IPA ICF, part 4/5
[official-gcc.git] / gcc / ifcvt.c
blobb6b479f39a52d3622c1d0b0ab1b01b2b00f297e4
1 /* If-conversion support.
2 Copyright (C) 2000-2014 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
9 any later version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
13 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
14 License for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "tm.h"
25 #include "rtl.h"
26 #include "regs.h"
27 #include "function.h"
28 #include "flags.h"
29 #include "insn-config.h"
30 #include "recog.h"
31 #include "except.h"
32 #include "hard-reg-set.h"
33 #include "basic-block.h"
34 #include "expr.h"
35 #include "output.h"
36 #include "optabs.h"
37 #include "diagnostic-core.h"
38 #include "tm_p.h"
39 #include "cfgloop.h"
40 #include "target.h"
41 #include "tree-pass.h"
42 #include "df.h"
43 #include "vec.h"
44 #include "dbgcnt.h"
45 #include "shrink-wrap.h"
47 #ifndef HAVE_conditional_move
48 #define HAVE_conditional_move 0
49 #endif
50 #ifndef HAVE_incscc
51 #define HAVE_incscc 0
52 #endif
53 #ifndef HAVE_decscc
54 #define HAVE_decscc 0
55 #endif
56 #ifndef HAVE_trap
57 #define HAVE_trap 0
58 #endif
60 #ifndef MAX_CONDITIONAL_EXECUTE
61 #define MAX_CONDITIONAL_EXECUTE \
62 (BRANCH_COST (optimize_function_for_speed_p (cfun), false) \
63 + 1)
64 #endif
66 #define IFCVT_MULTIPLE_DUMPS 1
68 #define NULL_BLOCK ((basic_block) NULL)
70 /* True if after combine pass. */
71 static bool ifcvt_after_combine;
73 /* # of IF-THEN or IF-THEN-ELSE blocks we looked at */
74 static int num_possible_if_blocks;
76 /* # of IF-THEN or IF-THEN-ELSE blocks were converted to conditional
77 execution. */
78 static int num_updated_if_blocks;
80 /* # of changes made. */
81 static int num_true_changes;
83 /* Whether conditional execution changes were made. */
84 static int cond_exec_changed_p;
86 /* Forward references. */
87 static int count_bb_insns (const_basic_block);
88 static bool cheap_bb_rtx_cost_p (const_basic_block, int, int);
89 static rtx_insn *first_active_insn (basic_block);
90 static rtx_insn *last_active_insn (basic_block, int);
91 static rtx_insn *find_active_insn_before (basic_block, rtx_insn *);
92 static rtx_insn *find_active_insn_after (basic_block, rtx_insn *);
93 static basic_block block_fallthru (basic_block);
94 static int cond_exec_process_insns (ce_if_block *, rtx_insn *, rtx, rtx, int,
95 int);
96 static rtx cond_exec_get_condition (rtx_insn *);
97 static rtx noce_get_condition (rtx_insn *, rtx_insn **, bool);
98 static int noce_operand_ok (const_rtx);
99 static void merge_if_block (ce_if_block *);
100 static int find_cond_trap (basic_block, edge, edge);
101 static basic_block find_if_header (basic_block, int);
102 static int block_jumps_and_fallthru_p (basic_block, basic_block);
103 static int noce_find_if_block (basic_block, edge, edge, int);
104 static int cond_exec_find_if_block (ce_if_block *);
105 static int find_if_case_1 (basic_block, edge, edge);
106 static int find_if_case_2 (basic_block, edge, edge);
107 static int dead_or_predicable (basic_block, basic_block, basic_block,
108 edge, int);
109 static void noce_emit_move_insn (rtx, rtx);
110 static rtx_insn *block_has_only_trap (basic_block);
112 /* Count the number of non-jump active insns in BB. */
114 static int
115 count_bb_insns (const_basic_block bb)
117 int count = 0;
118 rtx_insn *insn = BB_HEAD (bb);
120 while (1)
122 if (active_insn_p (insn) && !JUMP_P (insn))
123 count++;
125 if (insn == BB_END (bb))
126 break;
127 insn = NEXT_INSN (insn);
130 return count;
133 /* Determine whether the total insn_rtx_cost on non-jump insns in
134 basic block BB is less than MAX_COST. This function returns
135 false if the cost of any instruction could not be estimated.
137 The cost of the non-jump insns in BB is scaled by REG_BR_PROB_BASE
138 as those insns are being speculated. MAX_COST is scaled with SCALE
139 plus a small fudge factor. */
141 static bool
142 cheap_bb_rtx_cost_p (const_basic_block bb, int scale, int max_cost)
144 int count = 0;
145 rtx_insn *insn = BB_HEAD (bb);
146 bool speed = optimize_bb_for_speed_p (bb);
148 /* Set scale to REG_BR_PROB_BASE to void the identical scaling
149 applied to insn_rtx_cost when optimizing for size. Only do
150 this after combine because if-conversion might interfere with
151 passes before combine.
153 Use optimize_function_for_speed_p instead of the pre-defined
154 variable speed to make sure it is set to same value for all
155 basic blocks in one if-conversion transformation. */
156 if (!optimize_function_for_speed_p (cfun) && ifcvt_after_combine)
157 scale = REG_BR_PROB_BASE;
158 /* Our branch probability/scaling factors are just estimates and don't
159 account for cases where we can get speculation for free and other
160 secondary benefits. So we fudge the scale factor to make speculating
161 appear a little more profitable when optimizing for performance. */
162 else
163 scale += REG_BR_PROB_BASE / 8;
166 max_cost *= scale;
168 while (1)
170 if (NONJUMP_INSN_P (insn))
172 int cost = insn_rtx_cost (PATTERN (insn), speed) * REG_BR_PROB_BASE;
173 if (cost == 0)
174 return false;
176 /* If this instruction is the load or set of a "stack" register,
177 such as a floating point register on x87, then the cost of
178 speculatively executing this insn may need to include
179 the additional cost of popping its result off of the
180 register stack. Unfortunately, correctly recognizing and
181 accounting for this additional overhead is tricky, so for
182 now we simply prohibit such speculative execution. */
183 #ifdef STACK_REGS
185 rtx set = single_set (insn);
186 if (set && STACK_REG_P (SET_DEST (set)))
187 return false;
189 #endif
191 count += cost;
192 if (count >= max_cost)
193 return false;
195 else if (CALL_P (insn))
196 return false;
198 if (insn == BB_END (bb))
199 break;
200 insn = NEXT_INSN (insn);
203 return true;
206 /* Return the first non-jump active insn in the basic block. */
208 static rtx_insn *
209 first_active_insn (basic_block bb)
211 rtx_insn *insn = BB_HEAD (bb);
213 if (LABEL_P (insn))
215 if (insn == BB_END (bb))
216 return NULL;
217 insn = NEXT_INSN (insn);
220 while (NOTE_P (insn) || DEBUG_INSN_P (insn))
222 if (insn == BB_END (bb))
223 return NULL;
224 insn = NEXT_INSN (insn);
227 if (JUMP_P (insn))
228 return NULL;
230 return insn;
233 /* Return the last non-jump active (non-jump) insn in the basic block. */
235 static rtx_insn *
236 last_active_insn (basic_block bb, int skip_use_p)
238 rtx_insn *insn = BB_END (bb);
239 rtx_insn *head = BB_HEAD (bb);
241 while (NOTE_P (insn)
242 || JUMP_P (insn)
243 || DEBUG_INSN_P (insn)
244 || (skip_use_p
245 && NONJUMP_INSN_P (insn)
246 && GET_CODE (PATTERN (insn)) == USE))
248 if (insn == head)
249 return NULL;
250 insn = PREV_INSN (insn);
253 if (LABEL_P (insn))
254 return NULL;
256 return insn;
259 /* Return the active insn before INSN inside basic block CURR_BB. */
261 static rtx_insn *
262 find_active_insn_before (basic_block curr_bb, rtx_insn *insn)
264 if (!insn || insn == BB_HEAD (curr_bb))
265 return NULL;
267 while ((insn = PREV_INSN (insn)) != NULL_RTX)
269 if (NONJUMP_INSN_P (insn) || JUMP_P (insn) || CALL_P (insn))
270 break;
272 /* No other active insn all the way to the start of the basic block. */
273 if (insn == BB_HEAD (curr_bb))
274 return NULL;
277 return insn;
280 /* Return the active insn after INSN inside basic block CURR_BB. */
282 static rtx_insn *
283 find_active_insn_after (basic_block curr_bb, rtx_insn *insn)
285 if (!insn || insn == BB_END (curr_bb))
286 return NULL;
288 while ((insn = NEXT_INSN (insn)) != NULL_RTX)
290 if (NONJUMP_INSN_P (insn) || JUMP_P (insn) || CALL_P (insn))
291 break;
293 /* No other active insn all the way to the end of the basic block. */
294 if (insn == BB_END (curr_bb))
295 return NULL;
298 return insn;
301 /* Return the basic block reached by falling though the basic block BB. */
303 static basic_block
304 block_fallthru (basic_block bb)
306 edge e = find_fallthru_edge (bb->succs);
308 return (e) ? e->dest : NULL_BLOCK;
311 /* Return true if RTXs A and B can be safely interchanged. */
313 static bool
314 rtx_interchangeable_p (const_rtx a, const_rtx b)
316 if (!rtx_equal_p (a, b))
317 return false;
319 if (GET_CODE (a) != MEM)
320 return true;
322 /* A dead type-unsafe memory reference is legal, but a live type-unsafe memory
323 reference is not. Interchanging a dead type-unsafe memory reference with
324 a live type-safe one creates a live type-unsafe memory reference, in other
325 words, it makes the program illegal.
326 We check here conservatively whether the two memory references have equal
327 memory attributes. */
329 return mem_attrs_eq_p (get_mem_attrs (a), get_mem_attrs (b));
333 /* Go through a bunch of insns, converting them to conditional
334 execution format if possible. Return TRUE if all of the non-note
335 insns were processed. */
337 static int
338 cond_exec_process_insns (ce_if_block *ce_info ATTRIBUTE_UNUSED,
339 /* if block information */rtx_insn *start,
340 /* first insn to look at */rtx end,
341 /* last insn to look at */rtx test,
342 /* conditional execution test */int prob_val,
343 /* probability of branch taken. */int mod_ok)
345 int must_be_last = FALSE;
346 rtx_insn *insn;
347 rtx xtest;
348 rtx pattern;
350 if (!start || !end)
351 return FALSE;
353 for (insn = start; ; insn = NEXT_INSN (insn))
355 /* dwarf2out can't cope with conditional prologues. */
356 if (NOTE_P (insn) && NOTE_KIND (insn) == NOTE_INSN_PROLOGUE_END)
357 return FALSE;
359 if (NOTE_P (insn) || DEBUG_INSN_P (insn))
360 goto insn_done;
362 gcc_assert (NONJUMP_INSN_P (insn) || CALL_P (insn));
364 /* dwarf2out can't cope with conditional unwind info. */
365 if (RTX_FRAME_RELATED_P (insn))
366 return FALSE;
368 /* Remove USE insns that get in the way. */
369 if (reload_completed && GET_CODE (PATTERN (insn)) == USE)
371 /* ??? Ug. Actually unlinking the thing is problematic,
372 given what we'd have to coordinate with our callers. */
373 SET_INSN_DELETED (insn);
374 goto insn_done;
377 /* Last insn wasn't last? */
378 if (must_be_last)
379 return FALSE;
381 if (modified_in_p (test, insn))
383 if (!mod_ok)
384 return FALSE;
385 must_be_last = TRUE;
388 /* Now build the conditional form of the instruction. */
389 pattern = PATTERN (insn);
390 xtest = copy_rtx (test);
392 /* If this is already a COND_EXEC, rewrite the test to be an AND of the
393 two conditions. */
394 if (GET_CODE (pattern) == COND_EXEC)
396 if (GET_MODE (xtest) != GET_MODE (COND_EXEC_TEST (pattern)))
397 return FALSE;
399 xtest = gen_rtx_AND (GET_MODE (xtest), xtest,
400 COND_EXEC_TEST (pattern));
401 pattern = COND_EXEC_CODE (pattern);
404 pattern = gen_rtx_COND_EXEC (VOIDmode, xtest, pattern);
406 /* If the machine needs to modify the insn being conditionally executed,
407 say for example to force a constant integer operand into a temp
408 register, do so here. */
409 #ifdef IFCVT_MODIFY_INSN
410 IFCVT_MODIFY_INSN (ce_info, pattern, insn);
411 if (! pattern)
412 return FALSE;
413 #endif
415 validate_change (insn, &PATTERN (insn), pattern, 1);
417 if (CALL_P (insn) && prob_val >= 0)
418 validate_change (insn, &REG_NOTES (insn),
419 gen_rtx_INT_LIST ((enum machine_mode) REG_BR_PROB,
420 prob_val, REG_NOTES (insn)), 1);
422 insn_done:
423 if (insn == end)
424 break;
427 return TRUE;
430 /* Return the condition for a jump. Do not do any special processing. */
432 static rtx
433 cond_exec_get_condition (rtx_insn *jump)
435 rtx test_if, cond;
437 if (any_condjump_p (jump))
438 test_if = SET_SRC (pc_set (jump));
439 else
440 return NULL_RTX;
441 cond = XEXP (test_if, 0);
443 /* If this branches to JUMP_LABEL when the condition is false,
444 reverse the condition. */
445 if (GET_CODE (XEXP (test_if, 2)) == LABEL_REF
446 && LABEL_REF_LABEL (XEXP (test_if, 2)) == JUMP_LABEL (jump))
448 enum rtx_code rev = reversed_comparison_code (cond, jump);
449 if (rev == UNKNOWN)
450 return NULL_RTX;
452 cond = gen_rtx_fmt_ee (rev, GET_MODE (cond), XEXP (cond, 0),
453 XEXP (cond, 1));
456 return cond;
459 /* Given a simple IF-THEN or IF-THEN-ELSE block, attempt to convert it
460 to conditional execution. Return TRUE if we were successful at
461 converting the block. */
463 static int
464 cond_exec_process_if_block (ce_if_block * ce_info,
465 /* if block information */int do_multiple_p)
467 basic_block test_bb = ce_info->test_bb; /* last test block */
468 basic_block then_bb = ce_info->then_bb; /* THEN */
469 basic_block else_bb = ce_info->else_bb; /* ELSE or NULL */
470 rtx test_expr; /* expression in IF_THEN_ELSE that is tested */
471 rtx_insn *then_start; /* first insn in THEN block */
472 rtx_insn *then_end; /* last insn + 1 in THEN block */
473 rtx_insn *else_start = NULL; /* first insn in ELSE block or NULL */
474 rtx_insn *else_end = NULL; /* last insn + 1 in ELSE block */
475 int max; /* max # of insns to convert. */
476 int then_mod_ok; /* whether conditional mods are ok in THEN */
477 rtx true_expr; /* test for else block insns */
478 rtx false_expr; /* test for then block insns */
479 int true_prob_val; /* probability of else block */
480 int false_prob_val; /* probability of then block */
481 rtx_insn *then_last_head = NULL; /* Last match at the head of THEN */
482 rtx_insn *else_last_head = NULL; /* Last match at the head of ELSE */
483 rtx_insn *then_first_tail = NULL; /* First match at the tail of THEN */
484 rtx_insn *else_first_tail = NULL; /* First match at the tail of ELSE */
485 int then_n_insns, else_n_insns, n_insns;
486 enum rtx_code false_code;
487 rtx note;
489 /* If test is comprised of && or || elements, and we've failed at handling
490 all of them together, just use the last test if it is the special case of
491 && elements without an ELSE block. */
492 if (!do_multiple_p && ce_info->num_multiple_test_blocks)
494 if (else_bb || ! ce_info->and_and_p)
495 return FALSE;
497 ce_info->test_bb = test_bb = ce_info->last_test_bb;
498 ce_info->num_multiple_test_blocks = 0;
499 ce_info->num_and_and_blocks = 0;
500 ce_info->num_or_or_blocks = 0;
503 /* Find the conditional jump to the ELSE or JOIN part, and isolate
504 the test. */
505 test_expr = cond_exec_get_condition (BB_END (test_bb));
506 if (! test_expr)
507 return FALSE;
509 /* If the conditional jump is more than just a conditional jump,
510 then we can not do conditional execution conversion on this block. */
511 if (! onlyjump_p (BB_END (test_bb)))
512 return FALSE;
514 /* Collect the bounds of where we're to search, skipping any labels, jumps
515 and notes at the beginning and end of the block. Then count the total
516 number of insns and see if it is small enough to convert. */
517 then_start = first_active_insn (then_bb);
518 then_end = last_active_insn (then_bb, TRUE);
519 then_n_insns = ce_info->num_then_insns = count_bb_insns (then_bb);
520 n_insns = then_n_insns;
521 max = MAX_CONDITIONAL_EXECUTE;
523 if (else_bb)
525 int n_matching;
527 max *= 2;
528 else_start = first_active_insn (else_bb);
529 else_end = last_active_insn (else_bb, TRUE);
530 else_n_insns = ce_info->num_else_insns = count_bb_insns (else_bb);
531 n_insns += else_n_insns;
533 /* Look for matching sequences at the head and tail of the two blocks,
534 and limit the range of insns to be converted if possible. */
535 n_matching = flow_find_cross_jump (then_bb, else_bb,
536 &then_first_tail, &else_first_tail,
537 NULL);
538 if (then_first_tail == BB_HEAD (then_bb))
539 then_start = then_end = NULL;
540 if (else_first_tail == BB_HEAD (else_bb))
541 else_start = else_end = NULL;
543 if (n_matching > 0)
545 if (then_end)
546 then_end = find_active_insn_before (then_bb, then_first_tail);
547 if (else_end)
548 else_end = find_active_insn_before (else_bb, else_first_tail);
549 n_insns -= 2 * n_matching;
552 if (then_start
553 && else_start
554 && then_n_insns > n_matching
555 && else_n_insns > n_matching)
557 int longest_match = MIN (then_n_insns - n_matching,
558 else_n_insns - n_matching);
559 n_matching
560 = flow_find_head_matching_sequence (then_bb, else_bb,
561 &then_last_head,
562 &else_last_head,
563 longest_match);
565 if (n_matching > 0)
567 rtx_insn *insn;
569 /* We won't pass the insns in the head sequence to
570 cond_exec_process_insns, so we need to test them here
571 to make sure that they don't clobber the condition. */
572 for (insn = BB_HEAD (then_bb);
573 insn != NEXT_INSN (then_last_head);
574 insn = NEXT_INSN (insn))
575 if (!LABEL_P (insn) && !NOTE_P (insn)
576 && !DEBUG_INSN_P (insn)
577 && modified_in_p (test_expr, insn))
578 return FALSE;
581 if (then_last_head == then_end)
582 then_start = then_end = NULL;
583 if (else_last_head == else_end)
584 else_start = else_end = NULL;
586 if (n_matching > 0)
588 if (then_start)
589 then_start = find_active_insn_after (then_bb, then_last_head);
590 if (else_start)
591 else_start = find_active_insn_after (else_bb, else_last_head);
592 n_insns -= 2 * n_matching;
597 if (n_insns > max)
598 return FALSE;
600 /* Map test_expr/test_jump into the appropriate MD tests to use on
601 the conditionally executed code. */
603 true_expr = test_expr;
605 false_code = reversed_comparison_code (true_expr, BB_END (test_bb));
606 if (false_code != UNKNOWN)
607 false_expr = gen_rtx_fmt_ee (false_code, GET_MODE (true_expr),
608 XEXP (true_expr, 0), XEXP (true_expr, 1));
609 else
610 false_expr = NULL_RTX;
612 #ifdef IFCVT_MODIFY_TESTS
613 /* If the machine description needs to modify the tests, such as setting a
614 conditional execution register from a comparison, it can do so here. */
615 IFCVT_MODIFY_TESTS (ce_info, true_expr, false_expr);
617 /* See if the conversion failed. */
618 if (!true_expr || !false_expr)
619 goto fail;
620 #endif
622 note = find_reg_note (BB_END (test_bb), REG_BR_PROB, NULL_RTX);
623 if (note)
625 true_prob_val = XINT (note, 0);
626 false_prob_val = REG_BR_PROB_BASE - true_prob_val;
628 else
630 true_prob_val = -1;
631 false_prob_val = -1;
634 /* If we have && or || tests, do them here. These tests are in the adjacent
635 blocks after the first block containing the test. */
636 if (ce_info->num_multiple_test_blocks > 0)
638 basic_block bb = test_bb;
639 basic_block last_test_bb = ce_info->last_test_bb;
641 if (! false_expr)
642 goto fail;
646 rtx_insn *start, *end;
647 rtx t, f;
648 enum rtx_code f_code;
650 bb = block_fallthru (bb);
651 start = first_active_insn (bb);
652 end = last_active_insn (bb, TRUE);
653 if (start
654 && ! cond_exec_process_insns (ce_info, start, end, false_expr,
655 false_prob_val, FALSE))
656 goto fail;
658 /* If the conditional jump is more than just a conditional jump, then
659 we can not do conditional execution conversion on this block. */
660 if (! onlyjump_p (BB_END (bb)))
661 goto fail;
663 /* Find the conditional jump and isolate the test. */
664 t = cond_exec_get_condition (BB_END (bb));
665 if (! t)
666 goto fail;
668 f_code = reversed_comparison_code (t, BB_END (bb));
669 if (f_code == UNKNOWN)
670 goto fail;
672 f = gen_rtx_fmt_ee (f_code, GET_MODE (t), XEXP (t, 0), XEXP (t, 1));
673 if (ce_info->and_and_p)
675 t = gen_rtx_AND (GET_MODE (t), true_expr, t);
676 f = gen_rtx_IOR (GET_MODE (t), false_expr, f);
678 else
680 t = gen_rtx_IOR (GET_MODE (t), true_expr, t);
681 f = gen_rtx_AND (GET_MODE (t), false_expr, f);
684 /* If the machine description needs to modify the tests, such as
685 setting a conditional execution register from a comparison, it can
686 do so here. */
687 #ifdef IFCVT_MODIFY_MULTIPLE_TESTS
688 IFCVT_MODIFY_MULTIPLE_TESTS (ce_info, bb, t, f);
690 /* See if the conversion failed. */
691 if (!t || !f)
692 goto fail;
693 #endif
695 true_expr = t;
696 false_expr = f;
698 while (bb != last_test_bb);
701 /* For IF-THEN-ELSE blocks, we don't allow modifications of the test
702 on then THEN block. */
703 then_mod_ok = (else_bb == NULL_BLOCK);
705 /* Go through the THEN and ELSE blocks converting the insns if possible
706 to conditional execution. */
708 if (then_end
709 && (! false_expr
710 || ! cond_exec_process_insns (ce_info, then_start, then_end,
711 false_expr, false_prob_val,
712 then_mod_ok)))
713 goto fail;
715 if (else_bb && else_end
716 && ! cond_exec_process_insns (ce_info, else_start, else_end,
717 true_expr, true_prob_val, TRUE))
718 goto fail;
720 /* If we cannot apply the changes, fail. Do not go through the normal fail
721 processing, since apply_change_group will call cancel_changes. */
722 if (! apply_change_group ())
724 #ifdef IFCVT_MODIFY_CANCEL
725 /* Cancel any machine dependent changes. */
726 IFCVT_MODIFY_CANCEL (ce_info);
727 #endif
728 return FALSE;
731 #ifdef IFCVT_MODIFY_FINAL
732 /* Do any machine dependent final modifications. */
733 IFCVT_MODIFY_FINAL (ce_info);
734 #endif
736 /* Conversion succeeded. */
737 if (dump_file)
738 fprintf (dump_file, "%d insn%s converted to conditional execution.\n",
739 n_insns, (n_insns == 1) ? " was" : "s were");
741 /* Merge the blocks! If we had matching sequences, make sure to delete one
742 copy at the appropriate location first: delete the copy in the THEN branch
743 for a tail sequence so that the remaining one is executed last for both
744 branches, and delete the copy in the ELSE branch for a head sequence so
745 that the remaining one is executed first for both branches. */
746 if (then_first_tail)
748 rtx_insn *from = then_first_tail;
749 if (!INSN_P (from))
750 from = find_active_insn_after (then_bb, from);
751 delete_insn_chain (from, BB_END (then_bb), false);
753 if (else_last_head)
754 delete_insn_chain (first_active_insn (else_bb), else_last_head, false);
756 merge_if_block (ce_info);
757 cond_exec_changed_p = TRUE;
758 return TRUE;
760 fail:
761 #ifdef IFCVT_MODIFY_CANCEL
762 /* Cancel any machine dependent changes. */
763 IFCVT_MODIFY_CANCEL (ce_info);
764 #endif
766 cancel_changes (0);
767 return FALSE;
770 /* Used by noce_process_if_block to communicate with its subroutines.
