[Patch AArch64 1/3] Enable CRC by default for armv8.1-a
[official-gcc.git] / gcc / ira.c
blob8ac153badb30fdf41d25cf92dfb8b8274a034266
1 /* Integrated Register Allocator (IRA) entry point.
2 Copyright (C) 2006-2016 Free Software Foundation, Inc.
3 Contributed by Vladimir Makarov <vmakarov@redhat.com>.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 /* The integrated register allocator (IRA) is a
22 regional register allocator performing graph coloring on a top-down
23 traversal of nested regions. Graph coloring in a region is based
24 on Chaitin-Briggs algorithm. It is called integrated because
25 register coalescing, register live range splitting, and choosing a
26 better hard register are done on-the-fly during coloring. Register
27 coalescing and choosing a cheaper hard register is done by hard
28 register preferencing during hard register assigning. The live
29 range splitting is a byproduct of the regional register allocation.
31 Major IRA notions are:
33 o *Region* is a part of CFG where graph coloring based on
34 Chaitin-Briggs algorithm is done. IRA can work on any set of
35 nested CFG regions forming a tree. Currently the regions are
36 the entire function for the root region and natural loops for
37 the other regions. Therefore data structure representing a
38 region is called loop_tree_node.
40 o *Allocno class* is a register class used for allocation of
41 given allocno. It means that only hard register of given
42 register class can be assigned to given allocno. In reality,
43 even smaller subset of (*profitable*) hard registers can be
44 assigned. In rare cases, the subset can be even smaller
45 because our modification of Chaitin-Briggs algorithm requires
46 that sets of hard registers can be assigned to allocnos forms a
47 forest, i.e. the sets can be ordered in a way where any
48 previous set is not intersected with given set or is a superset
49 of given set.
51 o *Pressure class* is a register class belonging to a set of
52 register classes containing all of the hard-registers available
53 for register allocation. The set of all pressure classes for a
54 target is defined in the corresponding machine-description file
55 according some criteria. Register pressure is calculated only
56 for pressure classes and it affects some IRA decisions as
57 forming allocation regions.
59 o *Allocno* represents the live range of a pseudo-register in a
60 region. Besides the obvious attributes like the corresponding
61 pseudo-register number, allocno class, conflicting allocnos and
62 conflicting hard-registers, there are a few allocno attributes
63 which are important for understanding the allocation algorithm:
65 - *Live ranges*. This is a list of ranges of *program points*
66 where the allocno lives. Program points represent places
67 where a pseudo can be born or become dead (there are
68 approximately two times more program points than the insns)
69 and they are represented by integers starting with 0. The
70 live ranges are used to find conflicts between allocnos.
71 They also play very important role for the transformation of
72 the IRA internal representation of several regions into a one
73 region representation. The later is used during the reload
74 pass work because each allocno represents all of the
75 corresponding pseudo-registers.
77 - *Hard-register costs*. This is a vector of size equal to the
78 number of available hard-registers of the allocno class. The
79 cost of a callee-clobbered hard-register for an allocno is
80 increased by the cost of save/restore code around the calls
81 through the given allocno's life. If the allocno is a move
82 instruction operand and another operand is a hard-register of
83 the allocno class, the cost of the hard-register is decreased
84 by the move cost.
86 When an allocno is assigned, the hard-register with minimal
87 full cost is used. Initially, a hard-register's full cost is
88 the corresponding value from the hard-register's cost vector.
89 If the allocno is connected by a *copy* (see below) to
90 another allocno which has just received a hard-register, the
91 cost of the hard-register is decreased. Before choosing a
92 hard-register for an allocno, the allocno's current costs of
93 the hard-registers are modified by the conflict hard-register
94 costs of all of the conflicting allocnos which are not
95 assigned yet.
97 - *Conflict hard-register costs*. This is a vector of the same
98 size as the hard-register costs vector. To permit an
99 unassigned allocno to get a better hard-register, IRA uses
100 this vector to calculate the final full cost of the
101 available hard-registers. Conflict hard-register costs of an
102 unassigned allocno are also changed with a change of the
103 hard-register cost of the allocno when a copy involving the
104 allocno is processed as described above. This is done to
105 show other unassigned allocnos that a given allocno prefers
106 some hard-registers in order to remove the move instruction
107 corresponding to the copy.
109 o *Cap*. If a pseudo-register does not live in a region but
110 lives in a nested region, IRA creates a special allocno called
111 a cap in the outer region. A region cap is also created for a
112 subregion cap.
114 o *Copy*. Allocnos can be connected by copies. Copies are used
115 to modify hard-register costs for allocnos during coloring.
116 Such modifications reflects a preference to use the same
117 hard-register for the allocnos connected by copies. Usually
118 copies are created for move insns (in this case it results in
119 register coalescing). But IRA also creates copies for operands
120 of an insn which should be assigned to the same hard-register
121 due to constraints in the machine description (it usually
122 results in removing a move generated in reload to satisfy
123 the constraints) and copies referring to the allocno which is
124 the output operand of an instruction and the allocno which is
125 an input operand dying in the instruction (creation of such
126 copies results in less register shuffling). IRA *does not*
127 create copies between the same register allocnos from different
128 regions because we use another technique for propagating
129 hard-register preference on the borders of regions.
131 Allocnos (including caps) for the upper region in the region tree
132 *accumulate* information important for coloring from allocnos with
133 the same pseudo-register from nested regions. This includes
134 hard-register and memory costs, conflicts with hard-registers,
135 allocno conflicts, allocno copies and more. *Thus, attributes for
136 allocnos in a region have the same values as if the region had no
137 subregions*. It means that attributes for allocnos in the
138 outermost region corresponding to the function have the same values
139 as though the allocation used only one region which is the entire
140 function. It also means that we can look at IRA work as if the
141 first IRA did allocation for all function then it improved the
142 allocation for loops then their subloops and so on.
144 IRA major passes are:
146 o Building IRA internal representation which consists of the
147 following subpasses:
149 * First, IRA builds regions and creates allocnos (file
150 ira-build.c) and initializes most of their attributes.
152 * Then IRA finds an allocno class for each allocno and
153 calculates its initial (non-accumulated) cost of memory and
154 each hard-register of its allocno class (file ira-cost.c).
156 * IRA creates live ranges of each allocno, calculates register
157 pressure for each pressure class in each region, sets up
158 conflict hard registers for each allocno and info about calls
159 the allocno lives through (file ira-lives.c).
161 * IRA removes low register pressure loops from the regions
162 mostly to speed IRA up (file ira-build.c).
164 * IRA propagates accumulated allocno info from lower region
165 allocnos to corresponding upper region allocnos (file
166 ira-build.c).
168 * IRA creates all caps (file ira-build.c).
170 * Having live-ranges of allocnos and their classes, IRA creates
171 conflicting allocnos for each allocno. Conflicting allocnos
172 are stored as a bit vector or array of pointers to the
173 conflicting allocnos whatever is more profitable (file
174 ira-conflicts.c). At this point IRA creates allocno copies.
176 o Coloring. Now IRA has all necessary info to start graph coloring
177 process. It is done in each region on top-down traverse of the
178 region tree (file ira-color.c). There are following subpasses:
180 * Finding profitable hard registers of corresponding allocno
181 class for each allocno. For example, only callee-saved hard
182 registers are frequently profitable for allocnos living
183 through colors. If the profitable hard register set of
184 allocno does not form a tree based on subset relation, we use
185 some approximation to form the tree. This approximation is
186 used to figure out trivial colorability of allocnos. The
187 approximation is a pretty rare case.
189 * Putting allocnos onto the coloring stack. IRA uses Briggs
190 optimistic coloring which is a major improvement over
191 Chaitin's coloring. Therefore IRA does not spill allocnos at
192 this point. There is some freedom in the order of putting
193 allocnos on the stack which can affect the final result of
194 the allocation. IRA uses some heuristics to improve the
195 order. The major one is to form *threads* from colorable
196 allocnos and push them on the stack by threads. Thread is a
197 set of non-conflicting colorable allocnos connected by
198 copies. The thread contains allocnos from the colorable
199 bucket or colorable allocnos already pushed onto the coloring
200 stack. Pushing thread allocnos one after another onto the
201 stack increases chances of removing copies when the allocnos
202 get the same hard reg.
204 We also use a modification of Chaitin-Briggs algorithm which
205 works for intersected register classes of allocnos. To
206 figure out trivial colorability of allocnos, the mentioned
207 above tree of hard register sets is used. To get an idea how
208 the algorithm works in i386 example, let us consider an
209 allocno to which any general hard register can be assigned.
210 If the allocno conflicts with eight allocnos to which only
211 EAX register can be assigned, given allocno is still
212 trivially colorable because all conflicting allocnos might be
213 assigned only to EAX and all other general hard registers are
214 still free.
216 To get an idea of the used trivial colorability criterion, it
217 is also useful to read article "Graph-Coloring Register
218 Allocation for Irregular Architectures" by Michael D. Smith
219 and Glen Holloway. Major difference between the article
220 approach and approach used in IRA is that Smith's approach
221 takes register classes only from machine description and IRA
222 calculate register classes from intermediate code too
223 (e.g. an explicit usage of hard registers in RTL code for
224 parameter passing can result in creation of additional
225 register classes which contain or exclude the hard
226 registers). That makes IRA approach useful for improving
227 coloring even for architectures with regular register files
228 and in fact some benchmarking shows the improvement for
229 regular class architectures is even bigger than for irregular
230 ones. Another difference is that Smith's approach chooses
231 intersection of classes of all insn operands in which a given
232 pseudo occurs. IRA can use bigger classes if it is still
233 more profitable than memory usage.
235 * Popping the allocnos from the stack and assigning them hard
236 registers. If IRA can not assign a hard register to an
237 allocno and the allocno is coalesced, IRA undoes the
238 coalescing and puts the uncoalesced allocnos onto the stack in
239 the hope that some such allocnos will get a hard register
240 separately. If IRA fails to assign hard register or memory
241 is more profitable for it, IRA spills the allocno. IRA
242 assigns the allocno the hard-register with minimal full
243 allocation cost which reflects the cost of usage of the
244 hard-register for the allocno and cost of usage of the
245 hard-register for allocnos conflicting with given allocno.
247 * Chaitin-Briggs coloring assigns as many pseudos as possible
248 to hard registers. After coloring we try to improve
249 allocation with cost point of view. We improve the
250 allocation by spilling some allocnos and assigning the freed
251 hard registers to other allocnos if it decreases the overall
252 allocation cost.
254 * After allocno assigning in the region, IRA modifies the hard
255 register and memory costs for the corresponding allocnos in
256 the subregions to reflect the cost of possible loads, stores,
257 or moves on the border of the region and its subregions.
258 When default regional allocation algorithm is used
259 (-fira-algorithm=mixed), IRA just propagates the assignment
260 for allocnos if the register pressure in the region for the
261 corresponding pressure class is less than number of available
262 hard registers for given pressure class.
264 o Spill/restore code moving. When IRA performs an allocation
265 by traversing regions in top-down order, it does not know what
266 happens below in the region tree. Therefore, sometimes IRA
267 misses opportunities to perform a better allocation. A simple
268 optimization tries to improve allocation in a region having
269 subregions and containing in another region. If the
270 corresponding allocnos in the subregion are spilled, it spills
271 the region allocno if it is profitable. The optimization
272 implements a simple iterative algorithm performing profitable
273 transformations while they are still possible. It is fast in
274 practice, so there is no real need for a better time complexity
275 algorithm.
277 o Code change. After coloring, two allocnos representing the
278 same pseudo-register outside and inside a region respectively
279 may be assigned to different locations (hard-registers or
280 memory). In this case IRA creates and uses a new
281 pseudo-register inside the region and adds code to move allocno
282 values on the region's borders. This is done during top-down
283 traversal of the regions (file ira-emit.c). In some
284 complicated cases IRA can create a new allocno to move allocno
285 values (e.g. when a swap of values stored in two hard-registers
286 is needed). At this stage, the new allocno is marked as
287 spilled. IRA still creates the pseudo-register and the moves
288 on the region borders even when both allocnos were assigned to
289 the same hard-register. If the reload pass spills a
290 pseudo-register for some reason, the effect will be smaller
291 because another allocno will still be in the hard-register. In
292 most cases, this is better then spilling both allocnos. If
293 reload does not change the allocation for the two
294 pseudo-registers, the trivial move will be removed by
295 post-reload optimizations. IRA does not generate moves for
296 allocnos assigned to the same hard register when the default
297 regional allocation algorithm is used and the register pressure
298 in the region for the corresponding pressure class is less than
299 number of available hard registers for given pressure class.
300 IRA also does some optimizations to remove redundant stores and
301 to reduce code duplication on the region borders.
303 o Flattening internal representation. After changing code, IRA
304 transforms its internal representation for several regions into
305 one region representation (file ira-build.c). This process is
306 called IR flattening. Such process is more complicated than IR
307 rebuilding would be, but is much faster.
