ref_base_and_extent works properly on the
2012 expression. It cannot handle accesses at a non-constant offset
2013 though, so just give up in those cases. */
2014 for (d = debug_expr;
2015 !fail && (handled_component_p (d) || TREE_CODE (d) == MEM_REF);
2016 d = TREE_OPERAND (d, 0))
2017 switch (TREE_CODE (d))
2019 case ARRAY_REF:
2020 case ARRAY_RANGE_REF:
2021 if (TREE_OPERAND (d, 1)
2022 && TREE_CODE (TREE_OPERAND (d, 1)) != INTEGER_CST)
2023 fail = true;
2024 if (TREE_OPERAND (d, 3)
2025 && TREE_CODE (TREE_OPERAND (d, 3)) != INTEGER_CST)
2026 fail = true;
2027 /* FALLTHRU */
2028 case COMPONENT_REF:
2029 if (TREE_OPERAND (d, 2)
2030 && TREE_CODE (TREE_OPERAND (d, 2)) != INTEGER_CST)
2031 fail = true;
2032 break;
2033 case MEM_REF:
2034 if (TREE_CODE (TREE_OPERAND (d, 0)) != ADDR_EXPR)
2035 fail = true;
2036 else
2037 d = TREE_OPERAND (d, 0);
2038 break;
2039 default:
2040 break;
2042 if (!fail)
2044 SET_DECL_DEBUG_EXPR (repl, debug_expr);
2045 DECL_HAS_DEBUG_EXPR_P (repl) = 1;
2047 if (access->grp_no_warning)
2048 TREE_NO_WARNING (repl) = 1;
2049 else
2050 TREE_NO_WARNING (repl) = TREE_NO_WARNING (access->base);
2052 else
2053 TREE_NO_WARNING (repl) = 1;
2055 if (dump_file)
2057 if (access->grp_to_be_debug_replaced)
2059 fprintf (dump_file, "Created a debug-only replacement for ");
2060 print_generic_expr (dump_file, access->base, 0);
2061 fprintf (dump_file, " offset: %u, size: %u\n",
2062 (unsigned) access->offset, (unsigned) access->size);
2064 else
2066 fprintf (dump_file, "Created a replacement for ");
2067 print_generic_expr (dump_file, access->base, 0);
2068 fprintf (dump_file, " offset: %u, size: %u: ",
2069 (unsigned) access->offset, (unsigned) access->size);
2070 print_generic_expr (dump_file, repl, 0);
2071 fprintf (dump_file, "\n");
2074 sra_stats.replacements++;
2076 return repl;
2079 /* Return ACCESS scalar replacement, create it if it does not exist yet. */
2081 static inline tree
2082 get_access_replacement (struct access *access)
2084 gcc_checking_assert (access->replacement_decl);
2085 return access->replacement_decl;
2089 /* Build a subtree of accesses rooted in *ACCESS, and move the pointer in the
2090 linked list along the way. Stop when *ACCESS is NULL or the access pointed
2091 to it is not "within" the root. Return false iff some accesses partially
2092 overlap. */
2094 static bool
2095 build_access_subtree (struct access **access)
2097 struct access *root = *access, *last_child = NULL;
2098 HOST_WIDE_INT limit = root->offset + root->size;
2100 *access = (*access)->next_grp;
2101 while (*access && (*access)->offset + (*access)->size <= limit)
2103 if (!last_child)
2104 root->first_child = *access;
2105 else
2106 last_child->next_sibling = *access;
2107 last_child = *access;
2109 if (!build_access_subtree (access))
2110 return false;
2113 if (*access && (*access)->offset < limit)
2114 return false;
2116 return true;
2119 /* Build a tree of access representatives, ACCESS is the pointer to the first
2120 one, others are linked in a list by the next_grp field. Return false iff
2121 some accesses partially overlap. */
2123 static bool
2124 build_access_trees (struct access *access)
2126 while (access)
2128 struct access *root = access;
2130 if (!build_access_subtree (&access))
2131 return false;
2132 root->next_grp = access;
2134 return true;
2137 /* Return true if expr contains some ARRAY_REFs into a variable bounded
2138 array. */
2140 static bool
2141 expr_with_var_bounded_array_refs_p (tree expr)
2143 while (handled_component_p (expr))
2145 if (TREE_CODE (expr) == ARRAY_REF
2146 && !tree_fits_shwi_p (array_ref_low_bound (expr)))
2147 return true;
2148 expr = TREE_OPERAND (expr, 0);
2150 return false;
2153 /* Analyze the subtree of accesses rooted in ROOT, scheduling replacements when
2154 both seeming beneficial and when ALLOW_REPLACEMENTS allows it. Also set all
2155 sorts of access flags appropriately along the way, notably always set
2156 grp_read and grp_assign_read according to MARK_READ and grp_write when
2157 MARK_WRITE is true.
2159 Creating a replacement for a scalar access is considered beneficial if its
2160 grp_hint is set (this means we are either attempting total scalarization or
2161 there is more than one direct read access) or according to the following
2162 table:
2164 Access written to through a scalar type (once or more times)
2166 | Written to in an assignment statement
2168 | | Access read as scalar _once_
2169 | | |
2170 | | | Read in an assignment statement
2171 | | | |
2172 | | | | Scalarize Comment
2173 -----------------------------------------------------------------------------
2174 0 0 0 0 No access for the scalar
2175 0 0 0 1 No access for the scalar
2176 0 0 1 0 No Single read - won't help
2177 0 0 1 1 No The same case
2178 0 1 0 0 No access for the scalar
2179 0 1 0 1 No access for the scalar
2180 0 1 1 0 Yes s = *g; return s.i;
2181 0 1 1 1 Yes The same case as above
2182 1 0 0 0 No Won't help
2183 1 0 0 1 Yes s.i = 1; *g = s;
2184 1 0 1 0 Yes s.i = 5; g = s.i;
2185 1 0 1 1 Yes The same case as above
2186 1 1 0 0 No Won't help.
2187 1 1 0 1 Yes s.i = 1; *g = s;
2188 1 1 1 0 Yes s = *g; return s.i;
2189 1 1 1 1 Yes Any of the above yeses */
2191 static bool
2192 analyze_access_subtree (struct access *root, struct access *parent,
2193 bool allow_replacements)
2195 struct access *child;
2196 HOST_WIDE_INT limit = root->offset + root->size;
2197 HOST_WIDE_INT covered_to = root->offset;
2198 bool scalar = is_gimple_reg_type (root->type);
2199 bool hole = false, sth_created = false;
2201 if (parent)
2203 if (parent->grp_read)
2204 root->grp_read = 1;
2205 if (parent->grp_assignment_read)
2206 root->grp_assignment_read = 1;
2207 if (parent->grp_write)
2208 root->grp_write = 1;
2209 if (parent->grp_assignment_write)
2210 root->grp_assignment_write = 1;
2211 if (parent->grp_total_scalarization)
2212 root->grp_total_scalarization = 1;
2215 if (root->grp_unscalarizable_region)
2216 allow_replacements = false;
2218 if (allow_replacements && expr_with_var_bounded_array_refs_p (root->expr))
2219 allow_replacements = false;
2221 for (child = root->first_child; child; child = child->next_sibling)
2223 hole |= covered_to < child->offset;
2224 sth_created |= analyze_access_subtree (child, root,
2225 allow_replacements && !scalar);
2227 root->grp_unscalarized_data |= child->grp_unscalarized_data;
2228 root->grp_total_scalarization &= child->grp_total_scalarization;
2229 if (child->grp_covered)
2230 covered_to += child->size;
2231 else
2232 hole = true;
2235 if (allow_replacements && scalar && !root->first_child
2236 && (root->grp_hint
2237 || ((root->grp_scalar_read || root->grp_assignment_read)
2238 && (root->grp_scalar_write || root->grp_assignment_write))))
2240 /* Always create access replacements that cover the whole access.
2241 For integral types this means the precision has to match.
2242 Avoid assumptions based on the integral type kind, too. */
2243 if (INTEGRAL_TYPE_P (root->type)
2244 && (TREE_CODE (root->type) != INTEGER_TYPE
2245 || TYPE_PRECISION (root->type) != root->size)
2246 /* But leave bitfield accesses alone. */
2247 && (TREE_CODE (root->expr) != COMPONENT_REF
2248 || !DECL_BIT_FIELD (TREE_OPERAND (root->expr, 1))))
2250 tree rt = root->type;
2251 gcc_assert ((root->offset % BITS_PER_UNIT) == 0
2252 && (root->size % BITS_PER_UNIT) == 0);
2253 root->type = build_nonstandard_integer_type (root->size,
2254 TYPE_UNSIGNED (rt));
2255 root->expr = build_ref_for_offset (UNKNOWN_LOCATION,
2256 root->base, root->offset,
2257 root->type, NULL, false);
2259 if (dump_file && (dump_flags & TDF_DETAILS))
2261 fprintf (dump_file, "Changing the type of a replacement for ");
2262 print_generic_expr (dump_file, root->base, 0);
2263 fprintf (dump_file, " offset: %u, size: %u ",
2264 (unsigned) root->offset, (unsigned) root->size);
2265 fprintf (dump_file, " to an integer.\n");
2269 root->grp_to_be_replaced = 1;
2270 root->replacement_decl = create_access_replacement (root);
2271 sth_created = true;
2272 hole = false;
2274 else
2276 if (allow_replacements
2277 && scalar && !root->first_child
2278 && (root->grp_scalar_write || root->grp_assignment_write)
2279 && !bitmap_bit_p (cannot_scalarize_away_bitmap,
2280 DECL_UID (root->base)))
2282 gcc_checking_assert (!root->grp_scalar_read
2283 && !root->grp_assignment_read);
2284 sth_created = true;
2285 if (MAY_HAVE_DEBUG_STMTS)
2287 root->grp_to_be_debug_replaced = 1;
2288 root->replacement_decl = create_access_replacement (root);
2292 if (covered_to < limit)
2293 hole = true;
2294 if (scalar)
2295 root->grp_total_scalarization = 0;
2298 if (!hole || root->grp_total_scalarization)
2299 root->grp_covered = 1;
2300 else if (root->grp_write || TREE_CODE (root->base) == PARM_DECL)
2301 root->grp_unscalarized_data = 1; /* not covered and written to */
2302 return sth_created;
2305 /* Analyze all access trees linked by next_grp by the means of
2306 analyze_access_subtree. */
2307 static bool
2308 analyze_access_trees (struct access *access)
2310 bool ret = false;
2312 while (access)
2314 if (analyze_access_subtree (access, NULL, true))
2315 ret = true;
2316 access = access->next_grp;
2319 return ret;
2322 /* Return true iff a potential new child of LACC at offset OFFSET and with size
2323 SIZE would conflict with an already existing one. If exactly such a child
2324 already exists in LACC, store a pointer to it in EXACT_MATCH. */
2326 static bool
2327 child_would_conflict_in_lacc (struct access *lacc, HOST_WIDE_INT norm_offset,
2328 HOST_WIDE_INT size, struct access **exact_match)
2330 struct access *child;
2332 for (child = lacc->first_child; child; child = child->next_sibling)
2334 if (child->offset == norm_offset && child->size == size)
2336 *exact_match = child;
2337 return true;
2340 if (child->offset < norm_offset + size
2341 && child->offset + child->size > norm_offset)
2342 return true;
2345 return false;
2348 /* Create a new child access of PARENT, with all properties just like MODEL
2349 except for its offset and with its grp_write false and grp_read true.
