IPA ICF, part 4/5
[official-gcc.git] / gcc / tree-cfg.c
blobff72601b244a24236b1c6b2ea73ac435ca4c1d89
1 /* Control flow functions for trees.
2 Copyright (C) 2001-2014 Free Software Foundation, Inc.
3 Contributed by Diego Novillo <dnovillo@redhat.com>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "hash-table.h"
25 #include "hash-map.h"
26 #include "tm.h"
27 #include "tree.h"
28 #include "trans-mem.h"
29 #include "stor-layout.h"
30 #include "print-tree.h"
31 #include "tm_p.h"
32 #include "basic-block.h"
33 #include "flags.h"
34 #include "function.h"
35 #include "gimple-pretty-print.h"
36 #include "tree-ssa-alias.h"
37 #include "internal-fn.h"
38 #include "gimple-fold.h"
39 #include "tree-eh.h"
40 #include "gimple-expr.h"
41 #include "is-a.h"
42 #include "gimple.h"
43 #include "gimple-iterator.h"
44 #include "gimplify-me.h"
45 #include "gimple-walk.h"
46 #include "gimple-ssa.h"
47 #include "cgraph.h"
48 #include "tree-cfg.h"
49 #include "tree-phinodes.h"
50 #include "ssa-iterators.h"
51 #include "stringpool.h"
52 #include "tree-ssanames.h"
53 #include "tree-ssa-loop-manip.h"
54 #include "tree-ssa-loop-niter.h"
55 #include "tree-into-ssa.h"
56 #include "expr.h"
57 #include "tree-dfa.h"
58 #include "tree-ssa.h"
59 #include "tree-dump.h"
60 #include "tree-pass.h"
61 #include "diagnostic-core.h"
62 #include "except.h"
63 #include "cfgloop.h"
64 #include "tree-ssa-propagate.h"
65 #include "value-prof.h"
66 #include "tree-inline.h"
67 #include "target.h"
68 #include "tree-ssa-live.h"
69 #include "omp-low.h"
70 #include "tree-cfgcleanup.h"
71 #include "wide-int.h"
72 #include "wide-int-print.h"
74 /* This file contains functions for building the Control Flow Graph (CFG)
75 for a function tree. */
77 /* Local declarations. */
79 /* Initial capacity for the basic block array. */
80 static const int initial_cfg_capacity = 20;
82 /* This hash table allows us to efficiently lookup all CASE_LABEL_EXPRs
83 which use a particular edge. The CASE_LABEL_EXPRs are chained together
84 via their CASE_CHAIN field, which we clear after we're done with the
85 hash table to prevent problems with duplication of GIMPLE_SWITCHes.
87 Access to this list of CASE_LABEL_EXPRs allows us to efficiently
88 update the case vector in response to edge redirections.
90 Right now this table is set up and torn down at key points in the
91 compilation process. It would be nice if we could make the table
92 more persistent. The key is getting notification of changes to
93 the CFG (particularly edge removal, creation and redirection). */
95 static hash_map<edge, tree> *edge_to_cases;
97 /* If we record edge_to_cases, this bitmap will hold indexes
98 of basic blocks that end in a GIMPLE_SWITCH which we touched
99 due to edge manipulations. */
101 static bitmap touched_switch_bbs;
103 /* CFG statistics. */
104 struct cfg_stats_d
106 long num_merged_labels;
109 static struct cfg_stats_d cfg_stats;
111 /* Hash table to store last discriminator assigned for each locus. */
112 struct locus_discrim_map
114 location_t locus;
115 int discriminator;
118 /* Hashtable helpers. */
120 struct locus_discrim_hasher : typed_free_remove <locus_discrim_map>
122 typedef locus_discrim_map value_type;
123 typedef locus_discrim_map compare_type;
124 static inline hashval_t hash (const value_type *);
125 static inline bool equal (const value_type *, const compare_type *);
128 /* Trivial hash function for a location_t. ITEM is a pointer to
129 a hash table entry that maps a location_t to a discriminator. */
131 inline hashval_t
132 locus_discrim_hasher::hash (const value_type *item)
134 return LOCATION_LINE (item->locus);
137 /* Equality function for the locus-to-discriminator map. A and B
138 point to the two hash table entries to compare. */
140 inline bool
141 locus_discrim_hasher::equal (const value_type *a, const compare_type *b)
143 return LOCATION_LINE (a->locus) == LOCATION_LINE (b->locus);
146 static hash_table<locus_discrim_hasher> *discriminator_per_locus;
148 /* Basic blocks and flowgraphs. */
149 static void make_blocks (gimple_seq);
151 /* Edges. */
152 static void make_edges (void);
153 static void assign_discriminators (void);
154 static void make_cond_expr_edges (basic_block);
155 static void make_gimple_switch_edges (basic_block);
156 static bool make_goto_expr_edges (basic_block);
157 static void make_gimple_asm_edges (basic_block);
158 static edge gimple_redirect_edge_and_branch (edge, basic_block);
159 static edge gimple_try_redirect_by_replacing_jump (edge, basic_block);
161 /* Various helpers. */
162 static inline bool stmt_starts_bb_p (gimple, gimple);
163 static int gimple_verify_flow_info (void);
164 static void gimple_make_forwarder_block (edge);
165 static gimple first_non_label_stmt (basic_block);
166 static bool verify_gimple_transaction (gimple);
167 static bool call_can_make_abnormal_goto (gimple);
169 /* Flowgraph optimization and cleanup. */
170 static void gimple_merge_blocks (basic_block, basic_block);
171 static bool gimple_can_merge_blocks_p (basic_block, basic_block);
172 static void remove_bb (basic_block);
173 static edge find_taken_edge_computed_goto (basic_block, tree);
174 static edge find_taken_edge_cond_expr (basic_block, tree);
175 static edge find_taken_edge_switch_expr (basic_block, tree);
176 static tree find_case_label_for_value (gimple, tree);
178 void
179 init_empty_tree_cfg_for_function (struct function *fn)
181 /* Initialize the basic block array. */
182 init_flow (fn);
183 profile_status_for_fn (fn) = PROFILE_ABSENT;
184 n_basic_blocks_for_fn (fn) = NUM_FIXED_BLOCKS;
185 last_basic_block_for_fn (fn) = NUM_FIXED_BLOCKS;
186 vec_alloc (basic_block_info_for_fn (fn), initial_cfg_capacity);
187 vec_safe_grow_cleared (basic_block_info_for_fn (fn),
188 initial_cfg_capacity);
190 /* Build a mapping of labels to their associated blocks. */
191 vec_alloc (label_to_block_map_for_fn (fn), initial_cfg_capacity);
192 vec_safe_grow_cleared (label_to_block_map_for_fn (fn),
193 initial_cfg_capacity);
195 SET_BASIC_BLOCK_FOR_FN (fn, ENTRY_BLOCK, ENTRY_BLOCK_PTR_FOR_FN (fn));
196 SET_BASIC_BLOCK_FOR_FN (fn, EXIT_BLOCK, EXIT_BLOCK_PTR_FOR_FN (fn));
198 ENTRY_BLOCK_PTR_FOR_FN (fn)->next_bb
199 = EXIT_BLOCK_PTR_FOR_FN (fn);
200 EXIT_BLOCK_PTR_FOR_FN (fn)->prev_bb
201 = ENTRY_BLOCK_PTR_FOR_FN (fn);
204 void
205 init_empty_tree_cfg (void)
207 init_empty_tree_cfg_for_function (cfun);
210 /*---------------------------------------------------------------------------
211 Create basic blocks
212 ---------------------------------------------------------------------------*/
214 /* Entry point to the CFG builder for trees. SEQ is the sequence of
215 statements to be added to the flowgraph. */
217 static void
218 build_gimple_cfg (gimple_seq seq)
220 /* Register specific gimple functions. */
221 gimple_register_cfg_hooks ();
223 memset ((void *) &cfg_stats, 0, sizeof (cfg_stats));
225 init_empty_tree_cfg ();
227 make_blocks (seq);
229 /* Make sure there is always at least one block, even if it's empty. */
230 if (n_basic_blocks_for_fn (cfun) == NUM_FIXED_BLOCKS)
231 create_empty_bb (ENTRY_BLOCK_PTR_FOR_FN (cfun));
233 /* Adjust the size of the array. */
234 if (basic_block_info_for_fn (cfun)->length ()
235 < (size_t) n_basic_blocks_for_fn (cfun))
236 vec_safe_grow_cleared (basic_block_info_for_fn (cfun),
237 n_basic_blocks_for_fn (cfun));
239 /* To speed up statement iterator walks, we first purge dead labels. */
240 cleanup_dead_labels ();
242 /* Group case nodes to reduce the number of edges.
243 We do this after cleaning up dead labels because otherwise we miss
244 a lot of obvious case merging opportunities. */
245 group_case_labels ();
247 /* Create the edges of the flowgraph. */
248 discriminator_per_locus = new hash_table<locus_discrim_hasher> (13);
249 make_edges ();
250 assign_discriminators ();
251 cleanup_dead_labels ();
252 delete discriminator_per_locus;
253 discriminator_per_locus = NULL;
257 /* Look for ANNOTATE calls with loop annotation kind; if found, remove
258 them and propagate the information to the loop. We assume that the
259 annotations come immediately before the condition of the loop. */
261 static void
262 replace_loop_annotate ()
264 struct loop *loop;
265 basic_block bb;
266 gimple_stmt_iterator gsi;
267 gimple stmt;
269 FOR_EACH_LOOP (loop, 0)
271 gsi = gsi_last_bb (loop->header);
272 stmt = gsi_stmt (gsi);
273 if (!(stmt && gimple_code (stmt) == GIMPLE_COND))
274 continue;
275 for (gsi_prev_nondebug (&gsi); !gsi_end_p (gsi); gsi_prev (&gsi))
277 stmt = gsi_stmt (gsi);
278 if (gimple_code (stmt) != GIMPLE_CALL)
279 break;
280 if (!gimple_call_internal_p (stmt)
281 || gimple_call_internal_fn (stmt) != IFN_ANNOTATE)
282 break;
283 switch ((annot_expr_kind) tree_to_shwi (gimple_call_arg (stmt, 1)))
285 case annot_expr_ivdep_kind:
286 loop->safelen = INT_MAX;
287 break;
288 case annot_expr_no_vector_kind:
289 loop->dont_vectorize = true;
290 break;
291 case annot_expr_vector_kind:
292 loop->force_vectorize = true;
293 cfun->has_force_vectorize_loops = true;
294 break;
295 default:
296 gcc_unreachable ();
298 stmt = gimple_build_assign (gimple_call_lhs (stmt),
299 gimple_call_arg (stmt, 0));
300 gsi_replace (&gsi, stmt, true);
304 /* Remove IFN_ANNOTATE. Safeguard for the case loop->latch == NULL. */
305 FOR_EACH_BB_FN (bb, cfun)
307 for (gsi = gsi_last_bb (bb); !gsi_end_p (gsi); gsi_prev (&gsi))
309 stmt = gsi_stmt (gsi);
310 if (gimple_code (stmt) != GIMPLE_CALL)
311 break;
312 if (!gimple_call_internal_p (stmt)
313 || gimple_call_internal_fn (stmt) != IFN_ANNOTATE)
314 break;
315 switch ((annot_expr_kind) tree_to_shwi (gimple_call_arg (stmt, 1)))
317 case annot_expr_ivdep_kind:
318 case annot_expr_no_vector_kind:
319 case annot_expr_vector_kind:
320 break;
321 default:
322 gcc_unreachable ();
324 warning_at (gimple_location (stmt), 0, "ignoring loop annotation");
325 stmt = gimple_build_assign (gimple_call_lhs (stmt),
326 gimple_call_arg (stmt, 0));
327 gsi_replace (&gsi, stmt, true);
333 static unsigned int
334 execute_build_cfg (void)
336 gimple_seq body = gimple_body (current_function_decl);
338 build_gimple_cfg (body);
339 gimple_set_body (current_function_decl, NULL);
340 if (dump_file && (dump_flags & TDF_DETAILS))
342 fprintf (dump_file, "Scope blocks:\n");
343 dump_scope_blocks (dump_file, dump_flags);
345 cleanup_tree_cfg ();
346 loop_optimizer_init (AVOID_CFG_MODIFICATIONS);
347 replace_loop_annotate ();
348 return 0;
351 namespace {
353 const pass_data pass_data_build_cfg =
355 GIMPLE_PASS, /* type */
356 "cfg", /* name */
357 OPTGROUP_NONE, /* optinfo_flags */
358 TV_TREE_CFG, /* tv_id */
359 PROP_gimple_leh, /* properties_required */
360 ( PROP_cfg | PROP_loops ), /* properties_provided */
361 0, /* properties_destroyed */
362 0, /* todo_flags_start */
363 0, /* todo_flags_finish */
366 class pass_build_cfg : public gimple_opt_pass
368 public:
369 pass_build_cfg (gcc::context *ctxt)
370 : gimple_opt_pass (pass_data_build_cfg, ctxt)
373 /* opt_pass methods: */
374 virtual unsigned int execute (function *) { return execute_build_cfg (); }
376 }; // class pass_build_cfg
378 } // anon namespace
380 gimple_opt_pass *
381 make_pass_build_cfg (gcc::context *ctxt)
383 return new pass_build_cfg (ctxt);
387 /* Return true if T is a computed goto. */
389 bool
390 computed_goto_p (gimple t)
392 return (gimple_code (t) == GIMPLE_GOTO
393 && TREE_CODE (gimple_goto_dest (t)) != LABEL_DECL);
396 /* Returns true for edge E where e->src ends with a GIMPLE_COND and
397 the other edge points to a bb with just __builtin_unreachable ().
398 I.e. return true for C->M edge in:
399 <bb C>:
401 if (something)
402 goto <bb N>;
403 else
404 goto <bb M>;
405 <bb N>:
406 __builtin_unreachable ();
407 <bb M>: */
409 bool
410 assert_unreachable_fallthru_edge_p (edge e)
412 basic_block pred_bb = e->src;
413 gimple last = last_stmt (pred_bb);
414 if (last && gimple_code (last) == GIMPLE_COND)
416 basic_block other_bb = EDGE_SUCC (pred_bb, 0)->dest;
417 if (other_bb == e->dest)
418 other_bb = EDGE_SUCC (pred_bb, 1)->dest;
419 if (EDGE_COUNT (other_bb->succs) == 0)
421 gimple_stmt_iterator gsi = gsi_after_labels (other_bb);
422 gimple stmt;
424 if (gsi_end_p (gsi))
425 return false;
426 stmt = gsi_stmt (gsi);
427 while (is_gimple_debug (stmt) || gimple_clobber_p (stmt))
429 gsi_next (&gsi);
430 if (gsi_end_p (gsi))
431 return false;
432 stmt = gsi_stmt (gsi);
434 return gimple_call_builtin_p (stmt, BUILT_IN_UNREACHABLE);
437 return false;
441 /* Initialize GF_CALL_CTRL_ALTERING flag, which indicates the call
442 could alter control flow except via eh. We initialize the flag at
443 CFG build time and only ever clear it later. */
445 static void
446 gimple_call_initialize_ctrl_altering (gimple stmt)
448 int flags = gimple_call_flags (stmt);
450 /* A call alters control flow if it can make an abnormal goto. */
451 if (call_can_make_abnormal_goto (stmt)
452 /* A call also alters control flow if it does not return. */
453 || flags & ECF_NORETURN
454 /* TM ending statements have backedges out of the transaction.
455 Return true so we split the basic block containing them.
456 Note that the TM_BUILTIN test is merely an optimization. */
457 || ((flags & ECF_TM_BUILTIN)
458 && is_tm_ending_fndecl (gimple_call_fndecl (stmt)))
459 /* BUILT_IN_RETURN call is same as return statement. */
460 || gimple_call_builtin_p (stmt, BUILT_IN_RETURN))
461 gimple_call_set_ctrl_altering (stmt, true);
462 else
463 gimple_call_set_ctrl_altering (stmt, false);
467 /* Build a flowgraph for the sequence of stmts SEQ. */
469 static void
470 make_blocks (gimple_seq seq)
472 gimple_stmt_iterator i = gsi_start (seq);
473 gimple stmt = NULL;
474 bool start_new_block = true;
475 bool first_stmt_of_seq = true;
476 basic_block bb = ENTRY_BLOCK_PTR_FOR_FN (cfun);
478 while (!gsi_end_p (i))
480 gimple prev_stmt;
482 prev_stmt = stmt;
483 stmt = gsi_stmt (i);
485 if (stmt && is_gimple_call (stmt))
486 gimple_call_initialize_ctrl_altering (stmt);
488 /* If the statement starts a new basic block or if we have determined
489 in a previous pass that we need to create a new block for STMT, do
490 so now. */
491 if (start_new_block || stmt_starts_bb_p (stmt, prev_stmt))
493 if (!first_stmt_of_seq)
494 gsi_split_seq_before (&i, &seq);
495 bb = create_basic_block (seq, NULL, bb);
496 start_new_block = false;
499 /* Now add STMT to BB and create the subgraphs for special statement
500 codes. */
501 gimple_set_bb (stmt, bb);
503 /* If STMT is a basic block terminator, set START_NEW_BLOCK for the
504 next iteration. */
505 if (stmt_ends_bb_p (stmt))
507 /* If the stmt can make abnormal goto use a new temporary
508 for the assignment to the LHS. This makes sure the old value
509 of the LHS is available on the abnormal edge. Otherwise
510 we will end up with overlapping life-ranges for abnormal
511 SSA names. */
512 if (gimple_has_lhs (stmt)
513 && stmt_can_make_abnormal_goto (stmt)
514 && is_gimple_reg_type (TREE_TYPE (gimple_get_lhs (stmt))))
516 tree lhs = gimple_get_lhs (stmt);
517 tree tmp = create_tmp_var (TREE_TYPE (lhs), NULL);
518 gimple s = gimple_build_assign (lhs, tmp);
519 gimple_set_location (s, gimple_location (stmt));
520 gimple_set_block (s, gimple_block (stmt));
521 gimple_set_lhs (stmt, tmp);
522 if (TREE_CODE (TREE_TYPE (tmp)) == COMPLEX_TYPE
523 || TREE_CODE (TREE_TYPE (tmp)) == VECTOR_TYPE)
524 DECL_GIMPLE_REG_P (tmp) = 1;
525 gsi_insert_after (&i, s, GSI_SAME_STMT);
527 start_new_block = true;
530 gsi_next (&i);
531 first_stmt_of_seq = false;
536 /* Create and return a new empty basic block after bb AFTER. */
538 static basic_block
539 create_bb (void *h, void *e, basic_block after)
541 basic_block bb;
543 gcc_assert (!e);
545 /* Create and initialize a new basic block. Since alloc_block uses
546 GC allocation that clears memory to allocate a basic block, we do
547 not have to clear the newly allocated basic block here. */
548 bb = alloc_block ();
550 bb->index = last_basic_block_for_fn (cfun);
551 bb->flags = BB_NEW;
552 set_bb_seq (bb, h ? (gimple_seq) h : NULL);
554 /* Add the new block to the linked list of blocks. */
555 link_block (bb, after);
557 /* Grow the basic block array if needed. */
558 if ((size_t) last_basic_block_for_fn (cfun)
559 == basic_block_info_for_fn (cfun)->length ())
561 size_t new_size =
562 (last_basic_block_for_fn (cfun)
563 + (last_basic_block_for_fn (cfun) + 3) / 4);
564 vec_safe_grow_cleared (basic_block_info_for_fn (cfun), new_size);
567 /* Add the newly created block to the array. */
568 SET_BASIC_BLOCK_FOR_FN (cfun, last_basic_block_for_fn (cfun), bb);
570 n_basic_blocks_for_fn (cfun)++;
571 last_basic_block_for_fn (cfun)++;
573 return bb;
577 /*---------------------------------------------------------------------------
578 Edge creation
579 ---------------------------------------------------------------------------*/
581 /* Fold COND_EXPR_COND of each COND_EXPR. */
583 void
584 fold_cond_expr_cond (void)
586 basic_block bb;
588 FOR_EACH_BB_FN (bb, cfun)
590 gimple stmt = last_stmt (bb);
592 if (stmt && gimple_code (stmt) == GIMPLE_COND)
594 location_t loc = gimple_location (stmt);
595 tree cond;
596 bool zerop, onep;
598 fold_defer_overflow_warnings ();
599 cond = fold_binary_loc (loc, gimple_cond_code (stmt), boolean_type_node,
600 gimple_cond_lhs (stmt), gimple_cond_rhs (stmt));
601 if (cond)
603 zerop = integer_zerop (cond);
604 onep = integer_onep (cond);
606 else
607 zerop = onep = false;
609 fold_undefer_overflow_warnings (zerop || onep,
610 stmt,
611 WARN_STRICT_OVERFLOW_CONDITIONAL);
612 if (zerop)
613 gimple_cond_make_false (stmt);
614 else if (onep)
615 gimple_cond_make_true (stmt);
620 /* If basic block BB has an abnormal edge to a basic block
621 containing IFN_ABNORMAL_DISPATCHER internal call, return
622 that the dispatcher's basic block, otherwise return NULL. */
624 basic_block
625 get_abnormal_succ_dispatcher (basic_block bb)
627 edge e;
628 edge_iterator ei;
630 FOR_EACH_EDGE (e, ei, bb->succs)
631 if ((e->flags & (EDGE_ABNORMAL | EDGE_EH)) == EDGE_ABNORMAL)
633 gimple_stmt_iterator gsi
634 = gsi_start_nondebug_after_labels_bb (e->dest);
635 gimple g = gsi_stmt (gsi);
636 if (g
637 && is_gimple_call (g)
638 && gimple_call_internal_p (g)
639 && gimple_call_internal_fn (g) == IFN_ABNORMAL_DISPATCHER)
640 return e->dest;
642 return NULL;
645 /* Helper function for make_edges. Create a basic block with
646 with ABNORMAL_DISPATCHER internal call in it if needed, and
647 create abnormal edges from BBS to it and from it to FOR_BB
648 if COMPUTED_GOTO is false, otherwise factor the computed gotos. */
650 static void
651 handle_abnormal_edges (basic_block *dispatcher_bbs,
652 basic_block for_bb, int *bb_to_omp_idx,
653 auto_vec<basic_block> *bbs, bool computed_goto)
655 basic_block *dispatcher = dispatcher_bbs + (computed_goto ? 1 : 0);
656 unsigned int idx = 0;
657 basic_block bb;
658 bool inner = false;
660 if (bb_to_omp_idx)
662 dispatcher = dispatcher_bbs + 2 * bb_to_omp_idx[for_bb->index];
663 if (bb_to_omp_idx[for_bb->index] != 0)
664 inner = true;
667 /* If the dispatcher has been created already, then there are basic
668 blocks with abnormal edges to it, so just make a new edge to
669 for_bb. */
670 if (*dispatcher == NULL)
672 /* Check if there are any basic blocks that need to have
673 abnormal edges to this dispatcher. If there are none, return
674 early. */
675 if (bb_to_omp_idx == NULL)
677 if (bbs->is_empty ())
678 return;
680 else
682 FOR_EACH_VEC_ELT (*bbs, idx, bb)
683 if (bb_to_omp_idx[bb->index] == bb_to_omp_idx[for_bb->index])
684 break;
685 if (bb == NULL)
686 return;
689 /* Create the dispatcher bb. */
690 *dispatcher = create_basic_block (NULL, NULL, for_bb);
691 if (computed_goto)
693 /* Factor computed gotos into a common computed goto site. Also
694 record the location of that site so that we can un-factor the
695 gotos after we have converted back to normal form. */
696 gimple_stmt_iterator gsi = gsi_start_bb (*dispatcher);
698 /* Create the destination of the factored goto. Each original
699 computed goto will put its desired destination into this
700 variable and jump to the label we create immediately below. */
701 tree var = create_tmp_var (ptr_type_node, "gotovar");
703 /* Build a label for the new block which will contain the
704 factored computed goto. */
705 tree factored_label_decl
706 = create_artificial_label (UNKNOWN_LOCATION);
707 gimple factored_computed_goto_label
708 = gimple_build_label (factored_label_decl);
709 gsi_insert_after (&gsi, factored_computed_goto_label, GSI_NEW_STMT);
711 /* Build our new computed goto. */
712 gimple factored_computed_goto = gimple_build_goto (var);
713 gsi_insert_after (&gsi, factored_computed_goto, GSI_NEW_STMT);
715 FOR_EACH_VEC_ELT (*bbs, idx, bb)
717 if (bb_to_omp_idx
718 && bb_to_omp_idx[bb->index] != bb_to_omp_idx[for_bb->index])
719 continue;
721 gsi = gsi_last_bb (bb);
722 gimple last = gsi_stmt (gsi);
724 gcc_assert (computed_goto_p (last));
726 /* Copy the original computed goto's destination into VAR. */
727 gimple assignment
728 = gimple_build_assign (var, gimple_goto_dest (last));
729 gsi_insert_before (&gsi, assignment, GSI_SAME_STMT);
731 edge e = make_edge (bb, *dispatcher, EDGE_FALLTHRU);
732 e->goto_locus = gimple_location (last);
733 gsi_remove (&gsi, true);
736 else
738 tree arg = inner ? boolean_true_node : boolean_false_node;
739 gimple g = gimple_build_call_internal (IFN_ABNORMAL_DISPATCHER,
740 1, arg);
741 gimple_stmt_iterator gsi = gsi_after_labels (*dispatcher);
742 gsi_insert_after (&gsi, g, GSI_NEW_STMT);
744 /* Create predecessor edges of the dispatcher. */
745 FOR_EACH_VEC_ELT (*bbs, idx, bb)
747 if (bb_to_omp_idx
748 && bb_to_omp_idx[bb->index] != bb_to_omp_idx[for_bb->index])
749 continue;
750 make_edge (bb, *dispatcher, EDGE_ABNORMAL);
755 make_edge (*dispatcher, for_bb, EDGE_ABNORMAL);
758 /* Join all the blocks in the flowgraph. */
760 static void
761 make_edges (void)
763 basic_block bb;
764 struct omp_region *cur_region = NULL;
765 auto_vec<basic_block> ab_edge_goto;
766 auto_vec<basic_block> ab_edge_call;
767 int *bb_to_omp_idx = NULL;
768 int cur_omp_region_idx = 0;
770 /* Create an edge from entry to the first block with executable
771 statements in it. */
772 make_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun),
773 BASIC_BLOCK_FOR_FN (cfun, NUM_FIXED_BLOCKS),
774 EDGE_FALLTHRU);
776 /* Traverse the basic block array placing edges. */
777 FOR_EACH_BB_FN (bb, cfun)
779 gimple last = last_stmt (bb);
780 bool fallthru;
782 if (bb_to_omp_idx)
783 bb_to_omp_idx[bb->index] = cur_omp_region_idx;
785 if (last)
787 enum gimple_code code = gimple_code (last);
788 switch (code)
790 case GIMPLE_GOTO:
791 if (make_goto_expr_edges (bb))
792 ab_edge_goto.safe_push (bb);
793 fallthru = false;
794 break;
795 case GIMPLE_RETURN:
797 edge e = make_edge (bb, EXIT_BLOCK_PTR_FOR_FN (cfun), 0);
798 e->goto_locus = gimple_location (last);
799 fallthru = false;
801 break;
802 case GIMPLE_COND:
803 make_cond_expr_edges (bb);
804 fallthru = false;
805 break;
806 case GIMPLE_SWITCH:
807 make_gimple_switch_edges (bb);
808 fallthru = false;
809 break;
810 case GIMPLE_RESX:
811 make_eh_edges (last);
812 fallthru = false;
813 break;
814 case GIMPLE_EH_DISPATCH:
815 fallthru = make_eh_dispatch_edges (last);
816 break;
818 case GIMPLE_CALL:
819 /* If this function receives a nonlocal goto, then we need to
820 make edges from this call site to all the nonlocal goto
821 handlers. */
822 if (stmt_can_make_abnormal_goto (last))
823 ab_edge_call.safe_push (bb);
825 /* If this statement has reachable exception handlers, then
826 create abnormal edges to them. */
827 make_eh_edges (last);
829 /* BUILTIN_RETURN is really a return statement. */
830 if (gimple_call_builtin_p (last, BUILT_IN_RETURN))
832 make_edge (bb, EXIT_BLOCK_PTR_FOR_FN (cfun), 0);
833 fallthru = false;
835 /* Some calls are known not to return. */
836 else
837 fallthru = !(gimple_call_flags (last) & ECF_NORETURN);
838 break;
840 case GIMPLE_ASSIGN:
841 /* A GIMPLE_ASSIGN may throw internally and thus be considered
842 control-altering. */
843 if (is_ctrl_altering_stmt (last))
844 make_eh_edges (last);
845 fallthru = true;
846 break;
848 case GIMPLE_ASM:
849 make_gimple_asm_edges (bb);
850 fallthru = true;
851 break;
853 CASE_GIMPLE_OMP:
854 fallthru = make_gimple_omp_edges (bb, &cur_region,
855 &cur_omp_region_idx);
856 if (cur_region && bb_to_omp_idx == NULL)
857 bb_to_omp_idx = XCNEWVEC (int, n_basic_blocks_for_fn (cfun));
858 break;
860 case GIMPLE_TRANSACTION:
862 tree abort_label = gimple_transaction_label (last);
863 if (abort_label)
864 make_edge (bb, label_to_block (abort_label), EDGE_TM_ABORT);
865 fallthru = true;
867 break;
869 default:
870 gcc_assert (!stmt_ends_bb_p (last));
871 fallthru = true;
874 else
875 fallthru = true;
877 if (fallthru)
878 make_edge (bb, bb->next_bb, EDGE_FALLTHRU);
881 /* Computed gotos are hell to deal with, especially if there are
882 lots of them with a large number of destinations. So we factor
883 them to a common computed goto location before we build the
884 edge list. After we convert back to normal form, we will un-factor
885 the computed gotos since factoring introduces an unwanted jump.
886 For non-local gotos and abnormal edges from calls to calls that return
887 twice or forced labels, factor the abnormal edges too, by having all
888 abnormal edges from the calls go to a common artificial basic block
889 with ABNORMAL_DISPATCHER internal call and abnormal edges from that
890 basic block to all forced labels and calls returning twice.
891 We do this per-OpenMP structured block, because those regions
892 are guaranteed to be single entry single exit by the standard,
893 so it is not allowed to enter or exit such regions abnormally this way,
894 thus all computed gotos, non-local gotos and setjmp/longjmp calls
895 must not transfer control across SESE region boundaries. */
896 if (!ab_edge_goto.is_empty () || !ab_edge_call.is_empty ())
898 gimple_stmt_iterator gsi;
899 basic_block dispatcher_bb_array[2] = { NULL, NULL };
900 basic_block *dispatcher_bbs = dispatcher_bb_array;
901 int count = n_basic_blocks_for_fn (cfun);
903 if (bb_to_omp_idx)
904 dispatcher_bbs = XCNEWVEC (basic_block, 2 * count);
906 FOR_EACH_BB_FN (bb, cfun)
908 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
910 gimple label_stmt = gsi_stmt (gsi);
911 tree target;
913 if (gimple_code (label_stmt) != GIMPLE_LABEL)
914 break;
916 target = gimple_label_label (label_stmt);
918 /* Make an edge to every label block that has been marked as a
919 potential target for a computed goto or a non-local goto. */
920 if (FORCED_LABEL (target))
921 handle_abnormal_edges (dispatcher_bbs, bb, bb_to_omp_idx,
922 &ab_edge_goto, true);
923 if (DECL_NONLOCAL (target))
925 handle_abnormal_edges (dispatcher_bbs, bb, bb_to_omp_idx,
926 &ab_edge_call, false);
927 break;
931 if (!gsi_end_p (gsi) && is_gimple_debug (gsi_stmt (gsi)))
932 gsi_next_nondebug (&gsi);
933 if (!gsi_end_p (gsi))
935 /* Make an edge to every setjmp-like call. */
936 gimple call_stmt = gsi_stmt (gsi);
937 if (is_gimple_call (call_stmt)
938 && ((gimple_call_flags (call_stmt) & ECF_RETURNS_TWICE)
939 || gimple_call_builtin_p (call_stmt,
940 BUILT_IN_SETJMP_RECEIVER)))
941 handle_abnormal_edges (dispatcher_bbs, bb, bb_to_omp_idx,
942 &ab_edge_call, false);
946 if (bb_to_omp_idx)
947 XDELETE (dispatcher_bbs);
950 XDELETE (bb_to_omp_idx);
952 free_omp_regions ();
954 /* Fold COND_EXPR_COND of each COND_EXPR. */
955 fold_cond_expr_cond ();
958 /* Find the next available discriminator value for LOCUS. The
959 discriminator distinguishes among several basic blocks that
960 share a common locus, allowing for more accurate sample-based
961 profiling. */
963 static int
964 next_discriminator_for_locus (location_t locus)
966 struct locus_discrim_map item;
967 struct locus_discrim_map **slot;
969 item.locus = locus;
970 item.discriminator = 0;
971 slot = discriminator_per_locus->find_slot_with_hash (
972 &item, LOCATION_LINE (locus), INSERT);
973 gcc_assert (slot);
974 if (*slot == HTAB_EMPTY_ENTRY)
976 *slot = XNEW (struct locus_discrim_map);
977 gcc_assert (*slot);
978 (*slot)->locus = locus;
979 (*slot)->discriminator = 0;
981 (*slot)->discriminator++;
982 return (*slot)->discriminator;
985 /* Return TRUE if LOCUS1 and LOCUS2 refer to the same source line. */
987 static bool
988 same_line_p (location_t locus1, location_t locus2)
990 expanded_location from, to;
992 if (locus1 == locus2)
993 return true;
995 from = expand_location (locus1);
996 to = expand_location (locus2);
998 if (from.line != to.line)
999 return false;
1000 if (from.file == to.file)
1001 return true;
1002 return (from.file != NULL
1003 && to.file != NULL
1004 && filename_cmp (from.file, to.file) == 0);
1007 /* Assign discriminators to each basic block. */
1009 static void
1010 assign_discriminators (void)
1012 basic_block bb;
1014 FOR_EACH_BB_FN (bb, cfun)
1016 edge e;
1017 edge_iterator ei;
1018 gimple last = last_stmt (bb);
1019 location_t locus = last ? gimple_location (last) : UNKNOWN_LOCATION;
1021 if (locus == UNKNOWN_LOCATION)
1022 continue;
1024 FOR_EACH_EDGE (e, ei, bb->succs)
1026 gimple first = first_non_label_stmt (e->dest);
1027 gimple last = last_stmt (e->dest);
1028 if ((first && same_line_p (locus, gimple_location (first)))
1029 || (last && same_line_p (locus, gimple_location (last))))
1031 if (e->dest->discriminator != 0 && bb->discriminator == 0)
1032 bb->discriminator = next_discriminator_for_locus (locus);
1033 else
1034 e->dest->discriminator = next_discriminator_for_locus (locus);
1040 /* Create the edges for a GIMPLE_COND starting at block BB. */
1042 static void
1043 make_cond_expr_edges (basic_block bb)
1045 gimple entry = last_stmt (bb);
1046 gimple then_stmt, else_stmt;
1047 basic_block then_bb, else_bb;
1048 tree then_label, else_label;
1049 edge e;
1051 gcc_assert (entry);
1052 gcc_assert (gimple_code (entry) == GIMPLE_COND);
1054 /* Entry basic blocks for each component. */
1055 then_label = gimple_cond_true_label (entry);
1056 else_label = gimple_cond_false_label (entry);
1057 then_bb = label_to_block (then_label);
1058 else_bb = label_to_block (else_label);
1059 then_stmt = first_stmt (then_bb);
1060 else_stmt = first_stmt (else_bb);
1062 e = make_edge (bb, then_bb, EDGE_TRUE_VALUE);
1063 e->goto_locus = gimple_location (then_stmt);
1064 e = make_edge (bb, else_bb, EDGE_FALSE_VALUE);
1065 if (e)
1066 e->goto_locus = gimple_location (else_stmt);
1068 /* We do not need the labels anymore. */
1069 gimple_cond_set_true_label (entry, NULL_TREE);
1070 gimple_cond_set_false_label (entry, NULL_TREE);
1074 /* Called for each element in the hash table (P) as we delete the
1075 edge to cases hash table.