309 o After IR flattening, IRA tries to assign hard registers to all
310 spilled allocnos. This is implemented by a simple and fast
311 priority coloring algorithm (see function
312 ira_reassign_conflict_allocnos::ira-color.c). Here new allocnos
313 created during the code change pass can be assigned to hard
314 registers.
316 o At the end IRA calls the reload pass. The reload pass
317 communicates with IRA through several functions in file
318 ira-color.c to improve its decisions in
320 * sharing stack slots for the spilled pseudos based on IRA info
321 about pseudo-register conflicts.
323 * reassigning hard-registers to all spilled pseudos at the end
324 of each reload iteration.
326 * choosing a better hard-register to spill based on IRA info
327 about pseudo-register live ranges and the register pressure
328 in places where the pseudo-register lives.
330 IRA uses a lot of data representing the target processors. These
331 data are initialized in file ira.c.
333 If function has no loops (or the loops are ignored when
334 -fira-algorithm=CB is used), we have classic Chaitin-Briggs
335 coloring (only instead of separate pass of coalescing, we use hard
336 register preferencing). In such case, IRA works much faster
337 because many things are not made (like IR flattening, the
338 spill/restore optimization, and the code change).
340 Literature is worth to read for better understanding the code:
342 o Preston Briggs, Keith D. Cooper, Linda Torczon. Improvements to
343 Graph Coloring Register Allocation.
345 o David Callahan, Brian Koblenz. Register allocation via
346 hierarchical graph coloring.
348 o Keith Cooper, Anshuman Dasgupta, Jason Eckhardt. Revisiting Graph
349 Coloring Register Allocation: A Study of the Chaitin-Briggs and
350 Callahan-Koblenz Algorithms.
352 o Guei-Yuan Lueh, Thomas Gross, and Ali-Reza Adl-Tabatabai. Global
353 Register Allocation Based on Graph Fusion.
355 o Michael D. Smith and Glenn Holloway. Graph-Coloring Register
356 Allocation for Irregular Architectures
358 o Vladimir Makarov. The Integrated Register Allocator for GCC.
360 o Vladimir Makarov. The top-down register allocator for irregular
361 register file architectures.
366 #include "config.h"
367 #include "system.h"
368 #include "coretypes.h"
369 #include "backend.h"
370 #include "target.h"
371 #include "rtl.h"
372 #include "tree.h"
373 #include "df.h"
374 #include "tm_p.h"
375 #include "insn-config.h"
376 #include "regs.h"
377 #include "ira.h"
378 #include "ira-int.h"
379 #include "diagnostic-core.h"
380 #include "cfgrtl.h"
381 #include "cfgbuild.h"
382 #include "cfgcleanup.h"
383 #include "expr.h"
384 #include "tree-pass.h"
385 #include "output.h"
386 #include "reload.h"
387 #include "cfgloop.h"
388 #include "lra.h"
389 #include "dce.h"
390 #include "dbgcnt.h"
391 #include "rtl-iter.h"
392 #include "shrink-wrap.h"
393 #include "print-rtl.h"
395 struct target_ira default_target_ira;
396 struct target_ira_int default_target_ira_int;
397 #if SWITCHABLE_TARGET
398 struct target_ira *this_target_ira = &default_target_ira;
399 struct target_ira_int *this_target_ira_int = &default_target_ira_int;
400 #endif
402 /* A modified value of flag `-fira-verbose' used internally. */
403 int internal_flag_ira_verbose;
405 /* Dump file of the allocator if it is not NULL. */
406 FILE *ira_dump_file;
408 /* The number of elements in the following array. */
409 int ira_spilled_reg_stack_slots_num;
411 /* The following array contains info about spilled pseudo-registers
412 stack slots used in current function so far. */
413 struct ira_spilled_reg_stack_slot *ira_spilled_reg_stack_slots;
415 /* Correspondingly overall cost of the allocation, overall cost before
416 reload, cost of the allocnos assigned to hard-registers, cost of
417 the allocnos assigned to memory, cost of loads, stores and register
418 move insns generated for pseudo-register live range splitting (see
419 ira-emit.c). */
420 int64_t ira_overall_cost, overall_cost_before;
421 int64_t ira_reg_cost, ira_mem_cost;
422 int64_t ira_load_cost, ira_store_cost, ira_shuffle_cost;
423 int ira_move_loops_num, ira_additional_jumps_num;
425 /* All registers that can be eliminated. */
427 HARD_REG_SET eliminable_regset;
429 /* Value of max_reg_num () before IRA work start. This value helps
430 us to recognize a situation when new pseudos were created during
431 IRA work. */
432 static int max_regno_before_ira;
434 /* Temporary hard reg set used for a different calculation. */
435 static HARD_REG_SET temp_hard_regset;
437 #define last_mode_for_init_move_cost \
438 (this_target_ira_int->x_last_mode_for_init_move_cost)
441 /* The function sets up the map IRA_REG_MODE_HARD_REGSET. */
442 static void
443 setup_reg_mode_hard_regset (void)
445 int i, m, hard_regno;
447 for (m = 0; m < NUM_MACHINE_MODES; m++)
448 for (hard_regno = 0; hard_regno < FIRST_PSEUDO_REGISTER; hard_regno++)
450 CLEAR_HARD_REG_SET (ira_reg_mode_hard_regset[hard_regno][m]);
451 for (i = hard_regno_nregs[hard_regno][m] - 1; i >= 0; i--)
452 if (hard_regno + i < FIRST_PSEUDO_REGISTER)
453 SET_HARD_REG_BIT (ira_reg_mode_hard_regset[hard_regno][m],
454 hard_regno + i);
459 #define no_unit_alloc_regs \
460 (this_target_ira_int->x_no_unit_alloc_regs)
462 /* The function sets up the three arrays declared above. */
463 static void
464 setup_class_hard_regs (void)
466 int cl, i, hard_regno, n;
467 HARD_REG_SET processed_hard_reg_set;
469 ira_assert (SHRT_MAX >= FIRST_PSEUDO_REGISTER);
470 for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
472 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
473 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
474 CLEAR_HARD_REG_SET (processed_hard_reg_set);
475 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
477 ira_non_ordered_class_hard_regs[cl][i] = -1;
478 ira_class_hard_reg_index[cl][i] = -1;
480 for (n = 0, i = 0; i < FIRST_PSEUDO_REGISTER; i++)
482 #ifdef REG_ALLOC_ORDER
483 hard_regno = reg_alloc_order[i];
484 #else
485 hard_regno = i;
486 #endif
487 if (TEST_HARD_REG_BIT (processed_hard_reg_set, hard_regno))
488 continue;
489 SET_HARD_REG_BIT (processed_hard_reg_set, hard_regno);
490 if (! TEST_HARD_REG_BIT (temp_hard_regset, hard_regno))
491 ira_class_hard_reg_index[cl][hard_regno] = -1;
492 else
494 ira_class_hard_reg_index[cl][hard_regno] = n;
495 ira_class_hard_regs[cl][n++] = hard_regno;
498 ira_class_hard_regs_num[cl] = n;
499 for (n = 0, i = 0; i < FIRST_PSEUDO_REGISTER; i++)
500 if (TEST_HARD_REG_BIT (temp_hard_regset, i))
501 ira_non_ordered_class_hard_regs[cl][n++] = i;
502 ira_assert (ira_class_hard_regs_num[cl] == n);
506 /* Set up global variables defining info about hard registers for the
507 allocation. These depend on USE_HARD_FRAME_P whose TRUE value means
508 that we can use the hard frame pointer for the allocation. */
509 static void
510 setup_alloc_regs (bool use_hard_frame_p)
512 #ifdef ADJUST_REG_ALLOC_ORDER
513 ADJUST_REG_ALLOC_ORDER;
514 #endif
515 COPY_HARD_REG_SET (no_unit_alloc_regs, fixed_reg_set);
516 if (! use_hard_frame_p)
517 SET_HARD_REG_BIT (no_unit_alloc_regs, HARD_FRAME_POINTER_REGNUM);
518 setup_class_hard_regs ();
523 #define alloc_reg_class_subclasses \
524 (this_target_ira_int->x_alloc_reg_class_subclasses)
526 /* Initialize the table of subclasses of each reg class. */
527 static void
528 setup_reg_subclasses (void)
530 int i, j;
531 HARD_REG_SET temp_hard_regset2;
533 for (i = 0; i < N_REG_CLASSES; i++)
534 for (j = 0; j < N_REG_CLASSES; j++)
535 alloc_reg_class_subclasses[i][j] = LIM_REG_CLASSES;
537 for (i = 0; i < N_REG_CLASSES; i++)
539 if (i == (int) NO_REGS)
540 continue;
542 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[i]);
543 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
544 if (hard_reg_set_empty_p (temp_hard_regset))
545 continue;
546 for (j = 0; j < N_REG_CLASSES; j++)
547 if (i != j)
549 enum reg_class *p;
551 COPY_HARD_REG_SET (temp_hard_regset2, reg_class_contents[j]);
552 AND_COMPL_HARD_REG_SET (temp_hard_regset2, no_unit_alloc_regs);
553 if (! hard_reg_set_subset_p (temp_hard_regset,
554 temp_hard_regset2))
555 continue;
556 p = &alloc_reg_class_subclasses[j][0];
557 while (*p != LIM_REG_CLASSES) p++;
558 *p = (enum reg_class) i;
565 /* Set up IRA_MEMORY_MOVE_COST and IRA_MAX_MEMORY_MOVE_COST. */
566 static void
567 setup_class_subset_and_memory_move_costs (void)
569 int cl, cl2, mode, cost;
570 HARD_REG_SET temp_hard_regset2;
572 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
573 ira_memory_move_cost[mode][NO_REGS][0]
574 = ira_memory_move_cost[mode][NO_REGS][1] = SHRT_MAX;
575 for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
577 if (cl != (int) NO_REGS)
578 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
580 ira_max_memory_move_cost[mode][cl][0]
581 = ira_memory_move_cost[mode][cl][0]
582 = memory_move_cost ((machine_mode) mode,
583 (reg_class_t) cl, false);
584 ira_max_memory_move_cost[mode][cl][1]
585 = ira_memory_move_cost[mode][cl][1]
586 = memory_move_cost ((machine_mode) mode,
587 (reg_class_t) cl, true);
588 /* Costs for NO_REGS are used in cost calculation on the
589 1st pass when the preferred register classes are not
590 known yet. In this case we take the best scenario. */
591 if (ira_memory_move_cost[mode][NO_REGS][0]
592 > ira_memory_move_cost[mode][cl][0])
593 ira_max_memory_move_cost[mode][NO_REGS][0]
594 = ira_memory_move_cost[mode][NO_REGS][0]
595 = ira_memory_move_cost[mode][cl][0];
596 if (ira_memory_move_cost[mode][NO_REGS][1]
597 > ira_memory_move_cost[mode][cl][1])
598 ira_max_memory_move_cost[mode][NO_REGS][1]
599 = ira_memory_move_cost[mode][NO_REGS][1]
600 = ira_memory_move_cost[mode][cl][1];
603 for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
604 for (cl2 = (int) N_REG_CLASSES - 1; cl2 >= 0; cl2--)
606 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
607 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
608 COPY_HARD_REG_SET (temp_hard_regset2, reg_class_contents[cl2]);
609 AND_COMPL_HARD_REG_SET (temp_hard_regset2, no_unit_alloc_regs);
610 ira_class_subset_p[cl][cl2]
611 = hard_reg_set_subset_p (temp_hard_regset, temp_hard_regset2);
612 if (! hard_reg_set_empty_p (temp_hard_regset2)
613 && hard_reg_set_subset_p (reg_class_contents[cl2],
614 reg_class_contents[cl]))
615 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
617 cost = ira_memory_move_cost[mode][cl2][0];
618 if (cost > ira_max_memory_move_cost[mode][cl][0])
619 ira_max_memory_move_cost[mode][cl][0] = cost;
620 cost = ira_memory_move_cost[mode][cl2][1];
621 if (cost > ira_max_memory_move_cost[mode][cl][1])
622 ira_max_memory_move_cost[mode][cl][1] = cost;
625 for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
626 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
628 ira_memory_move_cost[mode][cl][0]
629 = ira_max_memory_move_cost[mode][cl][0];
630 ira_memory_move_cost[mode][cl][1]
631 = ira_max_memory_move_cost[mode][cl][1];
633 setup_reg_subclasses ();
638 /* Define the following macro if allocation through malloc if
639 preferable. */
640 #define IRA_NO_OBSTACK
642 #ifndef IRA_NO_OBSTACK
643 /* Obstack used for storing all dynamic data (except bitmaps) of the
644 IRA. */
645 static struct obstack ira_obstack;
646 #endif
648 /* Obstack used for storing all bitmaps of the IRA. */
649 static struct bitmap_obstack ira_bitmap_obstack;
651 /* Allocate memory of size LEN for IRA data. */
652 void *
653 ira_allocate (size_t len)
655 void *res;
657 #ifndef IRA_NO_OBSTACK
658 res = obstack_alloc (&ira_obstack, len);
659 #else
660 res = xmalloc (len);
661 #endif
662 return res;
665 /* Free memory ADDR allocated for IRA data. */
666 void
667 ira_free (void *addr ATTRIBUTE_UNUSED)
669 #ifndef IRA_NO_OBSTACK
670 /* do nothing */
671 #else
672 free (addr);
673 #endif
677 /* Allocate and returns bitmap for IRA. */
678 bitmap
679 ira_allocate_bitmap (void)
681 return BITMAP_ALLOC (&ira_bitmap_obstack);
684 /* Free bitmap B allocated for IRA. */
685 void
686 ira_free_bitmap (bitmap b ATTRIBUTE_UNUSED)
688 /* do nothing */
693 /* Output information about allocation of all allocnos (except for
694 caps) into file F. */
695 void
696 ira_print_disposition (FILE *f)
698 int i, n, max_regno;
699 ira_allocno_t a;
700 basic_block bb;
702 fprintf (f, "Disposition:");
703 max_regno = max_reg_num ();
704 for (n = 0, i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
705 for (a = ira_regno_allocno_map[i];
706 a != NULL;
707 a = ALLOCNO_NEXT_REGNO_ALLOCNO (a))
709 if (n % 4 == 0)
710 fprintf (f, "\n");
711 n++;
712 fprintf (f, " %4d:r%-4d", ALLOCNO_NUM (a), ALLOCNO_REGNO (a));
713 if ((bb = ALLOCNO_LOOP_TREE_NODE (a)->bb) != NULL)
714 fprintf (f, "b%-3d", bb->index);
715 else
716 fprintf (f, "l%-3d", ALLOCNO_LOOP_TREE_NODE (a)->loop_num);
717 if (ALLOCNO_HARD_REGNO (a) >= 0)
718 fprintf (f, " %3d", ALLOCNO_HARD_REGNO (a));
719 else
720 fprintf (f, " mem");
722 fprintf (f, "\n");
725 /* Outputs information about allocation of all allocnos into
726 stderr. */
727 void
728 ira_debug_disposition (void)
730 ira_print_disposition (stderr);
735 /* Set up ira_stack_reg_pressure_class which is the biggest pressure
736 register class containing stack registers or NO_REGS if there are
737 no stack registers. To find this class, we iterate through all
738 register pressure classes and choose the first register pressure
739 class containing all the stack registers and having the biggest
740 size. */
741 static void
742 setup_stack_reg_pressure_class (void)
744 ira_stack_reg_pressure_class = NO_REGS;
745 #ifdef STACK_REGS
747 int i, best, size;
748 enum reg_class cl;
749 HARD_REG_SET temp_hard_regset2;
751 CLEAR_HARD_REG_SET (temp_hard_regset);
752 for (i = FIRST_STACK_REG; i <= LAST_STACK_REG; i++)
753 SET_HARD_REG_BIT (temp_hard_regset, i);
754 best = 0;
755 for (i = 0; i < ira_pressure_classes_num; i++)
757 cl = ira_pressure_classes[i];
758 COPY_HARD_REG_SET (temp_hard_regset2, temp_hard_regset);
759 AND_HARD_REG_SET (temp_hard_regset2, reg_class_contents[cl]);
760 size = hard_reg_set_size (temp_hard_regset2);
761 if (best < size)
763 best = size;
764 ira_stack_reg_pressure_class = cl;
768 #endif
771 /* Find pressure classes which are register classes for which we
772 calculate register pressure in IRA, register pressure sensitive
773 insn scheduling, and register pressure sensitive loop invariant
774 motion.
