IPA ICF, part 4/5
[official-gcc.git] / gcc / df-core.c
blob4b7d660d90df29fd4d8c8b3cf17e2d7288adf3f3
1 /* Allocation for dataflow support routines.
2 Copyright (C) 1999-2014 Free Software Foundation, Inc.
3 Originally contributed by Michael P. Hayes
4 (m.hayes@elec.canterbury.ac.nz, mhayes@redhat.com)
5 Major rewrite contributed by Danny Berlin (dberlin@dberlin.org)
6 and Kenneth Zadeck (zadeck@naturalbridge.com).
8 This file is part of GCC.
10 GCC is free software; you can redistribute it and/or modify it under
11 the terms of the GNU General Public License as published by the Free
12 Software Foundation; either version 3, or (at your option) any later
13 version.
15 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
16 WARRANTY; without even the implied warranty of MERCHANTABILITY or
17 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 for more details.
20 You should have received a copy of the GNU General Public License
21 along with GCC; see the file COPYING3. If not see
22 <http://www.gnu.org/licenses/>. */
25 OVERVIEW:
27 The files in this collection (df*.c,df.h) provide a general framework
28 for solving dataflow problems. The global dataflow is performed using
29 a good implementation of iterative dataflow analysis.
31 The file df-problems.c provides problem instance for the most common
32 dataflow problems: reaching defs, upward exposed uses, live variables,
33 uninitialized variables, def-use chains, and use-def chains. However,
34 the interface allows other dataflow problems to be defined as well.
36 Dataflow analysis is available in most of the rtl backend (the parts
37 between pass_df_initialize and pass_df_finish). It is quite likely
38 that these boundaries will be expanded in the future. The only
39 requirement is that there be a correct control flow graph.
41 There are three variations of the live variable problem that are
42 available whenever dataflow is available. The LR problem finds the
43 areas that can reach a use of a variable, the UR problems finds the
44 areas that can be reached from a definition of a variable. The LIVE
45 problem finds the intersection of these two areas.
47 There are several optional problems. These can be enabled when they
48 are needed and disabled when they are not needed.
50 Dataflow problems are generally solved in three layers. The bottom
51 layer is called scanning where a data structure is built for each rtl
52 insn that describes the set of defs and uses of that insn. Scanning
53 is generally kept up to date, i.e. as the insns changes, the scanned
54 version of that insn changes also. There are various mechanisms for
55 making this happen and are described in the INCREMENTAL SCANNING
56 section.
58 In the middle layer, basic blocks are scanned to produce transfer
59 functions which describe the effects of that block on the global
60 dataflow solution. The transfer functions are only rebuilt if the
61 some instruction within the block has changed.
63 The top layer is the dataflow solution itself. The dataflow solution
64 is computed by using an efficient iterative solver and the transfer
65 functions. The dataflow solution must be recomputed whenever the
66 control changes or if one of the transfer function changes.
69 USAGE:
71 Here is an example of using the dataflow routines.
73 df_[chain,live,note,rd]_add_problem (flags);
75 df_set_blocks (blocks);
77 df_analyze ();
79 df_dump (stderr);
81 df_finish_pass (false);
83 DF_[chain,live,note,rd]_ADD_PROBLEM adds a problem, defined by an
84 instance to struct df_problem, to the set of problems solved in this
85 instance of df. All calls to add a problem for a given instance of df
86 must occur before the first call to DF_ANALYZE.
88 Problems can be dependent on other problems. For instance, solving
89 def-use or use-def chains is dependent on solving reaching
90 definitions. As long as these dependencies are listed in the problem
91 definition, the order of adding the problems is not material.
92 Otherwise, the problems will be solved in the order of calls to
93 df_add_problem. Note that it is not necessary to have a problem. In
94 that case, df will just be used to do the scanning.
98 DF_SET_BLOCKS is an optional call used to define a region of the
99 function on which the analysis will be performed. The normal case is
100 to analyze the entire function and no call to df_set_blocks is made.
101 DF_SET_BLOCKS only effects the blocks that are effected when computing
102 the transfer functions and final solution. The insn level information
103 is always kept up to date.
105 When a subset is given, the analysis behaves as if the function only
106 contains those blocks and any edges that occur directly between the
107 blocks in the set. Care should be taken to call df_set_blocks right
108 before the call to analyze in order to eliminate the possibility that
109 optimizations that reorder blocks invalidate the bitvector.
111 DF_ANALYZE causes all of the defined problems to be (re)solved. When
112 DF_ANALYZE is completes, the IN and OUT sets for each basic block
113 contain the computer information. The DF_*_BB_INFO macros can be used
114 to access these bitvectors. All deferred rescannings are down before
115 the transfer functions are recomputed.
117 DF_DUMP can then be called to dump the information produce to some
118 file. This calls DF_DUMP_START, to print the information that is not
119 basic block specific, and then calls DF_DUMP_TOP and DF_DUMP_BOTTOM
120 for each block to print the basic specific information. These parts
121 can all be called separately as part of a larger dump function.
124 DF_FINISH_PASS causes df_remove_problem to be called on all of the
125 optional problems. It also causes any insns whose scanning has been
126 deferred to be rescanned as well as clears all of the changeable flags.
127 Setting the pass manager TODO_df_finish flag causes this function to
128 be run. However, the pass manager will call df_finish_pass AFTER the
129 pass dumping has been done, so if you want to see the results of the
130 optional problems in the pass dumps, use the TODO flag rather than
131 calling the function yourself.
133 INCREMENTAL SCANNING
135 There are four ways of doing the incremental scanning:
137 1) Immediate rescanning - Calls to df_insn_rescan, df_notes_rescan,
138 df_bb_delete, df_insn_change_bb have been added to most of
139 the low level service functions that maintain the cfg and change
140 rtl. Calling and of these routines many cause some number of insns
141 to be rescanned.
143 For most modern rtl passes, this is certainly the easiest way to
144 manage rescanning the insns. This technique also has the advantage
145 that the scanning information is always correct and can be relied
146 upon even after changes have been made to the instructions. This
147 technique is contra indicated in several cases:
149 a) If def-use chains OR use-def chains (but not both) are built,
150 using this is SIMPLY WRONG. The problem is that when a ref is
151 deleted that is the target of an edge, there is not enough
152 information to efficiently find the source of the edge and
153 delete the edge. This leaves a dangling reference that may
154 cause problems.
156 b) If def-use chains AND use-def chains are built, this may
157 produce unexpected results. The problem is that the incremental
158 scanning of an insn does not know how to repair the chains that
159 point into an insn when the insn changes. So the incremental
160 scanning just deletes the chains that enter and exit the insn
161 being changed. The dangling reference issue in (a) is not a
162 problem here, but if the pass is depending on the chains being
163 maintained after insns have been modified, this technique will
164 not do the correct thing.
166 c) If the pass modifies insns several times, this incremental
167 updating may be expensive.
169 d) If the pass modifies all of the insns, as does register
170 allocation, it is simply better to rescan the entire function.
172 2) Deferred rescanning - Calls to df_insn_rescan, df_notes_rescan, and
173 df_insn_delete do not immediately change the insn but instead make
174 a note that the insn needs to be rescanned. The next call to
175 df_analyze, df_finish_pass, or df_process_deferred_rescans will
176 cause all of the pending rescans to be processed.
178 This is the technique of choice if either 1a, 1b, or 1c are issues
179 in the pass. In the case of 1a or 1b, a call to df_finish_pass
180 (either manually or via TODO_df_finish) should be made before the
181 next call to df_analyze or df_process_deferred_rescans.
183 This mode is also used by a few passes that still rely on note_uses,
184 note_stores and for_each_rtx instead of using the DF data. This
185 can be said to fall under case 1c.
187 To enable this mode, call df_set_flags (DF_DEFER_INSN_RESCAN).
188 (This mode can be cleared by calling df_clear_flags
189 (DF_DEFER_INSN_RESCAN) but this does not cause the deferred insns to
190 be rescanned.
192 3) Total rescanning - In this mode the rescanning is disabled.
193 Only when insns are deleted is the df information associated with
194 it also deleted. At the end of the pass, a call must be made to
195 df_insn_rescan_all. This method is used by the register allocator
196 since it generally changes each insn multiple times (once for each ref)
197 and does not need to make use of the updated scanning information.
199 4) Do it yourself - In this mechanism, the pass updates the insns
200 itself using the low level df primitives. Currently no pass does
201 this, but it has the advantage that it is quite efficient given
202 that the pass generally has exact knowledge of what it is changing.
204 DATA STRUCTURES
206 Scanning produces a `struct df_ref' data structure (ref) is allocated
207 for every register reference (def or use) and this records the insn
208 and bb the ref is found within. The refs are linked together in
209 chains of uses and defs for each insn and for each register. Each ref
210 also has a chain field that links all the use refs for a def or all
211 the def refs for a use. This is used to create use-def or def-use
212 chains.
214 Different optimizations have different needs. Ultimately, only
215 register allocation and schedulers should be using the bitmaps
216 produced for the live register and uninitialized register problems.
217 The rest of the backend should be upgraded to using and maintaining
218 the linked information such as def use or use def chains.
221 PHILOSOPHY:
223 While incremental bitmaps are not worthwhile to maintain, incremental
224 chains may be perfectly reasonable. The fastest way to build chains
225 from scratch or after significant modifications is to build reaching
226 definitions (RD) and build the chains from this.
228 However, general algorithms for maintaining use-def or def-use chains
229 are not practical. The amount of work to recompute the chain any
230 chain after an arbitrary change is large. However, with a modest
231 amount of work it is generally possible to have the application that
232 uses the chains keep them up to date. The high level knowledge of
233 what is really happening is essential to crafting efficient
234 incremental algorithms.
236 As for the bit vector problems, there is no interface to give a set of
237 blocks over with to resolve the iteration. In general, restarting a
238 dataflow iteration is difficult and expensive. Again, the best way to
239 keep the dataflow information up to data (if this is really what is
240 needed) it to formulate a problem specific solution.
242 There are fine grained calls for creating and deleting references from
243 instructions in df-scan.c. However, these are not currently connected
244 to the engine that resolves the dataflow equations.
