IPA ICF, part 4/5
[official-gcc.git] / gcc / lower-subreg.c
bloba8ea10f70997b618bed17729f4e1b99394008ead
1 /* Decompose multiword subregs.
2 Copyright (C) 2007-2014 Free Software Foundation, Inc.
3 Contributed by Richard Henderson <rth@redhat.com>
4 Ian Lance Taylor <iant@google.com>
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "machmode.h"
26 #include "tm.h"
27 #include "tree.h"
28 #include "rtl.h"
29 #include "tm_p.h"
30 #include "flags.h"
31 #include "insn-config.h"
32 #include "obstack.h"
33 #include "basic-block.h"
34 #include "recog.h"
35 #include "bitmap.h"
36 #include "dce.h"
37 #include "expr.h"
38 #include "except.h"
39 #include "regs.h"
40 #include "tree-pass.h"
41 #include "df.h"
42 #include "lower-subreg.h"
43 #include "rtl-iter.h"
45 #ifdef STACK_GROWS_DOWNWARD
46 # undef STACK_GROWS_DOWNWARD
47 # define STACK_GROWS_DOWNWARD 1
48 #else
49 # define STACK_GROWS_DOWNWARD 0
50 #endif
53 /* Decompose multi-word pseudo-registers into individual
54 pseudo-registers when possible and profitable. This is possible
55 when all the uses of a multi-word register are via SUBREG, or are
56 copies of the register to another location. Breaking apart the
57 register permits more CSE and permits better register allocation.
58 This is profitable if the machine does not have move instructions
59 to do this.
61 This pass only splits moves with modes that are wider than
62 word_mode and ASHIFTs, LSHIFTRTs, ASHIFTRTs and ZERO_EXTENDs with
63 integer modes that are twice the width of word_mode. The latter
64 could be generalized if there was a need to do this, but the trend in
65 architectures is to not need this.
67 There are two useful preprocessor defines for use by maintainers:
69 #define LOG_COSTS 1
71 if you wish to see the actual cost estimates that are being used
72 for each mode wider than word mode and the cost estimates for zero
73 extension and the shifts. This can be useful when port maintainers
74 are tuning insn rtx costs.
76 #define FORCE_LOWERING 1
78 if you wish to test the pass with all the transformation forced on.
79 This can be useful for finding bugs in the transformations. */
81 #define LOG_COSTS 0
82 #define FORCE_LOWERING 0
84 /* Bit N in this bitmap is set if regno N is used in a context in
85 which we can decompose it. */
86 static bitmap decomposable_context;
88 /* Bit N in this bitmap is set if regno N is used in a context in
89 which it can not be decomposed. */
90 static bitmap non_decomposable_context;
92 /* Bit N in this bitmap is set if regno N is used in a subreg
93 which changes the mode but not the size. This typically happens
94 when the register accessed as a floating-point value; we want to
95 avoid generating accesses to its subwords in integer modes. */
96 static bitmap subreg_context;
98 /* Bit N in the bitmap in element M of this array is set if there is a
99 copy from reg M to reg N. */
100 static vec<bitmap> reg_copy_graph;
102 struct target_lower_subreg default_target_lower_subreg;
103 #if SWITCHABLE_TARGET
104 struct target_lower_subreg *this_target_lower_subreg
105 = &default_target_lower_subreg;
106 #endif
108 #define twice_word_mode \
109 this_target_lower_subreg->x_twice_word_mode
110 #define choices \
111 this_target_lower_subreg->x_choices
113 /* RTXes used while computing costs. */
114 struct cost_rtxes {
115 /* Source and target registers. */
116 rtx source;
117 rtx target;
119 /* A twice_word_mode ZERO_EXTEND of SOURCE. */
120 rtx zext;
122 /* A shift of SOURCE. */
123 rtx shift;
125 /* A SET of TARGET. */
126 rtx set;
129 /* Return the cost of a CODE shift in mode MODE by OP1 bits, using the
130 rtxes in RTXES. SPEED_P selects between the speed and size cost. */
132 static int
133 shift_cost (bool speed_p, struct cost_rtxes *rtxes, enum rtx_code code,
134 enum machine_mode mode, int op1)
136 PUT_CODE (rtxes->shift, code);
137 PUT_MODE (rtxes->shift, mode);
138 PUT_MODE (rtxes->source, mode);
139 XEXP (rtxes->shift, 1) = GEN_INT (op1);
140 return set_src_cost (rtxes->shift, speed_p);
143 /* For each X in the range [0, BITS_PER_WORD), set SPLITTING[X]
144 to true if it is profitable to split a double-word CODE shift
145 of X + BITS_PER_WORD bits. SPEED_P says whether we are testing
146 for speed or size profitability.
148 Use the rtxes in RTXES to calculate costs. WORD_MOVE_ZERO_COST is
149 the cost of moving zero into a word-mode register. WORD_MOVE_COST
150 is the cost of moving between word registers. */
152 static void
153 compute_splitting_shift (bool speed_p, struct cost_rtxes *rtxes,
154 bool *splitting, enum rtx_code code,
155 int word_move_zero_cost, int word_move_cost)
157 int wide_cost, narrow_cost, upper_cost, i;
159 for (i = 0; i < BITS_PER_WORD; i++)
161 wide_cost = shift_cost (speed_p, rtxes, code, twice_word_mode,
162 i + BITS_PER_WORD);
163 if (i == 0)
164 narrow_cost = word_move_cost;
165 else
166 narrow_cost = shift_cost (speed_p, rtxes, code, word_mode, i);
168 if (code != ASHIFTRT)
169 upper_cost = word_move_zero_cost;
170 else if (i == BITS_PER_WORD - 1)
171 upper_cost = word_move_cost;
172 else
173 upper_cost = shift_cost (speed_p, rtxes, code, word_mode,
174 BITS_PER_WORD - 1);
176 if (LOG_COSTS)
177 fprintf (stderr, "%s %s by %d: original cost %d, split cost %d + %d\n",
178 GET_MODE_NAME (twice_word_mode), GET_RTX_NAME (code),
179 i + BITS_PER_WORD, wide_cost, narrow_cost, upper_cost);
181 if (FORCE_LOWERING || wide_cost >= narrow_cost + upper_cost)
182 splitting[i] = true;
186 /* Compute what we should do when optimizing for speed or size; SPEED_P
187 selects which. Use RTXES for computing costs. */
189 static void
190 compute_costs (bool speed_p, struct cost_rtxes *rtxes)
192 unsigned int i;
193 int word_move_zero_cost, word_move_cost;
195 PUT_MODE (rtxes->target, word_mode);
196 SET_SRC (rtxes->set) = CONST0_RTX (word_mode);
197 word_move_zero_cost = set_rtx_cost (rtxes->set, speed_p);
199 SET_SRC (rtxes->set) = rtxes->source;
200 word_move_cost = set_rtx_cost (rtxes->set, speed_p);
202 if (LOG_COSTS)
203 fprintf (stderr, "%s move: from zero cost %d, from reg cost %d\n",
204 GET_MODE_NAME (word_mode), word_move_zero_cost, word_move_cost);
206 for (i = 0; i < MAX_MACHINE_MODE; i++)
208 enum machine_mode mode = (enum machine_mode) i;
209 int factor = GET_MODE_SIZE (mode) / UNITS_PER_WORD;
210 if (factor > 1)
212 int mode_move_cost;
214 PUT_MODE (rtxes->target, mode);
215 PUT_MODE (rtxes->source, mode);
216 mode_move_cost = set_rtx_cost (rtxes->set, speed_p);
218 if (LOG_COSTS)
219 fprintf (stderr, "%s move: original cost %d, split cost %d * %d\n",
220 GET_MODE_NAME (mode), mode_move_cost,
221 word_move_cost, factor);
223 if (FORCE_LOWERING || mode_move_cost >= word_move_cost * factor)
225 choices[speed_p].move_modes_to_split[i] = true;
226 choices[speed_p].something_to_do = true;
231 /* For the moves and shifts, the only case that is checked is one
232 where the mode of the target is an integer mode twice the width
233 of the word_mode.