772 The subroutines know that A and B may be evaluated freely. They
773 know that X is a register. They should insert new instructions
774 before cond_earliest. */
776 struct noce_if_info
778 /* The basic blocks that make up the IF-THEN-{ELSE-,}JOIN block. */
779 basic_block test_bb, then_bb, else_bb, join_bb;
781 /* The jump that ends TEST_BB. */
782 rtx_insn *jump;
784 /* The jump condition. */
785 rtx cond;
787 /* New insns should be inserted before this one. */
788 rtx_insn *cond_earliest;
790 /* Insns in the THEN and ELSE block. There is always just this
791 one insns in those blocks. The insns are single_set insns.
792 If there was no ELSE block, INSN_B is the last insn before
793 COND_EARLIEST, or NULL_RTX. In the former case, the insn
794 operands are still valid, as if INSN_B was moved down below
795 the jump. */
796 rtx_insn *insn_a, *insn_b;
798 /* The SET_SRC of INSN_A and INSN_B. */
799 rtx a, b;
801 /* The SET_DEST of INSN_A. */
802 rtx x;
804 /* True if this if block is not canonical. In the canonical form of
805 if blocks, the THEN_BB is the block reached via the fallthru edge
806 from TEST_BB. For the noce transformations, we allow the symmetric
807 form as well. */
808 bool then_else_reversed;
810 /* Estimated cost of the particular branch instruction. */
811 int branch_cost;
814 static rtx noce_emit_store_flag (struct noce_if_info *, rtx, int, int);
815 static int noce_try_move (struct noce_if_info *);
816 static int noce_try_store_flag (struct noce_if_info *);
817 static int noce_try_addcc (struct noce_if_info *);
818 static int noce_try_store_flag_constants (struct noce_if_info *);
819 static int noce_try_store_flag_mask (struct noce_if_info *);
820 static rtx noce_emit_cmove (struct noce_if_info *, rtx, enum rtx_code, rtx,
821 rtx, rtx, rtx);
822 static int noce_try_cmove (struct noce_if_info *);
823 static int noce_try_cmove_arith (struct noce_if_info *);
824 static rtx noce_get_alt_condition (struct noce_if_info *, rtx, rtx_insn **);
825 static int noce_try_minmax (struct noce_if_info *);
826 static int noce_try_abs (struct noce_if_info *);
827 static int noce_try_sign_mask (struct noce_if_info *);
829 /* Helper function for noce_try_store_flag*. */
831 static rtx
832 noce_emit_store_flag (struct noce_if_info *if_info, rtx x, int reversep,
833 int normalize)
835 rtx cond = if_info->cond;
836 int cond_complex;
837 enum rtx_code code;
839 cond_complex = (! general_operand (XEXP (cond, 0), VOIDmode)
840 || ! general_operand (XEXP (cond, 1), VOIDmode));
842 /* If earliest == jump, or when the condition is complex, try to
843 build the store_flag insn directly. */
845 if (cond_complex)
847 rtx set = pc_set (if_info->jump);
848 cond = XEXP (SET_SRC (set), 0);
849 if (GET_CODE (XEXP (SET_SRC (set), 2)) == LABEL_REF
850 && LABEL_REF_LABEL (XEXP (SET_SRC (set), 2)) == JUMP_LABEL (if_info->jump))
851 reversep = !reversep;
852 if (if_info->then_else_reversed)
853 reversep = !reversep;
856 if (reversep)
857 code = reversed_comparison_code (cond, if_info->jump);
858 else
859 code = GET_CODE (cond);
861 if ((if_info->cond_earliest == if_info->jump || cond_complex)
862 && (normalize == 0 || STORE_FLAG_VALUE == normalize))
864 rtx src = gen_rtx_fmt_ee (code, GET_MODE (x), XEXP (cond, 0),
865 XEXP (cond, 1));
866 rtx set = gen_rtx_SET (VOIDmode, x, src);
868 start_sequence ();
869 rtx_insn *insn = emit_insn (set);
871 if (recog_memoized (insn) >= 0)
873 rtx_insn *seq = get_insns ();
874 end_sequence ();
875 emit_insn (seq);
877 if_info->cond_earliest = if_info->jump;
879 return x;
882 end_sequence ();
885 /* Don't even try if the comparison operands or the mode of X are weird. */
886 if (cond_complex || !SCALAR_INT_MODE_P (GET_MODE (x)))
887 return NULL_RTX;
889 return emit_store_flag (x, code, XEXP (cond, 0),
890 XEXP (cond, 1), VOIDmode,
891 (code == LTU || code == LEU
892 || code == GEU || code == GTU), normalize);
895 /* Emit instruction to move an rtx, possibly into STRICT_LOW_PART.
896 X is the destination/target and Y is the value to copy. */
898 static void
899 noce_emit_move_insn (rtx x, rtx y)
901 enum machine_mode outmode;
902 rtx outer, inner;
903 int bitpos;
905 if (GET_CODE (x) != STRICT_LOW_PART)
907 rtx_insn *seq, *insn;
908 rtx target;
909 optab ot;
911 start_sequence ();
912 /* Check that the SET_SRC is reasonable before calling emit_move_insn,
913 otherwise construct a suitable SET pattern ourselves. */
914 insn = (OBJECT_P (y) || CONSTANT_P (y) || GET_CODE (y) == SUBREG)
915 ? emit_move_insn (x, y)
916 : emit_insn (gen_rtx_SET (VOIDmode, x, y));
917 seq = get_insns ();
918 end_sequence ();
920 if (recog_memoized (insn) <= 0)
922 if (GET_CODE (x) == ZERO_EXTRACT)
924 rtx op = XEXP (x, 0);
925 unsigned HOST_WIDE_INT size = INTVAL (XEXP (x, 1));
926 unsigned HOST_WIDE_INT start = INTVAL (XEXP (x, 2));
928 /* store_bit_field expects START to be relative to
929 BYTES_BIG_ENDIAN and adjusts this value for machines with
930 BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN. In order to be able to
931 invoke store_bit_field again it is necessary to have the START
932 value from the first call. */
933 if (BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
935 if (MEM_P (op))
936 start = BITS_PER_UNIT - start - size;
937 else
939 gcc_assert (REG_P (op));
940 start = BITS_PER_WORD - start - size;
944 gcc_assert (start < (MEM_P (op) ? BITS_PER_UNIT : BITS_PER_WORD));
945 store_bit_field (op, size, start, 0, 0, GET_MODE (x), y);
946 return;
949 switch (GET_RTX_CLASS (GET_CODE (y)))
951 case RTX_UNARY:
952 ot = code_to_optab (GET_CODE (y));
953 if (ot)
955 start_sequence ();
956 target = expand_unop (GET_MODE (y), ot, XEXP (y, 0), x, 0);
957 if (target != NULL_RTX)
959 if (target != x)
960 emit_move_insn (x, target);
961 seq = get_insns ();
963 end_sequence ();
965 break;
967 case RTX_BIN_ARITH:
968 case RTX_COMM_ARITH:
969 ot = code_to_optab (GET_CODE (y));
970 if (ot)
972 start_sequence ();
973 target = expand_binop (GET_MODE (y), ot,
974 XEXP (y, 0), XEXP (y, 1),
975 x, 0, OPTAB_DIRECT);
976 if (target != NULL_RTX)
978 if (target != x)
979 emit_move_insn (x, target);
980 seq = get_insns ();
982 end_sequence ();
984 break;
986 default:
987 break;
991 emit_insn (seq);
992 return;
995 outer = XEXP (x, 0);
996 inner = XEXP (outer, 0);
997 outmode = GET_MODE (outer);
998 bitpos = SUBREG_BYTE (outer) * BITS_PER_UNIT;
999 store_bit_field (inner, GET_MODE_BITSIZE (outmode), bitpos,
1000 0, 0, outmode, y);
1003 /* Return sequence of instructions generated by if conversion. This
1004 function calls end_sequence() to end the current stream, ensures
1005 that are instructions are unshared, recognizable non-jump insns.
1006 On failure, this function returns a NULL_RTX. */
1008 static rtx_insn *
1009 end_ifcvt_sequence (struct noce_if_info *if_info)
1011 rtx_insn *insn;
1012 rtx_insn *seq = get_insns ();
1014 set_used_flags (if_info->x);
1015 set_used_flags (if_info->cond);
1016 set_used_flags (if_info->a);
1017 set_used_flags (if_info->b);
1018 unshare_all_rtl_in_chain (seq);
1019 end_sequence ();
1021 /* Make sure that all of the instructions emitted are recognizable,
1022 and that we haven't introduced a new jump instruction.
1023 As an exercise for the reader, build a general mechanism that
1024 allows proper placement of required clobbers. */
1025 for (insn = seq; insn; insn = NEXT_INSN (insn))
1026 if (JUMP_P (insn)
1027 || recog_memoized (insn) == -1)
1028 return NULL;
1030 return seq;
1033 /* Convert "if (a != b) x = a; else x = b" into "x = a" and
1034 "if (a == b) x = a; else x = b" into "x = b". */
1036 static int
1037 noce_try_move (struct noce_if_info *if_info)
1039 rtx cond = if_info->cond;
1040 enum rtx_code code = GET_CODE (cond);
1041 rtx y;
1042 rtx_insn *seq;
1044 if (code != NE && code != EQ)
1045 return FALSE;
1047 /* This optimization isn't valid if either A or B could be a NaN
1048 or a signed zero. */
1049 if (HONOR_NANS (GET_MODE (if_info->x))
1050 || HONOR_SIGNED_ZEROS (GET_MODE (if_info->x)))
1051 return FALSE;
1053 /* Check whether the operands of the comparison are A and in
1054 either order. */
1055 if ((rtx_equal_p (if_info->a, XEXP (cond, 0))
1056 && rtx_equal_p (if_info->b, XEXP (cond, 1)))
1057 || (rtx_equal_p (if_info->a, XEXP (cond, 1))
1058 && rtx_equal_p (if_info->b, XEXP (cond, 0))))
1060 if (!rtx_interchangeable_p (if_info->a, if_info->b))
1061 return FALSE;
1063 y = (code == EQ) ? if_info->a : if_info->b;
1065 /* Avoid generating the move if the source is the destination. */
1066 if (! rtx_equal_p (if_info->x, y))
1068 start_sequence ();
1069 noce_emit_move_insn (if_info->x, y);
1070 seq = end_ifcvt_sequence (if_info);
1071 if (!seq)
1072 return FALSE;
1074 emit_insn_before_setloc (seq, if_info->jump,
1075 INSN_LOCATION (if_info->insn_a));
1077 return TRUE;
1079 return FALSE;
1082 /* Convert "if (test) x = 1; else x = 0".