1077 Clear all the TREE_CHAINs to prevent problems with copying of
1078 SWITCH_EXPRs and structure sharing rules, then free the hash table
1079 element. */
1081 bool
1082 edge_to_cases_cleanup (edge const &, tree const &value, void *)
1084 tree t, next;
1086 for (t = value; t; t = next)
1088 next = CASE_CHAIN (t);
1089 CASE_CHAIN (t) = NULL;
1092 return true;
1095 /* Start recording information mapping edges to case labels. */
1097 void
1098 start_recording_case_labels (void)
1100 gcc_assert (edge_to_cases == NULL);
1101 edge_to_cases = new hash_map<edge, tree>;
1102 touched_switch_bbs = BITMAP_ALLOC (NULL);
1105 /* Return nonzero if we are recording information for case labels. */
1107 static bool
1108 recording_case_labels_p (void)
1110 return (edge_to_cases != NULL);
1113 /* Stop recording information mapping edges to case labels and
1114 remove any information we have recorded. */
1115 void
1116 end_recording_case_labels (void)
1118 bitmap_iterator bi;
1119 unsigned i;
1120 edge_to_cases->traverse<void *, edge_to_cases_cleanup> (NULL);
1121 delete edge_to_cases;
1122 edge_to_cases = NULL;
1123 EXECUTE_IF_SET_IN_BITMAP (touched_switch_bbs, 0, i, bi)
1125 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, i);
1126 if (bb)
1128 gimple stmt = last_stmt (bb);
1129 if (stmt && gimple_code (stmt) == GIMPLE_SWITCH)
1130 group_case_labels_stmt (stmt);
1133 BITMAP_FREE (touched_switch_bbs);
1136 /* If we are inside a {start,end}_recording_cases block, then return
1137 a chain of CASE_LABEL_EXPRs from T which reference E.
1139 Otherwise return NULL. */
1141 static tree
1142 get_cases_for_edge (edge e, gimple t)
1144 tree *slot;
1145 size_t i, n;
1147 /* If we are not recording cases, then we do not have CASE_LABEL_EXPR
1148 chains available. Return NULL so the caller can detect this case. */
1149 if (!recording_case_labels_p ())
1150 return NULL;
1152 slot = edge_to_cases->get (e);
1153 if (slot)
1154 return *slot;
1156 /* If we did not find E in the hash table, then this must be the first
1157 time we have been queried for information about E & T. Add all the
1158 elements from T to the hash table then perform the query again. */
1160 n = gimple_switch_num_labels (t);
1161 for (i = 0; i < n; i++)
1163 tree elt = gimple_switch_label (t, i);
1164 tree lab = CASE_LABEL (elt);
1165 basic_block label_bb = label_to_block (lab);
1166 edge this_edge = find_edge (e->src, label_bb);
1168 /* Add it to the chain of CASE_LABEL_EXPRs referencing E, or create
1169 a new chain. */
1170 tree &s = edge_to_cases->get_or_insert (this_edge);
1171 CASE_CHAIN (elt) = s;
1172 s = elt;
1175 return *edge_to_cases->get (e);
1178 /* Create the edges for a GIMPLE_SWITCH starting at block BB. */
1180 static void
1181 make_gimple_switch_edges (basic_block bb)
1183 gimple entry = last_stmt (bb);
1184 size_t i, n;
1186 n = gimple_switch_num_labels (entry);
1188 for (i = 0; i < n; ++i)
1190 tree lab = CASE_LABEL (gimple_switch_label (entry, i));
1191 basic_block label_bb = label_to_block (lab);
1192 make_edge (bb, label_bb, 0);
1197 /* Return the basic block holding label DEST. */
1199 basic_block
1200 label_to_block_fn (struct function *ifun, tree dest)
1202 int uid = LABEL_DECL_UID (dest);
1204 /* We would die hard when faced by an undefined label. Emit a label to
1205 the very first basic block. This will hopefully make even the dataflow
1206 and undefined variable warnings quite right. */
1207 if (seen_error () && uid < 0)
1209 gimple_stmt_iterator gsi =
1210 gsi_start_bb (BASIC_BLOCK_FOR_FN (cfun, NUM_FIXED_BLOCKS));
1211 gimple stmt;
1213 stmt = gimple_build_label (dest);
1214 gsi_insert_before (&gsi, stmt, GSI_NEW_STMT);
1215 uid = LABEL_DECL_UID (dest);
1217 if (vec_safe_length (ifun->cfg->x_label_to_block_map) <= (unsigned int) uid)
1218 return NULL;
1219 return (*ifun->cfg->x_label_to_block_map)[uid];
1222 /* Create edges for a goto statement at block BB. Returns true
1223 if abnormal edges should be created. */
1225 static bool
1226 make_goto_expr_edges (basic_block bb)
1228 gimple_stmt_iterator last = gsi_last_bb (bb);
1229 gimple goto_t = gsi_stmt (last);
1231 /* A simple GOTO creates normal edges. */
1232 if (simple_goto_p (goto_t))
1234 tree dest = gimple_goto_dest (goto_t);
1235 basic_block label_bb = label_to_block (dest);
1236 edge e = make_edge (bb, label_bb, EDGE_FALLTHRU);
1237 e->goto_locus = gimple_location (goto_t);
1238 gsi_remove (&last, true);
1239 return false;
1242 /* A computed GOTO creates abnormal edges. */
1243 return true;
1246 /* Create edges for an asm statement with labels at block BB. */
1248 static void
1249 make_gimple_asm_edges (basic_block bb)
1251 gimple stmt = last_stmt (bb);
1252 int i, n = gimple_asm_nlabels (stmt);
1254 for (i = 0; i < n; ++i)
1256 tree label = TREE_VALUE (gimple_asm_label_op (stmt, i));
1257 basic_block label_bb = label_to_block (label);
1258 make_edge (bb, label_bb, 0);
1262 /*---------------------------------------------------------------------------
1263 Flowgraph analysis
1264 ---------------------------------------------------------------------------*/
1266 /* Cleanup useless labels in basic blocks. This is something we wish
1267 to do early because it allows us to group case labels before creating
1268 the edges for the CFG, and it speeds up block statement iterators in
1269 all passes later on.
1270 We rerun this pass after CFG is created, to get rid of the labels that
1271 are no longer referenced. After then we do not run it any more, since
1272 (almost) no new labels should be created. */
1274 /* A map from basic block index to the leading label of that block. */
1275 static struct label_record
1277 /* The label. */
1278 tree label;
1280 /* True if the label is referenced from somewhere. */
1281 bool used;
1282 } *label_for_bb;
1284 /* Given LABEL return the first label in the same basic block. */
1286 static tree
1287 main_block_label (tree label)
1289 basic_block bb = label_to_block (label);
1290 tree main_label = label_for_bb[bb->index].label;
1292 /* label_to_block possibly inserted undefined label into the chain. */
1293 if (!main_label)
1295 label_for_bb[bb->index].label = label;
1296 main_label = label;
1299 label_for_bb[bb->index].used = true;
1300 return main_label;
1303 /* Clean up redundant labels within the exception tree. */
1305 static void
1306 cleanup_dead_labels_eh (void)
1308 eh_landing_pad lp;
1309 eh_region r;
1310 tree lab;
1311 int i;
1313 if (cfun->eh == NULL)
1314 return;
1316 for (i = 1; vec_safe_iterate (cfun->eh->lp_array, i, &lp); ++i)
1317 if (lp && lp->post_landing_pad)
1319 lab = main_block_label (lp->post_landing_pad);
1320 if (lab != lp->post_landing_pad)
1322 EH_LANDING_PAD_NR (lp->post_landing_pad) = 0;
1323 EH_LANDING_PAD_NR (lab) = lp->index;
1327 FOR_ALL_EH_REGION (r)
1328 switch (r->type)
1330 case ERT_CLEANUP:
1331 case ERT_MUST_NOT_THROW:
1332 break;
1334 case ERT_TRY:
1336 eh_catch c;
1337 for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
1339 lab = c->label;
1340 if (lab)
1341 c->label = main_block_label (lab);
1344 break;
1346 case ERT_ALLOWED_EXCEPTIONS:
1347 lab = r->u.allowed.label;
1348 if (lab)
1349 r->u.allowed.label = main_block_label (lab);
1350 break;
1355 /* Cleanup redundant labels. This is a three-step process:
1356 1) Find the leading label for each block.
1357 2) Redirect all references to labels to the leading labels.
1358 3) Cleanup all useless labels. */
1360 void
1361 cleanup_dead_labels (void)
1363 basic_block bb;
1364 label_for_bb = XCNEWVEC (struct label_record, last_basic_block_for_fn (cfun));
1366 /* Find a suitable label for each block. We use the first user-defined
1367 label if there is one, or otherwise just the first label we see. */
1368 FOR_EACH_BB_FN (bb, cfun)
1370 gimple_stmt_iterator i;
1372 for (i = gsi_start_bb (bb); !gsi_end_p (i); gsi_next (&i))
1374 tree label;
1375 gimple stmt = gsi_stmt (i);
1377 if (gimple_code (stmt) != GIMPLE_LABEL)
1378 break;
1380 label = gimple_label_label (stmt);
1382 /* If we have not yet seen a label for the current block,
1383 remember this one and see if there are more labels. */
1384 if (!label_for_bb[bb->index].label)
1386 label_for_bb[bb->index].label = label;
1387 continue;
1390 /* If we did see a label for the current block already, but it
1391 is an artificially created label, replace it if the current
1392 label is a user defined label. */
1393 if (!DECL_ARTIFICIAL (label)
1394 && DECL_ARTIFICIAL (label_for_bb[bb->index].label))
1396 label_for_bb[bb->index].label = label;
1397 break;
1402 /* Now redirect all jumps/branches to the selected label.
1403 First do so for each block ending in a control statement. */
1404 FOR_EACH_BB_FN (bb, cfun)
1406 gimple stmt = last_stmt (bb);
1407 tree label, new_label;
1409 if (!stmt)
1410 continue;
1412 switch (gimple_code (stmt))
1414 case GIMPLE_COND:
1415 label = gimple_cond_true_label (stmt);
1416 if (label)
1418 new_label = main_block_label (label);
1419 if (new_label != label)
1420 gimple_cond_set_true_label (stmt, new_label);
1423 label = gimple_cond_false_label (stmt);
1424 if (label)
1426 new_label = main_block_label (label);
1427 if (new_label != label)
1428 gimple_cond_set_false_label (stmt, new_label);
1430 break;
1432 case GIMPLE_SWITCH:
1434 size_t i, n = gimple_switch_num_labels (stmt);
1436 /* Replace all destination labels. */
1437 for (i = 0; i < n; ++i)
1439 tree case_label = gimple_switch_label (stmt, i);
1440 label = CASE_LABEL (case_label);
1441 new_label = main_block_label (label);
1442 if (new_label != label)
1443 CASE_LABEL (case_label) = new_label;
1445 break;
1448 case GIMPLE_ASM:
1450 int i, n = gimple_asm_nlabels (stmt);
1452 for (i = 0; i < n; ++i)
1454 tree cons = gimple_asm_label_op (stmt, i);
1455 tree label = main_block_label (TREE_VALUE (cons));
1456 TREE_VALUE (cons) = label;
1458 break;
1461 /* We have to handle gotos until they're removed, and we don't
1462 remove them until after we've created the CFG edges. */
1463 case GIMPLE_GOTO:
1464 if (!computed_goto_p (stmt))
1466 label = gimple_goto_dest (stmt);
1467 new_label = main_block_label (label);
1468 if (new_label != label)
1469 gimple_goto_set_dest (stmt, new_label);
1471 break;
1473 case GIMPLE_TRANSACTION:
1475 tree label = gimple_transaction_label (stmt);
1476 if (label)
1478 tree new_label = main_block_label (label);
1479 if (new_label != label)
1480 gimple_transaction_set_label (stmt, new_label);
1483 break;
1485 default:
1486 break;
1490 /* Do the same for the exception region tree labels. */
1491 cleanup_dead_labels_eh ();
1493 /* Finally, purge dead labels. All user-defined labels and labels that
1494 can be the target of non-local gotos and labels which have their
1495 address taken are preserved. */
1496 FOR_EACH_BB_FN (bb, cfun)
1498 gimple_stmt_iterator i;
1499 tree label_for_this_bb = label_for_bb[bb->index].label;
1501 if (!label_for_this_bb)
1502 continue;
1504 /* If the main label of the block is unused, we may still remove it. */
1505 if (!label_for_bb[bb->index].used)
1506 label_for_this_bb = NULL;
1508 for (i = gsi_start_bb (bb); !gsi_end_p (i); )
1510 tree label;
1511 gimple stmt = gsi_stmt (i);
1513 if (gimple_code (stmt) != GIMPLE_LABEL)
1514 break;
1516 label = gimple_label_label (stmt);
1518 if (label == label_for_this_bb
1519 || !DECL_ARTIFICIAL (label)
1520 || DECL_NONLOCAL (label)
1521 || FORCED_LABEL (label))
1522 gsi_next (&i);
1523 else
1524 gsi_remove (&i, true);
1528 free (label_for_bb);
1531 /* Scan the sorted vector of cases in STMT (a GIMPLE_SWITCH) and combine
1532 the ones jumping to the same label.
1533 Eg. three separate entries 1: 2: 3: become one entry 1..3: */
1535 void
1536 group_case_labels_stmt (gimple stmt)
1538 int old_size = gimple_switch_num_labels (stmt);
1539 int i, j, new_size = old_size;
1540 basic_block default_bb = NULL;
1542 default_bb = label_to_block (CASE_LABEL (gimple_switch_default_label (stmt)));
1544 /* Look for possible opportunities to merge cases. */
1545 i = 1;
1546 while (i < old_size)
1548 tree base_case, base_high;
1549 basic_block base_bb;
1551 base_case = gimple_switch_label (stmt, i);
1553 gcc_assert (base_case);
1554 base_bb = label_to_block (CASE_LABEL (base_case));
1556 /* Discard cases that have the same destination as the
1557 default case. */
1558 if (base_bb == default_bb)
1560 gimple_switch_set_label (stmt, i, NULL_TREE);
1561 i++;
1562 new_size--;
1563 continue;
1566 base_high = CASE_HIGH (base_case)
1567 ? CASE_HIGH (base_case)
1568 : CASE_LOW (base_case);
1569 i++;
1571 /* Try to merge case labels. Break out when we reach the end
1572 of the label vector or when we cannot merge the next case
1573 label with the current one. */
1574 while (i < old_size)
1576 tree merge_case = gimple_switch_label (stmt, i);
1577 basic_block merge_bb = label_to_block (CASE_LABEL (merge_case));
1578 wide_int bhp1 = wi::add (base_high, 1);
1580 /* Merge the cases if they jump to the same place,
1581 and their ranges are consecutive. */
1582 if (merge_bb == base_bb
1583 && wi::eq_p (CASE_LOW (merge_case), bhp1))
1585 base_high = CASE_HIGH (merge_case) ?
1586 CASE_HIGH (merge_case) : CASE_LOW (merge_case);
1587 CASE_HIGH (base_case) = base_high;
1588 gimple_switch_set_label (stmt, i, NULL_TREE);
1589 new_size--;
1590 i++;
1592 else
1593 break;
1597 /* Compress the case labels in the label vector, and adjust the
1598 length of the vector. */
1599 for (i = 0, j = 0; i < new_size; i++)
1601 while (! gimple_switch_label (stmt, j))
1602 j++;
1603 gimple_switch_set_label (stmt, i,
1604 gimple_switch_label (stmt, j++));
1607 gcc_assert (new_size <= old_size);
1608 gimple_switch_set_num_labels (stmt, new_size);
1611 /* Look for blocks ending in a multiway branch (a GIMPLE_SWITCH),
1612 and scan the sorted vector of cases. Combine the ones jumping to the
1613 same label. */
1615 void
1616 group_case_labels (void)
1618 basic_block bb;
1620 FOR_EACH_BB_FN (bb, cfun)
1622 gimple stmt = last_stmt (bb);
1623 if (stmt && gimple_code (stmt) == GIMPLE_SWITCH)
1624 group_case_labels_stmt (stmt);
1628 /* Checks whether we can merge block B into block A. */
1630 static bool
1631 gimple_can_merge_blocks_p (basic_block a, basic_block b)
1633 gimple stmt;
1634 gimple_stmt_iterator gsi;
1636 if (!single_succ_p (a))
1637 return false;
1639 if (single_succ_edge (a)->flags & EDGE_COMPLEX)
1640 return false;
1642 if (single_succ (a) != b)
1643 return false;
1645 if (!single_pred_p (b))
1646 return false;
1648 if (b == EXIT_BLOCK_PTR_FOR_FN (cfun))
1649 return false;
1651 /* If A ends by a statement causing exceptions or something similar, we
1652 cannot merge the blocks. */
1653 stmt = last_stmt (a);
1654 if (stmt && stmt_ends_bb_p (stmt))
1655 return false;
1657 /* Do not allow a block with only a non-local label to be merged. */
1658 if (stmt
1659 && gimple_code (stmt) == GIMPLE_LABEL
1660 && DECL_NONLOCAL (gimple_label_label (stmt)))
1661 return false;
1663 /* Examine the labels at the beginning of B. */
1664 for (gsi = gsi_start_bb (b); !gsi_end_p (gsi); gsi_next (&gsi))
1666 tree lab;
1667 stmt = gsi_stmt (gsi);
1668 if (gimple_code (stmt) != GIMPLE_LABEL)
1669 break;
1670 lab = gimple_label_label (stmt);
1672 /* Do not remove user forced labels or for -O0 any user labels. */
1673 if (!DECL_ARTIFICIAL (lab) && (!optimize || FORCED_LABEL (lab)))
1674 return false;
1677 /* Protect simple loop latches. We only want to avoid merging
1678 the latch with the loop header in this case. */
1679 if (current_loops
1680 && b->loop_father->latch == b
1681 && loops_state_satisfies_p (LOOPS_HAVE_SIMPLE_LATCHES)
1682 && b->loop_father->header == a)
1683 return false;
1685 /* It must be possible to eliminate all phi nodes in B. If ssa form
1686 is not up-to-date and a name-mapping is registered, we cannot eliminate
1687 any phis. Symbols marked for renaming are never a problem though. */
1688 for (gsi = gsi_start_phis (b); !gsi_end_p (gsi); gsi_next (&gsi))
1690 gimple phi = gsi_stmt (gsi);
1691 /* Technically only new names matter. */
1692 if (name_registered_for_update_p (PHI_RESULT (phi)))
1693 return false;
1696 /* When not optimizing, don't merge if we'd lose goto_locus. */
1697 if (!optimize
1698 && single_succ_edge (a)->goto_locus != UNKNOWN_LOCATION)
1700 location_t goto_locus = single_succ_edge (a)->goto_locus;
1701 gimple_stmt_iterator prev, next;
1702 prev = gsi_last_nondebug_bb (a);
1703 next = gsi_after_labels (b);
1704 if (!gsi_end_p (next) && is_gimple_debug (gsi_stmt (next)))
1705 gsi_next_nondebug (&next);
1706 if ((gsi_end_p (prev)
1707 || gimple_location (gsi_stmt (prev)) != goto_locus)
1708 && (gsi_end_p (next)
1709 || gimple_location (gsi_stmt (next)) != goto_locus))
1710 return false;
1713 return true;
1716 /* Replaces all uses of NAME by VAL. */
1718 void
1719 replace_uses_by (tree name, tree val)
1721 imm_use_iterator imm_iter;
1722 use_operand_p use;
1723 gimple stmt;
1724 edge e;
1726 FOR_EACH_IMM_USE_STMT (stmt, imm_iter, name)
1728 /* Mark the block if we change the last stmt in it. */
1729 if (cfgcleanup_altered_bbs
1730 && stmt_ends_bb_p (stmt))
1731 bitmap_set_bit (cfgcleanup_altered_bbs, gimple_bb (stmt)->index);
1733 FOR_EACH_IMM_USE_ON_STMT (use, imm_iter)
1735 replace_exp (use, val);
1737 if (gimple_code (stmt) == GIMPLE_PHI)
1739 e = gimple_phi_arg_edge (stmt, PHI_ARG_INDEX_FROM_USE (use));
1740 if (e->flags & EDGE_ABNORMAL)
1742 /* This can only occur for virtual operands, since
1743 for the real ones SSA_NAME_OCCURS_IN_ABNORMAL_PHI (name))
1744 would prevent replacement. */
1745 gcc_checking_assert (virtual_operand_p (name));
1746 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (val) = 1;
1751 if (gimple_code (stmt) != GIMPLE_PHI)
1753 gimple_stmt_iterator gsi = gsi_for_stmt (stmt);
1754 gimple orig_stmt = stmt;
1755 size_t i;
1757 /* FIXME. It shouldn't be required to keep TREE_CONSTANT
1758 on ADDR_EXPRs up-to-date on GIMPLE. Propagation will
1759 only change sth from non-invariant to invariant, and only
1760 when propagating constants. */
1761 if (is_gimple_min_invariant (val))
1762 for (i = 0; i < gimple_num_ops (stmt); i++)
1764 tree op = gimple_op (stmt, i);
1765 /* Operands may be empty here. For example, the labels
1766 of a GIMPLE_COND are nulled out following the creation
1767 of the corresponding CFG edges. */
1768 if (op && TREE_CODE (op) == ADDR_EXPR)
1769 recompute_tree_invariant_for_addr_expr (op);
1772 if (fold_stmt (&gsi))
1773 stmt = gsi_stmt (gsi);
1775 if (maybe_clean_or_replace_eh_stmt (orig_stmt, stmt))
1776 gimple_purge_dead_eh_edges (gimple_bb (stmt));
1778 update_stmt (stmt);
1782 gcc_checking_assert (has_zero_uses (name));
1784 /* Also update the trees stored in loop structures. */
1785 if (current_loops)
1787 struct loop *loop;
1789 FOR_EACH_LOOP (loop, 0)
1791 substitute_in_loop_info (loop, name, val);
1796 /* Merge block B into block A. */
1798 static void
1799 gimple_merge_blocks (basic_block a, basic_block b)
1801 gimple_stmt_iterator last, gsi, psi;
1803 if (dump_file)
1804 fprintf (dump_file, "Merging blocks %d and %d\n", a->index, b->index);
1806 /* Remove all single-valued PHI nodes from block B of the form
1807 V_i = PHI <V_j> by propagating V_j to all the uses of V_i. */
1808 gsi = gsi_last_bb (a);
1809 for (psi = gsi_start_phis (b); !gsi_end_p (psi); )
1811 gimple phi = gsi_stmt (psi);
1812 tree def = gimple_phi_result (phi), use = gimple_phi_arg_def (phi, 0);
1813 gimple copy;
1814 bool may_replace_uses = (virtual_operand_p (def)
1815 || may_propagate_copy (def, use));
1817 /* In case we maintain loop closed ssa form, do not propagate arguments
1818 of loop exit phi nodes. */
1819 if (current_loops
1820 && loops_state_satisfies_p (LOOP_CLOSED_SSA)
1821 && !virtual_operand_p (def)
1822 && TREE_CODE (use) == SSA_NAME
1823 && a->loop_father != b->loop_father)
1824 may_replace_uses = false;
1826 if (!may_replace_uses)
1828 gcc_assert (!virtual_operand_p (def));
1830 /* Note that just emitting the copies is fine -- there is no problem
1831 with ordering of phi nodes. This is because A is the single
1832 predecessor of B, therefore results of the phi nodes cannot
1833 appear as arguments of the phi nodes. */
1834 copy = gimple_build_assign (def, use);
1835 gsi_insert_after (&gsi, copy, GSI_NEW_STMT);
1836 remove_phi_node (&psi, false);
1838 else
1840 /* If we deal with a PHI for virtual operands, we can simply
1841 propagate these without fussing with folding or updating
1842 the stmt. */
1843 if (virtual_operand_p (def))
1845 imm_use_iterator iter;
1846 use_operand_p use_p;
1847 gimple stmt;
1849 FOR_EACH_IMM_USE_STMT (stmt, iter, def)
1850 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
1851 SET_USE (use_p, use);
1853 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (def))
1854 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (use) = 1;
1856 else
1857 replace_uses_by (def, use);
1859 remove_phi_node (&psi, true);
1863 /* Ensure that B follows A. */
1864 move_block_after (b, a);
1866 gcc_assert (single_succ_edge (a)->flags & EDGE_FALLTHRU);
1867 gcc_assert (!last_stmt (a) || !stmt_ends_bb_p (last_stmt (a)));
1869 /* Remove labels from B and set gimple_bb to A for other statements. */
1870 for (gsi = gsi_start_bb (b); !gsi_end_p (gsi);)
1872 gimple stmt = gsi_stmt (gsi);
1873 if (gimple_code (stmt) == GIMPLE_LABEL)
1875 tree label = gimple_label_label (stmt);
1876 int lp_nr;
1878 gsi_remove (&gsi, false);
1880 /* Now that we can thread computed gotos, we might have
1881 a situation where we have a forced label in block B
1882 However, the label at the start of block B might still be
1883 used in other ways (think about the runtime checking for
1884 Fortran assigned gotos). So we can not just delete the
1885 label. Instead we move the label to the start of block A. */
1886 if (FORCED_LABEL (label))
1888 gimple_stmt_iterator dest_gsi = gsi_start_bb (a);
1889 gsi_insert_before (&dest_gsi, stmt, GSI_NEW_STMT);
1891 /* Other user labels keep around in a form of a debug stmt. */
1892 else if (!DECL_ARTIFICIAL (label) && MAY_HAVE_DEBUG_STMTS)
1894 gimple dbg = gimple_build_debug_bind (label,
1895 integer_zero_node,
1896 stmt);
1897 gimple_debug_bind_reset_value (dbg);
1898 gsi_insert_before (&gsi, dbg, GSI_SAME_STMT);
1901 lp_nr = EH_LANDING_PAD_NR (label);
1902 if (lp_nr)
1904 eh_landing_pad lp = get_eh_landing_pad_from_number (lp_nr);
1905 lp->post_landing_pad = NULL;
1908 else
1910 gimple_set_bb (stmt, a);
1911 gsi_next (&gsi);
1915 /* When merging two BBs, if their counts are different, the larger count
1916 is selected as the new bb count. This is to handle inconsistent
1917 profiles. */
1918 if (a->loop_father == b->loop_father)
1920 a->count = MAX (a->count, b->count);
1921 a->frequency = MAX (a->frequency, b->frequency);
1924 /* Merge the sequences. */
1925 last = gsi_last_bb (a);
1926 gsi_insert_seq_after (&last, bb_seq (b), GSI_NEW_STMT);
1927 set_bb_seq (b, NULL);
1929 if (cfgcleanup_altered_bbs)
1930 bitmap_set_bit (cfgcleanup_altered_bbs, a->index);
1934 /* Return the one of two successors of BB that is not reachable by a
1935 complex edge, if there is one. Else, return BB. We use
1936 this in optimizations that use post-dominators for their heuristics,
1937 to catch the cases in C++ where function calls are involved. */
1939 basic_block
1940 single_noncomplex_succ (basic_block bb)
1942 edge e0, e1;
1943 if (EDGE_COUNT (bb->succs) != 2)
1944 return bb;
1946 e0 = EDGE_SUCC (bb, 0);
1947 e1 = EDGE_SUCC (bb, 1);
1948 if (e0->flags & EDGE_COMPLEX)
1949 return e1->dest;
1950 if (e1->flags & EDGE_COMPLEX)
1951 return e0->dest;
1953 return bb;
1956 /* T is CALL_EXPR. Set current_function_calls_* flags. */
1958 void
1959 notice_special_calls (gimple call)
1961 int flags = gimple_call_flags (call);
1963 if (flags & ECF_MAY_BE_ALLOCA)
1964 cfun->calls_alloca = true;
1965 if (flags & ECF_RETURNS_TWICE)
1966 cfun->calls_setjmp = true;
1970 /* Clear flags set by notice_special_calls. Used by dead code removal
1971 to update the flags. */
1973 void
1974 clear_special_calls (void)
1976 cfun->calls_alloca = false;
1977 cfun->calls_setjmp = false;
1980 /* Remove PHI nodes associated with basic block BB and all edges out of BB. */
1982 static void
1983 remove_phi_nodes_and_edges_for_unreachable_block (basic_block bb)
1985 /* Since this block is no longer reachable, we can just delete all
1986 of its PHI nodes. */
1987 remove_phi_nodes (bb);
1989 /* Remove edges to BB's successors. */
1990 while (EDGE_COUNT (bb->succs) > 0)
1991 remove_edge (EDGE_SUCC (bb, 0));
1995 /* Remove statements of basic block BB. */
1997 static void
1998 remove_bb (basic_block bb)
2000 gimple_stmt_iterator i;
2002 if (dump_file)
2004 fprintf (dump_file, "Removing basic block %d\n", bb->index);
2005 if (dump_flags & TDF_DETAILS)
2007 dump_bb (dump_file, bb, 0, TDF_BLOCKS);
2008 fprintf (dump_file, "\n");
2012 if (current_loops)
2014 struct loop *loop = bb->loop_father;
2016 /* If a loop gets removed, clean up the information associated
2017 with it. */
2018 if (loop->latch == bb
2019 || loop->header == bb)
2020 free_numbers_of_iterations_estimates_loop (loop);
2023 /* Remove all the instructions in the block. */
2024 if (bb_seq (bb) != NULL)
2026 /* Walk backwards so as to get a chance to substitute all
2027 released DEFs into debug stmts. See
2028 eliminate_unnecessary_stmts() in tree-ssa-dce.c for more
2029 details. */
2030 for (i = gsi_last_bb (bb); !gsi_end_p (i);)
2032 gimple stmt = gsi_stmt (i);
2033 if (gimple_code (stmt) == GIMPLE_LABEL
2034 && (FORCED_LABEL (gimple_label_label (stmt))
2035 || DECL_NONLOCAL (gimple_label_label (stmt))))
2037 basic_block new_bb;
2038 gimple_stmt_iterator new_gsi;
2040 /* A non-reachable non-local label may still be referenced.
2041 But it no longer needs to carry the extra semantics of
2042 non-locality. */
2043 if (DECL_NONLOCAL (gimple_label_label (stmt)))
2045 DECL_NONLOCAL (gimple_label_label (stmt)) = 0;
2046 FORCED_LABEL (gimple_label_label (stmt)) = 1;
2049 new_bb = bb->prev_bb;
2050 new_gsi = gsi_start_bb (new_bb);
2051 gsi_remove (&i, false);
2052 gsi_insert_before (&new_gsi, stmt, GSI_NEW_STMT);
2054 else
2056 /* Release SSA definitions if we are in SSA. Note that we
2057 may be called when not in SSA. For example,
2058 final_cleanup calls this function via
2059 cleanup_tree_cfg. */
2060 if (gimple_in_ssa_p (cfun))
2061 release_defs (stmt);
2063 gsi_remove (&i, true);
2066 if (gsi_end_p (i))
2067 i = gsi_last_bb (bb);
2068 else
2069 gsi_prev (&i);
2073 remove_phi_nodes_and_edges_for_unreachable_block (bb);
2074 bb->il.gimple.seq = NULL;
2075 bb->il.gimple.phi_nodes = NULL;
2079 /* Given a basic block BB ending with COND_EXPR or SWITCH_EXPR, and a
2080 predicate VAL, return the edge that will be taken out of the block.
2081 If VAL does not match a unique edge, NULL is returned. */
2083 edge
2084 find_taken_edge (basic_block bb, tree val)
2086 gimple stmt;
2088 stmt = last_stmt (bb);
2090 gcc_assert (stmt);
2091 gcc_assert (is_ctrl_stmt (stmt));
2093 if (val == NULL)
2094 return NULL;
2096 if (!is_gimple_min_invariant (val))
2097 return NULL;
2099 if (gimple_code (stmt) == GIMPLE_COND)
2100 return find_taken_edge_cond_expr (bb, val);
2102 if (gimple_code (stmt) == GIMPLE_SWITCH)
2103 return find_taken_edge_switch_expr (bb, val);
2105 if (computed_goto_p (stmt))
2107 /* Only optimize if the argument is a label, if the argument is
2108 not a label then we can not construct a proper CFG.
2110 It may be the case that we only need to allow the LABEL_REF to
2111 appear inside an ADDR_EXPR, but we also allow the LABEL_REF to
2112 appear inside a LABEL_EXPR just to be safe. */
2113 if ((TREE_CODE (val) == ADDR_EXPR || TREE_CODE (val) == LABEL_EXPR)
2114 && TREE_CODE (TREE_OPERAND (val, 0)) == LABEL_DECL)
2115 return find_taken_edge_computed_goto (bb, TREE_OPERAND (val, 0));
2116 return NULL;
2119 gcc_unreachable ();
2122 /* Given a constant value VAL and the entry block BB to a GOTO_EXPR
2123 statement, determine which of the outgoing edges will be taken out of the
2124 block. Return NULL if either edge may be taken. */
2126 static edge
2127 find_taken_edge_computed_goto (basic_block bb, tree val)
2129 basic_block dest;
2130 edge e = NULL;
2132 dest = label_to_block (val);
2133 if (dest)
2135 e = find_edge (bb, dest);
2136 gcc_assert (e != NULL);
2139 return e;
2142 /* Given a constant value VAL and the entry block BB to a COND_EXPR
2143 statement, determine which of the two edges will be taken out of the
2144 block. Return NULL if either edge may be taken. */
2146 static edge
2147 find_taken_edge_cond_expr (basic_block bb, tree val)
2149 edge true_edge, false_edge;
2151 extract_true_false_edges_from_block (bb, &true_edge, &false_edge);
2153 gcc_assert (TREE_CODE (val) == INTEGER_CST);
2154 return (integer_zerop (val) ? false_edge : true_edge);
2157 /* Given an INTEGER_CST VAL and the entry block BB to a SWITCH_EXPR
2158 statement, determine which edge will be taken out of the block. Return
2159 NULL if any edge may be taken. */
2161 static edge
2162 find_taken_edge_switch_expr (basic_block bb, tree val)
2164 basic_block dest_bb;
2165 edge e;
2166 gimple switch_stmt;
2167 tree taken_case;
2169 switch_stmt = last_stmt (bb);
2170 taken_case = find_case_label_for_value (switch_stmt, val);
2171 dest_bb = label_to_block (CASE_LABEL (taken_case));
2173 e = find_edge (bb, dest_bb);
2174 gcc_assert (e);
2175 return e;
2179 /* Return the CASE_LABEL_EXPR that SWITCH_STMT will take for VAL.