247 DATA STRUCTURES:
249 The basic object is a DF_REF (reference) and this may either be a
250 DEF (definition) or a USE of a register.
252 These are linked into a variety of lists; namely reg-def, reg-use,
253 insn-def, insn-use, def-use, and use-def lists. For example, the
254 reg-def lists contain all the locations that define a given register
255 while the insn-use lists contain all the locations that use a
256 register.
258 Note that the reg-def and reg-use chains are generally short for
259 pseudos and long for the hard registers.
261 ACCESSING INSNS:
263 1) The df insn information is kept in an array of DF_INSN_INFO objects.
264 The array is indexed by insn uid, and every DF_REF points to the
265 DF_INSN_INFO object of the insn that contains the reference.
267 2) Each insn has three sets of refs, which are linked into one of three
268 lists: The insn's defs list (accessed by the DF_INSN_INFO_DEFS,
269 DF_INSN_DEFS, or DF_INSN_UID_DEFS macros), the insn's uses list
270 (accessed by the DF_INSN_INFO_USES, DF_INSN_USES, or
271 DF_INSN_UID_USES macros) or the insn's eq_uses list (accessed by the
272 DF_INSN_INFO_EQ_USES, DF_INSN_EQ_USES or DF_INSN_UID_EQ_USES macros).
273 The latter list are the list of references in REG_EQUAL or REG_EQUIV
274 notes. These macros produce a ref (or NULL), the rest of the list
275 can be obtained by traversal of the NEXT_REF field (accessed by the
276 DF_REF_NEXT_REF macro.) There is no significance to the ordering of
277 the uses or refs in an instruction.
279 3) Each insn has a logical uid field (LUID) which is stored in the
280 DF_INSN_INFO object for the insn. The LUID field is accessed by
281 the DF_INSN_INFO_LUID, DF_INSN_LUID, and DF_INSN_UID_LUID macros.
282 When properly set, the LUID is an integer that numbers each insn in
283 the basic block, in order from the start of the block.
284 The numbers are only correct after a call to df_analyze. They will
285 rot after insns are added deleted or moved round.
287 ACCESSING REFS:
289 There are 4 ways to obtain access to refs:
291 1) References are divided into two categories, REAL and ARTIFICIAL.
293 REAL refs are associated with instructions.
295 ARTIFICIAL refs are associated with basic blocks. The heads of
296 these lists can be accessed by calling df_get_artificial_defs or
297 df_get_artificial_uses for the particular basic block.
299 Artificial defs and uses occur both at the beginning and ends of blocks.
301 For blocks that area at the destination of eh edges, the
302 artificial uses and defs occur at the beginning. The defs relate
303 to the registers specified in EH_RETURN_DATA_REGNO and the uses
304 relate to the registers specified in ED_USES. Logically these
305 defs and uses should really occur along the eh edge, but there is
306 no convenient way to do this. Artificial edges that occur at the
307 beginning of the block have the DF_REF_AT_TOP flag set.
309 Artificial uses occur at the end of all blocks. These arise from
310 the hard registers that are always live, such as the stack
311 register and are put there to keep the code from forgetting about
312 them.
314 Artificial defs occur at the end of the entry block. These arise
315 from registers that are live at entry to the function.
317 2) There are three types of refs: defs, uses and eq_uses. (Eq_uses are
318 uses that appear inside a REG_EQUAL or REG_EQUIV note.)
320 All of the eq_uses, uses and defs associated with each pseudo or
321 hard register may be linked in a bidirectional chain. These are
322 called reg-use or reg_def chains. If the changeable flag
323 DF_EQ_NOTES is set when the chains are built, the eq_uses will be
324 treated like uses. If it is not set they are ignored.
326 The first use, eq_use or def for a register can be obtained using
327 the DF_REG_USE_CHAIN, DF_REG_EQ_USE_CHAIN or DF_REG_DEF_CHAIN
328 macros. Subsequent uses for the same regno can be obtained by
329 following the next_reg field of the ref. The number of elements in
330 each of the chains can be found by using the DF_REG_USE_COUNT,
331 DF_REG_EQ_USE_COUNT or DF_REG_DEF_COUNT macros.
333 In previous versions of this code, these chains were ordered. It
334 has not been practical to continue this practice.
336 3) If def-use or use-def chains are built, these can be traversed to
337 get to other refs. If the flag DF_EQ_NOTES has been set, the chains
338 include the eq_uses. Otherwise these are ignored when building the
339 chains.
341 4) An array of all of the uses (and an array of all of the defs) can
342 be built. These arrays are indexed by the value in the id
343 structure. These arrays are only lazily kept up to date, and that
344 process can be expensive. To have these arrays built, call
345 df_reorganize_defs or df_reorganize_uses. If the flag DF_EQ_NOTES
346 has been set the array will contain the eq_uses. Otherwise these
347 are ignored when building the array and assigning the ids. Note
348 that the values in the id field of a ref may change across calls to
349 df_analyze or df_reorganize_defs or df_reorganize_uses.
351 If the only use of this array is to find all of the refs, it is
352 better to traverse all of the registers and then traverse all of
353 reg-use or reg-def chains.
355 NOTES:
357 Embedded addressing side-effects, such as POST_INC or PRE_INC, generate
358 both a use and a def. These are both marked read/write to show that they
359 are dependent. For example, (set (reg 40) (mem (post_inc (reg 42))))
360 will generate a use of reg 42 followed by a def of reg 42 (both marked
361 read/write). Similarly, (set (reg 40) (mem (pre_dec (reg 41))))
362 generates a use of reg 41 then a def of reg 41 (both marked read/write),
363 even though reg 41 is decremented before it is used for the memory
364 address in this second example.
366 A set to a REG inside a ZERO_EXTRACT, or a set to a non-paradoxical SUBREG
367 for which the number of word_mode units covered by the outer mode is
368 smaller than that covered by the inner mode, invokes a read-modify-write
369 operation. We generate both a use and a def and again mark them
370 read/write.
372 Paradoxical subreg writes do not leave a trace of the old content, so they
373 are write-only operations.
377 #include "config.h"
378 #include "system.h"
379 #include "coretypes.h"
380 #include "tm.h"
381 #include "rtl.h"
382 #include "tm_p.h"
383 #include "insn-config.h"
384 #include "recog.h"
385 #include "function.h"
386 #include "regs.h"
387 #include "alloc-pool.h"
388 #include "flags.h"
389 #include "hard-reg-set.h"
390 #include "basic-block.h"
391 #include "sbitmap.h"
392 #include "bitmap.h"
393 #include "df.h"
394 #include "tree-pass.h"
395 #include "params.h"
396 #include "cfgloop.h"
398 static void *df_get_bb_info (struct dataflow *, unsigned int);
399 static void df_set_bb_info (struct dataflow *, unsigned int, void *);
400 static void df_clear_bb_info (struct dataflow *, unsigned int);
401 #ifdef DF_DEBUG_CFG
402 static void df_set_clean_cfg (void);
403 #endif
405 /* The obstack on which regsets are allocated. */
406 struct bitmap_obstack reg_obstack;
408 /* An obstack for bitmap not related to specific dataflow problems.
409 This obstack should e.g. be used for bitmaps with a short life time
410 such as temporary bitmaps. */
412 bitmap_obstack df_bitmap_obstack;
415 /*----------------------------------------------------------------------------
416 Functions to create, destroy and manipulate an instance of df.
417 ----------------------------------------------------------------------------*/
419 struct df_d *df;
421 /* Add PROBLEM (and any dependent problems) to the DF instance. */
423 void
424 df_add_problem (struct df_problem *problem)
426 struct dataflow *dflow;
427 int i;
429 /* First try to add the dependent problem. */
430 if (problem->dependent_problem)
431 df_add_problem (problem->dependent_problem);
433 /* Check to see if this problem has already been defined. If it
434 has, just return that instance, if not, add it to the end of the
435 vector. */
436 dflow = df->problems_by_index[problem->id];
437 if (dflow)
438 return;
440 /* Make a new one and add it to the end. */
441 dflow = XCNEW (struct dataflow);
442 dflow->problem = problem;
443 dflow->computed = false;
444 dflow->solutions_dirty = true;
445 df->problems_by_index[dflow->problem->id] = dflow;
447 /* Keep the defined problems ordered by index. This solves the
448 problem that RI will use the information from UREC if UREC has
449 been defined, or from LIVE if LIVE is defined and otherwise LR.