1084 Only try 0 and STORE_FLAG_VALUE here. Other combinations will be
1085 tried in noce_try_store_flag_constants after noce_try_cmove has had
1086 a go at the conversion. */
1088 static int
1089 noce_try_store_flag (struct noce_if_info *if_info)
1091 int reversep;
1092 rtx target;
1093 rtx_insn *seq;
1095 if (CONST_INT_P (if_info->b)
1096 && INTVAL (if_info->b) == STORE_FLAG_VALUE
1097 && if_info->a == const0_rtx)
1098 reversep = 0;
1099 else if (if_info->b == const0_rtx
1100 && CONST_INT_P (if_info->a)
1101 && INTVAL (if_info->a) == STORE_FLAG_VALUE
1102 && (reversed_comparison_code (if_info->cond, if_info->jump)
1103 != UNKNOWN))
1104 reversep = 1;
1105 else
1106 return FALSE;
1108 start_sequence ();
1110 target = noce_emit_store_flag (if_info, if_info->x, reversep, 0);
1111 if (target)
1113 if (target != if_info->x)
1114 noce_emit_move_insn (if_info->x, target);
1116 seq = end_ifcvt_sequence (if_info);
1117 if (! seq)
1118 return FALSE;
1120 emit_insn_before_setloc (seq, if_info->jump,
1121 INSN_LOCATION (if_info->insn_a));
1122 return TRUE;
1124 else
1126 end_sequence ();
1127 return FALSE;
1131 /* Convert "if (test) x = a; else x = b", for A and B constant. */
1133 static int
1134 noce_try_store_flag_constants (struct noce_if_info *if_info)
1136 rtx target;
1137 rtx_insn *seq;
1138 int reversep;
1139 HOST_WIDE_INT itrue, ifalse, diff, tmp;
1140 int normalize, can_reverse;
1141 enum machine_mode mode;
1143 if (CONST_INT_P (if_info->a)
1144 && CONST_INT_P (if_info->b))
1146 mode = GET_MODE (if_info->x);
1147 ifalse = INTVAL (if_info->a);
1148 itrue = INTVAL (if_info->b);
1150 diff = (unsigned HOST_WIDE_INT) itrue - ifalse;
1151 /* Make sure we can represent the difference between the two values. */
1152 if ((diff > 0)
1153 != ((ifalse < 0) != (itrue < 0) ? ifalse < 0 : ifalse < itrue))
1154 return FALSE;
1156 diff = trunc_int_for_mode (diff, mode);
1158 can_reverse = (reversed_comparison_code (if_info->cond, if_info->jump)
1159 != UNKNOWN);
1161 reversep = 0;
1162 if (diff == STORE_FLAG_VALUE || diff == -STORE_FLAG_VALUE)
1163 normalize = 0;
1164 else if (ifalse == 0 && exact_log2 (itrue) >= 0
1165 && (STORE_FLAG_VALUE == 1
1166 || if_info->branch_cost >= 2))
1167 normalize = 1;
1168 else if (itrue == 0 && exact_log2 (ifalse) >= 0 && can_reverse
1169 && (STORE_FLAG_VALUE == 1 || if_info->branch_cost >= 2))
1170 normalize = 1, reversep = 1;
1171 else if (itrue == -1
1172 && (STORE_FLAG_VALUE == -1
1173 || if_info->branch_cost >= 2))
1174 normalize = -1;
1175 else if (ifalse == -1 && can_reverse
1176 && (STORE_FLAG_VALUE == -1 || if_info->branch_cost >= 2))
1177 normalize = -1, reversep = 1;
1178 else if ((if_info->branch_cost >= 2 && STORE_FLAG_VALUE == -1)
1179 || if_info->branch_cost >= 3)
1180 normalize = -1;
1181 else
1182 return FALSE;
1184 if (reversep)
1186 tmp = itrue; itrue = ifalse; ifalse = tmp;
1187 diff = trunc_int_for_mode (-(unsigned HOST_WIDE_INT) diff, mode);
1190 start_sequence ();
1191 target = noce_emit_store_flag (if_info, if_info->x, reversep, normalize);
1192 if (! target)
1194 end_sequence ();
1195 return FALSE;
1198 /* if (test) x = 3; else x = 4;
1199 => x = 3 + (test == 0); */
1200 if (diff == STORE_FLAG_VALUE || diff == -STORE_FLAG_VALUE)
1202 target = expand_simple_binop (mode,
1203 (diff == STORE_FLAG_VALUE
1204 ? PLUS : MINUS),
1205 gen_int_mode (ifalse, mode), target,
1206 if_info->x, 0, OPTAB_WIDEN);
1209 /* if (test) x = 8; else x = 0;
1210 => x = (test != 0) << 3; */
1211 else if (ifalse == 0 && (tmp = exact_log2 (itrue)) >= 0)
1213 target = expand_simple_binop (mode, ASHIFT,
1214 target, GEN_INT (tmp), if_info->x, 0,
1215 OPTAB_WIDEN);
1218 /* if (test) x = -1; else x = b;
1219 => x = -(test != 0) | b; */
1220 else if (itrue == -1)
1222 target = expand_simple_binop (mode, IOR,
1223 target, gen_int_mode (ifalse, mode),
1224 if_info->x, 0, OPTAB_WIDEN);
1227 /* if (test) x = a; else x = b;
1228 => x = (-(test != 0) & (b - a)) + a; */
1229 else
1231 target = expand_simple_binop (mode, AND,
1232 target, gen_int_mode (diff, mode),
1233 if_info->x, 0, OPTAB_WIDEN);
1234 if (target)
1235 target = expand_simple_binop (mode, PLUS,
1236 target, gen_int_mode (ifalse, mode),
1237 if_info->x, 0, OPTAB_WIDEN);
1240 if (! target)
1242 end_sequence ();
1243 return FALSE;
1246 if (target != if_info->x)
1247 noce_emit_move_insn (if_info->x, target);
1249 seq = end_ifcvt_sequence (if_info);
1250 if (!seq)
1251 return FALSE;
1253 emit_insn_before_setloc (seq, if_info->jump,
1254 INSN_LOCATION (if_info->insn_a));
1255 return TRUE;
1258 return FALSE;
1261 /* Convert "if (test) foo++" into "foo += (test != 0)", and
1262 similarly for "foo--". */
1264 static int
1265 noce_try_addcc (struct noce_if_info *if_info)
1267 rtx target;
1268 rtx_insn *seq;
1269 int subtract, normalize;
1271 if (GET_CODE (if_info->a) == PLUS
1272 && rtx_equal_p (XEXP (if_info->a, 0), if_info->b)
1273 && (reversed_comparison_code (if_info->cond, if_info->jump)
1274 != UNKNOWN))
1276 rtx cond = if_info->cond;
1277 enum rtx_code code = reversed_comparison_code (cond, if_info->jump);
1279 /* First try to use addcc pattern. */
1280 if (general_operand (XEXP (cond, 0), VOIDmode)
1281 && general_operand (XEXP (cond, 1), VOIDmode))
1283 start_sequence ();
1284 target = emit_conditional_add (if_info->x, code,
1285 XEXP (cond, 0),
1286 XEXP (cond, 1),
1287 VOIDmode,
1288 if_info->b,
1289 XEXP (if_info->a, 1),
1290 GET_MODE (if_info->x),
1291 (code == LTU || code == GEU
1292 || code == LEU || code == GTU));
1293 if (target)
1295 if (target != if_info->x)
1296 noce_emit_move_insn (if_info->x, target);
1298 seq = end_ifcvt_sequence (if_info);
1299 if (!seq)
1300 return FALSE;
1302 emit_insn_before_setloc (seq, if_info->jump,
1303 INSN_LOCATION (if_info->insn_a));
1304 return TRUE;
1306 end_sequence ();
1309 /* If that fails, construct conditional increment or decrement using
1310 setcc. */
1311 if (if_info->branch_cost >= 2
1312 && (XEXP (if_info->a, 1) == const1_rtx
1313 || XEXP (if_info->a, 1) == constm1_rtx))
1315 start_sequence ();
1316 if (STORE_FLAG_VALUE == INTVAL (XEXP (if_info->a, 1)))
1317 subtract = 0, normalize = 0;
1318 else if (-STORE_FLAG_VALUE == INTVAL (XEXP (if_info->a, 1)))
1319 subtract = 1, normalize = 0;
1320 else
1321 subtract = 0, normalize = INTVAL (XEXP (if_info->a, 1));
1324 target = noce_emit_store_flag (if_info,
1325 gen_reg_rtx (GET_MODE (if_info->x)),
1326 1, normalize);
1328 if (target)
1329 target = expand_simple_binop (GET_MODE (if_info->x),
1330 subtract ? MINUS : PLUS,
1331 if_info->b, target, if_info->x,
1332 0, OPTAB_WIDEN);
1333 if (target)
1335 if (target != if_info->x)
1336 noce_emit_move_insn (if_info->x, target);
1338 seq = end_ifcvt_sequence (if_info);
1339 if (!seq)
1340 return FALSE;
1342 emit_insn_before_setloc (seq, if_info->jump,
1343 INSN_LOCATION (if_info->insn_a));
1344 return TRUE;
1346 end_sequence ();
1350 return FALSE;
1353 /* Convert "if (test) x = 0;" to "x &= -(test == 0);" */
1355 static int
1356 noce_try_store_flag_mask (struct noce_if_info *if_info)
1358 rtx target;
1359 rtx_insn *seq;
1360 int reversep;
1362 reversep = 0;
1363 if ((if_info->branch_cost >= 2
1364 || STORE_FLAG_VALUE == -1)
1365 && ((if_info->a == const0_rtx
1366 && rtx_equal_p (if_info->b, if_info->x))
1367 || ((reversep = (reversed_comparison_code (if_info->cond,
1368 if_info->jump)
1369 != UNKNOWN))
1370 && if_info->b == const0_rtx
1371 && rtx_equal_p (if_info->a, if_info->x))))
1373 start_sequence ();
1374 target = noce_emit_store_flag (if_info,
1375 gen_reg_rtx (GET_MODE (if_info->x)),
1376 reversep, -1);
1377 if (target)
1378 target = expand_simple_binop (GET_MODE (if_info->x), AND,
1379 if_info->x,
1380 target, if_info->x, 0,
1381 OPTAB_WIDEN);
1383 if (target)
1385 if (target != if_info->x)
1386 noce_emit_move_insn (if_info->x, target);
1388 seq = end_ifcvt_sequence (if_info);
1389 if (!seq)
1390 return FALSE;
1392 emit_insn_before_setloc (seq, if_info->jump,
1393 INSN_LOCATION (if_info->insn_a));
1394 return TRUE;
1397 end_sequence ();
1400 return FALSE;
1403 /* Helper function for noce_try_cmove and noce_try_cmove_arith. */
1405 static rtx
1406 noce_emit_cmove (struct noce_if_info *if_info, rtx x, enum rtx_code code,
1407 rtx cmp_a, rtx cmp_b, rtx vfalse, rtx vtrue)
1409 rtx target ATTRIBUTE_UNUSED;
1410 int unsignedp ATTRIBUTE_UNUSED;
1412 /* If earliest == jump, try to build the cmove insn directly.
1413 This is helpful when combine has created some complex condition
1414 (like for alpha's cmovlbs) that we can't hope to regenerate
1415 through the normal interface. */
1417 if (if_info->cond_earliest == if_info->jump)
1419 rtx cond = gen_rtx_fmt_ee (code, GET_MODE (if_info->cond), cmp_a, cmp_b);
1420 rtx if_then_else = gen_rtx_IF_THEN_ELSE (GET_MODE (x),
1421 cond, vtrue, vfalse);
1422 rtx set = gen_rtx_SET (VOIDmode, x, if_then_else);
1424 start_sequence ();
1425 rtx_insn *insn = emit_insn (set);
1427 if (recog_memoized (insn) >= 0)
1429 rtx_insn *seq = get_insns ();
1430 end_sequence ();
1431 emit_insn (seq);
1433 return x;
1436 end_sequence ();
1439 /* Don't even try if the comparison operands are weird. */
1440 if (! general_operand (cmp_a, GET_MODE (cmp_a))
1441 || ! general_operand (cmp_b, GET_MODE (cmp_b)))
1442 return NULL_RTX;
1444 #if HAVE_conditional_move
1445 unsignedp = (code == LTU || code == GEU
1446 || code == LEU || code == GTU);
1448 target = emit_conditional_move (x, code, cmp_a, cmp_b, VOIDmode,
1449 vtrue, vfalse, GET_MODE (x),
1450 unsignedp);
1451 if (target)
1452 return target;
1454 /* We might be faced with a situation like:
1456 x = (reg:M TARGET)
1457 vtrue = (subreg:M (reg:N VTRUE) BYTE)
1458 vfalse = (subreg:M (reg:N VFALSE) BYTE)
1460 We can't do a conditional move in mode M, but it's possible that we
1461 could do a conditional move in mode N instead and take a subreg of
1462 the result.
1464 If we can't create new pseudos, though, don't bother. */
1465 if (reload_completed)
1466 return NULL_RTX;
1468 if (GET_CODE (vtrue) == SUBREG && GET_CODE (vfalse) == SUBREG)
1470 rtx reg_vtrue = SUBREG_REG (vtrue);
1471 rtx reg_vfalse = SUBREG_REG (vfalse);
1472 unsigned int byte_vtrue = SUBREG_BYTE (vtrue);
1473 unsigned int byte_vfalse = SUBREG_BYTE (vfalse);
1474 rtx promoted_target;
1476 if (GET_MODE (reg_vtrue) != GET_MODE (reg_vfalse)
1477 || byte_vtrue != byte_vfalse
1478 || (SUBREG_PROMOTED_VAR_P (vtrue)
1479 != SUBREG_PROMOTED_VAR_P (vfalse))
1480 || (SUBREG_PROMOTED_GET (vtrue)
1481 != SUBREG_PROMOTED_GET (vfalse)))
1482 return NULL_RTX;
1484 promoted_target = gen_reg_rtx (GET_MODE (reg_vtrue));
1486 target = emit_conditional_move (promoted_target, code, cmp_a, cmp_b,
1487 VOIDmode, reg_vtrue, reg_vfalse,
1488 GET_MODE (reg_vtrue), unsignedp);
1489 /* Nope, couldn't do it in that mode either. */
1490 if (!target)
1491 return NULL_RTX;
1493 target = gen_rtx_SUBREG (GET_MODE (vtrue), promoted_target, byte_vtrue);
1494 SUBREG_PROMOTED_VAR_P (target) = SUBREG_PROMOTED_VAR_P (vtrue);
1495 SUBREG_PROMOTED_SET (target, SUBREG_PROMOTED_GET (vtrue));
1496 emit_move_insn (x, target);
1497 return x;
1499 else
1500 return NULL_RTX;
1501 #else
1502 /* We'll never get here, as noce_process_if_block doesn't call the
1503 functions involved. Ifdef code, however, should be discouraged
1504 because it leads to typos in the code not selected. However,
1505 emit_conditional_move won't exist either. */
1506 return NULL_RTX;
1507 #endif
1510 /* Try only simple constants and registers here. More complex cases
1511 are handled in noce_try_cmove_arith after noce_try_store_flag_arith
1512 has had a go at it. */
1514 static int
1515 noce_try_cmove (struct noce_if_info *if_info)
1517 enum rtx_code code;
1518 rtx target;
1519 rtx_insn *seq;
1521 if ((CONSTANT_P (if_info->a) || register_operand (if_info->a, VOIDmode))
1522 && (CONSTANT_P (if_info->b) || register_operand (if_info->b, VOIDmode)))
1524 start_sequence ();
1526 code = GET_CODE (if_info->cond);
1527 target = noce_emit_cmove (if_info, if_info->x, code,
1528 XEXP (if_info->cond, 0),
1529 XEXP (if_info->cond, 1),
1530 if_info->a, if_info->b);
1532 if (target)
1534 if (target != if_info->x)
1535 noce_emit_move_insn (if_info->x, target);
1537 seq = end_ifcvt_sequence (if_info);
1538 if (!seq)
1539 return FALSE;
1541 emit_insn_before_setloc (seq, if_info->jump,
1542 INSN_LOCATION (if_info->insn_a));
1543 return TRUE;
1545 else
1547 end_sequence ();
1548 return FALSE;
1552 return FALSE;
1555 /* Try more complex cases involving conditional_move. */
1557 static int
1558 noce_try_cmove_arith (struct noce_if_info *if_info)
1560 rtx a = if_info->a;
1561 rtx b = if_info->b;
1562 rtx x = if_info->x;
1563 rtx orig_a, orig_b;
1564 rtx_insn *insn_a, *insn_b;
1565 rtx target;
1566 int is_mem = 0;
1567 int insn_cost;
1568 enum rtx_code code;
1569 rtx_insn *ifcvt_seq;
1571 /* A conditional move from two memory sources is equivalent to a
1572 conditional on their addresses followed by a load. Don't do this
1573 early because it'll screw alias analysis. Note that we've
1574 already checked for no side effects. */
1575 /* ??? FIXME: Magic number 5. */
1576 if (cse_not_expected
1577 && MEM_P (a) && MEM_P (b)
1578 && MEM_ADDR_SPACE (a) == MEM_ADDR_SPACE (b)
1579 && if_info->branch_cost >= 5)
1581 enum machine_mode address_mode = get_address_mode (a);
1583 a = XEXP (a, 0);
1584 b = XEXP (b, 0);
1585 x = gen_reg_rtx (address_mode);
1586 is_mem = 1;
1589 /* ??? We could handle this if we knew that a load from A or B could
1590 not trap or fault. This is also true if we've already loaded
1591 from the address along the path from ENTRY. */
1592 else if (may_trap_or_fault_p (a) || may_trap_or_fault_p (b))
1593 return FALSE;
1595 /* if (test) x = a + b; else x = c - d;
1596 => y = a + b;
1597 x = c - d;
1598 if (test)
1599 x = y;
1602 code = GET_CODE (if_info->cond);
1603 insn_a = if_info->insn_a;
1604 insn_b = if_info->insn_b;
1606 /* Total insn_rtx_cost should be smaller than branch cost. Exit
1607 if insn_rtx_cost can't be estimated. */
1608 if (insn_a)
1610 insn_cost
1611 = insn_rtx_cost (PATTERN (insn_a),
1612 optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn_a)));
1613 if (insn_cost == 0 || insn_cost > COSTS_N_INSNS (if_info->branch_cost))
1614 return FALSE;
1616 else
1617 insn_cost = 0;
1619 if (insn_b)
1621 insn_cost
1622 += insn_rtx_cost (PATTERN (insn_b),
1623 optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn_b)));
1624 if (insn_cost == 0 || insn_cost > COSTS_N_INSNS (if_info->branch_cost))
1625 return FALSE;
1628 /* Possibly rearrange operands to make things come out more natural. */
1629 if (reversed_comparison_code (if_info->cond, if_info->jump) != UNKNOWN)
1631 int reversep = 0;
1632 if (rtx_equal_p (b, x))
1633 reversep = 1;
1634 else if (general_operand (b, GET_MODE (b)))
1635 reversep = 1;
1637 if (reversep)
1639 rtx tmp;
1640 rtx_insn *tmp_insn;
1641 code = reversed_comparison_code (if_info->cond, if_info->jump);
1642 tmp = a, a = b, b = tmp;
1643 tmp_insn = insn_a, insn_a = insn_b, insn_b = tmp_insn;
1647 start_sequence ();
1649 orig_a = a;
1650 orig_b = b;
1652 /* If either operand is complex, load it into a register first.
1653 The best way to do this is to copy the original insn. In this
1654 way we preserve any clobbers etc that the insn may have had.
1655 This is of course not possible in the IS_MEM case. */
1656 if (! general_operand (a, GET_MODE (a)))
1658 rtx_insn *insn;
1660 if (is_mem)
1662 rtx reg = gen_reg_rtx (GET_MODE (a));
1663 insn = emit_insn (gen_rtx_SET (VOIDmode, reg, a));
1665 else if (! insn_a)
1666 goto end_seq_and_fail;
1667 else
1669 a = gen_reg_rtx (GET_MODE (a));
1670 rtx_insn *copy_of_a = as_a <rtx_insn *> (copy_rtx (insn_a));
1671 rtx set = single_set (copy_of_a);
1672 SET_DEST (set) = a;
1673 insn = emit_insn (PATTERN (copy_of_a));
1675 if (recog_memoized (insn) < 0)
1676 goto end_seq_and_fail;
1678 if (! general_operand (b, GET_MODE (b)))
1680 rtx pat;
1681 rtx_insn *last;
1682 rtx_insn *new_insn;
1684 if (is_mem)
1686 rtx reg = gen_reg_rtx (GET_MODE (b));
1687 pat = gen_rtx_SET (VOIDmode, reg, b);
1689 else if (! insn_b)
1690 goto end_seq_and_fail;
1691 else
1693 b = gen_reg_rtx (GET_MODE (b));
1694 rtx_insn *copy_of_insn_b = as_a <rtx_insn *> (copy_rtx (insn_b));
1695 rtx set = single_set (copy_of_insn_b);
1696 SET_DEST (set) = b;
1697 pat = PATTERN (copy_of_insn_b);
1700 /* If insn to set up A clobbers any registers B depends on, try to
1701 swap insn that sets up A with the one that sets up B. If even
1702 that doesn't help, punt. */
1703 last = get_last_insn ();
1704 if (last && modified_in_p (orig_b, last))
1706 new_insn = emit_insn_before (pat, get_insns ());
1707 if (modified_in_p (orig_a, new_insn))
1708 goto end_seq_and_fail;
1710 else
1711 new_insn = emit_insn (pat);
1713 if (recog_memoized (new_insn) < 0)
1714 goto end_seq_and_fail;
1717 target = noce_emit_cmove (if_info, x, code, XEXP (if_info->cond, 0),
1718 XEXP (if_info->cond, 1), a, b);
1720 if (! target)
1721 goto end_seq_and_fail;
1723 /* If we're handling a memory for above, emit the load now. */
1724 if (is_mem)
1726 rtx mem = gen_rtx_MEM (GET_MODE (if_info->x), target);
1728 /* Copy over flags as appropriate. */
1729 if (MEM_VOLATILE_P (if_info->a) || MEM_VOLATILE_P (if_info->b))
1730 MEM_VOLATILE_P (mem) = 1;
1731 if (MEM_ALIAS_SET (if_info->a) == MEM_ALIAS_SET (if_info->b))
1732 set_mem_alias_set (mem, MEM_ALIAS_SET (if_info->a));
1733 set_mem_align (mem,
1734 MIN (MEM_ALIGN (if_info->a), MEM_ALIGN (if_info->b)));
1736 gcc_assert (MEM_ADDR_SPACE (if_info->a) == MEM_ADDR_SPACE (if_info->b));
1737 set_mem_addr_space (mem, MEM_ADDR_SPACE (if_info->a));
1739 noce_emit_move_insn (if_info->x, mem);
1741 else if (target != x)
1742 noce_emit_move_insn (x, target);
1744 ifcvt_seq = end_ifcvt_sequence (if_info);
1745 if (!ifcvt_seq)
1746 return FALSE;
1748 emit_insn_before_setloc (ifcvt_seq, if_info->jump,
1749 INSN_LOCATION (if_info->insn_a));
1750 return TRUE;
1752 end_seq_and_fail:
1753 end_sequence ();
1754 return FALSE;
1757 /* For most cases, the simplified condition we found is the best
1758 choice, but this is not the case for the min/max/abs transforms.
1759 For these we wish to know that it is A or B in the condition. */
1761 static rtx
1762 noce_get_alt_condition (struct noce_if_info *if_info, rtx target,
1763 rtx_insn **earliest)
1765 rtx cond, set;
1766 rtx_insn *insn;
1767 int reverse;
1769 /* If target is already mentioned in the known condition, return it. */
1770 if (reg_mentioned_p (target, if_info->cond))
1772 *earliest = if_info->cond_earliest;
1773 return if_info->cond;
1776 set = pc_set (if_info->jump);
1777 cond = XEXP (SET_SRC (set), 0);
1778 reverse
1779 = GET_CODE (XEXP (SET_SRC (set), 2)) == LABEL_REF
1780 && LABEL_REF_LABEL (XEXP (SET_SRC (set), 2)) == JUMP_LABEL (if_info->jump);
1781 if (if_info->then_else_reversed)
1782 reverse = !reverse;
1784 /* If we're looking for a constant, try to make the conditional
1785 have that constant in it. There are two reasons why it may
1786 not have the constant we want:
1788 1. GCC may have needed to put the constant in a register, because
1789 the target can't compare directly against that constant. For
1790 this case, we look for a SET immediately before the comparison
1791 that puts a constant in that register.