2180 We can make optimal use here of the fact that the case labels are
2181 sorted: We can do a binary search for a case matching VAL. */
2183 static tree
2184 find_case_label_for_value (gimple switch_stmt, tree val)
2186 size_t low, high, n = gimple_switch_num_labels (switch_stmt);
2187 tree default_case = gimple_switch_default_label (switch_stmt);
2189 for (low = 0, high = n; high - low > 1; )
2191 size_t i = (high + low) / 2;
2192 tree t = gimple_switch_label (switch_stmt, i);
2193 int cmp;
2195 /* Cache the result of comparing CASE_LOW and val. */
2196 cmp = tree_int_cst_compare (CASE_LOW (t), val);
2198 if (cmp > 0)
2199 high = i;
2200 else
2201 low = i;
2203 if (CASE_HIGH (t) == NULL)
2205 /* A singe-valued case label. */
2206 if (cmp == 0)
2207 return t;
2209 else
2211 /* A case range. We can only handle integer ranges. */
2212 if (cmp <= 0 && tree_int_cst_compare (CASE_HIGH (t), val) >= 0)
2213 return t;
2217 return default_case;
2221 /* Dump a basic block on stderr. */
2223 void
2224 gimple_debug_bb (basic_block bb)
2226 dump_bb (stderr, bb, 0, TDF_VOPS|TDF_MEMSYMS|TDF_BLOCKS);
2230 /* Dump basic block with index N on stderr. */
2232 basic_block
2233 gimple_debug_bb_n (int n)
2235 gimple_debug_bb (BASIC_BLOCK_FOR_FN (cfun, n));
2236 return BASIC_BLOCK_FOR_FN (cfun, n);
2240 /* Dump the CFG on stderr.
2242 FLAGS are the same used by the tree dumping functions
2243 (see TDF_* in dumpfile.h). */
2245 void
2246 gimple_debug_cfg (int flags)
2248 gimple_dump_cfg (stderr, flags);
2252 /* Dump the program showing basic block boundaries on the given FILE.
2254 FLAGS are the same used by the tree dumping functions (see TDF_* in
2255 tree.h). */
2257 void
2258 gimple_dump_cfg (FILE *file, int flags)
2260 if (flags & TDF_DETAILS)
2262 dump_function_header (file, current_function_decl, flags);
2263 fprintf (file, ";; \n%d basic blocks, %d edges, last basic block %d.\n\n",
2264 n_basic_blocks_for_fn (cfun), n_edges_for_fn (cfun),
2265 last_basic_block_for_fn (cfun));
2267 brief_dump_cfg (file, flags | TDF_COMMENT);
2268 fprintf (file, "\n");
2271 if (flags & TDF_STATS)
2272 dump_cfg_stats (file);
2274 dump_function_to_file (current_function_decl, file, flags | TDF_BLOCKS);
2278 /* Dump CFG statistics on FILE. */
2280 void
2281 dump_cfg_stats (FILE *file)
2283 static long max_num_merged_labels = 0;
2284 unsigned long size, total = 0;
2285 long num_edges;
2286 basic_block bb;
2287 const char * const fmt_str = "%-30s%-13s%12s\n";
2288 const char * const fmt_str_1 = "%-30s%13d%11lu%c\n";
2289 const char * const fmt_str_2 = "%-30s%13ld%11lu%c\n";
2290 const char * const fmt_str_3 = "%-43s%11lu%c\n";
2291 const char *funcname = current_function_name ();
2293 fprintf (file, "\nCFG Statistics for %s\n\n", funcname);
2295 fprintf (file, "---------------------------------------------------------\n");
2296 fprintf (file, fmt_str, "", " Number of ", "Memory");
2297 fprintf (file, fmt_str, "", " instances ", "used ");
2298 fprintf (file, "---------------------------------------------------------\n");
2300 size = n_basic_blocks_for_fn (cfun) * sizeof (struct basic_block_def);
2301 total += size;
2302 fprintf (file, fmt_str_1, "Basic blocks", n_basic_blocks_for_fn (cfun),
2303 SCALE (size), LABEL (size));
2305 num_edges = 0;
2306 FOR_EACH_BB_FN (bb, cfun)
2307 num_edges += EDGE_COUNT (bb->succs);
2308 size = num_edges * sizeof (struct edge_def);
2309 total += size;
2310 fprintf (file, fmt_str_2, "Edges", num_edges, SCALE (size), LABEL (size));
2312 fprintf (file, "---------------------------------------------------------\n");
2313 fprintf (file, fmt_str_3, "Total memory used by CFG data", SCALE (total),
2314 LABEL (total));
2315 fprintf (file, "---------------------------------------------------------\n");
2316 fprintf (file, "\n");
2318 if (cfg_stats.num_merged_labels > max_num_merged_labels)
2319 max_num_merged_labels = cfg_stats.num_merged_labels;
2321 fprintf (file, "Coalesced label blocks: %ld (Max so far: %ld)\n",
2322 cfg_stats.num_merged_labels, max_num_merged_labels);
2324 fprintf (file, "\n");
2328 /* Dump CFG statistics on stderr. Keep extern so that it's always
2329 linked in the final executable. */
2331 DEBUG_FUNCTION void
2332 debug_cfg_stats (void)
2334 dump_cfg_stats (stderr);
2337 /*---------------------------------------------------------------------------
2338 Miscellaneous helpers
2339 ---------------------------------------------------------------------------*/
2341 /* Return true if T, a GIMPLE_CALL, can make an abnormal transfer of control
2342 flow. Transfers of control flow associated with EH are excluded. */
2344 static bool
2345 call_can_make_abnormal_goto (gimple t)
2347 /* If the function has no non-local labels, then a call cannot make an
2348 abnormal transfer of control. */
2349 if (!cfun->has_nonlocal_label
2350 && !cfun->calls_setjmp)
2351 return false;
2353 /* Likewise if the call has no side effects. */
2354 if (!gimple_has_side_effects (t))
2355 return false;
2357 /* Likewise if the called function is leaf. */
2358 if (gimple_call_flags (t) & ECF_LEAF)
2359 return false;
2361 return true;
2365 /* Return true if T can make an abnormal transfer of control flow.
2366 Transfers of control flow associated with EH are excluded. */
2368 bool
2369 stmt_can_make_abnormal_goto (gimple t)
2371 if (computed_goto_p (t))
2372 return true;
2373 if (is_gimple_call (t))
2374 return call_can_make_abnormal_goto (t);
2375 return false;
2379 /* Return true if T represents a stmt that always transfers control. */
2381 bool
2382 is_ctrl_stmt (gimple t)
2384 switch (gimple_code (t))
2386 case GIMPLE_COND:
2387 case GIMPLE_SWITCH:
2388 case GIMPLE_GOTO:
2389 case GIMPLE_RETURN:
2390 case GIMPLE_RESX:
2391 return true;
2392 default:
2393 return false;
2398 /* Return true if T is a statement that may alter the flow of control
2399 (e.g., a call to a non-returning function). */
2401 bool
2402 is_ctrl_altering_stmt (gimple t)
2404 gcc_assert (t);
2406 switch (gimple_code (t))
2408 case GIMPLE_CALL:
2409 /* Per stmt call flag indicates whether the call could alter
2410 controlflow. */
2411 if (gimple_call_ctrl_altering_p (t))
2412 return true;
2413 break;
2415 case GIMPLE_EH_DISPATCH:
2416 /* EH_DISPATCH branches to the individual catch handlers at
2417 this level of a try or allowed-exceptions region. It can
2418 fallthru to the next statement as well. */
2419 return true;
2421 case GIMPLE_ASM:
2422 if (gimple_asm_nlabels (t) > 0)
2423 return true;
2424 break;
2426 CASE_GIMPLE_OMP:
2427 /* OpenMP directives alter control flow. */
2428 return true;
2430 case GIMPLE_TRANSACTION:
2431 /* A transaction start alters control flow. */
2432 return true;
2434 default:
2435 break;
2438 /* If a statement can throw, it alters control flow. */
2439 return stmt_can_throw_internal (t);
2443 /* Return true if T is a simple local goto. */
2445 bool
2446 simple_goto_p (gimple t)
2448 return (gimple_code (t) == GIMPLE_GOTO
2449 && TREE_CODE (gimple_goto_dest (t)) == LABEL_DECL);
2453 /* Return true if STMT should start a new basic block. PREV_STMT is
2454 the statement preceding STMT. It is used when STMT is a label or a
2455 case label. Labels should only start a new basic block if their
2456 previous statement wasn't a label. Otherwise, sequence of labels
2457 would generate unnecessary basic blocks that only contain a single
2458 label. */
2460 static inline bool
2461 stmt_starts_bb_p (gimple stmt, gimple prev_stmt)
2463 if (stmt == NULL)
2464 return false;
2466 /* Labels start a new basic block only if the preceding statement
2467 wasn't a label of the same type. This prevents the creation of
2468 consecutive blocks that have nothing but a single label. */
2469 if (gimple_code (stmt) == GIMPLE_LABEL)
2471 /* Nonlocal and computed GOTO targets always start a new block. */
2472 if (DECL_NONLOCAL (gimple_label_label (stmt))
2473 || FORCED_LABEL (gimple_label_label (stmt)))
2474 return true;
2476 if (prev_stmt && gimple_code (prev_stmt) == GIMPLE_LABEL)
2478 if (DECL_NONLOCAL (gimple_label_label (prev_stmt)))
2479 return true;
2481 cfg_stats.num_merged_labels++;
2482 return false;
2484 else
2485 return true;
2487 else if (gimple_code (stmt) == GIMPLE_CALL
2488 && gimple_call_flags (stmt) & ECF_RETURNS_TWICE)
2489 /* setjmp acts similar to a nonlocal GOTO target and thus should
2490 start a new block. */
2491 return true;
2493 return false;
2497 /* Return true if T should end a basic block. */
2499 bool
2500 stmt_ends_bb_p (gimple t)
2502 return is_ctrl_stmt (t) || is_ctrl_altering_stmt (t);
2505 /* Remove block annotations and other data structures. */
2507 void
2508 delete_tree_cfg_annotations (void)
2510 vec_free (label_to_block_map_for_fn (cfun));
2514 /* Return the first statement in basic block BB. */
2516 gimple
2517 first_stmt (basic_block bb)
2519 gimple_stmt_iterator i = gsi_start_bb (bb);
2520 gimple stmt = NULL;
2522 while (!gsi_end_p (i) && is_gimple_debug ((stmt = gsi_stmt (i))))
2524 gsi_next (&i);
2525 stmt = NULL;
2527 return stmt;
2530 /* Return the first non-label statement in basic block BB. */
2532 static gimple
2533 first_non_label_stmt (basic_block bb)
2535 gimple_stmt_iterator i = gsi_start_bb (bb);
2536 while (!gsi_end_p (i) && gimple_code (gsi_stmt (i)) == GIMPLE_LABEL)
2537 gsi_next (&i);
2538 return !gsi_end_p (i) ? gsi_stmt (i) : NULL;
2541 /* Return the last statement in basic block BB. */
2543 gimple
2544 last_stmt (basic_block bb)
2546 gimple_stmt_iterator i = gsi_last_bb (bb);
2547 gimple stmt = NULL;
2549 while (!gsi_end_p (i) && is_gimple_debug ((stmt = gsi_stmt (i))))
2551 gsi_prev (&i);
2552 stmt = NULL;
2554 return stmt;
2557 /* Return the last statement of an otherwise empty block. Return NULL
2558 if the block is totally empty, or if it contains more than one
2559 statement. */
2561 gimple
2562 last_and_only_stmt (basic_block bb)
2564 gimple_stmt_iterator i = gsi_last_nondebug_bb (bb);
2565 gimple last, prev;
2567 if (gsi_end_p (i))
2568 return NULL;
2570 last = gsi_stmt (i);
2571 gsi_prev_nondebug (&i);
2572 if (gsi_end_p (i))
2573 return last;
2575 /* Empty statements should no longer appear in the instruction stream.
2576 Everything that might have appeared before should be deleted by
2577 remove_useless_stmts, and the optimizers should just gsi_remove
2578 instead of smashing with build_empty_stmt.
2580 Thus the only thing that should appear here in a block containing
2581 one executable statement is a label. */
2582 prev = gsi_stmt (i);
2583 if (gimple_code (prev) == GIMPLE_LABEL)
2584 return last;
2585 else
2586 return NULL;
2589 /* Reinstall those PHI arguments queued in OLD_EDGE to NEW_EDGE. */
2591 static void
2592 reinstall_phi_args (edge new_edge, edge old_edge)
2594 edge_var_map *vm;
2595 int i;
2596 gimple_stmt_iterator phis;
2598 vec<edge_var_map> *v = redirect_edge_var_map_vector (old_edge);
2599 if (!v)
2600 return;
2602 for (i = 0, phis = gsi_start_phis (new_edge->dest);
2603 v->iterate (i, &vm) && !gsi_end_p (phis);
2604 i++, gsi_next (&phis))
2606 gimple phi = gsi_stmt (phis);
2607 tree result = redirect_edge_var_map_result (vm);
2608 tree arg = redirect_edge_var_map_def (vm);
2610 gcc_assert (result == gimple_phi_result (phi));
2612 add_phi_arg (phi, arg, new_edge, redirect_edge_var_map_location (vm));
2615 redirect_edge_var_map_clear (old_edge);
2618 /* Returns the basic block after which the new basic block created
2619 by splitting edge EDGE_IN should be placed. Tries to keep the new block
2620 near its "logical" location. This is of most help to humans looking
2621 at debugging dumps. */
2623 static basic_block
2624 split_edge_bb_loc (edge edge_in)
2626 basic_block dest = edge_in->dest;
2627 basic_block dest_prev = dest->prev_bb;
2629 if (dest_prev)
2631 edge e = find_edge (dest_prev, dest);
2632 if (e && !(e->flags & EDGE_COMPLEX))
2633 return edge_in->src;
2635 return dest_prev;
2638 /* Split a (typically critical) edge EDGE_IN. Return the new block.
2639 Abort on abnormal edges. */
2641 static basic_block
2642 gimple_split_edge (edge edge_in)
2644 basic_block new_bb, after_bb, dest;
2645 edge new_edge, e;
2647 /* Abnormal edges cannot be split. */
2648 gcc_assert (!(edge_in->flags & EDGE_ABNORMAL));
2650 dest = edge_in->dest;
2652 after_bb = split_edge_bb_loc (edge_in);
2654 new_bb = create_empty_bb (after_bb);
2655 new_bb->frequency = EDGE_FREQUENCY (edge_in);
2656 new_bb->count = edge_in->count;
2657 new_edge = make_edge (new_bb, dest, EDGE_FALLTHRU);
2658 new_edge->probability = REG_BR_PROB_BASE;
2659 new_edge->count = edge_in->count;
2661 e = redirect_edge_and_branch (edge_in, new_bb);
2662 gcc_assert (e == edge_in);
2663 reinstall_phi_args (new_edge, e);
2665 return new_bb;
2669 /* Verify properties of the address expression T with base object BASE. */
2671 static tree
2672 verify_address (tree t, tree base)
2674 bool old_constant;
2675 bool old_side_effects;
2676 bool new_constant;
2677 bool new_side_effects;
2679 old_constant = TREE_CONSTANT (t);
2680 old_side_effects = TREE_SIDE_EFFECTS (t);
2682 recompute_tree_invariant_for_addr_expr (t);
2683 new_side_effects = TREE_SIDE_EFFECTS (t);
2684 new_constant = TREE_CONSTANT (t);
2686 if (old_constant != new_constant)
2688 error ("constant not recomputed when ADDR_EXPR changed");
2689 return t;
2691 if (old_side_effects != new_side_effects)
2693 error ("side effects not recomputed when ADDR_EXPR changed");
2694 return t;
2697 if (!(TREE_CODE (base) == VAR_DECL
2698 || TREE_CODE (base) == PARM_DECL
2699 || TREE_CODE (base) == RESULT_DECL))
2700 return NULL_TREE;
2702 if (DECL_GIMPLE_REG_P (base))
2704 error ("DECL_GIMPLE_REG_P set on a variable with address taken");
2705 return base;
2708 return NULL_TREE;
2711 /* Callback for walk_tree, check that all elements with address taken are
2712 properly noticed as such. The DATA is an int* that is 1 if TP was seen
2713 inside a PHI node. */
2715 static tree
2716 verify_expr (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED)
2718 tree t = *tp, x;
2720 if (TYPE_P (t))
2721 *walk_subtrees = 0;
2723 /* Check operand N for being valid GIMPLE and give error MSG if not. */
2724 #define CHECK_OP(N, MSG) \
2725 do { if (!is_gimple_val (TREE_OPERAND (t, N))) \
2726 { error (MSG); return TREE_OPERAND (t, N); }} while (0)
2728 switch (TREE_CODE (t))
2730 case SSA_NAME:
2731 if (SSA_NAME_IN_FREE_LIST (t))
2733 error ("SSA name in freelist but still referenced");
2734 return *tp;
2736 break;
2738 case INDIRECT_REF:
2739 error ("INDIRECT_REF in gimple IL");
2740 return t;
2742 case MEM_REF:
2743 x = TREE_OPERAND (t, 0);
2744 if (!POINTER_TYPE_P (TREE_TYPE (x))
2745 || !is_gimple_mem_ref_addr (x))
2747 error ("invalid first operand of MEM_REF");
2748 return x;
2750 if (TREE_CODE (TREE_OPERAND (t, 1)) != INTEGER_CST
2751 || !POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (t, 1))))
2753 error ("invalid offset operand of MEM_REF");
2754 return TREE_OPERAND (t, 1);
2756 if (TREE_CODE (x) == ADDR_EXPR
2757 && (x = verify_address (x, TREE_OPERAND (x, 0))))
2758 return x;
2759 *walk_subtrees = 0;
2760 break;
2762 case ASSERT_EXPR:
2763 x = fold (ASSERT_EXPR_COND (t));
2764 if (x == boolean_false_node)
2766 error ("ASSERT_EXPR with an always-false condition");
2767 return *tp;
2769 break;
2771 case MODIFY_EXPR:
2772 error ("MODIFY_EXPR not expected while having tuples");
2773 return *tp;
2775 case ADDR_EXPR:
2777 tree tem;
2779 gcc_assert (is_gimple_address (t));
2781 /* Skip any references (they will be checked when we recurse down the
2782 tree) and ensure that any variable used as a prefix is marked
2783 addressable. */
2784 for (x = TREE_OPERAND (t, 0);
2785 handled_component_p (x);
2786 x = TREE_OPERAND (x, 0))
2789 if ((tem = verify_address (t, x)))
2790 return tem;
2792 if (!(TREE_CODE (x) == VAR_DECL
2793 || TREE_CODE (x) == PARM_DECL
2794 || TREE_CODE (x) == RESULT_DECL))
2795 return NULL;
2797 if (!TREE_ADDRESSABLE (x))
2799 error ("address taken, but ADDRESSABLE bit not set");
2800 return x;
2803 break;
2806 case COND_EXPR:
2807 x = COND_EXPR_COND (t);
2808 if (!INTEGRAL_TYPE_P (TREE_TYPE (x)))
2810 error ("non-integral used in condition");
2811 return x;
2813 if (!is_gimple_condexpr (x))
2815 error ("invalid conditional operand");
2816 return x;
2818 break;
2820 case NON_LVALUE_EXPR:
2821 case TRUTH_NOT_EXPR:
2822 gcc_unreachable ();
2824 CASE_CONVERT:
2825 case FIX_TRUNC_EXPR:
2826 case FLOAT_EXPR:
2827 case NEGATE_EXPR:
2828 case ABS_EXPR:
2829 case BIT_NOT_EXPR:
2830 CHECK_OP (0, "invalid operand to unary operator");
2831 break;
2833 case REALPART_EXPR:
2834 case IMAGPART_EXPR:
2835 case BIT_FIELD_REF:
2836 if (!is_gimple_reg_type (TREE_TYPE (t)))
2838 error ("non-scalar BIT_FIELD_REF, IMAGPART_EXPR or REALPART_EXPR");
2839 return t;
2842 if (TREE_CODE (t) == BIT_FIELD_REF)
2844 tree t0 = TREE_OPERAND (t, 0);
2845 tree t1 = TREE_OPERAND (t, 1);
2846 tree t2 = TREE_OPERAND (t, 2);
2847 if (!tree_fits_uhwi_p (t1)
2848 || !tree_fits_uhwi_p (t2))
2850 error ("invalid position or size operand to BIT_FIELD_REF");
2851 return t;
2853 if (INTEGRAL_TYPE_P (TREE_TYPE (t))
2854 && (TYPE_PRECISION (TREE_TYPE (t))
2855 != tree_to_uhwi (t1)))
2857 error ("integral result type precision does not match "
2858 "field size of BIT_FIELD_REF");
2859 return t;
2861 else if (!INTEGRAL_TYPE_P (TREE_TYPE (t))
2862 && TYPE_MODE (TREE_TYPE (t)) != BLKmode
2863 && (GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (t)))
2864 != tree_to_uhwi (t1)))
2866 error ("mode precision of non-integral result does not "
2867 "match field size of BIT_FIELD_REF");
2868 return t;
2870 if (!AGGREGATE_TYPE_P (TREE_TYPE (t0))
2871 && (tree_to_uhwi (t1) + tree_to_uhwi (t2)
2872 > tree_to_uhwi (TYPE_SIZE (TREE_TYPE (t0)))))
2874 error ("position plus size exceeds size of referenced object in "
2875 "BIT_FIELD_REF");
2876 return t;
2879 t = TREE_OPERAND (t, 0);
2881 /* Fall-through. */
2882 case COMPONENT_REF:
2883 case ARRAY_REF:
2884 case ARRAY_RANGE_REF:
2885 case VIEW_CONVERT_EXPR:
2886 /* We have a nest of references. Verify that each of the operands
2887 that determine where to reference is either a constant or a variable,
2888 verify that the base is valid, and then show we've already checked
2889 the subtrees. */
2890 while (handled_component_p (t))
2892 if (TREE_CODE (t) == COMPONENT_REF && TREE_OPERAND (t, 2))
2893 CHECK_OP (2, "invalid COMPONENT_REF offset operator");
2894 else if (TREE_CODE (t) == ARRAY_REF
2895 || TREE_CODE (t) == ARRAY_RANGE_REF)
2897 CHECK_OP (1, "invalid array index");
2898 if (TREE_OPERAND (t, 2))
2899 CHECK_OP (2, "invalid array lower bound");
2900 if (TREE_OPERAND (t, 3))
2901 CHECK_OP (3, "invalid array stride");
2903 else if (TREE_CODE (t) == BIT_FIELD_REF
2904 || TREE_CODE (t) == REALPART_EXPR
2905 || TREE_CODE (t) == IMAGPART_EXPR)
2907 error ("non-top-level BIT_FIELD_REF, IMAGPART_EXPR or "
2908 "REALPART_EXPR");
2909 return t;
2912 t = TREE_OPERAND (t, 0);
2915 if (!is_gimple_min_invariant (t) && !is_gimple_lvalue (t))
2917 error ("invalid reference prefix");
2918 return t;
2920 *walk_subtrees = 0;
2921 break;
2922 case PLUS_EXPR:
2923 case MINUS_EXPR:
2924 /* PLUS_EXPR and MINUS_EXPR don't work on pointers, they should be done using
2925 POINTER_PLUS_EXPR. */
2926 if (POINTER_TYPE_P (TREE_TYPE (t)))
2928 error ("invalid operand to plus/minus, type is a pointer");
2929 return t;
2931 CHECK_OP (0, "invalid operand to binary operator");
2932 CHECK_OP (1, "invalid operand to binary operator");
2933 break;
2935 case POINTER_PLUS_EXPR:
2936 /* Check to make sure the first operand is a pointer or reference type. */
2937 if (!POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (t, 0))))
2939 error ("invalid operand to pointer plus, first operand is not a pointer");
2940 return t;
2942 /* Check to make sure the second operand is a ptrofftype. */
2943 if (!ptrofftype_p (TREE_TYPE (TREE_OPERAND (t, 1))))
2945 error ("invalid operand to pointer plus, second operand is not an "
2946 "integer type of appropriate width");
2947 return t;
2949 /* FALLTHROUGH */
2950 case LT_EXPR:
2951 case LE_EXPR:
2952 case GT_EXPR:
2953 case GE_EXPR:
2954 case EQ_EXPR:
2955 case NE_EXPR:
2956 case UNORDERED_EXPR:
2957 case ORDERED_EXPR:
2958 case UNLT_EXPR:
2959 case UNLE_EXPR:
2960 case UNGT_EXPR:
2961 case UNGE_EXPR:
2962 case UNEQ_EXPR:
2963 case LTGT_EXPR:
2964 case MULT_EXPR:
2965 case TRUNC_DIV_EXPR:
2966 case CEIL_DIV_EXPR:
2967 case FLOOR_DIV_EXPR:
2968 case ROUND_DIV_EXPR:
2969 case TRUNC_MOD_EXPR:
2970 case CEIL_MOD_EXPR:
2971 case FLOOR_MOD_EXPR:
2972 case ROUND_MOD_EXPR:
2973 case RDIV_EXPR:
2974 case EXACT_DIV_EXPR:
2975 case MIN_EXPR:
2976 case MAX_EXPR:
2977 case LSHIFT_EXPR:
2978 case RSHIFT_EXPR:
2979 case LROTATE_EXPR:
2980 case RROTATE_EXPR:
2981 case BIT_IOR_EXPR:
2982 case BIT_XOR_EXPR:
2983 case BIT_AND_EXPR:
2984 CHECK_OP (0, "invalid operand to binary operator");
2985 CHECK_OP (1, "invalid operand to binary operator");
2986 break;
2988 case CONSTRUCTOR:
2989 if (TREE_CONSTANT (t) && TREE_CODE (TREE_TYPE (t)) == VECTOR_TYPE)
2990 *walk_subtrees = 0;
2991 break;
2993 case CASE_LABEL_EXPR:
2994 if (CASE_CHAIN (t))
2996 error ("invalid CASE_CHAIN");
2997 return t;
2999 break;
3001 default:
3002 break;
3004 return NULL;
3006 #undef CHECK_OP
3010 /* Verify if EXPR is either a GIMPLE ID or a GIMPLE indirect reference.
3011 Returns true if there is an error, otherwise false. */
3013 static bool
3014 verify_types_in_gimple_min_lval (tree expr)
3016 tree op;
3018 if (is_gimple_id (expr))
3019 return false;
3021 if (TREE_CODE (expr) != TARGET_MEM_REF
3022 && TREE_CODE (expr) != MEM_REF)
3024 error ("invalid expression for min lvalue");
3025 return true;
3028 /* TARGET_MEM_REFs are strange beasts. */
3029 if (TREE_CODE (expr) == TARGET_MEM_REF)
3030 return false;
3032 op = TREE_OPERAND (expr, 0);
3033 if (!is_gimple_val (op))
3035 error ("invalid operand in indirect reference");
3036 debug_generic_stmt (op);
3037 return true;
3039 /* Memory references now generally can involve a value conversion. */
3041 return false;
3044 /* Verify if EXPR is a valid GIMPLE reference expression. If
3045 REQUIRE_LVALUE is true verifies it is an lvalue. Returns true
3046 if there is an error, otherwise false. */
3048 static bool
3049 verify_types_in_gimple_reference (tree expr, bool require_lvalue)
3051 while (handled_component_p (expr))
3053 tree op = TREE_OPERAND (expr, 0);
3055 if (TREE_CODE (expr) == ARRAY_REF
3056 || TREE_CODE (expr) == ARRAY_RANGE_REF)
3058 if (!is_gimple_val (TREE_OPERAND (expr, 1))
3059 || (TREE_OPERAND (expr, 2)
3060 && !is_gimple_val (TREE_OPERAND (expr, 2)))
3061 || (TREE_OPERAND (expr, 3)
3062 && !is_gimple_val (TREE_OPERAND (expr, 3))))
3064 error ("invalid operands to array reference");
3065 debug_generic_stmt (expr);
3066 return true;
3070 /* Verify if the reference array element types are compatible. */
3071 if (TREE_CODE (expr) == ARRAY_REF
3072 && !useless_type_conversion_p (TREE_TYPE (expr),
3073 TREE_TYPE (TREE_TYPE (op))))
3075 error ("type mismatch in array reference");
3076 debug_generic_stmt (TREE_TYPE (expr));
3077 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
3078 return true;
3080 if (TREE_CODE (expr) == ARRAY_RANGE_REF
3081 && !useless_type_conversion_p (TREE_TYPE (TREE_TYPE (expr)),
3082 TREE_TYPE (TREE_TYPE (op))))
3084 error ("type mismatch in array range reference");
3085 debug_generic_stmt (TREE_TYPE (TREE_TYPE (expr)));
3086 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
3087 return true;
3090 if ((TREE_CODE (expr) == REALPART_EXPR
3091 || TREE_CODE (expr) == IMAGPART_EXPR)
3092 && !useless_type_conversion_p (TREE_TYPE (expr),
3093 TREE_TYPE (TREE_TYPE (op))))
3095 error ("type mismatch in real/imagpart reference");
3096 debug_generic_stmt (TREE_TYPE (expr));
3097 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
3098 return true;
3101 if (TREE_CODE (expr) == COMPONENT_REF
3102 && !useless_type_conversion_p (TREE_TYPE (expr),
3103 TREE_TYPE (TREE_OPERAND (expr, 1))))
3105 error ("type mismatch in component reference");
3106 debug_generic_stmt (TREE_TYPE (expr));
3107 debug_generic_stmt (TREE_TYPE (TREE_OPERAND (expr, 1)));
3108 return true;
3111 if (TREE_CODE (expr) == VIEW_CONVERT_EXPR)
3113 /* For VIEW_CONVERT_EXPRs which are allowed here too, we only check
3114 that their operand is not an SSA name or an invariant when
3115 requiring an lvalue (this usually means there is a SRA or IPA-SRA
3116 bug). Otherwise there is nothing to verify, gross mismatches at
3117 most invoke undefined behavior. */
3118 if (require_lvalue
3119 && (TREE_CODE (op) == SSA_NAME
3120 || is_gimple_min_invariant (op)))
3122 error ("conversion of an SSA_NAME on the left hand side");
3123 debug_generic_stmt (expr);
3124 return true;
3126 else if (TREE_CODE (op) == SSA_NAME
3127 && TYPE_SIZE (TREE_TYPE (expr)) != TYPE_SIZE (TREE_TYPE (op)))
3129 error ("conversion of register to a different size");
3130 debug_generic_stmt (expr);
3131 return true;
3133 else if (!handled_component_p (op))
3134 return false;
3137 expr = op;
3140 if (TREE_CODE (expr) == MEM_REF)
3142 if (!is_gimple_mem_ref_addr (TREE_OPERAND (expr, 0)))
3144 error ("invalid address operand in MEM_REF");
3145 debug_generic_stmt (expr);
3146 return true;
3148 if (TREE_CODE (TREE_OPERAND (expr, 1)) != INTEGER_CST
3149 || !POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (expr, 1))))
3151 error ("invalid offset operand in MEM_REF");
3152 debug_generic_stmt (expr);
3153 return true;
3156 else if (TREE_CODE (expr) == TARGET_MEM_REF)
3158 if (!TMR_BASE (expr)
3159 || !is_gimple_mem_ref_addr (TMR_BASE (expr)))
3161 error ("invalid address operand in TARGET_MEM_REF");
3162 return true;
3164 if (!TMR_OFFSET (expr)
3165 || TREE_CODE (TMR_OFFSET (expr)) != INTEGER_CST
3166 || !POINTER_TYPE_P (TREE_TYPE (TMR_OFFSET (expr))))
3168 error ("invalid offset operand in TARGET_MEM_REF");
3169 debug_generic_stmt (expr);
3170 return true;
3174 return ((require_lvalue || !is_gimple_min_invariant (expr))
3175 && verify_types_in_gimple_min_lval (expr));
3178 /* Returns true if there is one pointer type in TYPE_POINTER_TO (SRC_OBJ)
3179 list of pointer-to types that is trivially convertible to DEST. */
3181 static bool
3182 one_pointer_to_useless_type_conversion_p (tree dest, tree src_obj)
3184 tree src;
3186 if (!TYPE_POINTER_TO (src_obj))
3187 return true;
3189 for (src = TYPE_POINTER_TO (src_obj); src; src = TYPE_NEXT_PTR_TO (src))
3190 if (useless_type_conversion_p (dest, src))
3191 return true;
3193 return false;
3196 /* Return true if TYPE1 is a fixed-point type and if conversions to and
3197 from TYPE2 can be handled by FIXED_CONVERT_EXPR. */
3199 static bool
3200 valid_fixed_convert_types_p (tree type1, tree type2)
3202 return (FIXED_POINT_TYPE_P (type1)
3203 && (INTEGRAL_TYPE_P (type2)
3204 || SCALAR_FLOAT_TYPE_P (type2)
3205 || FIXED_POINT_TYPE_P (type2)));
3208 /* Verify the contents of a GIMPLE_CALL STMT. Returns true when there
3209 is a problem, otherwise false. */
3211 static bool
3212 verify_gimple_call (gimple stmt)
3214 tree fn = gimple_call_fn (stmt);
3215 tree fntype, fndecl;
3216 unsigned i;
3218 if (gimple_call_internal_p (stmt))
3220 if (fn)
3222 error ("gimple call has two targets");
3223 debug_generic_stmt (fn);
3224 return true;
3227 else
3229 if (!fn)
3231 error ("gimple call has no target");
3232 return true;
3236 if (fn && !is_gimple_call_addr (fn))
3238 error ("invalid function in gimple call");
3239 debug_generic_stmt (fn);
3240 return true;
3243 if (fn
3244 && (!POINTER_TYPE_P (TREE_TYPE (fn))
3245 || (TREE_CODE (TREE_TYPE (TREE_TYPE (fn))) != FUNCTION_TYPE
3246 && TREE_CODE (TREE_TYPE (TREE_TYPE (fn))) != METHOD_TYPE)))
3248 error ("non-function in gimple call");
3249 return true;
3252 fndecl = gimple_call_fndecl (stmt);
3253 if (fndecl
3254 && TREE_CODE (fndecl) == FUNCTION_DECL
3255 && DECL_LOOPING_CONST_OR_PURE_P (fndecl)
3256 && !DECL_PURE_P (fndecl)
3257 && !TREE_READONLY (fndecl))
3259 error ("invalid pure const state for function");
3260 return true;
3263 if (gimple_call_lhs (stmt)
3264 && (!is_gimple_lvalue (gimple_call_lhs (stmt))
3265 || verify_types_in_gimple_reference (gimple_call_lhs (stmt), true)))
3267 error ("invalid LHS in gimple call");
3268 return true;
3271 if (gimple_call_lhs (stmt) && gimple_call_noreturn_p (stmt))
3273 error ("LHS in noreturn call");
3274 return true;
3277 fntype = gimple_call_fntype (stmt);
3278 if (fntype
3279 && gimple_call_lhs (stmt)
3280 && !useless_type_conversion_p (TREE_TYPE (gimple_call_lhs (stmt)),
3281 TREE_TYPE (fntype))
3282 /* ??? At least C++ misses conversions at assignments from
3283 void * call results.
3284 ??? Java is completely off. Especially with functions
3285 returning java.lang.Object.