776 To make register pressure calculation easy, we always use
777 non-intersected register pressure classes. A move of hard
778 registers from one register pressure class is not more expensive
779 than load and store of the hard registers. Most likely an allocno
780 class will be a subset of a register pressure class and in many
781 cases a register pressure class. That makes usage of register
782 pressure classes a good approximation to find a high register
783 pressure. */
784 static void
785 setup_pressure_classes (void)
787 int cost, i, n, curr;
788 int cl, cl2;
789 enum reg_class pressure_classes[N_REG_CLASSES];
790 int m;
791 HARD_REG_SET temp_hard_regset2;
792 bool insert_p;
794 n = 0;
795 for (cl = 0; cl < N_REG_CLASSES; cl++)
797 if (ira_class_hard_regs_num[cl] == 0)
798 continue;
799 if (ira_class_hard_regs_num[cl] != 1
800 /* A register class without subclasses may contain a few
801 hard registers and movement between them is costly
802 (e.g. SPARC FPCC registers). We still should consider it
803 as a candidate for a pressure class. */
804 && alloc_reg_class_subclasses[cl][0] < cl)
806 /* Check that the moves between any hard registers of the
807 current class are not more expensive for a legal mode
808 than load/store of the hard registers of the current
809 class. Such class is a potential candidate to be a
810 register pressure class. */
811 for (m = 0; m < NUM_MACHINE_MODES; m++)
813 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
814 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
815 AND_COMPL_HARD_REG_SET (temp_hard_regset,
816 ira_prohibited_class_mode_regs[cl][m]);
817 if (hard_reg_set_empty_p (temp_hard_regset))
818 continue;
819 ira_init_register_move_cost_if_necessary ((machine_mode) m);
820 cost = ira_register_move_cost[m][cl][cl];
821 if (cost <= ira_max_memory_move_cost[m][cl][1]
822 || cost <= ira_max_memory_move_cost[m][cl][0])
823 break;
825 if (m >= NUM_MACHINE_MODES)
826 continue;
828 curr = 0;
829 insert_p = true;
830 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
831 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
832 /* Remove so far added pressure classes which are subset of the
833 current candidate class. Prefer GENERAL_REGS as a pressure
834 register class to another class containing the same
835 allocatable hard registers. We do this because machine
836 dependent cost hooks might give wrong costs for the latter
837 class but always give the right cost for the former class
838 (GENERAL_REGS). */
839 for (i = 0; i < n; i++)
841 cl2 = pressure_classes[i];
842 COPY_HARD_REG_SET (temp_hard_regset2, reg_class_contents[cl2]);
843 AND_COMPL_HARD_REG_SET (temp_hard_regset2, no_unit_alloc_regs);
844 if (hard_reg_set_subset_p (temp_hard_regset, temp_hard_regset2)
845 && (! hard_reg_set_equal_p (temp_hard_regset, temp_hard_regset2)
846 || cl2 == (int) GENERAL_REGS))
848 pressure_classes[curr++] = (enum reg_class) cl2;
849 insert_p = false;
850 continue;
852 if (hard_reg_set_subset_p (temp_hard_regset2, temp_hard_regset)
853 && (! hard_reg_set_equal_p (temp_hard_regset2, temp_hard_regset)
854 || cl == (int) GENERAL_REGS))
855 continue;
856 if (hard_reg_set_equal_p (temp_hard_regset2, temp_hard_regset))
857 insert_p = false;
858 pressure_classes[curr++] = (enum reg_class) cl2;
860 /* If the current candidate is a subset of a so far added
861 pressure class, don't add it to the list of the pressure
862 classes. */
863 if (insert_p)
864 pressure_classes[curr++] = (enum reg_class) cl;
865 n = curr;
867 #ifdef ENABLE_IRA_CHECKING
869 HARD_REG_SET ignore_hard_regs;
871 /* Check pressure classes correctness: here we check that hard
872 registers from all register pressure classes contains all hard
873 registers available for the allocation. */
874 CLEAR_HARD_REG_SET (temp_hard_regset);
875 CLEAR_HARD_REG_SET (temp_hard_regset2);
876 COPY_HARD_REG_SET (ignore_hard_regs, no_unit_alloc_regs);
877 for (cl = 0; cl < LIM_REG_CLASSES; cl++)
879 /* For some targets (like MIPS with MD_REGS), there are some
880 classes with hard registers available for allocation but
881 not able to hold value of any mode. */
882 for (m = 0; m < NUM_MACHINE_MODES; m++)
883 if (contains_reg_of_mode[cl][m])
884 break;
885 if (m >= NUM_MACHINE_MODES)
887 IOR_HARD_REG_SET (ignore_hard_regs, reg_class_contents[cl]);
888 continue;
890 for (i = 0; i < n; i++)
891 if ((int) pressure_classes[i] == cl)
892 break;
893 IOR_HARD_REG_SET (temp_hard_regset2, reg_class_contents[cl]);
894 if (i < n)
895 IOR_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
897 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
898 /* Some targets (like SPARC with ICC reg) have allocatable regs
899 for which no reg class is defined. */
900 if (REGNO_REG_CLASS (i) == NO_REGS)
901 SET_HARD_REG_BIT (ignore_hard_regs, i);
902 AND_COMPL_HARD_REG_SET (temp_hard_regset, ignore_hard_regs);
903 AND_COMPL_HARD_REG_SET (temp_hard_regset2, ignore_hard_regs);
904 ira_assert (hard_reg_set_subset_p (temp_hard_regset2, temp_hard_regset));
906 #endif
907 ira_pressure_classes_num = 0;
908 for (i = 0; i < n; i++)
910 cl = (int) pressure_classes[i];
911 ira_reg_pressure_class_p[cl] = true;
912 ira_pressure_classes[ira_pressure_classes_num++] = (enum reg_class) cl;
914 setup_stack_reg_pressure_class ();
917 /* Set up IRA_UNIFORM_CLASS_P. Uniform class is a register class
918 whose register move cost between any registers of the class is the
919 same as for all its subclasses. We use the data to speed up the
920 2nd pass of calculations of allocno costs. */
921 static void
922 setup_uniform_class_p (void)
924 int i, cl, cl2, m;
926 for (cl = 0; cl < N_REG_CLASSES; cl++)
928 ira_uniform_class_p[cl] = false;
929 if (ira_class_hard_regs_num[cl] == 0)
930 continue;
931 /* We can not use alloc_reg_class_subclasses here because move
932 cost hooks does not take into account that some registers are
933 unavailable for the subtarget. E.g. for i686, INT_SSE_REGS
934 is element of alloc_reg_class_subclasses for GENERAL_REGS
935 because SSE regs are unavailable. */
936 for (i = 0; (cl2 = reg_class_subclasses[cl][i]) != LIM_REG_CLASSES; i++)
938 if (ira_class_hard_regs_num[cl2] == 0)
939 continue;
940 for (m = 0; m < NUM_MACHINE_MODES; m++)
941 if (contains_reg_of_mode[cl][m] && contains_reg_of_mode[cl2][m])
943 ira_init_register_move_cost_if_necessary ((machine_mode) m);
944 if (ira_register_move_cost[m][cl][cl]
945 != ira_register_move_cost[m][cl2][cl2])
946 break;
948 if (m < NUM_MACHINE_MODES)
949 break;
951 if (cl2 == LIM_REG_CLASSES)
952 ira_uniform_class_p[cl] = true;
956 /* Set up IRA_ALLOCNO_CLASSES, IRA_ALLOCNO_CLASSES_NUM,
957 IRA_IMPORTANT_CLASSES, and IRA_IMPORTANT_CLASSES_NUM.
959 Target may have many subtargets and not all target hard registers can
960 be used for allocation, e.g. x86 port in 32-bit mode can not use
961 hard registers introduced in x86-64 like r8-r15). Some classes
962 might have the same allocatable hard registers, e.g. INDEX_REGS
963 and GENERAL_REGS in x86 port in 32-bit mode. To decrease different
964 calculations efforts we introduce allocno classes which contain
965 unique non-empty sets of allocatable hard-registers.