2350 Return the new access or NULL if it cannot be created. Note that this access
2351 is created long after all splicing and sorting, it's not located in any
2352 access vector and is automatically a representative of its group. */
2354 static struct access *
2355 create_artificial_child_access (struct access *parent, struct access *model,
2356 HOST_WIDE_INT new_offset)
2358 struct access *access;
2359 struct access **child;
2360 tree expr = parent->base;
2362 gcc_assert (!model->grp_unscalarizable_region);
2364 access = (struct access *) pool_alloc (access_pool);
2365 memset (access, 0, sizeof (struct access));
2366 if (!build_user_friendly_ref_for_offset (&expr, TREE_TYPE (expr), new_offset,
2367 model->type))
2369 access->grp_no_warning = true;
2370 expr = build_ref_for_model (EXPR_LOCATION (parent->base), parent->base,
2371 new_offset, model, NULL, false);
2374 access->base = parent->base;
2375 access->expr = expr;
2376 access->offset = new_offset;
2377 access->size = model->size;
2378 access->type = model->type;
2379 access->grp_write = true;
2380 access->grp_read = false;
2382 child = &parent->first_child;
2383 while (*child && (*child)->offset < new_offset)
2384 child = &(*child)->next_sibling;
2386 access->next_sibling = *child;
2387 *child = access;
2389 return access;
2393 /* Propagate all subaccesses of RACC across an assignment link to LACC. Return
2394 true if any new subaccess was created. Additionally, if RACC is a scalar
2395 access but LACC is not, change the type of the latter, if possible. */
2397 static bool
2398 propagate_subaccesses_across_link (struct access *lacc, struct access *racc)
2400 struct access *rchild;
2401 HOST_WIDE_INT norm_delta = lacc->offset - racc->offset;
2402 bool ret = false;
2404 if (is_gimple_reg_type (lacc->type)
2405 || lacc->grp_unscalarizable_region
2406 || racc->grp_unscalarizable_region)
2407 return false;
2409 if (is_gimple_reg_type (racc->type))
2411 if (!lacc->first_child && !racc->first_child)
2413 tree t = lacc->base;
2415 lacc->type = racc->type;
2416 if (build_user_friendly_ref_for_offset (&t, TREE_TYPE (t),
2417 lacc->offset, racc->type))
2418 lacc->expr = t;
2419 else
2421 lacc->expr = build_ref_for_model (EXPR_LOCATION (lacc->base),
2422 lacc->base, lacc->offset,
2423 racc, NULL, false);
2424 lacc->grp_no_warning = true;
2427 return false;
2430 for (rchild = racc->first_child; rchild; rchild = rchild->next_sibling)
2432 struct access *new_acc = NULL;
2433 HOST_WIDE_INT norm_offset = rchild->offset + norm_delta;
2435 if (rchild->grp_unscalarizable_region)
2436 continue;
2438 if (child_would_conflict_in_lacc (lacc, norm_offset, rchild->size,
2439 &new_acc))
2441 if (new_acc)
2443 rchild->grp_hint = 1;
2444 new_acc->grp_hint |= new_acc->grp_read;
2445 if (rchild->first_child)
2446 ret |= propagate_subaccesses_across_link (new_acc, rchild);
2448 continue;
2451 rchild->grp_hint = 1;
2452 new_acc = create_artificial_child_access (lacc, rchild, norm_offset);
2453 if (new_acc)
2455 ret = true;
2456 if (racc->first_child)
2457 propagate_subaccesses_across_link (new_acc, rchild);
2461 return ret;
2464 /* Propagate all subaccesses across assignment links. */
2466 static void
2467 propagate_all_subaccesses (void)
2469 while (work_queue_head)
2471 struct access *racc = pop_access_from_work_queue ();
2472 struct assign_link *link;
2474 gcc_assert (racc->first_link);
2476 for (link = racc->first_link; link; link = link->next)
2478 struct access *lacc = link->lacc;
2480 if (!bitmap_bit_p (candidate_bitmap, DECL_UID (lacc->base)))
2481 continue;
2482 lacc = lacc->group_representative;
2483 if (propagate_subaccesses_across_link (lacc, racc)
2484 && lacc->first_link)
2485 add_access_to_work_queue (lacc);
2490 /* Go through all accesses collected throughout the (intraprocedural) analysis
2491 stage, exclude overlapping ones, identify representatives and build trees
2492 out of them, making decisions about scalarization on the way. Return true
2493 iff there are any to-be-scalarized variables after this stage. */
2495 static bool
2496 analyze_all_variable_accesses (void)
2498 int res = 0;
2499 bitmap tmp = BITMAP_ALLOC (NULL);
2500 bitmap_iterator bi;
2501 unsigned i, max_total_scalarization_size;
2503 max_total_scalarization_size = UNITS_PER_WORD * BITS_PER_UNIT
2504 * MOVE_RATIO (optimize_function_for_speed_p (cfun));
2506 EXECUTE_IF_SET_IN_BITMAP (candidate_bitmap, 0, i, bi)
2507 if (bitmap_bit_p (should_scalarize_away_bitmap, i)
2508 && !bitmap_bit_p (cannot_scalarize_away_bitmap, i))
2510 tree var = candidate (i);
2512 if (TREE_CODE (var) == VAR_DECL
2513 && type_consists_of_records_p (TREE_TYPE (var)))
2515 if (tree_to_uhwi (TYPE_SIZE (TREE_TYPE (var)))
2516 <= max_total_scalarization_size)
2518 completely_scalarize_var (var);
2519 if (dump_file && (dump_flags & TDF_DETAILS))
2521 fprintf (dump_file, "Will attempt to totally scalarize ");
2522 print_generic_expr (dump_file, var, 0);
2523 fprintf (dump_file, " (UID: %u): \n", DECL_UID (var));
2526 else if (dump_file && (dump_flags & TDF_DETAILS))
2528 fprintf (dump_file, "Too big to totally scalarize: ");
2529 print_generic_expr (dump_file, var, 0);
2530 fprintf (dump_file, " (UID: %u)\n", DECL_UID (var));
2535 bitmap_copy (tmp, candidate_bitmap);
2536 EXECUTE_IF_SET_IN_BITMAP (tmp, 0, i, bi)
2538 tree var = candidate (i);
2539 struct access *access;
2541 access = sort_and_splice_var_accesses (var);
2542 if (!access || !build_access_trees (access))
2543 disqualify_candidate (var,
2544 "No or inhibitingly overlapping accesses.");
2547 propagate_all_subaccesses ();
2549 bitmap_copy (tmp, candidate_bitmap);
2550 EXECUTE_IF_SET_IN_BITMAP (tmp, 0, i, bi)
2552 tree var = candidate (i);
2553 struct access *access = get_first_repr_for_decl (var);
2555 if (analyze_access_trees (access))
2557 res++;
2558 if (dump_file && (dump_flags & TDF_DETAILS))
2560 fprintf (dump_file, "\nAccess trees for ");
2561 print_generic_expr (dump_file, var, 0);
2562 fprintf (dump_file, " (UID: %u): \n", DECL_UID (var));
2563 dump_access_tree (dump_file, access);
2564 fprintf (dump_file, "\n");
2567 else
2568 disqualify_candidate (var, "No scalar replacements to be created.");
2571 BITMAP_FREE (tmp);
2573 if (res)
2575 statistics_counter_event (cfun, "Scalarized aggregates", res);
2576 return true;
2578 else
2579 return false;
2582 /* Generate statements copying scalar replacements of accesses within a subtree
2583 into or out of AGG. ACCESS, all its children, siblings and their children
2584 are to be processed. AGG is an aggregate type expression (can be a
2585 declaration but does not have to be, it can for example also be a mem_ref or
2586 a series of handled components). TOP_OFFSET is the offset of the processed
2587 subtree which has to be subtracted from offsets of individual accesses to
2588 get corresponding offsets for AGG. If CHUNK_SIZE is non-null, copy only
2589 replacements in the interval <start_offset, start_offset + chunk_size>,
2590 otherwise copy all. GSI is a statement iterator used to place the new
2591 statements. WRITE should be true when the statements should write from AGG
2592 to the replacement and false if vice versa. if INSERT_AFTER is true, new
2593 statements will be added after the current statement in GSI, they will be
2594 added before the statement otherwise. */
2596 static void
2597 generate_subtree_copies (struct access *access, tree agg,
2598 HOST_WIDE_INT top_offset,
2599 HOST_WIDE_INT start_offset, HOST_WIDE_INT chunk_size,
2600 gimple_stmt_iterator *gsi, bool write,
2601 bool insert_after, location_t loc)
2605 if (chunk_size && access->offset >= start_offset + chunk_size)
2606 return;
2608 if (access->grp_to_be_replaced
2609 && (chunk_size == 0
2610 || access->offset + access->size > start_offset))
2612 tree expr, repl = get_access_replacement (access);
2613 gimple stmt;
2615 expr = build_ref_for_model (loc, agg, access->offset - top_offset,
2616 access, gsi, insert_after);
2618 if (write)
2620 if (access->grp_partial_lhs)
2621 expr = force_gimple_operand_gsi (gsi, expr, true, NULL_TREE,
2622 !insert_after,
2623 insert_after ? GSI_NEW_STMT
2624 : GSI_SAME_STMT);
2625 stmt = gimple_build_assign (repl, expr);
2627 else
2629 TREE_NO_WARNING (repl) = 1;
2630 if (access->grp_partial_lhs)
2631 repl = force_gimple_operand_gsi (gsi, repl, true, NULL_TREE,
2632 !insert_after,
2633 insert_after ? GSI_NEW_STMT
2634 : GSI_SAME_STMT);
2635 stmt = gimple_build_assign (expr, repl);
2637 gimple_set_location (stmt, loc);
2639 if (insert_after)
2640 gsi_insert_after (gsi, stmt, GSI_NEW_STMT);
2641 else
2642 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
2643 update_stmt (stmt);
2644 sra_stats.subtree_copies++;
2646 else if (write
2647 && access->grp_to_be_debug_replaced
2648 && (chunk_size == 0
2649 || access->offset + access->size > start_offset))
2651 gimple ds;
2652 tree drhs = build_debug_ref_for_model (loc, agg,
2653 access->offset - top_offset,
2654 access);
2655 ds = gimple_build_debug_bind (get_access_replacement (access),
2656 drhs, gsi_stmt (*gsi));
2657 if (insert_after)
2658 gsi_insert_after (gsi, ds, GSI_NEW_STMT);
2659 else
2660 gsi_insert_before (gsi, ds, GSI_SAME_STMT);
2663 if (access->first_child)
2664 generate_subtree_copies (access->first_child, agg, top_offset,
2665 start_offset, chunk_size, gsi,
2666 write, insert_after, loc);
2668 access = access->next_sibling;
2670 while (access);
2673 /* Assign zero to all scalar replacements in an access subtree. ACCESS is the
2674 the root of the subtree to be processed. GSI is the statement iterator used
2675 for inserting statements which are added after the current statement if
2676 INSERT_AFTER is true or before it otherwise. */
2678 static void
2679 init_subtree_with_zero (struct access *access, gimple_stmt_iterator *gsi,
2680 bool insert_after, location_t loc)
2683 struct access *child;
2685 if (access->grp_to_be_replaced)
2687 gimple stmt;
2689 stmt = gimple_build_assign (get_access_replacement (access),
2690 build_zero_cst (access->type));
2691 if (insert_after)
2692 gsi_insert_after (gsi, stmt, GSI_NEW_STMT);
2693 else
2694 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
2695 update_stmt (stmt);
2696 gimple_set_location (stmt, loc);
2698 else if (access->grp_to_be_debug_replaced)
2700 gimple ds = gimple_build_debug_bind (get_access_replacement (access),
2701 build_zero_cst (access->type),
2702 gsi_stmt (*gsi));
2703 if (insert_after)
2704 gsi_insert_after (gsi, ds, GSI_NEW_STMT);
2705 else
2706 gsi_insert_before (gsi, ds, GSI_SAME_STMT);
2709 for (child = access->first_child; child; child = child->next_sibling)
2710 init_subtree_with_zero (child, gsi, insert_after, loc);
2713 /* Search for an access representative for the given expression EXPR and
2714 return it or NULL if it cannot be found. */
2716 static struct access *
2717 get_access_for_expr (tree expr)
2719 HOST_WIDE_INT offset, size, max_size;
2720 tree base;
2722 /* FIXME: This should not be necessary but Ada produces V_C_Es with a type of
2723 a different size than the size of its argument and we need the latter
2724 one. */
2725 if (TREE_CODE (expr) == VIEW_CONVERT_EXPR)
2726 expr = TREE_OPERAND (expr, 0);
2728 base = get_ref_base_and_extent (expr, &offset, &size, &max_size);
2729 if (max_size == -1 || !DECL_P (base))
2730 return NULL;
2732 if (!bitmap_bit_p (candidate_bitmap, DECL_UID (base)))
2733 return NULL;
2735 return get_var_base_offset_size_access (base, offset, max_size);
2738 /* Replace the expression EXPR with a scalar replacement if there is one and
2739 generate other statements to do type conversion or subtree copying if
2740 necessary. GSI is used to place newly created statements, WRITE is true if
2741 the expression is being written to (it is on a LHS of a statement or output
2742 in an assembly statement). */
2744 static bool
2745 sra_modify_expr (tree *expr, gimple_stmt_iterator *gsi, bool write)
2747 location_t loc;
2748 struct access *access;
2749 tree type, bfr, orig_expr;
2751 if (TREE_CODE (*expr) == BIT_FIELD_REF)
2753 bfr = *expr;
2754 expr = &TREE_OPERAND (*expr, 0);
2756 else
2757 bfr = NULL_TREE;
2759 if (TREE_CODE (*expr) == REALPART_EXPR || TREE_CODE (*expr) == IMAGPART_EXPR)
2760 expr = &TREE_OPERAND (*expr, 0);
2761 access = get_access_for_expr (*expr);
2762 if (!access)
2763 return false;
2764 type = TREE_TYPE (*expr);
2765 orig_expr = *expr;
2767 loc = gimple_location (gsi_stmt (*gsi));
2768 gimple_stmt_iterator alt_gsi = gsi_none ();
2769 if (write && stmt_ends_bb_p (gsi_stmt (*gsi)))
2771 alt_gsi = gsi_start_edge (single_non_eh_succ (gsi_bb (*gsi)));
2772 gsi = &alt_gsi;
2775 if (access->grp_to_be_replaced)
2777 tree repl = get_access_replacement (access);
2778 /* If we replace a non-register typed access simply use the original
2779 access expression to extract the scalar component afterwards.
2780 This happens if scalarizing a function return value or parameter
2781 like in gcc.c-torture/execute/20041124-1.c, 20050316-1.c and
2782 gcc.c-torture/compile/20011217-1.c.