3286 For now simply allow arbitrary pointer type conversions. */
3287 && !(POINTER_TYPE_P (TREE_TYPE (gimple_call_lhs (stmt)))
3288 && POINTER_TYPE_P (TREE_TYPE (fntype))))
3290 error ("invalid conversion in gimple call");
3291 debug_generic_stmt (TREE_TYPE (gimple_call_lhs (stmt)));
3292 debug_generic_stmt (TREE_TYPE (fntype));
3293 return true;
3296 if (gimple_call_chain (stmt)
3297 && !is_gimple_val (gimple_call_chain (stmt)))
3299 error ("invalid static chain in gimple call");
3300 debug_generic_stmt (gimple_call_chain (stmt));
3301 return true;
3304 /* If there is a static chain argument, this should not be an indirect
3305 call, and the decl should have DECL_STATIC_CHAIN set. */
3306 if (gimple_call_chain (stmt))
3308 if (!gimple_call_fndecl (stmt))
3310 error ("static chain in indirect gimple call");
3311 return true;
3313 fn = TREE_OPERAND (fn, 0);
3315 if (!DECL_STATIC_CHAIN (fn))
3317 error ("static chain with function that doesn%'t use one");
3318 return true;
3322 /* ??? The C frontend passes unpromoted arguments in case it
3323 didn't see a function declaration before the call. So for now
3324 leave the call arguments mostly unverified. Once we gimplify
3325 unit-at-a-time we have a chance to fix this. */
3327 for (i = 0; i < gimple_call_num_args (stmt); ++i)
3329 tree arg = gimple_call_arg (stmt, i);
3330 if ((is_gimple_reg_type (TREE_TYPE (arg))
3331 && !is_gimple_val (arg))
3332 || (!is_gimple_reg_type (TREE_TYPE (arg))
3333 && !is_gimple_lvalue (arg)))
3335 error ("invalid argument to gimple call");
3336 debug_generic_expr (arg);
3337 return true;
3341 return false;
3344 /* Verifies the gimple comparison with the result type TYPE and
3345 the operands OP0 and OP1. */
3347 static bool
3348 verify_gimple_comparison (tree type, tree op0, tree op1)
3350 tree op0_type = TREE_TYPE (op0);
3351 tree op1_type = TREE_TYPE (op1);
3353 if (!is_gimple_val (op0) || !is_gimple_val (op1))
3355 error ("invalid operands in gimple comparison");
3356 return true;
3359 /* For comparisons we do not have the operations type as the
3360 effective type the comparison is carried out in. Instead
3361 we require that either the first operand is trivially
3362 convertible into the second, or the other way around.
3363 Because we special-case pointers to void we allow
3364 comparisons of pointers with the same mode as well. */
3365 if (!useless_type_conversion_p (op0_type, op1_type)
3366 && !useless_type_conversion_p (op1_type, op0_type)
3367 && (!POINTER_TYPE_P (op0_type)
3368 || !POINTER_TYPE_P (op1_type)
3369 || TYPE_MODE (op0_type) != TYPE_MODE (op1_type)))
3371 error ("mismatching comparison operand types");
3372 debug_generic_expr (op0_type);
3373 debug_generic_expr (op1_type);
3374 return true;
3377 /* The resulting type of a comparison may be an effective boolean type. */
3378 if (INTEGRAL_TYPE_P (type)
3379 && (TREE_CODE (type) == BOOLEAN_TYPE
3380 || TYPE_PRECISION (type) == 1))
3382 if (TREE_CODE (op0_type) == VECTOR_TYPE
3383 || TREE_CODE (op1_type) == VECTOR_TYPE)
3385 error ("vector comparison returning a boolean");
3386 debug_generic_expr (op0_type);
3387 debug_generic_expr (op1_type);
3388 return true;
3391 /* Or an integer vector type with the same size and element count
3392 as the comparison operand types. */
3393 else if (TREE_CODE (type) == VECTOR_TYPE
3394 && TREE_CODE (TREE_TYPE (type)) == INTEGER_TYPE)
3396 if (TREE_CODE (op0_type) != VECTOR_TYPE
3397 || TREE_CODE (op1_type) != VECTOR_TYPE)
3399 error ("non-vector operands in vector comparison");
3400 debug_generic_expr (op0_type);
3401 debug_generic_expr (op1_type);
3402 return true;
3405 if (TYPE_VECTOR_SUBPARTS (type) != TYPE_VECTOR_SUBPARTS (op0_type)
3406 || (GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (type)))
3407 != GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (op0_type))))
3408 /* The result of a vector comparison is of signed
3409 integral type. */
3410 || TYPE_UNSIGNED (TREE_TYPE (type)))
3412 error ("invalid vector comparison resulting type");
3413 debug_generic_expr (type);
3414 return true;
3417 else
3419 error ("bogus comparison result type");
3420 debug_generic_expr (type);
3421 return true;
3424 return false;
3427 /* Verify a gimple assignment statement STMT with an unary rhs.
3428 Returns true if anything is wrong. */
3430 static bool
3431 verify_gimple_assign_unary (gimple stmt)
3433 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3434 tree lhs = gimple_assign_lhs (stmt);
3435 tree lhs_type = TREE_TYPE (lhs);
3436 tree rhs1 = gimple_assign_rhs1 (stmt);
3437 tree rhs1_type = TREE_TYPE (rhs1);
3439 if (!is_gimple_reg (lhs))
3441 error ("non-register as LHS of unary operation");
3442 return true;
3445 if (!is_gimple_val (rhs1))
3447 error ("invalid operand in unary operation");
3448 return true;
3451 /* First handle conversions. */
3452 switch (rhs_code)
3454 CASE_CONVERT:
3456 /* Allow conversions from pointer type to integral type only if
3457 there is no sign or zero extension involved.
3458 For targets were the precision of ptrofftype doesn't match that
3459 of pointers we need to allow arbitrary conversions to ptrofftype. */
3460 if ((POINTER_TYPE_P (lhs_type)
3461 && INTEGRAL_TYPE_P (rhs1_type))
3462 || (POINTER_TYPE_P (rhs1_type)
3463 && INTEGRAL_TYPE_P (lhs_type)
3464 && (TYPE_PRECISION (rhs1_type) >= TYPE_PRECISION (lhs_type)
3465 || ptrofftype_p (sizetype))))
3466 return false;
3468 /* Allow conversion from integral to offset type and vice versa. */
3469 if ((TREE_CODE (lhs_type) == OFFSET_TYPE
3470 && INTEGRAL_TYPE_P (rhs1_type))
3471 || (INTEGRAL_TYPE_P (lhs_type)
3472 && TREE_CODE (rhs1_type) == OFFSET_TYPE))
3473 return false;
3475 /* Otherwise assert we are converting between types of the
3476 same kind. */
3477 if (INTEGRAL_TYPE_P (lhs_type) != INTEGRAL_TYPE_P (rhs1_type))
3479 error ("invalid types in nop conversion");
3480 debug_generic_expr (lhs_type);
3481 debug_generic_expr (rhs1_type);
3482 return true;
3485 return false;
3488 case ADDR_SPACE_CONVERT_EXPR:
3490 if (!POINTER_TYPE_P (rhs1_type) || !POINTER_TYPE_P (lhs_type)
3491 || (TYPE_ADDR_SPACE (TREE_TYPE (rhs1_type))
3492 == TYPE_ADDR_SPACE (TREE_TYPE (lhs_type))))
3494 error ("invalid types in address space conversion");
3495 debug_generic_expr (lhs_type);
3496 debug_generic_expr (rhs1_type);
3497 return true;
3500 return false;
3503 case FIXED_CONVERT_EXPR:
3505 if (!valid_fixed_convert_types_p (lhs_type, rhs1_type)
3506 && !valid_fixed_convert_types_p (rhs1_type, lhs_type))
3508 error ("invalid types in fixed-point conversion");
3509 debug_generic_expr (lhs_type);
3510 debug_generic_expr (rhs1_type);
3511 return true;
3514 return false;
3517 case FLOAT_EXPR:
3519 if ((!INTEGRAL_TYPE_P (rhs1_type) || !SCALAR_FLOAT_TYPE_P (lhs_type))
3520 && (!VECTOR_INTEGER_TYPE_P (rhs1_type)
3521 || !VECTOR_FLOAT_TYPE_P (lhs_type)))
3523 error ("invalid types in conversion to floating point");
3524 debug_generic_expr (lhs_type);
3525 debug_generic_expr (rhs1_type);
3526 return true;
3529 return false;
3532 case FIX_TRUNC_EXPR:
3534 if ((!INTEGRAL_TYPE_P (lhs_type) || !SCALAR_FLOAT_TYPE_P (rhs1_type))
3535 && (!VECTOR_INTEGER_TYPE_P (lhs_type)
3536 || !VECTOR_FLOAT_TYPE_P (rhs1_type)))
3538 error ("invalid types in conversion to integer");
3539 debug_generic_expr (lhs_type);
3540 debug_generic_expr (rhs1_type);
3541 return true;
3544 return false;
3547 case VEC_UNPACK_HI_EXPR:
3548 case VEC_UNPACK_LO_EXPR:
3549 case REDUC_MAX_EXPR:
3550 case REDUC_MIN_EXPR:
3551 case REDUC_PLUS_EXPR:
3552 case VEC_UNPACK_FLOAT_HI_EXPR:
3553 case VEC_UNPACK_FLOAT_LO_EXPR:
3554 /* FIXME. */
3555 return false;
3557 case NEGATE_EXPR:
3558 case ABS_EXPR:
3559 case BIT_NOT_EXPR:
3560 case PAREN_EXPR:
3561 case CONJ_EXPR:
3562 break;
3564 default:
3565 gcc_unreachable ();
3568 /* For the remaining codes assert there is no conversion involved. */
3569 if (!useless_type_conversion_p (lhs_type, rhs1_type))
3571 error ("non-trivial conversion in unary operation");
3572 debug_generic_expr (lhs_type);
3573 debug_generic_expr (rhs1_type);
3574 return true;
3577 return false;
3580 /* Verify a gimple assignment statement STMT with a binary rhs.
3581 Returns true if anything is wrong. */
3583 static bool
3584 verify_gimple_assign_binary (gimple stmt)
3586 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3587 tree lhs = gimple_assign_lhs (stmt);
3588 tree lhs_type = TREE_TYPE (lhs);
3589 tree rhs1 = gimple_assign_rhs1 (stmt);
3590 tree rhs1_type = TREE_TYPE (rhs1);
3591 tree rhs2 = gimple_assign_rhs2 (stmt);
3592 tree rhs2_type = TREE_TYPE (rhs2);
3594 if (!is_gimple_reg (lhs))
3596 error ("non-register as LHS of binary operation");
3597 return true;
3600 if (!is_gimple_val (rhs1)
3601 || !is_gimple_val (rhs2))
3603 error ("invalid operands in binary operation");
3604 return true;
3607 /* First handle operations that involve different types. */
3608 switch (rhs_code)
3610 case COMPLEX_EXPR:
3612 if (TREE_CODE (lhs_type) != COMPLEX_TYPE
3613 || !(INTEGRAL_TYPE_P (rhs1_type)
3614 || SCALAR_FLOAT_TYPE_P (rhs1_type))
3615 || !(INTEGRAL_TYPE_P (rhs2_type)
3616 || SCALAR_FLOAT_TYPE_P (rhs2_type)))
3618 error ("type mismatch in complex expression");
3619 debug_generic_expr (lhs_type);
3620 debug_generic_expr (rhs1_type);
3621 debug_generic_expr (rhs2_type);
3622 return true;
3625 return false;
3628 case LSHIFT_EXPR:
3629 case RSHIFT_EXPR:
3630 case LROTATE_EXPR:
3631 case RROTATE_EXPR:
3633 /* Shifts and rotates are ok on integral types, fixed point
3634 types and integer vector types. */
3635 if ((!INTEGRAL_TYPE_P (rhs1_type)
3636 && !FIXED_POINT_TYPE_P (rhs1_type)
3637 && !(TREE_CODE (rhs1_type) == VECTOR_TYPE
3638 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))))
3639 || (!INTEGRAL_TYPE_P (rhs2_type)
3640 /* Vector shifts of vectors are also ok. */
3641 && !(TREE_CODE (rhs1_type) == VECTOR_TYPE
3642 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
3643 && TREE_CODE (rhs2_type) == VECTOR_TYPE
3644 && INTEGRAL_TYPE_P (TREE_TYPE (rhs2_type))))
3645 || !useless_type_conversion_p (lhs_type, rhs1_type))
3647 error ("type mismatch in shift expression");
3648 debug_generic_expr (lhs_type);
3649 debug_generic_expr (rhs1_type);
3650 debug_generic_expr (rhs2_type);
3651 return true;
3654 return false;
3657 case VEC_LSHIFT_EXPR:
3658 case VEC_RSHIFT_EXPR:
3660 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
3661 || !(INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
3662 || POINTER_TYPE_P (TREE_TYPE (rhs1_type))
3663 || FIXED_POINT_TYPE_P (TREE_TYPE (rhs1_type))
3664 || SCALAR_FLOAT_TYPE_P (TREE_TYPE (rhs1_type)))
3665 || (!INTEGRAL_TYPE_P (rhs2_type)
3666 && (TREE_CODE (rhs2_type) != VECTOR_TYPE
3667 || !INTEGRAL_TYPE_P (TREE_TYPE (rhs2_type))))
3668 || !useless_type_conversion_p (lhs_type, rhs1_type))
3670 error ("type mismatch in vector shift expression");
3671 debug_generic_expr (lhs_type);
3672 debug_generic_expr (rhs1_type);
3673 debug_generic_expr (rhs2_type);
3674 return true;
3676 /* For shifting a vector of non-integral components we
3677 only allow shifting by a constant multiple of the element size. */
3678 if (!INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
3679 && (TREE_CODE (rhs2) != INTEGER_CST
3680 || !div_if_zero_remainder (rhs2,
3681 TYPE_SIZE (TREE_TYPE (rhs1_type)))))
3683 error ("non-element sized vector shift of floating point vector");
3684 return true;
3687 return false;
3690 case WIDEN_LSHIFT_EXPR:
3692 if (!INTEGRAL_TYPE_P (lhs_type)
3693 || !INTEGRAL_TYPE_P (rhs1_type)
3694 || TREE_CODE (rhs2) != INTEGER_CST
3695 || (2 * TYPE_PRECISION (rhs1_type) > TYPE_PRECISION (lhs_type)))
3697 error ("type mismatch in widening vector shift expression");
3698 debug_generic_expr (lhs_type);
3699 debug_generic_expr (rhs1_type);
3700 debug_generic_expr (rhs2_type);
3701 return true;
3704 return false;
3707 case VEC_WIDEN_LSHIFT_HI_EXPR:
3708 case VEC_WIDEN_LSHIFT_LO_EXPR:
3710 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
3711 || TREE_CODE (lhs_type) != VECTOR_TYPE
3712 || !INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
3713 || !INTEGRAL_TYPE_P (TREE_TYPE (lhs_type))
3714 || TREE_CODE (rhs2) != INTEGER_CST
3715 || (2 * TYPE_PRECISION (TREE_TYPE (rhs1_type))
3716 > TYPE_PRECISION (TREE_TYPE (lhs_type))))
3718 error ("type mismatch in widening vector shift expression");
3719 debug_generic_expr (lhs_type);
3720 debug_generic_expr (rhs1_type);
3721 debug_generic_expr (rhs2_type);
3722 return true;
3725 return false;
3728 case PLUS_EXPR:
3729 case MINUS_EXPR:
3731 tree lhs_etype = lhs_type;
3732 tree rhs1_etype = rhs1_type;
3733 tree rhs2_etype = rhs2_type;
3734 if (TREE_CODE (lhs_type) == VECTOR_TYPE)
3736 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
3737 || TREE_CODE (rhs2_type) != VECTOR_TYPE)
3739 error ("invalid non-vector operands to vector valued plus");
3740 return true;
3742 lhs_etype = TREE_TYPE (lhs_type);
3743 rhs1_etype = TREE_TYPE (rhs1_type);
3744 rhs2_etype = TREE_TYPE (rhs2_type);
3746 if (POINTER_TYPE_P (lhs_etype)
3747 || POINTER_TYPE_P (rhs1_etype)
3748 || POINTER_TYPE_P (rhs2_etype))
3750 error ("invalid (pointer) operands to plus/minus");
3751 return true;
3754 /* Continue with generic binary expression handling. */
3755 break;
3758 case POINTER_PLUS_EXPR:
3760 if (!POINTER_TYPE_P (rhs1_type)
3761 || !useless_type_conversion_p (lhs_type, rhs1_type)
3762 || !ptrofftype_p (rhs2_type))
3764 error ("type mismatch in pointer plus expression");
3765 debug_generic_stmt (lhs_type);
3766 debug_generic_stmt (rhs1_type);
3767 debug_generic_stmt (rhs2_type);
3768 return true;
3771 return false;
3774 case TRUTH_ANDIF_EXPR:
3775 case TRUTH_ORIF_EXPR:
3776 case TRUTH_AND_EXPR:
3777 case TRUTH_OR_EXPR:
3778 case TRUTH_XOR_EXPR:
3780 gcc_unreachable ();
3782 case LT_EXPR:
3783 case LE_EXPR:
3784 case GT_EXPR:
3785 case GE_EXPR:
3786 case EQ_EXPR:
3787 case NE_EXPR:
3788 case UNORDERED_EXPR:
3789 case ORDERED_EXPR:
3790 case UNLT_EXPR:
3791 case UNLE_EXPR:
3792 case UNGT_EXPR:
3793 case UNGE_EXPR:
3794 case UNEQ_EXPR:
3795 case LTGT_EXPR:
3796 /* Comparisons are also binary, but the result type is not
3797 connected to the operand types. */
3798 return verify_gimple_comparison (lhs_type, rhs1, rhs2);
3800 case WIDEN_MULT_EXPR:
3801 if (TREE_CODE (lhs_type) != INTEGER_TYPE)
3802 return true;
3803 return ((2 * TYPE_PRECISION (rhs1_type) > TYPE_PRECISION (lhs_type))
3804 || (TYPE_PRECISION (rhs1_type) != TYPE_PRECISION (rhs2_type)));
3806 case WIDEN_SUM_EXPR:
3807 case VEC_WIDEN_MULT_HI_EXPR:
3808 case VEC_WIDEN_MULT_LO_EXPR:
3809 case VEC_WIDEN_MULT_EVEN_EXPR:
3810 case VEC_WIDEN_MULT_ODD_EXPR:
3811 case VEC_PACK_TRUNC_EXPR:
3812 case VEC_PACK_SAT_EXPR:
3813 case VEC_PACK_FIX_TRUNC_EXPR:
3814 /* FIXME. */
3815 return false;
3817 case MULT_EXPR:
3818 case MULT_HIGHPART_EXPR:
3819 case TRUNC_DIV_EXPR:
3820 case CEIL_DIV_EXPR:
3821 case FLOOR_DIV_EXPR:
3822 case ROUND_DIV_EXPR:
3823 case TRUNC_MOD_EXPR:
3824 case CEIL_MOD_EXPR:
3825 case FLOOR_MOD_EXPR:
3826 case ROUND_MOD_EXPR:
3827 case RDIV_EXPR:
3828 case EXACT_DIV_EXPR:
3829 case MIN_EXPR:
3830 case MAX_EXPR:
3831 case BIT_IOR_EXPR:
3832 case BIT_XOR_EXPR:
3833 case BIT_AND_EXPR:
3834 /* Continue with generic binary expression handling. */
3835 break;
3837 default:
3838 gcc_unreachable ();
3841 if (!useless_type_conversion_p (lhs_type, rhs1_type)
3842 || !useless_type_conversion_p (lhs_type, rhs2_type))
3844 error ("type mismatch in binary expression");
3845 debug_generic_stmt (lhs_type);
3846 debug_generic_stmt (rhs1_type);
3847 debug_generic_stmt (rhs2_type);
3848 return true;
3851 return false;
3854 /* Verify a gimple assignment statement STMT with a ternary rhs.
3855 Returns true if anything is wrong. */
3857 static bool
3858 verify_gimple_assign_ternary (gimple stmt)
3860 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3861 tree lhs = gimple_assign_lhs (stmt);
3862 tree lhs_type = TREE_TYPE (lhs);
3863 tree rhs1 = gimple_assign_rhs1 (stmt);
3864 tree rhs1_type = TREE_TYPE (rhs1);
3865 tree rhs2 = gimple_assign_rhs2 (stmt);
3866 tree rhs2_type = TREE_TYPE (rhs2);
3867 tree rhs3 = gimple_assign_rhs3 (stmt);
3868 tree rhs3_type = TREE_TYPE (rhs3);
3870 if (!is_gimple_reg (lhs))
3872 error ("non-register as LHS of ternary operation");
3873 return true;
3876 if (((rhs_code == VEC_COND_EXPR || rhs_code == COND_EXPR)
3877 ? !is_gimple_condexpr (rhs1) : !is_gimple_val (rhs1))
3878 || !is_gimple_val (rhs2)
3879 || !is_gimple_val (rhs3))
3881 error ("invalid operands in ternary operation");
3882 return true;
3885 /* First handle operations that involve different types. */
3886 switch (rhs_code)
3888 case WIDEN_MULT_PLUS_EXPR:
3889 case WIDEN_MULT_MINUS_EXPR:
3890 if ((!INTEGRAL_TYPE_P (rhs1_type)
3891 && !FIXED_POINT_TYPE_P (rhs1_type))
3892 || !useless_type_conversion_p (rhs1_type, rhs2_type)
3893 || !useless_type_conversion_p (lhs_type, rhs3_type)
3894 || 2 * TYPE_PRECISION (rhs1_type) > TYPE_PRECISION (lhs_type)
3895 || TYPE_PRECISION (rhs1_type) != TYPE_PRECISION (rhs2_type))
3897 error ("type mismatch in widening multiply-accumulate expression");
3898 debug_generic_expr (lhs_type);
3899 debug_generic_expr (rhs1_type);
3900 debug_generic_expr (rhs2_type);
3901 debug_generic_expr (rhs3_type);
3902 return true;
3904 break;
3906 case FMA_EXPR:
3907 if (!useless_type_conversion_p (lhs_type, rhs1_type)
3908 || !useless_type_conversion_p (lhs_type, rhs2_type)
3909 || !useless_type_conversion_p (lhs_type, rhs3_type))
3911 error ("type mismatch in fused multiply-add expression");
3912 debug_generic_expr (lhs_type);
3913 debug_generic_expr (rhs1_type);
3914 debug_generic_expr (rhs2_type);
3915 debug_generic_expr (rhs3_type);
3916 return true;
3918 break;
3920 case COND_EXPR:
3921 case VEC_COND_EXPR:
3922 if (!useless_type_conversion_p (lhs_type, rhs2_type)
3923 || !useless_type_conversion_p (lhs_type, rhs3_type))
3925 error ("type mismatch in conditional expression");
3926 debug_generic_expr (lhs_type);
3927 debug_generic_expr (rhs2_type);
3928 debug_generic_expr (rhs3_type);
3929 return true;
3931 break;
3933 case VEC_PERM_EXPR:
3934 if (!useless_type_conversion_p (lhs_type, rhs1_type)
3935 || !useless_type_conversion_p (lhs_type, rhs2_type))
3937 error ("type mismatch in vector permute expression");
3938 debug_generic_expr (lhs_type);
3939 debug_generic_expr (rhs1_type);
3940 debug_generic_expr (rhs2_type);
3941 debug_generic_expr (rhs3_type);
3942 return true;
3945 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
3946 || TREE_CODE (rhs2_type) != VECTOR_TYPE
3947 || TREE_CODE (rhs3_type) != VECTOR_TYPE)
3949 error ("vector types expected in vector permute expression");
3950 debug_generic_expr (lhs_type);
3951 debug_generic_expr (rhs1_type);
3952 debug_generic_expr (rhs2_type);
3953 debug_generic_expr (rhs3_type);
3954 return true;
3957 if (TYPE_VECTOR_SUBPARTS (rhs1_type) != TYPE_VECTOR_SUBPARTS (rhs2_type)
3958 || TYPE_VECTOR_SUBPARTS (rhs2_type)
3959 != TYPE_VECTOR_SUBPARTS (rhs3_type)
3960 || TYPE_VECTOR_SUBPARTS (rhs3_type)
3961 != TYPE_VECTOR_SUBPARTS (lhs_type))
3963 error ("vectors with different element number found "
3964 "in vector permute expression");
3965 debug_generic_expr (lhs_type);
3966 debug_generic_expr (rhs1_type);
3967 debug_generic_expr (rhs2_type);
3968 debug_generic_expr (rhs3_type);
3969 return true;
3972 if (TREE_CODE (TREE_TYPE (rhs3_type)) != INTEGER_TYPE
3973 || GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (rhs3_type)))
3974 != GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (rhs1_type))))
3976 error ("invalid mask type in vector permute expression");
3977 debug_generic_expr (lhs_type);
3978 debug_generic_expr (rhs1_type);
3979 debug_generic_expr (rhs2_type);
3980 debug_generic_expr (rhs3_type);
3981 return true;
3984 return false;
3986 case SAD_EXPR:
3987 if (!useless_type_conversion_p (rhs1_type, rhs2_type)
3988 || !useless_type_conversion_p (lhs_type, rhs3_type)
3989 || 2 * GET_MODE_BITSIZE (GET_MODE_INNER
3990 (TYPE_MODE (TREE_TYPE (rhs1_type))))
3991 > GET_MODE_BITSIZE (GET_MODE_INNER
3992 (TYPE_MODE (TREE_TYPE (lhs_type)))))
3994 error ("type mismatch in sad expression");
3995 debug_generic_expr (lhs_type);
3996 debug_generic_expr (rhs1_type);
3997 debug_generic_expr (rhs2_type);
3998 debug_generic_expr (rhs3_type);
3999 return true;
4002 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
4003 || TREE_CODE (rhs2_type) != VECTOR_TYPE
4004 || TREE_CODE (rhs3_type) != VECTOR_TYPE)
4006 error ("vector types expected in sad expression");
4007 debug_generic_expr (lhs_type);
4008 debug_generic_expr (rhs1_type);
4009 debug_generic_expr (rhs2_type);
4010 debug_generic_expr (rhs3_type);
4011 return true;
4014 return false;
4016 case DOT_PROD_EXPR:
4017 case REALIGN_LOAD_EXPR:
4018 /* FIXME. */
4019 return false;
4021 default:
4022 gcc_unreachable ();
4024 return false;
4027 /* Verify a gimple assignment statement STMT with a single rhs.
4028 Returns true if anything is wrong. */
4030 static bool
4031 verify_gimple_assign_single (gimple stmt)
4033 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
4034 tree lhs = gimple_assign_lhs (stmt);
4035 tree lhs_type = TREE_TYPE (lhs);
4036 tree rhs1 = gimple_assign_rhs1 (stmt);
4037 tree rhs1_type = TREE_TYPE (rhs1);
4038 bool res = false;
4040 if (!useless_type_conversion_p (lhs_type, rhs1_type))
4042 error ("non-trivial conversion at assignment");
4043 debug_generic_expr (lhs_type);
4044 debug_generic_expr (rhs1_type);
4045 return true;
4048 if (gimple_clobber_p (stmt)
4049 && !(DECL_P (lhs) || TREE_CODE (lhs) == MEM_REF))
4051 error ("non-decl/MEM_REF LHS in clobber statement");
4052 debug_generic_expr (lhs);
4053 return true;
4056 if (handled_component_p (lhs)
4057 || TREE_CODE (lhs) == MEM_REF
4058 || TREE_CODE (lhs) == TARGET_MEM_REF)
4059 res |= verify_types_in_gimple_reference (lhs, true);
4061 /* Special codes we cannot handle via their class. */
4062 switch (rhs_code)
4064 case ADDR_EXPR:
4066 tree op = TREE_OPERAND (rhs1, 0);
4067 if (!is_gimple_addressable (op))
4069 error ("invalid operand in unary expression");
4070 return true;
4073 /* Technically there is no longer a need for matching types, but
4074 gimple hygiene asks for this check. In LTO we can end up
4075 combining incompatible units and thus end up with addresses
4076 of globals that change their type to a common one. */
4077 if (!in_lto_p
4078 && !types_compatible_p (TREE_TYPE (op),
4079 TREE_TYPE (TREE_TYPE (rhs1)))
4080 && !one_pointer_to_useless_type_conversion_p (TREE_TYPE (rhs1),
4081 TREE_TYPE (op)))
4083 error ("type mismatch in address expression");
4084 debug_generic_stmt (TREE_TYPE (rhs1));
4085 debug_generic_stmt (TREE_TYPE (op));
4086 return true;
4089 return verify_types_in_gimple_reference (op, true);
4092 /* tcc_reference */
4093 case INDIRECT_REF:
4094 error ("INDIRECT_REF in gimple IL");
4095 return true;
4097 case COMPONENT_REF:
4098 case BIT_FIELD_REF:
4099 case ARRAY_REF:
4100 case ARRAY_RANGE_REF:
4101 case VIEW_CONVERT_EXPR:
4102 case REALPART_EXPR:
4103 case IMAGPART_EXPR:
4104 case TARGET_MEM_REF:
4105 case MEM_REF:
4106 if (!is_gimple_reg (lhs)
4107 && is_gimple_reg_type (TREE_TYPE (lhs)))
4109 error ("invalid rhs for gimple memory store");
4110 debug_generic_stmt (lhs);
4111 debug_generic_stmt (rhs1);
4112 return true;
4114 return res || verify_types_in_gimple_reference (rhs1, false);
4116 /* tcc_constant */
4117 case SSA_NAME:
4118 case INTEGER_CST:
4119 case REAL_CST:
4120 case FIXED_CST:
4121 case COMPLEX_CST:
4122 case VECTOR_CST:
4123 case STRING_CST:
4124 return res;
4126 /* tcc_declaration */
4127 case CONST_DECL:
4128 return res;
4129 case VAR_DECL:
4130 case PARM_DECL:
4131 if (!is_gimple_reg (lhs)
4132 && !is_gimple_reg (rhs1)
4133 && is_gimple_reg_type (TREE_TYPE (lhs)))
4135 error ("invalid rhs for gimple memory store");
4136 debug_generic_stmt (lhs);
4137 debug_generic_stmt (rhs1);
4138 return true;
4140 return res;
4142 case CONSTRUCTOR:
4143 if (TREE_CODE (rhs1_type) == VECTOR_TYPE)
4145 unsigned int i;
4146 tree elt_i, elt_v, elt_t = NULL_TREE;
4148 if (CONSTRUCTOR_NELTS (rhs1) == 0)
4149 return res;
4150 /* For vector CONSTRUCTORs we require that either it is empty
4151 CONSTRUCTOR, or it is a CONSTRUCTOR of smaller vector elements
4152 (then the element count must be correct to cover the whole
4153 outer vector and index must be NULL on all elements, or it is
4154 a CONSTRUCTOR of scalar elements, where we as an exception allow
4155 smaller number of elements (assuming zero filling) and
4156 consecutive indexes as compared to NULL indexes (such
4157 CONSTRUCTORs can appear in the IL from FEs). */
4158 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (rhs1), i, elt_i, elt_v)
4160 if (elt_t == NULL_TREE)
4162 elt_t = TREE_TYPE (elt_v);
4163 if (TREE_CODE (elt_t) == VECTOR_TYPE)
4165 tree elt_t = TREE_TYPE (elt_v);
4166 if (!useless_type_conversion_p (TREE_TYPE (rhs1_type),
4167 TREE_TYPE (elt_t)))
4169 error ("incorrect type of vector CONSTRUCTOR"
4170 " elements");
4171 debug_generic_stmt (rhs1);
4172 return true;
4174 else if (CONSTRUCTOR_NELTS (rhs1)
4175 * TYPE_VECTOR_SUBPARTS (elt_t)
4176 != TYPE_VECTOR_SUBPARTS (rhs1_type))
4178 error ("incorrect number of vector CONSTRUCTOR"
4179 " elements");
4180 debug_generic_stmt (rhs1);
4181 return true;
4184 else if (!useless_type_conversion_p (TREE_TYPE (rhs1_type),
4185 elt_t))
4187 error ("incorrect type of vector CONSTRUCTOR elements");
4188 debug_generic_stmt (rhs1);
4189 return true;
4191 else if (CONSTRUCTOR_NELTS (rhs1)
4192 > TYPE_VECTOR_SUBPARTS (rhs1_type))
4194 error ("incorrect number of vector CONSTRUCTOR elements");
4195 debug_generic_stmt (rhs1);
4196 return true;
4199 else if (!useless_type_conversion_p (elt_t, TREE_TYPE (elt_v)))
4201 error ("incorrect type of vector CONSTRUCTOR elements");
4202 debug_generic_stmt (rhs1);
4203 return true;
4205 if (elt_i != NULL_TREE
4206 && (TREE_CODE (elt_t) == VECTOR_TYPE
4207 || TREE_CODE (elt_i) != INTEGER_CST
4208 || compare_tree_int (elt_i, i) != 0))
4210 error ("vector CONSTRUCTOR with non-NULL element index");
4211 debug_generic_stmt (rhs1);
4212 return true;
4214 if (!is_gimple_val (elt_v))
4216 error ("vector CONSTRUCTOR element is not a GIMPLE value");
4217 debug_generic_stmt (rhs1);
4218 return true;
4222 else if (CONSTRUCTOR_NELTS (rhs1) != 0)
4224 error ("non-vector CONSTRUCTOR with elements");
4225 debug_generic_stmt (rhs1);
4226 return true;
4228 return res;
4229 case OBJ_TYPE_REF:
4230 case ASSERT_EXPR:
4231 case WITH_SIZE_EXPR:
4232 /* FIXME. */
4233 return res;
4235 default:;
4238 return res;
4241 /* Verify the contents of a GIMPLE_ASSIGN STMT. Returns true when there
4242 is a problem, otherwise false. */
4244 static bool
4245 verify_gimple_assign (gimple stmt)
4247 switch (gimple_assign_rhs_class (stmt))
4249 case GIMPLE_SINGLE_RHS:
4250 return verify_gimple_assign_single (stmt);
4252 case GIMPLE_UNARY_RHS:
4253 return verify_gimple_assign_unary (stmt);
4255 case GIMPLE_BINARY_RHS:
4256 return verify_gimple_assign_binary (stmt);
4258 case GIMPLE_TERNARY_RHS:
4259 return verify_gimple_assign_ternary (stmt);
4261 default:
4262 gcc_unreachable ();
4266 /* Verify the contents of a GIMPLE_RETURN STMT. Returns true when there
4267 is a problem, otherwise false. */
4269 static bool
4270 verify_gimple_return (gimple stmt)
4272 tree op = gimple_return_retval (stmt);
4273 tree restype = TREE_TYPE (TREE_TYPE (cfun->decl));
4275 /* We cannot test for present return values as we do not fix up missing
4276 return values from the original source. */
4277 if (op == NULL)
4278 return false;
4280 if (!is_gimple_val (op)
4281 && TREE_CODE (op) != RESULT_DECL)
4283 error ("invalid operand in return statement");
4284 debug_generic_stmt (op);
4285 return true;
4288 if ((TREE_CODE (op) == RESULT_DECL
4289 && DECL_BY_REFERENCE (op))
4290 || (TREE_CODE (op) == SSA_NAME
4291 && SSA_NAME_VAR (op)
4292 && TREE_CODE (SSA_NAME_VAR (op)) == RESULT_DECL
4293 && DECL_BY_REFERENCE (SSA_NAME_VAR (op))))
4294 op = TREE_TYPE (op);
4296 if (!useless_type_conversion_p (restype, TREE_TYPE (op)))
4298 error ("invalid conversion in return statement");
4299 debug_generic_stmt (restype);
4300 debug_generic_stmt (TREE_TYPE (op));
4301 return true;
4304 return false;
4308 /* Verify the contents of a GIMPLE_GOTO STMT. Returns true when there
4309 is a problem, otherwise false. */
4311 static bool
4312 verify_gimple_goto (gimple stmt)
4314 tree dest = gimple_goto_dest (stmt);
4316 /* ??? We have two canonical forms of direct goto destinations, a
4317 bare LABEL_DECL and an ADDR_EXPR of a LABEL_DECL. */
4318 if (TREE_CODE (dest) != LABEL_DECL
4319 && (!is_gimple_val (dest)
4320 || !POINTER_TYPE_P (TREE_TYPE (dest))))
4322 error ("goto destination is neither a label nor a pointer");
4323 return true;
4326 return false;
4329 /* Verify the contents of a GIMPLE_SWITCH STMT. Returns true when there
4330 is a problem, otherwise false. */
4332 static bool
4333 verify_gimple_switch (gimple stmt)
4335 unsigned int i, n;
4336 tree elt, prev_upper_bound = NULL_TREE;
4337 tree index_type, elt_type = NULL_TREE;
4339 if (!is_gimple_val (gimple_switch_index (stmt)))
4341 error ("invalid operand to switch statement");
4342 debug_generic_stmt (gimple_switch_index (stmt));
4343 return true;
4346 index_type = TREE_TYPE (gimple_switch_index (stmt));
4347 if (! INTEGRAL_TYPE_P (index_type))
4349 error ("non-integral type switch statement");
4350 debug_generic_expr (index_type);
4351 return true;
4354 elt = gimple_switch_label (stmt, 0);
4355 if (CASE_LOW (elt) != NULL_TREE || CASE_HIGH (elt) != NULL_TREE)
4357 error ("invalid default case label in switch statement");
4358 debug_generic_expr (elt);
4359 return true;
4362 n = gimple_switch_num_labels (stmt);
4363 for (i = 1; i < n; i++)
4365 elt = gimple_switch_label (stmt, i);
4367 if (! CASE_LOW (elt))
4369 error ("invalid case label in switch statement");
4370 debug_generic_expr (elt);
4371 return true;
4373 if (CASE_HIGH (elt)
4374 && ! tree_int_cst_lt (CASE_LOW (elt), CASE_HIGH (elt)))
4376 error ("invalid case range in switch statement");
4377 debug_generic_expr (elt);
4378 return true;
4381 if (elt_type)
4383 if (TREE_TYPE (CASE_LOW (elt)) != elt_type
4384 || (CASE_HIGH (elt) && TREE_TYPE (CASE_HIGH (elt)) != elt_type))
4386 error ("type mismatch for case label in switch statement");
4387 debug_generic_expr (elt);
4388 return true;
4391 else
4393 elt_type = TREE_TYPE (CASE_LOW (elt));
4394 if (TYPE_PRECISION (index_type) < TYPE_PRECISION (elt_type))
4396 error ("type precision mismatch in switch statement");
4397 return true;
4401 if (prev_upper_bound)
4403 if (! tree_int_cst_lt (prev_upper_bound, CASE_LOW (elt)))
4405 error ("case labels not sorted in switch statement");
4406 return true;
4410 prev_upper_bound = CASE_HIGH (elt);
4411 if (! prev_upper_bound)
4412 prev_upper_bound = CASE_LOW (elt);
4415 return false;
4418 /* Verify a gimple debug statement STMT.