967 Pseudo class cost calculation in ira-costs.c is very expensive.
968 Therefore we are trying to decrease number of classes involved in
969 such calculation. Register classes used in the cost calculation
970 are called important classes. They are allocno classes and other
971 non-empty classes whose allocatable hard register sets are inside
972 of an allocno class hard register set. From the first sight, it
973 looks like that they are just allocno classes. It is not true. In
974 example of x86-port in 32-bit mode, allocno classes will contain
975 GENERAL_REGS but not LEGACY_REGS (because allocatable hard
976 registers are the same for the both classes). The important
977 classes will contain GENERAL_REGS and LEGACY_REGS. It is done
978 because a machine description insn constraint may refers for
979 LEGACY_REGS and code in ira-costs.c is mostly base on investigation
980 of the insn constraints. */
981 static void
982 setup_allocno_and_important_classes (void)
984 int i, j, n, cl;
985 bool set_p;
986 HARD_REG_SET temp_hard_regset2;
987 static enum reg_class classes[LIM_REG_CLASSES + 1];
989 n = 0;
990 /* Collect classes which contain unique sets of allocatable hard
991 registers. Prefer GENERAL_REGS to other classes containing the
992 same set of hard registers. */
993 for (i = 0; i < LIM_REG_CLASSES; i++)
995 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[i]);
996 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
997 for (j = 0; j < n; j++)
999 cl = classes[j];
1000 COPY_HARD_REG_SET (temp_hard_regset2, reg_class_contents[cl]);
1001 AND_COMPL_HARD_REG_SET (temp_hard_regset2,
1002 no_unit_alloc_regs);
1003 if (hard_reg_set_equal_p (temp_hard_regset,
1004 temp_hard_regset2))
1005 break;
1007 if (j >= n)
1008 classes[n++] = (enum reg_class) i;
1009 else if (i == GENERAL_REGS)
1010 /* Prefer general regs. For i386 example, it means that
1011 we prefer GENERAL_REGS over INDEX_REGS or LEGACY_REGS
1012 (all of them consists of the same available hard
1013 registers). */
1014 classes[j] = (enum reg_class) i;
1016 classes[n] = LIM_REG_CLASSES;
1018 /* Set up classes which can be used for allocnos as classes
1019 containing non-empty unique sets of allocatable hard
1020 registers. */
1021 ira_allocno_classes_num = 0;
1022 for (i = 0; (cl = classes[i]) != LIM_REG_CLASSES; i++)
1023 if (ira_class_hard_regs_num[cl] > 0)
1024 ira_allocno_classes[ira_allocno_classes_num++] = (enum reg_class) cl;
1025 ira_important_classes_num = 0;
1026 /* Add non-allocno classes containing to non-empty set of
1027 allocatable hard regs. */
1028 for (cl = 0; cl < N_REG_CLASSES; cl++)
1029 if (ira_class_hard_regs_num[cl] > 0)
1031 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
1032 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
1033 set_p = false;
1034 for (j = 0; j < ira_allocno_classes_num; j++)
1036 COPY_HARD_REG_SET (temp_hard_regset2,
1037 reg_class_contents[ira_allocno_classes[j]]);
1038 AND_COMPL_HARD_REG_SET (temp_hard_regset2, no_unit_alloc_regs);
1039 if ((enum reg_class) cl == ira_allocno_classes[j])
1040 break;
1041 else if (hard_reg_set_subset_p (temp_hard_regset,
1042 temp_hard_regset2))
1043 set_p = true;
1045 if (set_p && j >= ira_allocno_classes_num)
1046 ira_important_classes[ira_important_classes_num++]
1047 = (enum reg_class) cl;
1049 /* Now add allocno classes to the important classes. */
1050 for (j = 0; j < ira_allocno_classes_num; j++)
1051 ira_important_classes[ira_important_classes_num++]
1052 = ira_allocno_classes[j];
1053 for (cl = 0; cl < N_REG_CLASSES; cl++)
1055 ira_reg_allocno_class_p[cl] = false;
1056 ira_reg_pressure_class_p[cl] = false;
1058 for (j = 0; j < ira_allocno_classes_num; j++)
1059 ira_reg_allocno_class_p[ira_allocno_classes[j]] = true;
1060 setup_pressure_classes ();
1061 setup_uniform_class_p ();
1064 /* Setup translation in CLASS_TRANSLATE of all classes into a class
1065 given by array CLASSES of length CLASSES_NUM. The function is used
1066 make translation any reg class to an allocno class or to an
1067 pressure class. This translation is necessary for some
1068 calculations when we can use only allocno or pressure classes and
1069 such translation represents an approximate representation of all
1070 classes.
1072 The translation in case when allocatable hard register set of a
1073 given class is subset of allocatable hard register set of a class
1074 in CLASSES is pretty simple. We use smallest classes from CLASSES
1075 containing a given class. If allocatable hard register set of a
1076 given class is not a subset of any corresponding set of a class
1077 from CLASSES, we use the cheapest (with load/store point of view)
1078 class from CLASSES whose set intersects with given class set. */
1079 static void
1080 setup_class_translate_array (enum reg_class *class_translate,
1081 int classes_num, enum reg_class *classes)
1083 int cl, mode;
1084 enum reg_class aclass, best_class, *cl_ptr;
1085 int i, cost, min_cost, best_cost;
1087 for (cl = 0; cl < N_REG_CLASSES; cl++)
1088 class_translate[cl] = NO_REGS;
1090 for (i = 0; i < classes_num; i++)
1092 aclass = classes[i];
1093 for (cl_ptr = &alloc_reg_class_subclasses[aclass][0];
1094 (cl = *cl_ptr) != LIM_REG_CLASSES;
1095 cl_ptr++)
1096 if (class_translate[cl] == NO_REGS)
1097 class_translate[cl] = aclass;
1098 class_translate[aclass] = aclass;
1100 /* For classes which are not fully covered by one of given classes
1101 (in other words covered by more one given class), use the
1102 cheapest class. */
1103 for (cl = 0; cl < N_REG_CLASSES; cl++)
1105 if (cl == NO_REGS || class_translate[cl] != NO_REGS)
1106 continue;
1107 best_class = NO_REGS;
1108 best_cost = INT_MAX;
1109 for (i = 0; i < classes_num; i++)
1111 aclass = classes[i];
1112 COPY_HARD_REG_SET (temp_hard_regset,
1113 reg_class_contents[aclass]);
1114 AND_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
1115 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
1116 if (! hard_reg_set_empty_p (temp_hard_regset))
1118 min_cost = INT_MAX;
1119 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
1121 cost = (ira_memory_move_cost[mode][aclass][0]
1122 + ira_memory_move_cost[mode][aclass][1]);
1123 if (min_cost > cost)
1124 min_cost = cost;
1126 if (best_class == NO_REGS || best_cost > min_cost)
1128 best_class = aclass;
1129 best_cost = min_cost;
1133 class_translate[cl] = best_class;
1137 /* Set up array IRA_ALLOCNO_CLASS_TRANSLATE and
1138 IRA_PRESSURE_CLASS_TRANSLATE. */
1139 static void
1140 setup_class_translate (void)
1142 setup_class_translate_array (ira_allocno_class_translate,
1143 ira_allocno_classes_num, ira_allocno_classes);
1144 setup_class_translate_array (ira_pressure_class_translate,
1145 ira_pressure_classes_num, ira_pressure_classes);
1148 /* Order numbers of allocno classes in original target allocno class
1149 array, -1 for non-allocno classes. */
1150 static int allocno_class_order[N_REG_CLASSES];
1152 /* The function used to sort the important classes. */
1153 static int
1154 comp_reg_classes_func (const void *v1p, const void *v2p)
1156 enum reg_class cl1 = *(const enum reg_class *) v1p;
1157 enum reg_class cl2 = *(const enum reg_class *) v2p;
1158 enum reg_class tcl1, tcl2;
1159 int diff;
1161 tcl1 = ira_allocno_class_translate[cl1];
1162 tcl2 = ira_allocno_class_translate[cl2];
1163 if (tcl1 != NO_REGS && tcl2 != NO_REGS
1164 && (diff = allocno_class_order[tcl1] - allocno_class_order[tcl2]) != 0)
1165 return diff;
1166 return (int) cl1 - (int) cl2;
1169 /* For correct work of function setup_reg_class_relation we need to
1170 reorder important classes according to the order of their allocno
1171 classes. It places important classes containing the same
1172 allocatable hard register set adjacent to each other and allocno
1173 class with the allocatable hard register set right after the other
1174 important classes with the same set.
1176 In example from comments of function
1177 setup_allocno_and_important_classes, it places LEGACY_REGS and
1178 GENERAL_REGS close to each other and GENERAL_REGS is after
1179 LEGACY_REGS. */
1180 static void
1181 reorder_important_classes (void)
1183 int i;
1185 for (i = 0; i < N_REG_CLASSES; i++)
1186 allocno_class_order[i] = -1;
1187 for (i = 0; i < ira_allocno_classes_num; i++)
1188 allocno_class_order[ira_allocno_classes[i]] = i;
1189 qsort (ira_important_classes, ira_important_classes_num,
1190 sizeof (enum reg_class), comp_reg_classes_func);
1191 for (i = 0; i < ira_important_classes_num; i++)
1192 ira_important_class_nums[ira_important_classes[i]] = i;
1195 /* Set up IRA_REG_CLASS_SUBUNION, IRA_REG_CLASS_SUPERUNION,
1196 IRA_REG_CLASS_SUPER_CLASSES, IRA_REG_CLASSES_INTERSECT, and
1197 IRA_REG_CLASSES_INTERSECT_P. For the meaning of the relations,
1198 please see corresponding comments in ira-int.h. */
1199 static void
1200 setup_reg_class_relations (void)
1202 int i, cl1, cl2, cl3;
1203 HARD_REG_SET intersection_set, union_set, temp_set2;
1204 bool important_class_p[N_REG_CLASSES];
1206 memset (important_class_p, 0, sizeof (important_class_p));
1207 for (i = 0; i < ira_important_classes_num; i++)
1208 important_class_p[ira_important_classes[i]] = true;
1209 for (cl1 = 0; cl1 < N_REG_CLASSES; cl1++)
1211 ira_reg_class_super_classes[cl1][0] = LIM_REG_CLASSES;
1212 for (cl2 = 0; cl2 < N_REG_CLASSES; cl2++)
1214 ira_reg_classes_intersect_p[cl1][cl2] = false;
1215 ira_reg_class_intersect[cl1][cl2] = NO_REGS;
1216 ira_reg_class_subset[cl1][cl2] = NO_REGS;
1217 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl1]);
1218 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
1219 COPY_HARD_REG_SET (temp_set2, reg_class_contents[cl2]);
1220 AND_COMPL_HARD_REG_SET (temp_set2, no_unit_alloc_regs);
1221 if (hard_reg_set_empty_p (temp_hard_regset)
1222 && hard_reg_set_empty_p (temp_set2))
1224 /* The both classes have no allocatable hard registers
1225 -- take all class hard registers into account and use
1226 reg_class_subunion and reg_class_superunion. */
1227 for (i = 0;; i++)
1229 cl3 = reg_class_subclasses[cl1][i];
1230 if (cl3 == LIM_REG_CLASSES)
1231 break;
1232 if (reg_class_subset_p (ira_reg_class_intersect[cl1][cl2],
1233 (enum reg_class) cl3))
1234 ira_reg_class_intersect[cl1][cl2] = (enum reg_class) cl3;
1236 ira_reg_class_subunion[cl1][cl2] = reg_class_subunion[cl1][cl2];
1237 ira_reg_class_superunion[cl1][cl2] = reg_class_superunion[cl1][cl2];
1238 continue;
1240 ira_reg_classes_intersect_p[cl1][cl2]
1241 = hard_reg_set_intersect_p (temp_hard_regset, temp_set2);
1242 if (important_class_p[cl1] && important_class_p[cl2]
1243 && hard_reg_set_subset_p (temp_hard_regset, temp_set2))
1245 /* CL1 and CL2 are important classes and CL1 allocatable
1246 hard register set is inside of CL2 allocatable hard
1247 registers -- make CL1 a superset of CL2. */
1248 enum reg_class *p;
1250 p = &ira_reg_class_super_classes[cl1][0];
1251 while (*p != LIM_REG_CLASSES)
1252 p++;
1253 *p++ = (enum reg_class) cl2;
1254 *p = LIM_REG_CLASSES;
1256 ira_reg_class_subunion[cl1][cl2] = NO_REGS;
1257 ira_reg_class_superunion[cl1][cl2] = NO_REGS;