235 If it is not profitable to split a double word move then do not
236 even consider the shifts or the zero extension. */
237 if (choices[speed_p].move_modes_to_split[(int) twice_word_mode])
239 int zext_cost;
241 /* The only case here to check to see if moving the upper part with a
242 zero is cheaper than doing the zext itself. */
243 PUT_MODE (rtxes->source, word_mode);
244 zext_cost = set_src_cost (rtxes->zext, speed_p);
246 if (LOG_COSTS)
247 fprintf (stderr, "%s %s: original cost %d, split cost %d + %d\n",
248 GET_MODE_NAME (twice_word_mode), GET_RTX_NAME (ZERO_EXTEND),
249 zext_cost, word_move_cost, word_move_zero_cost);
251 if (FORCE_LOWERING || zext_cost >= word_move_cost + word_move_zero_cost)
252 choices[speed_p].splitting_zext = true;
254 compute_splitting_shift (speed_p, rtxes,
255 choices[speed_p].splitting_ashift, ASHIFT,
256 word_move_zero_cost, word_move_cost);
257 compute_splitting_shift (speed_p, rtxes,
258 choices[speed_p].splitting_lshiftrt, LSHIFTRT,
259 word_move_zero_cost, word_move_cost);
260 compute_splitting_shift (speed_p, rtxes,
261 choices[speed_p].splitting_ashiftrt, ASHIFTRT,
262 word_move_zero_cost, word_move_cost);
266 /* Do one-per-target initialisation. This involves determining
267 which operations on the machine are profitable. If none are found,
268 then the pass just returns when called. */
270 void
271 init_lower_subreg (void)
273 struct cost_rtxes rtxes;
275 memset (this_target_lower_subreg, 0, sizeof (*this_target_lower_subreg));
277 twice_word_mode = GET_MODE_2XWIDER_MODE (word_mode);
279 rtxes.target = gen_rtx_REG (word_mode, FIRST_PSEUDO_REGISTER);
280 rtxes.source = gen_rtx_REG (word_mode, FIRST_PSEUDO_REGISTER + 1);
281 rtxes.set = gen_rtx_SET (VOIDmode, rtxes.target, rtxes.source);
282 rtxes.zext = gen_rtx_ZERO_EXTEND (twice_word_mode, rtxes.source);
283 rtxes.shift = gen_rtx_ASHIFT (twice_word_mode, rtxes.source, const0_rtx);
285 if (LOG_COSTS)
286 fprintf (stderr, "\nSize costs\n==========\n\n");
287 compute_costs (false, &rtxes);
289 if (LOG_COSTS)
290 fprintf (stderr, "\nSpeed costs\n===========\n\n");
291 compute_costs (true, &rtxes);
294 static bool
295 simple_move_operand (rtx x)
297 if (GET_CODE (x) == SUBREG)
298 x = SUBREG_REG (x);
300 if (!OBJECT_P (x))
301 return false;
303 if (GET_CODE (x) == LABEL_REF
304 || GET_CODE (x) == SYMBOL_REF
305 || GET_CODE (x) == HIGH
306 || GET_CODE (x) == CONST)
307 return false;
309 if (MEM_P (x)
310 && (MEM_VOLATILE_P (x)
311 || mode_dependent_address_p (XEXP (x, 0), MEM_ADDR_SPACE (x))))
312 return false;
314 return true;
317 /* If INSN is a single set between two objects that we want to split,
318 return the single set. SPEED_P says whether we are optimizing
319 INSN for speed or size.
321 INSN should have been passed to recog and extract_insn before this
322 is called. */
324 static rtx
325 simple_move (rtx_insn *insn, bool speed_p)
327 rtx x;
328 rtx set;
329 enum machine_mode mode;
331 if (recog_data.n_operands != 2)
332 return NULL_RTX;
334 set = single_set (insn);
335 if (!set)
336 return NULL_RTX;
338 x = SET_DEST (set);
339 if (x != recog_data.operand[0] && x != recog_data.operand[1])
340 return NULL_RTX;
341 if (!simple_move_operand (x))
342 return NULL_RTX;
344 x = SET_SRC (set);
345 if (x != recog_data.operand[0] && x != recog_data.operand[1])
346 return NULL_RTX;
347 /* For the src we can handle ASM_OPERANDS, and it is beneficial for
348 things like x86 rdtsc which returns a DImode value. */
349 if (GET_CODE (x) != ASM_OPERANDS
350 && !simple_move_operand (x))
351 return NULL_RTX;
353 /* We try to decompose in integer modes, to avoid generating
354 inefficient code copying between integer and floating point
355 registers. That means that we can't decompose if this is a
356 non-integer mode for which there is no integer mode of the same
357 size. */
358 mode = GET_MODE (SET_DEST (set));
359 if (!SCALAR_INT_MODE_P (mode)
360 && (mode_for_size (GET_MODE_SIZE (mode) * BITS_PER_UNIT, MODE_INT, 0)
361 == BLKmode))
362 return NULL_RTX;
364 /* Reject PARTIAL_INT modes. They are used for processor specific
365 purposes and it's probably best not to tamper with them. */
366 if (GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
367 return NULL_RTX;
369 if (!choices[speed_p].move_modes_to_split[(int) mode])
370 return NULL_RTX;
372 return set;
375 /* If SET is a copy from one multi-word pseudo-register to another,
376 record that in reg_copy_graph. Return whether it is such a
377 copy. */
379 static bool
380 find_pseudo_copy (rtx set)
382 rtx dest = SET_DEST (set);
383 rtx src = SET_SRC (set);
384 unsigned int rd, rs;
385 bitmap b;
387 if (!REG_P (dest) || !REG_P (src))
388 return false;
390 rd = REGNO (dest);
391 rs = REGNO (src);
392 if (HARD_REGISTER_NUM_P (rd) || HARD_REGISTER_NUM_P (rs))
393 return false;
395 b = reg_copy_graph[rs];
396 if (b == NULL)
398 b = BITMAP_ALLOC (NULL);
399 reg_copy_graph[rs] = b;
402 bitmap_set_bit (b, rd);
404 return true;
407 /* Look through the registers in DECOMPOSABLE_CONTEXT. For each case
408 where they are copied to another register, add the register to
409 which they are copied to DECOMPOSABLE_CONTEXT. Use
410 NON_DECOMPOSABLE_CONTEXT to limit this--we don't bother to track
411 copies of registers which are in NON_DECOMPOSABLE_CONTEXT. */
413 static void
414 propagate_pseudo_copies (void)
416 bitmap queue, propagate;
418 queue = BITMAP_ALLOC (NULL);
419 propagate = BITMAP_ALLOC (NULL);
421 bitmap_copy (queue, decomposable_context);
424 bitmap_iterator iter;
425 unsigned int i;
427 bitmap_clear (propagate);
429 EXECUTE_IF_SET_IN_BITMAP (queue, 0, i, iter)
431 bitmap b = reg_copy_graph[i];
432 if (b)
433 bitmap_ior_and_compl_into (propagate, b, non_decomposable_context);
436 bitmap_and_compl (queue, propagate, decomposable_context);
437 bitmap_ior_into (decomposable_context, propagate);
439 while (!bitmap_empty_p (queue));
441 BITMAP_FREE (queue);
442 BITMAP_FREE (propagate);
445 /* A pointer to one of these values is passed to
446 find_decomposable_subregs. */
448 enum classify_move_insn
450 /* Not a simple move from one location to another. */
451 NOT_SIMPLE_MOVE,
452 /* A simple move we want to decompose. */
453 DECOMPOSABLE_SIMPLE_MOVE,
454 /* Any other simple move. */
455 SIMPLE_MOVE