4419 Returns true if anything is wrong. */
4421 static bool
4422 verify_gimple_debug (gimple stmt ATTRIBUTE_UNUSED)
4424 /* There isn't much that could be wrong in a gimple debug stmt. A
4425 gimple debug bind stmt, for example, maps a tree, that's usually
4426 a VAR_DECL or a PARM_DECL, but that could also be some scalarized
4427 component or member of an aggregate type, to another tree, that
4428 can be an arbitrary expression. These stmts expand into debug
4429 insns, and are converted to debug notes by var-tracking.c. */
4430 return false;
4433 /* Verify a gimple label statement STMT.
4434 Returns true if anything is wrong. */
4436 static bool
4437 verify_gimple_label (gimple stmt)
4439 tree decl = gimple_label_label (stmt);
4440 int uid;
4441 bool err = false;
4443 if (TREE_CODE (decl) != LABEL_DECL)
4444 return true;
4445 if (!DECL_NONLOCAL (decl) && !FORCED_LABEL (decl)
4446 && DECL_CONTEXT (decl) != current_function_decl)
4448 error ("label's context is not the current function decl");
4449 err |= true;
4452 uid = LABEL_DECL_UID (decl);
4453 if (cfun->cfg
4454 && (uid == -1
4455 || (*label_to_block_map_for_fn (cfun))[uid] != gimple_bb (stmt)))
4457 error ("incorrect entry in label_to_block_map");
4458 err |= true;
4461 uid = EH_LANDING_PAD_NR (decl);
4462 if (uid)
4464 eh_landing_pad lp = get_eh_landing_pad_from_number (uid);
4465 if (decl != lp->post_landing_pad)
4467 error ("incorrect setting of landing pad number");
4468 err |= true;
4472 return err;
4475 /* Verify the GIMPLE statement STMT. Returns true if there is an
4476 error, otherwise false. */
4478 static bool
4479 verify_gimple_stmt (gimple stmt)
4481 switch (gimple_code (stmt))
4483 case GIMPLE_ASSIGN:
4484 return verify_gimple_assign (stmt);
4486 case GIMPLE_LABEL:
4487 return verify_gimple_label (stmt);
4489 case GIMPLE_CALL:
4490 return verify_gimple_call (stmt);
4492 case GIMPLE_COND:
4493 if (TREE_CODE_CLASS (gimple_cond_code (stmt)) != tcc_comparison)
4495 error ("invalid comparison code in gimple cond");
4496 return true;
4498 if (!(!gimple_cond_true_label (stmt)
4499 || TREE_CODE (gimple_cond_true_label (stmt)) == LABEL_DECL)
4500 || !(!gimple_cond_false_label (stmt)
4501 || TREE_CODE (gimple_cond_false_label (stmt)) == LABEL_DECL))
4503 error ("invalid labels in gimple cond");
4504 return true;
4507 return verify_gimple_comparison (boolean_type_node,
4508 gimple_cond_lhs (stmt),
4509 gimple_cond_rhs (stmt));
4511 case GIMPLE_GOTO:
4512 return verify_gimple_goto (stmt);
4514 case GIMPLE_SWITCH:
4515 return verify_gimple_switch (stmt);
4517 case GIMPLE_RETURN:
4518 return verify_gimple_return (stmt);
4520 case GIMPLE_ASM:
4521 return false;
4523 case GIMPLE_TRANSACTION:
4524 return verify_gimple_transaction (stmt);
4526 /* Tuples that do not have tree operands. */
4527 case GIMPLE_NOP:
4528 case GIMPLE_PREDICT:
4529 case GIMPLE_RESX:
4530 case GIMPLE_EH_DISPATCH:
4531 case GIMPLE_EH_MUST_NOT_THROW:
4532 return false;
4534 CASE_GIMPLE_OMP:
4535 /* OpenMP directives are validated by the FE and never operated
4536 on by the optimizers. Furthermore, GIMPLE_OMP_FOR may contain
4537 non-gimple expressions when the main index variable has had
4538 its address taken. This does not affect the loop itself
4539 because the header of an GIMPLE_OMP_FOR is merely used to determine
4540 how to setup the parallel iteration. */
4541 return false;
4543 case GIMPLE_DEBUG:
4544 return verify_gimple_debug (stmt);
4546 default:
4547 gcc_unreachable ();
4551 /* Verify the contents of a GIMPLE_PHI. Returns true if there is a problem,
4552 and false otherwise. */
4554 static bool
4555 verify_gimple_phi (gimple phi)
4557 bool err = false;
4558 unsigned i;
4559 tree phi_result = gimple_phi_result (phi);
4560 bool virtual_p;
4562 if (!phi_result)
4564 error ("invalid PHI result");
4565 return true;
4568 virtual_p = virtual_operand_p (phi_result);
4569 if (TREE_CODE (phi_result) != SSA_NAME
4570 || (virtual_p
4571 && SSA_NAME_VAR (phi_result) != gimple_vop (cfun)))
4573 error ("invalid PHI result");
4574 err = true;
4577 for (i = 0; i < gimple_phi_num_args (phi); i++)
4579 tree t = gimple_phi_arg_def (phi, i);
4581 if (!t)
4583 error ("missing PHI def");
4584 err |= true;
4585 continue;
4587 /* Addressable variables do have SSA_NAMEs but they
4588 are not considered gimple values. */
4589 else if ((TREE_CODE (t) == SSA_NAME
4590 && virtual_p != virtual_operand_p (t))
4591 || (virtual_p
4592 && (TREE_CODE (t) != SSA_NAME
4593 || SSA_NAME_VAR (t) != gimple_vop (cfun)))
4594 || (!virtual_p
4595 && !is_gimple_val (t)))
4597 error ("invalid PHI argument");
4598 debug_generic_expr (t);
4599 err |= true;
4601 #ifdef ENABLE_TYPES_CHECKING
4602 if (!useless_type_conversion_p (TREE_TYPE (phi_result), TREE_TYPE (t)))
4604 error ("incompatible types in PHI argument %u", i);
4605 debug_generic_stmt (TREE_TYPE (phi_result));
4606 debug_generic_stmt (TREE_TYPE (t));
4607 err |= true;
4609 #endif
4612 return err;
4615 /* Verify the GIMPLE statements inside the sequence STMTS. */
4617 static bool
4618 verify_gimple_in_seq_2 (gimple_seq stmts)
4620 gimple_stmt_iterator ittr;
4621 bool err = false;
4623 for (ittr = gsi_start (stmts); !gsi_end_p (ittr); gsi_next (&ittr))
4625 gimple stmt = gsi_stmt (ittr);
4627 switch (gimple_code (stmt))
4629 case GIMPLE_BIND:
4630 err |= verify_gimple_in_seq_2 (gimple_bind_body (stmt));
4631 break;
4633 case GIMPLE_TRY:
4634 err |= verify_gimple_in_seq_2 (gimple_try_eval (stmt));
4635 err |= verify_gimple_in_seq_2 (gimple_try_cleanup (stmt));
4636 break;
4638 case GIMPLE_EH_FILTER:
4639 err |= verify_gimple_in_seq_2 (gimple_eh_filter_failure (stmt));
4640 break;
4642 case GIMPLE_EH_ELSE:
4643 err |= verify_gimple_in_seq_2 (gimple_eh_else_n_body (stmt));
4644 err |= verify_gimple_in_seq_2 (gimple_eh_else_e_body (stmt));
4645 break;
4647 case GIMPLE_CATCH:
4648 err |= verify_gimple_in_seq_2 (gimple_catch_handler (stmt));
4649 break;
4651 case GIMPLE_TRANSACTION:
4652 err |= verify_gimple_transaction (stmt);
4653 break;
4655 default:
4657 bool err2 = verify_gimple_stmt (stmt);
4658 if (err2)
4659 debug_gimple_stmt (stmt);
4660 err |= err2;
4665 return err;
4668 /* Verify the contents of a GIMPLE_TRANSACTION. Returns true if there
4669 is a problem, otherwise false. */
4671 static bool
4672 verify_gimple_transaction (gimple stmt)
4674 tree lab = gimple_transaction_label (stmt);
4675 if (lab != NULL && TREE_CODE (lab) != LABEL_DECL)
4676 return true;
4677 return verify_gimple_in_seq_2 (gimple_transaction_body (stmt));
4681 /* Verify the GIMPLE statements inside the statement list STMTS. */
4683 DEBUG_FUNCTION void
4684 verify_gimple_in_seq (gimple_seq stmts)
4686 timevar_push (TV_TREE_STMT_VERIFY);
4687 if (verify_gimple_in_seq_2 (stmts))
4688 internal_error ("verify_gimple failed");
4689 timevar_pop (TV_TREE_STMT_VERIFY);
4692 /* Return true when the T can be shared. */
4694 static bool
4695 tree_node_can_be_shared (tree t)
4697 if (IS_TYPE_OR_DECL_P (t)
4698 || is_gimple_min_invariant (t)
4699 || TREE_CODE (t) == SSA_NAME
4700 || t == error_mark_node
4701 || TREE_CODE (t) == IDENTIFIER_NODE)
4702 return true;
4704 if (TREE_CODE (t) == CASE_LABEL_EXPR)
4705 return true;
4707 if (DECL_P (t))
4708 return true;
4710 return false;
4713 /* Called via walk_tree. Verify tree sharing. */
4715 static tree
4716 verify_node_sharing_1 (tree *tp, int *walk_subtrees, void *data)
4718 hash_set<void *> *visited = (hash_set<void *> *) data;
4720 if (tree_node_can_be_shared (*tp))
4722 *walk_subtrees = false;
4723 return NULL;
4726 if (visited->add (*tp))
4727 return *tp;
4729 return NULL;
4732 /* Called via walk_gimple_stmt. Verify tree sharing. */
4734 static tree
4735 verify_node_sharing (tree *tp, int *walk_subtrees, void *data)
4737 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
4738 return verify_node_sharing_1 (tp, walk_subtrees, wi->info);
4741 static bool eh_error_found;
4742 bool
4743 verify_eh_throw_stmt_node (const gimple &stmt, const int &,
4744 hash_set<gimple> *visited)
4746 if (!visited->contains (stmt))
4748 error ("dead STMT in EH table");
4749 debug_gimple_stmt (stmt);
4750 eh_error_found = true;
4752 return true;
4755 /* Verify if the location LOCs block is in BLOCKS. */
4757 static bool
4758 verify_location (hash_set<tree> *blocks, location_t loc)
4760 tree block = LOCATION_BLOCK (loc);
4761 if (block != NULL_TREE
4762 && !blocks->contains (block))
4764 error ("location references block not in block tree");
4765 return true;
4767 if (block != NULL_TREE)
4768 return verify_location (blocks, BLOCK_SOURCE_LOCATION (block));
4769 return false;
4772 /* Called via walk_tree. Verify that expressions have no blocks. */
4774 static tree
4775 verify_expr_no_block (tree *tp, int *walk_subtrees, void *)
4777 if (!EXPR_P (*tp))
4779 *walk_subtrees = false;
4780 return NULL;
4783 location_t loc = EXPR_LOCATION (*tp);
4784 if (LOCATION_BLOCK (loc) != NULL)
4785 return *tp;
4787 return NULL;
4790 /* Called via walk_tree. Verify locations of expressions. */
4792 static tree
4793 verify_expr_location_1 (tree *tp, int *walk_subtrees, void *data)
4795 hash_set<tree> *blocks = (hash_set<tree> *) data;
4797 if (TREE_CODE (*tp) == VAR_DECL
4798 && DECL_HAS_DEBUG_EXPR_P (*tp))
4800 tree t = DECL_DEBUG_EXPR (*tp);
4801 tree addr = walk_tree (&t, verify_expr_no_block, NULL, NULL);
4802 if (addr)
4803 return addr;
4805 if ((TREE_CODE (*tp) == VAR_DECL
4806 || TREE_CODE (*tp) == PARM_DECL
4807 || TREE_CODE (*tp) == RESULT_DECL)
4808 && DECL_HAS_VALUE_EXPR_P (*tp))
4810 tree t = DECL_VALUE_EXPR (*tp);
4811 tree addr = walk_tree (&t, verify_expr_no_block, NULL, NULL);
4812 if (addr)
4813 return addr;
4816 if (!EXPR_P (*tp))
4818 *walk_subtrees = false;
4819 return NULL;
4822 location_t loc = EXPR_LOCATION (*tp);
4823 if (verify_location (blocks, loc))
4824 return *tp;
4826 return NULL;
4829 /* Called via walk_gimple_op. Verify locations of expressions. */
4831 static tree
4832 verify_expr_location (tree *tp, int *walk_subtrees, void *data)
4834 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
4835 return verify_expr_location_1 (tp, walk_subtrees, wi->info);
4838 /* Insert all subblocks of BLOCK into BLOCKS and recurse. */
4840 static void
4841 collect_subblocks (hash_set<tree> *blocks, tree block)
4843 tree t;
4844 for (t = BLOCK_SUBBLOCKS (block); t; t = BLOCK_CHAIN (t))
4846 blocks->add (t);
4847 collect_subblocks (blocks, t);
4851 /* Verify the GIMPLE statements in the CFG of FN. */
4853 DEBUG_FUNCTION void
4854 verify_gimple_in_cfg (struct function *fn, bool verify_nothrow)
4856 basic_block bb;
4857 bool err = false;
4859 timevar_push (TV_TREE_STMT_VERIFY);
4860 hash_set<void *> visited;
4861 hash_set<gimple> visited_stmts;
4863 /* Collect all BLOCKs referenced by the BLOCK tree of FN. */
4864 hash_set<tree> blocks;
4865 if (DECL_INITIAL (fn->decl))
4867 blocks.add (DECL_INITIAL (fn->decl));
4868 collect_subblocks (&blocks, DECL_INITIAL (fn->decl));
4871 FOR_EACH_BB_FN (bb, fn)
4873 gimple_stmt_iterator gsi;
4875 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
4877 gimple phi = gsi_stmt (gsi);
4878 bool err2 = false;
4879 unsigned i;
4881 visited_stmts.add (phi);
4883 if (gimple_bb (phi) != bb)
4885 error ("gimple_bb (phi) is set to a wrong basic block");
4886 err2 = true;
4889 err2 |= verify_gimple_phi (phi);
4891 /* Only PHI arguments have locations. */
4892 if (gimple_location (phi) != UNKNOWN_LOCATION)
4894 error ("PHI node with location");
4895 err2 = true;
4898 for (i = 0; i < gimple_phi_num_args (phi); i++)
4900 tree arg = gimple_phi_arg_def (phi, i);
4901 tree addr = walk_tree (&arg, verify_node_sharing_1,
4902 &visited, NULL);
4903 if (addr)
4905 error ("incorrect sharing of tree nodes");
4906 debug_generic_expr (addr);
4907 err2 |= true;
4909 location_t loc = gimple_phi_arg_location (phi, i);
4910 if (virtual_operand_p (gimple_phi_result (phi))
4911 && loc != UNKNOWN_LOCATION)
4913 error ("virtual PHI with argument locations");
4914 err2 = true;
4916 addr = walk_tree (&arg, verify_expr_location_1, &blocks, NULL);
4917 if (addr)
4919 debug_generic_expr (addr);
4920 err2 = true;
4922 err2 |= verify_location (&blocks, loc);
4925 if (err2)
4926 debug_gimple_stmt (phi);
4927 err |= err2;
4930 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
4932 gimple stmt = gsi_stmt (gsi);
4933 bool err2 = false;
4934 struct walk_stmt_info wi;
4935 tree addr;
4936 int lp_nr;
4938 visited_stmts.add (stmt);
4940 if (gimple_bb (stmt) != bb)
4942 error ("gimple_bb (stmt) is set to a wrong basic block");
4943 err2 = true;
4946 err2 |= verify_gimple_stmt (stmt);
4947 err2 |= verify_location (&blocks, gimple_location (stmt));
4949 memset (&wi, 0, sizeof (wi));
4950 wi.info = (void *) &visited;
4951 addr = walk_gimple_op (stmt, verify_node_sharing, &wi);
4952 if (addr)
4954 error ("incorrect sharing of tree nodes");
4955 debug_generic_expr (addr);
4956 err2 |= true;
4959 memset (&wi, 0, sizeof (wi));
4960 wi.info = (void *) &blocks;
4961 addr = walk_gimple_op (stmt, verify_expr_location, &wi);
4962 if (addr)
4964 debug_generic_expr (addr);
4965 err2 |= true;
4968 /* ??? Instead of not checking these stmts at all the walker
4969 should know its context via wi. */
4970 if (!is_gimple_debug (stmt)
4971 && !is_gimple_omp (stmt))
4973 memset (&wi, 0, sizeof (wi));
4974 addr = walk_gimple_op (stmt, verify_expr, &wi);
4975 if (addr)
4977 debug_generic_expr (addr);
4978 inform (gimple_location (stmt), "in statement");
4979 err2 |= true;
4983 /* If the statement is marked as part of an EH region, then it is
4984 expected that the statement could throw. Verify that when we
4985 have optimizations that simplify statements such that we prove
4986 that they cannot throw, that we update other data structures
4987 to match. */
4988 lp_nr = lookup_stmt_eh_lp (stmt);
4989 if (lp_nr > 0)
4991 if (!stmt_could_throw_p (stmt))
4993 if (verify_nothrow)
4995 error ("statement marked for throw, but doesn%'t");
4996 err2 |= true;
4999 else if (!gsi_one_before_end_p (gsi))
5001 error ("statement marked for throw in middle of block");
5002 err2 |= true;
5006 if (err2)
5007 debug_gimple_stmt (stmt);
5008 err |= err2;
5012 eh_error_found = false;
5013 hash_map<gimple, int> *eh_table = get_eh_throw_stmt_table (cfun);
5014 if (eh_table)
5015 eh_table->traverse<hash_set<gimple> *, verify_eh_throw_stmt_node>
5016 (&visited_stmts);
5018 if (err || eh_error_found)
5019 internal_error ("verify_gimple failed");
5021 verify_histograms ();
5022 timevar_pop (TV_TREE_STMT_VERIFY);
5026 /* Verifies that the flow information is OK. */
5028 static int
5029 gimple_verify_flow_info (void)
5031 int err = 0;
5032 basic_block bb;
5033 gimple_stmt_iterator gsi;
5034 gimple stmt;
5035 edge e;
5036 edge_iterator ei;
5038 if (ENTRY_BLOCK_PTR_FOR_FN (cfun)->il.gimple.seq
5039 || ENTRY_BLOCK_PTR_FOR_FN (cfun)->il.gimple.phi_nodes)
5041 error ("ENTRY_BLOCK has IL associated with it");
5042 err = 1;
5045 if (EXIT_BLOCK_PTR_FOR_FN (cfun)->il.gimple.seq
5046 || EXIT_BLOCK_PTR_FOR_FN (cfun)->il.gimple.phi_nodes)
5048 error ("EXIT_BLOCK has IL associated with it");
5049 err = 1;
5052 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
5053 if (e->flags & EDGE_FALLTHRU)
5055 error ("fallthru to exit from bb %d", e->src->index);
5056 err = 1;
5059 FOR_EACH_BB_FN (bb, cfun)
5061 bool found_ctrl_stmt = false;
5063 stmt = NULL;
5065 /* Skip labels on the start of basic block. */
5066 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
5068 tree label;
5069 gimple prev_stmt = stmt;
5071 stmt = gsi_stmt (gsi);
5073 if (gimple_code (stmt) != GIMPLE_LABEL)
5074 break;
5076 label = gimple_label_label (stmt);
5077 if (prev_stmt && DECL_NONLOCAL (label))
5079 error ("nonlocal label ");
5080 print_generic_expr (stderr, label, 0);
5081 fprintf (stderr, " is not first in a sequence of labels in bb %d",
5082 bb->index);
5083 err = 1;
5086 if (prev_stmt && EH_LANDING_PAD_NR (label) != 0)
5088 error ("EH landing pad label ");
5089 print_generic_expr (stderr, label, 0);
5090 fprintf (stderr, " is not first in a sequence of labels in bb %d",
5091 bb->index);
5092 err = 1;
5095 if (label_to_block (label) != bb)
5097 error ("label ");
5098 print_generic_expr (stderr, label, 0);
5099 fprintf (stderr, " to block does not match in bb %d",
5100 bb->index);
5101 err = 1;
5104 if (decl_function_context (label) != current_function_decl)
5106 error ("label ");
5107 print_generic_expr (stderr, label, 0);
5108 fprintf (stderr, " has incorrect context in bb %d",
5109 bb->index);
5110 err = 1;
5114 /* Verify that body of basic block BB is free of control flow. */
5115 for (; !gsi_end_p (gsi); gsi_next (&gsi))
5117 gimple stmt = gsi_stmt (gsi);
5119 if (found_ctrl_stmt)
5121 error ("control flow in the middle of basic block %d",
5122 bb->index);
5123 err = 1;
5126 if (stmt_ends_bb_p (stmt))
5127 found_ctrl_stmt = true;
5129 if (gimple_code (stmt) == GIMPLE_LABEL)
5131 error ("label ");
5132 print_generic_expr (stderr, gimple_label_label (stmt), 0);
5133 fprintf (stderr, " in the middle of basic block %d", bb->index);
5134 err = 1;
5138 gsi = gsi_last_bb (bb);
5139 if (gsi_end_p (gsi))
5140 continue;
5142 stmt = gsi_stmt (gsi);
5144 if (gimple_code (stmt) == GIMPLE_LABEL)
5145 continue;
5147 err |= verify_eh_edges (stmt);
5149 if (is_ctrl_stmt (stmt))
5151 FOR_EACH_EDGE (e, ei, bb->succs)
5152 if (e->flags & EDGE_FALLTHRU)
5154 error ("fallthru edge after a control statement in bb %d",
5155 bb->index);
5156 err = 1;
5160 if (gimple_code (stmt) != GIMPLE_COND)
5162 /* Verify that there are no edges with EDGE_TRUE/FALSE_FLAG set
5163 after anything else but if statement. */
5164 FOR_EACH_EDGE (e, ei, bb->succs)
5165 if (e->flags & (EDGE_TRUE_VALUE | EDGE_FALSE_VALUE))
5167 error ("true/false edge after a non-GIMPLE_COND in bb %d",
5168 bb->index);
5169 err = 1;
5173 switch (gimple_code (stmt))
5175 case GIMPLE_COND:
5177 edge true_edge;
5178 edge false_edge;
5180 extract_true_false_edges_from_block (bb, &true_edge, &false_edge);
5182 if (!true_edge
5183 || !false_edge
5184 || !(true_edge->flags & EDGE_TRUE_VALUE)
5185 || !(false_edge->flags & EDGE_FALSE_VALUE)
5186 || (true_edge->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL))
5187 || (false_edge->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL))
5188 || EDGE_COUNT (bb->succs) >= 3)
5190 error ("wrong outgoing edge flags at end of bb %d",
5191 bb->index);
5192 err = 1;
5195 break;
5197 case GIMPLE_GOTO:
5198 if (simple_goto_p (stmt))
5200 error ("explicit goto at end of bb %d", bb->index);
5201 err = 1;
5203 else
5205 /* FIXME. We should double check that the labels in the
5206 destination blocks have their address taken. */
5207 FOR_EACH_EDGE (e, ei, bb->succs)
5208 if ((e->flags & (EDGE_FALLTHRU | EDGE_TRUE_VALUE
5209 | EDGE_FALSE_VALUE))
5210 || !(e->flags & EDGE_ABNORMAL))
5212 error ("wrong outgoing edge flags at end of bb %d",
5213 bb->index);
5214 err = 1;
5217 break;
5219 case GIMPLE_CALL:
5220 if (!gimple_call_builtin_p (stmt, BUILT_IN_RETURN))
5221 break;
5222 /* ... fallthru ... */
5223 case GIMPLE_RETURN:
5224 if (!single_succ_p (bb)
5225 || (single_succ_edge (bb)->flags
5226 & (EDGE_FALLTHRU | EDGE_ABNORMAL
5227 | EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
5229 error ("wrong outgoing edge flags at end of bb %d", bb->index);
5230 err = 1;
5232 if (single_succ (bb) != EXIT_BLOCK_PTR_FOR_FN (cfun))
5234 error ("return edge does not point to exit in bb %d",
5235 bb->index);
5236 err = 1;
5238 break;
5240 case GIMPLE_SWITCH:
5242 tree prev;
5243 edge e;
5244 size_t i, n;
5246 n = gimple_switch_num_labels (stmt);
5248 /* Mark all the destination basic blocks. */
5249 for (i = 0; i < n; ++i)
5251 tree lab = CASE_LABEL (gimple_switch_label (stmt, i));
5252 basic_block label_bb = label_to_block (lab);
5253 gcc_assert (!label_bb->aux || label_bb->aux == (void *)1);
5254 label_bb->aux = (void *)1;
5257 /* Verify that the case labels are sorted. */
5258 prev = gimple_switch_label (stmt, 0);
5259 for (i = 1; i < n; ++i)
5261 tree c = gimple_switch_label (stmt, i);
5262 if (!CASE_LOW (c))
5264 error ("found default case not at the start of "
5265 "case vector");
5266 err = 1;
5267 continue;
5269 if (CASE_LOW (prev)
5270 && !tree_int_cst_lt (CASE_LOW (prev), CASE_LOW (c)))
5272 error ("case labels not sorted: ");
5273 print_generic_expr (stderr, prev, 0);
5274 fprintf (stderr," is greater than ");
5275 print_generic_expr (stderr, c, 0);
5276 fprintf (stderr," but comes before it.\n");
5277 err = 1;
5279 prev = c;
5281 /* VRP will remove the default case if it can prove it will
5282 never be executed. So do not verify there always exists
5283 a default case here. */
5285 FOR_EACH_EDGE (e, ei, bb->succs)
5287 if (!e->dest->aux)
5289 error ("extra outgoing edge %d->%d",
5290 bb->index, e->dest->index);
5291 err = 1;
5294 e->dest->aux = (void *)2;
5295 if ((e->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL
5296 | EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
5298 error ("wrong outgoing edge flags at end of bb %d",
5299 bb->index);
5300 err = 1;
5304 /* Check that we have all of them. */
5305 for (i = 0; i < n; ++i)
5307 tree lab = CASE_LABEL (gimple_switch_label (stmt, i));
5308 basic_block label_bb = label_to_block (lab);
5310 if (label_bb->aux != (void *)2)
5312 error ("missing edge %i->%i", bb->index, label_bb->index);
5313 err = 1;
5317 FOR_EACH_EDGE (e, ei, bb->succs)
5318 e->dest->aux = (void *)0;
5320 break;
5322 case GIMPLE_EH_DISPATCH:
5323 err |= verify_eh_dispatch_edge (stmt);
5324 break;
5326 default:
5327 break;
5331 if (dom_info_state (CDI_DOMINATORS) >= DOM_NO_FAST_QUERY)
5332 verify_dominators (CDI_DOMINATORS);
5334 return err;
5338 /* Updates phi nodes after creating a forwarder block joined
5339 by edge FALLTHRU. */
5341 static void
5342 gimple_make_forwarder_block (edge fallthru)
5344 edge e;
5345 edge_iterator ei;
5346 basic_block dummy, bb;
5347 tree var;
5348 gimple_stmt_iterator gsi;
5350 dummy = fallthru->src;
5351 bb = fallthru->dest;
5353 if (single_pred_p (bb))
5354 return;
5356 /* If we redirected a branch we must create new PHI nodes at the
5357 start of BB. */
5358 for (gsi = gsi_start_phis (dummy); !gsi_end_p (gsi); gsi_next (&gsi))
5360 gimple phi, new_phi;
5362 phi = gsi_stmt (gsi);
5363 var = gimple_phi_result (phi);
5364 new_phi = create_phi_node (var, bb);
5365 gimple_phi_set_result (phi, copy_ssa_name (var, phi));
5366 add_phi_arg (new_phi, gimple_phi_result (phi), fallthru,
5367 UNKNOWN_LOCATION);
5370 /* Add the arguments we have stored on edges. */
5371 FOR_EACH_EDGE (e, ei, bb->preds)
5373 if (e == fallthru)
5374 continue;
5376 flush_pending_stmts (e);
5381 /* Return a non-special label in the head of basic block BLOCK.
5382 Create one if it doesn't exist. */
5384 tree
5385 gimple_block_label (basic_block bb)
5387 gimple_stmt_iterator i, s = gsi_start_bb (bb);
5388 bool first = true;
5389 tree label;
5390 gimple stmt;
5392 for (i = s; !gsi_end_p (i); first = false, gsi_next (&i))
5394 stmt = gsi_stmt (i);
5395 if (gimple_code (stmt) != GIMPLE_LABEL)
5396 break;
5397 label = gimple_label_label (stmt);
5398 if (!DECL_NONLOCAL (label))
5400 if (!first)
5401 gsi_move_before (&i, &s);
5402 return label;
5406 label = create_artificial_label (UNKNOWN_LOCATION);
5407 stmt = gimple_build_label (label);
5408 gsi_insert_before (&s, stmt, GSI_NEW_STMT);
5409 return label;
5413 /* Attempt to perform edge redirection by replacing a possibly complex
5414 jump instruction by a goto or by removing the jump completely.