1258 COPY_HARD_REG_SET (intersection_set, reg_class_contents[cl1]);
1259 AND_HARD_REG_SET (intersection_set, reg_class_contents[cl2]);
1260 AND_COMPL_HARD_REG_SET (intersection_set, no_unit_alloc_regs);
1261 COPY_HARD_REG_SET (union_set, reg_class_contents[cl1]);
1262 IOR_HARD_REG_SET (union_set, reg_class_contents[cl2]);
1263 AND_COMPL_HARD_REG_SET (union_set, no_unit_alloc_regs);
1264 for (cl3 = 0; cl3 < N_REG_CLASSES; cl3++)
1266 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl3]);
1267 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
1268 if (hard_reg_set_subset_p (temp_hard_regset, intersection_set))
1270 /* CL3 allocatable hard register set is inside of
1271 intersection of allocatable hard register sets
1272 of CL1 and CL2. */
1273 if (important_class_p[cl3])
1275 COPY_HARD_REG_SET
1276 (temp_set2,
1277 reg_class_contents
1278 [(int) ira_reg_class_intersect[cl1][cl2]]);
1279 AND_COMPL_HARD_REG_SET (temp_set2, no_unit_alloc_regs);
1280 if (! hard_reg_set_subset_p (temp_hard_regset, temp_set2)
1281 /* If the allocatable hard register sets are
1282 the same, prefer GENERAL_REGS or the
1283 smallest class for debugging
1284 purposes. */
1285 || (hard_reg_set_equal_p (temp_hard_regset, temp_set2)
1286 && (cl3 == GENERAL_REGS
1287 || ((ira_reg_class_intersect[cl1][cl2]
1288 != GENERAL_REGS)
1289 && hard_reg_set_subset_p
1290 (reg_class_contents[cl3],
1291 reg_class_contents
1292 [(int)
1293 ira_reg_class_intersect[cl1][cl2]])))))
1294 ira_reg_class_intersect[cl1][cl2] = (enum reg_class) cl3;
1296 COPY_HARD_REG_SET
1297 (temp_set2,
1298 reg_class_contents[(int) ira_reg_class_subset[cl1][cl2]]);
1299 AND_COMPL_HARD_REG_SET (temp_set2, no_unit_alloc_regs);
1300 if (! hard_reg_set_subset_p (temp_hard_regset, temp_set2)
1301 /* Ignore unavailable hard registers and prefer
1302 smallest class for debugging purposes. */
1303 || (hard_reg_set_equal_p (temp_hard_regset, temp_set2)
1304 && hard_reg_set_subset_p
1305 (reg_class_contents[cl3],
1306 reg_class_contents
1307 [(int) ira_reg_class_subset[cl1][cl2]])))
1308 ira_reg_class_subset[cl1][cl2] = (enum reg_class) cl3;
1310 if (important_class_p[cl3]
1311 && hard_reg_set_subset_p (temp_hard_regset, union_set))
1313 /* CL3 allocatable hard register set is inside of
1314 union of allocatable hard register sets of CL1
1315 and CL2. */
1316 COPY_HARD_REG_SET
1317 (temp_set2,
1318 reg_class_contents[(int) ira_reg_class_subunion[cl1][cl2]]);
1319 AND_COMPL_HARD_REG_SET (temp_set2, no_unit_alloc_regs);
1320 if (ira_reg_class_subunion[cl1][cl2] == NO_REGS
1321 || (hard_reg_set_subset_p (temp_set2, temp_hard_regset)
1323 && (! hard_reg_set_equal_p (temp_set2,
1324 temp_hard_regset)
1325 || cl3 == GENERAL_REGS
1326 /* If the allocatable hard register sets are the
1327 same, prefer GENERAL_REGS or the smallest
1328 class for debugging purposes. */
1329 || (ira_reg_class_subunion[cl1][cl2] != GENERAL_REGS
1330 && hard_reg_set_subset_p
1331 (reg_class_contents[cl3],
1332 reg_class_contents
1333 [(int) ira_reg_class_subunion[cl1][cl2]])))))
1334 ira_reg_class_subunion[cl1][cl2] = (enum reg_class) cl3;
1336 if (hard_reg_set_subset_p (union_set, temp_hard_regset))
1338 /* CL3 allocatable hard register set contains union
1339 of allocatable hard register sets of CL1 and
1340 CL2. */
1341 COPY_HARD_REG_SET
1342 (temp_set2,
1343 reg_class_contents[(int) ira_reg_class_superunion[cl1][cl2]]);
1344 AND_COMPL_HARD_REG_SET (temp_set2, no_unit_alloc_regs);
1345 if (ira_reg_class_superunion[cl1][cl2] == NO_REGS
1346 || (hard_reg_set_subset_p (temp_hard_regset, temp_set2)
1348 && (! hard_reg_set_equal_p (temp_set2,
1349 temp_hard_regset)
1350 || cl3 == GENERAL_REGS
1351 /* If the allocatable hard register sets are the
1352 same, prefer GENERAL_REGS or the smallest
1353 class for debugging purposes. */
1354 || (ira_reg_class_superunion[cl1][cl2] != GENERAL_REGS
1355 && hard_reg_set_subset_p
1356 (reg_class_contents[cl3],
1357 reg_class_contents
1358 [(int) ira_reg_class_superunion[cl1][cl2]])))))
1359 ira_reg_class_superunion[cl1][cl2] = (enum reg_class) cl3;
1366 /* Output all uniform and important classes into file F. */
1367 static void
1368 print_uniform_and_important_classes (FILE *f)
1370 int i, cl;
1372 fprintf (f, "Uniform classes:\n");
1373 for (cl = 0; cl < N_REG_CLASSES; cl++)
1374 if (ira_uniform_class_p[cl])
1375 fprintf (f, " %s", reg_class_names[cl]);
1376 fprintf (f, "\nImportant classes:\n");
1377 for (i = 0; i < ira_important_classes_num; i++)
1378 fprintf (f, " %s", reg_class_names[ira_important_classes[i]]);
1379 fprintf (f, "\n");
1382 /* Output all possible allocno or pressure classes and their
1383 translation map into file F. */
1384 static void
1385 print_translated_classes (FILE *f, bool pressure_p)
1387 int classes_num = (pressure_p
1388 ? ira_pressure_classes_num : ira_allocno_classes_num);
1389 enum reg_class *classes = (pressure_p
1390 ? ira_pressure_classes : ira_allocno_classes);
1391 enum reg_class *class_translate = (pressure_p
1392 ? ira_pressure_class_translate
1393 : ira_allocno_class_translate);
1394 int i;
1396 fprintf (f, "%s classes:\n", pressure_p ? "Pressure" : "Allocno");
1397 for (i = 0; i < classes_num; i++)
1398 fprintf (f, " %s", reg_class_names[classes[i]]);
1399 fprintf (f, "\nClass translation:\n");
1400 for (i = 0; i < N_REG_CLASSES; i++)
1401 fprintf (f, " %s -> %s\n", reg_class_names[i],
1402 reg_class_names[class_translate[i]]);
1405 /* Output all possible allocno and translation classes and the
1406 translation maps into stderr. */
1407 void
1408 ira_debug_allocno_classes (void)
1410 print_uniform_and_important_classes (stderr);
1411 print_translated_classes (stderr, false);
1412 print_translated_classes (stderr, true);
1415 /* Set up different arrays concerning class subsets, allocno and
1416 important classes. */
1417 static void
1418 find_reg_classes (void)
1420 setup_allocno_and_important_classes ();
1421 setup_class_translate ();
1422 reorder_important_classes ();
1423 setup_reg_class_relations ();
1428 /* Set up the array above. */
1429 static void
1430 setup_hard_regno_aclass (void)
1432 int i;
1434 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1436 #if 1
1437 ira_hard_regno_allocno_class[i]
1438 = (TEST_HARD_REG_BIT (no_unit_alloc_regs, i)
1439 ? NO_REGS
1440 : ira_allocno_class_translate[REGNO_REG_CLASS (i)]);
1441 #else
1442 int j;
1443 enum reg_class cl;
1444 ira_hard_regno_allocno_class[i] = NO_REGS;
1445 for (j = 0; j < ira_allocno_classes_num; j++)
1447 cl = ira_allocno_classes[j];
1448 if (ira_class_hard_reg_index[cl][i] >= 0)
1450 ira_hard_regno_allocno_class[i] = cl;
1451 break;
1454 #endif
1460 /* Form IRA_REG_CLASS_MAX_NREGS and IRA_REG_CLASS_MIN_NREGS maps. */
1461 static void
1462 setup_reg_class_nregs (void)
1464 int i, cl, cl2, m;
1466 for (m = 0; m < MAX_MACHINE_MODE; m++)
1468 for (cl = 0; cl < N_REG_CLASSES; cl++)
1469 ira_reg_class_max_nregs[cl][m]
1470 = ira_reg_class_min_nregs[cl][m]
1471 = targetm.class_max_nregs ((reg_class_t) cl, (machine_mode) m);
1472 for (cl = 0; cl < N_REG_CLASSES; cl++)
1473 for (i = 0;
1474 (cl2 = alloc_reg_class_subclasses[cl][i]) != LIM_REG_CLASSES;
1475 i++)
1476 if (ira_reg_class_min_nregs[cl2][m]
1477 < ira_reg_class_min_nregs[cl][m])
1478 ira_reg_class_min_nregs[cl][m] = ira_reg_class_min_nregs[cl2][m];
1484 /* Set up IRA_PROHIBITED_CLASS_MODE_REGS and IRA_CLASS_SINGLETON.
1485 This function is called once IRA_CLASS_HARD_REGS has been initialized. */
1486 static void
1487 setup_prohibited_class_mode_regs (void)
1489 int j, k, hard_regno, cl, last_hard_regno, count;
1491 for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
1493 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
1494 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
1495 for (j = 0; j < NUM_MACHINE_MODES; j++)
1497 count = 0;
1498 last_hard_regno = -1;
1499 CLEAR_HARD_REG_SET (ira_prohibited_class_mode_regs[cl][j]);
1500 for (k = ira_class_hard_regs_num[cl] - 1; k >= 0; k--)
1502 hard_regno = ira_class_hard_regs[cl][k];
1503 if (! HARD_REGNO_MODE_OK (hard_regno, (machine_mode) j))
1504 SET_HARD_REG_BIT (ira_prohibited_class_mode_regs[cl][j],
1505 hard_regno);
1506 else if (in_hard_reg_set_p (temp_hard_regset,
1507 (machine_mode) j, hard_regno))
1509 last_hard_regno = hard_regno;
1510 count++;
1513 ira_class_singleton[cl][j] = (count == 1 ? last_hard_regno : -1);
1518 /* Clarify IRA_PROHIBITED_CLASS_MODE_REGS by excluding hard registers
1519 spanning from one register pressure class to another one. It is
1520 called after defining the pressure classes. */
1521 static void
1522 clarify_prohibited_class_mode_regs (void)
1524 int j, k, hard_regno, cl, pclass, nregs;
1526 for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
1527 for (j = 0; j < NUM_MACHINE_MODES; j++)
1529 CLEAR_HARD_REG_SET (ira_useful_class_mode_regs[cl][j]);
1530 for (k = ira_class_hard_regs_num[cl] - 1; k >= 0; k--)
1532 hard_regno = ira_class_hard_regs[cl][k];
1533 if (TEST_HARD_REG_BIT (ira_prohibited_class_mode_regs[cl][j], hard_regno))
1534 continue;
1535 nregs = hard_regno_nregs[hard_regno][j];
1536 if (hard_regno + nregs > FIRST_PSEUDO_REGISTER)
1538 SET_HARD_REG_BIT (ira_prohibited_class_mode_regs[cl][j],
1539 hard_regno);
1540 continue;
1542 pclass = ira_pressure_class_translate[REGNO_REG_CLASS (hard_regno)];
1543 for (nregs-- ;nregs >= 0; nregs--)
1544 if (((enum reg_class) pclass
1545 != ira_pressure_class_translate[REGNO_REG_CLASS
1546 (hard_regno + nregs)]))
1548 SET_HARD_REG_BIT (ira_prohibited_class_mode_regs[cl][j],
1549 hard_regno);
1550 break;
1552 if (!TEST_HARD_REG_BIT (ira_prohibited_class_mode_regs[cl][j],
1553 hard_regno))
1554 add_to_hard_reg_set (&ira_useful_class_mode_regs[cl][j],
1555 (machine_mode) j, hard_regno);
1560 /* Allocate and initialize IRA_REGISTER_MOVE_COST, IRA_MAY_MOVE_IN_COST
1561 and IRA_MAY_MOVE_OUT_COST for MODE. */
1562 void
1563 ira_init_register_move_cost (machine_mode mode)
1565 static unsigned short last_move_cost[N_REG_CLASSES][N_REG_CLASSES];
1566 bool all_match = true;
1567 unsigned int cl1, cl2;
1569 ira_assert (ira_register_move_cost[mode] == NULL
1570 && ira_may_move_in_cost[mode] == NULL
1571 && ira_may_move_out_cost[mode] == NULL);
1572 ira_assert (have_regs_of_mode[mode]);
1573 for (cl1 = 0; cl1 < N_REG_CLASSES; cl1++)
1574 for (cl2 = 0; cl2 < N_REG_CLASSES; cl2++)
1576 int cost;
1577 if (!contains_reg_of_mode[cl1][mode]
1578 || !contains_reg_of_mode[cl2][mode])
1580 if ((ira_reg_class_max_nregs[cl1][mode]
1581 > ira_class_hard_regs_num[cl1])
1582 || (ira_reg_class_max_nregs[cl2][mode]
1583 > ira_class_hard_regs_num[cl2]))
1584 cost = 65535;
1585 else
1586 cost = (ira_memory_move_cost[mode][cl1][0]
1587 + ira_memory_move_cost[mode][cl2][1]) * 2;
1589 else
1591 cost = register_move_cost (mode, (enum reg_class) cl1,
1592 (enum reg_class) cl2);
1593 ira_assert (cost < 65535);
1595 all_match &= (last_move_cost[cl1][cl2] == cost);
1596 last_move_cost[cl1][cl2] = cost;
1598 if (all_match && last_mode_for_init_move_cost != -1)
1600 ira_register_move_cost[mode]