458 /* If we find a SUBREG in *LOC which we could use to decompose a
459 pseudo-register, set a bit in DECOMPOSABLE_CONTEXT. If we find an
460 unadorned register which is not a simple pseudo-register copy,
461 DATA will point at the type of move, and we set a bit in
462 DECOMPOSABLE_CONTEXT or NON_DECOMPOSABLE_CONTEXT as appropriate. */
464 static void
465 find_decomposable_subregs (rtx *loc, enum classify_move_insn *pcmi)
467 subrtx_var_iterator::array_type array;
468 FOR_EACH_SUBRTX_VAR (iter, array, *loc, NONCONST)
470 rtx x = *iter;
471 if (GET_CODE (x) == SUBREG)
473 rtx inner = SUBREG_REG (x);
474 unsigned int regno, outer_size, inner_size, outer_words, inner_words;
476 if (!REG_P (inner))
477 continue;
479 regno = REGNO (inner);
480 if (HARD_REGISTER_NUM_P (regno))
482 iter.skip_subrtxes ();
483 continue;
486 outer_size = GET_MODE_SIZE (GET_MODE (x));
487 inner_size = GET_MODE_SIZE (GET_MODE (inner));
488 outer_words = (outer_size + UNITS_PER_WORD - 1) / UNITS_PER_WORD;
489 inner_words = (inner_size + UNITS_PER_WORD - 1) / UNITS_PER_WORD;
491 /* We only try to decompose single word subregs of multi-word
492 registers. When we find one, we return -1 to avoid iterating
493 over the inner register.
495 ??? This doesn't allow, e.g., DImode subregs of TImode values
496 on 32-bit targets. We would need to record the way the
497 pseudo-register was used, and only decompose if all the uses
498 were the same number and size of pieces. Hopefully this
499 doesn't happen much. */
501 if (outer_words == 1 && inner_words > 1)
503 bitmap_set_bit (decomposable_context, regno);
504 iter.skip_subrtxes ();
505 continue;
508 /* If this is a cast from one mode to another, where the modes
509 have the same size, and they are not tieable, then mark this
510 register as non-decomposable. If we decompose it we are
511 likely to mess up whatever the backend is trying to do. */
512 if (outer_words > 1
513 && outer_size == inner_size
514 && !MODES_TIEABLE_P (GET_MODE (x), GET_MODE (inner)))
516 bitmap_set_bit (non_decomposable_context, regno);
517 bitmap_set_bit (subreg_context, regno);
518 iter.skip_subrtxes ();
519 continue;
522 else if (REG_P (x))
524 unsigned int regno;
526 /* We will see an outer SUBREG before we see the inner REG, so
527 when we see a plain REG here it means a direct reference to
528 the register.
530 If this is not a simple copy from one location to another,
531 then we can not decompose this register. If this is a simple
532 copy we want to decompose, and the mode is right,
533 then we mark the register as decomposable.
534 Otherwise we don't say anything about this register --
535 it could be decomposed, but whether that would be
536 profitable depends upon how it is used elsewhere.
538 We only set bits in the bitmap for multi-word
539 pseudo-registers, since those are the only ones we care about
540 and it keeps the size of the bitmaps down. */
542 regno = REGNO (x);
543 if (!HARD_REGISTER_NUM_P (regno)
544 && GET_MODE_SIZE (GET_MODE (x)) > UNITS_PER_WORD)
546 switch (*pcmi)
548 case NOT_SIMPLE_MOVE:
549 bitmap_set_bit (non_decomposable_context, regno);
550 break;
551 case DECOMPOSABLE_SIMPLE_MOVE:
552 if (MODES_TIEABLE_P (GET_MODE (x), word_mode))
553 bitmap_set_bit (decomposable_context, regno);
554 break;
555 case SIMPLE_MOVE:
556 break;
557 default:
558 gcc_unreachable ();
562 else if (MEM_P (x))
564 enum classify_move_insn cmi_mem = NOT_SIMPLE_MOVE;
566 /* Any registers used in a MEM do not participate in a
567 SIMPLE_MOVE or DECOMPOSABLE_SIMPLE_MOVE. Do our own recursion
568 here, and return -1 to block the parent's recursion. */
569 find_decomposable_subregs (&XEXP (x, 0), &cmi_mem);
570 iter.skip_subrtxes ();
575 /* Decompose REGNO into word-sized components. We smash the REG node
576 in place. This ensures that (1) something goes wrong quickly if we
577 fail to make some replacement, and (2) the debug information inside
578 the symbol table is automatically kept up to date. */
580 static void
581 decompose_register (unsigned int regno)
583 rtx reg;
584 unsigned int words, i;
585 rtvec v;
587 reg = regno_reg_rtx[regno];
589 regno_reg_rtx[regno] = NULL_RTX;
591 words = GET_MODE_SIZE (GET_MODE (reg));
592 words = (words + UNITS_PER_WORD - 1) / UNITS_PER_WORD;
594 v = rtvec_alloc (words);
595 for (i = 0; i < words; ++i)
596 RTVEC_ELT (v, i) = gen_reg_rtx_offset (reg, word_mode, i * UNITS_PER_WORD);
598 PUT_CODE (reg, CONCATN);
599 XVEC (reg, 0) = v;
601 if (dump_file)
603 fprintf (dump_file, "; Splitting reg %u ->", regno);
604 for (i = 0; i < words; ++i)
605 fprintf (dump_file, " %u", REGNO (XVECEXP (reg, 0, i)));
606 fputc ('\n', dump_file);
610 /* Get a SUBREG of a CONCATN. */
612 static rtx
613 simplify_subreg_concatn (enum machine_mode outermode, rtx op,
614 unsigned int byte)
616 unsigned int inner_size;
617 enum machine_mode innermode, partmode;
618 rtx part;
619 unsigned int final_offset;
621 gcc_assert (GET_CODE (op) == CONCATN);
622 gcc_assert (byte % GET_MODE_SIZE (outermode) == 0);
624 innermode = GET_MODE (op);
625 gcc_assert (byte < GET_MODE_SIZE (innermode));
626 gcc_assert (GET_MODE_SIZE (outermode) <= GET_MODE_SIZE (innermode));
628 inner_size = GET_MODE_SIZE (innermode) / XVECLEN (op, 0);
629 part = XVECEXP (op, 0, byte / inner_size);
630 partmode = GET_MODE (part);
632 /* VECTOR_CSTs in debug expressions are expanded into CONCATN instead of
633 regular CONST_VECTORs. They have vector or integer modes, depending
634 on the capabilities of the target. Cope with them. */
635 if (partmode == VOIDmode && VECTOR_MODE_P (innermode))
636 partmode = GET_MODE_INNER (innermode);
637 else if (partmode == VOIDmode)
639 enum mode_class mclass = GET_MODE_CLASS (innermode);
640 partmode = mode_for_size (inner_size * BITS_PER_UNIT, mclass, 0);
643 final_offset = byte % inner_size;
644 if (final_offset + GET_MODE_SIZE (outermode) > inner_size)
645 return NULL_RTX;
647 return simplify_gen_subreg (outermode, part, partmode, final_offset);
650 /* Wrapper around simplify_gen_subreg which handles CONCATN. */
652 static rtx
653 simplify_gen_subreg_concatn (enum machine_mode outermode, rtx op,
654 enum machine_mode innermode, unsigned int byte)
656 rtx ret;
658 /* We have to handle generating a SUBREG of a SUBREG of a CONCATN.