1793 2. GCC may have canonicalized the conditional, for example
1794 replacing "if x < 4" with "if x <= 3". We can undo that (or
1795 make equivalent types of changes) to get the constants we need
1796 if they're off by one in the right direction. */
1798 if (CONST_INT_P (target))
1800 enum rtx_code code = GET_CODE (if_info->cond);
1801 rtx op_a = XEXP (if_info->cond, 0);
1802 rtx op_b = XEXP (if_info->cond, 1);
1803 rtx prev_insn;
1805 /* First, look to see if we put a constant in a register. */
1806 prev_insn = prev_nonnote_insn (if_info->cond_earliest);
1807 if (prev_insn
1808 && BLOCK_FOR_INSN (prev_insn)
1809 == BLOCK_FOR_INSN (if_info->cond_earliest)
1810 && INSN_P (prev_insn)
1811 && GET_CODE (PATTERN (prev_insn)) == SET)
1813 rtx src = find_reg_equal_equiv_note (prev_insn);
1814 if (!src)
1815 src = SET_SRC (PATTERN (prev_insn));
1816 if (CONST_INT_P (src))
1818 if (rtx_equal_p (op_a, SET_DEST (PATTERN (prev_insn))))
1819 op_a = src;
1820 else if (rtx_equal_p (op_b, SET_DEST (PATTERN (prev_insn))))
1821 op_b = src;
1823 if (CONST_INT_P (op_a))
1825 rtx tmp = op_a;
1826 op_a = op_b;
1827 op_b = tmp;
1828 code = swap_condition (code);
1833 /* Now, look to see if we can get the right constant by
1834 adjusting the conditional. */
1835 if (CONST_INT_P (op_b))
1837 HOST_WIDE_INT desired_val = INTVAL (target);
1838 HOST_WIDE_INT actual_val = INTVAL (op_b);
1840 switch (code)
1842 case LT:
1843 if (actual_val == desired_val + 1)
1845 code = LE;
1846 op_b = GEN_INT (desired_val);
1848 break;
1849 case LE:
1850 if (actual_val == desired_val - 1)
1852 code = LT;
1853 op_b = GEN_INT (desired_val);
1855 break;
1856 case GT:
1857 if (actual_val == desired_val - 1)
1859 code = GE;
1860 op_b = GEN_INT (desired_val);
1862 break;
1863 case GE:
1864 if (actual_val == desired_val + 1)
1866 code = GT;
1867 op_b = GEN_INT (desired_val);
1869 break;
1870 default:
1871 break;
1875 /* If we made any changes, generate a new conditional that is
1876 equivalent to what we started with, but has the right
1877 constants in it. */
1878 if (code != GET_CODE (if_info->cond)
1879 || op_a != XEXP (if_info->cond, 0)
1880 || op_b != XEXP (if_info->cond, 1))
1882 cond = gen_rtx_fmt_ee (code, GET_MODE (cond), op_a, op_b);
1883 *earliest = if_info->cond_earliest;
1884 return cond;
1888 cond = canonicalize_condition (if_info->jump, cond, reverse,
1889 earliest, target, false, true);
1890 if (! cond || ! reg_mentioned_p (target, cond))
1891 return NULL;
1893 /* We almost certainly searched back to a different place.
1894 Need to re-verify correct lifetimes. */
1896 /* X may not be mentioned in the range (cond_earliest, jump]. */
1897 for (insn = if_info->jump; insn != *earliest; insn = PREV_INSN (insn))
1898 if (INSN_P (insn) && reg_overlap_mentioned_p (if_info->x, PATTERN (insn)))
1899 return NULL;
1901 /* A and B may not be modified in the range [cond_earliest, jump). */
1902 for (insn = *earliest; insn != if_info->jump; insn = NEXT_INSN (insn))
1903 if (INSN_P (insn)
1904 && (modified_in_p (if_info->a, insn)
1905 || modified_in_p (if_info->b, insn)))
1906 return NULL;
1908 return cond;
1911 /* Convert "if (a < b) x = a; else x = b;" to "x = min(a, b);", etc. */
1913 static int
1914 noce_try_minmax (struct noce_if_info *if_info)
1916 rtx cond, target;
1917 rtx_insn *earliest, *seq;
1918 enum rtx_code code, op;
1919 int unsignedp;
1921 /* ??? Reject modes with NaNs or signed zeros since we don't know how
1922 they will be resolved with an SMIN/SMAX. It wouldn't be too hard
1923 to get the target to tell us... */
1924 if (HONOR_SIGNED_ZEROS (GET_MODE (if_info->x))
1925 || HONOR_NANS (GET_MODE (if_info->x)))
1926 return FALSE;
1928 cond = noce_get_alt_condition (if_info, if_info->a, &earliest);
1929 if (!cond)
1930 return FALSE;
1932 /* Verify the condition is of the form we expect, and canonicalize
1933 the comparison code. */
1934 code = GET_CODE (cond);
1935 if (rtx_equal_p (XEXP (cond, 0), if_info->a))
1937 if (! rtx_equal_p (XEXP (cond, 1), if_info->b))
1938 return FALSE;
1940 else if (rtx_equal_p (XEXP (cond, 1), if_info->a))
1942 if (! rtx_equal_p (XEXP (cond, 0), if_info->b))
1943 return FALSE;
1944 code = swap_condition (code);
1946 else
1947 return FALSE;
1949 /* Determine what sort of operation this is. Note that the code is for
1950 a taken branch, so the code->operation mapping appears backwards. */
1951 switch (code)
1953 case LT:
1954 case LE:
1955 case UNLT:
1956 case UNLE:
1957 op = SMAX;
1958 unsignedp = 0;
1959 break;
1960 case GT:
1961 case GE:
1962 case UNGT:
1963 case UNGE:
1964 op = SMIN;
1965 unsignedp = 0;
1966 break;
1967 case LTU:
1968 case LEU:
1969 op = UMAX;
1970 unsignedp = 1;
1971 break;
1972 case GTU:
1973 case GEU:
1974 op = UMIN;
1975 unsignedp = 1;
1976 break;
1977 default:
1978 return FALSE;
1981 start_sequence ();
1983 target = expand_simple_binop (GET_MODE (if_info->x), op,
1984 if_info->a, if_info->b,
1985 if_info->x, unsignedp, OPTAB_WIDEN);
1986 if (! target)
1988 end_sequence ();
1989 return FALSE;
1991 if (target != if_info->x)
1992 noce_emit_move_insn (if_info->x, target);
1994 seq = end_ifcvt_sequence (if_info);
1995 if (!seq)
1996 return FALSE;
1998 emit_insn_before_setloc (seq, if_info->jump, INSN_LOCATION (if_info->insn_a));
1999 if_info->cond = cond;
2000 if_info->cond_earliest = earliest;
2002 return TRUE;
2005 /* Convert "if (a < 0) x = -a; else x = a;" to "x = abs(a);",
2006 "if (a < 0) x = ~a; else x = a;" to "x = one_cmpl_abs(a);",
2007 etc. */
2009 static int
2010 noce_try_abs (struct noce_if_info *if_info)
2012 rtx cond, target, a, b, c;
2013 rtx_insn *earliest, *seq;
2014 int negate;
2015 bool one_cmpl = false;
2017 /* Reject modes with signed zeros. */
2018 if (HONOR_SIGNED_ZEROS (GET_MODE (if_info->x)))
2019 return FALSE;
2021 /* Recognize A and B as constituting an ABS or NABS. The canonical
2022 form is a branch around the negation, taken when the object is the
2023 first operand of a comparison against 0 that evaluates to true. */
2024 a = if_info->a;
2025 b = if_info->b;
2026 if (GET_CODE (a) == NEG && rtx_equal_p (XEXP (a, 0), b))
2027 negate = 0;
2028 else if (GET_CODE (b) == NEG && rtx_equal_p (XEXP (b, 0), a))
2030 c = a; a = b; b = c;
2031 negate = 1;
2033 else if (GET_CODE (a) == NOT && rtx_equal_p (XEXP (a, 0), b))
2035 negate = 0;
2036 one_cmpl = true;
2038 else if (GET_CODE (b) == NOT && rtx_equal_p (XEXP (b, 0), a))
2040 c = a; a = b; b = c;
2041 negate = 1;
2042 one_cmpl = true;
2044 else
2045 return FALSE;
2047 cond = noce_get_alt_condition (if_info, b, &earliest);
2048 if (!cond)
2049 return FALSE;
2051 /* Verify the condition is of the form we expect. */
2052 if (rtx_equal_p (XEXP (cond, 0), b))
2053 c = XEXP (cond, 1);
2054 else if (rtx_equal_p (XEXP (cond, 1), b))
2056 c = XEXP (cond, 0);
2057 negate = !negate;
2059 else
2060 return FALSE;
2062 /* Verify that C is zero. Search one step backward for a
2063 REG_EQUAL note or a simple source if necessary. */
2064 if (REG_P (c))
2066 rtx set;
2067 rtx_insn *insn = prev_nonnote_insn (earliest);
2068 if (insn
2069 && BLOCK_FOR_INSN (insn) == BLOCK_FOR_INSN (earliest)
2070 && (set = single_set (insn))
2071 && rtx_equal_p (SET_DEST (set), c))
2073 rtx note = find_reg_equal_equiv_note (insn);
2074 if (note)
2075 c = XEXP (note, 0);
2076 else
2077 c = SET_SRC (set);
2079 else
2080 return FALSE;
2082 if (MEM_P (c)
2083 && GET_CODE (XEXP (c, 0)) == SYMBOL_REF
2084 && CONSTANT_POOL_ADDRESS_P (XEXP (c, 0)))
2085 c = get_pool_constant (XEXP (c, 0));
2087 /* Work around funny ideas get_condition has wrt canonicalization.
2088 Note that these rtx constants are known to be CONST_INT, and
2089 therefore imply integer comparisons. */
2090 if (c == constm1_rtx && GET_CODE (cond) == GT)
2092 else if (c == const1_rtx && GET_CODE (cond) == LT)
2094 else if (c != CONST0_RTX (GET_MODE (b)))
2095 return FALSE;
2097 /* Determine what sort of operation this is. */
2098 switch (GET_CODE (cond))
2100 case LT:
2101 case LE:
2102 case UNLT:
2103 case UNLE:
2104 negate = !negate;
2105 break;
2106 case GT:
2107 case GE:
2108 case UNGT:
2109 case UNGE:
2110 break;
2111 default:
2112 return FALSE;
2115 start_sequence ();
2116 if (one_cmpl)
2117 target = expand_one_cmpl_abs_nojump (GET_MODE (if_info->x), b,
2118 if_info->x);
2119 else
2120 target = expand_abs_nojump (GET_MODE (if_info->x), b, if_info->x, 1);
2122 /* ??? It's a quandary whether cmove would be better here, especially
2123 for integers. Perhaps combine will clean things up. */
2124 if (target && negate)
2126 if (one_cmpl)
2127 target = expand_simple_unop (GET_MODE (target), NOT, target,
2128 if_info->x, 0);
2129 else
2130 target = expand_simple_unop (GET_MODE (target), NEG, target,
2131 if_info->x, 0);
2134 if (! target)
2136 end_sequence ();
2137 return FALSE;
2140 if (target != if_info->x)
2141 noce_emit_move_insn (if_info->x, target);
2143 seq = end_ifcvt_sequence (if_info);
2144 if (!seq)
2145 return FALSE;
2147 emit_insn_before_setloc (seq, if_info->jump, INSN_LOCATION (if_info->insn_a));
2148 if_info->cond = cond;
2149 if_info->cond_earliest = earliest;
2151 return TRUE;
2154 /* Convert "if (m < 0) x = b; else x = 0;" to "x = (m >> C) & b;". */
2156 static int
2157 noce_try_sign_mask (struct noce_if_info *if_info)
2159 rtx cond, t, m, c;
2160 rtx_insn *seq;
2161 enum machine_mode mode;
2162 enum rtx_code code;
2163 bool t_unconditional;
2165 cond = if_info->cond;
2166 code = GET_CODE (cond);
2167 m = XEXP (cond, 0);
2168 c = XEXP (cond, 1);
2170 t = NULL_RTX;
2171 if (if_info->a == const0_rtx)
2173 if ((code == LT && c == const0_rtx)
2174 || (code == LE && c == constm1_rtx))
2175 t = if_info->b;
2177 else if (if_info->b == const0_rtx)
2179 if ((code == GE && c == const0_rtx)
2180 || (code == GT && c == constm1_rtx))
2181 t = if_info->a;
2184 if (! t || side_effects_p (t))
2185 return FALSE;
2187 /* We currently don't handle different modes. */
2188 mode = GET_MODE (t);
2189 if (GET_MODE (m) != mode)
2190 return FALSE;
2192 /* This is only profitable if T is unconditionally executed/evaluated in the
2193 original insn sequence or T is cheap. The former happens if B is the
2194 non-zero (T) value and if INSN_B was taken from TEST_BB, or there was no
2195 INSN_B which can happen for e.g. conditional stores to memory. For the
2196 cost computation use the block TEST_BB where the evaluation will end up
2197 after the transformation. */
2198 t_unconditional =
2199 (t == if_info->b
2200 && (if_info->insn_b == NULL_RTX
2201 || BLOCK_FOR_INSN (if_info->insn_b) == if_info->test_bb));
2202 if (!(t_unconditional
2203 || (set_src_cost (t, optimize_bb_for_speed_p (if_info->test_bb))
2204 < COSTS_N_INSNS (2))))
2205 return FALSE;
2207 start_sequence ();
2208 /* Use emit_store_flag to generate "m < 0 ? -1 : 0" instead of expanding
2209 "(signed) m >> 31" directly. This benefits targets with specialized
2210 insns to obtain the signmask, but still uses ashr_optab otherwise. */
2211 m = emit_store_flag (gen_reg_rtx (mode), LT, m, const0_rtx, mode, 0, -1);
2212 t = m ? expand_binop (mode, and_optab, m, t, NULL_RTX, 0, OPTAB_DIRECT)
2213 : NULL_RTX;
2215 if (!t)
2217 end_sequence ();
2218 return FALSE;
2221 noce_emit_move_insn (if_info->x, t);
2223 seq = end_ifcvt_sequence (if_info);
2224 if (!seq)
2225 return FALSE;
2227 emit_insn_before_setloc (seq, if_info->jump, INSN_LOCATION (if_info->insn_a));
2228 return TRUE;
2232 /* Optimize away "if (x & C) x |= C" and similar bit manipulation
2233 transformations. */
2235 static int
2236 noce_try_bitop (struct noce_if_info *if_info)
2238 rtx cond, x, a, result;
2239 rtx_insn *seq;
2240 enum machine_mode mode;
2241 enum rtx_code code;
2242 int bitnum;
2244 x = if_info->x;
2245 cond = if_info->cond;
2246 code = GET_CODE (cond);
2248 /* Check for no else condition. */
2249 if (! rtx_equal_p (x, if_info->b))
2250 return FALSE;
2252 /* Check for a suitable condition. */
2253 if (code != NE && code != EQ)
2254 return FALSE;
2255 if (XEXP (cond, 1) != const0_rtx)
2256 return FALSE;
2257 cond = XEXP (cond, 0);
2259 /* ??? We could also handle AND here. */
2260 if (GET_CODE (cond) == ZERO_EXTRACT)
2262 if (XEXP (cond, 1) != const1_rtx
2263 || !CONST_INT_P (XEXP (cond, 2))
2264 || ! rtx_equal_p (x, XEXP (cond, 0)))
2265 return FALSE;
2266 bitnum = INTVAL (XEXP (cond, 2));
2267 mode = GET_MODE (x);
2268 if (BITS_BIG_ENDIAN)
2269 bitnum = GET_MODE_BITSIZE (mode) - 1 - bitnum;
2270 if (bitnum < 0 || bitnum >= HOST_BITS_PER_WIDE_INT)
2271 return FALSE;
2273 else
2274 return FALSE;
2276 a = if_info->a;
2277 if (GET_CODE (a) == IOR || GET_CODE (a) == XOR)
2279 /* Check for "if (X & C) x = x op C". */
2280 if (! rtx_equal_p (x, XEXP (a, 0))
2281 || !CONST_INT_P (XEXP (a, 1))
2282 || (INTVAL (XEXP (a, 1)) & GET_MODE_MASK (mode))
2283 != (unsigned HOST_WIDE_INT) 1 << bitnum)
2284 return FALSE;
2286 /* if ((x & C) == 0) x |= C; is transformed to x |= C. */
2287 /* if ((x & C) != 0) x |= C; is transformed to nothing. */
2288 if (GET_CODE (a) == IOR)
2289 result = (code == NE) ? a : NULL_RTX;
2290 else if (code == NE)
2292 /* if ((x & C) == 0) x ^= C; is transformed to x |= C. */
2293 result = gen_int_mode ((HOST_WIDE_INT) 1 << bitnum, mode);
2294 result = simplify_gen_binary (IOR, mode, x, result);
2296 else
2298 /* if ((x & C) != 0) x ^= C; is transformed to x &= ~C. */
2299 result = gen_int_mode (~((HOST_WIDE_INT) 1 << bitnum), mode);
2300 result = simplify_gen_binary (AND, mode, x, result);
2303 else if (GET_CODE (a) == AND)
2305 /* Check for "if (X & C) x &= ~C". */
2306 if (! rtx_equal_p (x, XEXP (a, 0))
2307 || !CONST_INT_P (XEXP (a, 1))
2308 || (INTVAL (XEXP (a, 1)) & GET_MODE_MASK (mode))
2309 != (~((HOST_WIDE_INT) 1 << bitnum) & GET_MODE_MASK (mode)))
2310 return FALSE;
2312 /* if ((x & C) == 0) x &= ~C; is transformed to nothing. */
2313 /* if ((x & C) != 0) x &= ~C; is transformed to x &= ~C. */
2314 result = (code == EQ) ? a : NULL_RTX;
2316 else
2317 return FALSE;
2319 if (result)
2321 start_sequence ();
2322 noce_emit_move_insn (x, result);
2323 seq = end_ifcvt_sequence (if_info);
2324 if (!seq)
2325 return FALSE;
2327 emit_insn_before_setloc (seq, if_info->jump,
2328 INSN_LOCATION (if_info->insn_a));
2330 return TRUE;
2334 /* Similar to get_condition, only the resulting condition must be
2335 valid at JUMP, instead of at EARLIEST.