5415 This can apply only if all edges now point to the same block. The
5416 parameters and return values are equivalent to
5417 redirect_edge_and_branch. */
5419 static edge
5420 gimple_try_redirect_by_replacing_jump (edge e, basic_block target)
5422 basic_block src = e->src;
5423 gimple_stmt_iterator i;
5424 gimple stmt;
5426 /* We can replace or remove a complex jump only when we have exactly
5427 two edges. */
5428 if (EDGE_COUNT (src->succs) != 2
5429 /* Verify that all targets will be TARGET. Specifically, the
5430 edge that is not E must also go to TARGET. */
5431 || EDGE_SUCC (src, EDGE_SUCC (src, 0) == e)->dest != target)
5432 return NULL;
5434 i = gsi_last_bb (src);
5435 if (gsi_end_p (i))
5436 return NULL;
5438 stmt = gsi_stmt (i);
5440 if (gimple_code (stmt) == GIMPLE_COND || gimple_code (stmt) == GIMPLE_SWITCH)
5442 gsi_remove (&i, true);
5443 e = ssa_redirect_edge (e, target);
5444 e->flags = EDGE_FALLTHRU;
5445 return e;
5448 return NULL;
5452 /* Redirect E to DEST. Return NULL on failure. Otherwise, return the
5453 edge representing the redirected branch. */
5455 static edge
5456 gimple_redirect_edge_and_branch (edge e, basic_block dest)
5458 basic_block bb = e->src;
5459 gimple_stmt_iterator gsi;
5460 edge ret;
5461 gimple stmt;
5463 if (e->flags & EDGE_ABNORMAL)
5464 return NULL;
5466 if (e->dest == dest)
5467 return NULL;
5469 if (e->flags & EDGE_EH)
5470 return redirect_eh_edge (e, dest);
5472 if (e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun))
5474 ret = gimple_try_redirect_by_replacing_jump (e, dest);
5475 if (ret)
5476 return ret;
5479 gsi = gsi_last_bb (bb);
5480 stmt = gsi_end_p (gsi) ? NULL : gsi_stmt (gsi);
5482 switch (stmt ? gimple_code (stmt) : GIMPLE_ERROR_MARK)
5484 case GIMPLE_COND:
5485 /* For COND_EXPR, we only need to redirect the edge. */
5486 break;
5488 case GIMPLE_GOTO:
5489 /* No non-abnormal edges should lead from a non-simple goto, and
5490 simple ones should be represented implicitly. */
5491 gcc_unreachable ();
5493 case GIMPLE_SWITCH:
5495 tree label = gimple_block_label (dest);
5496 tree cases = get_cases_for_edge (e, stmt);
5498 /* If we have a list of cases associated with E, then use it
5499 as it's a lot faster than walking the entire case vector. */
5500 if (cases)
5502 edge e2 = find_edge (e->src, dest);
5503 tree last, first;
5505 first = cases;
5506 while (cases)
5508 last = cases;
5509 CASE_LABEL (cases) = label;
5510 cases = CASE_CHAIN (cases);
5513 /* If there was already an edge in the CFG, then we need
5514 to move all the cases associated with E to E2. */
5515 if (e2)
5517 tree cases2 = get_cases_for_edge (e2, stmt);
5519 CASE_CHAIN (last) = CASE_CHAIN (cases2);
5520 CASE_CHAIN (cases2) = first;
5522 bitmap_set_bit (touched_switch_bbs, gimple_bb (stmt)->index);
5524 else
5526 size_t i, n = gimple_switch_num_labels (stmt);
5528 for (i = 0; i < n; i++)
5530 tree elt = gimple_switch_label (stmt, i);
5531 if (label_to_block (CASE_LABEL (elt)) == e->dest)
5532 CASE_LABEL (elt) = label;
5536 break;
5538 case GIMPLE_ASM:
5540 int i, n = gimple_asm_nlabels (stmt);
5541 tree label = NULL;
5543 for (i = 0; i < n; ++i)
5545 tree cons = gimple_asm_label_op (stmt, i);
5546 if (label_to_block (TREE_VALUE (cons)) == e->dest)
5548 if (!label)
5549 label = gimple_block_label (dest);
5550 TREE_VALUE (cons) = label;
5554 /* If we didn't find any label matching the former edge in the
5555 asm labels, we must be redirecting the fallthrough
5556 edge. */
5557 gcc_assert (label || (e->flags & EDGE_FALLTHRU));
5559 break;
5561 case GIMPLE_RETURN:
5562 gsi_remove (&gsi, true);
5563 e->flags |= EDGE_FALLTHRU;
5564 break;
5566 case GIMPLE_OMP_RETURN:
5567 case GIMPLE_OMP_CONTINUE:
5568 case GIMPLE_OMP_SECTIONS_SWITCH:
5569 case GIMPLE_OMP_FOR:
5570 /* The edges from OMP constructs can be simply redirected. */
5571 break;
5573 case GIMPLE_EH_DISPATCH:
5574 if (!(e->flags & EDGE_FALLTHRU))
5575 redirect_eh_dispatch_edge (stmt, e, dest);
5576 break;
5578 case GIMPLE_TRANSACTION:
5579 /* The ABORT edge has a stored label associated with it, otherwise
5580 the edges are simply redirectable. */
5581 if (e->flags == 0)
5582 gimple_transaction_set_label (stmt, gimple_block_label (dest));
5583 break;
5585 default:
5586 /* Otherwise it must be a fallthru edge, and we don't need to
5587 do anything besides redirecting it. */
5588 gcc_assert (e->flags & EDGE_FALLTHRU);
5589 break;
5592 /* Update/insert PHI nodes as necessary. */
5594 /* Now update the edges in the CFG. */
5595 e = ssa_redirect_edge (e, dest);
5597 return e;
5600 /* Returns true if it is possible to remove edge E by redirecting
5601 it to the destination of the other edge from E->src. */
5603 static bool
5604 gimple_can_remove_branch_p (const_edge e)
5606 if (e->flags & (EDGE_ABNORMAL | EDGE_EH))
5607 return false;
5609 return true;
5612 /* Simple wrapper, as we can always redirect fallthru edges. */
5614 static basic_block
5615 gimple_redirect_edge_and_branch_force (edge e, basic_block dest)
5617 e = gimple_redirect_edge_and_branch (e, dest);
5618 gcc_assert (e);
5620 return NULL;
5624 /* Splits basic block BB after statement STMT (but at least after the
5625 labels). If STMT is NULL, BB is split just after the labels. */
5627 static basic_block
5628 gimple_split_block (basic_block bb, void *stmt)
5630 gimple_stmt_iterator gsi;
5631 gimple_stmt_iterator gsi_tgt;
5632 gimple act;
5633 gimple_seq list;
5634 basic_block new_bb;
5635 edge e;
5636 edge_iterator ei;
5638 new_bb = create_empty_bb (bb);
5640 /* Redirect the outgoing edges. */
5641 new_bb->succs = bb->succs;
5642 bb->succs = NULL;
5643 FOR_EACH_EDGE (e, ei, new_bb->succs)
5644 e->src = new_bb;
5646 if (stmt && gimple_code ((gimple) stmt) == GIMPLE_LABEL)
5647 stmt = NULL;
5649 /* Move everything from GSI to the new basic block. */
5650 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
5652 act = gsi_stmt (gsi);
5653 if (gimple_code (act) == GIMPLE_LABEL)
5654 continue;
5656 if (!stmt)
5657 break;
5659 if (stmt == act)
5661 gsi_next (&gsi);
5662 break;
5666 if (gsi_end_p (gsi))
5667 return new_bb;
5669 /* Split the statement list - avoid re-creating new containers as this
5670 brings ugly quadratic memory consumption in the inliner.
5671 (We are still quadratic since we need to update stmt BB pointers,
5672 sadly.) */
5673 gsi_split_seq_before (&gsi, &list);
5674 set_bb_seq (new_bb, list);
5675 for (gsi_tgt = gsi_start (list);
5676 !gsi_end_p (gsi_tgt); gsi_next (&gsi_tgt))
5677 gimple_set_bb (gsi_stmt (gsi_tgt), new_bb);
5679 return new_bb;
5683 /* Moves basic block BB after block AFTER. */
5685 static bool
5686 gimple_move_block_after (basic_block bb, basic_block after)
5688 if (bb->prev_bb == after)
5689 return true;
5691 unlink_block (bb);
5692 link_block (bb, after);
5694 return true;
5698 /* Return TRUE if block BB has no executable statements, otherwise return
5699 FALSE. */
5701 static bool
5702 gimple_empty_block_p (basic_block bb)
5704 /* BB must have no executable statements. */
5705 gimple_stmt_iterator gsi = gsi_after_labels (bb);
5706 if (phi_nodes (bb))
5707 return false;
5708 if (gsi_end_p (gsi))
5709 return true;
5710 if (is_gimple_debug (gsi_stmt (gsi)))
5711 gsi_next_nondebug (&gsi);
5712 return gsi_end_p (gsi);
5716 /* Split a basic block if it ends with a conditional branch and if the
5717 other part of the block is not empty. */
5719 static basic_block
5720 gimple_split_block_before_cond_jump (basic_block bb)
5722 gimple last, split_point;
5723 gimple_stmt_iterator gsi = gsi_last_nondebug_bb (bb);
5724 if (gsi_end_p (gsi))
5725 return NULL;
5726 last = gsi_stmt (gsi);
5727 if (gimple_code (last) != GIMPLE_COND
5728 && gimple_code (last) != GIMPLE_SWITCH)
5729 return NULL;
5730 gsi_prev_nondebug (&gsi);
5731 split_point = gsi_stmt (gsi);
5732 return split_block (bb, split_point)->dest;
5736 /* Return true if basic_block can be duplicated. */
5738 static bool
5739 gimple_can_duplicate_bb_p (const_basic_block bb ATTRIBUTE_UNUSED)
5741 return true;
5744 /* Create a duplicate of the basic block BB. NOTE: This does not
5745 preserve SSA form. */
5747 static basic_block
5748 gimple_duplicate_bb (basic_block bb)
5750 basic_block new_bb;
5751 gimple_stmt_iterator gsi, gsi_tgt;
5752 gimple_seq phis = phi_nodes (bb);
5753 gimple phi, stmt, copy;
5755 new_bb = create_empty_bb (EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb);
5757 /* Copy the PHI nodes. We ignore PHI node arguments here because
5758 the incoming edges have not been setup yet. */
5759 for (gsi = gsi_start (phis); !gsi_end_p (gsi); gsi_next (&gsi))
5761 phi = gsi_stmt (gsi);
5762 copy = create_phi_node (NULL_TREE, new_bb);
5763 create_new_def_for (gimple_phi_result (phi), copy,
5764 gimple_phi_result_ptr (copy));
5765 gimple_set_uid (copy, gimple_uid (phi));
5768 gsi_tgt = gsi_start_bb (new_bb);
5769 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
5771 def_operand_p def_p;
5772 ssa_op_iter op_iter;
5773 tree lhs;
5775 stmt = gsi_stmt (gsi);
5776 if (gimple_code (stmt) == GIMPLE_LABEL)
5777 continue;
5779 /* Don't duplicate label debug stmts. */
5780 if (gimple_debug_bind_p (stmt)
5781 && TREE_CODE (gimple_debug_bind_get_var (stmt))
5782 == LABEL_DECL)
5783 continue;
5785 /* Create a new copy of STMT and duplicate STMT's virtual
5786 operands. */
5787 copy = gimple_copy (stmt);
5788 gsi_insert_after (&gsi_tgt, copy, GSI_NEW_STMT);
5790 maybe_duplicate_eh_stmt (copy, stmt);
5791 gimple_duplicate_stmt_histograms (cfun, copy, cfun, stmt);
5793 /* When copying around a stmt writing into a local non-user
5794 aggregate, make sure it won't share stack slot with other
5795 vars. */
5796 lhs = gimple_get_lhs (stmt);
5797 if (lhs && TREE_CODE (lhs) != SSA_NAME)
5799 tree base = get_base_address (lhs);
5800 if (base
5801 && (TREE_CODE (base) == VAR_DECL
5802 || TREE_CODE (base) == RESULT_DECL)
5803 && DECL_IGNORED_P (base)
5804 && !TREE_STATIC (base)
5805 && !DECL_EXTERNAL (base)
5806 && (TREE_CODE (base) != VAR_DECL
5807 || !DECL_HAS_VALUE_EXPR_P (base)))
5808 DECL_NONSHAREABLE (base) = 1;
5811 /* Create new names for all the definitions created by COPY and
5812 add replacement mappings for each new name. */
5813 FOR_EACH_SSA_DEF_OPERAND (def_p, copy, op_iter, SSA_OP_ALL_DEFS)
5814 create_new_def_for (DEF_FROM_PTR (def_p), copy, def_p);
5817 return new_bb;
5820 /* Adds phi node arguments for edge E_COPY after basic block duplication. */
5822 static void
5823 add_phi_args_after_copy_edge (edge e_copy)
5825 basic_block bb, bb_copy = e_copy->src, dest;
5826 edge e;
5827 edge_iterator ei;
5828 gimple phi, phi_copy;
5829 tree def;
5830 gimple_stmt_iterator psi, psi_copy;
5832 if (gimple_seq_empty_p (phi_nodes (e_copy->dest)))
5833 return;
5835 bb = bb_copy->flags & BB_DUPLICATED ? get_bb_original (bb_copy) : bb_copy;
5837 if (e_copy->dest->flags & BB_DUPLICATED)
5838 dest = get_bb_original (e_copy->dest);
5839 else
5840 dest = e_copy->dest;
5842 e = find_edge (bb, dest);
5843 if (!e)
5845 /* During loop unrolling the target of the latch edge is copied.
5846 In this case we are not looking for edge to dest, but to
5847 duplicated block whose original was dest. */
5848 FOR_EACH_EDGE (e, ei, bb->succs)
5850 if ((e->dest->flags & BB_DUPLICATED)
5851 && get_bb_original (e->dest) == dest)
5852 break;
5855 gcc_assert (e != NULL);
5858 for (psi = gsi_start_phis (e->dest),
5859 psi_copy = gsi_start_phis (e_copy->dest);
5860 !gsi_end_p (psi);
5861 gsi_next (&psi), gsi_next (&psi_copy))
5863 phi = gsi_stmt (psi);
5864 phi_copy = gsi_stmt (psi_copy);
5865 def = PHI_ARG_DEF_FROM_EDGE (phi, e);
5866 add_phi_arg (phi_copy, def, e_copy,
5867 gimple_phi_arg_location_from_edge (phi, e));
5872 /* Basic block BB_COPY was created by code duplication. Add phi node
5873 arguments for edges going out of BB_COPY. The blocks that were
5874 duplicated have BB_DUPLICATED set. */
5876 void
5877 add_phi_args_after_copy_bb (basic_block bb_copy)
5879 edge e_copy;
5880 edge_iterator ei;
5882 FOR_EACH_EDGE (e_copy, ei, bb_copy->succs)
5884 add_phi_args_after_copy_edge (e_copy);
5888 /* Blocks in REGION_COPY array of length N_REGION were created by
5889 duplication of basic blocks. Add phi node arguments for edges
5890 going from these blocks. If E_COPY is not NULL, also add
5891 phi node arguments for its destination.*/
5893 void
5894 add_phi_args_after_copy (basic_block *region_copy, unsigned n_region,
5895 edge e_copy)
5897 unsigned i;
5899 for (i = 0; i < n_region; i++)
5900 region_copy[i]->flags |= BB_DUPLICATED;
5902 for (i = 0; i < n_region; i++)
5903 add_phi_args_after_copy_bb (region_copy[i]);
5904 if (e_copy)
5905 add_phi_args_after_copy_edge (e_copy);
5907 for (i = 0; i < n_region; i++)
5908 region_copy[i]->flags &= ~BB_DUPLICATED;
5911 /* Duplicates a REGION (set of N_REGION basic blocks) with just a single
5912 important exit edge EXIT. By important we mean that no SSA name defined
5913 inside region is live over the other exit edges of the region. All entry
5914 edges to the region must go to ENTRY->dest. The edge ENTRY is redirected
5915 to the duplicate of the region. Dominance and loop information is
5916 updated if UPDATE_DOMINANCE is true, but not the SSA web. If
5917 UPDATE_DOMINANCE is false then we assume that the caller will update the
5918 dominance information after calling this function. The new basic
5919 blocks are stored to REGION_COPY in the same order as they had in REGION,
5920 provided that REGION_COPY is not NULL.
5921 The function returns false if it is unable to copy the region,
5922 true otherwise. */
5924 bool
5925 gimple_duplicate_sese_region (edge entry, edge exit,
5926 basic_block *region, unsigned n_region,
5927 basic_block *region_copy,
5928 bool update_dominance)
5930 unsigned i;
5931 bool free_region_copy = false, copying_header = false;
5932 struct loop *loop = entry->dest->loop_father;
5933 edge exit_copy;
5934 vec<basic_block> doms;
5935 edge redirected;
5936 int total_freq = 0, entry_freq = 0;
5937 gcov_type total_count = 0, entry_count = 0;
5939 if (!can_copy_bbs_p (region, n_region))
5940 return false;
5942 /* Some sanity checking. Note that we do not check for all possible
5943 missuses of the functions. I.e. if you ask to copy something weird,
5944 it will work, but the state of structures probably will not be
5945 correct. */
5946 for (i = 0; i < n_region; i++)
5948 /* We do not handle subloops, i.e. all the blocks must belong to the
5949 same loop. */
5950 if (region[i]->loop_father != loop)
5951 return false;
5953 if (region[i] != entry->dest
5954 && region[i] == loop->header)
5955 return false;
5958 /* In case the function is used for loop header copying (which is the primary
5959 use), ensure that EXIT and its copy will be new latch and entry edges. */
5960 if (loop->header == entry->dest)
5962 copying_header = true;
5964 if (!dominated_by_p (CDI_DOMINATORS, loop->latch, exit->src))
5965 return false;
5967 for (i = 0; i < n_region; i++)
5968 if (region[i] != exit->src
5969 && dominated_by_p (CDI_DOMINATORS, region[i], exit->src))
5970 return false;
5973 initialize_original_copy_tables ();
5975 if (copying_header)
5976 set_loop_copy (loop, loop_outer (loop));
5977 else
5978 set_loop_copy (loop, loop);
5980 if (!region_copy)
5982 region_copy = XNEWVEC (basic_block, n_region);
5983 free_region_copy = true;
5986 /* Record blocks outside the region that are dominated by something
5987 inside. */
5988 if (update_dominance)
5990 doms.create (0);
5991 doms = get_dominated_by_region (CDI_DOMINATORS, region, n_region);
5994 if (entry->dest->count)
5996 total_count = entry->dest->count;
5997 entry_count = entry->count;
5998 /* Fix up corner cases, to avoid division by zero or creation of negative
5999 frequencies. */
6000 if (entry_count > total_count)
6001 entry_count = total_count;
6003 else
6005 total_freq = entry->dest->frequency;
6006 entry_freq = EDGE_FREQUENCY (entry);
6007 /* Fix up corner cases, to avoid division by zero or creation of negative
6008 frequencies. */
6009 if (total_freq == 0)
6010 total_freq = 1;
6011 else if (entry_freq > total_freq)
6012 entry_freq = total_freq;
6015 copy_bbs (region, n_region, region_copy, &exit, 1, &exit_copy, loop,
6016 split_edge_bb_loc (entry), update_dominance);
6017 if (total_count)
6019 scale_bbs_frequencies_gcov_type (region, n_region,
6020 total_count - entry_count,
6021 total_count);
6022 scale_bbs_frequencies_gcov_type (region_copy, n_region, entry_count,
6023 total_count);
6025 else
6027 scale_bbs_frequencies_int (region, n_region, total_freq - entry_freq,
6028 total_freq);
6029 scale_bbs_frequencies_int (region_copy, n_region, entry_freq, total_freq);
6032 if (copying_header)
6034 loop->header = exit->dest;
6035 loop->latch = exit->src;
6038 /* Redirect the entry and add the phi node arguments. */
6039 redirected = redirect_edge_and_branch (entry, get_bb_copy (entry->dest));
6040 gcc_assert (redirected != NULL);
6041 flush_pending_stmts (entry);
6043 /* Concerning updating of dominators: We must recount dominators
6044 for entry block and its copy. Anything that is outside of the
6045 region, but was dominated by something inside needs recounting as
6046 well. */
6047 if (update_dominance)
6049 set_immediate_dominator (CDI_DOMINATORS, entry->dest, entry->src);
6050 doms.safe_push (get_bb_original (entry->dest));
6051 iterate_fix_dominators (CDI_DOMINATORS, doms, false);
6052 doms.release ();
6055 /* Add the other PHI node arguments. */
6056 add_phi_args_after_copy (region_copy, n_region, NULL);
6058 if (free_region_copy)
6059 free (region_copy);
6061 free_original_copy_tables ();
6062 return true;
6065 /* Checks if BB is part of the region defined by N_REGION BBS. */
6066 static bool
6067 bb_part_of_region_p (basic_block bb, basic_block* bbs, unsigned n_region)
6069 unsigned int n;
6071 for (n = 0; n < n_region; n++)
6073 if (bb == bbs[n])
6074 return true;
6076 return false;
6079 /* Duplicates REGION consisting of N_REGION blocks. The new blocks
6080 are stored to REGION_COPY in the same order in that they appear
6081 in REGION, if REGION_COPY is not NULL. ENTRY is the entry to
6082 the region, EXIT an exit from it. The condition guarding EXIT
6083 is moved to ENTRY. Returns true if duplication succeeds, false
6084 otherwise.
6086 For example,
6088 some_code;
6089 if (cond)
6091 else
6094 is transformed to
6096 if (cond)
6098 some_code;
6101 else
6103 some_code;
6108 bool
6109 gimple_duplicate_sese_tail (edge entry ATTRIBUTE_UNUSED, edge exit ATTRIBUTE_UNUSED,
6110 basic_block *region ATTRIBUTE_UNUSED, unsigned n_region ATTRIBUTE_UNUSED,
6111 basic_block *region_copy ATTRIBUTE_UNUSED)
6113 unsigned i;
6114 bool free_region_copy = false;
6115 struct loop *loop = exit->dest->loop_father;
6116 struct loop *orig_loop = entry->dest->loop_father;
6117 basic_block switch_bb, entry_bb, nentry_bb;
6118 vec<basic_block> doms;
6119 int total_freq = 0, exit_freq = 0;
6120 gcov_type total_count = 0, exit_count = 0;
6121 edge exits[2], nexits[2], e;
6122 gimple_stmt_iterator gsi;
6123 gimple cond_stmt;
6124 edge sorig, snew;
6125 basic_block exit_bb;
6126 gimple_stmt_iterator psi;
6127 gimple phi;
6128 tree def;
6129 struct loop *target, *aloop, *cloop;
6131 gcc_assert (EDGE_COUNT (exit->src->succs) == 2);
6132 exits[0] = exit;
6133 exits[1] = EDGE_SUCC (exit->src, EDGE_SUCC (exit->src, 0) == exit);
6135 if (!can_copy_bbs_p (region, n_region))
6136 return false;
6138 initialize_original_copy_tables ();
6139 set_loop_copy (orig_loop, loop);
6141 target= loop;
6142 for (aloop = orig_loop->inner; aloop; aloop = aloop->next)
6144 if (bb_part_of_region_p (aloop->header, region, n_region))
6146 cloop = duplicate_loop (aloop, target);
6147 duplicate_subloops (aloop, cloop);
6151 if (!region_copy)
6153 region_copy = XNEWVEC (basic_block, n_region);
6154 free_region_copy = true;
6157 gcc_assert (!need_ssa_update_p (cfun));
6159 /* Record blocks outside the region that are dominated by something
6160 inside. */
6161 doms = get_dominated_by_region (CDI_DOMINATORS, region, n_region);
6163 if (exit->src->count)
6165 total_count = exit->src->count;
6166 exit_count = exit->count;
6167 /* Fix up corner cases, to avoid division by zero or creation of negative
6168 frequencies. */
6169 if (exit_count > total_count)
6170 exit_count = total_count;
6172 else
6174 total_freq = exit->src->frequency;
6175 exit_freq = EDGE_FREQUENCY (exit);
6176 /* Fix up corner cases, to avoid division by zero or creation of negative
6177 frequencies. */
6178 if (total_freq == 0)
6179 total_freq = 1;
6180 if (exit_freq > total_freq)
6181 exit_freq = total_freq;
6184 copy_bbs (region, n_region, region_copy, exits, 2, nexits, orig_loop,
6185 split_edge_bb_loc (exit), true);
6186 if (total_count)
6188 scale_bbs_frequencies_gcov_type (region, n_region,
6189 total_count - exit_count,
6190 total_count);
6191 scale_bbs_frequencies_gcov_type (region_copy, n_region, exit_count,
6192 total_count);
6194 else
6196 scale_bbs_frequencies_int (region, n_region, total_freq - exit_freq,
6197 total_freq);
6198 scale_bbs_frequencies_int (region_copy, n_region, exit_freq, total_freq);
6201 /* Create the switch block, and put the exit condition to it. */
6202 entry_bb = entry->dest;
6203 nentry_bb = get_bb_copy (entry_bb);
6204 if (!last_stmt (entry->src)
6205 || !stmt_ends_bb_p (last_stmt (entry->src)))
6206 switch_bb = entry->src;
6207 else
6208 switch_bb = split_edge (entry);
6209 set_immediate_dominator (CDI_DOMINATORS, nentry_bb, switch_bb);
6211 gsi = gsi_last_bb (switch_bb);
6212 cond_stmt = last_stmt (exit->src);
6213 gcc_assert (gimple_code (cond_stmt) == GIMPLE_COND);
6214 cond_stmt = gimple_copy (cond_stmt);
6216 gsi_insert_after (&gsi, cond_stmt, GSI_NEW_STMT);
6218 sorig = single_succ_edge (switch_bb);
6219 sorig->flags = exits[1]->flags;
6220 snew = make_edge (switch_bb, nentry_bb, exits[0]->flags);
6222 /* Register the new edge from SWITCH_BB in loop exit lists. */
6223 rescan_loop_exit (snew, true, false);
6225 /* Add the PHI node arguments. */
6226 add_phi_args_after_copy (region_copy, n_region, snew);
6228 /* Get rid of now superfluous conditions and associated edges (and phi node
6229 arguments). */
6230 exit_bb = exit->dest;
6232 e = redirect_edge_and_branch (exits[0], exits[1]->dest);
6233 PENDING_STMT (e) = NULL;
6235 /* The latch of ORIG_LOOP was copied, and so was the backedge
6236 to the original header. We redirect this backedge to EXIT_BB. */
6237 for (i = 0; i < n_region; i++)
6238 if (get_bb_original (region_copy[i]) == orig_loop->latch)
6240 gcc_assert (single_succ_edge (region_copy[i]));
6241 e = redirect_edge_and_branch (single_succ_edge (region_copy[i]), exit_bb);
6242 PENDING_STMT (e) = NULL;
6243 for (psi = gsi_start_phis (exit_bb);
6244 !gsi_end_p (psi);
6245 gsi_next (&psi))
6247 phi = gsi_stmt (psi);
6248 def = PHI_ARG_DEF (phi, nexits[0]->dest_idx);
6249 add_phi_arg (phi, def, e, gimple_phi_arg_location_from_edge (phi, e));
6252 e = redirect_edge_and_branch (nexits[1], nexits[0]->dest);
6253 PENDING_STMT (e) = NULL;
6255 /* Anything that is outside of the region, but was dominated by something
6256 inside needs to update dominance info. */
6257 iterate_fix_dominators (CDI_DOMINATORS, doms, false);
6258 doms.release ();
6259 /* Update the SSA web. */
6260 update_ssa (TODO_update_ssa);
6262 if (free_region_copy)
6263 free (region_copy);
6265 free_original_copy_tables ();
6266 return true;
6269 /* Add all the blocks dominated by ENTRY to the array BBS_P. Stop
6270 adding blocks when the dominator traversal reaches EXIT. This
6271 function silently assumes that ENTRY strictly dominates EXIT. */
6273 void
6274 gather_blocks_in_sese_region (basic_block entry, basic_block exit,
6275 vec<basic_block> *bbs_p)
6277 basic_block son;
6279 for (son = first_dom_son (CDI_DOMINATORS, entry);
6280 son;
6281 son = next_dom_son (CDI_DOMINATORS, son))
6283 bbs_p->safe_push (son);
6284 if (son != exit)
6285 gather_blocks_in_sese_region (son, exit, bbs_p);
6289 /* Replaces *TP with a duplicate (belonging to function TO_CONTEXT).
6290 The duplicates are recorded in VARS_MAP. */
6292 static void
6293 replace_by_duplicate_decl (tree *tp, hash_map<tree, tree> *vars_map,
6294 tree to_context)
6296 tree t = *tp, new_t;
6297 struct function *f = DECL_STRUCT_FUNCTION (to_context);
6299 if (DECL_CONTEXT (t) == to_context)
6300 return;
6302 bool existed;
6303 tree &loc = vars_map->get_or_insert (t, &existed);
6305 if (!existed)
6307 if (SSA_VAR_P (t))
6309 new_t = copy_var_decl (t, DECL_NAME (t), TREE_TYPE (t));
6310 add_local_decl (f, new_t);
6312 else
6314 gcc_assert (TREE_CODE (t) == CONST_DECL);
6315 new_t = copy_node (t);
6317 DECL_CONTEXT (new_t) = to_context;
6319 loc = new_t;
6321 else
6322 new_t = loc;
6324 *tp = new_t;
6328 /* Creates an ssa name in TO_CONTEXT equivalent to NAME.
6329 VARS_MAP maps old ssa names and var_decls to the new ones. */
6331 static tree
6332 replace_ssa_name (tree name, hash_map<tree, tree> *vars_map,
6333 tree to_context)
6335 tree new_name;
6337 gcc_assert (!virtual_operand_p (name));
6339 tree *loc = vars_map->get (name);
6341 if (!loc)
6343 tree decl = SSA_NAME_VAR (name);
6344 if (decl)
6346 replace_by_duplicate_decl (&decl, vars_map, to_context);
6347 new_name = make_ssa_name_fn (DECL_STRUCT_FUNCTION (to_context),
6348 decl, SSA_NAME_DEF_STMT (name));
6349 if (SSA_NAME_IS_DEFAULT_DEF (name))
6350 set_ssa_default_def (DECL_STRUCT_FUNCTION (to_context),
6351 decl, new_name);
6353 else
6354 new_name = copy_ssa_name_fn (DECL_STRUCT_FUNCTION (to_context),
6355 name, SSA_NAME_DEF_STMT (name));
6357 vars_map->put (name, new_name);
6359 else
6360 new_name = *loc;
6362 return new_name;
6365 struct move_stmt_d
6367 tree orig_block;
6368 tree new_block;
6369 tree from_context;
6370 tree to_context;
6371 hash_map<tree, tree> *vars_map;
6372 htab_t new_label_map;
6373 hash_map<void *, void *> *eh_map;
6374 bool remap_decls_p;
6377 /* Helper for move_block_to_fn. Set TREE_BLOCK in every expression
6378 contained in *TP if it has been ORIG_BLOCK previously and change the
6379 DECL_CONTEXT of every local variable referenced in *TP. */
6381 static tree
6382 move_stmt_op (tree *tp, int *walk_subtrees, void *data)
6384 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
6385 struct move_stmt_d *p = (struct move_stmt_d *) wi->info;
6386 tree t = *tp;
6388 if (EXPR_P (t))
6390 tree block = TREE_BLOCK (t);
6391 if (block == p->orig_block
6392 || (p->orig_block == NULL_TREE
6393 && block != NULL_TREE))
6394 TREE_SET_BLOCK (t, p->new_block);
6395 #ifdef ENABLE_CHECKING
6396 else if (block != NULL_TREE)
6398 while (block && TREE_CODE (block) == BLOCK && block != p->orig_block)
6399 block = BLOCK_SUPERCONTEXT (block);
6400 gcc_assert (block == p->orig_block);
6402 #endif
6404 else if (DECL_P (t) || TREE_CODE (t) == SSA_NAME)
6406 if (TREE_CODE (t) == SSA_NAME)
6407 *tp = replace_ssa_name (t, p->vars_map, p->to_context);
6408 else if (TREE_CODE (t) == LABEL_DECL)
6410 if (p->new_label_map)
6412 struct tree_map in, *out;
6413 in.base.from = t;
6414 out = (struct tree_map *)
6415 htab_find_with_hash (p->new_label_map, &in, DECL_UID (t));
6416 if (out)
6417 *tp = t = out->to;
6420 DECL_CONTEXT (t) = p->to_context;
6422 else if (p->remap_decls_p)
6424 /* Replace T with its duplicate. T should no longer appear in the
6425 parent function, so this looks wasteful; however, it may appear
6426 in referenced_vars, and more importantly, as virtual operands of
6427 statements, and in alias lists of other variables. It would be
6428 quite difficult to expunge it from all those places. ??? It might
6429 suffice to do this for addressable variables. */
6430 if ((TREE_CODE (t) == VAR_DECL
6431 && !is_global_var (t))
6432 || TREE_CODE (t) == CONST_DECL)
6433 replace_by_duplicate_decl (tp, p->vars_map, p->to_context);
6435 *walk_subtrees = 0;
6437 else if (TYPE_P (t))
6438 *walk_subtrees = 0;
6440 return NULL_TREE;
6443 /* Helper for move_stmt_r. Given an EH region number for the source
6444 function, map that to the duplicate EH regio number in the dest. */
6446 static int
6447 move_stmt_eh_region_nr (int old_nr, struct move_stmt_d *p)
6449 eh_region old_r, new_r;
6451 old_r = get_eh_region_from_number (old_nr);
6452 new_r = static_cast<eh_region> (*p->eh_map->get (old_r));
6454 return new_r->index;
6457 /* Similar, but operate on INTEGER_CSTs. */
6459 static tree
6460 move_stmt_eh_region_tree_nr (tree old_t_nr, struct move_stmt_d *p)
6462 int old_nr, new_nr;
6464 old_nr = tree_to_shwi (old_t_nr);
6465 new_nr = move_stmt_eh_region_nr (old_nr, p);
6467 return build_int_cst (integer_type_node, new_nr);
6470 /* Like move_stmt_op, but for gimple statements.
6472 Helper for move_block_to_fn. Set GIMPLE_BLOCK in every expression
6473 contained in the current statement in *GSI_P and change the
6474 DECL_CONTEXT of every local variable referenced in the current
6475 statement. */
6477 static tree
6478 move_stmt_r (gimple_stmt_iterator *gsi_p, bool *handled_ops_p,
6479 struct walk_stmt_info *wi)
6481 struct move_stmt_d *p = (struct move_stmt_d *) wi->info;
6482 gimple stmt = gsi_stmt (*gsi_p);
6483 tree block = gimple_block (stmt);
6485 if (block == p->orig_block
6486 || (p->orig_block == NULL_TREE
6487 && block != NULL_TREE))
6488 gimple_set_block (stmt, p->new_block);
6490 switch (gimple_code (stmt))
6492 case GIMPLE_CALL:
6493 /* Remap the region numbers for __builtin_eh_{pointer,filter}. */
6495 tree r, fndecl = gimple_call_fndecl (stmt);
6496 if (fndecl && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
6497 switch (DECL_FUNCTION_CODE (fndecl))
6499 case BUILT_IN_EH_COPY_VALUES:
6500 r = gimple_call_arg (stmt, 1);
6501 r = move_stmt_eh_region_tree_nr (r, p);
6502 gimple_call_set_arg (stmt, 1, r);
6503 /* FALLTHRU */
6505 case BUILT_IN_EH_POINTER:
6506 case BUILT_IN_EH_FILTER:
6507 r = gimple_call_arg (stmt, 0);
6508 r = move_stmt_eh_region_tree_nr (r, p);
6509 gimple_call_set_arg (stmt, 0, r);
6510 break;
6512 default:
6513 break;
6516 break;
6518 case GIMPLE_RESX:
6520 int r = gimple_resx_region (stmt);
6521 r = move_stmt_eh_region_nr (r, p);
6522 gimple_resx_set_region (stmt, r);
6524 break;
6526 case GIMPLE_EH_DISPATCH:
6528 int r = gimple_eh_dispatch_region (stmt);
6529 r = move_stmt_eh_region_nr (r, p);
6530 gimple_eh_dispatch_set_region (stmt, r);
6532 break;
6534 case GIMPLE_OMP_RETURN:
6535 case GIMPLE_OMP_CONTINUE:
6536 break;
6537 default:
6538 if (is_gimple_omp (stmt))
6540 /* Do not remap variables inside OMP directives. Variables
6541 referenced in clauses and directive header belong to the
6542 parent function and should not be moved into the child
6543 function. */
6544 bool save_remap_decls_p = p->remap_decls_p;
6545 p->remap_decls_p = false;
6546 *handled_ops_p = true;
6548 walk_gimple_seq_mod (gimple_omp_body_ptr (stmt), move_stmt_r,
6549 move_stmt_op, wi);
6551 p->remap_decls_p = save_remap_decls_p;
6553 break;
6556 return NULL_TREE;
6559 /* Move basic block BB from function CFUN to function DEST_FN. The
6560 block is moved out of the original linked list and placed after
6561 block AFTER in the new list. Also, the block is removed from the
6562 original array of blocks and placed in DEST_FN's array of blocks.
6563 If UPDATE_EDGE_COUNT_P is true, the edge counts on both CFGs is
6564 updated to reflect the moved edges.