659 If OP is a SUBREG of a CONCATN, then it must be a simple mode
660 change with the same size and offset 0, or it must extract a
661 part. We shouldn't see anything else here. */
662 if (GET_CODE (op) == SUBREG && GET_CODE (SUBREG_REG (op)) == CONCATN)
664 rtx op2;
666 if ((GET_MODE_SIZE (GET_MODE (op))
667 == GET_MODE_SIZE (GET_MODE (SUBREG_REG (op))))
668 && SUBREG_BYTE (op) == 0)
669 return simplify_gen_subreg_concatn (outermode, SUBREG_REG (op),
670 GET_MODE (SUBREG_REG (op)), byte);
672 op2 = simplify_subreg_concatn (GET_MODE (op), SUBREG_REG (op),
673 SUBREG_BYTE (op));
674 if (op2 == NULL_RTX)
676 /* We don't handle paradoxical subregs here. */
677 gcc_assert (GET_MODE_SIZE (outermode)
678 <= GET_MODE_SIZE (GET_MODE (op)));
679 gcc_assert (GET_MODE_SIZE (GET_MODE (op))
680 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (op))));
681 op2 = simplify_subreg_concatn (outermode, SUBREG_REG (op),
682 byte + SUBREG_BYTE (op));
683 gcc_assert (op2 != NULL_RTX);
684 return op2;
687 op = op2;
688 gcc_assert (op != NULL_RTX);
689 gcc_assert (innermode == GET_MODE (op));
692 if (GET_CODE (op) == CONCATN)
693 return simplify_subreg_concatn (outermode, op, byte);
695 ret = simplify_gen_subreg (outermode, op, innermode, byte);
697 /* If we see an insn like (set (reg:DI) (subreg:DI (reg:SI) 0)) then
698 resolve_simple_move will ask for the high part of the paradoxical
699 subreg, which does not have a value. Just return a zero. */
700 if (ret == NULL_RTX
701 && GET_CODE (op) == SUBREG
702 && SUBREG_BYTE (op) == 0
703 && (GET_MODE_SIZE (innermode)
704 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (op)))))
705 return CONST0_RTX (outermode);
707 gcc_assert (ret != NULL_RTX);
708 return ret;
711 /* Return whether we should resolve X into the registers into which it
712 was decomposed. */
714 static bool
715 resolve_reg_p (rtx x)
717 return GET_CODE (x) == CONCATN;
720 /* Return whether X is a SUBREG of a register which we need to
721 resolve. */
723 static bool
724 resolve_subreg_p (rtx x)
726 if (GET_CODE (x) != SUBREG)
727 return false;
728 return resolve_reg_p (SUBREG_REG (x));
731 /* Look for SUBREGs in *LOC which need to be decomposed. */
733 static bool
734 resolve_subreg_use (rtx *loc, rtx insn)
736 subrtx_ptr_iterator::array_type array;
737 FOR_EACH_SUBRTX_PTR (iter, array, loc, NONCONST)
739 rtx *loc = *iter;
740 rtx x = *loc;
741 if (resolve_subreg_p (x))
743 x = simplify_subreg_concatn (GET_MODE (x), SUBREG_REG (x),
744 SUBREG_BYTE (x));
746 /* It is possible for a note to contain a reference which we can
747 decompose. In this case, return 1 to the caller to indicate
748 that the note must be removed. */
749 if (!x)
751 gcc_assert (!insn);
752 return true;
755 validate_change (insn, loc, x, 1);
756 iter.skip_subrtxes ();
758 else if (resolve_reg_p (x))
759 /* Return 1 to the caller to indicate that we found a direct
760 reference to a register which is being decomposed. This can
761 happen inside notes, multiword shift or zero-extend
762 instructions. */
763 return true;
766 return false;
769 /* Resolve any decomposed registers which appear in register notes on
770 INSN. */
772 static void
773 resolve_reg_notes (rtx_insn *insn)
775 rtx *pnote, note;
777 note = find_reg_equal_equiv_note (insn);
778 if (note)
780 int old_count = num_validated_changes ();
781 if (resolve_subreg_use (&XEXP (note, 0), NULL_RTX))
782 remove_note (insn, note);
783 else
784 if (old_count != num_validated_changes ())
785 df_notes_rescan (insn);
788 pnote = &REG_NOTES (insn);
789 while (*pnote != NULL_RTX)
791 bool del = false;
793 note = *pnote;
794 switch (REG_NOTE_KIND (note))
796 case REG_DEAD:
797 case REG_UNUSED:
798 if (resolve_reg_p (XEXP (note, 0)))
799 del = true;
800 break;
802 default:
803 break;
806 if (del)
807 *pnote = XEXP (note, 1);
808 else
809 pnote = &XEXP (note, 1);
813 /* Return whether X can be decomposed into subwords. */
815 static bool
816 can_decompose_p (rtx x)
818 if (REG_P (x))
820 unsigned int regno = REGNO (x);
822 if (HARD_REGISTER_NUM_P (regno))
824 unsigned int byte, num_bytes;
826 num_bytes = GET_MODE_SIZE (GET_MODE (x));
827 for (byte = 0; byte < num_bytes; byte += UNITS_PER_WORD)
828 if (simplify_subreg_regno (regno, GET_MODE (x), byte, word_mode) < 0)
829 return false;
830 return true;
832 else
833 return !bitmap_bit_p (subreg_context, regno);
836 return true;
839 /* Decompose the registers used in a simple move SET within INSN. If
840 we don't change anything, return INSN, otherwise return the start
841 of the sequence of moves. */
843 static rtx_insn *
844 resolve_simple_move (rtx set, rtx_insn *insn)
846 rtx src, dest, real_dest;
847 rtx_insn *insns;
848 enum machine_mode orig_mode, dest_mode;
849 unsigned int words;
850 bool pushing;
852 src = SET_SRC (set);
853 dest = SET_DEST (set);
854 orig_mode = GET_MODE (dest);
856 words = (GET_MODE_SIZE (orig_mode) + UNITS_PER_WORD - 1) / UNITS_PER_WORD;
857 gcc_assert (words > 1);
859 start_sequence ();
861 /* We have to handle copying from a SUBREG of a decomposed reg where
862 the SUBREG is larger than word size. Rather than assume that we
863 can take a word_mode SUBREG of the destination, we copy to a new
864 register and then copy that to the destination. */
866 real_dest = NULL_RTX;
868 if (GET_CODE (src) == SUBREG
869 && resolve_reg_p (SUBREG_REG (src))
870 && (SUBREG_BYTE (src) != 0
871 || (GET_MODE_SIZE (orig_mode)
872 != GET_MODE_SIZE (GET_MODE (SUBREG_REG (src))))))
874 real_dest = dest;
875 dest = gen_reg_rtx (orig_mode);