1601 = ira_register_move_cost[last_mode_for_init_move_cost];
1602 ira_may_move_in_cost[mode]
1603 = ira_may_move_in_cost[last_mode_for_init_move_cost];
1604 ira_may_move_out_cost[mode]
1605 = ira_may_move_out_cost[last_mode_for_init_move_cost];
1606 return;
1608 last_mode_for_init_move_cost = mode;
1609 ira_register_move_cost[mode] = XNEWVEC (move_table, N_REG_CLASSES);
1610 ira_may_move_in_cost[mode] = XNEWVEC (move_table, N_REG_CLASSES);
1611 ira_may_move_out_cost[mode] = XNEWVEC (move_table, N_REG_CLASSES);
1612 for (cl1 = 0; cl1 < N_REG_CLASSES; cl1++)
1613 for (cl2 = 0; cl2 < N_REG_CLASSES; cl2++)
1615 int cost;
1616 enum reg_class *p1, *p2;
1618 if (last_move_cost[cl1][cl2] == 65535)
1620 ira_register_move_cost[mode][cl1][cl2] = 65535;
1621 ira_may_move_in_cost[mode][cl1][cl2] = 65535;
1622 ira_may_move_out_cost[mode][cl1][cl2] = 65535;
1624 else
1626 cost = last_move_cost[cl1][cl2];
1628 for (p2 = &reg_class_subclasses[cl2][0];
1629 *p2 != LIM_REG_CLASSES; p2++)
1630 if (ira_class_hard_regs_num[*p2] > 0
1631 && (ira_reg_class_max_nregs[*p2][mode]
1632 <= ira_class_hard_regs_num[*p2]))
1633 cost = MAX (cost, ira_register_move_cost[mode][cl1][*p2]);
1635 for (p1 = &reg_class_subclasses[cl1][0];
1636 *p1 != LIM_REG_CLASSES; p1++)
1637 if (ira_class_hard_regs_num[*p1] > 0
1638 && (ira_reg_class_max_nregs[*p1][mode]
1639 <= ira_class_hard_regs_num[*p1]))
1640 cost = MAX (cost, ira_register_move_cost[mode][*p1][cl2]);
1642 ira_assert (cost <= 65535);
1643 ira_register_move_cost[mode][cl1][cl2] = cost;
1645 if (ira_class_subset_p[cl1][cl2])
1646 ira_may_move_in_cost[mode][cl1][cl2] = 0;
1647 else
1648 ira_may_move_in_cost[mode][cl1][cl2] = cost;
1650 if (ira_class_subset_p[cl2][cl1])
1651 ira_may_move_out_cost[mode][cl1][cl2] = 0;
1652 else
1653 ira_may_move_out_cost[mode][cl1][cl2] = cost;
1660 /* This is called once during compiler work. It sets up
1661 different arrays whose values don't depend on the compiled
1662 function. */
1663 void
1664 ira_init_once (void)
1666 ira_init_costs_once ();
1667 lra_init_once ();
1670 /* Free ira_max_register_move_cost, ira_may_move_in_cost and
1671 ira_may_move_out_cost for each mode. */
1672 void
1673 target_ira_int::free_register_move_costs (void)
1675 int mode, i;
1677 /* Reset move_cost and friends, making sure we only free shared
1678 table entries once. */
1679 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
1680 if (x_ira_register_move_cost[mode])
1682 for (i = 0;
1683 i < mode && (x_ira_register_move_cost[i]
1684 != x_ira_register_move_cost[mode]);
1685 i++)
1687 if (i == mode)
1689 free (x_ira_register_move_cost[mode]);
1690 free (x_ira_may_move_in_cost[mode]);
1691 free (x_ira_may_move_out_cost[mode]);
1694 memset (x_ira_register_move_cost, 0, sizeof x_ira_register_move_cost);
1695 memset (x_ira_may_move_in_cost, 0, sizeof x_ira_may_move_in_cost);
1696 memset (x_ira_may_move_out_cost, 0, sizeof x_ira_may_move_out_cost);
1697 last_mode_for_init_move_cost = -1;
1700 target_ira_int::~target_ira_int ()
1702 free_ira_costs ();
1703 free_register_move_costs ();
1706 /* This is called every time when register related information is
1707 changed. */
1708 void
1709 ira_init (void)
1711 this_target_ira_int->free_register_move_costs ();
1712 setup_reg_mode_hard_regset ();
1713 setup_alloc_regs (flag_omit_frame_pointer != 0);
1714 setup_class_subset_and_memory_move_costs ();
1715 setup_reg_class_nregs ();
1716 setup_prohibited_class_mode_regs ();
1717 find_reg_classes ();
1718 clarify_prohibited_class_mode_regs ();
1719 setup_hard_regno_aclass ();
1720 ira_init_costs ();
1724 #define ira_prohibited_mode_move_regs_initialized_p \
1725 (this_target_ira_int->x_ira_prohibited_mode_move_regs_initialized_p)
1727 /* Set up IRA_PROHIBITED_MODE_MOVE_REGS. */
1728 static void
1729 setup_prohibited_mode_move_regs (void)
1731 int i, j;
1732 rtx test_reg1, test_reg2, move_pat;
1733 rtx_insn *move_insn;
1735 if (ira_prohibited_mode_move_regs_initialized_p)
1736 return;
1737 ira_prohibited_mode_move_regs_initialized_p = true;
1738 test_reg1 = gen_rtx_REG (word_mode, LAST_VIRTUAL_REGISTER + 1);
1739 test_reg2 = gen_rtx_REG (word_mode, LAST_VIRTUAL_REGISTER + 2);
1740 move_pat = gen_rtx_SET (test_reg1, test_reg2);
1741 move_insn = gen_rtx_INSN (VOIDmode, 0, 0, 0, move_pat, 0, -1, 0);
1742 for (i = 0; i < NUM_MACHINE_MODES; i++)
1744 SET_HARD_REG_SET (ira_prohibited_mode_move_regs[i]);
1745 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
1747 if (! HARD_REGNO_MODE_OK (j, (machine_mode) i))
1748 continue;
1749 set_mode_and_regno (test_reg1, (machine_mode) i, j);
1750 set_mode_and_regno (test_reg2, (machine_mode) i, j);
1751 INSN_CODE (move_insn) = -1;
1752 recog_memoized (move_insn);
1753 if (INSN_CODE (move_insn) < 0)
1754 continue;
1755 extract_insn (move_insn);
1756 /* We don't know whether the move will be in code that is optimized
1757 for size or speed, so consider all enabled alternatives. */
1758 if (! constrain_operands (1, get_enabled_alternatives (move_insn)))
1759 continue;
1760 CLEAR_HARD_REG_BIT (ira_prohibited_mode_move_regs[i], j);
1767 /* Setup possible alternatives in ALTS for INSN. */
1768 void
1769 ira_setup_alts (rtx_insn *insn, HARD_REG_SET &alts)
1771 /* MAP nalt * nop -> start of constraints for given operand and
1772 alternative. */
1773 static vec<const char *> insn_constraints;
1774 int nop, nalt;
1775 bool curr_swapped;
1776 const char *p;
1777 int commutative = -1;
1779 extract_insn (insn);
1780 alternative_mask preferred = get_preferred_alternatives (insn);
1781 CLEAR_HARD_REG_SET (alts);
1782 insn_constraints.release ();
1783 insn_constraints.safe_grow_cleared (recog_data.n_operands
1784 * recog_data.n_alternatives + 1);
1785 /* Check that the hard reg set is enough for holding all
1786 alternatives. It is hard to imagine the situation when the
1787 assertion is wrong. */
1788 ira_assert (recog_data.n_alternatives
1789 <= (int) MAX (sizeof (HARD_REG_ELT_TYPE) * CHAR_BIT,
1790 FIRST_PSEUDO_REGISTER));
1791 for (curr_swapped = false;; curr_swapped = true)
1793 /* Calculate some data common for all alternatives to speed up the
1794 function. */
1795 for (nop = 0; nop < recog_data.n_operands; nop++)
1797 for (nalt = 0, p = recog_data.constraints[nop];
1798 nalt < recog_data.n_alternatives;
1799 nalt++)
1801 insn_constraints[nop * recog_data.n_alternatives + nalt] = p;
1802 while (*p && *p != ',')
1804 /* We only support one commutative marker, the first
1805 one. We already set commutative above. */
1806 if (*p == '%' && commutative < 0)
1807 commutative = nop;
1808 p++;
1810 if (*p)
1811 p++;
1814 for (nalt = 0; nalt < recog_data.n_alternatives; nalt++)
1816 if (!TEST_BIT (preferred, nalt)
1817 || TEST_HARD_REG_BIT (alts, nalt))
1818 continue;
1820 for (nop = 0; nop < recog_data.n_operands; nop++)
1822 int c, len;
1824 rtx op = recog_data.operand[nop];
1825 p = insn_constraints[nop * recog_data.n_alternatives + nalt];
1826 if (*p == 0 || *p == ',')
1827 continue;
1830 switch (c = *p, len = CONSTRAINT_LEN (c, p), c)
1832 case '#':
1833 case ',':
1834 c = '\0';
1835 case '\0':
1836 len = 0;
1837 break;
1839 case '%':
1840 /* The commutative modifier is handled above. */
1841 break;
1843 case '0': case '1': case '2': case '3': case '4':
1844 case '5': case '6': case '7': case '8': case '9':
1845 goto op_success;
1846 break;
1848 case 'g':
1849 goto op_success;
1850 break;
1852 default:
1854 enum constraint_num cn = lookup_constraint (p);
1855 switch (get_constraint_type (cn))
1857 case CT_REGISTER:
1858 if (reg_class_for_constraint (cn) != NO_REGS)
1859 goto op_success;
1860 break;
1862 case CT_CONST_INT:
1863 if (CONST_INT_P (op)
1864 && (insn_const_int_ok_for_constraint
1865 (INTVAL (op), cn)))
1866 goto op_success;
1867 break;
1869 case CT_ADDRESS:
1870 case CT_MEMORY:
1871 case CT_SPECIAL_MEMORY:
1872 goto op_success;
1874 case CT_FIXED_FORM:
1875 if (constraint_satisfied_p (op, cn))
1876 goto op_success;
1877 break;
1879 break;
1882 while (p += len, c);
1883 break;
1884 op_success:
1887 if (nop >= recog_data.n_operands)
1888 SET_HARD_REG_BIT (alts, nalt);
1890 if (commutative < 0)
1891 break;
1892 /* Swap forth and back to avoid changing recog_data. */
1893 std::swap (recog_data.operand[commutative],
1894 recog_data.operand[commutative + 1]);
1895 if (curr_swapped)
1896 break;
1900 /* Return the number of the output non-early clobber operand which
1901 should be the same in any case as operand with number OP_NUM (or
1902 negative value if there is no such operand). The function takes
1903 only really possible alternatives into consideration. */
1905 ira_get_dup_out_num (int op_num, HARD_REG_SET &alts)
1907 int curr_alt, c, original, dup;
1908 bool ignore_p, use_commut_op_p;
1909 const char *str;
1911 if (op_num < 0 || recog_data.n_alternatives == 0)
1912 return -1;
1913 /* We should find duplications only for input operands. */
1914 if (recog_data.operand_type[op_num] != OP_IN)
1915 return -1;
1916 str = recog_data.constraints[op_num];
1917 use_commut_op_p = false;
1918 for (;;)
1920 rtx op = recog_data.operand[op_num];
1922 for (curr_alt = 0, ignore_p = !TEST_HARD_REG_BIT (alts, curr_alt),
1923 original = -1;;)
1925 c = *str;
1926 if (c == '\0')
1927 break;
1928 if (c == '#')
1929 ignore_p = true;
1930 else if (c == ',')
1932 curr_alt++;
1933 ignore_p = !TEST_HARD_REG_BIT (alts, curr_alt);
1935 else if (! ignore_p)
1936 switch (c)
1938 case 'g':
1939 goto fail;
1940 default:
1942 enum constraint_num cn = lookup_constraint (str);
1943 enum reg_class cl = reg_class_for_constraint (cn);
1944 if (cl != NO_REGS
1945 && !targetm.class_likely_spilled_p (cl))
1946 goto fail;
1947 if (constraint_satisfied_p (op, cn))
1948 goto fail;
1949 break;
1952 case '0': case '1': case '2': case '3': case '4':
1953 case '5': case '6': case '7': case '8': case '9':
1954 if (original != -1 && original != c)
1955 goto fail;
1956 original = c;
1957 break;
1959 str += CONSTRAINT_LEN (c, str);
1961 if (original == -1)
1962 goto fail;
1963 dup = -1;
1964 for (ignore_p = false, str = recog_data.constraints[original - '0'];
1965 *str != 0;
1966 str++)
1967 if (ignore_p)
1969 if (*str == ',')
1970 ignore_p = false;
1972 else if (*str == '#')
1973 ignore_p = true;
1974 else if (! ignore_p)
1976 if (*str == '=')
1977 dup = original - '0';
1978 /* It is better ignore an alternative with early clobber. */
1979 else if (*str == '&')
1980 goto fail;
1982 if (dup >= 0)
1983 return dup;
1984 fail:
1985 if (use_commut_op_p)
1986 break;
1987 use_commut_op_p = true;
1988 if (recog_data.constraints[op_num][0] == '%')
1989 str = recog_data.constraints[op_num + 1];
1990 else if (op_num > 0 && recog_data.constraints[op_num - 1][0] == '%')
1991 str = recog_data.constraints[op_num - 1];
1992 else
1993 break;
1995 return -1;
2000 /* Search forward to see if the source register of a copy insn dies
2001 before either it or the destination register is modified, but don't
2002 scan past the end of the basic block. If so, we can replace the
2003 source with the destination and let the source die in the copy
2004 insn.