6566 The local variables are remapped to new instances, VARS_MAP is used
6567 to record the mapping. */
6569 static void
6570 move_block_to_fn (struct function *dest_cfun, basic_block bb,
6571 basic_block after, bool update_edge_count_p,
6572 struct move_stmt_d *d)
6574 struct control_flow_graph *cfg;
6575 edge_iterator ei;
6576 edge e;
6577 gimple_stmt_iterator si;
6578 unsigned old_len, new_len;
6580 /* Remove BB from dominance structures. */
6581 delete_from_dominance_info (CDI_DOMINATORS, bb);
6583 /* Move BB from its current loop to the copy in the new function. */
6584 if (current_loops)
6586 struct loop *new_loop = (struct loop *)bb->loop_father->aux;
6587 if (new_loop)
6588 bb->loop_father = new_loop;
6591 /* Link BB to the new linked list. */
6592 move_block_after (bb, after);
6594 /* Update the edge count in the corresponding flowgraphs. */
6595 if (update_edge_count_p)
6596 FOR_EACH_EDGE (e, ei, bb->succs)
6598 cfun->cfg->x_n_edges--;
6599 dest_cfun->cfg->x_n_edges++;
6602 /* Remove BB from the original basic block array. */
6603 (*cfun->cfg->x_basic_block_info)[bb->index] = NULL;
6604 cfun->cfg->x_n_basic_blocks--;
6606 /* Grow DEST_CFUN's basic block array if needed. */
6607 cfg = dest_cfun->cfg;
6608 cfg->x_n_basic_blocks++;
6609 if (bb->index >= cfg->x_last_basic_block)
6610 cfg->x_last_basic_block = bb->index + 1;
6612 old_len = vec_safe_length (cfg->x_basic_block_info);
6613 if ((unsigned) cfg->x_last_basic_block >= old_len)
6615 new_len = cfg->x_last_basic_block + (cfg->x_last_basic_block + 3) / 4;
6616 vec_safe_grow_cleared (cfg->x_basic_block_info, new_len);
6619 (*cfg->x_basic_block_info)[bb->index] = bb;
6621 /* Remap the variables in phi nodes. */
6622 for (si = gsi_start_phis (bb); !gsi_end_p (si); )
6624 gimple phi = gsi_stmt (si);
6625 use_operand_p use;
6626 tree op = PHI_RESULT (phi);
6627 ssa_op_iter oi;
6628 unsigned i;
6630 if (virtual_operand_p (op))
6632 /* Remove the phi nodes for virtual operands (alias analysis will be
6633 run for the new function, anyway). */
6634 remove_phi_node (&si, true);
6635 continue;
6638 SET_PHI_RESULT (phi,
6639 replace_ssa_name (op, d->vars_map, dest_cfun->decl));
6640 FOR_EACH_PHI_ARG (use, phi, oi, SSA_OP_USE)
6642 op = USE_FROM_PTR (use);
6643 if (TREE_CODE (op) == SSA_NAME)
6644 SET_USE (use, replace_ssa_name (op, d->vars_map, dest_cfun->decl));
6647 for (i = 0; i < EDGE_COUNT (bb->preds); i++)
6649 location_t locus = gimple_phi_arg_location (phi, i);
6650 tree block = LOCATION_BLOCK (locus);
6652 if (locus == UNKNOWN_LOCATION)
6653 continue;
6654 if (d->orig_block == NULL_TREE || block == d->orig_block)
6656 if (d->new_block == NULL_TREE)
6657 locus = LOCATION_LOCUS (locus);
6658 else
6659 locus = COMBINE_LOCATION_DATA (line_table, locus, d->new_block);
6660 gimple_phi_arg_set_location (phi, i, locus);
6664 gsi_next (&si);
6667 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
6669 gimple stmt = gsi_stmt (si);
6670 struct walk_stmt_info wi;
6672 memset (&wi, 0, sizeof (wi));
6673 wi.info = d;
6674 walk_gimple_stmt (&si, move_stmt_r, move_stmt_op, &wi);
6676 if (gimple_code (stmt) == GIMPLE_LABEL)
6678 tree label = gimple_label_label (stmt);
6679 int uid = LABEL_DECL_UID (label);
6681 gcc_assert (uid > -1);
6683 old_len = vec_safe_length (cfg->x_label_to_block_map);
6684 if (old_len <= (unsigned) uid)
6686 new_len = 3 * uid / 2 + 1;
6687 vec_safe_grow_cleared (cfg->x_label_to_block_map, new_len);
6690 (*cfg->x_label_to_block_map)[uid] = bb;
6691 (*cfun->cfg->x_label_to_block_map)[uid] = NULL;
6693 gcc_assert (DECL_CONTEXT (label) == dest_cfun->decl);
6695 if (uid >= dest_cfun->cfg->last_label_uid)
6696 dest_cfun->cfg->last_label_uid = uid + 1;
6699 maybe_duplicate_eh_stmt_fn (dest_cfun, stmt, cfun, stmt, d->eh_map, 0);
6700 remove_stmt_from_eh_lp_fn (cfun, stmt);
6702 gimple_duplicate_stmt_histograms (dest_cfun, stmt, cfun, stmt);
6703 gimple_remove_stmt_histograms (cfun, stmt);
6705 /* We cannot leave any operands allocated from the operand caches of
6706 the current function. */
6707 free_stmt_operands (cfun, stmt);
6708 push_cfun (dest_cfun);
6709 update_stmt (stmt);
6710 pop_cfun ();
6713 FOR_EACH_EDGE (e, ei, bb->succs)
6714 if (e->goto_locus != UNKNOWN_LOCATION)
6716 tree block = LOCATION_BLOCK (e->goto_locus);
6717 if (d->orig_block == NULL_TREE
6718 || block == d->orig_block)
6719 e->goto_locus = d->new_block ?
6720 COMBINE_LOCATION_DATA (line_table, e->goto_locus, d->new_block) :
6721 LOCATION_LOCUS (e->goto_locus);
6725 /* Examine the statements in BB (which is in SRC_CFUN); find and return
6726 the outermost EH region. Use REGION as the incoming base EH region. */
6728 static eh_region
6729 find_outermost_region_in_block (struct function *src_cfun,
6730 basic_block bb, eh_region region)
6732 gimple_stmt_iterator si;
6734 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
6736 gimple stmt = gsi_stmt (si);
6737 eh_region stmt_region;
6738 int lp_nr;
6740 lp_nr = lookup_stmt_eh_lp_fn (src_cfun, stmt);
6741 stmt_region = get_eh_region_from_lp_number_fn (src_cfun, lp_nr);
6742 if (stmt_region)
6744 if (region == NULL)
6745 region = stmt_region;
6746 else if (stmt_region != region)
6748 region = eh_region_outermost (src_cfun, stmt_region, region);
6749 gcc_assert (region != NULL);
6754 return region;
6757 static tree
6758 new_label_mapper (tree decl, void *data)
6760 htab_t hash = (htab_t) data;
6761 struct tree_map *m;
6762 void **slot;
6764 gcc_assert (TREE_CODE (decl) == LABEL_DECL);
6766 m = XNEW (struct tree_map);
6767 m->hash = DECL_UID (decl);
6768 m->base.from = decl;
6769 m->to = create_artificial_label (UNKNOWN_LOCATION);
6770 LABEL_DECL_UID (m->to) = LABEL_DECL_UID (decl);
6771 if (LABEL_DECL_UID (m->to) >= cfun->cfg->last_label_uid)
6772 cfun->cfg->last_label_uid = LABEL_DECL_UID (m->to) + 1;
6774 slot = htab_find_slot_with_hash (hash, m, m->hash, INSERT);
6775 gcc_assert (*slot == NULL);
6777 *slot = m;
6779 return m->to;
6782 /* Change DECL_CONTEXT of all BLOCK_VARS in block, including
6783 subblocks. */
6785 static void
6786 replace_block_vars_by_duplicates (tree block, hash_map<tree, tree> *vars_map,
6787 tree to_context)
6789 tree *tp, t;
6791 for (tp = &BLOCK_VARS (block); *tp; tp = &DECL_CHAIN (*tp))
6793 t = *tp;
6794 if (TREE_CODE (t) != VAR_DECL && TREE_CODE (t) != CONST_DECL)
6795 continue;
6796 replace_by_duplicate_decl (&t, vars_map, to_context);
6797 if (t != *tp)
6799 if (TREE_CODE (*tp) == VAR_DECL && DECL_HAS_VALUE_EXPR_P (*tp))
6801 SET_DECL_VALUE_EXPR (t, DECL_VALUE_EXPR (*tp));
6802 DECL_HAS_VALUE_EXPR_P (t) = 1;
6804 DECL_CHAIN (t) = DECL_CHAIN (*tp);
6805 *tp = t;
6809 for (block = BLOCK_SUBBLOCKS (block); block; block = BLOCK_CHAIN (block))
6810 replace_block_vars_by_duplicates (block, vars_map, to_context);
6813 /* Fixup the loop arrays and numbers after moving LOOP and its subloops
6814 from FN1 to FN2. */
6816 static void
6817 fixup_loop_arrays_after_move (struct function *fn1, struct function *fn2,
6818 struct loop *loop)
6820 /* Discard it from the old loop array. */
6821 (*get_loops (fn1))[loop->num] = NULL;
6823 /* Place it in the new loop array, assigning it a new number. */
6824 loop->num = number_of_loops (fn2);
6825 vec_safe_push (loops_for_fn (fn2)->larray, loop);
6827 /* Recurse to children. */
6828 for (loop = loop->inner; loop; loop = loop->next)
6829 fixup_loop_arrays_after_move (fn1, fn2, loop);
6832 /* Move a single-entry, single-exit region delimited by ENTRY_BB and
6833 EXIT_BB to function DEST_CFUN. The whole region is replaced by a
6834 single basic block in the original CFG and the new basic block is
6835 returned. DEST_CFUN must not have a CFG yet.
6837 Note that the region need not be a pure SESE region. Blocks inside
6838 the region may contain calls to abort/exit. The only restriction
6839 is that ENTRY_BB should be the only entry point and it must
6840 dominate EXIT_BB.
6842 Change TREE_BLOCK of all statements in ORIG_BLOCK to the new
6843 functions outermost BLOCK, move all subblocks of ORIG_BLOCK
6844 to the new function.
6846 All local variables referenced in the region are assumed to be in
6847 the corresponding BLOCK_VARS and unexpanded variable lists
6848 associated with DEST_CFUN. */
6850 basic_block
6851 move_sese_region_to_fn (struct function *dest_cfun, basic_block entry_bb,
6852 basic_block exit_bb, tree orig_block)
6854 vec<basic_block> bbs, dom_bbs;
6855 basic_block dom_entry = get_immediate_dominator (CDI_DOMINATORS, entry_bb);
6856 basic_block after, bb, *entry_pred, *exit_succ, abb;
6857 struct function *saved_cfun = cfun;
6858 int *entry_flag, *exit_flag;
6859 unsigned *entry_prob, *exit_prob;
6860 unsigned i, num_entry_edges, num_exit_edges, num_nodes;
6861 edge e;
6862 edge_iterator ei;
6863 htab_t new_label_map;
6864 hash_map<void *, void *> *eh_map;
6865 struct loop *loop = entry_bb->loop_father;
6866 struct loop *loop0 = get_loop (saved_cfun, 0);
6867 struct move_stmt_d d;
6869 /* If ENTRY does not strictly dominate EXIT, this cannot be an SESE
6870 region. */
6871 gcc_assert (entry_bb != exit_bb
6872 && (!exit_bb
6873 || dominated_by_p (CDI_DOMINATORS, exit_bb, entry_bb)));
6875 /* Collect all the blocks in the region. Manually add ENTRY_BB
6876 because it won't be added by dfs_enumerate_from. */
6877 bbs.create (0);
6878 bbs.safe_push (entry_bb);
6879 gather_blocks_in_sese_region (entry_bb, exit_bb, &bbs);
6881 /* The blocks that used to be dominated by something in BBS will now be
6882 dominated by the new block. */
6883 dom_bbs = get_dominated_by_region (CDI_DOMINATORS,
6884 bbs.address (),
6885 bbs.length ());
6887 /* Detach ENTRY_BB and EXIT_BB from CFUN->CFG. We need to remember
6888 the predecessor edges to ENTRY_BB and the successor edges to
6889 EXIT_BB so that we can re-attach them to the new basic block that
6890 will replace the region. */
6891 num_entry_edges = EDGE_COUNT (entry_bb->preds);
6892 entry_pred = XNEWVEC (basic_block, num_entry_edges);
6893 entry_flag = XNEWVEC (int, num_entry_edges);
6894 entry_prob = XNEWVEC (unsigned, num_entry_edges);
6895 i = 0;
6896 for (ei = ei_start (entry_bb->preds); (e = ei_safe_edge (ei)) != NULL;)
6898 entry_prob[i] = e->probability;
6899 entry_flag[i] = e->flags;
6900 entry_pred[i++] = e->src;
6901 remove_edge (e);
6904 if (exit_bb)
6906 num_exit_edges = EDGE_COUNT (exit_bb->succs);
6907 exit_succ = XNEWVEC (basic_block, num_exit_edges);
6908 exit_flag = XNEWVEC (int, num_exit_edges);
6909 exit_prob = XNEWVEC (unsigned, num_exit_edges);
6910 i = 0;
6911 for (ei = ei_start (exit_bb->succs); (e = ei_safe_edge (ei)) != NULL;)
6913 exit_prob[i] = e->probability;
6914 exit_flag[i] = e->flags;
6915 exit_succ[i++] = e->dest;
6916 remove_edge (e);
6919 else
6921 num_exit_edges = 0;
6922 exit_succ = NULL;
6923 exit_flag = NULL;
6924 exit_prob = NULL;
6927 /* Switch context to the child function to initialize DEST_FN's CFG. */
6928 gcc_assert (dest_cfun->cfg == NULL);
6929 push_cfun (dest_cfun);
6931 init_empty_tree_cfg ();
6933 /* Initialize EH information for the new function. */
6934 eh_map = NULL;
6935 new_label_map = NULL;
6936 if (saved_cfun->eh)
6938 eh_region region = NULL;
6940 FOR_EACH_VEC_ELT (bbs, i, bb)
6941 region = find_outermost_region_in_block (saved_cfun, bb, region);
6943 init_eh_for_function ();
6944 if (region != NULL)
6946 new_label_map = htab_create (17, tree_map_hash, tree_map_eq, free);
6947 eh_map = duplicate_eh_regions (saved_cfun, region, 0,
6948 new_label_mapper, new_label_map);
6952 /* Initialize an empty loop tree. */
6953 struct loops *loops = ggc_cleared_alloc<struct loops> ();
6954 init_loops_structure (dest_cfun, loops, 1);
6955 loops->state = LOOPS_MAY_HAVE_MULTIPLE_LATCHES;
6956 set_loops_for_fn (dest_cfun, loops);
6958 /* Move the outlined loop tree part. */
6959 num_nodes = bbs.length ();
6960 FOR_EACH_VEC_ELT (bbs, i, bb)
6962 if (bb->loop_father->header == bb)
6964 struct loop *this_loop = bb->loop_father;
6965 struct loop *outer = loop_outer (this_loop);
6966 if (outer == loop
6967 /* If the SESE region contains some bbs ending with
6968 a noreturn call, those are considered to belong
6969 to the outermost loop in saved_cfun, rather than
6970 the entry_bb's loop_father. */
6971 || outer == loop0)
6973 if (outer != loop)
6974 num_nodes -= this_loop->num_nodes;
6975 flow_loop_tree_node_remove (bb->loop_father);
6976 flow_loop_tree_node_add (get_loop (dest_cfun, 0), this_loop);
6977 fixup_loop_arrays_after_move (saved_cfun, cfun, this_loop);
6980 else if (bb->loop_father == loop0 && loop0 != loop)
6981 num_nodes--;
6983 /* Remove loop exits from the outlined region. */
6984 if (loops_for_fn (saved_cfun)->exits)
6985 FOR_EACH_EDGE (e, ei, bb->succs)
6987 struct loops *l = loops_for_fn (saved_cfun);
6988 loop_exit **slot
6989 = l->exits->find_slot_with_hash (e, htab_hash_pointer (e),
6990 NO_INSERT);
6991 if (slot)
6992 l->exits->clear_slot (slot);
6997 /* Adjust the number of blocks in the tree root of the outlined part. */
6998 get_loop (dest_cfun, 0)->num_nodes = bbs.length () + 2;
7000 /* Setup a mapping to be used by move_block_to_fn. */
7001 loop->aux = current_loops->tree_root;
7002 loop0->aux = current_loops->tree_root;
7004 pop_cfun ();
7006 /* Move blocks from BBS into DEST_CFUN. */
7007 gcc_assert (bbs.length () >= 2);
7008 after = dest_cfun->cfg->x_entry_block_ptr;
7009 hash_map<tree, tree> vars_map;
7011 memset (&d, 0, sizeof (d));
7012 d.orig_block = orig_block;
7013 d.new_block = DECL_INITIAL (dest_cfun->decl);
7014 d.from_context = cfun->decl;
7015 d.to_context = dest_cfun->decl;
7016 d.vars_map = &vars_map;
7017 d.new_label_map = new_label_map;
7018 d.eh_map = eh_map;
7019 d.remap_decls_p = true;
7021 FOR_EACH_VEC_ELT (bbs, i, bb)
7023 /* No need to update edge counts on the last block. It has
7024 already been updated earlier when we detached the region from
7025 the original CFG. */
7026 move_block_to_fn (dest_cfun, bb, after, bb != exit_bb, &d);
7027 after = bb;
7030 loop->aux = NULL;
7031 loop0->aux = NULL;
7032 /* Loop sizes are no longer correct, fix them up. */
7033 loop->num_nodes -= num_nodes;
7034 for (struct loop *outer = loop_outer (loop);
7035 outer; outer = loop_outer (outer))
7036 outer->num_nodes -= num_nodes;
7037 loop0->num_nodes -= bbs.length () - num_nodes;
7039 if (saved_cfun->has_simduid_loops || saved_cfun->has_force_vectorize_loops)
7041 struct loop *aloop;
7042 for (i = 0; vec_safe_iterate (loops->larray, i, &aloop); i++)
7043 if (aloop != NULL)
7045 if (aloop->simduid)
7047 replace_by_duplicate_decl (&aloop->simduid, d.vars_map,
7048 d.to_context);
7049 dest_cfun->has_simduid_loops = true;
7051 if (aloop->force_vectorize)
7052 dest_cfun->has_force_vectorize_loops = true;
7056 /* Rewire BLOCK_SUBBLOCKS of orig_block. */
7057 if (orig_block)
7059 tree block;
7060 gcc_assert (BLOCK_SUBBLOCKS (DECL_INITIAL (dest_cfun->decl))
7061 == NULL_TREE);
7062 BLOCK_SUBBLOCKS (DECL_INITIAL (dest_cfun->decl))
7063 = BLOCK_SUBBLOCKS (orig_block);
7064 for (block = BLOCK_SUBBLOCKS (orig_block);
7065 block; block = BLOCK_CHAIN (block))
7066 BLOCK_SUPERCONTEXT (block) = DECL_INITIAL (dest_cfun->decl);
7067 BLOCK_SUBBLOCKS (orig_block) = NULL_TREE;
7070 replace_block_vars_by_duplicates (DECL_INITIAL (dest_cfun->decl),
7071 &vars_map, dest_cfun->decl);
7073 if (new_label_map)
7074 htab_delete (new_label_map);
7075 if (eh_map)
7076 delete eh_map;
7078 /* Rewire the entry and exit blocks. The successor to the entry
7079 block turns into the successor of DEST_FN's ENTRY_BLOCK_PTR in
7080 the child function. Similarly, the predecessor of DEST_FN's
7081 EXIT_BLOCK_PTR turns into the predecessor of EXIT_BLOCK_PTR. We
7082 need to switch CFUN between DEST_CFUN and SAVED_CFUN so that the
7083 various CFG manipulation function get to the right CFG.
7085 FIXME, this is silly. The CFG ought to become a parameter to
7086 these helpers. */
7087 push_cfun (dest_cfun);
7088 make_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun), entry_bb, EDGE_FALLTHRU);
7089 if (exit_bb)
7090 make_edge (exit_bb, EXIT_BLOCK_PTR_FOR_FN (cfun), 0);
7091 pop_cfun ();
7093 /* Back in the original function, the SESE region has disappeared,
7094 create a new basic block in its place. */
7095 bb = create_empty_bb (entry_pred[0]);
7096 if (current_loops)
7097 add_bb_to_loop (bb, loop);
7098 for (i = 0; i < num_entry_edges; i++)
7100 e = make_edge (entry_pred[i], bb, entry_flag[i]);
7101 e->probability = entry_prob[i];
7104 for (i = 0; i < num_exit_edges; i++)
7106 e = make_edge (bb, exit_succ[i], exit_flag[i]);
7107 e->probability = exit_prob[i];
7110 set_immediate_dominator (CDI_DOMINATORS, bb, dom_entry);
7111 FOR_EACH_VEC_ELT (dom_bbs, i, abb)
7112 set_immediate_dominator (CDI_DOMINATORS, abb, bb);
7113 dom_bbs.release ();
7115 if (exit_bb)
7117 free (exit_prob);
7118 free (exit_flag);
7119 free (exit_succ);
7121 free (entry_prob);
7122 free (entry_flag);
7123 free (entry_pred);
7124 bbs.release ();
7126 return bb;
7130 /* Dump FUNCTION_DECL FN to file FILE using FLAGS (see TDF_* in dumpfile.h)
7133 void
7134 dump_function_to_file (tree fndecl, FILE *file, int flags)
7136 tree arg, var, old_current_fndecl = current_function_decl;
7137 struct function *dsf;
7138 bool ignore_topmost_bind = false, any_var = false;
7139 basic_block bb;
7140 tree chain;
7141 bool tmclone = (TREE_CODE (fndecl) == FUNCTION_DECL
7142 && decl_is_tm_clone (fndecl));
7143 struct function *fun = DECL_STRUCT_FUNCTION (fndecl);
7145 current_function_decl = fndecl;
7146 fprintf (file, "%s %s(", function_name (fun), tmclone ? "[tm-clone] " : "");
7148 arg = DECL_ARGUMENTS (fndecl);
7149 while (arg)
7151 print_generic_expr (file, TREE_TYPE (arg), dump_flags);
7152 fprintf (file, " ");
7153 print_generic_expr (file, arg, dump_flags);
7154 if (flags & TDF_VERBOSE)
7155 print_node (file, "", arg, 4);
7156 if (DECL_CHAIN (arg))
7157 fprintf (file, ", ");
7158 arg = DECL_CHAIN (arg);
7160 fprintf (file, ")\n");
7162 if (flags & TDF_VERBOSE)
7163 print_node (file, "", fndecl, 2);
7165 dsf = DECL_STRUCT_FUNCTION (fndecl);
7166 if (dsf && (flags & TDF_EH))
7167 dump_eh_tree (file, dsf);
7169 if (flags & TDF_RAW && !gimple_has_body_p (fndecl))
7171 dump_node (fndecl, TDF_SLIM | flags, file);
7172 current_function_decl = old_current_fndecl;
7173 return;
7176 /* When GIMPLE is lowered, the variables are no longer available in
7177 BIND_EXPRs, so display them separately. */
7178 if (fun && fun->decl == fndecl && (fun->curr_properties & PROP_gimple_lcf))
7180 unsigned ix;
7181 ignore_topmost_bind = true;
7183 fprintf (file, "{\n");
7184 if (!vec_safe_is_empty (fun->local_decls))
7185 FOR_EACH_LOCAL_DECL (fun, ix, var)
7187 print_generic_decl (file, var, flags);
7188 if (flags & TDF_VERBOSE)
7189 print_node (file, "", var, 4);
7190 fprintf (file, "\n");
7192 any_var = true;
7194 if (gimple_in_ssa_p (cfun))
7195 for (ix = 1; ix < num_ssa_names; ++ix)
7197 tree name = ssa_name (ix);
7198 if (name && !SSA_NAME_VAR (name))
7200 fprintf (file, " ");
7201 print_generic_expr (file, TREE_TYPE (name), flags);
7202 fprintf (file, " ");
7203 print_generic_expr (file, name, flags);
7204 fprintf (file, ";\n");
7206 any_var = true;
7211 if (fun && fun->decl == fndecl
7212 && fun->cfg
7213 && basic_block_info_for_fn (fun))
7215 /* If the CFG has been built, emit a CFG-based dump. */
7216 if (!ignore_topmost_bind)
7217 fprintf (file, "{\n");
7219 if (any_var && n_basic_blocks_for_fn (fun))
7220 fprintf (file, "\n");
7222 FOR_EACH_BB_FN (bb, fun)
7223 dump_bb (file, bb, 2, flags | TDF_COMMENT);
7225 fprintf (file, "}\n");
7227 else if (DECL_SAVED_TREE (fndecl) == NULL)
7229 /* The function is now in GIMPLE form but the CFG has not been
7230 built yet. Emit the single sequence of GIMPLE statements
7231 that make up its body. */
7232 gimple_seq body = gimple_body (fndecl);
7234 if (gimple_seq_first_stmt (body)
7235 && gimple_seq_first_stmt (body) == gimple_seq_last_stmt (body)
7236 && gimple_code (gimple_seq_first_stmt (body)) == GIMPLE_BIND)
7237 print_gimple_seq (file, body, 0, flags);
7238 else
7240 if (!ignore_topmost_bind)
7241 fprintf (file, "{\n");
7243 if (any_var)
7244 fprintf (file, "\n");
7246 print_gimple_seq (file, body, 2, flags);
7247 fprintf (file, "}\n");
7250 else
7252 int indent;
7254 /* Make a tree based dump. */
7255 chain = DECL_SAVED_TREE (fndecl);
7256 if (chain && TREE_CODE (chain) == BIND_EXPR)
7258 if (ignore_topmost_bind)
7260 chain = BIND_EXPR_BODY (chain);
7261 indent = 2;
7263 else
7264 indent = 0;
7266 else
7268 if (!ignore_topmost_bind)
7269 fprintf (file, "{\n");
7270 indent = 2;
7273 if (any_var)
7274 fprintf (file, "\n");
7276 print_generic_stmt_indented (file, chain, flags, indent);
7277 if (ignore_topmost_bind)
7278 fprintf (file, "}\n");
7281 if (flags & TDF_ENUMERATE_LOCALS)
7282 dump_enumerated_decls (file, flags);
7283 fprintf (file, "\n\n");
7285 current_function_decl = old_current_fndecl;
7288 /* Dump FUNCTION_DECL FN to stderr using FLAGS (see TDF_* in tree.h) */
7290 DEBUG_FUNCTION void
7291 debug_function (tree fn, int flags)
7293 dump_function_to_file (fn, stderr, flags);
7297 /* Print on FILE the indexes for the predecessors of basic_block BB. */
7299 static void
7300 print_pred_bbs (FILE *file, basic_block bb)
7302 edge e;
7303 edge_iterator ei;
7305 FOR_EACH_EDGE (e, ei, bb->preds)
7306 fprintf (file, "bb_%d ", e->src->index);
7310 /* Print on FILE the indexes for the successors of basic_block BB. */
7312 static void
7313 print_succ_bbs (FILE *file, basic_block bb)
7315 edge e;
7316 edge_iterator ei;
7318 FOR_EACH_EDGE (e, ei, bb->succs)
7319 fprintf (file, "bb_%d ", e->dest->index);
7322 /* Print to FILE the basic block BB following the VERBOSITY level. */
7324 void
7325 print_loops_bb (FILE *file, basic_block bb, int indent, int verbosity)
7327 char *s_indent = (char *) alloca ((size_t) indent + 1);
7328 memset ((void *) s_indent, ' ', (size_t) indent);
7329 s_indent[indent] = '\0';
7331 /* Print basic_block's header. */
7332 if (verbosity >= 2)
7334 fprintf (file, "%s bb_%d (preds = {", s_indent, bb->index);
7335 print_pred_bbs (file, bb);
7336 fprintf (file, "}, succs = {");
7337 print_succ_bbs (file, bb);
7338 fprintf (file, "})\n");
7341 /* Print basic_block's body. */
7342 if (verbosity >= 3)
7344 fprintf (file, "%s {\n", s_indent);
7345 dump_bb (file, bb, indent + 4, TDF_VOPS|TDF_MEMSYMS);
7346 fprintf (file, "%s }\n", s_indent);
7350 static void print_loop_and_siblings (FILE *, struct loop *, int, int);
7352 /* Pretty print LOOP on FILE, indented INDENT spaces. Following
7353 VERBOSITY level this outputs the contents of the loop, or just its
7354 structure. */
7356 static void
7357 print_loop (FILE *file, struct loop *loop, int indent, int verbosity)
7359 char *s_indent;
7360 basic_block bb;
7362 if (loop == NULL)
7363 return;
7365 s_indent = (char *) alloca ((size_t) indent + 1);
7366 memset ((void *) s_indent, ' ', (size_t) indent);
7367 s_indent[indent] = '\0';
7369 /* Print loop's header. */
7370 fprintf (file, "%sloop_%d (", s_indent, loop->num);
7371 if (loop->header)
7372 fprintf (file, "header = %d", loop->header->index);
7373 else
7375 fprintf (file, "deleted)\n");
7376 return;
7378 if (loop->latch)
7379 fprintf (file, ", latch = %d", loop->latch->index);
7380 else
7381 fprintf (file, ", multiple latches");
7382 fprintf (file, ", niter = ");
7383 print_generic_expr (file, loop->nb_iterations, 0);
7385 if (loop->any_upper_bound)
7387 fprintf (file, ", upper_bound = ");
7388 print_decu (loop->nb_iterations_upper_bound, file);
7391 if (loop->any_estimate)
7393 fprintf (file, ", estimate = ");
7394 print_decu (loop->nb_iterations_estimate, file);
7396 fprintf (file, ")\n");
7398 /* Print loop's body. */
7399 if (verbosity >= 1)
7401 fprintf (file, "%s{\n", s_indent);
7402 FOR_EACH_BB_FN (bb, cfun)
7403 if (bb->loop_father == loop)
7404 print_loops_bb (file, bb, indent, verbosity);
7406 print_loop_and_siblings (file, loop->inner, indent + 2, verbosity);
7407 fprintf (file, "%s}\n", s_indent);
7411 /* Print the LOOP and its sibling loops on FILE, indented INDENT
7412 spaces. Following VERBOSITY level this outputs the contents of the
7413 loop, or just its structure. */
7415 static void
7416 print_loop_and_siblings (FILE *file, struct loop *loop, int indent,
7417 int verbosity)
7419 if (loop == NULL)
7420 return;
7422 print_loop (file, loop, indent, verbosity);
7423 print_loop_and_siblings (file, loop->next, indent, verbosity);
7426 /* Follow a CFG edge from the entry point of the program, and on entry
7427 of a loop, pretty print the loop structure on FILE. */
7429 void
7430 print_loops (FILE *file, int verbosity)
7432 basic_block bb;
7434 bb = ENTRY_BLOCK_PTR_FOR_FN (cfun);
7435 if (bb && bb->loop_father)
7436 print_loop_and_siblings (file, bb->loop_father, 0, verbosity);
7439 /* Dump a loop. */
7441 DEBUG_FUNCTION void
7442 debug (struct loop &ref)
7444 print_loop (stderr, &ref, 0, /*verbosity*/0);
7447 DEBUG_FUNCTION void
7448 debug (struct loop *ptr)
7450 if (ptr)
7451 debug (*ptr);
7452 else
7453 fprintf (stderr, "<nil>\n");
7456 /* Dump a loop verbosely. */
7458 DEBUG_FUNCTION void
7459 debug_verbose (struct loop &ref)
7461 print_loop (stderr, &ref, 0, /*verbosity*/3);
7464 DEBUG_FUNCTION void
7465 debug_verbose (struct loop *ptr)
7467 if (ptr)
7468 debug (*ptr);
7469 else
7470 fprintf (stderr, "<nil>\n");
7474 /* Debugging loops structure at tree level, at some VERBOSITY level. */
7476 DEBUG_FUNCTION void
7477 debug_loops (int verbosity)
7479 print_loops (stderr, verbosity);
7482 /* Print on stderr the code of LOOP, at some VERBOSITY level. */
7484 DEBUG_FUNCTION void
7485 debug_loop (struct loop *loop, int verbosity)
7487 print_loop (stderr, loop, 0, verbosity);
7490 /* Print on stderr the code of loop number NUM, at some VERBOSITY
7491 level. */
7493 DEBUG_FUNCTION void
7494 debug_loop_num (unsigned num, int verbosity)
7496 debug_loop (get_loop (cfun, num), verbosity);
7499 /* Return true if BB ends with a call, possibly followed by some
7500 instructions that must stay with the call. Return false,
7501 otherwise. */
7503 static bool
7504 gimple_block_ends_with_call_p (basic_block bb)
7506 gimple_stmt_iterator gsi = gsi_last_nondebug_bb (bb);
7507 return !gsi_end_p (gsi) && is_gimple_call (gsi_stmt (gsi));
7511 /* Return true if BB ends with a conditional branch. Return false,
7512 otherwise. */
7514 static bool
7515 gimple_block_ends_with_condjump_p (const_basic_block bb)
7517 gimple stmt = last_stmt (CONST_CAST_BB (bb));
7518 return (stmt && gimple_code (stmt) == GIMPLE_COND);
7522 /* Return true if we need to add fake edge to exit at statement T.
7523 Helper function for gimple_flow_call_edges_add. */
7525 static bool
7526 need_fake_edge_p (gimple t)
7528 tree fndecl = NULL_TREE;
7529 int call_flags = 0;
7531 /* NORETURN and LONGJMP calls already have an edge to exit.
7532 CONST and PURE calls do not need one.
7533 We don't currently check for CONST and PURE here, although
7534 it would be a good idea, because those attributes are
7535 figured out from the RTL in mark_constant_function, and
7536 the counter incrementation code from -fprofile-arcs
7537 leads to different results from -fbranch-probabilities. */
7538 if (is_gimple_call (t))
7540 fndecl = gimple_call_fndecl (t);
7541 call_flags = gimple_call_flags (t);
7544 if (is_gimple_call (t)
7545 && fndecl
7546 && DECL_BUILT_IN (fndecl)
7547 && (call_flags & ECF_NOTHROW)
7548 && !(call_flags & ECF_RETURNS_TWICE)
7549 /* fork() doesn't really return twice, but the effect of
7550 wrapping it in __gcov_fork() which calls __gcov_flush()
7551 and clears the counters before forking has the same
7552 effect as returning twice. Force a fake edge. */
7553 && !(DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
7554 && DECL_FUNCTION_CODE (fndecl) == BUILT_IN_FORK))
7555 return false;
7557 if (is_gimple_call (t))
7559 edge_iterator ei;
7560 edge e;
7561 basic_block bb;
7563 if (!(call_flags & ECF_NORETURN))
7564 return true;
7566 bb = gimple_bb (t);
7567 FOR_EACH_EDGE (e, ei, bb->succs)
7568 if ((e->flags & EDGE_FAKE) == 0)
7569 return true;
7572 if (gimple_code (t) == GIMPLE_ASM
7573 && (gimple_asm_volatile_p (t) || gimple_asm_input_p (t)))
7574 return true;
7576 return false;
7580 /* Add fake edges to the function exit for any non constant and non
7581 noreturn calls (or noreturn calls with EH/abnormal edges),
7582 volatile inline assembly in the bitmap of blocks specified by BLOCKS
7583 or to the whole CFG if BLOCKS is zero. Return the number of blocks
7584 that were split.
7586 The goal is to expose cases in which entering a basic block does
7587 not imply that all subsequent instructions must be executed. */
7589 static int
7590 gimple_flow_call_edges_add (sbitmap blocks)
7592 int i;
7593 int blocks_split = 0;
7594 int last_bb = last_basic_block_for_fn (cfun);
7595 bool check_last_block = false;
7597 if (n_basic_blocks_for_fn (cfun) == NUM_FIXED_BLOCKS)
7598 return 0;
7600 if (! blocks)
7601 check_last_block = true;
7602 else
7603 check_last_block = bitmap_bit_p (blocks,
7604 EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb->index);
7606 /* In the last basic block, before epilogue generation, there will be
7607 a fallthru edge to EXIT. Special care is required if the last insn
7608 of the last basic block is a call because make_edge folds duplicate
7609 edges, which would result in the fallthru edge also being marked
7610 fake, which would result in the fallthru edge being removed by
7611 remove_fake_edges, which would result in an invalid CFG.
7613 Moreover, we can't elide the outgoing fake edge, since the block
7614 profiler needs to take this into account in order to solve the minimal
7615 spanning tree in the case that the call doesn't return.