450 However for this to work, the computation of RI must be pushed
451 after which ever of those problems is defined, but we do not
452 require any of those except for LR to have actually been
453 defined. */
454 df->num_problems_defined++;
455 for (i = df->num_problems_defined - 2; i >= 0; i--)
457 if (problem->id < df->problems_in_order[i]->problem->id)
458 df->problems_in_order[i+1] = df->problems_in_order[i];
459 else
461 df->problems_in_order[i+1] = dflow;
462 return;
465 df->problems_in_order[0] = dflow;
469 /* Set the MASK flags in the DFLOW problem. The old flags are
470 returned. If a flag is not allowed to be changed this will fail if
471 checking is enabled. */
473 df_set_flags (int changeable_flags)
475 int old_flags = df->changeable_flags;
476 df->changeable_flags |= changeable_flags;
477 return old_flags;
481 /* Clear the MASK flags in the DFLOW problem. The old flags are
482 returned. If a flag is not allowed to be changed this will fail if
483 checking is enabled. */
485 df_clear_flags (int changeable_flags)
487 int old_flags = df->changeable_flags;
488 df->changeable_flags &= ~changeable_flags;
489 return old_flags;
493 /* Set the blocks that are to be considered for analysis. If this is
494 not called or is called with null, the entire function in
495 analyzed. */
497 void
498 df_set_blocks (bitmap blocks)
500 if (blocks)
502 if (dump_file)
503 bitmap_print (dump_file, blocks, "setting blocks to analyze ", "\n");
504 if (df->blocks_to_analyze)
506 /* This block is called to change the focus from one subset
507 to another. */
508 int p;
509 bitmap_head diff;
510 bitmap_initialize (&diff, &df_bitmap_obstack);
511 bitmap_and_compl (&diff, df->blocks_to_analyze, blocks);
512 for (p = 0; p < df->num_problems_defined; p++)
514 struct dataflow *dflow = df->problems_in_order[p];
515 if (dflow->optional_p && dflow->problem->reset_fun)
516 dflow->problem->reset_fun (df->blocks_to_analyze);
517 else if (dflow->problem->free_blocks_on_set_blocks)
519 bitmap_iterator bi;
520 unsigned int bb_index;
522 EXECUTE_IF_SET_IN_BITMAP (&diff, 0, bb_index, bi)
524 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, bb_index);
525 if (bb)
527 void *bb_info = df_get_bb_info (dflow, bb_index);
528 dflow->problem->free_bb_fun (bb, bb_info);
529 df_clear_bb_info (dflow, bb_index);
535 bitmap_clear (&diff);
537 else
539 /* This block of code is executed to change the focus from
540 the entire function to a subset. */
541 bitmap_head blocks_to_reset;
542 bool initialized = false;
543 int p;
544 for (p = 0; p < df->num_problems_defined; p++)
546 struct dataflow *dflow = df->problems_in_order[p];
547 if (dflow->optional_p && dflow->problem->reset_fun)
549 if (!initialized)
551 basic_block bb;
552 bitmap_initialize (&blocks_to_reset, &df_bitmap_obstack);
553 FOR_ALL_BB_FN (bb, cfun)
555 bitmap_set_bit (&blocks_to_reset, bb->index);
558 dflow->problem->reset_fun (&blocks_to_reset);
561 if (initialized)
562 bitmap_clear (&blocks_to_reset);
564 df->blocks_to_analyze = BITMAP_ALLOC (&df_bitmap_obstack);
566 bitmap_copy (df->blocks_to_analyze, blocks);
567 df->analyze_subset = true;
569 else
571 /* This block is executed to reset the focus to the entire
572 function. */
573 if (dump_file)
574 fprintf (dump_file, "clearing blocks_to_analyze\n");
575 if (df->blocks_to_analyze)
577 BITMAP_FREE (df->blocks_to_analyze);
578 df->blocks_to_analyze = NULL;
580 df->analyze_subset = false;
583 /* Setting the blocks causes the refs to be unorganized since only
584 the refs in the blocks are seen. */
585 df_maybe_reorganize_def_refs (DF_REF_ORDER_NO_TABLE);
586 df_maybe_reorganize_use_refs (DF_REF_ORDER_NO_TABLE);
587 df_mark_solutions_dirty ();
591 /* Delete a DFLOW problem (and any problems that depend on this
592 problem). */
594 void
595 df_remove_problem (struct dataflow *dflow)
597 struct df_problem *problem;
598 int i;
600 if (!dflow)
601 return;
603 problem = dflow->problem;
604 gcc_assert (problem->remove_problem_fun);
606 /* Delete any problems that depended on this problem first. */
607 for (i = 0; i < df->num_problems_defined; i++)
608 if (df->problems_in_order[i]->problem->dependent_problem == problem)
609 df_remove_problem (df->problems_in_order[i]);
611 /* Now remove this problem. */
612 for (i = 0; i < df->num_problems_defined; i++)
613 if (df->problems_in_order[i] == dflow)
615 int j;
616 for (j = i + 1; j < df->num_problems_defined; j++)
617 df->problems_in_order[j-1] = df->problems_in_order[j];
618 df->problems_in_order[j-1] = NULL;
619 df->num_problems_defined--;
620 break;
623 (problem->remove_problem_fun) ();
624 df->problems_by_index[problem->id] = NULL;
628 /* Remove all of the problems that are not permanent. Scanning, LR
629 and (at -O2 or higher) LIVE are permanent, the rest are removable.
630 Also clear all of the changeable_flags. */
632 void
633 df_finish_pass (bool verify ATTRIBUTE_UNUSED)
635 int i;
636 int removed = 0;
638 #ifdef ENABLE_DF_CHECKING
639 int saved_flags;
640 #endif
642 if (!df)
643 return;
645 df_maybe_reorganize_def_refs (DF_REF_ORDER_NO_TABLE);
646 df_maybe_reorganize_use_refs (DF_REF_ORDER_NO_TABLE);
648 #ifdef ENABLE_DF_CHECKING
649 saved_flags = df->changeable_flags;
650 #endif
652 for (i = 0; i < df->num_problems_defined; i++)
654 struct dataflow *dflow = df->problems_in_order[i];
655 struct df_problem *problem = dflow->problem;
657 if (dflow->optional_p)
659 gcc_assert (problem->remove_problem_fun);
660 (problem->remove_problem_fun) ();
661 df->problems_in_order[i] = NULL;
662 df->problems_by_index[problem->id] = NULL;
663 removed++;
666 df->num_problems_defined -= removed;
668 /* Clear all of the flags. */
669 df->changeable_flags = 0;
670 df_process_deferred_rescans ();
672 /* Set the focus back to the whole function. */
673 if (df->blocks_to_analyze)
675 BITMAP_FREE (df->blocks_to_analyze);
676 df->blocks_to_analyze = NULL;
677 df_mark_solutions_dirty ();
678 df->analyze_subset = false;
681 #ifdef ENABLE_DF_CHECKING
682 /* Verification will fail in DF_NO_INSN_RESCAN. */
683 if (!(saved_flags & DF_NO_INSN_RESCAN))
685 df_lr_verify_transfer_functions ();
686 if (df_live)
687 df_live_verify_transfer_functions ();
690 #ifdef DF_DEBUG_CFG
691 df_set_clean_cfg ();
692 #endif
693 #endif
695 #ifdef ENABLE_CHECKING
696 if (verify)
697 df->changeable_flags |= DF_VERIFY_SCHEDULED;
698 #endif
702 /* Set up the dataflow instance for the entire back end. */
704 static unsigned int
705 rest_of_handle_df_initialize (void)
707 gcc_assert (!df);
708 df = XCNEW (struct df_d);
709 df->changeable_flags = 0;
711 bitmap_obstack_initialize (&df_bitmap_obstack);
713 /* Set this to a conservative value. Stack_ptr_mod will compute it
714 correctly later. */
715 crtl->sp_is_unchanging = 0;
717 df_scan_add_problem ();
718 df_scan_alloc (NULL);
720 /* These three problems are permanent. */
721 df_lr_add_problem ();
722 if (optimize > 1)
723 df_live_add_problem ();
725 df->postorder = XNEWVEC (int, last_basic_block_for_fn (cfun));
726 df->postorder_inverted = XNEWVEC (int, last_basic_block_for_fn (cfun));
727 df->n_blocks = post_order_compute (df->postorder, true, true);
728 df->n_blocks_inverted = inverted_post_order_compute (df->postorder_inverted);
729 gcc_assert (df->n_blocks == df->n_blocks_inverted);
731 df->hard_regs_live_count = XCNEWVEC (unsigned int, FIRST_PSEUDO_REGISTER);
733 df_hard_reg_init ();
734 /* After reload, some ports add certain bits to regs_ever_live so
735 this cannot be reset. */
736 df_compute_regs_ever_live (true);
737 df_scan_blocks ();
738 df_compute_regs_ever_live (false);
739 return 0;
743 namespace {
745 const pass_data pass_data_df_initialize_opt =
747 RTL_PASS, /* type */
748 "dfinit", /* name */
749 OPTGROUP_NONE, /* optinfo_flags */
750 TV_DF_SCAN, /* tv_id */
751 0, /* properties_required */
752 0, /* properties_provided */
753 0, /* properties_destroyed */
754 0, /* todo_flags_start */
755 0, /* todo_flags_finish */
758 class pass_df_initialize_opt : public rtl_opt_pass
760 public:
761 pass_df_initialize_opt (gcc::context *ctxt)
762 : rtl_opt_pass (pass_data_df_initialize_opt, ctxt)
765 /* opt_pass methods: */
766 virtual bool gate (function *) { return optimize > 0; }
767 virtual unsigned int execute (function *)
769 return rest_of_handle_df_initialize ();
772 }; // class pass_df_initialize_opt
774 } // anon namespace
776 rtl_opt_pass *
777 make_pass_df_initialize_opt (gcc::context *ctxt)
779 return new pass_df_initialize_opt (ctxt);
783 namespace {
785 const pass_data pass_data_df_initialize_no_opt =
787 RTL_PASS, /* type */
788 "no-opt dfinit", /* name */
789 OPTGROUP_NONE, /* optinfo_flags */
790 TV_DF_SCAN, /* tv_id */
791 0, /* properties_required */
792 0, /* properties_provided */
793 0, /* properties_destroyed */
794 0, /* todo_flags_start */
795 0, /* todo_flags_finish */
798 class pass_df_initialize_no_opt : public rtl_opt_pass
800 public:
801 pass_df_initialize_no_opt (gcc::context *ctxt)
802 : rtl_opt_pass (pass_data_df_initialize_no_opt, ctxt)
805 /* opt_pass methods: */
806 virtual bool gate (function *) { return optimize == 0; }
807 virtual unsigned int execute (function *)
809 return rest_of_handle_df_initialize ();
812 }; // class pass_df_initialize_no_opt
814 } // anon namespace
816 rtl_opt_pass *
817 make_pass_df_initialize_no_opt (gcc::context *ctxt)
819 return new pass_df_initialize_no_opt (ctxt);
823 /* Free all the dataflow info and the DF structure. This should be
824 called from the df_finish macro which also NULLs the parm. */
826 static unsigned int
827 rest_of_handle_df_finish (void)
829 int i;
831 gcc_assert (df);
833 for (i = 0; i < df->num_problems_defined; i++)
835 struct dataflow *dflow = df->problems_in_order[i];
836 dflow->problem->free_fun ();
839 free (df->postorder);
840 free (df->postorder_inverted);
841 free (df->hard_regs_live_count);
842 free (df);
843 df = NULL;
845 bitmap_obstack_release (&df_bitmap_obstack);
846 return 0;
850 namespace {
852 const pass_data pass_data_df_finish =
854 RTL_PASS, /* type */
855 "dfinish", /* name */
856 OPTGROUP_NONE, /* optinfo_flags */
857 TV_NONE, /* tv_id */
858 0, /* properties_required */
859 0, /* properties_provided */
860 0, /* properties_destroyed */
861 0, /* todo_flags_start */
862 0, /* todo_flags_finish */
865 class pass_df_finish : public rtl_opt_pass
867 public:
868 pass_df_finish (gcc::context *ctxt)
869 : rtl_opt_pass (pass_data_df_finish, ctxt)
872 /* opt_pass methods: */
873 virtual unsigned int execute (function *)
875 return rest_of_handle_df_finish ();
878 }; // class pass_df_finish
880 } // anon namespace
882 rtl_opt_pass *
883 make_pass_df_finish (gcc::context *ctxt)
885 return new pass_df_finish (ctxt);
892 /*----------------------------------------------------------------------------
893 The general data flow analysis engine.
894 ----------------------------------------------------------------------------*/
896 /* Return time BB when it was visited for last time. */
897 #define BB_LAST_CHANGE_AGE(bb) ((ptrdiff_t)(bb)->aux)
899 /* Helper function for df_worklist_dataflow.