2784 We also want to use this when accessing a complex or vector which can
2785 be accessed as a different type too, potentially creating a need for
2786 type conversion (see PR42196) and when scalarized unions are involved
2787 in assembler statements (see PR42398). */
2788 if (!useless_type_conversion_p (type, access->type))
2790 tree ref;
2792 ref = build_ref_for_model (loc, orig_expr, 0, access, gsi, false);
2794 if (write)
2796 gimple stmt;
2798 if (access->grp_partial_lhs)
2799 ref = force_gimple_operand_gsi (gsi, ref, true, NULL_TREE,
2800 false, GSI_NEW_STMT);
2801 stmt = gimple_build_assign (repl, ref);
2802 gimple_set_location (stmt, loc);
2803 gsi_insert_after (gsi, stmt, GSI_NEW_STMT);
2805 else
2807 gimple stmt;
2809 if (access->grp_partial_lhs)
2810 repl = force_gimple_operand_gsi (gsi, repl, true, NULL_TREE,
2811 true, GSI_SAME_STMT);
2812 stmt = gimple_build_assign (ref, repl);
2813 gimple_set_location (stmt, loc);
2814 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
2817 else
2818 *expr = repl;
2819 sra_stats.exprs++;
2821 else if (write && access->grp_to_be_debug_replaced)
2823 gimple ds = gimple_build_debug_bind (get_access_replacement (access),
2824 NULL_TREE,
2825 gsi_stmt (*gsi));
2826 gsi_insert_after (gsi, ds, GSI_NEW_STMT);
2829 if (access->first_child)
2831 HOST_WIDE_INT start_offset, chunk_size;
2832 if (bfr
2833 && tree_fits_uhwi_p (TREE_OPERAND (bfr, 1))
2834 && tree_fits_uhwi_p (TREE_OPERAND (bfr, 2)))
2836 chunk_size = tree_to_uhwi (TREE_OPERAND (bfr, 1));
2837 start_offset = access->offset
2838 + tree_to_uhwi (TREE_OPERAND (bfr, 2));
2840 else
2841 start_offset = chunk_size = 0;
2843 generate_subtree_copies (access->first_child, orig_expr, access->offset,
2844 start_offset, chunk_size, gsi, write, write,
2845 loc);
2847 return true;
2850 /* Where scalar replacements of the RHS have been written to when a replacement
2851 of a LHS of an assigments cannot be direclty loaded from a replacement of
2852 the RHS. */
2853 enum unscalarized_data_handling { SRA_UDH_NONE, /* Nothing done so far. */
2854 SRA_UDH_RIGHT, /* Data flushed to the RHS. */
2855 SRA_UDH_LEFT }; /* Data flushed to the LHS. */
2857 struct subreplacement_assignment_data
2859 /* Offset of the access representing the lhs of the assignment. */
2860 HOST_WIDE_INT left_offset;
2862 /* LHS and RHS of the original assignment. */
2863 tree assignment_lhs, assignment_rhs;
2865 /* Access representing the rhs of the whole assignment. */
2866 struct access *top_racc;
2868 /* Stmt iterator used for statement insertions after the original assignment.
2869 It points to the main GSI used to traverse a BB during function body
2870 modification. */
2871 gimple_stmt_iterator *new_gsi;
2873 /* Stmt iterator used for statement insertions before the original
2874 assignment. Keeps on pointing to the original statement. */
2875 gimple_stmt_iterator old_gsi;
2877 /* Location of the assignment. */
2878 location_t loc;
2880 /* Keeps the information whether we have needed to refresh replacements of
2881 the LHS and from which side of the assignments this takes place. */
2882 enum unscalarized_data_handling refreshed;
2885 /* Store all replacements in the access tree rooted in TOP_RACC either to their
2886 base aggregate if there are unscalarized data or directly to LHS of the
2887 statement that is pointed to by GSI otherwise. */
2889 static void
2890 handle_unscalarized_data_in_subtree (struct subreplacement_assignment_data *sad)
2892 tree src;
2893 if (sad->top_racc->grp_unscalarized_data)
2895 src = sad->assignment_rhs;
2896 sad->refreshed = SRA_UDH_RIGHT;
2898 else
2900 src = sad->assignment_lhs;
2901 sad->refreshed = SRA_UDH_LEFT;
2903 generate_subtree_copies (sad->top_racc->first_child, src,
2904 sad->top_racc->offset, 0, 0,
2905 &sad->old_gsi, false, false, sad->loc);
2908 /* Try to generate statements to load all sub-replacements in an access subtree
2909 formed by children of LACC from scalar replacements in the SAD->top_racc
2910 subtree. If that is not possible, refresh the SAD->top_racc base aggregate
2911 and load the accesses from it. */
2913 static void
2914 load_assign_lhs_subreplacements (struct access *lacc,
2915 struct subreplacement_assignment_data *sad)
2917 for (lacc = lacc->first_child; lacc; lacc = lacc->next_sibling)
2919 HOST_WIDE_INT offset;
2920 offset = lacc->offset - sad->left_offset + sad->top_racc->offset;
2922 if (lacc->grp_to_be_replaced)
2924 struct access *racc;
2925 gimple stmt;
2926 tree rhs;
2928 racc = find_access_in_subtree (sad->top_racc, offset, lacc->size);
2929 if (racc && racc->grp_to_be_replaced)
2931 rhs = get_access_replacement (racc);
2932 if (!useless_type_conversion_p (lacc->type, racc->type))
2933 rhs = fold_build1_loc (sad->loc, VIEW_CONVERT_EXPR,
2934 lacc->type, rhs);
2936 if (racc->grp_partial_lhs && lacc->grp_partial_lhs)
2937 rhs = force_gimple_operand_gsi (&sad->old_gsi, rhs, true,
2938 NULL_TREE, true, GSI_SAME_STMT);
2940 else
2942 /* No suitable access on the right hand side, need to load from
2943 the aggregate. See if we have to update it first... */
2944 if (sad->refreshed == SRA_UDH_NONE)
2945 handle_unscalarized_data_in_subtree (sad);
2947 if (sad->refreshed == SRA_UDH_LEFT)
2948 rhs = build_ref_for_model (sad->loc, sad->assignment_lhs,
2949 lacc->offset - sad->left_offset,
2950 lacc, sad->new_gsi, true);
2951 else
2952 rhs = build_ref_for_model (sad->loc, sad->assignment_rhs,
2953 lacc->offset - sad->left_offset,
2954 lacc, sad->new_gsi, true);
2955 if (lacc->grp_partial_lhs)
2956 rhs = force_gimple_operand_gsi (sad->new_gsi,
2957 rhs, true, NULL_TREE,
2958 false, GSI_NEW_STMT);
2961 stmt = gimple_build_assign (get_access_replacement (lacc), rhs);
2962 gsi_insert_after (sad->new_gsi, stmt, GSI_NEW_STMT);
2963 gimple_set_location (stmt, sad->loc);
2964 update_stmt (stmt);
2965 sra_stats.subreplacements++;
2967 else
2969 if (sad->refreshed == SRA_UDH_NONE
2970 && lacc->grp_read && !lacc->grp_covered)
2971 handle_unscalarized_data_in_subtree (sad);
2973 if (lacc && lacc->grp_to_be_debug_replaced)
2975 gimple ds;
2976 tree drhs;
2977 struct access *racc = find_access_in_subtree (sad->top_racc,
2978 offset,
2979 lacc->size);
2981 if (racc && racc->grp_to_be_replaced)
2983 if (racc->grp_write)
2984 drhs = get_access_replacement (racc);
2985 else
2986 drhs = NULL;
2988 else if (sad->refreshed == SRA_UDH_LEFT)
2989 drhs = build_debug_ref_for_model (sad->loc, lacc->base,
2990 lacc->offset, lacc);
2991 else if (sad->refreshed == SRA_UDH_RIGHT)
2992 drhs = build_debug_ref_for_model (sad->loc, sad->top_racc->base,
2993 offset, lacc);
2994 else
2995 drhs = NULL_TREE;
2996 if (drhs
2997 && !useless_type_conversion_p (lacc->type, TREE_TYPE (drhs)))
2998 drhs = fold_build1_loc (sad->loc, VIEW_CONVERT_EXPR,
2999 lacc->type, drhs);
3000 ds = gimple_build_debug_bind (get_access_replacement (lacc),
3001 drhs, gsi_stmt (sad->old_gsi));
3002 gsi_insert_after (sad->new_gsi, ds, GSI_NEW_STMT);
3006 if (lacc->first_child)
3007 load_assign_lhs_subreplacements (lacc, sad);
3011 /* Result code for SRA assignment modification. */
3012 enum assignment_mod_result { SRA_AM_NONE, /* nothing done for the stmt */
3013 SRA_AM_MODIFIED, /* stmt changed but not
3014 removed */
3015 SRA_AM_REMOVED }; /* stmt eliminated */
3017 /* Modify assignments with a CONSTRUCTOR on their RHS. STMT contains a pointer
3018 to the assignment and GSI is the statement iterator pointing at it. Returns
3019 the same values as sra_modify_assign. */
3021 static enum assignment_mod_result
3022 sra_modify_constructor_assign (gimple stmt, gimple_stmt_iterator *gsi)
3024 tree lhs = gimple_assign_lhs (stmt);
3025 struct access *acc;
3026 location_t loc;
3028 acc = get_access_for_expr (lhs);
3029 if (!acc)
3030 return SRA_AM_NONE;
3032 if (gimple_clobber_p (stmt))
3034 /* Remove clobbers of fully scalarized variables, otherwise
3035 do nothing. */
3036 if (acc->grp_covered)
3038 unlink_stmt_vdef (stmt);
3039 gsi_remove (gsi, true);
3040 release_defs (stmt);
3041 return SRA_AM_REMOVED;
3043 else
3044 return SRA_AM_NONE;
3047 loc = gimple_location (stmt);
3048 if (vec_safe_length (CONSTRUCTOR_ELTS (gimple_assign_rhs1 (stmt))) > 0)
3050 /* I have never seen this code path trigger but if it can happen the
3051 following should handle it gracefully. */
3052 if (access_has_children_p (acc))
3053 generate_subtree_copies (acc->first_child, lhs, acc->offset, 0, 0, gsi,
3054 true, true, loc);
3055 return SRA_AM_MODIFIED;
3058 if (acc->grp_covered)
3060 init_subtree_with_zero (acc, gsi, false, loc);
3061 unlink_stmt_vdef (stmt);
3062 gsi_remove (gsi, true);
3063 release_defs (stmt);
3064 return SRA_AM_REMOVED;
3066 else
3068 init_subtree_with_zero (acc, gsi, true, loc);
3069 return SRA_AM_MODIFIED;
3073 /* Create and return a new suitable default definition SSA_NAME for RACC which
3074 is an access describing an uninitialized part of an aggregate that is being
3075 loaded. */
3077 static tree
3078 get_repl_default_def_ssa_name (struct access *racc)
3080 gcc_checking_assert (!racc->grp_to_be_replaced
3081 && !racc->grp_to_be_debug_replaced);
3082 if (!racc->replacement_decl)
3083 racc->replacement_decl = create_access_replacement (racc);
3084 return get_or_create_ssa_default_def (cfun, racc->replacement_decl);
3087 /* Return true if REF has an VIEW_CONVERT_EXPR or a COMPONENT_REF with a
3088 bit-field field declaration somewhere in it. */
3090 static inline bool
3091 contains_vce_or_bfcref_p (const_tree ref)
3093 while (handled_component_p (ref))
3095 if (TREE_CODE (ref) == VIEW_CONVERT_EXPR
3096 || (TREE_CODE (ref) == COMPONENT_REF
3097 && DECL_BIT_FIELD (TREE_OPERAND (ref, 1))))
3098 return true;
3099 ref = TREE_OPERAND (ref, 0);
3102 return false;
3105 /* Examine both sides of the assignment statement pointed to by STMT, replace
3106 them with a scalare replacement if there is one and generate copying of
3107 replacements if scalarized aggregates have been used in the assignment. GSI
3108 is used to hold generated statements for type conversions and subtree
3109 copying. */
3111 static enum assignment_mod_result
3112 sra_modify_assign (gimple stmt, gimple_stmt_iterator *gsi)
3114 struct access *lacc, *racc;
3115 tree lhs, rhs;
3116 bool modify_this_stmt = false;
3117 bool force_gimple_rhs = false;
3118 location_t loc;
3119 gimple_stmt_iterator orig_gsi = *gsi;
3121 if (!gimple_assign_single_p (stmt))
3122 return SRA_AM_NONE;
3123 lhs = gimple_assign_lhs (stmt);
3124 rhs = gimple_assign_rhs1 (stmt);
3126 if (TREE_CODE (rhs) == CONSTRUCTOR)
3127 return sra_modify_constructor_assign (stmt, gsi);
3129 if (TREE_CODE (rhs) == REALPART_EXPR || TREE_CODE (lhs) == REALPART_EXPR
3130 || TREE_CODE (rhs) == IMAGPART_EXPR || TREE_CODE (lhs) == IMAGPART_EXPR
3131 || TREE_CODE (rhs) == BIT_FIELD_REF || TREE_CODE (lhs) == BIT_FIELD_REF)
3133 modify_this_stmt = sra_modify_expr (gimple_assign_rhs1_ptr (stmt),
3134 gsi, false);
3135 modify_this_stmt |= sra_modify_expr (gimple_assign_lhs_ptr (stmt),
3136 gsi, true);
3137 return modify_this_stmt ? SRA_AM_MODIFIED : SRA_AM_NONE;
3140 lacc = get_access_for_expr (lhs);
3141 racc = get_access_for_expr (rhs);
3142 if (!lacc && !racc)
3143 return SRA_AM_NONE;
3145 loc = gimple_location (stmt);
3146 if (lacc && lacc->grp_to_be_replaced)
3148 lhs = get_access_replacement (lacc);
3149 gimple_assign_set_lhs (stmt, lhs);
3150 modify_this_stmt = true;
3151 if (lacc->grp_partial_lhs)
3152 force_gimple_rhs = true;
3153 sra_stats.exprs++;
3156 if (racc && racc->grp_to_be_replaced)
3158 rhs = get_access_replacement (racc);
3159 modify_this_stmt = true;
3160 if (racc->grp_partial_lhs)
3161 force_gimple_rhs = true;
3162 sra_stats.exprs++;
3164 else if (racc
3165 && !racc->grp_unscalarized_data
3166 && TREE_CODE (lhs) == SSA_NAME
3167 && !access_has_replacements_p (racc))
3169 rhs = get_repl_default_def_ssa_name (racc);
3170 modify_this_stmt = true;
3171 sra_stats.exprs++;
3174 if (modify_this_stmt)
3176 if (!useless_type_conversion_p (TREE_TYPE (lhs), TREE_TYPE (rhs)))
3178 /* If we can avoid creating a VIEW_CONVERT_EXPR do so.