876 if (REG_P (real_dest))
877 REG_ATTRS (dest) = REG_ATTRS (real_dest);
880 /* Similarly if we are copying to a SUBREG of a decomposed reg where
881 the SUBREG is larger than word size. */
883 if (GET_CODE (dest) == SUBREG
884 && resolve_reg_p (SUBREG_REG (dest))
885 && (SUBREG_BYTE (dest) != 0
886 || (GET_MODE_SIZE (orig_mode)
887 != GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest))))))
889 rtx reg, smove;
890 rtx_insn *minsn;
892 reg = gen_reg_rtx (orig_mode);
893 minsn = emit_move_insn (reg, src);
894 smove = single_set (minsn);
895 gcc_assert (smove != NULL_RTX);
896 resolve_simple_move (smove, minsn);
897 src = reg;
900 /* If we didn't have any big SUBREGS of decomposed registers, and
901 neither side of the move is a register we are decomposing, then
902 we don't have to do anything here. */
904 if (src == SET_SRC (set)
905 && dest == SET_DEST (set)
906 && !resolve_reg_p (src)
907 && !resolve_subreg_p (src)
908 && !resolve_reg_p (dest)
909 && !resolve_subreg_p (dest))
911 end_sequence ();
912 return insn;
915 /* It's possible for the code to use a subreg of a decomposed
916 register while forming an address. We need to handle that before
917 passing the address to emit_move_insn. We pass NULL_RTX as the
918 insn parameter to resolve_subreg_use because we can not validate
919 the insn yet. */
920 if (MEM_P (src) || MEM_P (dest))
922 int acg;
924 if (MEM_P (src))
925 resolve_subreg_use (&XEXP (src, 0), NULL_RTX);
926 if (MEM_P (dest))
927 resolve_subreg_use (&XEXP (dest, 0), NULL_RTX);
928 acg = apply_change_group ();
929 gcc_assert (acg);
932 /* If SRC is a register which we can't decompose, or has side
933 effects, we need to move via a temporary register. */
935 if (!can_decompose_p (src)
936 || side_effects_p (src)
937 || GET_CODE (src) == ASM_OPERANDS)
939 rtx reg;
941 reg = gen_reg_rtx (orig_mode);
943 #ifdef AUTO_INC_DEC
945 rtx move = emit_move_insn (reg, src);
946 if (MEM_P (src))
948 rtx note = find_reg_note (insn, REG_INC, NULL_RTX);
949 if (note)
950 add_reg_note (move, REG_INC, XEXP (note, 0));
953 #else
954 emit_move_insn (reg, src);
955 #endif
956 src = reg;
959 /* If DEST is a register which we can't decompose, or has side
960 effects, we need to first move to a temporary register. We
961 handle the common case of pushing an operand directly. We also
962 go through a temporary register if it holds a floating point
963 value. This gives us better code on systems which can't move
964 data easily between integer and floating point registers. */
966 dest_mode = orig_mode;
967 pushing = push_operand (dest, dest_mode);
968 if (!can_decompose_p (dest)
969 || (side_effects_p (dest) && !pushing)
970 || (!SCALAR_INT_MODE_P (dest_mode)
971 && !resolve_reg_p (dest)
972 && !resolve_subreg_p (dest)))
974 if (real_dest == NULL_RTX)
975 real_dest = dest;
976 if (!SCALAR_INT_MODE_P (dest_mode))
978 dest_mode = mode_for_size (GET_MODE_SIZE (dest_mode) * BITS_PER_UNIT,
979 MODE_INT, 0);
980 gcc_assert (dest_mode != BLKmode);
982 dest = gen_reg_rtx (dest_mode);
983 if (REG_P (real_dest))
984 REG_ATTRS (dest) = REG_ATTRS (real_dest);
987 if (pushing)
989 unsigned int i, j, jinc;
991 gcc_assert (GET_MODE_SIZE (orig_mode) % UNITS_PER_WORD == 0);
992 gcc_assert (GET_CODE (XEXP (dest, 0)) != PRE_MODIFY);
993 gcc_assert (GET_CODE (XEXP (dest, 0)) != POST_MODIFY);
995 if (WORDS_BIG_ENDIAN == STACK_GROWS_DOWNWARD)
997 j = 0;
998 jinc = 1;
1000 else
1002 j = words - 1;
1003 jinc = -1;
1006 for (i = 0; i < words; ++i, j += jinc)
1008 rtx temp;
1010 temp = copy_rtx (XEXP (dest, 0));
1011 temp = adjust_automodify_address_nv (dest, word_mode, temp,
1012 j * UNITS_PER_WORD);
1013 emit_move_insn (temp,
1014 simplify_gen_subreg_concatn (word_mode, src,
1015 orig_mode,
1016 j * UNITS_PER_WORD));
1019 else
1021 unsigned int i;
1023 if (REG_P (dest) && !HARD_REGISTER_NUM_P (REGNO (dest)))
1024 emit_clobber (dest);
1026 for (i = 0; i < words; ++i)
1027 emit_move_insn (simplify_gen_subreg_concatn (word_mode, dest,
1028 dest_mode,
1029 i * UNITS_PER_WORD),
1030 simplify_gen_subreg_concatn (word_mode, src,
1031 orig_mode,
1032 i * UNITS_PER_WORD));
1035 if (real_dest != NULL_RTX)
1037 rtx mdest, smove;
1038 rtx_insn *minsn;
1040 if (dest_mode == orig_mode)
1041 mdest = dest;
1042 else
1043 mdest = simplify_gen_subreg (orig_mode, dest, GET_MODE (dest), 0);
1044 minsn = emit_move_insn (real_dest, mdest);
1046 #ifdef AUTO_INC_DEC
1047 if (MEM_P (real_dest)
1048 && !(resolve_reg_p (real_dest) || resolve_subreg_p (real_dest)))
1050 rtx note = find_reg_note (insn, REG_INC, NULL_RTX);
1051 if (note)
1052 add_reg_note (minsn, REG_INC, XEXP (note, 0));
1054 #endif
1056 smove = single_set (minsn);
1057 gcc_assert (smove != NULL_RTX);
1059 resolve_simple_move (smove, minsn);
1062 insns = get_insns ();
1063 end_sequence ();
1065 copy_reg_eh_region_note_forward (insn, insns, NULL_RTX);
1067 emit_insn_before (insns, insn);
1069 /* If we get here via self-recursion, then INSN is not yet in the insns
1070 chain and delete_insn will fail. We only want to remove INSN from the
1071 current sequence. See PR56738. */
1072 if (in_sequence_p ())
1073 remove_insn (insn);
1074 else
1075 delete_insn (insn);
1077 return insns;
1080 /* Change a CLOBBER of a decomposed register into a CLOBBER of the
1081 component registers. Return whether we changed something. */
1083 static bool
1084 resolve_clobber (rtx pat, rtx_insn *insn)
1086 rtx reg;
1087 enum machine_mode orig_mode;
1088 unsigned int words, i;
1089 int ret;
1091 reg = XEXP (pat, 0);