900 Propagate the dataflow forward.
901 Given a BB_INDEX, do the dataflow propagation
902 and set bits on for successors in PENDING
903 if the out set of the dataflow has changed.
905 AGE specify time when BB was visited last time.
906 AGE of 0 means we are visiting for first time and need to
907 compute transfer function to initialize datastructures.
908 Otherwise we re-do transfer function only if something change
909 while computing confluence functions.
910 We need to compute confluence only of basic block that are younger
911 then last visit of the BB.
913 Return true if BB info has changed. This is always the case
914 in the first visit. */
916 static bool
917 df_worklist_propagate_forward (struct dataflow *dataflow,
918 unsigned bb_index,
919 unsigned *bbindex_to_postorder,
920 bitmap pending,
921 sbitmap considered,
922 ptrdiff_t age)
924 edge e;
925 edge_iterator ei;
926 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, bb_index);
927 bool changed = !age;
929 /* Calculate <conf_op> of incoming edges. */
930 if (EDGE_COUNT (bb->preds) > 0)
931 FOR_EACH_EDGE (e, ei, bb->preds)
933 if (age <= BB_LAST_CHANGE_AGE (e->src)
934 && bitmap_bit_p (considered, e->src->index))
935 changed |= dataflow->problem->con_fun_n (e);
937 else if (dataflow->problem->con_fun_0)
938 dataflow->problem->con_fun_0 (bb);
940 if (changed
941 && dataflow->problem->trans_fun (bb_index))
943 /* The out set of this block has changed.
944 Propagate to the outgoing blocks. */
945 FOR_EACH_EDGE (e, ei, bb->succs)
947 unsigned ob_index = e->dest->index;
949 if (bitmap_bit_p (considered, ob_index))
950 bitmap_set_bit (pending, bbindex_to_postorder[ob_index]);
952 return true;
954 return false;
958 /* Helper function for df_worklist_dataflow.
959 Propagate the dataflow backward. */
961 static bool
962 df_worklist_propagate_backward (struct dataflow *dataflow,
963 unsigned bb_index,
964 unsigned *bbindex_to_postorder,
965 bitmap pending,
966 sbitmap considered,
967 ptrdiff_t age)
969 edge e;
970 edge_iterator ei;
971 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, bb_index);
972 bool changed = !age;
974 /* Calculate <conf_op> of incoming edges. */
975 if (EDGE_COUNT (bb->succs) > 0)
976 FOR_EACH_EDGE (e, ei, bb->succs)
978 if (age <= BB_LAST_CHANGE_AGE (e->dest)
979 && bitmap_bit_p (considered, e->dest->index))
980 changed |= dataflow->problem->con_fun_n (e);
982 else if (dataflow->problem->con_fun_0)
983 dataflow->problem->con_fun_0 (bb);
985 if (changed
986 && dataflow->problem->trans_fun (bb_index))
988 /* The out set of this block has changed.
989 Propagate to the outgoing blocks. */
990 FOR_EACH_EDGE (e, ei, bb->preds)
992 unsigned ob_index = e->src->index;
994 if (bitmap_bit_p (considered, ob_index))
995 bitmap_set_bit (pending, bbindex_to_postorder[ob_index]);
997 return true;
999 return false;
1002 /* Main dataflow solver loop.
1004 DATAFLOW is problem we are solving, PENDING is worklist of basic blocks we
1005 need to visit.
1006 BLOCK_IN_POSTORDER is array of size N_BLOCKS specifying postorder in BBs and
1007 BBINDEX_TO_POSTORDER is array mapping back BB->index to postorder position.
1008 PENDING will be freed.
1010 The worklists are bitmaps indexed by postorder positions.
1012 The function implements standard algorithm for dataflow solving with two
1013 worklists (we are processing WORKLIST and storing new BBs to visit in
1014 PENDING).
1016 As an optimization we maintain ages when BB was changed (stored in bb->aux)
1017 and when it was last visited (stored in last_visit_age). This avoids need
1018 to re-do confluence function for edges to basic blocks whose source
1019 did not change since destination was visited last time. */
1021 static void
1022 df_worklist_dataflow_doublequeue (struct dataflow *dataflow,
1023 bitmap pending,
1024 sbitmap considered,
1025 int *blocks_in_postorder,
1026 unsigned *bbindex_to_postorder,
1027 int n_blocks)
1029 enum df_flow_dir dir = dataflow->problem->dir;
1030 int dcount = 0;
1031 bitmap worklist = BITMAP_ALLOC (&df_bitmap_obstack);
1032 int age = 0;
1033 bool changed;
1034 vec<int> last_visit_age = vNULL;
1035 int prev_age;
1036 basic_block bb;
1037 int i;
1039 last_visit_age.safe_grow_cleared (n_blocks);
1041 /* Double-queueing. Worklist is for the current iteration,
1042 and pending is for the next. */
1043 while (!bitmap_empty_p (pending))
1045 bitmap_iterator bi;
1046 unsigned int index;
1048 /* Swap pending and worklist. */
1049 bitmap temp = worklist;
1050 worklist = pending;
1051 pending = temp;
1053 EXECUTE_IF_SET_IN_BITMAP (worklist, 0, index, bi)
1055 unsigned bb_index;
1056 dcount++;
1058 bitmap_clear_bit (pending, index);
1059 bb_index = blocks_in_postorder[index];
1060 bb = BASIC_BLOCK_FOR_FN (cfun, bb_index);
1061 prev_age = last_visit_age[index];
1062 if (dir == DF_FORWARD)
1063 changed = df_worklist_propagate_forward (dataflow, bb_index,
1064 bbindex_to_postorder,
1065 pending, considered,
1066 prev_age);
1067 else
1068 changed = df_worklist_propagate_backward (dataflow, bb_index,
1069 bbindex_to_postorder,
1070 pending, considered,
1071 prev_age);
1072 last_visit_age[index] = ++age;
1073 if (changed)
1074 bb->aux = (void *)(ptrdiff_t)age;
1076 bitmap_clear (worklist);
1078 for (i = 0; i < n_blocks; i++)
1079 BASIC_BLOCK_FOR_FN (cfun, blocks_in_postorder[i])->aux = NULL;
1081 BITMAP_FREE (worklist);
1082 BITMAP_FREE (pending);
1083 last_visit_age.release ();
1085 /* Dump statistics. */
1086 if (dump_file)
1087 fprintf (dump_file, "df_worklist_dataflow_doublequeue:"
1088 "n_basic_blocks %d n_edges %d"
1089 " count %d (%5.2g)\n",
1090 n_basic_blocks_for_fn (cfun), n_edges_for_fn (cfun),
1091 dcount, dcount / (float)n_basic_blocks_for_fn (cfun));
1094 /* Worklist-based dataflow solver. It uses sbitmap as a worklist,
1095 with "n"-th bit representing the n-th block in the reverse-postorder order.
1096 The solver is a double-queue algorithm similar to the "double stack" solver
1097 from Cooper, Harvey and Kennedy, "Iterative data-flow analysis, Revisited".
1098 The only significant difference is that the worklist in this implementation
1099 is always sorted in RPO of the CFG visiting direction. */
1101 void
1102 df_worklist_dataflow (struct dataflow *dataflow,
1103 bitmap blocks_to_consider,
1104 int *blocks_in_postorder,
1105 int n_blocks)
1107 bitmap pending = BITMAP_ALLOC (&df_bitmap_obstack);
1108 sbitmap considered = sbitmap_alloc (last_basic_block_for_fn (cfun));
1109 bitmap_iterator bi;
1110 unsigned int *bbindex_to_postorder;
1111 int i;
1112 unsigned int index;
1113 enum df_flow_dir dir = dataflow->problem->dir;
1115 gcc_assert (dir != DF_NONE);
1117 /* BBINDEX_TO_POSTORDER maps the bb->index to the reverse postorder. */
1118 bbindex_to_postorder = XNEWVEC (unsigned int,
1119 last_basic_block_for_fn (cfun));
1121 /* Initialize the array to an out-of-bound value. */
1122 for (i = 0; i < last_basic_block_for_fn (cfun); i++)
1123 bbindex_to_postorder[i] = last_basic_block_for_fn (cfun);
1125 /* Initialize the considered map. */
1126 bitmap_clear (considered);
1127 EXECUTE_IF_SET_IN_BITMAP (blocks_to_consider, 0, index, bi)
1129 bitmap_set_bit (considered, index);
1132 /* Initialize the mapping of block index to postorder. */
1133 for (i = 0; i < n_blocks; i++)
1135 bbindex_to_postorder[blocks_in_postorder[i]] = i;
1136 /* Add all blocks to the worklist. */
1137 bitmap_set_bit (pending, i);
1140 /* Initialize the problem. */
1141 if (dataflow->problem->init_fun)
1142 dataflow->problem->init_fun (blocks_to_consider);
1144 /* Solve it. */
1145 df_worklist_dataflow_doublequeue (dataflow, pending, considered,
1146 blocks_in_postorder,
1147 bbindex_to_postorder,
1148 n_blocks);
1149 sbitmap_free (considered);
1150 free (bbindex_to_postorder);
1154 /* Remove the entries not in BLOCKS from the LIST of length LEN, preserving
1155 the order of the remaining entries. Returns the length of the resulting
1156 list. */
1158 static unsigned
1159 df_prune_to_subcfg (int list[], unsigned len, bitmap blocks)
1161 unsigned act, last;
1163 for (act = 0, last = 0; act < len; act++)
1164 if (bitmap_bit_p (blocks, list[act]))
1165 list[last++] = list[act];
1167 return last;
1171 /* Execute dataflow analysis on a single dataflow problem.