3179 ??? This should move to fold_stmt which we simply should
3180 call after building a VIEW_CONVERT_EXPR here. */
3181 if (AGGREGATE_TYPE_P (TREE_TYPE (lhs))
3182 && !contains_bitfld_component_ref_p (lhs))
3184 lhs = build_ref_for_model (loc, lhs, 0, racc, gsi, false);
3185 gimple_assign_set_lhs (stmt, lhs);
3187 else if (AGGREGATE_TYPE_P (TREE_TYPE (rhs))
3188 && !contains_vce_or_bfcref_p (rhs))
3189 rhs = build_ref_for_model (loc, rhs, 0, lacc, gsi, false);
3191 if (!useless_type_conversion_p (TREE_TYPE (lhs), TREE_TYPE (rhs)))
3193 rhs = fold_build1_loc (loc, VIEW_CONVERT_EXPR, TREE_TYPE (lhs),
3194 rhs);
3195 if (is_gimple_reg_type (TREE_TYPE (lhs))
3196 && TREE_CODE (lhs) != SSA_NAME)
3197 force_gimple_rhs = true;
3202 if (lacc && lacc->grp_to_be_debug_replaced)
3204 tree dlhs = get_access_replacement (lacc);
3205 tree drhs = unshare_expr (rhs);
3206 if (!useless_type_conversion_p (TREE_TYPE (dlhs), TREE_TYPE (drhs)))
3208 if (AGGREGATE_TYPE_P (TREE_TYPE (drhs))
3209 && !contains_vce_or_bfcref_p (drhs))
3210 drhs = build_debug_ref_for_model (loc, drhs, 0, lacc);
3211 if (drhs
3212 && !useless_type_conversion_p (TREE_TYPE (dlhs),
3213 TREE_TYPE (drhs)))
3214 drhs = fold_build1_loc (loc, VIEW_CONVERT_EXPR,
3215 TREE_TYPE (dlhs), drhs);
3217 gimple ds = gimple_build_debug_bind (dlhs, drhs, stmt);
3218 gsi_insert_before (gsi, ds, GSI_SAME_STMT);
3221 /* From this point on, the function deals with assignments in between
3222 aggregates when at least one has scalar reductions of some of its
3223 components. There are three possible scenarios: Both the LHS and RHS have
3224 to-be-scalarized components, 2) only the RHS has or 3) only the LHS has.
3226 In the first case, we would like to load the LHS components from RHS
3227 components whenever possible. If that is not possible, we would like to
3228 read it directly from the RHS (after updating it by storing in it its own
3229 components). If there are some necessary unscalarized data in the LHS,
3230 those will be loaded by the original assignment too. If neither of these
3231 cases happen, the original statement can be removed. Most of this is done
3232 by load_assign_lhs_subreplacements.
3234 In the second case, we would like to store all RHS scalarized components
3235 directly into LHS and if they cover the aggregate completely, remove the
3236 statement too. In the third case, we want the LHS components to be loaded
3237 directly from the RHS (DSE will remove the original statement if it
3238 becomes redundant).
3240 This is a bit complex but manageable when types match and when unions do
3241 not cause confusion in a way that we cannot really load a component of LHS
3242 from the RHS or vice versa (the access representing this level can have
3243 subaccesses that are accessible only through a different union field at a
3244 higher level - different from the one used in the examined expression).
3245 Unions are fun.
3247 Therefore, I specially handle a fourth case, happening when there is a
3248 specific type cast or it is impossible to locate a scalarized subaccess on
3249 the other side of the expression. If that happens, I simply "refresh" the
3250 RHS by storing in it is scalarized components leave the original statement
3251 there to do the copying and then load the scalar replacements of the LHS.
3252 This is what the first branch does. */
3254 if (modify_this_stmt
3255 || gimple_has_volatile_ops (stmt)
3256 || contains_vce_or_bfcref_p (rhs)
3257 || contains_vce_or_bfcref_p (lhs)
3258 || stmt_ends_bb_p (stmt))
3260 if (access_has_children_p (racc))
3261 generate_subtree_copies (racc->first_child, rhs, racc->offset, 0, 0,
3262 gsi, false, false, loc);
3263 if (access_has_children_p (lacc))
3265 gimple_stmt_iterator alt_gsi = gsi_none ();
3266 if (stmt_ends_bb_p (stmt))
3268 alt_gsi = gsi_start_edge (single_non_eh_succ (gsi_bb (*gsi)));
3269 gsi = &alt_gsi;
3271 generate_subtree_copies (lacc->first_child, lhs, lacc->offset, 0, 0,
3272 gsi, true, true, loc);
3274 sra_stats.separate_lhs_rhs_handling++;
3276 /* This gimplification must be done after generate_subtree_copies,
3277 lest we insert the subtree copies in the middle of the gimplified
3278 sequence. */
3279 if (force_gimple_rhs)
3280 rhs = force_gimple_operand_gsi (&orig_gsi, rhs, true, NULL_TREE,
3281 true, GSI_SAME_STMT);
3282 if (gimple_assign_rhs1 (stmt) != rhs)
3284 modify_this_stmt = true;
3285 gimple_assign_set_rhs_from_tree (&orig_gsi, rhs);
3286 gcc_assert (stmt == gsi_stmt (orig_gsi));
3289 return modify_this_stmt ? SRA_AM_MODIFIED : SRA_AM_NONE;
3291 else
3293 if (access_has_children_p (lacc)
3294 && access_has_children_p (racc)
3295 /* When an access represents an unscalarizable region, it usually
3296 represents accesses with variable offset and thus must not be used
3297 to generate new memory accesses. */
3298 && !lacc->grp_unscalarizable_region
3299 && !racc->grp_unscalarizable_region)
3301 struct subreplacement_assignment_data sad;
3303 sad.left_offset = lacc->offset;
3304 sad.assignment_lhs = lhs;
3305 sad.assignment_rhs = rhs;
3306 sad.top_racc = racc;
3307 sad.old_gsi = *gsi;
3308 sad.new_gsi = gsi;
3309 sad.loc = gimple_location (stmt);
3310 sad.refreshed = SRA_UDH_NONE;
3312 if (lacc->grp_read && !lacc->grp_covered)
3313 handle_unscalarized_data_in_subtree (&sad);
3315 load_assign_lhs_subreplacements (lacc, &sad);
3316 if (sad.refreshed != SRA_UDH_RIGHT)
3318 gsi_next (gsi);
3319 unlink_stmt_vdef (stmt);
3320 gsi_remove (&sad.old_gsi, true);
3321 release_defs (stmt);
3322 sra_stats.deleted++;
3323 return SRA_AM_REMOVED;
3326 else
3328 if (access_has_children_p (racc)
3329 && !racc->grp_unscalarized_data)
3331 if (dump_file)
3333 fprintf (dump_file, "Removing load: ");
3334 print_gimple_stmt (dump_file, stmt, 0, 0);
3336 generate_subtree_copies (racc->first_child, lhs,
3337 racc->offset, 0, 0, gsi,
3338 false, false, loc);
3339 gcc_assert (stmt == gsi_stmt (*gsi));
3340 unlink_stmt_vdef (stmt);
3341 gsi_remove (gsi, true);
3342 release_defs (stmt);
3343 sra_stats.deleted++;
3344 return SRA_AM_REMOVED;
3346 /* Restore the aggregate RHS from its components so the
3347 prevailing aggregate copy does the right thing. */
3348 if (access_has_children_p (racc))
3349 generate_subtree_copies (racc->first_child, rhs, racc->offset, 0, 0,
3350 gsi, false, false, loc);
3351 /* Re-load the components of the aggregate copy destination.
3352 But use the RHS aggregate to load from to expose more
3353 optimization opportunities. */
3354 if (access_has_children_p (lacc))
3355 generate_subtree_copies (lacc->first_child, rhs, lacc->offset,
3356 0, 0, gsi, true, true, loc);
3359 return SRA_AM_NONE;
3363 /* Traverse the function body and all modifications as decided in
3364 analyze_all_variable_accesses. Return true iff the CFG has been
3365 changed. */
3367 static bool
3368 sra_modify_function_body (void)
3370 bool cfg_changed = false;
3371 basic_block bb;
3373 FOR_EACH_BB_FN (bb, cfun)
3375 gimple_stmt_iterator gsi = gsi_start_bb (bb);
3376 while (!gsi_end_p (gsi))
3378 gimple stmt = gsi_stmt (gsi);
3379 enum assignment_mod_result assign_result;
3380 bool modified = false, deleted = false;
3381 tree *t;
3382 unsigned i;
3384 switch (gimple_code (stmt))
3386 case GIMPLE_RETURN:
3387 t = gimple_return_retval_ptr (stmt);
3388 if (*t != NULL_TREE)
3389 modified |= sra_modify_expr (t, &gsi, false);
3390 break;
3392 case GIMPLE_ASSIGN:
3393 assign_result = sra_modify_assign (stmt, &gsi);
3394 modified |= assign_result == SRA_AM_MODIFIED;
3395 deleted = assign_result == SRA_AM_REMOVED;
3396 break;
3398 case GIMPLE_CALL:
3399 /* Operands must be processed before the lhs. */
3400 for (i = 0; i < gimple_call_num_args (stmt); i++)
3402 t = gimple_call_arg_ptr (stmt, i);
3403 modified |= sra_modify_expr (t, &gsi, false);
3406 if (gimple_call_lhs (stmt))
3408 t = gimple_call_lhs_ptr (stmt);
3409 modified |= sra_modify_expr (t, &gsi, true);
3411 break;
3413 case GIMPLE_ASM:
3414 for (i = 0; i < gimple_asm_ninputs (stmt); i++)
3416 t = &TREE_VALUE (gimple_asm_input_op (stmt, i));
3417 modified |= sra_modify_expr (t, &gsi, false);
3419 for (i = 0; i < gimple_asm_noutputs (stmt); i++)
3421 t = &TREE_VALUE (gimple_asm_output_op (stmt, i));
3422 modified |= sra_modify_expr (t, &gsi, true);
3424 break;
3426 default:
3427 break;
3430 if (modified)
3432 update_stmt (stmt);
3433 if (maybe_clean_eh_stmt (stmt)
3434 && gimple_purge_dead_eh_edges (gimple_bb (stmt)))
3435 cfg_changed = true;
3437 if (!deleted)
3438 gsi_next (&gsi);
3442 gsi_commit_edge_inserts ();
3443 return cfg_changed;
3446 /* Generate statements initializing scalar replacements of parts of function
3447 parameters. */
3449 static void
3450 initialize_parameter_reductions (void)
3452 gimple_stmt_iterator gsi;
3453 gimple_seq seq = NULL;
3454 tree parm;
3456 gsi = gsi_start (seq);
3457 for (parm = DECL_ARGUMENTS (current_function_decl);
3458 parm;
3459 parm = DECL_CHAIN (parm))
3461 vec<access_p> *access_vec;
3462 struct access *access;
3464 if (!bitmap_bit_p (candidate_bitmap, DECL_UID (parm)))
3465 continue;
3466 access_vec = get_base_access_vector (parm);
3467 if (!access_vec)
3468 continue;
3470 for (access = (*access_vec)[0];
3471 access;
3472 access = access->next_grp)
3473 generate_subtree_copies (access, parm, 0, 0, 0, &gsi, true, true,
3474 EXPR_LOCATION (parm));
3477 seq = gsi_seq (gsi);
3478 if (seq)
3479 gsi_insert_seq_on_edge_immediate (single_succ_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun)), seq);
3482 /* The "main" function of intraprocedural SRA passes. Runs the analysis and if
3483 it reveals there are components of some aggregates to be scalarized, it runs
3484 the required transformations. */
3485 static unsigned int
3486 perform_intra_sra (void)
3488 int ret = 0;
3489 sra_initialize ();
3491 if (!find_var_candidates ())
3492 goto out;
3494 if (!scan_function ())
3495 goto out;
3497 if (!analyze_all_variable_accesses ())
3498 goto out;
3500 if (sra_modify_function_body ())
3501 ret = TODO_update_ssa | TODO_cleanup_cfg;
3502 else
3503 ret = TODO_update_ssa;
3504 initialize_parameter_reductions ();
3506 statistics_counter_event (cfun, "Scalar replacements created",
3507 sra_stats.replacements);
3508 statistics_counter_event (cfun, "Modified expressions", sra_stats.exprs);
3509 statistics_counter_event (cfun, "Subtree copy stmts",
3510 sra_stats.subtree_copies);
3511 statistics_counter_event (cfun, "Subreplacement stmts",
3512 sra_stats.subreplacements);
3513 statistics_counter_event (cfun, "Deleted stmts", sra_stats.deleted);
3514 statistics_counter_event (cfun, "Separate LHS and RHS handling",