2337 If THEN_ELSE_REVERSED is true, the fallthrough does not go to the
2338 THEN block of the caller, and we have to reverse the condition. */
2340 static rtx
2341 noce_get_condition (rtx_insn *jump, rtx_insn **earliest, bool then_else_reversed)
2343 rtx cond, set, tmp;
2344 bool reverse;
2346 if (! any_condjump_p (jump))
2347 return NULL_RTX;
2349 set = pc_set (jump);
2351 /* If this branches to JUMP_LABEL when the condition is false,
2352 reverse the condition. */
2353 reverse = (GET_CODE (XEXP (SET_SRC (set), 2)) == LABEL_REF
2354 && LABEL_REF_LABEL (XEXP (SET_SRC (set), 2)) == JUMP_LABEL (jump));
2356 /* We may have to reverse because the caller's if block is not canonical,
2357 i.e. the THEN block isn't the fallthrough block for the TEST block
2358 (see find_if_header). */
2359 if (then_else_reversed)
2360 reverse = !reverse;
2362 /* If the condition variable is a register and is MODE_INT, accept it. */
2364 cond = XEXP (SET_SRC (set), 0);
2365 tmp = XEXP (cond, 0);
2366 if (REG_P (tmp) && GET_MODE_CLASS (GET_MODE (tmp)) == MODE_INT
2367 && (GET_MODE (tmp) != BImode
2368 || !targetm.small_register_classes_for_mode_p (BImode)))
2370 *earliest = jump;
2372 if (reverse)
2373 cond = gen_rtx_fmt_ee (reverse_condition (GET_CODE (cond)),
2374 GET_MODE (cond), tmp, XEXP (cond, 1));
2375 return cond;
2378 /* Otherwise, fall back on canonicalize_condition to do the dirty
2379 work of manipulating MODE_CC values and COMPARE rtx codes. */
2380 tmp = canonicalize_condition (jump, cond, reverse, earliest,
2381 NULL_RTX, false, true);
2383 /* We don't handle side-effects in the condition, like handling
2384 REG_INC notes and making sure no duplicate conditions are emitted. */
2385 if (tmp != NULL_RTX && side_effects_p (tmp))
2386 return NULL_RTX;
2388 return tmp;
2391 /* Return true if OP is ok for if-then-else processing. */
2393 static int
2394 noce_operand_ok (const_rtx op)
2396 if (side_effects_p (op))
2397 return FALSE;
2399 /* We special-case memories, so handle any of them with
2400 no address side effects. */
2401 if (MEM_P (op))
2402 return ! side_effects_p (XEXP (op, 0));
2404 return ! may_trap_p (op);
2407 /* Return true if a write into MEM may trap or fault. */
2409 static bool
2410 noce_mem_write_may_trap_or_fault_p (const_rtx mem)
2412 rtx addr;
2414 if (MEM_READONLY_P (mem))
2415 return true;
2417 if (may_trap_or_fault_p (mem))
2418 return true;
2420 addr = XEXP (mem, 0);
2422 /* Call target hook to avoid the effects of -fpic etc.... */
2423 addr = targetm.delegitimize_address (addr);
2425 while (addr)
2426 switch (GET_CODE (addr))
2428 case CONST:
2429 case PRE_DEC:
2430 case PRE_INC:
2431 case POST_DEC:
2432 case POST_INC:
2433 case POST_MODIFY:
2434 addr = XEXP (addr, 0);
2435 break;
2436 case LO_SUM:
2437 case PRE_MODIFY:
2438 addr = XEXP (addr, 1);
2439 break;
2440 case PLUS:
2441 if (CONST_INT_P (XEXP (addr, 1)))
2442 addr = XEXP (addr, 0);
2443 else
2444 return false;
2445 break;
2446 case LABEL_REF:
2447 return true;
2448 case SYMBOL_REF:
2449 if (SYMBOL_REF_DECL (addr)
2450 && decl_readonly_section (SYMBOL_REF_DECL (addr), 0))
2451 return true;
2452 return false;
2453 default:
2454 return false;
2457 return false;
2460 /* Return whether we can use store speculation for MEM. TOP_BB is the
2461 basic block above the conditional block where we are considering
2462 doing the speculative store. We look for whether MEM is set
2463 unconditionally later in the function. */
2465 static bool
2466 noce_can_store_speculate_p (basic_block top_bb, const_rtx mem)
2468 basic_block dominator;
2470 for (dominator = get_immediate_dominator (CDI_POST_DOMINATORS, top_bb);
2471 dominator != NULL;
2472 dominator = get_immediate_dominator (CDI_POST_DOMINATORS, dominator))
2474 rtx_insn *insn;
2476 FOR_BB_INSNS (dominator, insn)
2478 /* If we see something that might be a memory barrier, we
2479 have to stop looking. Even if the MEM is set later in
2480 the function, we still don't want to set it
2481 unconditionally before the barrier. */
2482 if (INSN_P (insn)
2483 && (volatile_insn_p (PATTERN (insn))
2484 || (CALL_P (insn) && (!RTL_CONST_CALL_P (insn)))))
2485 return false;
2487 if (memory_must_be_modified_in_insn_p (mem, insn))
2488 return true;
2489 if (modified_in_p (XEXP (mem, 0), insn))
2490 return false;
2495 return false;
2498 /* Given a simple IF-THEN-JOIN or IF-THEN-ELSE-JOIN block, attempt to convert
2499 it without using conditional execution. Return TRUE if we were successful
2500 at converting the block. */
2502 static int
2503 noce_process_if_block (struct noce_if_info *if_info)
2505 basic_block test_bb = if_info->test_bb; /* test block */
2506 basic_block then_bb = if_info->then_bb; /* THEN */
2507 basic_block else_bb = if_info->else_bb; /* ELSE or NULL */
2508 basic_block join_bb = if_info->join_bb; /* JOIN */
2509 rtx_insn *jump = if_info->jump;
2510 rtx cond = if_info->cond;
2511 rtx_insn *insn_a, *insn_b;
2512 rtx set_a, set_b;
2513 rtx orig_x, x, a, b;
2515 /* We're looking for patterns of the form
2517 (1) if (...) x = a; else x = b;
2518 (2) x = b; if (...) x = a;
2519 (3) if (...) x = a; // as if with an initial x = x.
2521 The later patterns require jumps to be more expensive.
2523 ??? For future expansion, look for multiple X in such patterns. */
2525 /* Look for one of the potential sets. */
2526 insn_a = first_active_insn (then_bb);
2527 if (! insn_a
2528 || insn_a != last_active_insn (then_bb, FALSE)
2529 || (set_a = single_set (insn_a)) == NULL_RTX)
2530 return FALSE;
2532 x = SET_DEST (set_a);
2533 a = SET_SRC (set_a);
2535 /* Look for the other potential set. Make sure we've got equivalent
2536 destinations. */
2537 /* ??? This is overconservative. Storing to two different mems is
2538 as easy as conditionally computing the address. Storing to a
2539 single mem merely requires a scratch memory to use as one of the
2540 destination addresses; often the memory immediately below the
2541 stack pointer is available for this. */
2542 set_b = NULL_RTX;
2543 if (else_bb)
2545 insn_b = first_active_insn (else_bb);
2546 if (! insn_b
2547 || insn_b != last_active_insn (else_bb, FALSE)
2548 || (set_b = single_set (insn_b)) == NULL_RTX
2549 || ! rtx_interchangeable_p (x, SET_DEST (set_b)))
2550 return FALSE;
2552 else
2554 insn_b = prev_nonnote_nondebug_insn (if_info->cond_earliest);
2555 /* We're going to be moving the evaluation of B down from above
2556 COND_EARLIEST to JUMP. Make sure the relevant data is still
2557 intact. */
2558 if (! insn_b
2559 || BLOCK_FOR_INSN (insn_b) != BLOCK_FOR_INSN (if_info->cond_earliest)
2560 || !NONJUMP_INSN_P (insn_b)
2561 || (set_b = single_set (insn_b)) == NULL_RTX
2562 || ! rtx_interchangeable_p (x, SET_DEST (set_b))
2563 || ! noce_operand_ok (SET_SRC (set_b))
2564 || reg_overlap_mentioned_p (x, SET_SRC (set_b))
2565 || modified_between_p (SET_SRC (set_b), insn_b, jump)
2566 /* Avoid extending the lifetime of hard registers on small
2567 register class machines. */
2568 || (REG_P (SET_SRC (set_b))
2569 && HARD_REGISTER_P (SET_SRC (set_b))
2570 && targetm.small_register_classes_for_mode_p
2571 (GET_MODE (SET_SRC (set_b))))
2572 /* Likewise with X. In particular this can happen when
2573 noce_get_condition looks farther back in the instruction
2574 stream than one might expect. */
2575 || reg_overlap_mentioned_p (x, cond)
2576 || reg_overlap_mentioned_p (x, a)
2577 || modified_between_p (x, insn_b, jump))
2579 insn_b = NULL;
2580 set_b = NULL_RTX;
2584 /* If x has side effects then only the if-then-else form is safe to
2585 convert. But even in that case we would need to restore any notes
2586 (such as REG_INC) at then end. That can be tricky if
2587 noce_emit_move_insn expands to more than one insn, so disable the
2588 optimization entirely for now if there are side effects. */
2589 if (side_effects_p (x))
2590 return FALSE;
2592 b = (set_b ? SET_SRC (set_b) : x);
2594 /* Only operate on register destinations, and even then avoid extending
2595 the lifetime of hard registers on small register class machines. */
2596 orig_x = x;
2597 if (!REG_P (x)
2598 || (HARD_REGISTER_P (x)
2599 && targetm.small_register_classes_for_mode_p (GET_MODE (x))))
2601 if (GET_MODE (x) == BLKmode)
2602 return FALSE;
2604 if (GET_CODE (x) == ZERO_EXTRACT
2605 && (!CONST_INT_P (XEXP (x, 1))
2606 || !CONST_INT_P (XEXP (x, 2))))
2607 return FALSE;
2609 x = gen_reg_rtx (GET_MODE (GET_CODE (x) == STRICT_LOW_PART
2610 ? XEXP (x, 0) : x));
2613 /* Don't operate on sources that may trap or are volatile. */
2614 if (! noce_operand_ok (a) || ! noce_operand_ok (b))
2615 return FALSE;
2617 retry:
2618 /* Set up the info block for our subroutines. */
2619 if_info->insn_a = insn_a;
2620 if_info->insn_b = insn_b;
2621 if_info->x = x;
2622 if_info->a = a;
2623 if_info->b = b;
2625 /* Try optimizations in some approximation of a useful order. */
2626 /* ??? Should first look to see if X is live incoming at all. If it
2627 isn't, we don't need anything but an unconditional set. */
2629 /* Look and see if A and B are really the same. Avoid creating silly
2630 cmove constructs that no one will fix up later. */
2631 if (rtx_interchangeable_p (a, b))
2633 /* If we have an INSN_B, we don't have to create any new rtl. Just
2634 move the instruction that we already have. If we don't have an
2635 INSN_B, that means that A == X, and we've got a noop move. In
2636 that case don't do anything and let the code below delete INSN_A. */
2637 if (insn_b && else_bb)
2639 rtx note;
2641 if (else_bb && insn_b == BB_END (else_bb))
2642 BB_END (else_bb) = PREV_INSN (insn_b);
2643 reorder_insns (insn_b, insn_b, PREV_INSN (jump));
2645 /* If there was a REG_EQUAL note, delete it since it may have been
2646 true due to this insn being after a jump. */
2647 if ((note = find_reg_note (insn_b, REG_EQUAL, NULL_RTX)) != 0)
2648 remove_note (insn_b, note);
2650 insn_b = NULL;
2652 /* If we have "x = b; if (...) x = a;", and x has side-effects, then
2653 x must be executed twice. */
2654 else if (insn_b && side_effects_p (orig_x))
2655 return FALSE;
2657 x = orig_x;
2658 goto success;
2661 if (!set_b && MEM_P (orig_x))
2663 /* Disallow the "if (...) x = a;" form (implicit "else x = x;")
2664 for optimizations if writing to x may trap or fault,
2665 i.e. it's a memory other than a static var or a stack slot,
2666 is misaligned on strict aligned machines or is read-only. If
2667 x is a read-only memory, then the program is valid only if we
2668 avoid the store into it. If there are stores on both the
2669 THEN and ELSE arms, then we can go ahead with the conversion;
2670 either the program is broken, or the condition is always
2671 false such that the other memory is selected. */
2672 if (noce_mem_write_may_trap_or_fault_p (orig_x))
2673 return FALSE;
2675 /* Avoid store speculation: given "if (...) x = a" where x is a
2676 MEM, we only want to do the store if x is always set
2677 somewhere in the function. This avoids cases like
2678 if (pthread_mutex_trylock(mutex))
2679 ++global_variable;
2680 where we only want global_variable to be changed if the mutex
2681 is held. FIXME: This should ideally be expressed directly in
2682 RTL somehow. */
2683 if (!noce_can_store_speculate_p (test_bb, orig_x))
2684 return FALSE;
2687 if (noce_try_move (if_info))
2688 goto success;
2689 if (noce_try_store_flag (if_info))
2690 goto success;
2691 if (noce_try_bitop (if_info))
2692 goto success;
2693 if (noce_try_minmax (if_info))
2694 goto success;
2695 if (noce_try_abs (if_info))
2696 goto success;
2697 if (HAVE_conditional_move
2698 && noce_try_cmove (if_info))
2699 goto success;
2700 if (! targetm.have_conditional_execution ())
2702 if (noce_try_store_flag_constants (if_info))
2703 goto success;
2704 if (noce_try_addcc (if_info))
2705 goto success;
2706 if (noce_try_store_flag_mask (if_info))
2707 goto success;
2708 if (HAVE_conditional_move
2709 && noce_try_cmove_arith (if_info))
2710 goto success;
2711 if (noce_try_sign_mask (if_info))
2712 goto success;
2715 if (!else_bb && set_b)
2717 insn_b = NULL;
2718 set_b = NULL_RTX;
2719 b = orig_x;
2720 goto retry;
2723 return FALSE;
2725 success:
2727 /* If we used a temporary, fix it up now. */
2728 if (orig_x != x)
2730 rtx_insn *seq;
2732 start_sequence ();
2733 noce_emit_move_insn (orig_x, x);
2734 seq = get_insns ();
2735 set_used_flags (orig_x);
2736 unshare_all_rtl_in_chain (seq);
2737 end_sequence ();
2739 emit_insn_before_setloc (seq, BB_END (test_bb), INSN_LOCATION (insn_a));
2742 /* The original THEN and ELSE blocks may now be removed. The test block
2743 must now jump to the join block. If the test block and the join block
2744 can be merged, do so. */
2745 if (else_bb)
2747 delete_basic_block (else_bb);
2748 num_true_changes++;
2750 else
2751 remove_edge (find_edge (test_bb, join_bb));
2753 remove_edge (find_edge (then_bb, join_bb));
2754 redirect_edge_and_branch_force (single_succ_edge (test_bb), join_bb);
2755 delete_basic_block (then_bb);
2756 num_true_changes++;
2758 if (can_merge_blocks_p (test_bb, join_bb))
2760 merge_blocks (test_bb, join_bb);
2761 num_true_changes++;
2764 num_updated_if_blocks++;
2765 return TRUE;
2768 /* Check whether a block is suitable for conditional move conversion.
2769 Every insn must be a simple set of a register to a constant or a
2770 register. For each assignment, store the value in the pointer map
2771 VALS, keyed indexed by register pointer, then store the register
2772 pointer in REGS. COND is the condition we will test. */
2774 static int
2775 check_cond_move_block (basic_block bb,
2776 hash_map<rtx, rtx> *vals,
2777 vec<rtx> *regs,
2778 rtx cond)
2780 rtx_insn *insn;
2782 /* We can only handle simple jumps at the end of the basic block.
2783 It is almost impossible to update the CFG otherwise. */
2784 insn = BB_END (bb);
2785 if (JUMP_P (insn) && !onlyjump_p (insn))
2786 return FALSE;
2788 FOR_BB_INSNS (bb, insn)
2790 rtx set, dest, src;
2792 if (!NONDEBUG_INSN_P (insn) || JUMP_P (insn))
2793 continue;
2794 set = single_set (insn);
2795 if (!set)
2796 return FALSE;
2798 dest = SET_DEST (set);
2799 src = SET_SRC (set);
2800 if (!REG_P (dest)
2801 || (HARD_REGISTER_P (dest)
2802 && targetm.small_register_classes_for_mode_p (GET_MODE (dest))))
2803 return FALSE;
2805 if (!CONSTANT_P (src) && !register_operand (src, VOIDmode))
2806 return FALSE;
2808 if (side_effects_p (src) || side_effects_p (dest))
2809 return FALSE;
2811 if (may_trap_p (src) || may_trap_p (dest))
2812 return FALSE;
2814 /* Don't try to handle this if the source register was
2815 modified earlier in the block. */
2816 if ((REG_P (src)
2817 && vals->get (src))
2818 || (GET_CODE (src) == SUBREG && REG_P (SUBREG_REG (src))
2819 && vals->get (SUBREG_REG (src))))
2820 return FALSE;
2822 /* Don't try to handle this if the destination register was
2823 modified earlier in the block. */
2824 if (vals->get (dest))
2825 return FALSE;
2827 /* Don't try to handle this if the condition uses the
2828 destination register. */
2829 if (reg_overlap_mentioned_p (dest, cond))
2830 return FALSE;
2832 /* Don't try to handle this if the source register is modified
2833 later in the block. */
2834 if (!CONSTANT_P (src)
2835 && modified_between_p (src, insn, NEXT_INSN (BB_END (bb))))
2836 return FALSE;
2838 vals->put (dest, src);
2840 regs->safe_push (dest);
2843 return TRUE;
2846 /* Given a basic block BB suitable for conditional move conversion,
2847 a condition COND, and pointer maps THEN_VALS and ELSE_VALS containing
2848 the register values depending on COND, emit the insns in the block as
2849 conditional moves. If ELSE_BLOCK is true, THEN_BB was already
2850 processed. The caller has started a sequence for the conversion.
2851 Return true if successful, false if something goes wrong. */
2853 static bool
2854 cond_move_convert_if_block (struct noce_if_info *if_infop,
2855 basic_block bb, rtx cond,
2856 hash_map<rtx, rtx> *then_vals,
2857 hash_map<rtx, rtx> *else_vals,
2858 bool else_block_p)
2860 enum rtx_code code;
2861 rtx_insn *insn;
2862 rtx cond_arg0, cond_arg1;
2864 code = GET_CODE (cond);
2865 cond_arg0 = XEXP (cond, 0);
2866 cond_arg1 = XEXP (cond, 1);
2868 FOR_BB_INSNS (bb, insn)
2870 rtx set, target, dest, t, e;
2872 /* ??? Maybe emit conditional debug insn? */
2873 if (!NONDEBUG_INSN_P (insn) || JUMP_P (insn))
2874 continue;
2875 set = single_set (insn);
2876 gcc_assert (set && REG_P (SET_DEST (set)));
2878 dest = SET_DEST (set);
2880 rtx *then_slot = then_vals->get (dest);
2881 rtx *else_slot = else_vals->get (dest);
2882 t = then_slot ? *then_slot : NULL_RTX;
2883 e = else_slot ? *else_slot : NULL_RTX;
2885 if (else_block_p)
2887 /* If this register was set in the then block, we already
2888 handled this case there. */
2889 if (t)
2890 continue;
2891 t = dest;
2892 gcc_assert (e);
2894 else
2896 gcc_assert (t);
2897 if (!e)
2898 e = dest;
2901 target = noce_emit_cmove (if_infop, dest, code, cond_arg0, cond_arg1,
2902 t, e);
2903 if (!target)
2904 return false;
2906 if (target != dest)
2907 noce_emit_move_insn (dest, target);
2910 return true;
2913 /* Given a simple IF-THEN-JOIN or IF-THEN-ELSE-JOIN block, attempt to convert
2914 it using only conditional moves. Return TRUE if we were successful at
2915 converting the block. */
2917 static int
2918 cond_move_process_if_block (struct noce_if_info *if_info)
2920 basic_block test_bb = if_info->test_bb;
2921 basic_block then_bb = if_info->then_bb;
2922 basic_block else_bb = if_info->else_bb;
2923 basic_block join_bb = if_info->join_bb;
2924 rtx_insn *jump = if_info->jump;
2925 rtx cond = if_info->cond;
2926 rtx_insn *seq, *loc_insn;
2927 rtx reg;
2928 int c;
2929 vec<rtx> then_regs = vNULL;
2930 vec<rtx> else_regs = vNULL;
2931 unsigned int i;
2932 int success_p = FALSE;
2934 /* Build a mapping for each block to the value used for each
2935 register. */
2936 hash_map<rtx, rtx> then_vals;
2937 hash_map<rtx, rtx> else_vals;
2939 /* Make sure the blocks are suitable. */
2940 if (!check_cond_move_block (then_bb, &then_vals, &then_regs, cond)
2941 || (else_bb
2942 && !check_cond_move_block (else_bb, &else_vals, &else_regs, cond)))
2943 goto done;
2945 /* Make sure the blocks can be used together. If the same register
2946 is set in both blocks, and is not set to a constant in both
2947 cases, then both blocks must set it to the same register. We
2948 have already verified that if it is set to a register, that the
2949 source register does not change after the assignment. Also count
2950 the number of registers set in only one of the blocks. */
2951 c = 0;
2952 FOR_EACH_VEC_ELT (then_regs, i, reg)
2954 rtx *then_slot = then_vals.get (reg);
2955 rtx *else_slot = else_vals.get (reg);
2957 gcc_checking_assert (then_slot);
2958 if (!else_slot)
2959 ++c;
2960 else
2962 rtx then_val = *then_slot;
2963 rtx else_val = *else_slot;
2964 if (!CONSTANT_P (then_val) && !CONSTANT_P (else_val)
2965 && !rtx_equal_p (then_val, else_val))
2966 goto done;
2970 /* Finish off c for MAX_CONDITIONAL_EXECUTE. */
2971 FOR_EACH_VEC_ELT (else_regs, i, reg)
2973 gcc_checking_assert (else_vals.get (reg));
2974 if (!then_vals.get (reg))
2975 ++c;
2978 /* Make sure it is reasonable to convert this block. What matters
2979 is the number of assignments currently made in only one of the
2980 branches, since if we convert we are going to always execute
2981 them. */
2982 if (c > MAX_CONDITIONAL_EXECUTE)
2983 goto done;
2985 /* Try to emit the conditional moves. First do the then block,
2986 then do anything left in the else blocks. */
2987 start_sequence ();
2988 if (!cond_move_convert_if_block (if_info, then_bb, cond,
2989 &then_vals, &else_vals, false)
2990 || (else_bb
2991 && !cond_move_convert_if_block (if_info, else_bb, cond,
2992 &then_vals, &else_vals, true)))
2994 end_sequence ();
2995 goto done;
2997 seq = end_ifcvt_sequence (if_info);
2998 if (!seq)
2999 goto done;
3001 loc_insn = first_active_insn (then_bb);
3002 if (!loc_insn)
3004 loc_insn = first_active_insn (else_bb);
3005 gcc_assert (loc_insn);
3007 emit_insn_before_setloc (seq, jump, INSN_LOCATION (loc_insn));
3009 if (else_bb)
3011 delete_basic_block (else_bb);
3012 num_true_changes++;
3014 else
3015 remove_edge (find_edge (test_bb, join_bb));
3017 remove_edge (find_edge (then_bb, join_bb));
3018 redirect_edge_and_branch_force (single_succ_edge (test_bb), join_bb);
3019 delete_basic_block (then_bb);
3020 num_true_changes++;
3022 if (can_merge_blocks_p (test_bb, join_bb))
3024 merge_blocks (test_bb, join_bb);
3025 num_true_changes++;
3028 num_updated_if_blocks++;
3030 success_p = TRUE;
3032 done:
3033 then_regs.release ();
3034 else_regs.release ();
3035 return success_p;
3039 /* Determine if a given basic block heads a simple IF-THEN-JOIN or an
3040 IF-THEN-ELSE-JOIN block.
3042 If so, we'll try to convert the insns to not require the branch,
3043 using only transformations that do not require conditional execution.