1173 BLOCKS_TO_CONSIDER are the blocks whose solution can either be
1174 examined or will be computed. For calls from DF_ANALYZE, this is
1175 the set of blocks that has been passed to DF_SET_BLOCKS.
1178 void
1179 df_analyze_problem (struct dataflow *dflow,
1180 bitmap blocks_to_consider,
1181 int *postorder, int n_blocks)
1183 timevar_push (dflow->problem->tv_id);
1185 /* (Re)Allocate the datastructures necessary to solve the problem. */
1186 if (dflow->problem->alloc_fun)
1187 dflow->problem->alloc_fun (blocks_to_consider);
1189 #ifdef ENABLE_DF_CHECKING
1190 if (dflow->problem->verify_start_fun)
1191 dflow->problem->verify_start_fun ();
1192 #endif
1194 /* Set up the problem and compute the local information. */
1195 if (dflow->problem->local_compute_fun)
1196 dflow->problem->local_compute_fun (blocks_to_consider);
1198 /* Solve the equations. */
1199 if (dflow->problem->dataflow_fun)
1200 dflow->problem->dataflow_fun (dflow, blocks_to_consider,
1201 postorder, n_blocks);
1203 /* Massage the solution. */
1204 if (dflow->problem->finalize_fun)
1205 dflow->problem->finalize_fun (blocks_to_consider);
1207 #ifdef ENABLE_DF_CHECKING
1208 if (dflow->problem->verify_end_fun)
1209 dflow->problem->verify_end_fun ();
1210 #endif
1212 timevar_pop (dflow->problem->tv_id);
1214 dflow->computed = true;
1218 /* Analyze dataflow info. */
1220 static void
1221 df_analyze_1 (void)
1223 int i;
1225 /* These should be the same. */
1226 gcc_assert (df->n_blocks == df->n_blocks_inverted);
1228 /* We need to do this before the df_verify_all because this is
1229 not kept incrementally up to date. */
1230 df_compute_regs_ever_live (false);
1231 df_process_deferred_rescans ();
1233 if (dump_file)
1234 fprintf (dump_file, "df_analyze called\n");
1236 #ifndef ENABLE_DF_CHECKING
1237 if (df->changeable_flags & DF_VERIFY_SCHEDULED)
1238 #endif
1239 df_verify ();
1241 /* Skip over the DF_SCAN problem. */
1242 for (i = 1; i < df->num_problems_defined; i++)
1244 struct dataflow *dflow = df->problems_in_order[i];
1245 if (dflow->solutions_dirty)
1247 if (dflow->problem->dir == DF_FORWARD)
1248 df_analyze_problem (dflow,
1249 df->blocks_to_analyze,
1250 df->postorder_inverted,
1251 df->n_blocks_inverted);
1252 else
1253 df_analyze_problem (dflow,
1254 df->blocks_to_analyze,
1255 df->postorder,
1256 df->n_blocks);
1260 if (!df->analyze_subset)
1262 BITMAP_FREE (df->blocks_to_analyze);
1263 df->blocks_to_analyze = NULL;
1266 #ifdef DF_DEBUG_CFG
1267 df_set_clean_cfg ();
1268 #endif
1271 /* Analyze dataflow info. */
1273 void
1274 df_analyze (void)
1276 bitmap current_all_blocks = BITMAP_ALLOC (&df_bitmap_obstack);
1277 int i;
1279 free (df->postorder);
1280 free (df->postorder_inverted);
1281 df->postorder = XNEWVEC (int, last_basic_block_for_fn (cfun));
1282 df->postorder_inverted = XNEWVEC (int, last_basic_block_for_fn (cfun));
1283 df->n_blocks = post_order_compute (df->postorder, true, true);
1284 df->n_blocks_inverted = inverted_post_order_compute (df->postorder_inverted);
1286 for (i = 0; i < df->n_blocks; i++)
1287 bitmap_set_bit (current_all_blocks, df->postorder[i]);
1289 #ifdef ENABLE_CHECKING
1290 /* Verify that POSTORDER_INVERTED only contains blocks reachable from
1291 the ENTRY block. */
1292 for (i = 0; i < df->n_blocks_inverted; i++)
1293 gcc_assert (bitmap_bit_p (current_all_blocks, df->postorder_inverted[i]));
1294 #endif
1296 /* Make sure that we have pruned any unreachable blocks from these
1297 sets. */
1298 if (df->analyze_subset)
1300 bitmap_and_into (df->blocks_to_analyze, current_all_blocks);
1301 df->n_blocks = df_prune_to_subcfg (df->postorder,
1302 df->n_blocks, df->blocks_to_analyze);
1303 df->n_blocks_inverted = df_prune_to_subcfg (df->postorder_inverted,
1304 df->n_blocks_inverted,
1305 df->blocks_to_analyze);
1306 BITMAP_FREE (current_all_blocks);
1308 else
1310 df->blocks_to_analyze = current_all_blocks;
1311 current_all_blocks = NULL;
1314 df_analyze_1 ();
1317 /* Compute the reverse top sort order of the sub-CFG specified by LOOP.
1318 Returns the number of blocks which is always loop->num_nodes. */
1320 static int
1321 loop_post_order_compute (int *post_order, struct loop *loop)
1323 edge_iterator *stack;
1324 int sp;
1325 int post_order_num = 0;
1326 bitmap visited;
1328 /* Allocate stack for back-tracking up CFG. */
1329 stack = XNEWVEC (edge_iterator, loop->num_nodes + 1);
1330 sp = 0;
1332 /* Allocate bitmap to track nodes that have been visited. */
1333 visited = BITMAP_ALLOC (NULL);
1335 /* Push the first edge on to the stack. */
1336 stack[sp++] = ei_start (loop_preheader_edge (loop)->src->succs);
1338 while (sp)
1340 edge_iterator ei;
1341 basic_block src;
1342 basic_block dest;
1344 /* Look at the edge on the top of the stack. */
1345 ei = stack[sp - 1];
1346 src = ei_edge (ei)->src;
1347 dest = ei_edge (ei)->dest;
1349 /* Check if the edge destination has been visited yet and mark it
1350 if not so. */
1351 if (flow_bb_inside_loop_p (loop, dest)
1352 && bitmap_set_bit (visited, dest->index))
1354 if (EDGE_COUNT (dest->succs) > 0)
1355 /* Since the DEST node has been visited for the first
1356 time, check its successors. */
1357 stack[sp++] = ei_start (dest->succs);
1358 else
1359 post_order[post_order_num++] = dest->index;
1361 else
1363 if (ei_one_before_end_p (ei)
1364 && src != loop_preheader_edge (loop)->src)
1365 post_order[post_order_num++] = src->index;
1367 if (!ei_one_before_end_p (ei))
1368 ei_next (&stack[sp - 1]);
1369 else
1370 sp--;
1374 free (stack);
1375 BITMAP_FREE (visited);
1377 return post_order_num;
1380 /* Compute the reverse top sort order of the inverted sub-CFG specified
1381 by LOOP. Returns the number of blocks which is always loop->num_nodes. */
1383 static int
1384 loop_inverted_post_order_compute (int *post_order, struct loop *loop)
1386 basic_block bb;
1387 edge_iterator *stack;
1388 int sp;
1389 int post_order_num = 0;
1390 bitmap visited;
1392 /* Allocate stack for back-tracking up CFG. */
1393 stack = XNEWVEC (edge_iterator, loop->num_nodes + 1);
1394 sp = 0;
1396 /* Allocate bitmap to track nodes that have been visited. */
1397 visited = BITMAP_ALLOC (NULL);
1399 /* Put all latches into the initial work list. In theory we'd want
1400 to start from loop exits but then we'd have the special case of
1401 endless loops. It doesn't really matter for DF iteration order and
1402 handling latches last is probably even better. */
1403 stack[sp++] = ei_start (loop->header->preds);
1404 bitmap_set_bit (visited, loop->header->index);
1406 /* The inverted traversal loop. */
1407 while (sp)
1409 edge_iterator ei;
1410 basic_block pred;
1412 /* Look at the edge on the top of the stack. */
1413 ei = stack[sp - 1];
1414 bb = ei_edge (ei)->dest;
1415 pred = ei_edge (ei)->src;
1417 /* Check if the predecessor has been visited yet and mark it
1418 if not so. */
1419 if (flow_bb_inside_loop_p (loop, pred)
1420 && bitmap_set_bit (visited, pred->index))
1422 if (EDGE_COUNT (pred->preds) > 0)
1423 /* Since the predecessor node has been visited for the first
1424 time, check its predecessors. */
1425 stack[sp++] = ei_start (pred->preds);
1426 else
1427 post_order[post_order_num++] = pred->index;
1429 else
1431 if (flow_bb_inside_loop_p (loop, bb)
1432 && ei_one_before_end_p (ei))
1433 post_order[post_order_num++] = bb->index;
1435 if (!ei_one_before_end_p (ei))
1436 ei_next (&stack[sp - 1]);
1437 else
1438 sp--;
1442 free (stack);
1443 BITMAP_FREE (visited);
1444 return post_order_num;
1448 /* Analyze dataflow info for the basic blocks contained in LOOP. */
1450 void
1451 df_analyze_loop (struct loop *loop)
1453 free (df->postorder);
1454 free (df->postorder_inverted);
1456 df->postorder = XNEWVEC (int, loop->num_nodes);
1457 df->postorder_inverted = XNEWVEC (int, loop->num_nodes);
1458 df->n_blocks = loop_post_order_compute (df->postorder, loop);
1459 df->n_blocks_inverted
1460 = loop_inverted_post_order_compute (df->postorder_inverted, loop);
1461 gcc_assert ((unsigned) df->n_blocks == loop->num_nodes);
1462 gcc_assert ((unsigned) df->n_blocks_inverted == loop->num_nodes);
1464 bitmap blocks = BITMAP_ALLOC (&df_bitmap_obstack);
1465 for (int i = 0; i < df->n_blocks; ++i)
1466 bitmap_set_bit (blocks, df->postorder[i]);
1467 df_set_blocks (blocks);
1468 BITMAP_FREE (blocks);
1470 df_analyze_1 ();
1474 /* Return the number of basic blocks from the last call to df_analyze. */
1477 df_get_n_blocks (enum df_flow_dir dir)
1479 gcc_assert (dir != DF_NONE);
1481 if (dir == DF_FORWARD)
1483 gcc_assert (df->postorder_inverted);
1484 return df->n_blocks_inverted;
1487 gcc_assert (df->postorder);
1488 return df->n_blocks;
1492 /* Return a pointer to the array of basic blocks in the reverse postorder.