3515 sra_stats.separate_lhs_rhs_handling);
3517 out:
3518 sra_deinitialize ();
3519 return ret;
3522 /* Perform early intraprocedural SRA. */
3523 static unsigned int
3524 early_intra_sra (void)
3526 sra_mode = SRA_MODE_EARLY_INTRA;
3527 return perform_intra_sra ();
3530 /* Perform "late" intraprocedural SRA. */
3531 static unsigned int
3532 late_intra_sra (void)
3534 sra_mode = SRA_MODE_INTRA;
3535 return perform_intra_sra ();
3539 static bool
3540 gate_intra_sra (void)
3542 return flag_tree_sra != 0 && dbg_cnt (tree_sra);
3546 namespace {
3548 const pass_data pass_data_sra_early =
3550 GIMPLE_PASS, /* type */
3551 "esra", /* name */
3552 OPTGROUP_NONE, /* optinfo_flags */
3553 TV_TREE_SRA, /* tv_id */
3554 ( PROP_cfg | PROP_ssa ), /* properties_required */
3555 0, /* properties_provided */
3556 0, /* properties_destroyed */
3557 0, /* todo_flags_start */
3558 TODO_update_ssa, /* todo_flags_finish */
3561 class pass_sra_early : public gimple_opt_pass
3563 public:
3564 pass_sra_early (gcc::context *ctxt)
3565 : gimple_opt_pass (pass_data_sra_early, ctxt)
3568 /* opt_pass methods: */
3569 virtual bool gate (function *) { return gate_intra_sra (); }
3570 virtual unsigned int execute (function *) { return early_intra_sra (); }
3572 }; // class pass_sra_early
3574 } // anon namespace
3576 gimple_opt_pass *
3577 make_pass_sra_early (gcc::context *ctxt)
3579 return new pass_sra_early (ctxt);
3582 namespace {
3584 const pass_data pass_data_sra =
3586 GIMPLE_PASS, /* type */
3587 "sra", /* name */
3588 OPTGROUP_NONE, /* optinfo_flags */
3589 TV_TREE_SRA, /* tv_id */
3590 ( PROP_cfg | PROP_ssa ), /* properties_required */
3591 0, /* properties_provided */
3592 0, /* properties_destroyed */
3593 TODO_update_address_taken, /* todo_flags_start */
3594 TODO_update_ssa, /* todo_flags_finish */
3597 class pass_sra : public gimple_opt_pass
3599 public:
3600 pass_sra (gcc::context *ctxt)
3601 : gimple_opt_pass (pass_data_sra, ctxt)
3604 /* opt_pass methods: */
3605 virtual bool gate (function *) { return gate_intra_sra (); }
3606 virtual unsigned int execute (function *) { return late_intra_sra (); }
3608 }; // class pass_sra
3610 } // anon namespace
3612 gimple_opt_pass *
3613 make_pass_sra (gcc::context *ctxt)
3615 return new pass_sra (ctxt);
3619 /* Return true iff PARM (which must be a parm_decl) is an unused scalar
3620 parameter. */
3622 static bool
3623 is_unused_scalar_param (tree parm)
3625 tree name;
3626 return (is_gimple_reg (parm)
3627 && (!(name = ssa_default_def (cfun, parm))
3628 || has_zero_uses (name)));
3631 /* Scan immediate uses of a default definition SSA name of a parameter PARM and
3632 examine whether there are any direct or otherwise infeasible ones. If so,
3633 return true, otherwise return false. PARM must be a gimple register with a
3634 non-NULL default definition. */
3636 static bool
3637 ptr_parm_has_direct_uses (tree parm)
3639 imm_use_iterator ui;
3640 gimple stmt;
3641 tree name = ssa_default_def (cfun, parm);
3642 bool ret = false;
3644 FOR_EACH_IMM_USE_STMT (stmt, ui, name)
3646 int uses_ok = 0;
3647 use_operand_p use_p;
3649 if (is_gimple_debug (stmt))
3650 continue;
3652 /* Valid uses include dereferences on the lhs and the rhs. */
3653 if (gimple_has_lhs (stmt))
3655 tree lhs = gimple_get_lhs (stmt);
3656 while (handled_component_p (lhs))
3657 lhs = TREE_OPERAND (lhs, 0);
3658 if (TREE_CODE (lhs) == MEM_REF
3659 && TREE_OPERAND (lhs, 0) == name
3660 && integer_zerop (TREE_OPERAND (lhs, 1))
3661 && types_compatible_p (TREE_TYPE (lhs),
3662 TREE_TYPE (TREE_TYPE (name)))
3663 && !TREE_THIS_VOLATILE (lhs))
3664 uses_ok++;
3666 if (gimple_assign_single_p (stmt))
3668 tree rhs = gimple_assign_rhs1 (stmt);
3669 while (handled_component_p (rhs))
3670 rhs = TREE_OPERAND (rhs, 0);
3671 if (TREE_CODE (rhs) == MEM_REF
3672 && TREE_OPERAND (rhs, 0) == name
3673 && integer_zerop (TREE_OPERAND (rhs, 1))
3674 && types_compatible_p (TREE_TYPE (rhs),
3675 TREE_TYPE (TREE_TYPE (name)))
3676 && !TREE_THIS_VOLATILE (rhs))
3677 uses_ok++;
3679 else if (is_gimple_call (stmt))
3681 unsigned i;
3682 for (i = 0; i < gimple_call_num_args (stmt); ++i)
3684 tree arg = gimple_call_arg (stmt, i);
3685 while (handled_component_p (arg))
3686 arg = TREE_OPERAND (arg, 0);
3687 if (TREE_CODE (arg) == MEM_REF
3688 && TREE_OPERAND (arg, 0) == name
3689 && integer_zerop (TREE_OPERAND (arg, 1))
3690 && types_compatible_p (TREE_TYPE (arg),
3691 TREE_TYPE (TREE_TYPE (name)))
3692 && !TREE_THIS_VOLATILE (arg))
3693 uses_ok++;
3697 /* If the number of valid uses does not match the number of
3698 uses in this stmt there is an unhandled use. */
3699 FOR_EACH_IMM_USE_ON_STMT (use_p, ui)
3700 --uses_ok;
3702 if (uses_ok != 0)
3703 ret = true;
3705 if (ret)
3706 BREAK_FROM_IMM_USE_STMT (ui);
3709 return ret;
3712 /* Identify candidates for reduction for IPA-SRA based on their type and mark
3713 them in candidate_bitmap. Note that these do not necessarily include
3714 parameter which are unused and thus can be removed. Return true iff any
3715 such candidate has been found. */
3717 static bool
3718 find_param_candidates (void)
3720 tree parm;
3721 int count = 0;
3722 bool ret = false;
3723 const char *msg;
3725 for (parm = DECL_ARGUMENTS (current_function_decl);
3726 parm;
3727 parm = DECL_CHAIN (parm))
3729 tree type = TREE_TYPE (parm);
3730 tree_node **slot;
3732 count++;
3734 if (TREE_THIS_VOLATILE (parm)
3735 || TREE_ADDRESSABLE (parm)
3736 || (!is_gimple_reg_type (type) && is_va_list_type (type)))
3737 continue;
3739 if (is_unused_scalar_param (parm))
3741 ret = true;
3742 continue;
3745 if (POINTER_TYPE_P (type))
3747 type = TREE_TYPE (type);
3749 if (TREE_CODE (type) == FUNCTION_TYPE
3750 || TYPE_VOLATILE (type)
3751 || (TREE_CODE (type) == ARRAY_TYPE
3752 && TYPE_NONALIASED_COMPONENT (type))
3753 || !is_gimple_reg (parm)
3754 || is_va_list_type (type)
3755 || ptr_parm_has_direct_uses (parm))
3756 continue;
3758 else if (!AGGREGATE_TYPE_P (type))
3759 continue;
3761 if (!COMPLETE_TYPE_P (type)
3762 || !tree_fits_uhwi_p (TYPE_SIZE (type))
3763 || tree_to_uhwi (TYPE_SIZE (type)) == 0
3764 || (AGGREGATE_TYPE_P (type)
3765 && type_internals_preclude_sra_p (type, &msg)))
3766 continue;
3768 bitmap_set_bit (candidate_bitmap, DECL_UID (parm));
3769 slot = candidates->find_slot_with_hash (parm, DECL_UID (parm), INSERT);
3770 *slot = parm;
3772 ret = true;
3773 if (dump_file && (dump_flags & TDF_DETAILS))
3775 fprintf (dump_file, "Candidate (%d): ", DECL_UID (parm));
3776 print_generic_expr (dump_file, parm, 0);
3777 fprintf (dump_file, "\n");
3781 func_param_count = count;
3782 return ret;
3785 /* Callback of walk_aliased_vdefs, marks the access passed as DATA as
3786 maybe_modified. */
3788 static bool
3789 mark_maybe_modified (ao_ref *ao ATTRIBUTE_UNUSED, tree vdef ATTRIBUTE_UNUSED,
3790 void *data)
3792 struct access *repr = (struct access *) data;
3794 repr->grp_maybe_modified = 1;
3795 return true;
3798 /* Analyze what representatives (in linked lists accessible from
3799 REPRESENTATIVES) can be modified by side effects of statements in the
3800 current function. */
3802 static void
3803 analyze_modified_params (vec<access_p> representatives)
3805 int i;
3807 for (i = 0; i < func_param_count; i++)
3809 struct access *repr;
3811 for (repr = representatives[i];
3812 repr;
3813 repr = repr->next_grp)
3815 struct access *access;
3816 bitmap visited;
3817 ao_ref ar;
3819 if (no_accesses_p (repr))
3820 continue;
3821 if (!POINTER_TYPE_P (TREE_TYPE (repr->base))
3822 || repr->grp_maybe_modified)
3823 continue;
3825 ao_ref_init (&ar, repr->expr);
3826 visited = BITMAP_ALLOC (NULL);
3827 for (access = repr; access; access = access->next_sibling)
3829 /* All accesses are read ones, otherwise grp_maybe_modified would
3830 be trivially set. */
3831 walk_aliased_vdefs (&ar, gimple_vuse (access->stmt),
3832 mark_maybe_modified, repr, &visited);
3833 if (repr->grp_maybe_modified)
3834 break;
3836 BITMAP_FREE (visited);
3841 /* Propagate distances in bb_dereferences in the opposite direction than the
3842 control flow edges, in each step storing the maximum of the current value
3843 and the minimum of all successors. These steps are repeated until the table
3844 stabilizes. Note that BBs which might terminate the functions (according to
3845 final_bbs bitmap) never updated in this way. */
3847 static void
3848 propagate_dereference_distances (void)
3850 basic_block bb;
3852 auto_vec<basic_block> queue (last_basic_block_for_fn (cfun));
3853 queue.quick_push (ENTRY_BLOCK_PTR_FOR_FN (cfun));
3854 FOR_EACH_BB_FN (bb, cfun)
3856 queue.quick_push (bb);
3857 bb->aux = bb;
3860 while (!queue.is_empty ())
3862 edge_iterator ei;
3863 edge e;
3864 bool change = false;
3865 int i;
3867 bb = queue.pop ();
3868 bb->aux = NULL;
3870 if (bitmap_bit_p (final_bbs, bb->index))
3871 continue;
3873 for (i = 0; i < func_param_count; i++)
3875 int idx = bb->index * func_param_count + i;
3876 bool first = true;
3877 HOST_WIDE_INT inh = 0;
3879 FOR_EACH_EDGE (e, ei, bb->succs)
3881 int succ_idx = e->dest->index * func_param_count + i;
3883 if (e->src == EXIT_BLOCK_PTR_FOR_FN (cfun))
3884 continue;
3886 if (first)
3888 first = false;
3889 inh = bb_dereferences [succ_idx];
3891 else if (bb_dereferences [succ_idx] < inh)
3892 inh = bb_dereferences [succ_idx];
3895 if (!first && bb_dereferences[idx] < inh)
3897 bb_dereferences[idx] = inh;
3898 change = true;
3902 if (change && !bitmap_bit_p (final_bbs, bb->index))
3903 FOR_EACH_EDGE (e, ei, bb->preds)
3905 if (e->src->aux)
3906 continue;
3908 e->src->aux = e->src;
3909 queue.quick_push (e->src);
3914 /* Dump a dereferences TABLE with heading STR to file F. */
3916 static void
3917 dump_dereferences_table (FILE *f, const char *str, HOST_WIDE_INT *table)
3919 basic_block bb;
3921 fprintf (dump_file, str);
3922 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun),
3923 EXIT_BLOCK_PTR_FOR_FN (cfun), next_bb)
3925 fprintf (f, "%4i %i ", bb->index, bitmap_bit_p (final_bbs, bb->index));
3926 if (bb != EXIT_BLOCK_PTR_FOR_FN (cfun))
3928 int i;
3929 for (i = 0; i < func_param_count; i++)
3931 int idx = bb->index * func_param_count + i;
3932 fprintf (f, " %4" HOST_WIDE_INT_PRINT "d", table[idx]);
3935 fprintf (f, "\n");
3937 fprintf (dump_file, "\n");
3940 /* Determine what (parts of) parameters passed by reference that are not
3941 assigned to are not certainly dereferenced in this function and thus the
3942 dereferencing cannot be safely moved to the caller without potentially
3943 introducing a segfault. Mark such REPRESENTATIVES as
3944 grp_not_necessarilly_dereferenced.