3045 Return TRUE if we were successful at converting the block. */
3047 static int
3048 noce_find_if_block (basic_block test_bb, edge then_edge, edge else_edge,
3049 int pass)
3051 basic_block then_bb, else_bb, join_bb;
3052 bool then_else_reversed = false;
3053 rtx_insn *jump;
3054 rtx cond;
3055 rtx_insn *cond_earliest;
3056 struct noce_if_info if_info;
3058 /* We only ever should get here before reload. */
3059 gcc_assert (!reload_completed);
3061 /* Recognize an IF-THEN-ELSE-JOIN block. */
3062 if (single_pred_p (then_edge->dest)
3063 && single_succ_p (then_edge->dest)
3064 && single_pred_p (else_edge->dest)
3065 && single_succ_p (else_edge->dest)
3066 && single_succ (then_edge->dest) == single_succ (else_edge->dest))
3068 then_bb = then_edge->dest;
3069 else_bb = else_edge->dest;
3070 join_bb = single_succ (then_bb);
3072 /* Recognize an IF-THEN-JOIN block. */
3073 else if (single_pred_p (then_edge->dest)
3074 && single_succ_p (then_edge->dest)
3075 && single_succ (then_edge->dest) == else_edge->dest)
3077 then_bb = then_edge->dest;
3078 else_bb = NULL_BLOCK;
3079 join_bb = else_edge->dest;
3081 /* Recognize an IF-ELSE-JOIN block. We can have those because the order
3082 of basic blocks in cfglayout mode does not matter, so the fallthrough
3083 edge can go to any basic block (and not just to bb->next_bb, like in
3084 cfgrtl mode). */
3085 else if (single_pred_p (else_edge->dest)
3086 && single_succ_p (else_edge->dest)
3087 && single_succ (else_edge->dest) == then_edge->dest)
3089 /* The noce transformations do not apply to IF-ELSE-JOIN blocks.
3090 To make this work, we have to invert the THEN and ELSE blocks
3091 and reverse the jump condition. */
3092 then_bb = else_edge->dest;
3093 else_bb = NULL_BLOCK;
3094 join_bb = single_succ (then_bb);
3095 then_else_reversed = true;
3097 else
3098 /* Not a form we can handle. */
3099 return FALSE;
3101 /* The edges of the THEN and ELSE blocks cannot have complex edges. */
3102 if (single_succ_edge (then_bb)->flags & EDGE_COMPLEX)
3103 return FALSE;
3104 if (else_bb
3105 && single_succ_edge (else_bb)->flags & EDGE_COMPLEX)
3106 return FALSE;
3108 num_possible_if_blocks++;
3110 if (dump_file)
3112 fprintf (dump_file,
3113 "\nIF-THEN%s-JOIN block found, pass %d, test %d, then %d",
3114 (else_bb) ? "-ELSE" : "",
3115 pass, test_bb->index, then_bb->index);
3117 if (else_bb)
3118 fprintf (dump_file, ", else %d", else_bb->index);
3120 fprintf (dump_file, ", join %d\n", join_bb->index);
3123 /* If the conditional jump is more than just a conditional
3124 jump, then we can not do if-conversion on this block. */
3125 jump = BB_END (test_bb);
3126 if (! onlyjump_p (jump))
3127 return FALSE;
3129 /* If this is not a standard conditional jump, we can't parse it. */
3130 cond = noce_get_condition (jump, &cond_earliest, then_else_reversed);
3131 if (!cond)
3132 return FALSE;
3134 /* We must be comparing objects whose modes imply the size. */
3135 if (GET_MODE (XEXP (cond, 0)) == BLKmode)
3136 return FALSE;
3138 /* Initialize an IF_INFO struct to pass around. */
3139 memset (&if_info, 0, sizeof if_info);
3140 if_info.test_bb = test_bb;
3141 if_info.then_bb = then_bb;
3142 if_info.else_bb = else_bb;
3143 if_info.join_bb = join_bb;
3144 if_info.cond = cond;
3145 if_info.cond_earliest = cond_earliest;
3146 if_info.jump = jump;
3147 if_info.then_else_reversed = then_else_reversed;
3148 if_info.branch_cost = BRANCH_COST (optimize_bb_for_speed_p (test_bb),
3149 predictable_edge_p (then_edge));
3151 /* Do the real work. */
3153 if (noce_process_if_block (&if_info))
3154 return TRUE;
3156 if (HAVE_conditional_move
3157 && cond_move_process_if_block (&if_info))
3158 return TRUE;
3160 return FALSE;
3164 /* Merge the blocks and mark for local life update. */
3166 static void
3167 merge_if_block (struct ce_if_block * ce_info)
3169 basic_block test_bb = ce_info->test_bb; /* last test block */
3170 basic_block then_bb = ce_info->then_bb; /* THEN */
3171 basic_block else_bb = ce_info->else_bb; /* ELSE or NULL */
3172 basic_block join_bb = ce_info->join_bb; /* join block */
3173 basic_block combo_bb;
3175 /* All block merging is done into the lower block numbers. */
3177 combo_bb = test_bb;
3178 df_set_bb_dirty (test_bb);
3180 /* Merge any basic blocks to handle && and || subtests. Each of
3181 the blocks are on the fallthru path from the predecessor block. */
3182 if (ce_info->num_multiple_test_blocks > 0)
3184 basic_block bb = test_bb;
3185 basic_block last_test_bb = ce_info->last_test_bb;
3186 basic_block fallthru = block_fallthru (bb);
3190 bb = fallthru;
3191 fallthru = block_fallthru (bb);
3192 merge_blocks (combo_bb, bb);
3193 num_true_changes++;
3195 while (bb != last_test_bb);
3198 /* Merge TEST block into THEN block. Normally the THEN block won't have a
3199 label, but it might if there were || tests. That label's count should be
3200 zero, and it normally should be removed. */
3202 if (then_bb)
3204 /* If THEN_BB has no successors, then there's a BARRIER after it.
3205 If COMBO_BB has more than one successor (THEN_BB), then that BARRIER
3206 is no longer needed, and in fact it is incorrect to leave it in
3207 the insn stream. */
3208 if (EDGE_COUNT (then_bb->succs) == 0
3209 && EDGE_COUNT (combo_bb->succs) > 1)
3211 rtx_insn *end = NEXT_INSN (BB_END (then_bb));
3212 while (end && NOTE_P (end) && !NOTE_INSN_BASIC_BLOCK_P (end))
3213 end = NEXT_INSN (end);
3215 if (end && BARRIER_P (end))
3216 delete_insn (end);
3218 merge_blocks (combo_bb, then_bb);
3219 num_true_changes++;
3222 /* The ELSE block, if it existed, had a label. That label count
3223 will almost always be zero, but odd things can happen when labels
3224 get their addresses taken. */
3225 if (else_bb)
3227 /* If ELSE_BB has no successors, then there's a BARRIER after it.
3228 If COMBO_BB has more than one successor (ELSE_BB), then that BARRIER
3229 is no longer needed, and in fact it is incorrect to leave it in
3230 the insn stream. */
3231 if (EDGE_COUNT (else_bb->succs) == 0
3232 && EDGE_COUNT (combo_bb->succs) > 1)
3234 rtx_insn *end = NEXT_INSN (BB_END (else_bb));
3235 while (end && NOTE_P (end) && !NOTE_INSN_BASIC_BLOCK_P (end))
3236 end = NEXT_INSN (end);
3238 if (end && BARRIER_P (end))
3239 delete_insn (end);
3241 merge_blocks (combo_bb, else_bb);
3242 num_true_changes++;
3245 /* If there was no join block reported, that means it was not adjacent
3246 to the others, and so we cannot merge them. */
3248 if (! join_bb)
3250 rtx_insn *last = BB_END (combo_bb);
3252 /* The outgoing edge for the current COMBO block should already
3253 be correct. Verify this. */
3254 if (EDGE_COUNT (combo_bb->succs) == 0)
3255 gcc_assert (find_reg_note (last, REG_NORETURN, NULL)
3256 || (NONJUMP_INSN_P (last)
3257 && GET_CODE (PATTERN (last)) == TRAP_IF
3258 && (TRAP_CONDITION (PATTERN (last))
3259 == const_true_rtx)));
3261 else
3262 /* There should still be something at the end of the THEN or ELSE
3263 blocks taking us to our final destination. */
3264 gcc_assert (JUMP_P (last)
3265 || (EDGE_SUCC (combo_bb, 0)->dest
3266 == EXIT_BLOCK_PTR_FOR_FN (cfun)
3267 && CALL_P (last)
3268 && SIBLING_CALL_P (last))
3269 || ((EDGE_SUCC (combo_bb, 0)->flags & EDGE_EH)
3270 && can_throw_internal (last)));
3273 /* The JOIN block may have had quite a number of other predecessors too.
3274 Since we've already merged the TEST, THEN and ELSE blocks, we should
3275 have only one remaining edge from our if-then-else diamond. If there
3276 is more than one remaining edge, it must come from elsewhere. There
3277 may be zero incoming edges if the THEN block didn't actually join
3278 back up (as with a call to a non-return function). */
3279 else if (EDGE_COUNT (join_bb->preds) < 2
3280 && join_bb != EXIT_BLOCK_PTR_FOR_FN (cfun))
3282 /* We can merge the JOIN cleanly and update the dataflow try
3283 again on this pass.*/
3284 merge_blocks (combo_bb, join_bb);
3285 num_true_changes++;
3287 else
3289 /* We cannot merge the JOIN. */
3291 /* The outgoing edge for the current COMBO block should already
3292 be correct. Verify this. */
3293 gcc_assert (single_succ_p (combo_bb)
3294 && single_succ (combo_bb) == join_bb);
3296 /* Remove the jump and cruft from the end of the COMBO block. */
3297 if (join_bb != EXIT_BLOCK_PTR_FOR_FN (cfun))
3298 tidy_fallthru_edge (single_succ_edge (combo_bb));
3301 num_updated_if_blocks++;
3304 /* Find a block ending in a simple IF condition and try to transform it
3305 in some way. When converting a multi-block condition, put the new code
3306 in the first such block and delete the rest. Return a pointer to this
3307 first block if some transformation was done. Return NULL otherwise. */
3309 static basic_block
3310 find_if_header (basic_block test_bb, int pass)
3312 ce_if_block ce_info;
3313 edge then_edge;
3314 edge else_edge;
3316 /* The kind of block we're looking for has exactly two successors. */
3317 if (EDGE_COUNT (test_bb->succs) != 2)
3318 return NULL;
3320 then_edge = EDGE_SUCC (test_bb, 0);
3321 else_edge = EDGE_SUCC (test_bb, 1);
3323 if (df_get_bb_dirty (then_edge->dest))
3324 return NULL;
3325 if (df_get_bb_dirty (else_edge->dest))
3326 return NULL;
3328 /* Neither edge should be abnormal. */
3329 if ((then_edge->flags & EDGE_COMPLEX)
3330 || (else_edge->flags & EDGE_COMPLEX))
3331 return NULL;
3333 /* Nor exit the loop. */
3334 if ((then_edge->flags & EDGE_LOOP_EXIT)
3335 || (else_edge->flags & EDGE_LOOP_EXIT))
3336 return NULL;
3338 /* The THEN edge is canonically the one that falls through. */
3339 if (then_edge->flags & EDGE_FALLTHRU)
3341 else if (else_edge->flags & EDGE_FALLTHRU)
3343 edge e = else_edge;
3344 else_edge = then_edge;
3345 then_edge = e;
3347 else
3348 /* Otherwise this must be a multiway branch of some sort. */
3349 return NULL;
3351 memset (&ce_info, 0, sizeof (ce_info));
3352 ce_info.test_bb = test_bb;
3353 ce_info.then_bb = then_edge->dest;
3354 ce_info.else_bb = else_edge->dest;
3355 ce_info.pass = pass;
3357 #ifdef IFCVT_MACHDEP_INIT
3358 IFCVT_MACHDEP_INIT (&ce_info);
3359 #endif
3361 if (!reload_completed
3362 && noce_find_if_block (test_bb, then_edge, else_edge, pass))
3363 goto success;
3365 if (reload_completed
3366 && targetm.have_conditional_execution ()
3367 && cond_exec_find_if_block (&ce_info))
3368 goto success;
3370 if (HAVE_trap
3371 && optab_handler (ctrap_optab, word_mode) != CODE_FOR_nothing
3372 && find_cond_trap (test_bb, then_edge, else_edge))
3373 goto success;
3375 if (dom_info_state (CDI_POST_DOMINATORS) >= DOM_NO_FAST_QUERY
3376 && (reload_completed || !targetm.have_conditional_execution ()))
3378 if (find_if_case_1 (test_bb, then_edge, else_edge))
3379 goto success;
3380 if (find_if_case_2 (test_bb, then_edge, else_edge))
3381 goto success;
3384 return NULL;
3386 success:
3387 if (dump_file)
3388 fprintf (dump_file, "Conversion succeeded on pass %d.\n", pass);
3389 /* Set this so we continue looking. */
3390 cond_exec_changed_p = TRUE;
3391 return ce_info.test_bb;
3394 /* Return true if a block has two edges, one of which falls through to the next
3395 block, and the other jumps to a specific block, so that we can tell if the
3396 block is part of an && test or an || test. Returns either -1 or the number
3397 of non-note, non-jump, non-USE/CLOBBER insns in the block. */
3399 static int
3400 block_jumps_and_fallthru_p (basic_block cur_bb, basic_block target_bb)
3402 edge cur_edge;
3403 int fallthru_p = FALSE;
3404 int jump_p = FALSE;
3405 rtx_insn *insn;
3406 rtx_insn *end;
3407 int n_insns = 0;
3408 edge_iterator ei;
3410 if (!cur_bb || !target_bb)
3411 return -1;
3413 /* If no edges, obviously it doesn't jump or fallthru. */
3414 if (EDGE_COUNT (cur_bb->succs) == 0)
3415 return FALSE;
3417 FOR_EACH_EDGE (cur_edge, ei, cur_bb->succs)
3419 if (cur_edge->flags & EDGE_COMPLEX)
3420 /* Anything complex isn't what we want. */
3421 return -1;
3423 else if (cur_edge->flags & EDGE_FALLTHRU)
3424 fallthru_p = TRUE;
3426 else if (cur_edge->dest == target_bb)
3427 jump_p = TRUE;
3429 else
3430 return -1;
3433 if ((jump_p & fallthru_p) == 0)
3434 return -1;
3436 /* Don't allow calls in the block, since this is used to group && and ||
3437 together for conditional execution support. ??? we should support
3438 conditional execution support across calls for IA-64 some day, but
3439 for now it makes the code simpler. */
3440 end = BB_END (cur_bb);
3441 insn = BB_HEAD (cur_bb);
3443 while (insn != NULL_RTX)
3445 if (CALL_P (insn))
3446 return -1;
3448 if (INSN_P (insn)
3449 && !JUMP_P (insn)
3450 && !DEBUG_INSN_P (insn)
3451 && GET_CODE (PATTERN (insn)) != USE
3452 && GET_CODE (PATTERN (insn)) != CLOBBER)
3453 n_insns++;
3455 if (insn == end)
3456 break;
3458 insn = NEXT_INSN (insn);
3461 return n_insns;
3464 /* Determine if a given basic block heads a simple IF-THEN or IF-THEN-ELSE
3465 block. If so, we'll try to convert the insns to not require the branch.