1493 Depending on the direction of the dataflow problem,
1494 it returns either the usual reverse postorder array
1495 or the reverse postorder of inverted traversal. */
1496 int *
1497 df_get_postorder (enum df_flow_dir dir)
1499 gcc_assert (dir != DF_NONE);
1501 if (dir == DF_FORWARD)
1503 gcc_assert (df->postorder_inverted);
1504 return df->postorder_inverted;
1506 gcc_assert (df->postorder);
1507 return df->postorder;
1510 static struct df_problem user_problem;
1511 static struct dataflow user_dflow;
1513 /* Interface for calling iterative dataflow with user defined
1514 confluence and transfer functions. All that is necessary is to
1515 supply DIR, a direction, CONF_FUN_0, a confluence function for
1516 blocks with no logical preds (or NULL), CONF_FUN_N, the normal
1517 confluence function, TRANS_FUN, the basic block transfer function,
1518 and BLOCKS, the set of blocks to examine, POSTORDER the blocks in
1519 postorder, and N_BLOCKS, the number of blocks in POSTORDER. */
1521 void
1522 df_simple_dataflow (enum df_flow_dir dir,
1523 df_init_function init_fun,
1524 df_confluence_function_0 con_fun_0,
1525 df_confluence_function_n con_fun_n,
1526 df_transfer_function trans_fun,
1527 bitmap blocks, int * postorder, int n_blocks)
1529 memset (&user_problem, 0, sizeof (struct df_problem));
1530 user_problem.dir = dir;
1531 user_problem.init_fun = init_fun;
1532 user_problem.con_fun_0 = con_fun_0;
1533 user_problem.con_fun_n = con_fun_n;
1534 user_problem.trans_fun = trans_fun;
1535 user_dflow.problem = &user_problem;
1536 df_worklist_dataflow (&user_dflow, blocks, postorder, n_blocks);
1541 /*----------------------------------------------------------------------------
1542 Functions to support limited incremental change.
1543 ----------------------------------------------------------------------------*/
1546 /* Get basic block info. */
1548 static void *
1549 df_get_bb_info (struct dataflow *dflow, unsigned int index)
1551 if (dflow->block_info == NULL)
1552 return NULL;
1553 if (index >= dflow->block_info_size)
1554 return NULL;
1555 return (void *)((char *)dflow->block_info
1556 + index * dflow->problem->block_info_elt_size);
1560 /* Set basic block info. */
1562 static void
1563 df_set_bb_info (struct dataflow *dflow, unsigned int index,
1564 void *bb_info)
1566 gcc_assert (dflow->block_info);
1567 memcpy ((char *)dflow->block_info
1568 + index * dflow->problem->block_info_elt_size,
1569 bb_info, dflow->problem->block_info_elt_size);
1573 /* Clear basic block info. */
1575 static void
1576 df_clear_bb_info (struct dataflow *dflow, unsigned int index)
1578 gcc_assert (dflow->block_info);
1579 gcc_assert (dflow->block_info_size > index);
1580 memset ((char *)dflow->block_info
1581 + index * dflow->problem->block_info_elt_size,
1582 0, dflow->problem->block_info_elt_size);
1586 /* Mark the solutions as being out of date. */
1588 void
1589 df_mark_solutions_dirty (void)
1591 if (df)
1593 int p;
1594 for (p = 1; p < df->num_problems_defined; p++)
1595 df->problems_in_order[p]->solutions_dirty = true;
1600 /* Return true if BB needs it's transfer functions recomputed. */
1602 bool
1603 df_get_bb_dirty (basic_block bb)
1605 return bitmap_bit_p ((df_live
1606 ? df_live : df_lr)->out_of_date_transfer_functions,
1607 bb->index);
1611 /* Mark BB as needing it's transfer functions as being out of
1612 date. */
1614 void
1615 df_set_bb_dirty (basic_block bb)
1617 bb->flags |= BB_MODIFIED;
1618 if (df)
1620 int p;
1621 for (p = 1; p < df->num_problems_defined; p++)
1623 struct dataflow *dflow = df->problems_in_order[p];
1624 if (dflow->out_of_date_transfer_functions)
1625 bitmap_set_bit (dflow->out_of_date_transfer_functions, bb->index);
1627 df_mark_solutions_dirty ();
1632 /* Grow the bb_info array. */
1634 void
1635 df_grow_bb_info (struct dataflow *dflow)
1637 unsigned int new_size = last_basic_block_for_fn (cfun) + 1;
1638 if (dflow->block_info_size < new_size)
1640 new_size += new_size / 4;
1641 dflow->block_info
1642 = (void *)XRESIZEVEC (char, (char *)dflow->block_info,
1643 new_size
1644 * dflow->problem->block_info_elt_size);
1645 memset ((char *)dflow->block_info
1646 + dflow->block_info_size
1647 * dflow->problem->block_info_elt_size,
1649 (new_size - dflow->block_info_size)
1650 * dflow->problem->block_info_elt_size);
1651 dflow->block_info_size = new_size;
1656 /* Clear the dirty bits. This is called from places that delete
1657 blocks. */
1658 static void
1659 df_clear_bb_dirty (basic_block bb)
1661 int p;
1662 for (p = 1; p < df->num_problems_defined; p++)
1664 struct dataflow *dflow = df->problems_in_order[p];
1665 if (dflow->out_of_date_transfer_functions)
1666 bitmap_clear_bit (dflow->out_of_date_transfer_functions, bb->index);
1670 /* Called from the rtl_compact_blocks to reorganize the problems basic
1671 block info. */
1673 void
1674 df_compact_blocks (void)
1676 int i, p;
1677 basic_block bb;
1678 void *problem_temps;
1679 bitmap_head tmp;
1681 bitmap_initialize (&tmp, &df_bitmap_obstack);
1682 for (p = 0; p < df->num_problems_defined; p++)
1684 struct dataflow *dflow = df->problems_in_order[p];
1686 /* Need to reorganize the out_of_date_transfer_functions for the
1687 dflow problem. */
1688 if (dflow->out_of_date_transfer_functions)
1690 bitmap_copy (&tmp, dflow->out_of_date_transfer_functions);
1691 bitmap_clear (dflow->out_of_date_transfer_functions);
1692 if (bitmap_bit_p (&tmp, ENTRY_BLOCK))
1693 bitmap_set_bit (dflow->out_of_date_transfer_functions, ENTRY_BLOCK);
1694 if (bitmap_bit_p (&tmp, EXIT_BLOCK))
1695 bitmap_set_bit (dflow->out_of_date_transfer_functions, EXIT_BLOCK);
1697 i = NUM_FIXED_BLOCKS;
1698 FOR_EACH_BB_FN (bb, cfun)
1700 if (bitmap_bit_p (&tmp, bb->index))
1701 bitmap_set_bit (dflow->out_of_date_transfer_functions, i);
1702 i++;
1706 /* Now shuffle the block info for the problem. */
1707 if (dflow->problem->free_bb_fun)
1709 int size = (last_basic_block_for_fn (cfun)
1710 * dflow->problem->block_info_elt_size);
1711 problem_temps = XNEWVAR (char, size);
1712 df_grow_bb_info (dflow);
1713 memcpy (problem_temps, dflow->block_info, size);
1715 /* Copy the bb info from the problem tmps to the proper
1716 place in the block_info vector. Null out the copied
1717 item. The entry and exit blocks never move. */
1718 i = NUM_FIXED_BLOCKS;
1719 FOR_EACH_BB_FN (bb, cfun)
1721 df_set_bb_info (dflow, i,
1722 (char *)problem_temps
1723 + bb->index * dflow->problem->block_info_elt_size);
1724 i++;
1726 memset ((char *)dflow->block_info
1727 + i * dflow->problem->block_info_elt_size, 0,
1728 (last_basic_block_for_fn (cfun) - i)
1729 * dflow->problem->block_info_elt_size);
1730 free (problem_temps);
1734 /* Shuffle the bits in the basic_block indexed arrays. */
1736 if (df->blocks_to_analyze)
1738 if (bitmap_bit_p (&tmp, ENTRY_BLOCK))
1739 bitmap_set_bit (df->blocks_to_analyze, ENTRY_BLOCK);
1740 if (bitmap_bit_p (&tmp, EXIT_BLOCK))
1741 bitmap_set_bit (df->blocks_to_analyze, EXIT_BLOCK);
1742 bitmap_copy (&tmp, df->blocks_to_analyze);
1743 bitmap_clear (df->blocks_to_analyze);
1744 i = NUM_FIXED_BLOCKS;
1745 FOR_EACH_BB_FN (bb, cfun)
1747 if (bitmap_bit_p (&tmp, bb->index))
1748 bitmap_set_bit (df->blocks_to_analyze, i);
1749 i++;
1753 bitmap_clear (&tmp);
1755 i = NUM_FIXED_BLOCKS;
1756 FOR_EACH_BB_FN (bb, cfun)
1758 SET_BASIC_BLOCK_FOR_FN (cfun, i, bb);
1759 bb->index = i;
1760 i++;
1763 gcc_assert (i == n_basic_blocks_for_fn (cfun));
1765 for (; i < last_basic_block_for_fn (cfun); i++)
1766 SET_BASIC_BLOCK_FOR_FN (cfun, i, NULL);
1768 #ifdef DF_DEBUG_CFG
1769 if (!df_lr->solutions_dirty)
1770 df_set_clean_cfg ();
1771 #endif
1775 /* Shove NEW_BLOCK in at OLD_INDEX. Called from ifcvt to hack a
1776 block. There is no excuse for people to do this kind of thing. */
1778 void
1779 df_bb_replace (int old_index, basic_block new_block)
1781 int new_block_index = new_block->index;
1782 int p;
1784 if (dump_file)
1785 fprintf (dump_file, "shoving block %d into %d\n", new_block_index, old_index);
1787 gcc_assert (df);
1788 gcc_assert (BASIC_BLOCK_FOR_FN (cfun, old_index) == NULL);
1790 for (p = 0; p < df->num_problems_defined; p++)
1792 struct dataflow *dflow = df->problems_in_order[p];
1793 if (dflow->block_info)
1795 df_grow_bb_info (dflow);
1796 df_set_bb_info (dflow, old_index,
1797 df_get_bb_info (dflow, new_block_index));
1801 df_clear_bb_dirty (new_block);
1802 SET_BASIC_BLOCK_FOR_FN (cfun, old_index, new_block);
1803 new_block->index = old_index;
1804 df_set_bb_dirty (BASIC_BLOCK_FOR_FN (cfun, old_index));
1805 SET_BASIC_BLOCK_FOR_FN (cfun, new_block_index, NULL);
1809 /* Free all of the per basic block dataflow from all of the problems.