1092 if (!resolve_reg_p (reg) && !resolve_subreg_p (reg))
1093 return false;
1095 orig_mode = GET_MODE (reg);
1096 words = GET_MODE_SIZE (orig_mode);
1097 words = (words + UNITS_PER_WORD - 1) / UNITS_PER_WORD;
1099 ret = validate_change (NULL_RTX, &XEXP (pat, 0),
1100 simplify_gen_subreg_concatn (word_mode, reg,
1101 orig_mode, 0),
1103 df_insn_rescan (insn);
1104 gcc_assert (ret != 0);
1106 for (i = words - 1; i > 0; --i)
1108 rtx x;
1110 x = simplify_gen_subreg_concatn (word_mode, reg, orig_mode,
1111 i * UNITS_PER_WORD);
1112 x = gen_rtx_CLOBBER (VOIDmode, x);
1113 emit_insn_after (x, insn);
1116 resolve_reg_notes (insn);
1118 return true;
1121 /* A USE of a decomposed register is no longer meaningful. Return
1122 whether we changed something. */
1124 static bool
1125 resolve_use (rtx pat, rtx_insn *insn)
1127 if (resolve_reg_p (XEXP (pat, 0)) || resolve_subreg_p (XEXP (pat, 0)))
1129 delete_insn (insn);
1130 return true;
1133 resolve_reg_notes (insn);
1135 return false;
1138 /* A VAR_LOCATION can be simplified. */
1140 static void
1141 resolve_debug (rtx_insn *insn)
1143 subrtx_ptr_iterator::array_type array;
1144 FOR_EACH_SUBRTX_PTR (iter, array, &PATTERN (insn), NONCONST)
1146 rtx *loc = *iter;
1147 rtx x = *loc;
1148 if (resolve_subreg_p (x))
1150 x = simplify_subreg_concatn (GET_MODE (x), SUBREG_REG (x),
1151 SUBREG_BYTE (x));
1153 if (x)
1154 *loc = x;
1155 else
1156 x = copy_rtx (*loc);
1158 if (resolve_reg_p (x))
1159 *loc = copy_rtx (x);
1162 df_insn_rescan (insn);
1164 resolve_reg_notes (insn);
1167 /* Check if INSN is a decomposable multiword-shift or zero-extend and
1168 set the decomposable_context bitmap accordingly. SPEED_P is true
1169 if we are optimizing INSN for speed rather than size. Return true
1170 if INSN is decomposable. */
1172 static bool
1173 find_decomposable_shift_zext (rtx_insn *insn, bool speed_p)
1175 rtx set;
1176 rtx op;
1177 rtx op_operand;
1179 set = single_set (insn);
1180 if (!set)
1181 return false;
1183 op = SET_SRC (set);
1184 if (GET_CODE (op) != ASHIFT
1185 && GET_CODE (op) != LSHIFTRT
1186 && GET_CODE (op) != ASHIFTRT
1187 && GET_CODE (op) != ZERO_EXTEND)
1188 return false;
1190 op_operand = XEXP (op, 0);
1191 if (!REG_P (SET_DEST (set)) || !REG_P (op_operand)
1192 || HARD_REGISTER_NUM_P (REGNO (SET_DEST (set)))
1193 || HARD_REGISTER_NUM_P (REGNO (op_operand))
1194 || GET_MODE (op) != twice_word_mode)
1195 return false;
1197 if (GET_CODE (op) == ZERO_EXTEND)
1199 if (GET_MODE (op_operand) != word_mode
1200 || !choices[speed_p].splitting_zext)
1201 return false;
1203 else /* left or right shift */
1205 bool *splitting = (GET_CODE (op) == ASHIFT
1206 ? choices[speed_p].splitting_ashift
1207 : GET_CODE (op) == ASHIFTRT
1208 ? choices[speed_p].splitting_ashiftrt
1209 : choices[speed_p].splitting_lshiftrt);
1210 if (!CONST_INT_P (XEXP (op, 1))
1211 || !IN_RANGE (INTVAL (XEXP (op, 1)), BITS_PER_WORD,
1212 2 * BITS_PER_WORD - 1)
1213 || !splitting[INTVAL (XEXP (op, 1)) - BITS_PER_WORD])
1214 return false;
1216 bitmap_set_bit (decomposable_context, REGNO (op_operand));
1219 bitmap_set_bit (decomposable_context, REGNO (SET_DEST (set)));
1221 return true;
1224 /* Decompose a more than word wide shift (in INSN) of a multiword
1225 pseudo or a multiword zero-extend of a wordmode pseudo into a move
1226 and 'set to zero' insn. Return a pointer to the new insn when a
1227 replacement was done. */
1229 static rtx_insn *
1230 resolve_shift_zext (rtx_insn *insn)
1232 rtx set;
1233 rtx op;
1234 rtx op_operand;
1235 rtx_insn *insns;
1236 rtx src_reg, dest_reg, dest_upper, upper_src = NULL_RTX;
1237 int src_reg_num, dest_reg_num, offset1, offset2, src_offset;
1239 set = single_set (insn);
1240 if (!set)
1241 return NULL;
1243 op = SET_SRC (set);
1244 if (GET_CODE (op) != ASHIFT
1245 && GET_CODE (op) != LSHIFTRT
1246 && GET_CODE (op) != ASHIFTRT
1247 && GET_CODE (op) != ZERO_EXTEND)
1248 return NULL;
1250 op_operand = XEXP (op, 0);
1252 /* We can tear this operation apart only if the regs were already
1253 torn apart. */
1254 if (!resolve_reg_p (SET_DEST (set)) && !resolve_reg_p (op_operand))
1255 return NULL;
1257 /* src_reg_num is the number of the word mode register which we
1258 are operating on. For a left shift and a zero_extend on little
1259 endian machines this is register 0. */
1260 src_reg_num = (GET_CODE (op) == LSHIFTRT || GET_CODE (op) == ASHIFTRT)
1261 ? 1 : 0;
1263 if (WORDS_BIG_ENDIAN
1264 && GET_MODE_SIZE (GET_MODE (op_operand)) > UNITS_PER_WORD)
1265 src_reg_num = 1 - src_reg_num;
1267 if (GET_CODE (op) == ZERO_EXTEND)
1268 dest_reg_num = WORDS_BIG_ENDIAN ? 1 : 0;
1269 else
1270 dest_reg_num = 1 - src_reg_num;
1272 offset1 = UNITS_PER_WORD * dest_reg_num;
1273 offset2 = UNITS_PER_WORD * (1 - dest_reg_num);
1274 src_offset = UNITS_PER_WORD * src_reg_num;
1276 start_sequence ();
1278 dest_reg = simplify_gen_subreg_concatn (word_mode, SET_DEST (set),
1279 GET_MODE (SET_DEST (set)),
1280 offset1);
1281 dest_upper = simplify_gen_subreg_concatn (word_mode, SET_DEST (set),
1282 GET_MODE (SET_DEST (set)),
1283 offset2);
1284 src_reg = simplify_gen_subreg_concatn (word_mode, op_operand,
1285 GET_MODE (op_operand),
1286 src_offset);
1287 if (GET_CODE (op) == ASHIFTRT
1288 && INTVAL (XEXP (op, 1)) != 2 * BITS_PER_WORD - 1)
1289 upper_src = expand_shift (RSHIFT_EXPR, word_mode, copy_rtx (src_reg),
1290 BITS_PER_WORD - 1, NULL_RTX, 0);
1292 if (GET_CODE (op) != ZERO_EXTEND)
1294 int shift_count = INTVAL (XEXP (op, 1));
1295 if (shift_count > BITS_PER_WORD)
1296 src_reg = expand_shift (GET_CODE (op) == ASHIFT ?