3466 Return TRUE if we were successful at converting the block. */
3468 static int
3469 cond_exec_find_if_block (struct ce_if_block * ce_info)
3471 basic_block test_bb = ce_info->test_bb;
3472 basic_block then_bb = ce_info->then_bb;
3473 basic_block else_bb = ce_info->else_bb;
3474 basic_block join_bb = NULL_BLOCK;
3475 edge cur_edge;
3476 basic_block next;
3477 edge_iterator ei;
3479 ce_info->last_test_bb = test_bb;
3481 /* We only ever should get here after reload,
3482 and if we have conditional execution. */
3483 gcc_assert (reload_completed && targetm.have_conditional_execution ());
3485 /* Discover if any fall through predecessors of the current test basic block
3486 were && tests (which jump to the else block) or || tests (which jump to
3487 the then block). */
3488 if (single_pred_p (test_bb)
3489 && single_pred_edge (test_bb)->flags == EDGE_FALLTHRU)
3491 basic_block bb = single_pred (test_bb);
3492 basic_block target_bb;
3493 int max_insns = MAX_CONDITIONAL_EXECUTE;
3494 int n_insns;
3496 /* Determine if the preceding block is an && or || block. */
3497 if ((n_insns = block_jumps_and_fallthru_p (bb, else_bb)) >= 0)
3499 ce_info->and_and_p = TRUE;
3500 target_bb = else_bb;
3502 else if ((n_insns = block_jumps_and_fallthru_p (bb, then_bb)) >= 0)
3504 ce_info->and_and_p = FALSE;
3505 target_bb = then_bb;
3507 else
3508 target_bb = NULL_BLOCK;
3510 if (target_bb && n_insns <= max_insns)
3512 int total_insns = 0;
3513 int blocks = 0;
3515 ce_info->last_test_bb = test_bb;
3517 /* Found at least one && or || block, look for more. */
3520 ce_info->test_bb = test_bb = bb;
3521 total_insns += n_insns;
3522 blocks++;
3524 if (!single_pred_p (bb))
3525 break;
3527 bb = single_pred (bb);
3528 n_insns = block_jumps_and_fallthru_p (bb, target_bb);
3530 while (n_insns >= 0 && (total_insns + n_insns) <= max_insns);
3532 ce_info->num_multiple_test_blocks = blocks;
3533 ce_info->num_multiple_test_insns = total_insns;
3535 if (ce_info->and_and_p)
3536 ce_info->num_and_and_blocks = blocks;
3537 else
3538 ce_info->num_or_or_blocks = blocks;
3542 /* The THEN block of an IF-THEN combo must have exactly one predecessor,
3543 other than any || blocks which jump to the THEN block. */
3544 if ((EDGE_COUNT (then_bb->preds) - ce_info->num_or_or_blocks) != 1)
3545 return FALSE;
3547 /* The edges of the THEN and ELSE blocks cannot have complex edges. */
3548 FOR_EACH_EDGE (cur_edge, ei, then_bb->preds)
3550 if (cur_edge->flags & EDGE_COMPLEX)
3551 return FALSE;
3554 FOR_EACH_EDGE (cur_edge, ei, else_bb->preds)
3556 if (cur_edge->flags & EDGE_COMPLEX)
3557 return FALSE;
3560 /* The THEN block of an IF-THEN combo must have zero or one successors. */
3561 if (EDGE_COUNT (then_bb->succs) > 0
3562 && (!single_succ_p (then_bb)
3563 || (single_succ_edge (then_bb)->flags & EDGE_COMPLEX)
3564 || (epilogue_completed
3565 && tablejump_p (BB_END (then_bb), NULL, NULL))))
3566 return FALSE;
3568 /* If the THEN block has no successors, conditional execution can still
3569 make a conditional call. Don't do this unless the ELSE block has
3570 only one incoming edge -- the CFG manipulation is too ugly otherwise.
3571 Check for the last insn of the THEN block being an indirect jump, which
3572 is listed as not having any successors, but confuses the rest of the CE
3573 code processing. ??? we should fix this in the future. */
3574 if (EDGE_COUNT (then_bb->succs) == 0)
3576 if (single_pred_p (else_bb) && else_bb != EXIT_BLOCK_PTR_FOR_FN (cfun))
3578 rtx_insn *last_insn = BB_END (then_bb);
3580 while (last_insn
3581 && NOTE_P (last_insn)
3582 && last_insn != BB_HEAD (then_bb))
3583 last_insn = PREV_INSN (last_insn);
3585 if (last_insn
3586 && JUMP_P (last_insn)
3587 && ! simplejump_p (last_insn))
3588 return FALSE;
3590 join_bb = else_bb;
3591 else_bb = NULL_BLOCK;
3593 else
3594 return FALSE;
3597 /* If the THEN block's successor is the other edge out of the TEST block,
3598 then we have an IF-THEN combo without an ELSE. */
3599 else if (single_succ (then_bb) == else_bb)
3601 join_bb = else_bb;
3602 else_bb = NULL_BLOCK;
3605 /* If the THEN and ELSE block meet in a subsequent block, and the ELSE
3606 has exactly one predecessor and one successor, and the outgoing edge
3607 is not complex, then we have an IF-THEN-ELSE combo. */
3608 else if (single_succ_p (else_bb)
3609 && single_succ (then_bb) == single_succ (else_bb)
3610 && single_pred_p (else_bb)
3611 && !(single_succ_edge (else_bb)->flags & EDGE_COMPLEX)
3612 && !(epilogue_completed
3613 && tablejump_p (BB_END (else_bb), NULL, NULL)))
3614 join_bb = single_succ (else_bb);
3616 /* Otherwise it is not an IF-THEN or IF-THEN-ELSE combination. */
3617 else
3618 return FALSE;
3620 num_possible_if_blocks++;
3622 if (dump_file)
3624 fprintf (dump_file,
3625 "\nIF-THEN%s block found, pass %d, start block %d "
3626 "[insn %d], then %d [%d]",
3627 (else_bb) ? "-ELSE" : "",
3628 ce_info->pass,
3629 test_bb->index,
3630 BB_HEAD (test_bb) ? (int)INSN_UID (BB_HEAD (test_bb)) : -1,
3631 then_bb->index,
3632 BB_HEAD (then_bb) ? (int)INSN_UID (BB_HEAD (then_bb)) : -1);
3634 if (else_bb)
3635 fprintf (dump_file, ", else %d [%d]",
3636 else_bb->index,
3637 BB_HEAD (else_bb) ? (int)INSN_UID (BB_HEAD (else_bb)) : -1);
3639 fprintf (dump_file, ", join %d [%d]",
3640 join_bb->index,
3641 BB_HEAD (join_bb) ? (int)INSN_UID (BB_HEAD (join_bb)) : -1);
3643 if (ce_info->num_multiple_test_blocks > 0)
3644 fprintf (dump_file, ", %d %s block%s last test %d [%d]",
3645 ce_info->num_multiple_test_blocks,
3646 (ce_info->and_and_p) ? "&&" : "||",
3647 (ce_info->num_multiple_test_blocks == 1) ? "" : "s",
3648 ce_info->last_test_bb->index,
3649 ((BB_HEAD (ce_info->last_test_bb))
3650 ? (int)INSN_UID (BB_HEAD (ce_info->last_test_bb))
3651 : -1));
3653 fputc ('\n', dump_file);
3656 /* Make sure IF, THEN, and ELSE, blocks are adjacent. Actually, we get the
3657 first condition for free, since we've already asserted that there's a
3658 fallthru edge from IF to THEN. Likewise for the && and || blocks, since
3659 we checked the FALLTHRU flag, those are already adjacent to the last IF
3660 block. */
3661 /* ??? As an enhancement, move the ELSE block. Have to deal with
3662 BLOCK notes, if by no other means than backing out the merge if they
3663 exist. Sticky enough I don't want to think about it now. */
3664 next = then_bb;
3665 if (else_bb && (next = next->next_bb) != else_bb)
3666 return FALSE;
3667 if ((next = next->next_bb) != join_bb
3668 && join_bb != EXIT_BLOCK_PTR_FOR_FN (cfun))
3670 if (else_bb)
3671 join_bb = NULL;
3672 else
3673 return FALSE;
3676 /* Do the real work. */
3678 ce_info->else_bb = else_bb;
3679 ce_info->join_bb = join_bb;
3681 /* If we have && and || tests, try to first handle combining the && and ||
3682 tests into the conditional code, and if that fails, go back and handle
3683 it without the && and ||, which at present handles the && case if there
3684 was no ELSE block. */
3685 if (cond_exec_process_if_block (ce_info, TRUE))
3686 return TRUE;
3688 if (ce_info->num_multiple_test_blocks)
3690 cancel_changes (0);
3692 if (cond_exec_process_if_block (ce_info, FALSE))
3693 return TRUE;
3696 return FALSE;
3699 /* Convert a branch over a trap, or a branch
3700 to a trap, into a conditional trap. */
3702 static int
3703 find_cond_trap (basic_block test_bb, edge then_edge, edge else_edge)
3705 basic_block then_bb = then_edge->dest;
3706 basic_block else_bb = else_edge->dest;
3707 basic_block other_bb, trap_bb;
3708 rtx_insn *trap, *jump;
3709 rtx cond, seq;
3710 rtx_insn *cond_earliest;
3711 enum rtx_code code;
3713 /* Locate the block with the trap instruction. */
3714 /* ??? While we look for no successors, we really ought to allow
3715 EH successors. Need to fix merge_if_block for that to work. */
3716 if ((trap = block_has_only_trap (then_bb)) != NULL)
3717 trap_bb = then_bb, other_bb = else_bb;
3718 else if ((trap = block_has_only_trap (else_bb)) != NULL)
3719 trap_bb = else_bb, other_bb = then_bb;
3720 else
3721 return FALSE;
3723 if (dump_file)
3725 fprintf (dump_file, "\nTRAP-IF block found, start %d, trap %d\n",
3726 test_bb->index, trap_bb->index);
3729 /* If this is not a standard conditional jump, we can't parse it. */
3730 jump = BB_END (test_bb);
3731 cond = noce_get_condition (jump, &cond_earliest, false);
3732 if (! cond)
3733 return FALSE;
3735 /* If the conditional jump is more than just a conditional jump, then
3736 we can not do if-conversion on this block. */
3737 if (! onlyjump_p (jump))
3738 return FALSE;
3740 /* We must be comparing objects whose modes imply the size. */
3741 if (GET_MODE (XEXP (cond, 0)) == BLKmode)
3742 return FALSE;
3744 /* Reverse the comparison code, if necessary. */
3745 code = GET_CODE (cond);
3746 if (then_bb == trap_bb)
3748 code = reversed_comparison_code (cond, jump);
3749 if (code == UNKNOWN)
3750 return FALSE;
3753 /* Attempt to generate the conditional trap. */
3754 seq = gen_cond_trap (code, copy_rtx (XEXP (cond, 0)),
3755 copy_rtx (XEXP (cond, 1)),
3756 TRAP_CODE (PATTERN (trap)));
3757 if (seq == NULL)
3758 return FALSE;
3760 /* Emit the new insns before cond_earliest. */
3761 emit_insn_before_setloc (seq, cond_earliest, INSN_LOCATION (trap));
3763 /* Delete the trap block if possible. */
3764 remove_edge (trap_bb == then_bb ? then_edge : else_edge);
3765 df_set_bb_dirty (test_bb);
3766 df_set_bb_dirty (then_bb);
3767 df_set_bb_dirty (else_bb);
3769 if (EDGE_COUNT (trap_bb->preds) == 0)
3771 delete_basic_block (trap_bb);
3772 num_true_changes++;
3775 /* Wire together the blocks again. */
3776 if (current_ir_type () == IR_RTL_CFGLAYOUT)
3777 single_succ_edge (test_bb)->flags |= EDGE_FALLTHRU;
3778 else if (trap_bb == then_bb)
3780 rtx lab;
3781 rtx_insn *newjump;
3783 lab = JUMP_LABEL (jump);
3784 newjump = emit_jump_insn_after (gen_jump (lab), jump);
3785 LABEL_NUSES (lab) += 1;
3786 JUMP_LABEL (newjump) = lab;
3787 emit_barrier_after (newjump);
3789 delete_insn (jump);
3791 if (can_merge_blocks_p (test_bb, other_bb))
3793 merge_blocks (test_bb, other_bb);
3794 num_true_changes++;
3797 num_updated_if_blocks++;
3798 return TRUE;
3801 /* Subroutine of find_cond_trap: if BB contains only a trap insn,
3802 return it. */
3804 static rtx_insn *
3805 block_has_only_trap (basic_block bb)
3807 rtx_insn *trap;
3809 /* We're not the exit block. */
3810 if (bb == EXIT_BLOCK_PTR_FOR_FN (cfun))
3811 return NULL;
3813 /* The block must have no successors. */
3814 if (EDGE_COUNT (bb->succs) > 0)
3815 return NULL;
3817 /* The only instruction in the THEN block must be the trap. */
3818 trap = first_active_insn (bb);
3819 if (! (trap == BB_END (bb)
3820 && GET_CODE (PATTERN (trap)) == TRAP_IF
3821 && TRAP_CONDITION (PATTERN (trap)) == const_true_rtx))
3822 return NULL;
3824 return trap;
3827 /* Look for IF-THEN-ELSE cases in which one of THEN or ELSE is
3828 transformable, but not necessarily the other. There need be no
3829 JOIN block.
3831 Return TRUE if we were successful at converting the block.
3833 Cases we'd like to look at:
3836 if (test) goto over; // x not live
3837 x = a;
3838 goto label;
3839 over:
3841 becomes
3843 x = a;
3844 if (! test) goto label;
3847 if (test) goto E; // x not live
3848 x = big();
3849 goto L;
3851 x = b;
3852 goto M;
3854 becomes
3856 x = b;
3857 if (test) goto M;
3858 x = big();
3859 goto L;
3861 (3) // This one's really only interesting for targets that can do
3862 // multiway branching, e.g. IA-64 BBB bundles. For other targets
3863 // it results in multiple branches on a cache line, which often
3864 // does not sit well with predictors.
3866 if (test1) goto E; // predicted not taken
3867 x = a;
3868 if (test2) goto F;
3871 x = b;
3874 becomes
3876 x = a;
3877 if (test1) goto E;
3878 if (test2) goto F;
3880 Notes:
3882 (A) Don't do (2) if the branch is predicted against the block we're
3883 eliminating. Do it anyway if we can eliminate a branch; this requires
3884 that the sole successor of the eliminated block postdominate the other
3885 side of the if.
3887 (B) With CE, on (3) we can steal from both sides of the if, creating
3889 if (test1) x = a;
3890 if (!test1) x = b;
3891 if (test1) goto J;
3892 if (test2) goto F;
3896 Again, this is most useful if J postdominates.
3898 (C) CE substitutes for helpful life information.
3900 (D) These heuristics need a lot of work. */
3902 /* Tests for case 1 above. */
3904 static int
3905 find_if_case_1 (basic_block test_bb, edge then_edge, edge else_edge)
3907 basic_block then_bb = then_edge->dest;
3908 basic_block else_bb = else_edge->dest;
3909 basic_block new_bb;
3910 int then_bb_index, then_prob;
3911 rtx else_target = NULL_RTX;
3913 /* If we are partitioning hot/cold basic blocks, we don't want to
3914 mess up unconditional or indirect jumps that cross between hot
3915 and cold sections.
3917 Basic block partitioning may result in some jumps that appear to
3918 be optimizable (or blocks that appear to be mergeable), but which really
3919 must be left untouched (they are required to make it safely across
3920 partition boundaries). See the comments at the top of
3921 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
3923 if ((BB_END (then_bb)
3924 && JUMP_P (BB_END (then_bb))
3925 && CROSSING_JUMP_P (BB_END (then_bb)))
3926 || (BB_END (test_bb)
3927 && JUMP_P (BB_END (test_bb))
3928 && CROSSING_JUMP_P (BB_END (test_bb)))
3929 || (BB_END (else_bb)
3930 && JUMP_P (BB_END (else_bb))
3931 && CROSSING_JUMP_P (BB_END (else_bb))))
3932 return FALSE;
3934 /* THEN has one successor. */
3935 if (!single_succ_p (then_bb))
3936 return FALSE;
3938 /* THEN does not fall through, but is not strange either. */
3939 if (single_succ_edge (then_bb)->flags & (EDGE_COMPLEX | EDGE_FALLTHRU))
3940 return FALSE;
3942 /* THEN has one predecessor. */
3943 if (!single_pred_p (then_bb))
3944 return FALSE;
3946 /* THEN must do something. */
3947 if (forwarder_block_p (then_bb))
3948 return FALSE;
3950 num_possible_if_blocks++;
3951 if (dump_file)
3952 fprintf (dump_file,
3953 "\nIF-CASE-1 found, start %d, then %d\n",
3954 test_bb->index, then_bb->index);
3956 if (then_edge->probability)
3957 then_prob = REG_BR_PROB_BASE - then_edge->probability;
3958 else
3959 then_prob = REG_BR_PROB_BASE / 2;
3961 /* We're speculating from the THEN path, we want to make sure the cost
3962 of speculation is within reason. */
3963 if (! cheap_bb_rtx_cost_p (then_bb, then_prob,
3964 COSTS_N_INSNS (BRANCH_COST (optimize_bb_for_speed_p (then_edge->src),
3965 predictable_edge_p (then_edge)))))
3966 return FALSE;
3968 if (else_bb == EXIT_BLOCK_PTR_FOR_FN (cfun))
3970 rtx_insn *jump = BB_END (else_edge->src);
3971 gcc_assert (JUMP_P (jump));
3972 else_target = JUMP_LABEL (jump);
3975 /* Registers set are dead, or are predicable. */
3976 if (! dead_or_predicable (test_bb, then_bb, else_bb,
3977 single_succ_edge (then_bb), 1))
3978 return FALSE;
3980 /* Conversion went ok, including moving the insns and fixing up the
3981 jump. Adjust the CFG to match. */
3983 /* We can avoid creating a new basic block if then_bb is immediately
3984 followed by else_bb, i.e. deleting then_bb allows test_bb to fall
3985 through to else_bb. */
3987 if (then_bb->next_bb == else_bb
3988 && then_bb->prev_bb == test_bb
3989 && else_bb != EXIT_BLOCK_PTR_FOR_FN (cfun))
3991 redirect_edge_succ (FALLTHRU_EDGE (test_bb), else_bb);
3992 new_bb = 0;
3994 else if (else_bb == EXIT_BLOCK_PTR_FOR_FN (cfun))
3995 new_bb = force_nonfallthru_and_redirect (FALLTHRU_EDGE (test_bb),
3996 else_bb, else_target);
3997 else
3998 new_bb = redirect_edge_and_branch_force (FALLTHRU_EDGE (test_bb),
3999 else_bb);
4001 df_set_bb_dirty (test_bb);
4002 df_set_bb_dirty (else_bb);
4004 then_bb_index = then_bb->index;
4005 delete_basic_block (then_bb);
4007 /* Make rest of code believe that the newly created block is the THEN_BB
4008 block we removed. */
4009 if (new_bb)
4011 df_bb_replace (then_bb_index, new_bb);
4012 /* This should have been done above via force_nonfallthru_and_redirect
4013 (possibly called from redirect_edge_and_branch_force). */
4014 gcc_checking_assert (BB_PARTITION (new_bb) == BB_PARTITION (test_bb));
4017 num_true_changes++;
4018 num_updated_if_blocks++;
4020 return TRUE;
4023 /* Test for case 2 above. */
4025 static int
4026 find_if_case_2 (basic_block test_bb, edge then_edge, edge else_edge)
4028 basic_block then_bb = then_edge->dest;
4029 basic_block else_bb = else_edge->dest;
4030 edge else_succ;
4031 int then_prob, else_prob;
4033 /* We do not want to speculate (empty) loop latches. */
4034 if (current_loops
4035 && else_bb->loop_father->latch == else_bb)
4036 return FALSE;
4038 /* If we are partitioning hot/cold basic blocks, we don't want to
4039 mess up unconditional or indirect jumps that cross between hot
4040 and cold sections.