1810 This is typically called before a basic block is deleted and the
1811 problem will be reanalyzed. */
1813 void
1814 df_bb_delete (int bb_index)
1816 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, bb_index);
1817 int i;
1819 if (!df)
1820 return;
1822 for (i = 0; i < df->num_problems_defined; i++)
1824 struct dataflow *dflow = df->problems_in_order[i];
1825 if (dflow->problem->free_bb_fun)
1827 void *bb_info = df_get_bb_info (dflow, bb_index);
1828 if (bb_info)
1830 dflow->problem->free_bb_fun (bb, bb_info);
1831 df_clear_bb_info (dflow, bb_index);
1835 df_clear_bb_dirty (bb);
1836 df_mark_solutions_dirty ();
1840 /* Verify that there is a place for everything and everything is in
1841 its place. This is too expensive to run after every pass in the
1842 mainline. However this is an excellent debugging tool if the
1843 dataflow information is not being updated properly. You can just
1844 sprinkle calls in until you find the place that is changing an
1845 underlying structure without calling the proper updating
1846 routine. */
1848 void
1849 df_verify (void)
1851 df_scan_verify ();
1852 #ifdef ENABLE_DF_CHECKING
1853 df_lr_verify_transfer_functions ();
1854 if (df_live)
1855 df_live_verify_transfer_functions ();
1856 #endif
1859 #ifdef DF_DEBUG_CFG
1861 /* Compute an array of ints that describes the cfg. This can be used
1862 to discover places where the cfg is modified by the appropriate
1863 calls have not been made to the keep df informed. The internals of
1864 this are unexciting, the key is that two instances of this can be
1865 compared to see if any changes have been made to the cfg. */
1867 static int *
1868 df_compute_cfg_image (void)
1870 basic_block bb;
1871 int size = 2 + (2 * n_basic_blocks_for_fn (cfun));
1872 int i;
1873 int * map;
1875 FOR_ALL_BB_FN (bb, cfun)
1877 size += EDGE_COUNT (bb->succs);
1880 map = XNEWVEC (int, size);
1881 map[0] = size;
1882 i = 1;
1883 FOR_ALL_BB_FN (bb, cfun)
1885 edge_iterator ei;
1886 edge e;
1888 map[i++] = bb->index;
1889 FOR_EACH_EDGE (e, ei, bb->succs)
1890 map[i++] = e->dest->index;
1891 map[i++] = -1;
1893 map[i] = -1;
1894 return map;
1897 static int *saved_cfg = NULL;
1900 /* This function compares the saved version of the cfg with the
1901 current cfg and aborts if the two are identical. The function
1902 silently returns if the cfg has been marked as dirty or the two are
1903 the same. */
1905 void
1906 df_check_cfg_clean (void)
1908 int *new_map;
1910 if (!df)
1911 return;
1913 if (df_lr->solutions_dirty)
1914 return;
1916 if (saved_cfg == NULL)
1917 return;
1919 new_map = df_compute_cfg_image ();
1920 gcc_assert (memcmp (saved_cfg, new_map, saved_cfg[0] * sizeof (int)) == 0);
1921 free (new_map);
1925 /* This function builds a cfg fingerprint and squirrels it away in
1926 saved_cfg. */
1928 static void
1929 df_set_clean_cfg (void)
1931 free (saved_cfg);
1932 saved_cfg = df_compute_cfg_image ();
1935 #endif /* DF_DEBUG_CFG */
1936 /*----------------------------------------------------------------------------
1937 PUBLIC INTERFACES TO QUERY INFORMATION.
1938 ----------------------------------------------------------------------------*/
1941 /* Return first def of REGNO within BB. */
1943 df_ref
1944 df_bb_regno_first_def_find (basic_block bb, unsigned int regno)
1946 rtx_insn *insn;
1947 df_ref def;
1949 FOR_BB_INSNS (bb, insn)
1951 if (!INSN_P (insn))
1952 continue;
1954 FOR_EACH_INSN_DEF (def, insn)
1955 if (DF_REF_REGNO (def) == regno)
1956 return def;
1958 return NULL;
1962 /* Return last def of REGNO within BB. */
1964 df_ref
1965 df_bb_regno_last_def_find (basic_block bb, unsigned int regno)
1967 rtx_insn *insn;
1968 df_ref def;
1970 FOR_BB_INSNS_REVERSE (bb, insn)
1972 if (!INSN_P (insn))
1973 continue;
1975 FOR_EACH_INSN_DEF (def, insn)
1976 if (DF_REF_REGNO (def) == regno)
1977 return def;
1980 return NULL;
1983 /* Finds the reference corresponding to the definition of REG in INSN.
1984 DF is the dataflow object. */
1986 df_ref
1987 df_find_def (rtx_insn *insn, rtx reg)
1989 df_ref def;
1991 if (GET_CODE (reg) == SUBREG)
1992 reg = SUBREG_REG (reg);
1993 gcc_assert (REG_P (reg));
1995 FOR_EACH_INSN_DEF (def, insn)
1996 if (DF_REF_REGNO (def) == REGNO (reg))
1997 return def;
1999 return NULL;
2003 /* Return true if REG is defined in INSN, zero otherwise. */
2005 bool
2006 df_reg_defined (rtx_insn *insn, rtx reg)
2008 return df_find_def (insn, reg) != NULL;
2012 /* Finds the reference corresponding to the use of REG in INSN.
2013 DF is the dataflow object. */
2015 df_ref
2016 df_find_use (rtx_insn *insn, rtx reg)
2018 df_ref use;
2020 if (GET_CODE (reg) == SUBREG)
2021 reg = SUBREG_REG (reg);
2022 gcc_assert (REG_P (reg));
2024 df_insn_info *insn_info = DF_INSN_INFO_GET (insn);
2025 FOR_EACH_INSN_INFO_USE (use, insn_info)
2026 if (DF_REF_REGNO (use) == REGNO (reg))
2027 return use;
2028 if (df->changeable_flags & DF_EQ_NOTES)
2029 FOR_EACH_INSN_INFO_EQ_USE (use, insn_info)
2030 if (DF_REF_REGNO (use) == REGNO (reg))
2031 return use;
2032 return NULL;
2036 /* Return true if REG is referenced in INSN, zero otherwise. */
2038 bool
2039 df_reg_used (rtx_insn *insn, rtx reg)
2041 return df_find_use (insn, reg) != NULL;
2045 /*----------------------------------------------------------------------------
2046 Debugging and printing functions.
2047 ----------------------------------------------------------------------------*/
2049 /* Write information about registers and basic blocks into FILE.
2050 This is part of making a debugging dump. */
2052 void
2053 dump_regset (regset r, FILE *outf)
2055 unsigned i;
2056 reg_set_iterator rsi;
2058 if (r == NULL)
2060 fputs (" (nil)", outf);
2061 return;
2064 EXECUTE_IF_SET_IN_REG_SET (r, 0, i, rsi)
2066 fprintf (outf, " %d", i);
2067 if (i < FIRST_PSEUDO_REGISTER)
2068 fprintf (outf, " [%s]",
2069 reg_names[i]);
2073 /* Print a human-readable representation of R on the standard error
2074 stream. This function is designed to be used from within the
2075 debugger. */
2076 extern void debug_regset (regset);
2077 DEBUG_FUNCTION void
2078 debug_regset (regset r)
2080 dump_regset (r, stderr);
2081 putc ('\n', stderr);
2084 /* Write information about registers and basic blocks into FILE.