1297 LSHIFT_EXPR : RSHIFT_EXPR,
1298 word_mode, src_reg,
1299 shift_count - BITS_PER_WORD,
1300 dest_reg, GET_CODE (op) != ASHIFTRT);
1303 if (dest_reg != src_reg)
1304 emit_move_insn (dest_reg, src_reg);
1305 if (GET_CODE (op) != ASHIFTRT)
1306 emit_move_insn (dest_upper, CONST0_RTX (word_mode));
1307 else if (INTVAL (XEXP (op, 1)) == 2 * BITS_PER_WORD - 1)
1308 emit_move_insn (dest_upper, copy_rtx (src_reg));
1309 else
1310 emit_move_insn (dest_upper, upper_src);
1311 insns = get_insns ();
1313 end_sequence ();
1315 emit_insn_before (insns, insn);
1317 if (dump_file)
1319 rtx_insn *in;
1320 fprintf (dump_file, "; Replacing insn: %d with insns: ", INSN_UID (insn));
1321 for (in = insns; in != insn; in = NEXT_INSN (in))
1322 fprintf (dump_file, "%d ", INSN_UID (in));
1323 fprintf (dump_file, "\n");
1326 delete_insn (insn);
1327 return insns;
1330 /* Print to dump_file a description of what we're doing with shift code CODE.
1331 SPLITTING[X] is true if we are splitting shifts by X + BITS_PER_WORD. */
1333 static void
1334 dump_shift_choices (enum rtx_code code, bool *splitting)
1336 int i;
1337 const char *sep;
1339 fprintf (dump_file,
1340 " Splitting mode %s for %s lowering with shift amounts = ",
1341 GET_MODE_NAME (twice_word_mode), GET_RTX_NAME (code));
1342 sep = "";
1343 for (i = 0; i < BITS_PER_WORD; i++)
1344 if (splitting[i])
1346 fprintf (dump_file, "%s%d", sep, i + BITS_PER_WORD);
1347 sep = ",";
1349 fprintf (dump_file, "\n");
1352 /* Print to dump_file a description of what we're doing when optimizing
1353 for speed or size; SPEED_P says which. DESCRIPTION is a description
1354 of the SPEED_P choice. */
1356 static void
1357 dump_choices (bool speed_p, const char *description)
1359 unsigned int i;
1361 fprintf (dump_file, "Choices when optimizing for %s:\n", description);
1363 for (i = 0; i < MAX_MACHINE_MODE; i++)
1364 if (GET_MODE_SIZE ((enum machine_mode) i) > UNITS_PER_WORD)
1365 fprintf (dump_file, " %s mode %s for copy lowering.\n",
1366 choices[speed_p].move_modes_to_split[i]
1367 ? "Splitting"
1368 : "Skipping",
1369 GET_MODE_NAME ((enum machine_mode) i));
1371 fprintf (dump_file, " %s mode %s for zero_extend lowering.\n",
1372 choices[speed_p].splitting_zext ? "Splitting" : "Skipping",
1373 GET_MODE_NAME (twice_word_mode));
1375 dump_shift_choices (ASHIFT, choices[speed_p].splitting_ashift);
1376 dump_shift_choices (LSHIFTRT, choices[speed_p].splitting_lshiftrt);
1377 dump_shift_choices (ASHIFTRT, choices[speed_p].splitting_ashiftrt);
1378 fprintf (dump_file, "\n");
1381 /* Look for registers which are always accessed via word-sized SUBREGs
1382 or -if DECOMPOSE_COPIES is true- via copies. Decompose these
1383 registers into several word-sized pseudo-registers. */
1385 static void
1386 decompose_multiword_subregs (bool decompose_copies)
1388 unsigned int max;
1389 basic_block bb;
1390 bool speed_p;
1392 if (dump_file)
1394 dump_choices (false, "size");
1395 dump_choices (true, "speed");
1398 /* Check if this target even has any modes to consider lowering. */
1399 if (!choices[false].something_to_do && !choices[true].something_to_do)
1401 if (dump_file)
1402 fprintf (dump_file, "Nothing to do!\n");
1403 return;
1406 max = max_reg_num ();
1408 /* First see if there are any multi-word pseudo-registers. If there
1409 aren't, there is nothing we can do. This should speed up this
1410 pass in the normal case, since it should be faster than scanning
1411 all the insns. */
1413 unsigned int i;
1414 bool useful_modes_seen = false;
1416 for (i = FIRST_PSEUDO_REGISTER; i < max; ++i)
1417 if (regno_reg_rtx[i] != NULL)
1419 enum machine_mode mode = GET_MODE (regno_reg_rtx[i]);
1420 if (choices[false].move_modes_to_split[(int) mode]
1421 || choices[true].move_modes_to_split[(int) mode])
1423 useful_modes_seen = true;
1424 break;
1428 if (!useful_modes_seen)
1430 if (dump_file)
1431 fprintf (dump_file, "Nothing to lower in this function.\n");
1432 return;
1436 if (df)
1438 df_set_flags (DF_DEFER_INSN_RESCAN);
1439 run_word_dce ();
1442 /* FIXME: It may be possible to change this code to look for each
1443 multi-word pseudo-register and to find each insn which sets or
1444 uses that register. That should be faster than scanning all the
1445 insns. */
1447 decomposable_context = BITMAP_ALLOC (NULL);
1448 non_decomposable_context = BITMAP_ALLOC (NULL);
1449 subreg_context = BITMAP_ALLOC (NULL);
1451 reg_copy_graph.create (max);
1452 reg_copy_graph.safe_grow_cleared (max);
1453 memset (reg_copy_graph.address (), 0, sizeof (bitmap) * max);
1455 speed_p = optimize_function_for_speed_p (cfun);
1456 FOR_EACH_BB_FN (bb, cfun)
1458 rtx_insn *insn;
1460 FOR_BB_INSNS (bb, insn)
1462 rtx set;
1463 enum classify_move_insn cmi;
1464 int i, n;
1466 if (!INSN_P (insn)
1467 || GET_CODE (PATTERN (insn)) == CLOBBER
1468 || GET_CODE (PATTERN (insn)) == USE)
1469 continue;
1471 recog_memoized (insn);
1473 if (find_decomposable_shift_zext (insn, speed_p))
1474 continue;
1476 extract_insn (insn);
1478 set = simple_move (insn, speed_p);
1480 if (!set)
1481 cmi = NOT_SIMPLE_MOVE;
1482 else
1484 /* We mark pseudo-to-pseudo copies as decomposable during the
1485 second pass only. The first pass is so early that there is
1486 good chance such moves will be optimized away completely by
1487 subsequent optimizations anyway.
1489 However, we call find_pseudo_copy even during the first pass
1490 so as to properly set up the reg_copy_graph. */
1491 if (find_pseudo_copy (set))
1492 cmi = decompose_copies? DECOMPOSABLE_SIMPLE_MOVE : SIMPLE_MOVE;
1493 else
1494 cmi = SIMPLE_MOVE;
1497 n = recog_data.n_operands;
1498 for (i = 0; i < n; ++i)
1500 find_decomposable_subregs (&recog_data.operand[i], &cmi);
1502 /* We handle ASM_OPERANDS as a special case to support
1503 things like x86 rdtsc which returns a DImode value.