3946 The dereferenced maximum "distance," i.e. the offset + size of the accessed
3947 part is calculated rather than simple booleans are calculated for each
3948 pointer parameter to handle cases when only a fraction of the whole
3949 aggregate is allocated (see testsuite/gcc.c-torture/execute/ipa-sra-2.c for
3950 an example).
3952 The maximum dereference distances for each pointer parameter and BB are
3953 already stored in bb_dereference. This routine simply propagates these
3954 values upwards by propagate_dereference_distances and then compares the
3955 distances of individual parameters in the ENTRY BB to the equivalent
3956 distances of each representative of a (fraction of a) parameter. */
3958 static void
3959 analyze_caller_dereference_legality (vec<access_p> representatives)
3961 int i;
3963 if (dump_file && (dump_flags & TDF_DETAILS))
3964 dump_dereferences_table (dump_file,
3965 "Dereference table before propagation:\n",
3966 bb_dereferences);
3968 propagate_dereference_distances ();
3970 if (dump_file && (dump_flags & TDF_DETAILS))
3971 dump_dereferences_table (dump_file,
3972 "Dereference table after propagation:\n",
3973 bb_dereferences);
3975 for (i = 0; i < func_param_count; i++)
3977 struct access *repr = representatives[i];
3978 int idx = ENTRY_BLOCK_PTR_FOR_FN (cfun)->index * func_param_count + i;
3980 if (!repr || no_accesses_p (repr))
3981 continue;
3985 if ((repr->offset + repr->size) > bb_dereferences[idx])
3986 repr->grp_not_necessarilly_dereferenced = 1;
3987 repr = repr->next_grp;
3989 while (repr);
3993 /* Return the representative access for the parameter declaration PARM if it is
3994 a scalar passed by reference which is not written to and the pointer value
3995 is not used directly. Thus, if it is legal to dereference it in the caller
3996 and we can rule out modifications through aliases, such parameter should be
3997 turned into one passed by value. Return NULL otherwise. */
3999 static struct access *
4000 unmodified_by_ref_scalar_representative (tree parm)
4002 int i, access_count;
4003 struct access *repr;
4004 vec<access_p> *access_vec;
4006 access_vec = get_base_access_vector (parm);
4007 gcc_assert (access_vec);
4008 repr = (*access_vec)[0];
4009 if (repr->write)
4010 return NULL;
4011 repr->group_representative = repr;
4013 access_count = access_vec->length ();
4014 for (i = 1; i < access_count; i++)
4016 struct access *access = (*access_vec)[i];
4017 if (access->write)
4018 return NULL;
4019 access->group_representative = repr;
4020 access->next_sibling = repr->next_sibling;
4021 repr->next_sibling = access;
4024 repr->grp_read = 1;
4025 repr->grp_scalar_ptr = 1;
4026 return repr;
4029 /* Return true iff this ACCESS precludes IPA-SRA of the parameter it is
4030 associated with. REQ_ALIGN is the minimum required alignment. */
4032 static bool
4033 access_precludes_ipa_sra_p (struct access *access, unsigned int req_align)
4035 unsigned int exp_align;
4036 /* Avoid issues such as the second simple testcase in PR 42025. The problem
4037 is incompatible assign in a call statement (and possibly even in asm
4038 statements). This can be relaxed by using a new temporary but only for
4039 non-TREE_ADDRESSABLE types and is probably not worth the complexity. (In
4040 intraprocedural SRA we deal with this by keeping the old aggregate around,
4041 something we cannot do in IPA-SRA.) */
4042 if (access->write
4043 && (is_gimple_call (access->stmt)
4044 || gimple_code (access->stmt) == GIMPLE_ASM))
4045 return true;
4047 exp_align = get_object_alignment (access->expr);
4048 if (exp_align < req_align)
4049 return true;
4051 return false;
4055 /* Sort collected accesses for parameter PARM, identify representatives for
4056 each accessed region and link them together. Return NULL if there are
4057 different but overlapping accesses, return the special ptr value meaning
4058 there are no accesses for this parameter if that is the case and return the
4059 first representative otherwise. Set *RO_GRP if there is a group of accesses
4060 with only read (i.e. no write) accesses. */
4062 static struct access *
4063 splice_param_accesses (tree parm, bool *ro_grp)
4065 int i, j, access_count, group_count;
4066 int agg_size, total_size = 0;
4067 struct access *access, *res, **prev_acc_ptr = &res;
4068 vec<access_p> *access_vec;
4070 access_vec = get_base_access_vector (parm);
4071 if (!access_vec)
4072 return &no_accesses_representant;
4073 access_count = access_vec->length ();
4075 access_vec->qsort (compare_access_positions);
4077 i = 0;
4078 total_size = 0;
4079 group_count = 0;
4080 while (i < access_count)
4082 bool modification;
4083 tree a1_alias_type;
4084 access = (*access_vec)[i];
4085 modification = access->write;
4086 if (access_precludes_ipa_sra_p (access, TYPE_ALIGN (access->type)))
4087 return NULL;
4088 a1_alias_type = reference_alias_ptr_type (access->expr);
4090 /* Access is about to become group representative unless we find some
4091 nasty overlap which would preclude us from breaking this parameter
4092 apart. */
4094 j = i + 1;
4095 while (j < access_count)
4097 struct access *ac2 = (*access_vec)[j];
4098 if (ac2->offset != access->offset)
4100 /* All or nothing law for parameters. */
4101 if (access->offset + access->size > ac2->offset)
4102 return NULL;
4103 else
4104 break;
4106 else if (ac2->size != access->size)
4107 return NULL;
4109 if (access_precludes_ipa_sra_p (ac2, TYPE_ALIGN (access->type))
4110 || (ac2->type != access->type
4111 && (TREE_ADDRESSABLE (ac2->type)
4112 || TREE_ADDRESSABLE (access->type)))
4113 || (reference_alias_ptr_type (ac2->expr) != a1_alias_type))
4114 return NULL;
4116 modification |= ac2->write;
4117 ac2->group_representative = access;
4118 ac2->next_sibling = access->next_sibling;
4119 access->next_sibling = ac2;
4120 j++;
4123 group_count++;
4124 access->grp_maybe_modified = modification;
4125 if (!modification)
4126 *ro_grp = true;
4127 *prev_acc_ptr = access;
4128 prev_acc_ptr = &access->next_grp;
4129 total_size += access->size;
4130 i = j;
4133 if (POINTER_TYPE_P (TREE_TYPE (parm)))
4134 agg_size = tree_to_uhwi (TYPE_SIZE (TREE_TYPE (TREE_TYPE (parm))));
4135 else
4136 agg_size = tree_to_uhwi (TYPE_SIZE (TREE_TYPE (parm)));
4137 if (total_size >= agg_size)
4138 return NULL;
4140 gcc_assert (group_count > 0);
4141 return res;
4144 /* Decide whether parameters with representative accesses given by REPR should
4145 be reduced into components. */
4147 static int
4148 decide_one_param_reduction (struct access *repr)
4150 int total_size, cur_parm_size, agg_size, new_param_count, parm_size_limit;
4151 bool by_ref;
4152 tree parm;
4154 parm = repr->base;
4155 cur_parm_size = tree_to_uhwi (TYPE_SIZE (TREE_TYPE (parm)));
4156 gcc_assert (cur_parm_size > 0);
4158 if (POINTER_TYPE_P (TREE_TYPE (parm)))
4160 by_ref = true;
4161 agg_size = tree_to_uhwi (TYPE_SIZE (TREE_TYPE (TREE_TYPE (parm))));
4163 else
4165 by_ref = false;
4166 agg_size = cur_parm_size;
4169 if (dump_file)
4171 struct access *acc;
4172 fprintf (dump_file, "Evaluating PARAM group sizes for ");
4173 print_generic_expr (dump_file, parm, 0);
4174 fprintf (dump_file, " (UID: %u): \n", DECL_UID (parm));
4175 for (acc = repr; acc; acc = acc->next_grp)
4176 dump_access (dump_file, acc, true);
4179 total_size = 0;
4180 new_param_count = 0;
4182 for (; repr; repr = repr->next_grp)
4184 gcc_assert (parm == repr->base);
4186 /* Taking the address of a non-addressable field is verboten. */
4187 if (by_ref && repr->non_addressable)
4188 return 0;
4190 /* Do not decompose a non-BLKmode param in a way that would
4191 create BLKmode params. Especially for by-reference passing
4192 (thus, pointer-type param) this is hardly worthwhile. */
4193 if (DECL_MODE (parm) != BLKmode
4194 && TYPE_MODE (repr->type) == BLKmode)
4195 return 0;
4197 if (!by_ref || (!repr->grp_maybe_modified
4198 && !repr->grp_not_necessarilly_dereferenced))
4199 total_size += repr->size;
4200 else
4201 total_size += cur_parm_size;
4203 new_param_count++;
4206 gcc_assert (new_param_count > 0);
4208 if (optimize_function_for_size_p (cfun))
4209 parm_size_limit = cur_parm_size;
4210 else
4211 parm_size_limit = (PARAM_VALUE (PARAM_IPA_SRA_PTR_GROWTH_FACTOR)
4212 * cur_parm_size);
4214 if (total_size < agg_size
4215 && total_size <= parm_size_limit)
4217 if (dump_file)
4218 fprintf (dump_file, " ....will be split into %i components\n",
4219 new_param_count);
4220 return new_param_count;
4222 else
4223 return 0;
4226 /* The order of the following enums is important, we need to do extra work for
4227 UNUSED_PARAMS, BY_VAL_ACCESSES and UNMODIF_BY_REF_ACCESSES. */
4228 enum ipa_splicing_result { NO_GOOD_ACCESS, UNUSED_PARAMS, BY_VAL_ACCESSES,
4229 MODIF_BY_REF_ACCESSES, UNMODIF_BY_REF_ACCESSES };
4231 /* Identify representatives of all accesses to all candidate parameters for
4232 IPA-SRA. Return result based on what representatives have been found. */
4234 static enum ipa_splicing_result
4235 splice_all_param_accesses (vec<access_p> &representatives)
4237 enum ipa_splicing_result result = NO_GOOD_ACCESS;
4238 tree parm;
4239 struct access *repr;
4241 representatives.create (func_param_count);
4243 for (parm = DECL_ARGUMENTS (current_function_decl);
4244 parm;
4245 parm = DECL_CHAIN (parm))
4247 if (is_unused_scalar_param (parm))
4249 representatives.quick_push (&no_accesses_representant);
4250 if (result == NO_GOOD_ACCESS)
4251 result = UNUSED_PARAMS;
4253 else if (POINTER_TYPE_P (TREE_TYPE (parm))
4254 && is_gimple_reg_type (TREE_TYPE (TREE_TYPE (parm)))
4255 && bitmap_bit_p (candidate_bitmap, DECL_UID (parm)))
4257 repr = unmodified_by_ref_scalar_representative (parm);
4258 representatives.quick_push (repr);
4259 if (repr)
4260 result = UNMODIF_BY_REF_ACCESSES;
4262 else if (bitmap_bit_p (candidate_bitmap, DECL_UID (parm)))
4264 bool ro_grp = false;
4265 repr = splice_param_accesses (parm, &ro_grp);
4266 representatives.quick_push (repr);
4268 if (repr && !no_accesses_p (repr))
4270 if (POINTER_TYPE_P (TREE_TYPE (parm)))
4272 if (ro_grp)
4273 result = UNMODIF_BY_REF_ACCESSES;
4274 else if (result < MODIF_BY_REF_ACCESSES)
4275 result = MODIF_BY_REF_ACCESSES;
4277 else if (result < BY_VAL_ACCESSES)
4278 result = BY_VAL_ACCESSES;
4280 else if (no_accesses_p (repr) && (result == NO_GOOD_ACCESS))
4281 result = UNUSED_PARAMS;
4283 else
4284 representatives.quick_push (NULL);
4287 if (result == NO_GOOD_ACCESS)
4289 representatives.release ();
4290 return NO_GOOD_ACCESS;
4293 return result;
4296 /* Return the index of BASE in PARMS. Abort if it is not found. */
4298 static inline int
4299 get_param_index (tree base, vec<tree> parms)
4301 int i, len;
4303 len = parms.length ();
4304 for (i = 0; i < len; i++)
4305 if (parms[i] == base)
4306 return i;
4307 gcc_unreachable ();
4310 /* Convert the decisions made at the representative level into compact
4311 parameter adjustments. REPRESENTATIVES are pointers to first
4312 representatives of each param accesses, ADJUSTMENTS_COUNT is the expected
4313 final number of adjustments. */
4315 static ipa_parm_adjustment_vec