2085 This is part of making a debugging dump. */
2087 void
2088 df_print_regset (FILE *file, bitmap r)
2090 unsigned int i;
2091 bitmap_iterator bi;
2093 if (r == NULL)
2094 fputs (" (nil)", file);
2095 else
2097 EXECUTE_IF_SET_IN_BITMAP (r, 0, i, bi)
2099 fprintf (file, " %d", i);
2100 if (i < FIRST_PSEUDO_REGISTER)
2101 fprintf (file, " [%s]", reg_names[i]);
2104 fprintf (file, "\n");
2108 /* Write information about registers and basic blocks into FILE. The
2109 bitmap is in the form used by df_byte_lr. This is part of making a
2110 debugging dump. */
2112 void
2113 df_print_word_regset (FILE *file, bitmap r)
2115 unsigned int max_reg = max_reg_num ();
2117 if (r == NULL)
2118 fputs (" (nil)", file);
2119 else
2121 unsigned int i;
2122 for (i = FIRST_PSEUDO_REGISTER; i < max_reg; i++)
2124 bool found = (bitmap_bit_p (r, 2 * i)
2125 || bitmap_bit_p (r, 2 * i + 1));
2126 if (found)
2128 int word;
2129 const char * sep = "";
2130 fprintf (file, " %d", i);
2131 fprintf (file, "(");
2132 for (word = 0; word < 2; word++)
2133 if (bitmap_bit_p (r, 2 * i + word))
2135 fprintf (file, "%s%d", sep, word);
2136 sep = ", ";
2138 fprintf (file, ")");
2142 fprintf (file, "\n");
2146 /* Dump dataflow info. */
2148 void
2149 df_dump (FILE *file)
2151 basic_block bb;
2152 df_dump_start (file);
2154 FOR_ALL_BB_FN (bb, cfun)
2156 df_print_bb_index (bb, file);
2157 df_dump_top (bb, file);
2158 df_dump_bottom (bb, file);
2161 fprintf (file, "\n");
2165 /* Dump dataflow info for df->blocks_to_analyze. */
2167 void
2168 df_dump_region (FILE *file)
2170 if (df->blocks_to_analyze)
2172 bitmap_iterator bi;
2173 unsigned int bb_index;
2175 fprintf (file, "\n\nstarting region dump\n");
2176 df_dump_start (file);
2178 EXECUTE_IF_SET_IN_BITMAP (df->blocks_to_analyze, 0, bb_index, bi)
2180 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, bb_index);
2181 dump_bb (file, bb, 0, TDF_DETAILS);
2183 fprintf (file, "\n");
2185 else
2186 df_dump (file);
2190 /* Dump the introductory information for each problem defined. */
2192 void
2193 df_dump_start (FILE *file)
2195 int i;
2197 if (!df || !file)
2198 return;
2200 fprintf (file, "\n\n%s\n", current_function_name ());
2201 fprintf (file, "\nDataflow summary:\n");
2202 if (df->blocks_to_analyze)
2203 fprintf (file, "def_info->table_size = %d, use_info->table_size = %d\n",
2204 DF_DEFS_TABLE_SIZE (), DF_USES_TABLE_SIZE ());
2206 for (i = 0; i < df->num_problems_defined; i++)
2208 struct dataflow *dflow = df->problems_in_order[i];
2209 if (dflow->computed)
2211 df_dump_problem_function fun = dflow->problem->dump_start_fun;
2212 if (fun)
2213 fun (file);
2219 /* Dump the top or bottom of the block information for BB. */
2220 static void
2221 df_dump_bb_problem_data (basic_block bb, FILE *file, bool top)
2223 int i;
2225 if (!df || !file)
2226 return;
2228 for (i = 0; i < df->num_problems_defined; i++)
2230 struct dataflow *dflow = df->problems_in_order[i];
2231 if (dflow->computed)
2233 df_dump_bb_problem_function bbfun;
2235 if (top)
2236 bbfun = dflow->problem->dump_top_fun;
2237 else
2238 bbfun = dflow->problem->dump_bottom_fun;
2240 if (bbfun)
2241 bbfun (bb, file);
2246 /* Dump the top of the block information for BB. */
2248 void
2249 df_dump_top (basic_block bb, FILE *file)
2251 df_dump_bb_problem_data (bb, file, /*top=*/true);
2254 /* Dump the bottom of the block information for BB. */
2256 void
2257 df_dump_bottom (basic_block bb, FILE *file)
2259 df_dump_bb_problem_data (bb, file, /*top=*/false);
2263 /* Dump information about INSN just before or after dumping INSN itself. */
2264 static void
2265 df_dump_insn_problem_data (const rtx_insn *insn, FILE *file, bool top)
2267 int i;
2269 if (!df || !file)
2270 return;
2272 for (i = 0; i < df->num_problems_defined; i++)
2274 struct dataflow *dflow = df->problems_in_order[i];
2275 if (dflow->computed)
2277 df_dump_insn_problem_function insnfun;
2279 if (top)
2280 insnfun = dflow->problem->dump_insn_top_fun;
2281 else
2282 insnfun = dflow->problem->dump_insn_bottom_fun;
2284 if (insnfun)
2285 insnfun (insn, file);
2290 /* Dump information about INSN before dumping INSN itself. */
2292 void
2293 df_dump_insn_top (const rtx_insn *insn, FILE *file)
2295 df_dump_insn_problem_data (insn, file, /*top=*/true);
2298 /* Dump information about INSN after dumping INSN itself. */
2300 void
2301 df_dump_insn_bottom (const rtx_insn *insn, FILE *file)
2303 df_dump_insn_problem_data (insn, file, /*top=*/false);
2307 static void
2308 df_ref_dump (df_ref ref, FILE *file)
2310 fprintf (file, "%c%d(%d)",
2311 DF_REF_REG_DEF_P (ref)
2312 ? 'd'
2313 : (DF_REF_FLAGS (ref) & DF_REF_IN_NOTE) ? 'e' : 'u',
2314 DF_REF_ID (ref),
2315 DF_REF_REGNO (ref));
2318 void
2319 df_refs_chain_dump (df_ref ref, bool follow_chain, FILE *file)
2321 fprintf (file, "{ ");
2322 for (; ref; ref = DF_REF_NEXT_LOC (ref))
2324 df_ref_dump (ref, file);
2325 if (follow_chain)
2326 df_chain_dump (DF_REF_CHAIN (ref), file);
2328 fprintf (file, "}");
2332 /* Dump either a ref-def or reg-use chain. */
2334 void
2335 df_regs_chain_dump (df_ref ref, FILE *file)
2337 fprintf (file, "{ ");
2338 while (ref)
2340 df_ref_dump (ref, file);
2341 ref = DF_REF_NEXT_REG (ref);
2343 fprintf (file, "}");
2347 static void
2348 df_mws_dump (struct df_mw_hardreg *mws, FILE *file)
2350 for (; mws; mws = DF_MWS_NEXT (mws))
2351 fprintf (file, "mw %c r[%d..%d]\n",
2352 DF_MWS_REG_DEF_P (mws) ? 'd' : 'u',
2353 mws->start_regno, mws->end_regno);
2357 static void
2358 df_insn_uid_debug (unsigned int uid,
2359 bool follow_chain, FILE *file)
2361 fprintf (file, "insn %d luid %d",
2362 uid, DF_INSN_UID_LUID (uid));
2364 if (DF_INSN_UID_DEFS (uid))
2366 fprintf (file, " defs ");
2367 df_refs_chain_dump (DF_INSN_UID_DEFS (uid), follow_chain, file);
2370 if (DF_INSN_UID_USES (uid))
2372 fprintf (file, " uses ");
2373 df_refs_chain_dump (DF_INSN_UID_USES (uid), follow_chain, file);
2376 if (DF_INSN_UID_EQ_USES (uid))
2378 fprintf (file, " eq uses ");
2379 df_refs_chain_dump (DF_INSN_UID_EQ_USES (uid), follow_chain, file);
2382 if (DF_INSN_UID_MWS (uid))
2384 fprintf (file, " mws ");
2385 df_mws_dump (DF_INSN_UID_MWS (uid), file);
2387 fprintf (file, "\n");
2391 DEBUG_FUNCTION void
2392 df_insn_debug (rtx_insn *insn, bool follow_chain, FILE *file)
2394 df_insn_uid_debug (INSN_UID (insn), follow_chain, file);
2397 DEBUG_FUNCTION void
2398 df_insn_debug_regno (rtx_insn *insn, FILE *file)
2400 struct df_insn_info *insn_info = DF_INSN_INFO_GET (insn);
2402 fprintf (file, "insn %d bb %d luid %d defs ",
2403 INSN_UID (insn), BLOCK_FOR_INSN (insn)->index,
2404 DF_INSN_INFO_LUID (insn_info));
2405 df_refs_chain_dump (DF_INSN_INFO_DEFS (insn_info), false, file);
2407 fprintf (file, " uses ");
2408 df_refs_chain_dump (DF_INSN_INFO_USES (insn_info), false, file);
2410 fprintf (file, " eq_uses ");
2411 df_refs_chain_dump (DF_INSN_INFO_EQ_USES (insn_info), false, file);
2412 fprintf (file, "\n");
2415 DEBUG_FUNCTION void
2416 df_regno_debug (unsigned int regno, FILE *file)
2418 fprintf (file, "reg %d defs ", regno);
2419 df_regs_chain_dump (DF_REG_DEF_CHAIN (regno), file);
2420 fprintf (file, " uses ");
2421 df_regs_chain_dump (DF_REG_USE_CHAIN (regno), file);
2422 fprintf (file, " eq_uses ");
2423 df_regs_chain_dump (DF_REG_EQ_USE_CHAIN (regno), file);
2424 fprintf (file, "\n");
2428 DEBUG_FUNCTION void
2429 df_ref_debug (df_ref ref, FILE *file)
2431 fprintf (file, "%c%d ",
2432 DF_REF_REG_DEF_P (ref) ? 'd' : 'u',
2433 DF_REF_ID (ref));
2434 fprintf (file, "reg %d bb %d insn %d flag %#x type %#x ",
2435 DF_REF_REGNO (ref),
2436 DF_REF_BBNO (ref),
2437 DF_REF_IS_ARTIFICIAL (ref) ? -1 : DF_REF_INSN_UID (ref),
2438 DF_REF_FLAGS (ref),
2439 DF_REF_TYPE (ref));
2440 if (DF_REF_LOC (ref))
2442 if (flag_dump_noaddr)
2443 fprintf (file, "loc #(#) chain ");
2444 else
2445 fprintf (file, "loc %p(%p) chain ", (void *)DF_REF_LOC (ref),
2446 (void *)*DF_REF_LOC (ref));
2448 else
2449 fprintf (file, "chain ");
2450 df_chain_dump (DF_REF_CHAIN (ref), file);
2451 fprintf (file, "\n");
2454 /* Functions for debugging from GDB. */
2456 DEBUG_FUNCTION void
2457 debug_df_insn (rtx_insn *insn)
2459 df_insn_debug (insn, true, stderr);
2460 debug_rtx (insn);
2464 DEBUG_FUNCTION void
2465 debug_df_reg (rtx reg)
2467 df_regno_debug (REGNO (reg), stderr);
2471 DEBUG_FUNCTION void
2472 debug_df_regno (unsigned int regno)
2474 df_regno_debug (regno, stderr);
2478 DEBUG_FUNCTION void
2479 debug_df_ref (df_ref ref)
2481 df_ref_debug (ref, stderr);
2485 DEBUG_FUNCTION void
2486 debug_df_defno (unsigned int defno)
2488 df_ref_debug (DF_DEFS_GET (defno), stderr);
2492 DEBUG_FUNCTION void
2493 debug_df_useno (unsigned int defno)
2495 df_ref_debug (DF_USES_GET (defno), stderr);
2499 DEBUG_FUNCTION void
2500 debug_df_chain (struct df_link *link)
2502 df_chain_dump (link, stderr);
2503 fputc ('\n', stderr);