1504 We can decompose the output, which will certainly be
1505 operand 0, but not the inputs. */
1507 if (cmi == SIMPLE_MOVE
1508 && GET_CODE (SET_SRC (set)) == ASM_OPERANDS)
1510 gcc_assert (i == 0);
1511 cmi = NOT_SIMPLE_MOVE;
1517 bitmap_and_compl_into (decomposable_context, non_decomposable_context);
1518 if (!bitmap_empty_p (decomposable_context))
1520 sbitmap sub_blocks;
1521 unsigned int i;
1522 sbitmap_iterator sbi;
1523 bitmap_iterator iter;
1524 unsigned int regno;
1526 propagate_pseudo_copies ();
1528 sub_blocks = sbitmap_alloc (last_basic_block_for_fn (cfun));
1529 bitmap_clear (sub_blocks);
1531 EXECUTE_IF_SET_IN_BITMAP (decomposable_context, 0, regno, iter)
1532 decompose_register (regno);
1534 FOR_EACH_BB_FN (bb, cfun)
1536 rtx_insn *insn;
1538 FOR_BB_INSNS (bb, insn)
1540 rtx pat;
1542 if (!INSN_P (insn))
1543 continue;
1545 pat = PATTERN (insn);
1546 if (GET_CODE (pat) == CLOBBER)
1547 resolve_clobber (pat, insn);
1548 else if (GET_CODE (pat) == USE)
1549 resolve_use (pat, insn);
1550 else if (DEBUG_INSN_P (insn))
1551 resolve_debug (insn);
1552 else
1554 rtx set;
1555 int i;
1557 recog_memoized (insn);
1558 extract_insn (insn);
1560 set = simple_move (insn, speed_p);
1561 if (set)
1563 rtx_insn *orig_insn = insn;
1564 bool cfi = control_flow_insn_p (insn);
1566 /* We can end up splitting loads to multi-word pseudos
1567 into separate loads to machine word size pseudos.
1568 When this happens, we first had one load that can
1569 throw, and after resolve_simple_move we'll have a
1570 bunch of loads (at least two). All those loads may
1571 trap if we can have non-call exceptions, so they
1572 all will end the current basic block. We split the
1573 block after the outer loop over all insns, but we
1574 make sure here that we will be able to split the
1575 basic block and still produce the correct control
1576 flow graph for it. */
1577 gcc_assert (!cfi
1578 || (cfun->can_throw_non_call_exceptions
1579 && can_throw_internal (insn)));
1581 insn = resolve_simple_move (set, insn);
1582 if (insn != orig_insn)
1584 recog_memoized (insn);
1585 extract_insn (insn);
1587 if (cfi)
1588 bitmap_set_bit (sub_blocks, bb->index);
1591 else
1593 rtx_insn *decomposed_shift;
1595 decomposed_shift = resolve_shift_zext (insn);
1596 if (decomposed_shift != NULL_RTX)
1598 insn = decomposed_shift;
1599 recog_memoized (insn);
1600 extract_insn (insn);
1604 for (i = recog_data.n_operands - 1; i >= 0; --i)
1605 resolve_subreg_use (recog_data.operand_loc[i], insn);
1607 resolve_reg_notes (insn);
1609 if (num_validated_changes () > 0)
1611 for (i = recog_data.n_dups - 1; i >= 0; --i)
1613 rtx *pl = recog_data.dup_loc[i];
1614 int dup_num = recog_data.dup_num[i];
1615 rtx *px = recog_data.operand_loc[dup_num];
1617 validate_unshare_change (insn, pl, *px, 1);
1620 i = apply_change_group ();
1621 gcc_assert (i);
1627 /* If we had insns to split that caused control flow insns in the middle
1628 of a basic block, split those blocks now. Note that we only handle
1629 the case where splitting a load has caused multiple possibly trapping
1630 loads to appear. */
1631 EXECUTE_IF_SET_IN_BITMAP (sub_blocks, 0, i, sbi)
1633 rtx_insn *insn, *end;
1634 edge fallthru;
1636 bb = BASIC_BLOCK_FOR_FN (cfun, i);
1637 insn = BB_HEAD (bb);
1638 end = BB_END (bb);
1640 while (insn != end)
1642 if (control_flow_insn_p (insn))
1644 /* Split the block after insn. There will be a fallthru
1645 edge, which is OK so we keep it. We have to create the
1646 exception edges ourselves. */
1647 fallthru = split_block (bb, insn);
1648 rtl_make_eh_edge (NULL, bb, BB_END (bb));
1649 bb = fallthru->dest;
1650 insn = BB_HEAD (bb);
1652 else
1653 insn = NEXT_INSN (insn);
1657 sbitmap_free (sub_blocks);
1661 unsigned int i;
1662 bitmap b;
1664 FOR_EACH_VEC_ELT (reg_copy_graph, i, b)
1665 if (b)
1666 BITMAP_FREE (b);
1669 reg_copy_graph.release ();
1671 BITMAP_FREE (decomposable_context);
1672 BITMAP_FREE (non_decomposable_context);
1673 BITMAP_FREE (subreg_context);
1676 /* Implement first lower subreg pass. */
1678 namespace {
1680 const pass_data pass_data_lower_subreg =
1682 RTL_PASS, /* type */
1683 "subreg1", /* name */
1684 OPTGROUP_NONE, /* optinfo_flags */
1685 TV_LOWER_SUBREG, /* tv_id */
1686 0, /* properties_required */
1687 0, /* properties_provided */
1688 0, /* properties_destroyed */
1689 0, /* todo_flags_start */
1690 0, /* todo_flags_finish */
1693 class pass_lower_subreg : public rtl_opt_pass
1695 public:
1696 pass_lower_subreg (gcc::context *ctxt)
1697 : rtl_opt_pass (pass_data_lower_subreg, ctxt)
1700 /* opt_pass methods: */
1701 virtual bool gate (function *) { return flag_split_wide_types != 0; }
1702 virtual unsigned int execute (function *)
1704 decompose_multiword_subregs (false);
1705 return 0;
1708 }; // class pass_lower_subreg
1710 } // anon namespace
1712 rtl_opt_pass *
1713 make_pass_lower_subreg (gcc::context *ctxt)
1715 return new pass_lower_subreg (ctxt);
1718 /* Implement second lower subreg pass. */
1720 namespace {
1722 const pass_data pass_data_lower_subreg2 =
1724 RTL_PASS, /* type */
1725 "subreg2", /* name */
1726 OPTGROUP_NONE, /* optinfo_flags */
1727 TV_LOWER_SUBREG, /* tv_id */
1728 0, /* properties_required */
1729 0, /* properties_provided */
1730 0, /* properties_destroyed */
1731 0, /* todo_flags_start */
1732 TODO_df_finish, /* todo_flags_finish */
1735 class pass_lower_subreg2 : public rtl_opt_pass
1737 public:
1738 pass_lower_subreg2 (gcc::context *ctxt)
1739 : rtl_opt_pass (pass_data_lower_subreg2, ctxt)
1742 /* opt_pass methods: */
1743 virtual bool gate (function *) { return flag_split_wide_types != 0; }
1744 virtual unsigned int execute (function *)
1746 decompose_multiword_subregs (true);
1747 return 0;
1750 }; // class pass_lower_subreg2
1752 } // anon namespace
1754 rtl_opt_pass *
1755 make_pass_lower_subreg2 (gcc::context *ctxt)
1757 return new pass_lower_subreg2 (ctxt);