2006 This will reduce the number of registers live in that range and may
2007 enable the destination and the source coalescing, thus often saving
2008 one register in addition to a register-register copy. */
2010 static void
2011 decrease_live_ranges_number (void)
2013 basic_block bb;
2014 rtx_insn *insn;
2015 rtx set, src, dest, dest_death, note;
2016 rtx_insn *p, *q;
2017 int sregno, dregno;
2019 if (! flag_expensive_optimizations)
2020 return;
2022 if (ira_dump_file)
2023 fprintf (ira_dump_file, "Starting decreasing number of live ranges...\n");
2025 FOR_EACH_BB_FN (bb, cfun)
2026 FOR_BB_INSNS (bb, insn)
2028 set = single_set (insn);
2029 if (! set)
2030 continue;
2031 src = SET_SRC (set);
2032 dest = SET_DEST (set);
2033 if (! REG_P (src) || ! REG_P (dest)
2034 || find_reg_note (insn, REG_DEAD, src))
2035 continue;
2036 sregno = REGNO (src);
2037 dregno = REGNO (dest);
2039 /* We don't want to mess with hard regs if register classes
2040 are small. */
2041 if (sregno == dregno
2042 || (targetm.small_register_classes_for_mode_p (GET_MODE (src))
2043 && (sregno < FIRST_PSEUDO_REGISTER
2044 || dregno < FIRST_PSEUDO_REGISTER))
2045 /* We don't see all updates to SP if they are in an
2046 auto-inc memory reference, so we must disallow this
2047 optimization on them. */
2048 || sregno == STACK_POINTER_REGNUM
2049 || dregno == STACK_POINTER_REGNUM)
2050 continue;
2052 dest_death = NULL_RTX;
2054 for (p = NEXT_INSN (insn); p; p = NEXT_INSN (p))
2056 if (! INSN_P (p))
2057 continue;
2058 if (BLOCK_FOR_INSN (p) != bb)
2059 break;
2061 if (reg_set_p (src, p) || reg_set_p (dest, p)
2062 /* If SRC is an asm-declared register, it must not be
2063 replaced in any asm. Unfortunately, the REG_EXPR
2064 tree for the asm variable may be absent in the SRC
2065 rtx, so we can't check the actual register
2066 declaration easily (the asm operand will have it,
2067 though). To avoid complicating the test for a rare
2068 case, we just don't perform register replacement
2069 for a hard reg mentioned in an asm. */
2070 || (sregno < FIRST_PSEUDO_REGISTER
2071 && asm_noperands (PATTERN (p)) >= 0
2072 && reg_overlap_mentioned_p (src, PATTERN (p)))
2073 /* Don't change hard registers used by a call. */
2074 || (CALL_P (p) && sregno < FIRST_PSEUDO_REGISTER
2075 && find_reg_fusage (p, USE, src))
2076 /* Don't change a USE of a register. */
2077 || (GET_CODE (PATTERN (p)) == USE
2078 && reg_overlap_mentioned_p (src, XEXP (PATTERN (p), 0))))
2079 break;
2081 /* See if all of SRC dies in P. This test is slightly
2082 more conservative than it needs to be. */
2083 if ((note = find_regno_note (p, REG_DEAD, sregno))
2084 && GET_MODE (XEXP (note, 0)) == GET_MODE (src))
2086 int failed = 0;
2088 /* We can do the optimization. Scan forward from INSN
2089 again, replacing regs as we go. Set FAILED if a
2090 replacement can't be done. In that case, we can't
2091 move the death note for SRC. This should be
2092 rare. */
2094 /* Set to stop at next insn. */
2095 for (q = next_real_insn (insn);
2096 q != next_real_insn (p);
2097 q = next_real_insn (q))
2099 if (reg_overlap_mentioned_p (src, PATTERN (q)))
2101 /* If SRC is a hard register, we might miss
2102 some overlapping registers with
2103 validate_replace_rtx, so we would have to
2104 undo it. We can't if DEST is present in
2105 the insn, so fail in that combination of
2106 cases. */
2107 if (sregno < FIRST_PSEUDO_REGISTER
2108 && reg_mentioned_p (dest, PATTERN (q)))
2109 failed = 1;
2111 /* Attempt to replace all uses. */
2112 else if (!validate_replace_rtx (src, dest, q))
2113 failed = 1;
2115 /* If this succeeded, but some part of the
2116 register is still present, undo the
2117 replacement. */
2118 else if (sregno < FIRST_PSEUDO_REGISTER
2119 && reg_overlap_mentioned_p (src, PATTERN (q)))
2121 validate_replace_rtx (dest, src, q);
2122 failed = 1;
2126 /* If DEST dies here, remove the death note and
2127 save it for later. Make sure ALL of DEST dies
2128 here; again, this is overly conservative. */
2129 if (! dest_death
2130 && (dest_death = find_regno_note (q, REG_DEAD, dregno)))
2132 if (GET_MODE (XEXP (dest_death, 0)) == GET_MODE (dest))
2133 remove_note (q, dest_death);
2134 else
2136 failed = 1;
2137 dest_death = 0;
2142 if (! failed)
2144 /* Move death note of SRC from P to INSN. */
2145 remove_note (p, note);
2146 XEXP (note, 1) = REG_NOTES (insn);
2147 REG_NOTES (insn) = note;
2150 /* DEST is also dead if INSN has a REG_UNUSED note for
2151 DEST. */
2152 if (! dest_death
2153 && (dest_death
2154 = find_regno_note (insn, REG_UNUSED, dregno)))
2156 PUT_REG_NOTE_KIND (dest_death, REG_DEAD);
2157 remove_note (insn, dest_death);
2160 /* Put death note of DEST on P if we saw it die. */
2161 if (dest_death)
2163 XEXP (dest_death, 1) = REG_NOTES (p);
2164 REG_NOTES (p) = dest_death;
2166 break;
2169 /* If SRC is a hard register which is set or killed in
2170 some other way, we can't do this optimization. */
2171 else if (sregno < FIRST_PSEUDO_REGISTER && dead_or_set_p (p, src))
2172 break;
2179 /* Return nonzero if REGNO is a particularly bad choice for reloading X. */
2180 static bool
2181 ira_bad_reload_regno_1 (int regno, rtx x)
2183 int x_regno, n, i;
2184 ira_allocno_t a;
2185 enum reg_class pref;
2187 /* We only deal with pseudo regs. */
2188 if (! x || GET_CODE (x) != REG)
2189 return false;
2191 x_regno = REGNO (x);
2192 if (x_regno < FIRST_PSEUDO_REGISTER)
2193 return false;
2195 /* If the pseudo prefers REGNO explicitly, then do not consider
2196 REGNO a bad spill choice. */
2197 pref = reg_preferred_class (x_regno);
2198 if (reg_class_size[pref] == 1)
2199 return !TEST_HARD_REG_BIT (reg_class_contents[pref], regno);
2201 /* If the pseudo conflicts with REGNO, then we consider REGNO a
2202 poor choice for a reload regno. */
2203 a = ira_regno_allocno_map[x_regno];
2204 n = ALLOCNO_NUM_OBJECTS (a);
2205 for (i = 0; i < n; i++)
2207 ira_object_t obj = ALLOCNO_OBJECT (a, i);
2208 if (TEST_HARD_REG_BIT (OBJECT_TOTAL_CONFLICT_HARD_REGS (obj), regno))
2209 return true;
2211 return false;
2214 /* Return nonzero if REGNO is a particularly bad choice for reloading
2215 IN or OUT. */
2216 bool
2217 ira_bad_reload_regno (int regno, rtx in, rtx out)
2219 return (ira_bad_reload_regno_1 (regno, in)
2220 || ira_bad_reload_regno_1 (regno, out));
2223 /* Add register clobbers from asm statements. */
2224 static void
2225 compute_regs_asm_clobbered (void)
2227 basic_block bb;
2229 FOR_EACH_BB_FN (bb, cfun)
2231 rtx_insn *insn;
2232 FOR_BB_INSNS_REVERSE (bb, insn)
2234 df_ref def;
2236 if (NONDEBUG_INSN_P (insn) && extract_asm_operands (PATTERN (insn)))
2237 FOR_EACH_INSN_DEF (def, insn)
2239 unsigned int dregno = DF_REF_REGNO (def);
2240 if (HARD_REGISTER_NUM_P (dregno))
2241 add_to_hard_reg_set (&crtl->asm_clobbers,
2242 GET_MODE (DF_REF_REAL_REG (def)),
2243 dregno);
2250 /* Set up ELIMINABLE_REGSET, IRA_NO_ALLOC_REGS, and
2251 REGS_EVER_LIVE. */
2252 void
2253 ira_setup_eliminable_regset (void)
2255 #ifdef ELIMINABLE_REGS
2256 int i;
2257 static const struct {const int from, to; } eliminables[] = ELIMINABLE_REGS;
2258 #endif
2259 /* FIXME: If EXIT_IGNORE_STACK is set, we will not save and restore
2260 sp for alloca. So we can't eliminate the frame pointer in that
2261 case. At some point, we should improve this by emitting the
2262 sp-adjusting insns for this case. */
2263 frame_pointer_needed
2264 = (! flag_omit_frame_pointer
2265 || (cfun->calls_alloca && EXIT_IGNORE_STACK)
2266 /* We need the frame pointer to catch stack overflow exceptions if
2267 the stack pointer is moving (as for the alloca case just above). */
2268 || (STACK_CHECK_MOVING_SP
2269 && flag_stack_check
2270 && flag_exceptions
2271 && cfun->can_throw_non_call_exceptions)
2272 || crtl->accesses_prior_frames
2273 || (SUPPORTS_STACK_ALIGNMENT && crtl->stack_realign_needed)
2274 /* We need a frame pointer for all Cilk Plus functions that use
2275 Cilk keywords. */
2276 || (flag_cilkplus && cfun->is_cilk_function)
2277 || targetm.frame_pointer_required ());
2279 /* The chance that FRAME_POINTER_NEEDED is changed from inspecting
2280 RTL is very small. So if we use frame pointer for RA and RTL
2281 actually prevents this, we will spill pseudos assigned to the
2282 frame pointer in LRA. */
2284 if (frame_pointer_needed)
2285 df_set_regs_ever_live (HARD_FRAME_POINTER_REGNUM, true);
2287 COPY_HARD_REG_SET (ira_no_alloc_regs, no_unit_alloc_regs);
2288 CLEAR_HARD_REG_SET (eliminable_regset);
2290 compute_regs_asm_clobbered ();
2292 /* Build the regset of all eliminable registers and show we can't
2293 use those that we already know won't be eliminated. */
2294 #ifdef ELIMINABLE_REGS
2295 for (i = 0; i < (int) ARRAY_SIZE (eliminables); i++)
2297 bool cannot_elim
2298 = (! targetm.can_eliminate (eliminables[i].from, eliminables[i].to)
2299 || (eliminables[i].to == STACK_POINTER_REGNUM && frame_pointer_needed));
2301 if (!TEST_HARD_REG_BIT (crtl->asm_clobbers, eliminables[i].from))
2303 SET_HARD_REG_BIT (eliminable_regset, eliminables[i].from);
2305 if (cannot_elim)
2306 SET_HARD_REG_BIT (ira_no_alloc_regs, eliminables[i].from);
2308 else if (cannot_elim)
2309 error ("%s cannot be used in asm here",
2310 reg_names[eliminables[i].from]);
2311 else
2312 df_set_regs_ever_live (eliminables[i].from, true);
2314 if (!HARD_FRAME_POINTER_IS_FRAME_POINTER)
2316 if (!TEST_HARD_REG_BIT (crtl->asm_clobbers, HARD_FRAME_POINTER_REGNUM))
2318 SET_HARD_REG_BIT (eliminable_regset, HARD_FRAME_POINTER_REGNUM);
2319 if (frame_pointer_needed)
2320 SET_HARD_REG_BIT (ira_no_alloc_regs, HARD_FRAME_POINTER_REGNUM);
2322 else if (frame_pointer_needed)
2323 error ("%s cannot be used in asm here",
2324 reg_names[HARD_FRAME_POINTER_REGNUM]);
2325 else
2326 df_set_regs_ever_live (HARD_FRAME_POINTER_REGNUM, true);
2329 #else
2330 if (!TEST_HARD_REG_BIT (crtl->asm_clobbers, HARD_FRAME_POINTER_REGNUM))
2332 SET_HARD_REG_BIT (eliminable_regset, FRAME_POINTER_REGNUM);
2333 if (frame_pointer_needed)
2334 SET_HARD_REG_BIT (ira_no_alloc_regs, FRAME_POINTER_REGNUM);
2336 else if (frame_pointer_needed)
2337 error ("%s cannot be used in asm here", reg_names[FRAME_POINTER_REGNUM]);
2338 else
2339 df_set_regs_ever_live (FRAME_POINTER_REGNUM, true);
2340 #endif
2345 /* Vector of substitutions of register numbers,
2346 used to map pseudo regs into hardware regs.