7617 Handle this by adding a dummy instruction in a new last basic block. */
7618 if (check_last_block)
7620 basic_block bb = EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb;
7621 gimple_stmt_iterator gsi = gsi_last_nondebug_bb (bb);
7622 gimple t = NULL;
7624 if (!gsi_end_p (gsi))
7625 t = gsi_stmt (gsi);
7627 if (t && need_fake_edge_p (t))
7629 edge e;
7631 e = find_edge (bb, EXIT_BLOCK_PTR_FOR_FN (cfun));
7632 if (e)
7634 gsi_insert_on_edge (e, gimple_build_nop ());
7635 gsi_commit_edge_inserts ();
7640 /* Now add fake edges to the function exit for any non constant
7641 calls since there is no way that we can determine if they will
7642 return or not... */
7643 for (i = 0; i < last_bb; i++)
7645 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, i);
7646 gimple_stmt_iterator gsi;
7647 gimple stmt, last_stmt;
7649 if (!bb)
7650 continue;
7652 if (blocks && !bitmap_bit_p (blocks, i))
7653 continue;
7655 gsi = gsi_last_nondebug_bb (bb);
7656 if (!gsi_end_p (gsi))
7658 last_stmt = gsi_stmt (gsi);
7661 stmt = gsi_stmt (gsi);
7662 if (need_fake_edge_p (stmt))
7664 edge e;
7666 /* The handling above of the final block before the
7667 epilogue should be enough to verify that there is
7668 no edge to the exit block in CFG already.
7669 Calling make_edge in such case would cause us to
7670 mark that edge as fake and remove it later. */
7671 #ifdef ENABLE_CHECKING
7672 if (stmt == last_stmt)
7674 e = find_edge (bb, EXIT_BLOCK_PTR_FOR_FN (cfun));
7675 gcc_assert (e == NULL);
7677 #endif
7679 /* Note that the following may create a new basic block
7680 and renumber the existing basic blocks. */
7681 if (stmt != last_stmt)
7683 e = split_block (bb, stmt);
7684 if (e)
7685 blocks_split++;
7687 make_edge (bb, EXIT_BLOCK_PTR_FOR_FN (cfun), EDGE_FAKE);
7689 gsi_prev (&gsi);
7691 while (!gsi_end_p (gsi));
7695 if (blocks_split)
7696 verify_flow_info ();
7698 return blocks_split;
7701 /* Removes edge E and all the blocks dominated by it, and updates dominance
7702 information. The IL in E->src needs to be updated separately.
7703 If dominance info is not available, only the edge E is removed.*/
7705 void
7706 remove_edge_and_dominated_blocks (edge e)
7708 vec<basic_block> bbs_to_remove = vNULL;
7709 vec<basic_block> bbs_to_fix_dom = vNULL;
7710 bitmap df, df_idom;
7711 edge f;
7712 edge_iterator ei;
7713 bool none_removed = false;
7714 unsigned i;
7715 basic_block bb, dbb;
7716 bitmap_iterator bi;
7718 if (!dom_info_available_p (CDI_DOMINATORS))
7720 remove_edge (e);
7721 return;
7724 /* No updating is needed for edges to exit. */
7725 if (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
7727 if (cfgcleanup_altered_bbs)
7728 bitmap_set_bit (cfgcleanup_altered_bbs, e->src->index);
7729 remove_edge (e);
7730 return;
7733 /* First, we find the basic blocks to remove. If E->dest has a predecessor
7734 that is not dominated by E->dest, then this set is empty. Otherwise,
7735 all the basic blocks dominated by E->dest are removed.
7737 Also, to DF_IDOM we store the immediate dominators of the blocks in
7738 the dominance frontier of E (i.e., of the successors of the
7739 removed blocks, if there are any, and of E->dest otherwise). */
7740 FOR_EACH_EDGE (f, ei, e->dest->preds)
7742 if (f == e)
7743 continue;
7745 if (!dominated_by_p (CDI_DOMINATORS, f->src, e->dest))
7747 none_removed = true;
7748 break;
7752 df = BITMAP_ALLOC (NULL);
7753 df_idom = BITMAP_ALLOC (NULL);
7755 if (none_removed)
7756 bitmap_set_bit (df_idom,
7757 get_immediate_dominator (CDI_DOMINATORS, e->dest)->index);
7758 else
7760 bbs_to_remove = get_all_dominated_blocks (CDI_DOMINATORS, e->dest);
7761 FOR_EACH_VEC_ELT (bbs_to_remove, i, bb)
7763 FOR_EACH_EDGE (f, ei, bb->succs)
7765 if (f->dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
7766 bitmap_set_bit (df, f->dest->index);
7769 FOR_EACH_VEC_ELT (bbs_to_remove, i, bb)
7770 bitmap_clear_bit (df, bb->index);
7772 EXECUTE_IF_SET_IN_BITMAP (df, 0, i, bi)
7774 bb = BASIC_BLOCK_FOR_FN (cfun, i);
7775 bitmap_set_bit (df_idom,
7776 get_immediate_dominator (CDI_DOMINATORS, bb)->index);
7780 if (cfgcleanup_altered_bbs)
7782 /* Record the set of the altered basic blocks. */
7783 bitmap_set_bit (cfgcleanup_altered_bbs, e->src->index);
7784 bitmap_ior_into (cfgcleanup_altered_bbs, df);
7787 /* Remove E and the cancelled blocks. */
7788 if (none_removed)
7789 remove_edge (e);
7790 else
7792 /* Walk backwards so as to get a chance to substitute all
7793 released DEFs into debug stmts. See
7794 eliminate_unnecessary_stmts() in tree-ssa-dce.c for more
7795 details. */
7796 for (i = bbs_to_remove.length (); i-- > 0; )
7797 delete_basic_block (bbs_to_remove[i]);
7800 /* Update the dominance information. The immediate dominator may change only
7801 for blocks whose immediate dominator belongs to DF_IDOM:
7803 Suppose that idom(X) = Y before removal of E and idom(X) != Y after the
7804 removal. Let Z the arbitrary block such that idom(Z) = Y and
7805 Z dominates X after the removal. Before removal, there exists a path P
7806 from Y to X that avoids Z. Let F be the last edge on P that is
7807 removed, and let W = F->dest. Before removal, idom(W) = Y (since Y
7808 dominates W, and because of P, Z does not dominate W), and W belongs to
7809 the dominance frontier of E. Therefore, Y belongs to DF_IDOM. */
7810 EXECUTE_IF_SET_IN_BITMAP (df_idom, 0, i, bi)
7812 bb = BASIC_BLOCK_FOR_FN (cfun, i);
7813 for (dbb = first_dom_son (CDI_DOMINATORS, bb);
7814 dbb;
7815 dbb = next_dom_son (CDI_DOMINATORS, dbb))
7816 bbs_to_fix_dom.safe_push (dbb);
7819 iterate_fix_dominators (CDI_DOMINATORS, bbs_to_fix_dom, true);
7821 BITMAP_FREE (df);
7822 BITMAP_FREE (df_idom);
7823 bbs_to_remove.release ();
7824 bbs_to_fix_dom.release ();
7827 /* Purge dead EH edges from basic block BB. */
7829 bool
7830 gimple_purge_dead_eh_edges (basic_block bb)
7832 bool changed = false;
7833 edge e;
7834 edge_iterator ei;
7835 gimple stmt = last_stmt (bb);
7837 if (stmt && stmt_can_throw_internal (stmt))
7838 return false;
7840 for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
7842 if (e->flags & EDGE_EH)
7844 remove_edge_and_dominated_blocks (e);
7845 changed = true;
7847 else
7848 ei_next (&ei);
7851 return changed;
7854 /* Purge dead EH edges from basic block listed in BLOCKS. */
7856 bool
7857 gimple_purge_all_dead_eh_edges (const_bitmap blocks)
7859 bool changed = false;
7860 unsigned i;
7861 bitmap_iterator bi;
7863 EXECUTE_IF_SET_IN_BITMAP (blocks, 0, i, bi)
7865 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, i);
7867 /* Earlier gimple_purge_dead_eh_edges could have removed
7868 this basic block already. */
7869 gcc_assert (bb || changed);
7870 if (bb != NULL)
7871 changed |= gimple_purge_dead_eh_edges (bb);
7874 return changed;
7877 /* Purge dead abnormal call edges from basic block BB. */
7879 bool
7880 gimple_purge_dead_abnormal_call_edges (basic_block bb)
7882 bool changed = false;
7883 edge e;
7884 edge_iterator ei;
7885 gimple stmt = last_stmt (bb);
7887 if (!cfun->has_nonlocal_label
7888 && !cfun->calls_setjmp)
7889 return false;
7891 if (stmt && stmt_can_make_abnormal_goto (stmt))
7892 return false;
7894 for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
7896 if (e->flags & EDGE_ABNORMAL)
7898 if (e->flags & EDGE_FALLTHRU)
7899 e->flags &= ~EDGE_ABNORMAL;
7900 else
7901 remove_edge_and_dominated_blocks (e);
7902 changed = true;
7904 else
7905 ei_next (&ei);
7908 return changed;
7911 /* Purge dead abnormal call edges from basic block listed in BLOCKS. */
7913 bool
7914 gimple_purge_all_dead_abnormal_call_edges (const_bitmap blocks)
7916 bool changed = false;
7917 unsigned i;
7918 bitmap_iterator bi;
7920 EXECUTE_IF_SET_IN_BITMAP (blocks, 0, i, bi)
7922 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, i);
7924 /* Earlier gimple_purge_dead_abnormal_call_edges could have removed
7925 this basic block already. */
7926 gcc_assert (bb || changed);
7927 if (bb != NULL)
7928 changed |= gimple_purge_dead_abnormal_call_edges (bb);
7931 return changed;
7934 /* This function is called whenever a new edge is created or
7935 redirected. */
7937 static void
7938 gimple_execute_on_growing_pred (edge e)
7940 basic_block bb = e->dest;
7942 if (!gimple_seq_empty_p (phi_nodes (bb)))
7943 reserve_phi_args_for_new_edge (bb);
7946 /* This function is called immediately before edge E is removed from
7947 the edge vector E->dest->preds. */
7949 static void
7950 gimple_execute_on_shrinking_pred (edge e)
7952 if (!gimple_seq_empty_p (phi_nodes (e->dest)))
7953 remove_phi_args (e);
7956 /*---------------------------------------------------------------------------
7957 Helper functions for Loop versioning
7958 ---------------------------------------------------------------------------*/
7960 /* Adjust phi nodes for 'first' basic block. 'second' basic block is a copy
7961 of 'first'. Both of them are dominated by 'new_head' basic block. When
7962 'new_head' was created by 'second's incoming edge it received phi arguments
7963 on the edge by split_edge(). Later, additional edge 'e' was created to
7964 connect 'new_head' and 'first'. Now this routine adds phi args on this
7965 additional edge 'e' that new_head to second edge received as part of edge
7966 splitting. */
7968 static void
7969 gimple_lv_adjust_loop_header_phi (basic_block first, basic_block second,
7970 basic_block new_head, edge e)
7972 gimple phi1, phi2;
7973 gimple_stmt_iterator psi1, psi2;
7974 tree def;
7975 edge e2 = find_edge (new_head, second);
7977 /* Because NEW_HEAD has been created by splitting SECOND's incoming
7978 edge, we should always have an edge from NEW_HEAD to SECOND. */
7979 gcc_assert (e2 != NULL);
7981 /* Browse all 'second' basic block phi nodes and add phi args to
7982 edge 'e' for 'first' head. PHI args are always in correct order. */
7984 for (psi2 = gsi_start_phis (second),
7985 psi1 = gsi_start_phis (first);
7986 !gsi_end_p (psi2) && !gsi_end_p (psi1);
7987 gsi_next (&psi2), gsi_next (&psi1))
7989 phi1 = gsi_stmt (psi1);
7990 phi2 = gsi_stmt (psi2);
7991 def = PHI_ARG_DEF (phi2, e2->dest_idx);
7992 add_phi_arg (phi1, def, e, gimple_phi_arg_location_from_edge (phi2, e2));
7997 /* Adds a if else statement to COND_BB with condition COND_EXPR.
7998 SECOND_HEAD is the destination of the THEN and FIRST_HEAD is
7999 the destination of the ELSE part. */
8001 static void
8002 gimple_lv_add_condition_to_bb (basic_block first_head ATTRIBUTE_UNUSED,
8003 basic_block second_head ATTRIBUTE_UNUSED,
8004 basic_block cond_bb, void *cond_e)
8006 gimple_stmt_iterator gsi;
8007 gimple new_cond_expr;
8008 tree cond_expr = (tree) cond_e;
8009 edge e0;
8011 /* Build new conditional expr */
8012 new_cond_expr = gimple_build_cond_from_tree (cond_expr,
8013 NULL_TREE, NULL_TREE);
8015 /* Add new cond in cond_bb. */
8016 gsi = gsi_last_bb (cond_bb);
8017 gsi_insert_after (&gsi, new_cond_expr, GSI_NEW_STMT);
8019 /* Adjust edges appropriately to connect new head with first head
8020 as well as second head. */
8021 e0 = single_succ_edge (cond_bb);
8022 e0->flags &= ~EDGE_FALLTHRU;
8023 e0->flags |= EDGE_FALSE_VALUE;
8027 /* Do book-keeping of basic block BB for the profile consistency checker.
8028 If AFTER_PASS is 0, do pre-pass accounting, or if AFTER_PASS is 1
8029 then do post-pass accounting. Store the counting in RECORD. */
8030 static void
8031 gimple_account_profile_record (basic_block bb, int after_pass,
8032 struct profile_record *record)
8034 gimple_stmt_iterator i;
8035 for (i = gsi_start_bb (bb); !gsi_end_p (i); gsi_next (&i))
8037 record->size[after_pass]
8038 += estimate_num_insns (gsi_stmt (i), &eni_size_weights);
8039 if (profile_status_for_fn (cfun) == PROFILE_READ)
8040 record->time[after_pass]
8041 += estimate_num_insns (gsi_stmt (i),
8042 &eni_time_weights) * bb->count;
8043 else if (profile_status_for_fn (cfun) == PROFILE_GUESSED)
8044 record->time[after_pass]
8045 += estimate_num_insns (gsi_stmt (i),
8046 &eni_time_weights) * bb->frequency;
8050 struct cfg_hooks gimple_cfg_hooks = {
8051 "gimple",
8052 gimple_verify_flow_info,
8053 gimple_dump_bb, /* dump_bb */
8054 gimple_dump_bb_for_graph, /* dump_bb_for_graph */
8055 create_bb, /* create_basic_block */
8056 gimple_redirect_edge_and_branch, /* redirect_edge_and_branch */
8057 gimple_redirect_edge_and_branch_force, /* redirect_edge_and_branch_force */
8058 gimple_can_remove_branch_p, /* can_remove_branch_p */
8059 remove_bb, /* delete_basic_block */
8060 gimple_split_block, /* split_block */
8061 gimple_move_block_after, /* move_block_after */
8062 gimple_can_merge_blocks_p, /* can_merge_blocks_p */
8063 gimple_merge_blocks, /* merge_blocks */
8064 gimple_predict_edge, /* predict_edge */
8065 gimple_predicted_by_p, /* predicted_by_p */
8066 gimple_can_duplicate_bb_p, /* can_duplicate_block_p */
8067 gimple_duplicate_bb, /* duplicate_block */
8068 gimple_split_edge, /* split_edge */
8069 gimple_make_forwarder_block, /* make_forward_block */
8070 NULL, /* tidy_fallthru_edge */
8071 NULL, /* force_nonfallthru */
8072 gimple_block_ends_with_call_p,/* block_ends_with_call_p */
8073 gimple_block_ends_with_condjump_p, /* block_ends_with_condjump_p */
8074 gimple_flow_call_edges_add, /* flow_call_edges_add */
8075 gimple_execute_on_growing_pred, /* execute_on_growing_pred */
8076 gimple_execute_on_shrinking_pred, /* execute_on_shrinking_pred */
8077 gimple_duplicate_loop_to_header_edge, /* duplicate loop for trees */
8078 gimple_lv_add_condition_to_bb, /* lv_add_condition_to_bb */
8079 gimple_lv_adjust_loop_header_phi, /* lv_adjust_loop_header_phi*/
8080 extract_true_false_edges_from_block, /* extract_cond_bb_edges */
8081 flush_pending_stmts, /* flush_pending_stmts */
8082 gimple_empty_block_p, /* block_empty_p */
8083 gimple_split_block_before_cond_jump, /* split_block_before_cond_jump */
8084 gimple_account_profile_record,
8088 /* Split all critical edges. */
8090 unsigned int
8091 split_critical_edges (void)
8093 basic_block bb;
8094 edge e;
8095 edge_iterator ei;
8097 /* split_edge can redirect edges out of SWITCH_EXPRs, which can get
8098 expensive. So we want to enable recording of edge to CASE_LABEL_EXPR
8099 mappings around the calls to split_edge. */
8100 start_recording_case_labels ();
8101 FOR_ALL_BB_FN (bb, cfun)
8103 FOR_EACH_EDGE (e, ei, bb->succs)
8105 if (EDGE_CRITICAL_P (e) && !(e->flags & EDGE_ABNORMAL))
8106 split_edge (e);
8107 /* PRE inserts statements to edges and expects that
8108 since split_critical_edges was done beforehand, committing edge
8109 insertions will not split more edges. In addition to critical
8110 edges we must split edges that have multiple successors and
8111 end by control flow statements, such as RESX.
8112 Go ahead and split them too. This matches the logic in
8113 gimple_find_edge_insert_loc. */
8114 else if ((!single_pred_p (e->dest)
8115 || !gimple_seq_empty_p (phi_nodes (e->dest))
8116 || e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
8117 && e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun)
8118 && !(e->flags & EDGE_ABNORMAL))
8120 gimple_stmt_iterator gsi;
8122 gsi = gsi_last_bb (e->src);
8123 if (!gsi_end_p (gsi)
8124 && stmt_ends_bb_p (gsi_stmt (gsi))
8125 && (gimple_code (gsi_stmt (gsi)) != GIMPLE_RETURN
8126 && !gimple_call_builtin_p (gsi_stmt (gsi),
8127 BUILT_IN_RETURN)))
8128 split_edge (e);
8132 end_recording_case_labels ();
8133 return 0;
8136 namespace {
8138 const pass_data pass_data_split_crit_edges =
8140 GIMPLE_PASS, /* type */
8141 "crited", /* name */
8142 OPTGROUP_NONE, /* optinfo_flags */
8143 TV_TREE_SPLIT_EDGES, /* tv_id */
8144 PROP_cfg, /* properties_required */
8145 PROP_no_crit_edges, /* properties_provided */
8146 0, /* properties_destroyed */
8147 0, /* todo_flags_start */
8148 0, /* todo_flags_finish */
8151 class pass_split_crit_edges : public gimple_opt_pass
8153 public:
8154 pass_split_crit_edges (gcc::context *ctxt)
8155 : gimple_opt_pass (pass_data_split_crit_edges, ctxt)
8158 /* opt_pass methods: */
8159 virtual unsigned int execute (function *) { return split_critical_edges (); }
8161 opt_pass * clone () { return new pass_split_crit_edges (m_ctxt); }
8162 }; // class pass_split_crit_edges
8164 } // anon namespace
8166 gimple_opt_pass *
8167 make_pass_split_crit_edges (gcc::context *ctxt)
8169 return new pass_split_crit_edges (ctxt);
8173 /* Build a ternary operation and gimplify it. Emit code before GSI.
8174 Return the gimple_val holding the result. */
8176 tree
8177 gimplify_build3 (gimple_stmt_iterator *gsi, enum tree_code code,
8178 tree type, tree a, tree b, tree c)
8180 tree ret;
8181 location_t loc = gimple_location (gsi_stmt (*gsi));
8183 ret = fold_build3_loc (loc, code, type, a, b, c);
8184 STRIP_NOPS (ret);
8186 return force_gimple_operand_gsi (gsi, ret, true, NULL, true,
8187 GSI_SAME_STMT);
8190 /* Build a binary operation and gimplify it. Emit code before GSI.
8191 Return the gimple_val holding the result. */
8193 tree
8194 gimplify_build2 (gimple_stmt_iterator *gsi, enum tree_code code,
8195 tree type, tree a, tree b)
8197 tree ret;
8199 ret = fold_build2_loc (gimple_location (gsi_stmt (*gsi)), code, type, a, b);
8200 STRIP_NOPS (ret);
8202 return force_gimple_operand_gsi (gsi, ret, true, NULL, true,
8203 GSI_SAME_STMT);
8206 /* Build a unary operation and gimplify it. Emit code before GSI.
8207 Return the gimple_val holding the result. */
8209 tree
8210 gimplify_build1 (gimple_stmt_iterator *gsi, enum tree_code code, tree type,
8211 tree a)
8213 tree ret;
8215 ret = fold_build1_loc (gimple_location (gsi_stmt (*gsi)), code, type, a);
8216 STRIP_NOPS (ret);
8218 return force_gimple_operand_gsi (gsi, ret, true, NULL, true,
8219 GSI_SAME_STMT);
8224 /* Given a basic block B which ends with a conditional and has
8225 precisely two successors, determine which of the edges is taken if
8226 the conditional is true and which is taken if the conditional is
8227 false. Set TRUE_EDGE and FALSE_EDGE appropriately. */
8229 void
8230 extract_true_false_edges_from_block (basic_block b,
8231 edge *true_edge,
8232 edge *false_edge)
8234 edge e = EDGE_SUCC (b, 0);
8236 if (e->flags & EDGE_TRUE_VALUE)
8238 *true_edge = e;
8239 *false_edge = EDGE_SUCC (b, 1);
8241 else
8243 *false_edge = e;
8244 *true_edge = EDGE_SUCC (b, 1);
8248 /* Emit return warnings. */
8250 namespace {
8252 const pass_data pass_data_warn_function_return =
8254 GIMPLE_PASS, /* type */
8255 "*warn_function_return", /* name */
8256 OPTGROUP_NONE, /* optinfo_flags */
8257 TV_NONE, /* tv_id */
8258 PROP_cfg, /* properties_required */
8259 0, /* properties_provided */
8260 0, /* properties_destroyed */
8261 0, /* todo_flags_start */
8262 0, /* todo_flags_finish */
8265 class pass_warn_function_return : public gimple_opt_pass
8267 public:
8268 pass_warn_function_return (gcc::context *ctxt)
8269 : gimple_opt_pass (pass_data_warn_function_return, ctxt)
8272 /* opt_pass methods: */
8273 virtual unsigned int execute (function *);
8275 }; // class pass_warn_function_return
8277 unsigned int
8278 pass_warn_function_return::execute (function *fun)
8280 source_location location;
8281 gimple last;
8282 edge e;
8283 edge_iterator ei;
8285 if (!targetm.warn_func_return (fun->decl))
8286 return 0;
8288 /* If we have a path to EXIT, then we do return. */
8289 if (TREE_THIS_VOLATILE (fun->decl)
8290 && EDGE_COUNT (EXIT_BLOCK_PTR_FOR_FN (fun)->preds) > 0)
8292 location = UNKNOWN_LOCATION;
8293 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (fun)->preds)
8295 last = last_stmt (e->src);
8296 if ((gimple_code (last) == GIMPLE_RETURN
8297 || gimple_call_builtin_p (last, BUILT_IN_RETURN))
8298 && (location = gimple_location (last)) != UNKNOWN_LOCATION)
8299 break;
8301 if (location == UNKNOWN_LOCATION)
8302 location = cfun->function_end_locus;
8303 warning_at (location, 0, "%<noreturn%> function does return");
8306 /* If we see "return;" in some basic block, then we do reach the end
8307 without returning a value. */
8308 else if (warn_return_type
8309 && !TREE_NO_WARNING (fun->decl)
8310 && EDGE_COUNT (EXIT_BLOCK_PTR_FOR_FN (fun)->preds) > 0
8311 && !VOID_TYPE_P (TREE_TYPE (TREE_TYPE (fun->decl))))
8313 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (fun)->preds)
8315 gimple last = last_stmt (e->src);
8316 if (gimple_code (last) == GIMPLE_RETURN
8317 && gimple_return_retval (last) == NULL
8318 && !gimple_no_warning_p (last))
8320 location = gimple_location (last);
8321 if (location == UNKNOWN_LOCATION)
8322 location = fun->function_end_locus;
8323 warning_at (location, OPT_Wreturn_type, "control reaches end of non-void function");
8324 TREE_NO_WARNING (fun->decl) = 1;
8325 break;
8329 return 0;
8332 } // anon namespace
8334 gimple_opt_pass *
8335 make_pass_warn_function_return (gcc::context *ctxt)
8337 return new pass_warn_function_return (ctxt);
8340 /* Walk a gimplified function and warn for functions whose return value is
8341 ignored and attribute((warn_unused_result)) is set. This is done before
8342 inlining, so we don't have to worry about that. */
8344 static void
8345 do_warn_unused_result (gimple_seq seq)
8347 tree fdecl, ftype;
8348 gimple_stmt_iterator i;
8350 for (i = gsi_start (seq); !gsi_end_p (i); gsi_next (&i))
8352 gimple g = gsi_stmt (i);
8354 switch (gimple_code (g))
8356 case GIMPLE_BIND:
8357 do_warn_unused_result (gimple_bind_body (g));
8358 break;
8359 case GIMPLE_TRY:
8360 do_warn_unused_result (gimple_try_eval (g));
8361 do_warn_unused_result (gimple_try_cleanup (g));
8362 break;
8363 case GIMPLE_CATCH:
8364 do_warn_unused_result (gimple_catch_handler (g));
8365 break;
8366 case GIMPLE_EH_FILTER:
8367 do_warn_unused_result (gimple_eh_filter_failure (g));
8368 break;
8370 case GIMPLE_CALL:
8371 if (gimple_call_lhs (g))
8372 break;
8373 if (gimple_call_internal_p (g))
8374 break;
8376 /* This is a naked call, as opposed to a GIMPLE_CALL with an
8377 LHS. All calls whose value is ignored should be
8378 represented like this. Look for the attribute. */
8379 fdecl = gimple_call_fndecl (g);
8380 ftype = gimple_call_fntype (g);
8382 if (lookup_attribute ("warn_unused_result", TYPE_ATTRIBUTES (ftype)))
8384 location_t loc = gimple_location (g);
8386 if (fdecl)
8387 warning_at (loc, OPT_Wunused_result,
8388 "ignoring return value of %qD, "
8389 "declared with attribute warn_unused_result",
8390 fdecl);
8391 else
8392 warning_at (loc, OPT_Wunused_result,
8393 "ignoring return value of function "
8394 "declared with attribute warn_unused_result");
8396 break;
8398 default:
8399 /* Not a container, not a call, or a call whose value is used. */
8400 break;
8405 namespace {
8407 const pass_data pass_data_warn_unused_result =
8409 GIMPLE_PASS, /* type */
8410 "*warn_unused_result", /* name */
8411 OPTGROUP_NONE, /* optinfo_flags */
8412 TV_NONE, /* tv_id */
8413 PROP_gimple_any, /* properties_required */
8414 0, /* properties_provided */
8415 0, /* properties_destroyed */
8416 0, /* todo_flags_start */
8417 0, /* todo_flags_finish */
8420 class pass_warn_unused_result : public gimple_opt_pass
8422 public:
8423 pass_warn_unused_result (gcc::context *ctxt)
8424 : gimple_opt_pass (pass_data_warn_unused_result, ctxt)
8427 /* opt_pass methods: */
8428 virtual bool gate (function *) { return flag_warn_unused_result; }
8429 virtual unsigned int execute (function *)
8431 do_warn_unused_result (gimple_body (current_function_decl));
8432 return 0;
8435 }; // class pass_warn_unused_result
8437 } // anon namespace
8439 gimple_opt_pass *
8440 make_pass_warn_unused_result (gcc::context *ctxt)
8442 return new pass_warn_unused_result (ctxt);
8445 /* IPA passes, compilation of earlier functions or inlining
8446 might have changed some properties, such as marked functions nothrow,
8447 pure, const or noreturn.
8448 Remove redundant edges and basic blocks, and create new ones if necessary.
8450 This pass can't be executed as stand alone pass from pass manager, because
8451 in between inlining and this fixup the verify_flow_info would fail. */
8453 unsigned int
8454 execute_fixup_cfg (void)
8456 basic_block bb;
8457 gimple_stmt_iterator gsi;
8458 int todo = 0;
8459 gcov_type count_scale;
8460 edge e;
8461 edge_iterator ei;
8463 count_scale
8464 = GCOV_COMPUTE_SCALE (cgraph_node::get (current_function_decl)->count,
8465 ENTRY_BLOCK_PTR_FOR_FN (cfun)->count);
8467 ENTRY_BLOCK_PTR_FOR_FN (cfun)->count =
8468 cgraph_node::get (current_function_decl)->count;
8469 EXIT_BLOCK_PTR_FOR_FN (cfun)->count =
8470 apply_scale (EXIT_BLOCK_PTR_FOR_FN (cfun)->count,
8471 count_scale);
8473 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR_FOR_FN (cfun)->succs)
8474 e->count = apply_scale (e->count, count_scale);
8476 FOR_EACH_BB_FN (bb, cfun)
8478 bb->count = apply_scale (bb->count, count_scale);
8479 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi);)
8481 gimple stmt = gsi_stmt (gsi);
8482 tree decl = is_gimple_call (stmt)
8483 ? gimple_call_fndecl (stmt)
8484 : NULL;
8485 if (decl)
8487 int flags = gimple_call_flags (stmt);
8488 if (flags & (ECF_CONST | ECF_PURE | ECF_LOOPING_CONST_OR_PURE))
8490 if (gimple_purge_dead_abnormal_call_edges (bb))
8491 todo |= TODO_cleanup_cfg;
8493 if (gimple_in_ssa_p (cfun))
8495 todo |= TODO_update_ssa | TODO_cleanup_cfg;
8496 update_stmt (stmt);
8500 if (flags & ECF_NORETURN
8501 && fixup_noreturn_call (stmt))
8502 todo |= TODO_cleanup_cfg;
8505 /* Remove stores to variables we marked write-only.
8506 Keep access when store has side effect, i.e. in case when source
8507 is volatile. */
8508 if (gimple_store_p (stmt)
8509 && !gimple_has_side_effects (stmt))
8511 tree lhs = get_base_address (gimple_get_lhs (stmt));
8513 if (TREE_CODE (lhs) == VAR_DECL
8514 && (TREE_STATIC (lhs) || DECL_EXTERNAL (lhs))
8515 && varpool_node::get (lhs)->writeonly)
8517 unlink_stmt_vdef (stmt);
8518 gsi_remove (&gsi, true);
8519 release_defs (stmt);
8520 todo |= TODO_update_ssa | TODO_cleanup_cfg;
8521 continue;
8524 /* For calls we can simply remove LHS when it is known
8525 to be write-only. */
8526 if (is_gimple_call (stmt)
8527 && gimple_get_lhs (stmt))
8529 tree lhs = get_base_address (gimple_get_lhs (stmt));
8531 if (TREE_CODE (lhs) == VAR_DECL
8532 && (TREE_STATIC (lhs) || DECL_EXTERNAL (lhs))
8533 && varpool_node::get (lhs)->writeonly)
8535 gimple_call_set_lhs (stmt, NULL);
8536 update_stmt (stmt);
8537 todo |= TODO_update_ssa | TODO_cleanup_cfg;
8541 if (maybe_clean_eh_stmt (stmt)
8542 && gimple_purge_dead_eh_edges (bb))
8543 todo |= TODO_cleanup_cfg;
8544 gsi_next (&gsi);
8547 FOR_EACH_EDGE (e, ei, bb->succs)
8548 e->count = apply_scale (e->count, count_scale);
8550 /* If we have a basic block with no successors that does not
8551 end with a control statement or a noreturn call end it with
8552 a call to __builtin_unreachable. This situation can occur
8553 when inlining a noreturn call that does in fact return. */
8554 if (EDGE_COUNT (bb->succs) == 0)
8556 gimple stmt = last_stmt (bb);
8557 if (!stmt
8558 || (!is_ctrl_stmt (stmt)
8559 && (!is_gimple_call (stmt)
8560 || (gimple_call_flags (stmt) & ECF_NORETURN) == 0)))
8562 if (stmt && is_gimple_call (stmt))
8563 gimple_call_set_ctrl_altering (stmt, false);
8564 stmt = gimple_build_call
8565 (builtin_decl_implicit (BUILT_IN_UNREACHABLE), 0);
8566 gimple_stmt_iterator gsi = gsi_last_bb (bb);
8567 gsi_insert_after (&gsi, stmt, GSI_NEW_STMT);
8571 if (count_scale != REG_BR_PROB_BASE)
8572 compute_function_frequency ();
8574 /* Dump a textual representation of the flowgraph. */
8575 if (dump_file)
8576 gimple_dump_cfg (dump_file, dump_flags);
8578 if (current_loops
8579 && (todo & TODO_cleanup_cfg))
8580 loops_state_set (LOOPS_NEED_FIXUP);
8582 return todo;
8585 namespace {
8587 const pass_data pass_data_fixup_cfg =
8589 GIMPLE_PASS, /* type */
8590 "*free_cfg_annotations", /* name */
8591 OPTGROUP_NONE, /* optinfo_flags */
8592 TV_NONE, /* tv_id */
8593 PROP_cfg, /* properties_required */
8594 0, /* properties_provided */
8595 0, /* properties_destroyed */
8596 0, /* todo_flags_start */
8597 0, /* todo_flags_finish */
8600 class pass_fixup_cfg : public gimple_opt_pass
8602 public:
8603 pass_fixup_cfg (gcc::context *ctxt)
8604 : gimple_opt_pass (pass_data_fixup_cfg, ctxt)
8607 /* opt_pass methods: */
8608 opt_pass * clone () { return new pass_fixup_cfg (m_ctxt); }
8609 virtual unsigned int execute (function *) { return execute_fixup_cfg (); }
8611 }; // class pass_fixup_cfg
8613 } // anon namespace
8615 gimple_opt_pass *
8616 make_pass_fixup_cfg (gcc::context *ctxt)
8618 return new pass_fixup_cfg (ctxt);
8621 /* Garbage collection support for edge_def. */
8623 extern void gt_ggc_mx (tree&);
8624 extern void gt_ggc_mx (gimple&);
8625 extern void gt_ggc_mx (rtx&);
8626 extern void gt_ggc_mx (basic_block&);
8628 static void
8629 gt_ggc_mx (rtx_insn *& x)
8631 if (x)
8632 gt_ggc_mx_rtx_def ((void *) x);
8635 void
8636 gt_ggc_mx (edge_def *e)
8638 tree block = LOCATION_BLOCK (e->goto_locus);
8639 gt_ggc_mx (e->src);
8640 gt_ggc_mx (e->dest);
8641 if (current_ir_type () == IR_GIMPLE)
8642 gt_ggc_mx (e->insns.g);
8643 else
8644 gt_ggc_mx (e->insns.r);
8645 gt_ggc_mx (block);
8648 /* PCH support for edge_def. */
8650 extern void gt_pch_nx (tree&);
8651 extern void gt_pch_nx (gimple&);
8652 extern void gt_pch_nx (rtx&);
8653 extern void gt_pch_nx (basic_block&);
8655 static void
8656 gt_pch_nx (rtx_insn *& x)
8658 if (x)
8659 gt_pch_nx_rtx_def ((void *) x);
8662 void
8663 gt_pch_nx (edge_def *e)
8665 tree block = LOCATION_BLOCK (e->goto_locus);
8666 gt_pch_nx (e->src);
8667 gt_pch_nx (e->dest);
8668 if (current_ir_type () == IR_GIMPLE)
8669 gt_pch_nx (e->insns.g);
8670 else
8671 gt_pch_nx (e->insns.r);
8672 gt_pch_nx (block);
8675 void
8676 gt_pch_nx (edge_def *e, gt_pointer_operator op, void *cookie)
8678 tree block = LOCATION_BLOCK (e->goto_locus);
8679 op (&(e->src), cookie);
8680 op (&(e->dest), cookie);
8681 if (current_ir_type () == IR_GIMPLE)
8682 op (&(e->insns.g), cookie);
8683 else
8684 op (&(e->insns.r), cookie);
8685 op (&(block), cookie);