4316 turn_representatives_into_adjustments (vec<access_p> representatives,
4317 int adjustments_count)
4319 vec<tree> parms;
4320 ipa_parm_adjustment_vec adjustments;
4321 tree parm;
4322 int i;
4324 gcc_assert (adjustments_count > 0);
4325 parms = ipa_get_vector_of_formal_parms (current_function_decl);
4326 adjustments.create (adjustments_count);
4327 parm = DECL_ARGUMENTS (current_function_decl);
4328 for (i = 0; i < func_param_count; i++, parm = DECL_CHAIN (parm))
4330 struct access *repr = representatives[i];
4332 if (!repr || no_accesses_p (repr))
4334 struct ipa_parm_adjustment adj;
4336 memset (&adj, 0, sizeof (adj));
4337 adj.base_index = get_param_index (parm, parms);
4338 adj.base = parm;
4339 if (!repr)
4340 adj.op = IPA_PARM_OP_COPY;
4341 else
4342 adj.op = IPA_PARM_OP_REMOVE;
4343 adj.arg_prefix = "ISRA";
4344 adjustments.quick_push (adj);
4346 else
4348 struct ipa_parm_adjustment adj;
4349 int index = get_param_index (parm, parms);
4351 for (; repr; repr = repr->next_grp)
4353 memset (&adj, 0, sizeof (adj));
4354 gcc_assert (repr->base == parm);
4355 adj.base_index = index;
4356 adj.base = repr->base;
4357 adj.type = repr->type;
4358 adj.alias_ptr_type = reference_alias_ptr_type (repr->expr);
4359 adj.offset = repr->offset;
4360 adj.by_ref = (POINTER_TYPE_P (TREE_TYPE (repr->base))
4361 && (repr->grp_maybe_modified
4362 || repr->grp_not_necessarilly_dereferenced));
4363 adj.arg_prefix = "ISRA";
4364 adjustments.quick_push (adj);
4368 parms.release ();
4369 return adjustments;
4372 /* Analyze the collected accesses and produce a plan what to do with the
4373 parameters in the form of adjustments, NULL meaning nothing. */
4375 static ipa_parm_adjustment_vec
4376 analyze_all_param_acesses (void)
4378 enum ipa_splicing_result repr_state;
4379 bool proceed = false;
4380 int i, adjustments_count = 0;
4381 vec<access_p> representatives;
4382 ipa_parm_adjustment_vec adjustments;
4384 repr_state = splice_all_param_accesses (representatives);
4385 if (repr_state == NO_GOOD_ACCESS)
4386 return ipa_parm_adjustment_vec ();
4388 /* If there are any parameters passed by reference which are not modified
4389 directly, we need to check whether they can be modified indirectly. */
4390 if (repr_state == UNMODIF_BY_REF_ACCESSES)
4392 analyze_caller_dereference_legality (representatives);
4393 analyze_modified_params (representatives);
4396 for (i = 0; i < func_param_count; i++)
4398 struct access *repr = representatives[i];
4400 if (repr && !no_accesses_p (repr))
4402 if (repr->grp_scalar_ptr)
4404 adjustments_count++;
4405 if (repr->grp_not_necessarilly_dereferenced
4406 || repr->grp_maybe_modified)
4407 representatives[i] = NULL;
4408 else
4410 proceed = true;
4411 sra_stats.scalar_by_ref_to_by_val++;
4414 else
4416 int new_components = decide_one_param_reduction (repr);
4418 if (new_components == 0)
4420 representatives[i] = NULL;
4421 adjustments_count++;
4423 else
4425 adjustments_count += new_components;
4426 sra_stats.aggregate_params_reduced++;
4427 sra_stats.param_reductions_created += new_components;
4428 proceed = true;
4432 else
4434 if (no_accesses_p (repr))
4436 proceed = true;
4437 sra_stats.deleted_unused_parameters++;
4439 adjustments_count++;
4443 if (!proceed && dump_file)
4444 fprintf (dump_file, "NOT proceeding to change params.\n");
4446 if (proceed)
4447 adjustments = turn_representatives_into_adjustments (representatives,
4448 adjustments_count);
4449 else
4450 adjustments = ipa_parm_adjustment_vec ();
4452 representatives.release ();
4453 return adjustments;
4456 /* If a parameter replacement identified by ADJ does not yet exist in the form
4457 of declaration, create it and record it, otherwise return the previously
4458 created one. */
4460 static tree
4461 get_replaced_param_substitute (struct ipa_parm_adjustment *adj)
4463 tree repl;
4464 if (!adj->new_ssa_base)
4466 char *pretty_name = make_fancy_name (adj->base);
4468 repl = create_tmp_reg (TREE_TYPE (adj->base), "ISR");
4469 DECL_NAME (repl) = get_identifier (pretty_name);
4470 obstack_free (&name_obstack, pretty_name);
4472 adj->new_ssa_base = repl;
4474 else
4475 repl = adj->new_ssa_base;
4476 return repl;
4479 /* Find the first adjustment for a particular parameter BASE in a vector of
4480 ADJUSTMENTS which is not a copy_param. Return NULL if there is no such
4481 adjustment. */
4483 static struct ipa_parm_adjustment *
4484 get_adjustment_for_base (ipa_parm_adjustment_vec adjustments, tree base)
4486 int i, len;
4488 len = adjustments.length ();
4489 for (i = 0; i < len; i++)
4491 struct ipa_parm_adjustment *adj;
4493 adj = &adjustments[i];
4494 if (adj->op != IPA_PARM_OP_COPY && adj->base == base)
4495 return adj;
4498 return NULL;
4501 /* If the statement STMT defines an SSA_NAME of a parameter which is to be
4502 removed because its value is not used, replace the SSA_NAME with a one
4503 relating to a created VAR_DECL together all of its uses and return true.
4504 ADJUSTMENTS is a pointer to an adjustments vector. */
4506 static bool
4507 replace_removed_params_ssa_names (gimple stmt,
4508 ipa_parm_adjustment_vec adjustments)
4510 struct ipa_parm_adjustment *adj;
4511 tree lhs, decl, repl, name;
4513 if (gimple_code (stmt) == GIMPLE_PHI)
4514 lhs = gimple_phi_result (stmt);
4515 else if (is_gimple_assign (stmt))
4516 lhs = gimple_assign_lhs (stmt);
4517 else if (is_gimple_call (stmt))
4518 lhs = gimple_call_lhs (stmt);
4519 else
4520 gcc_unreachable ();
4522 if (TREE_CODE (lhs) != SSA_NAME)
4523 return false;
4525 decl = SSA_NAME_VAR (lhs);
4526 if (decl == NULL_TREE
4527 || TREE_CODE (decl) != PARM_DECL)
4528 return false;
4530 adj = get_adjustment_for_base (adjustments, decl);
4531 if (!adj)
4532 return false;
4534 repl = get_replaced_param_substitute (adj);
4535 name = make_ssa_name (repl, stmt);
4537 if (dump_file)
4539 fprintf (dump_file, "replacing an SSA name of a removed param ");
4540 print_generic_expr (dump_file, lhs, 0);
4541 fprintf (dump_file, " with ");
4542 print_generic_expr (dump_file, name, 0);
4543 fprintf (dump_file, "\n");
4546 if (is_gimple_assign (stmt))
4547 gimple_assign_set_lhs (stmt, name);
4548 else if (is_gimple_call (stmt))
4549 gimple_call_set_lhs (stmt, name);
4550 else
4551 gimple_phi_set_result (stmt, name);
4553 replace_uses_by (lhs, name);
4554 release_ssa_name (lhs);
4555 return true;
4558 /* If the statement STMT contains any expressions that need to replaced with a
4559 different one as noted by ADJUSTMENTS, do so. Handle any potential type
4560 incompatibilities (GSI is used to accommodate conversion statements and must
4561 point to the statement). Return true iff the statement was modified. */
4563 static bool
4564 sra_ipa_modify_assign (gimple stmt, gimple_stmt_iterator *gsi,
4565 ipa_parm_adjustment_vec adjustments)
4567 tree *lhs_p, *rhs_p;
4568 bool any;
4570 if (!gimple_assign_single_p (stmt))
4571 return false;
4573 rhs_p = gimple_assign_rhs1_ptr (stmt);
4574 lhs_p = gimple_assign_lhs_ptr (stmt);
4576 any = ipa_modify_expr (rhs_p, false, adjustments);
4577 any |= ipa_modify_expr (lhs_p, false, adjustments);
4578 if (any)
4580 tree new_rhs = NULL_TREE;
4582 if (!useless_type_conversion_p (TREE_TYPE (*lhs_p), TREE_TYPE (*rhs_p)))
4584 if (TREE_CODE (*rhs_p) == CONSTRUCTOR)
4586 /* V_C_Es of constructors can cause trouble (PR 42714). */
4587 if (is_gimple_reg_type (TREE_TYPE (*lhs_p)))
4588 *rhs_p = build_zero_cst (TREE_TYPE (*lhs_p));
4589 else
4590 *rhs_p = build_constructor (TREE_TYPE (*lhs_p),
4591 NULL);
4593 else
4594 new_rhs = fold_build1_loc (gimple_location (stmt),
4595 VIEW_CONVERT_EXPR, TREE_TYPE (*lhs_p),
4596 *rhs_p);
4598 else if (REFERENCE_CLASS_P (*rhs_p)
4599 && is_gimple_reg_type (TREE_TYPE (*lhs_p))
4600 && !is_gimple_reg (*lhs_p))
4601 /* This can happen when an assignment in between two single field
4602 structures is turned into an assignment in between two pointers to
4603 scalars (PR 42237). */
4604 new_rhs = *rhs_p;
4606 if (new_rhs)
4608 tree tmp = force_gimple_operand_gsi (gsi, new_rhs, true, NULL_TREE,
4609 true, GSI_SAME_STMT);
4611 gimple_assign_set_rhs_from_tree (gsi, tmp);
4614 return true;
4617 return false;
4620 /* Traverse the function body and all modifications as described in
4621 ADJUSTMENTS. Return true iff the CFG has been changed. */
4623 bool
4624 ipa_sra_modify_function_body (ipa_parm_adjustment_vec adjustments)
4626 bool cfg_changed = false;
4627 basic_block bb;
4629 FOR_EACH_BB_FN (bb, cfun)
4631 gimple_stmt_iterator gsi;
4633 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
4634 replace_removed_params_ssa_names (gsi_stmt (gsi), adjustments);
4636 gsi = gsi_start_bb (bb);
4637 while (!gsi_end_p (gsi))
4639 gimple stmt = gsi_stmt (gsi);
4640 bool modified = false;
4641 tree *t;
4642 unsigned i;
4644 switch (gimple_code (stmt))
4646 case GIMPLE_RETURN:
4647 t = gimple_return_retval_ptr (stmt);
4648 if (*t != NULL_TREE)
4649 modified |= ipa_modify_expr (t, true, adjustments);
4650 break;
4652 case GIMPLE_ASSIGN:
4653 modified |= sra_ipa_modify_assign (stmt, &gsi, adjustments);
4654 modified |= replace_removed_params_ssa_names (stmt, adjustments);
4655 break;
4657 case GIMPLE_CALL:
4658 /* Operands must be processed before the lhs. */
4659 for (i = 0; i < gimple_call_num_args (stmt); i++)
4661 t = gimple_call_arg_ptr (stmt, i);
4662 modified |= ipa_modify_expr (t, true, adjustments);
4665 if (gimple_call_lhs (stmt))
4667 t = gimple_call_lhs_ptr (stmt);
4668 modified |= ipa_modify_expr (t, false, adjustments);
4669 modified |= replace_removed_params_ssa_names (stmt,
4670 adjustments);
4672 break;
4674 case GIMPLE_ASM:
4675 for (i = 0; i < gimple_asm_ninputs (stmt); i++)
4677 t = &TREE_VALUE (gimple_asm_input_op (stmt, i));
4678 modified |= ipa_modify_expr (t, true, adjustments);
4680 for (i = 0; i < gimple_asm_noutputs (stmt); i++)
4682 t = &TREE_VALUE (gimple_asm_output_op (stmt, i));
4683 modified |= ipa_modify_expr (t, false, adjustments);
4685 break;
4687 default:
4688 break;
4691 if (modified)
4693 update_stmt (stmt);
4694 if (maybe_clean_eh_stmt (stmt)
4695 && gimple_purge_dead_eh_edges (gimple_bb (stmt)))
4696 cfg_changed = true;
4698 gsi_next (&gsi);
4702 return cfg_changed;
4705 /* Call gimple_debug_bind_reset_value on all debug statements describing
4706 gimple register parameters that are being removed or replaced. */
4708 static void
4709 sra_ipa_reset_debug_stmts (ipa_parm_adjustment_vec adjustments)
4711 int i, len;
4712 gimple_stmt_iterator *gsip = NULL, gsi;
4714 if (MAY_HAVE_DEBUG_STMTS && single_succ_p (ENTRY_BLOCK_PTR_FOR_FN (cfun)))
4716 gsi = gsi_after_labels (single_succ (ENTRY_BLOCK_PTR_FOR_FN (cfun)));
4717 gsip = &gsi;
4719 len = adjustments.length ();
4720 for (i = 0; i < len; i++)
4722 struct ipa_parm_adjustment *adj;
4723 imm_use_iterator ui;
4724 gimple stmt, def_temp;
4725 tree name, vexpr, copy = NULL_TREE;
4726 use_operand_p use_p;
4728 adj = &adjustments[i];
4729 if (adj->op == IPA_PARM_OP_COPY || !is_gimple_reg (adj->base))
4730 continue;
4731 name = ssa_default_def (cfun, adj->base);
4732 vexpr = NULL;
4733 if (name)
4734 FOR_EACH_IMM_USE_STMT (stmt, ui, name)