4042 Basic block partitioning may result in some jumps that appear to
4043 be optimizable (or blocks that appear to be mergeable), but which really
4044 must be left untouched (they are required to make it safely across
4045 partition boundaries). See the comments at the top of
4046 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
4048 if ((BB_END (then_bb)
4049 && JUMP_P (BB_END (then_bb))
4050 && CROSSING_JUMP_P (BB_END (then_bb)))
4051 || (BB_END (test_bb)
4052 && JUMP_P (BB_END (test_bb))
4053 && CROSSING_JUMP_P (BB_END (test_bb)))
4054 || (BB_END (else_bb)
4055 && JUMP_P (BB_END (else_bb))
4056 && CROSSING_JUMP_P (BB_END (else_bb))))
4057 return FALSE;
4059 /* ELSE has one successor. */
4060 if (!single_succ_p (else_bb))
4061 return FALSE;
4062 else
4063 else_succ = single_succ_edge (else_bb);
4065 /* ELSE outgoing edge is not complex. */
4066 if (else_succ->flags & EDGE_COMPLEX)
4067 return FALSE;
4069 /* ELSE has one predecessor. */
4070 if (!single_pred_p (else_bb))
4071 return FALSE;
4073 /* THEN is not EXIT. */
4074 if (then_bb->index < NUM_FIXED_BLOCKS)
4075 return FALSE;
4077 if (else_edge->probability)
4079 else_prob = else_edge->probability;
4080 then_prob = REG_BR_PROB_BASE - else_prob;
4082 else
4084 else_prob = REG_BR_PROB_BASE / 2;
4085 then_prob = REG_BR_PROB_BASE / 2;
4088 /* ELSE is predicted or SUCC(ELSE) postdominates THEN. */
4089 if (else_prob > then_prob)
4091 else if (else_succ->dest->index < NUM_FIXED_BLOCKS
4092 || dominated_by_p (CDI_POST_DOMINATORS, then_bb,
4093 else_succ->dest))
4095 else
4096 return FALSE;
4098 num_possible_if_blocks++;
4099 if (dump_file)
4100 fprintf (dump_file,
4101 "\nIF-CASE-2 found, start %d, else %d\n",
4102 test_bb->index, else_bb->index);
4104 /* We're speculating from the ELSE path, we want to make sure the cost
4105 of speculation is within reason. */
4106 if (! cheap_bb_rtx_cost_p (else_bb, else_prob,
4107 COSTS_N_INSNS (BRANCH_COST (optimize_bb_for_speed_p (else_edge->src),
4108 predictable_edge_p (else_edge)))))
4109 return FALSE;
4111 /* Registers set are dead, or are predicable. */
4112 if (! dead_or_predicable (test_bb, else_bb, then_bb, else_succ, 0))
4113 return FALSE;
4115 /* Conversion went ok, including moving the insns and fixing up the
4116 jump. Adjust the CFG to match. */
4118 df_set_bb_dirty (test_bb);
4119 df_set_bb_dirty (then_bb);
4120 delete_basic_block (else_bb);
4122 num_true_changes++;
4123 num_updated_if_blocks++;
4125 /* ??? We may now fallthru from one of THEN's successors into a join
4126 block. Rerun cleanup_cfg? Examine things manually? Wait? */
4128 return TRUE;
4131 /* Used by the code above to perform the actual rtl transformations.
4132 Return TRUE if successful.
4134 TEST_BB is the block containing the conditional branch. MERGE_BB
4135 is the block containing the code to manipulate. DEST_EDGE is an
4136 edge representing a jump to the join block; after the conversion,
4137 TEST_BB should be branching to its destination.
4138 REVERSEP is true if the sense of the branch should be reversed. */
4140 static int
4141 dead_or_predicable (basic_block test_bb, basic_block merge_bb,
4142 basic_block other_bb, edge dest_edge, int reversep)
4144 basic_block new_dest = dest_edge->dest;
4145 rtx_insn *head, *end, *jump;
4146 rtx_insn *earliest = NULL;
4147 rtx old_dest;
4148 bitmap merge_set = NULL;
4149 /* Number of pending changes. */
4150 int n_validated_changes = 0;
4151 rtx new_dest_label = NULL_RTX;
4153 jump = BB_END (test_bb);
4155 /* Find the extent of the real code in the merge block. */
4156 head = BB_HEAD (merge_bb);
4157 end = BB_END (merge_bb);
4159 while (DEBUG_INSN_P (end) && end != head)
4160 end = PREV_INSN (end);
4162 /* If merge_bb ends with a tablejump, predicating/moving insn's
4163 into test_bb and then deleting merge_bb will result in the jumptable
4164 that follows merge_bb being removed along with merge_bb and then we
4165 get an unresolved reference to the jumptable. */
4166 if (tablejump_p (end, NULL, NULL))
4167 return FALSE;
4169 if (LABEL_P (head))
4170 head = NEXT_INSN (head);
4171 while (DEBUG_INSN_P (head) && head != end)
4172 head = NEXT_INSN (head);
4173 if (NOTE_P (head))
4175 if (head == end)
4177 head = end = NULL;
4178 goto no_body;
4180 head = NEXT_INSN (head);
4181 while (DEBUG_INSN_P (head) && head != end)
4182 head = NEXT_INSN (head);
4185 if (JUMP_P (end))
4187 if (!onlyjump_p (end))
4188 return FALSE;
4189 if (head == end)
4191 head = end = NULL;
4192 goto no_body;
4194 end = PREV_INSN (end);
4195 while (DEBUG_INSN_P (end) && end != head)
4196 end = PREV_INSN (end);
4199 /* Don't move frame-related insn across the conditional branch. This
4200 can lead to one of the paths of the branch having wrong unwind info. */
4201 if (epilogue_completed)
4203 rtx_insn *insn = head;
4204 while (1)
4206 if (INSN_P (insn) && RTX_FRAME_RELATED_P (insn))
4207 return FALSE;
4208 if (insn == end)
4209 break;
4210 insn = NEXT_INSN (insn);
4214 /* Disable handling dead code by conditional execution if the machine needs
4215 to do anything funny with the tests, etc. */
4216 #ifndef IFCVT_MODIFY_TESTS
4217 if (targetm.have_conditional_execution ())
4219 /* In the conditional execution case, we have things easy. We know
4220 the condition is reversible. We don't have to check life info
4221 because we're going to conditionally execute the code anyway.
4222 All that's left is making sure the insns involved can actually
4223 be predicated. */
4225 rtx cond;
4227 cond = cond_exec_get_condition (jump);
4228 if (! cond)
4229 return FALSE;
4231 rtx note = find_reg_note (jump, REG_BR_PROB, NULL_RTX);
4232 int prob_val = (note ? XINT (note, 0) : -1);
4234 if (reversep)
4236 enum rtx_code rev = reversed_comparison_code (cond, jump);
4237 if (rev == UNKNOWN)
4238 return FALSE;
4239 cond = gen_rtx_fmt_ee (rev, GET_MODE (cond), XEXP (cond, 0),
4240 XEXP (cond, 1));
4241 if (prob_val >= 0)
4242 prob_val = REG_BR_PROB_BASE - prob_val;
4245 if (cond_exec_process_insns (NULL, head, end, cond, prob_val, 0)
4246 && verify_changes (0))
4247 n_validated_changes = num_validated_changes ();
4248 else
4249 cancel_changes (0);
4251 earliest = jump;
4253 #endif
4255 /* If we allocated new pseudos (e.g. in the conditional move
4256 expander called from noce_emit_cmove), we must resize the
4257 array first. */
4258 if (max_regno < max_reg_num ())
4259 max_regno = max_reg_num ();
4261 /* Try the NCE path if the CE path did not result in any changes. */
4262 if (n_validated_changes == 0)
4264 rtx cond;
4265 rtx_insn *insn;
4266 regset live;
4267 bool success;
4269 /* In the non-conditional execution case, we have to verify that there
4270 are no trapping operations, no calls, no references to memory, and
4271 that any registers modified are dead at the branch site. */
4273 if (!any_condjump_p (jump))
4274 return FALSE;
4276 /* Find the extent of the conditional. */
4277 cond = noce_get_condition (jump, &earliest, false);
4278 if (!cond)
4279 return FALSE;
4281 live = BITMAP_ALLOC (&reg_obstack);
4282 simulate_backwards_to_point (merge_bb, live, end);
4283 success = can_move_insns_across (head, end, earliest, jump,
4284 merge_bb, live,
4285 df_get_live_in (other_bb), NULL);
4286 BITMAP_FREE (live);
4287 if (!success)
4288 return FALSE;
4290 /* Collect the set of registers set in MERGE_BB. */
4291 merge_set = BITMAP_ALLOC (&reg_obstack);
4293 FOR_BB_INSNS (merge_bb, insn)
4294 if (NONDEBUG_INSN_P (insn))
4295 df_simulate_find_defs (insn, merge_set);
4297 /* If shrink-wrapping, disable this optimization when test_bb is
4298 the first basic block and merge_bb exits. The idea is to not
4299 move code setting up a return register as that may clobber a
4300 register used to pass function parameters, which then must be
4301 saved in caller-saved regs. A caller-saved reg requires the
4302 prologue, killing a shrink-wrap opportunity. */
4303 if ((SHRINK_WRAPPING_ENABLED && !epilogue_completed)
4304 && ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb == test_bb
4305 && single_succ_p (new_dest)
4306 && single_succ (new_dest) == EXIT_BLOCK_PTR_FOR_FN (cfun)
4307 && bitmap_intersect_p (df_get_live_in (new_dest), merge_set))
4309 regset return_regs;
4310 unsigned int i;
4312 return_regs = BITMAP_ALLOC (&reg_obstack);
4314 /* Start off with the intersection of regs used to pass
4315 params and regs used to return values. */
4316 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4317 if (FUNCTION_ARG_REGNO_P (i)
4318 && targetm.calls.function_value_regno_p (i))
4319 bitmap_set_bit (return_regs, INCOMING_REGNO (i));
4321 bitmap_and_into (return_regs,
4322 df_get_live_out (ENTRY_BLOCK_PTR_FOR_FN (cfun)));
4323 bitmap_and_into (return_regs,
4324 df_get_live_in (EXIT_BLOCK_PTR_FOR_FN (cfun)));
4325 if (!bitmap_empty_p (return_regs))
4327 FOR_BB_INSNS_REVERSE (new_dest, insn)
4328 if (NONDEBUG_INSN_P (insn))
4330 df_ref def;
4332 /* If this insn sets any reg in return_regs, add all
4333 reg uses to the set of regs we're interested in. */
4334 FOR_EACH_INSN_DEF (def, insn)
4335 if (bitmap_bit_p (return_regs, DF_REF_REGNO (def)))
4337 df_simulate_uses (insn, return_regs);
4338 break;
4341 if (bitmap_intersect_p (merge_set, return_regs))
4343 BITMAP_FREE (return_regs);
4344 BITMAP_FREE (merge_set);
4345 return FALSE;
4348 BITMAP_FREE (return_regs);
4352 no_body:
4353 /* We don't want to use normal invert_jump or redirect_jump because
4354 we don't want to delete_insn called. Also, we want to do our own
4355 change group management. */
4357 old_dest = JUMP_LABEL (jump);
4358 if (other_bb != new_dest)
4360 if (!any_condjump_p (jump))
4361 goto cancel;
4363 if (JUMP_P (BB_END (dest_edge->src)))
4364 new_dest_label = JUMP_LABEL (BB_END (dest_edge->src));
4365 else if (new_dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
4366 new_dest_label = ret_rtx;
4367 else
4368 new_dest_label = block_label (new_dest);
4370 if (reversep
4371 ? ! invert_jump_1 (jump, new_dest_label)
4372 : ! redirect_jump_1 (jump, new_dest_label))
4373 goto cancel;
4376 if (verify_changes (n_validated_changes))
4377 confirm_change_group ();
4378 else
4379 goto cancel;
4381 if (other_bb != new_dest)
4383 redirect_jump_2 (jump, old_dest, new_dest_label, 0, reversep);
4385 redirect_edge_succ (BRANCH_EDGE (test_bb), new_dest);
4386 if (reversep)
4388 gcov_type count, probability;
4389 count = BRANCH_EDGE (test_bb)->count;
4390 BRANCH_EDGE (test_bb)->count = FALLTHRU_EDGE (test_bb)->count;
4391 FALLTHRU_EDGE (test_bb)->count = count;
4392 probability = BRANCH_EDGE (test_bb)->probability;
4393 BRANCH_EDGE (test_bb)->probability
4394 = FALLTHRU_EDGE (test_bb)->probability;
4395 FALLTHRU_EDGE (test_bb)->probability = probability;
4396 update_br_prob_note (test_bb);
4400 /* Move the insns out of MERGE_BB to before the branch. */
4401 if (head != NULL)
4403 rtx_insn *insn;
4405 if (end == BB_END (merge_bb))
4406 BB_END (merge_bb) = PREV_INSN (head);
4408 /* PR 21767: when moving insns above a conditional branch, the REG_EQUAL
4409 notes being moved might become invalid. */
4410 insn = head;
4413 rtx note;
4415 if (! INSN_P (insn))
4416 continue;
4417 note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
4418 if (! note)
4419 continue;
4420 remove_note (insn, note);
4421 } while (insn != end && (insn = NEXT_INSN (insn)));
4423 /* PR46315: when moving insns above a conditional branch, the REG_EQUAL
4424 notes referring to the registers being set might become invalid. */
4425 if (merge_set)
4427 unsigned i;
4428 bitmap_iterator bi;
4430 EXECUTE_IF_SET_IN_BITMAP (merge_set, 0, i, bi)
4431 remove_reg_equal_equiv_notes_for_regno (i);
4433 BITMAP_FREE (merge_set);
4436 reorder_insns (head, end, PREV_INSN (earliest));
4439 /* Remove the jump and edge if we can. */
4440 if (other_bb == new_dest)
4442 delete_insn (jump);
4443 remove_edge (BRANCH_EDGE (test_bb));
4444 /* ??? Can't merge blocks here, as then_bb is still in use.
4445 At minimum, the merge will get done just before bb-reorder. */
4448 return TRUE;
4450 cancel:
4451 cancel_changes (0);
4453 if (merge_set)
4454 BITMAP_FREE (merge_set);
4456 return FALSE;
4459 /* Main entry point for all if-conversion. AFTER_COMBINE is true if
4460 we are after combine pass. */
4462 static void
4463 if_convert (bool after_combine)
4465 basic_block bb;
4466 int pass;
4468 if (optimize == 1)
4470 df_live_add_problem ();
4471 df_live_set_all_dirty ();
4474 /* Record whether we are after combine pass. */
4475 ifcvt_after_combine = after_combine;
4476 num_possible_if_blocks = 0;
4477 num_updated_if_blocks = 0;
4478 num_true_changes = 0;
4480 loop_optimizer_init (AVOID_CFG_MODIFICATIONS);
4481 mark_loop_exit_edges ();
4482 loop_optimizer_finalize ();
4483 free_dominance_info (CDI_DOMINATORS);
4485 /* Compute postdominators. */
4486 calculate_dominance_info (CDI_POST_DOMINATORS);
4488 df_set_flags (DF_LR_RUN_DCE);
4490 /* Go through each of the basic blocks looking for things to convert. If we
4491 have conditional execution, we make multiple passes to allow us to handle
4492 IF-THEN{-ELSE} blocks within other IF-THEN{-ELSE} blocks. */
4493 pass = 0;
4496 df_analyze ();
4497 /* Only need to do dce on the first pass. */
4498 df_clear_flags (DF_LR_RUN_DCE);
4499 cond_exec_changed_p = FALSE;
4500 pass++;
4502 #ifdef IFCVT_MULTIPLE_DUMPS
4503 if (dump_file && pass > 1)
4504 fprintf (dump_file, "\n\n========== Pass %d ==========\n", pass);
4505 #endif
4507 FOR_EACH_BB_FN (bb, cfun)
4509 basic_block new_bb;
4510 while (!df_get_bb_dirty (bb)
4511 && (new_bb = find_if_header (bb, pass)) != NULL)
4512 bb = new_bb;
4515 #ifdef IFCVT_MULTIPLE_DUMPS
4516 if (dump_file && cond_exec_changed_p)
4517 print_rtl_with_bb (dump_file, get_insns (), dump_flags);
4518 #endif
4520 while (cond_exec_changed_p);
4522 #ifdef IFCVT_MULTIPLE_DUMPS
4523 if (dump_file)
4524 fprintf (dump_file, "\n\n========== no more changes\n");
4525 #endif
4527 free_dominance_info (CDI_POST_DOMINATORS);
4529 if (dump_file)
4530 fflush (dump_file);
4532 clear_aux_for_blocks ();
4534 /* If we allocated new pseudos, we must resize the array for sched1. */
4535 if (max_regno < max_reg_num ())
4536 max_regno = max_reg_num ();
4538 /* Write the final stats. */
4539 if (dump_file && num_possible_if_blocks > 0)
4541 fprintf (dump_file,
4542 "\n%d possible IF blocks searched.\n",
4543 num_possible_if_blocks);
4544 fprintf (dump_file,
4545 "%d IF blocks converted.\n",
4546 num_updated_if_blocks);
4547 fprintf (dump_file,
4548 "%d true changes made.\n\n\n",
4549 num_true_changes);
4552 if (optimize == 1)
4553 df_remove_problem (df_live);
4555 #ifdef ENABLE_CHECKING
4556 verify_flow_info ();
4557 #endif
4560 /* If-conversion and CFG cleanup. */
4561 static unsigned int
4562 rest_of_handle_if_conversion (void)
4564 if (flag_if_conversion)
4566 if (dump_file)
4568 dump_reg_info (dump_file);
4569 dump_flow_info (dump_file, dump_flags);
4571 cleanup_cfg (CLEANUP_EXPENSIVE);
4572 if_convert (false);
4575 cleanup_cfg (0);
4576 return 0;
4579 namespace {
4581 const pass_data pass_data_rtl_ifcvt =
4583 RTL_PASS, /* type */
4584 "ce1", /* name */
4585 OPTGROUP_NONE, /* optinfo_flags */
4586 TV_IFCVT, /* tv_id */
4587 0, /* properties_required */
4588 0, /* properties_provided */
4589 0, /* properties_destroyed */
4590 0, /* todo_flags_start */
4591 TODO_df_finish, /* todo_flags_finish */
4594 class pass_rtl_ifcvt : public rtl_opt_pass
4596 public:
4597 pass_rtl_ifcvt (gcc::context *ctxt)
4598 : rtl_opt_pass (pass_data_rtl_ifcvt, ctxt)
4601 /* opt_pass methods: */
4602 virtual bool gate (function *)
4604 return (optimize > 0) && dbg_cnt (if_conversion);
4607 virtual unsigned int execute (function *)
4609 return rest_of_handle_if_conversion ();
4612 }; // class pass_rtl_ifcvt
4614 } // anon namespace
4616 rtl_opt_pass *
4617 make_pass_rtl_ifcvt (gcc::context *ctxt)
4619 return new pass_rtl_ifcvt (ctxt);
4623 /* Rerun if-conversion, as combine may have simplified things enough
4624 to now meet sequence length restrictions. */
4626 namespace {
4628 const pass_data pass_data_if_after_combine =
4630 RTL_PASS, /* type */
4631 "ce2", /* name */
4632 OPTGROUP_NONE, /* optinfo_flags */
4633 TV_IFCVT, /* tv_id */
4634 0, /* properties_required */
4635 0, /* properties_provided */
4636 0, /* properties_destroyed */
4637 0, /* todo_flags_start */
4638 TODO_df_finish, /* todo_flags_finish */
4641 class pass_if_after_combine : public rtl_opt_pass
4643 public:
4644 pass_if_after_combine (gcc::context *ctxt)
4645 : rtl_opt_pass (pass_data_if_after_combine, ctxt)
4648 /* opt_pass methods: */
4649 virtual bool gate (function *)
4651 return optimize > 0 && flag_if_conversion
4652 && dbg_cnt (if_after_combine);
4655 virtual unsigned int execute (function *)
4657 if_convert (true);
4658 return 0;
4661 }; // class pass_if_after_combine
4663 } // anon namespace
4665 rtl_opt_pass *
4666 make_pass_if_after_combine (gcc::context *ctxt)
4668 return new pass_if_after_combine (ctxt);
4672 namespace {
4674 const pass_data pass_data_if_after_reload =
4676 RTL_PASS, /* type */
4677 "ce3", /* name */
4678 OPTGROUP_NONE, /* optinfo_flags */
4679 TV_IFCVT2, /* tv_id */
4680 0, /* properties_required */
4681 0, /* properties_provided */
4682 0, /* properties_destroyed */
4683 0, /* todo_flags_start */
4684 TODO_df_finish, /* todo_flags_finish */
4687 class pass_if_after_reload : public rtl_opt_pass
4689 public:
4690 pass_if_after_reload (gcc::context *ctxt)
4691 : rtl_opt_pass (pass_data_if_after_reload, ctxt)
4694 /* opt_pass methods: */
4695 virtual bool gate (function *)
4697 return optimize > 0 && flag_if_conversion2
4698 && dbg_cnt (if_after_reload);
4701 virtual unsigned int execute (function *)
4703 if_convert (true);
4704 return 0;
4707 }; // class pass_if_after_reload
4709 } // anon namespace
4711 rtl_opt_pass *
4712 make_pass_if_after_reload (gcc::context *ctxt)
4714 return new pass_if_after_reload (ctxt);