4736 if (gimple_clobber_p (stmt))
4738 gimple_stmt_iterator cgsi = gsi_for_stmt (stmt);
4739 unlink_stmt_vdef (stmt);
4740 gsi_remove (&cgsi, true);
4741 release_defs (stmt);
4742 continue;
4744 /* All other users must have been removed by
4745 ipa_sra_modify_function_body. */
4746 gcc_assert (is_gimple_debug (stmt));
4747 if (vexpr == NULL && gsip != NULL)
4749 gcc_assert (TREE_CODE (adj->base) == PARM_DECL);
4750 vexpr = make_node (DEBUG_EXPR_DECL);
4751 def_temp = gimple_build_debug_source_bind (vexpr, adj->base,
4752 NULL);
4753 DECL_ARTIFICIAL (vexpr) = 1;
4754 TREE_TYPE (vexpr) = TREE_TYPE (name);
4755 DECL_MODE (vexpr) = DECL_MODE (adj->base);
4756 gsi_insert_before (gsip, def_temp, GSI_SAME_STMT);
4758 if (vexpr)
4760 FOR_EACH_IMM_USE_ON_STMT (use_p, ui)
4761 SET_USE (use_p, vexpr);
4763 else
4764 gimple_debug_bind_reset_value (stmt);
4765 update_stmt (stmt);
4767 /* Create a VAR_DECL for debug info purposes. */
4768 if (!DECL_IGNORED_P (adj->base))
4770 copy = build_decl (DECL_SOURCE_LOCATION (current_function_decl),
4771 VAR_DECL, DECL_NAME (adj->base),
4772 TREE_TYPE (adj->base));
4773 if (DECL_PT_UID_SET_P (adj->base))
4774 SET_DECL_PT_UID (copy, DECL_PT_UID (adj->base));
4775 TREE_ADDRESSABLE (copy) = TREE_ADDRESSABLE (adj->base);
4776 TREE_READONLY (copy) = TREE_READONLY (adj->base);
4777 TREE_THIS_VOLATILE (copy) = TREE_THIS_VOLATILE (adj->base);
4778 DECL_GIMPLE_REG_P (copy) = DECL_GIMPLE_REG_P (adj->base);
4779 DECL_ARTIFICIAL (copy) = DECL_ARTIFICIAL (adj->base);
4780 DECL_IGNORED_P (copy) = DECL_IGNORED_P (adj->base);
4781 DECL_ABSTRACT_ORIGIN (copy) = DECL_ORIGIN (adj->base);
4782 DECL_SEEN_IN_BIND_EXPR_P (copy) = 1;
4783 SET_DECL_RTL (copy, 0);
4784 TREE_USED (copy) = 1;
4785 DECL_CONTEXT (copy) = current_function_decl;
4786 add_local_decl (cfun, copy);
4787 DECL_CHAIN (copy) =
4788 BLOCK_VARS (DECL_INITIAL (current_function_decl));
4789 BLOCK_VARS (DECL_INITIAL (current_function_decl)) = copy;
4791 if (gsip != NULL && copy && target_for_debug_bind (adj->base))
4793 gcc_assert (TREE_CODE (adj->base) == PARM_DECL);
4794 if (vexpr)
4795 def_temp = gimple_build_debug_bind (copy, vexpr, NULL);
4796 else
4797 def_temp = gimple_build_debug_source_bind (copy, adj->base,
4798 NULL);
4799 gsi_insert_before (gsip, def_temp, GSI_SAME_STMT);
4804 /* Return false if all callers have at least as many actual arguments as there
4805 are formal parameters in the current function and that their types
4806 match. */
4808 static bool
4809 some_callers_have_mismatched_arguments_p (struct cgraph_node *node,
4810 void *data ATTRIBUTE_UNUSED)
4812 struct cgraph_edge *cs;
4813 for (cs = node->callers; cs; cs = cs->next_caller)
4814 if (!callsite_arguments_match_p (cs->call_stmt))
4815 return true;
4817 return false;
4820 /* Convert all callers of NODE. */
4822 static bool
4823 convert_callers_for_node (struct cgraph_node *node,
4824 void *data)
4826 ipa_parm_adjustment_vec *adjustments = (ipa_parm_adjustment_vec *) data;
4827 bitmap recomputed_callers = BITMAP_ALLOC (NULL);
4828 struct cgraph_edge *cs;
4830 for (cs = node->callers; cs; cs = cs->next_caller)
4832 push_cfun (DECL_STRUCT_FUNCTION (cs->caller->decl));
4834 if (dump_file)
4835 fprintf (dump_file, "Adjusting call %s/%i -> %s/%i\n",
4836 xstrdup (cs->caller->name ()),
4837 cs->caller->order,
4838 xstrdup (cs->callee->name ()),
4839 cs->callee->order);
4841 ipa_modify_call_arguments (cs, cs->call_stmt, *adjustments);
4843 pop_cfun ();
4846 for (cs = node->callers; cs; cs = cs->next_caller)
4847 if (bitmap_set_bit (recomputed_callers, cs->caller->uid)
4848 && gimple_in_ssa_p (DECL_STRUCT_FUNCTION (cs->caller->decl)))
4849 compute_inline_parameters (cs->caller, true);
4850 BITMAP_FREE (recomputed_callers);
4852 return true;
4855 /* Convert all callers of NODE to pass parameters as given in ADJUSTMENTS. */
4857 static void
4858 convert_callers (struct cgraph_node *node, tree old_decl,
4859 ipa_parm_adjustment_vec adjustments)
4861 basic_block this_block;
4863 node->call_for_symbol_thunks_and_aliases (convert_callers_for_node,
4864 &adjustments, false);
4866 if (!encountered_recursive_call)
4867 return;
4869 FOR_EACH_BB_FN (this_block, cfun)
4871 gimple_stmt_iterator gsi;
4873 for (gsi = gsi_start_bb (this_block); !gsi_end_p (gsi); gsi_next (&gsi))
4875 gimple stmt = gsi_stmt (gsi);
4876 tree call_fndecl;
4877 if (gimple_code (stmt) != GIMPLE_CALL)
4878 continue;
4879 call_fndecl = gimple_call_fndecl (stmt);
4880 if (call_fndecl == old_decl)
4882 if (dump_file)
4883 fprintf (dump_file, "Adjusting recursive call");
4884 gimple_call_set_fndecl (stmt, node->decl);
4885 ipa_modify_call_arguments (NULL, stmt, adjustments);
4890 return;
4893 /* Perform all the modification required in IPA-SRA for NODE to have parameters
4894 as given in ADJUSTMENTS. Return true iff the CFG has been changed. */
4896 static bool
4897 modify_function (struct cgraph_node *node, ipa_parm_adjustment_vec adjustments)
4899 struct cgraph_node *new_node;
4900 bool cfg_changed;
4902 cgraph_edge::rebuild_edges ();
4903 free_dominance_info (CDI_DOMINATORS);
4904 pop_cfun ();
4906 /* This must be done after rebuilding cgraph edges for node above.
4907 Otherwise any recursive calls to node that are recorded in
4908 redirect_callers will be corrupted. */
4909 vec<cgraph_edge *> redirect_callers = node->collect_callers ();
4910 new_node = node->create_version_clone_with_body (redirect_callers, NULL,
4911 NULL, false, NULL, NULL,
4912 "isra");
4913 redirect_callers.release ();
4915 push_cfun (DECL_STRUCT_FUNCTION (new_node->decl));
4916 ipa_modify_formal_parameters (current_function_decl, adjustments);
4917 cfg_changed = ipa_sra_modify_function_body (adjustments);
4918 sra_ipa_reset_debug_stmts (adjustments);
4919 convert_callers (new_node, node->decl, adjustments);
4920 new_node->make_local ();
4921 return cfg_changed;
4924 /* If NODE has a caller, return true. */
4926 static bool
4927 has_caller_p (struct cgraph_node *node, void *data ATTRIBUTE_UNUSED)
4929 if (node->callers)
4930 return true;
4931 return false;
4934 /* Return false the function is apparently unsuitable for IPA-SRA based on it's
4935 attributes, return true otherwise. NODE is the cgraph node of the current
4936 function. */
4938 static bool
4939 ipa_sra_preliminary_function_checks (struct cgraph_node *node)
4941 if (!node->can_be_local_p ())
4943 if (dump_file)
4944 fprintf (dump_file, "Function not local to this compilation unit.\n");
4945 return false;
4948 if (!node->local.can_change_signature)
4950 if (dump_file)
4951 fprintf (dump_file, "Function can not change signature.\n");
4952 return false;
4955 if (!tree_versionable_function_p (node->decl))
4957 if (dump_file)
4958 fprintf (dump_file, "Function is not versionable.\n");
4959 return false;
4962 if (!opt_for_fn (node->decl, optimize)
4963 || !opt_for_fn (node->decl, flag_ipa_sra))
4965 if (dump_file)
4966 fprintf (dump_file, "Function not optimized.\n");
4967 return false;
4970 if (DECL_VIRTUAL_P (current_function_decl))
4972 if (dump_file)
4973 fprintf (dump_file, "Function is a virtual method.\n");
4974 return false;
4977 if ((DECL_COMDAT (node->decl) || DECL_EXTERNAL (node->decl))
4978 && inline_summary (node)->size >= MAX_INLINE_INSNS_AUTO)
4980 if (dump_file)
4981 fprintf (dump_file, "Function too big to be made truly local.\n");
4982 return false;
4985 if (!node->call_for_symbol_thunks_and_aliases (has_caller_p, NULL, true))
4987 if (dump_file)
4988 fprintf (dump_file,
4989 "Function has no callers in this compilation unit.\n");
4990 return false;
4993 if (cfun->stdarg)
4995 if (dump_file)
4996 fprintf (dump_file, "Function uses stdarg. \n");
4997 return false;
5000 if (TYPE_ATTRIBUTES (TREE_TYPE (node->decl)))
5001 return false;
5003 if (DECL_DISREGARD_INLINE_LIMITS (node->decl))
5005 if (dump_file)
5006 fprintf (dump_file, "Always inline function will be inlined "
5007 "anyway. \n");
5008 return false;
5011 return true;
5014 /* Perform early interprocedural SRA. */
5016 static unsigned int
5017 ipa_early_sra (void)
5019 struct cgraph_node *node = cgraph_node::get (current_function_decl);
5020 ipa_parm_adjustment_vec adjustments;
5021 int ret = 0;
5023 if (!ipa_sra_preliminary_function_checks (node))
5024 return 0;
5026 sra_initialize ();
5027 sra_mode = SRA_MODE_EARLY_IPA;
5029 if (!find_param_candidates ())
5031 if (dump_file)
5032 fprintf (dump_file, "Function has no IPA-SRA candidates.\n");
5033 goto simple_out;
5036 if (node->call_for_symbol_thunks_and_aliases
5037 (some_callers_have_mismatched_arguments_p, NULL, true))
5039 if (dump_file)
5040 fprintf (dump_file, "There are callers with insufficient number of "
5041 "arguments or arguments with type mismatches.\n");
5042 goto simple_out;
5045 bb_dereferences = XCNEWVEC (HOST_WIDE_INT,
5046 func_param_count
5047 * last_basic_block_for_fn (cfun));
5048 final_bbs = BITMAP_ALLOC (NULL);
5050 scan_function ();
5051 if (encountered_apply_args)
5053 if (dump_file)
5054 fprintf (dump_file, "Function calls __builtin_apply_args().\n");
5055 goto out;
5058 if (encountered_unchangable_recursive_call)
5060 if (dump_file)
5061 fprintf (dump_file, "Function calls itself with insufficient "
5062 "number of arguments.\n");
5063 goto out;
5066 adjustments = analyze_all_param_acesses ();
5067 if (!adjustments.exists ())
5068 goto out;
5069 if (dump_file)
5070 ipa_dump_param_adjustments (dump_file, adjustments, current_function_decl);
5072 if (modify_function (node, adjustments))
5073 ret = TODO_update_ssa | TODO_cleanup_cfg;
5074 else
5075 ret = TODO_update_ssa;
5076 adjustments.release ();
5078 statistics_counter_event (cfun, "Unused parameters deleted",
5079 sra_stats.deleted_unused_parameters);
5080 statistics_counter_event (cfun, "Scalar parameters converted to by-value",
5081 sra_stats.scalar_by_ref_to_by_val);
5082 statistics_counter_event (cfun, "Aggregate parameters broken up",
5083 sra_stats.aggregate_params_reduced);
5084 statistics_counter_event (cfun, "Aggregate parameter components created",
5085 sra_stats.param_reductions_created);
5087 out:
5088 BITMAP_FREE (final_bbs);
5089 free (bb_dereferences);
5090 simple_out:
5091 sra_deinitialize ();
5092 return ret;
5095 namespace {
5097 const pass_data pass_data_early_ipa_sra =
5099 GIMPLE_PASS, /* type */
5100 "eipa_sra", /* name */
5101 OPTGROUP_NONE, /* optinfo_flags */
5102 TV_IPA_SRA, /* tv_id */
5103 0, /* properties_required */
5104 0, /* properties_provided */
5105 0, /* properties_destroyed */
5106 0, /* todo_flags_start */
5107 TODO_dump_symtab, /* todo_flags_finish */
5110 class pass_early_ipa_sra : public gimple_opt_pass
5112 public:
5113 pass_early_ipa_sra (gcc::context *ctxt)
5114 : gimple_opt_pass (pass_data_early_ipa_sra, ctxt)
5117 /* opt_pass methods: */
5118 virtual bool gate (function *) { return flag_ipa_sra && dbg_cnt (eipa_sra); }
5119 virtual unsigned int execute (function *) { return ipa_early_sra (); }
5121 }; // class pass_early_ipa_sra
5123 } // anon namespace
5125 gimple_opt_pass *
5126 make_pass_early_ipa_sra (gcc::context *ctxt)
5128 return new pass_early_ipa_sra (ctxt);