2347 This is set up as a result of register allocation.
2348 Element N is the hard reg assigned to pseudo reg N,
2349 or is -1 if no hard reg was assigned.
2350 If N is a hard reg number, element N is N. */
2351 short *reg_renumber;
2353 /* Set up REG_RENUMBER and CALLER_SAVE_NEEDED (used by reload) from
2354 the allocation found by IRA. */
2355 static void
2356 setup_reg_renumber (void)
2358 int regno, hard_regno;
2359 ira_allocno_t a;
2360 ira_allocno_iterator ai;
2362 caller_save_needed = 0;
2363 FOR_EACH_ALLOCNO (a, ai)
2365 if (ira_use_lra_p && ALLOCNO_CAP_MEMBER (a) != NULL)
2366 continue;
2367 /* There are no caps at this point. */
2368 ira_assert (ALLOCNO_CAP_MEMBER (a) == NULL);
2369 if (! ALLOCNO_ASSIGNED_P (a))
2370 /* It can happen if A is not referenced but partially anticipated
2371 somewhere in a region. */
2372 ALLOCNO_ASSIGNED_P (a) = true;
2373 ira_free_allocno_updated_costs (a);
2374 hard_regno = ALLOCNO_HARD_REGNO (a);
2375 regno = ALLOCNO_REGNO (a);
2376 reg_renumber[regno] = (hard_regno < 0 ? -1 : hard_regno);
2377 if (hard_regno >= 0)
2379 int i, nwords;
2380 enum reg_class pclass;
2381 ira_object_t obj;
2383 pclass = ira_pressure_class_translate[REGNO_REG_CLASS (hard_regno)];
2384 nwords = ALLOCNO_NUM_OBJECTS (a);
2385 for (i = 0; i < nwords; i++)
2387 obj = ALLOCNO_OBJECT (a, i);
2388 IOR_COMPL_HARD_REG_SET (OBJECT_TOTAL_CONFLICT_HARD_REGS (obj),
2389 reg_class_contents[pclass]);
2391 if (ALLOCNO_CALLS_CROSSED_NUM (a) != 0
2392 && ira_hard_reg_set_intersection_p (hard_regno, ALLOCNO_MODE (a),
2393 call_used_reg_set))
2395 ira_assert (!optimize || flag_caller_saves
2396 || (ALLOCNO_CALLS_CROSSED_NUM (a)
2397 == ALLOCNO_CHEAP_CALLS_CROSSED_NUM (a))
2398 || regno >= ira_reg_equiv_len
2399 || ira_equiv_no_lvalue_p (regno));
2400 caller_save_needed = 1;
2406 /* Set up allocno assignment flags for further allocation
2407 improvements. */
2408 static void
2409 setup_allocno_assignment_flags (void)
2411 int hard_regno;
2412 ira_allocno_t a;
2413 ira_allocno_iterator ai;
2415 FOR_EACH_ALLOCNO (a, ai)
2417 if (! ALLOCNO_ASSIGNED_P (a))
2418 /* It can happen if A is not referenced but partially anticipated
2419 somewhere in a region. */
2420 ira_free_allocno_updated_costs (a);
2421 hard_regno = ALLOCNO_HARD_REGNO (a);
2422 /* Don't assign hard registers to allocnos which are destination
2423 of removed store at the end of loop. It has no sense to keep
2424 the same value in different hard registers. It is also
2425 impossible to assign hard registers correctly to such
2426 allocnos because the cost info and info about intersected
2427 calls are incorrect for them. */
2428 ALLOCNO_ASSIGNED_P (a) = (hard_regno >= 0
2429 || ALLOCNO_EMIT_DATA (a)->mem_optimized_dest_p
2430 || (ALLOCNO_MEMORY_COST (a)
2431 - ALLOCNO_CLASS_COST (a)) < 0);
2432 ira_assert
2433 (hard_regno < 0
2434 || ira_hard_reg_in_set_p (hard_regno, ALLOCNO_MODE (a),
2435 reg_class_contents[ALLOCNO_CLASS (a)]));
2439 /* Evaluate overall allocation cost and the costs for using hard
2440 registers and memory for allocnos. */
2441 static void
2442 calculate_allocation_cost (void)
2444 int hard_regno, cost;
2445 ira_allocno_t a;
2446 ira_allocno_iterator ai;
2448 ira_overall_cost = ira_reg_cost = ira_mem_cost = 0;
2449 FOR_EACH_ALLOCNO (a, ai)
2451 hard_regno = ALLOCNO_HARD_REGNO (a);
2452 ira_assert (hard_regno < 0
2453 || (ira_hard_reg_in_set_p
2454 (hard_regno, ALLOCNO_MODE (a),
2455 reg_class_contents[ALLOCNO_CLASS (a)])));
2456 if (hard_regno < 0)
2458 cost = ALLOCNO_MEMORY_COST (a);
2459 ira_mem_cost += cost;
2461 else if (ALLOCNO_HARD_REG_COSTS (a) != NULL)
2463 cost = (ALLOCNO_HARD_REG_COSTS (a)
2464 [ira_class_hard_reg_index
2465 [ALLOCNO_CLASS (a)][hard_regno]]);
2466 ira_reg_cost += cost;
2468 else
2470 cost = ALLOCNO_CLASS_COST (a);
2471 ira_reg_cost += cost;
2473 ira_overall_cost += cost;
2476 if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL)
2478 fprintf (ira_dump_file,
2479 "+++Costs: overall %" PRId64
2480 ", reg %" PRId64
2481 ", mem %" PRId64
2482 ", ld %" PRId64
2483 ", st %" PRId64
2484 ", move %" PRId64,
2485 ira_overall_cost, ira_reg_cost, ira_mem_cost,
2486 ira_load_cost, ira_store_cost, ira_shuffle_cost);
2487 fprintf (ira_dump_file, "\n+++ move loops %d, new jumps %d\n",
2488 ira_move_loops_num, ira_additional_jumps_num);
2493 #ifdef ENABLE_IRA_CHECKING
2494 /* Check the correctness of the allocation. We do need this because
2495 of complicated code to transform more one region internal
2496 representation into one region representation. */
2497 static void
2498 check_allocation (void)
2500 ira_allocno_t a;
2501 int hard_regno, nregs, conflict_nregs;
2502 ira_allocno_iterator ai;
2504 FOR_EACH_ALLOCNO (a, ai)
2506 int n = ALLOCNO_NUM_OBJECTS (a);
2507 int i;
2509 if (ALLOCNO_CAP_MEMBER (a) != NULL
2510 || (hard_regno = ALLOCNO_HARD_REGNO (a)) < 0)
2511 continue;
2512 nregs = hard_regno_nregs[hard_regno][ALLOCNO_MODE (a)];
2513 if (nregs == 1)
2514 /* We allocated a single hard register. */
2515 n = 1;
2516 else if (n > 1)
2517 /* We allocated multiple hard registers, and we will test
2518 conflicts in a granularity of single hard regs. */
2519 nregs = 1;
2521 for (i = 0; i < n; i++)
2523 ira_object_t obj = ALLOCNO_OBJECT (a, i);
2524 ira_object_t conflict_obj;
2525 ira_object_conflict_iterator oci;
2526 int this_regno = hard_regno;
2527 if (n > 1)
2529 if (REG_WORDS_BIG_ENDIAN)
2530 this_regno += n - i - 1;
2531 else
2532 this_regno += i;
2534 FOR_EACH_OBJECT_CONFLICT (obj, conflict_obj, oci)
2536 ira_allocno_t conflict_a = OBJECT_ALLOCNO (conflict_obj);
2537 int conflict_hard_regno = ALLOCNO_HARD_REGNO (conflict_a);
2538 if (conflict_hard_regno < 0)
2539 continue;
2541 conflict_nregs
2542 = (hard_regno_nregs
2543 [conflict_hard_regno][ALLOCNO_MODE (conflict_a)]);
2545 if (ALLOCNO_NUM_OBJECTS (conflict_a) > 1
2546 && conflict_nregs == ALLOCNO_NUM_OBJECTS (conflict_a))
2548 if (REG_WORDS_BIG_ENDIAN)
2549 conflict_hard_regno += (ALLOCNO_NUM_OBJECTS (conflict_a)
2550 - OBJECT_SUBWORD (conflict_obj) - 1);
2551 else
2552 conflict_hard_regno += OBJECT_SUBWORD (conflict_obj);
2553 conflict_nregs = 1;
2556 if ((conflict_hard_regno <= this_regno
2557 && this_regno < conflict_hard_regno + conflict_nregs)
2558 || (this_regno <= conflict_hard_regno
2559 && conflict_hard_regno < this_regno + nregs))
2561 fprintf (stderr, "bad allocation for %d and %d\n",
2562 ALLOCNO_REGNO (a), ALLOCNO_REGNO (conflict_a));
2563 gcc_unreachable ();
2569 #endif
2571 /* Allocate REG_EQUIV_INIT. Set up it from IRA_REG_EQUIV which should
2572 be already calculated. */
2573 static void
2574 setup_reg_equiv_init (void)
2576 int i;
2577 int max_regno = max_reg_num ();
2579 for (i = 0; i < max_regno; i++)
2580 reg_equiv_init (i) = ira_reg_equiv[i].init_insns;
2583 /* Update equiv regno from movement of FROM_REGNO to TO_REGNO. INSNS
2584 are insns which were generated for such movement. It is assumed
2585 that FROM_REGNO and TO_REGNO always have the same value at the
2586 point of any move containing such registers. This function is used
2587 to update equiv info for register shuffles on the region borders
2588 and for caller save/restore insns. */
2589 void
2590 ira_update_equiv_info_by_shuffle_insn (int to_regno, int from_regno, rtx_insn *insns)
2592 rtx_insn *insn;
2593 rtx x, note;
2595 if (! ira_reg_equiv[from_regno].defined_p
2596 && (! ira_reg_equiv[to_regno].defined_p
2597 || ((x = ira_reg_equiv[to_regno].memory) != NULL_RTX
2598 && ! MEM_READONLY_P (x))))
2599 return;
2600 insn = insns;
2601 if (NEXT_INSN (insn) != NULL_RTX)
2603 if (! ira_reg_equiv[to_regno].defined_p)
2605 ira_assert (ira_reg_equiv[to_regno].init_insns == NULL_RTX);
2606 return;
2608 ira_reg_equiv[to_regno].defined_p = false;
2609 ira_reg_equiv[to_regno].memory
2610 = ira_reg_equiv[to_regno].constant
2611 = ira_reg_equiv[to_regno].invariant
2612 = ira_reg_equiv[to_regno].init_insns = NULL;
2613 if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
2614 fprintf (ira_dump_file,
2615 " Invalidating equiv info for reg %d\n", to_regno);
2616 return;
2618 /* It is possible that FROM_REGNO still has no equivalence because
2619 in shuffles to_regno<-from_regno and from_regno<-to_regno the 2nd
2620 insn was not processed yet. */
2621 if (ira_reg_equiv[from_regno].defined_p)
2623 ira_reg_equiv[to_regno].defined_p = true;
2624 if ((x = ira_reg_equiv[from_regno].memory) != NULL_RTX)
2626 ira_assert (ira_reg_equiv[from_regno].invariant == NULL_RTX
2627 && ira_reg_equiv[from_regno].constant == NULL_RTX);
2628 ira_assert (ira_reg_equiv[to_regno].memory == NULL_RTX
2629 || rtx_equal_p (ira_reg_equiv[to_regno].memory, x));
2630 ira_reg_equiv[to_regno].memory = x;
2631 if (! MEM_READONLY_P (x))
2632 /* We don't add the insn to insn init list because memory
2633 equivalence is just to say what memory is better to use
2634 when the pseudo is spilled. */
2635 return;
2637 else if ((x = ira_reg_equiv[from_regno].constant) != NULL_RTX)
2639 ira_assert (ira_reg_equiv[from_regno].invariant == NULL_RTX);
2640 ira_assert (ira_reg_equiv[to_regno].constant == NULL_RTX
2641 || rtx_equal_p (ira_reg_equiv[to_regno].constant, x));
2642 ira_reg_equiv[to_regno].constant = x;
2644 else
2646 x = ira_reg_equiv[from_regno].invariant;
2647 ira_assert (x != NULL_RTX);
2648 ira_assert (ira_reg_equiv[to_regno].invariant == NULL_RTX
2649 || rtx_equal_p (ira_reg_equiv[to_regno].invariant, x));
2650 ira_reg_equiv[to_regno].invariant = x;
2652 if (find_reg_note (insn, REG_EQUIV, x) == NULL_RTX)
2654 note = set_unique_reg_note (insn, REG_EQUIV, x);
2655 gcc_assert (note != NULL_RTX);
2656 if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
2658 fprintf (ira_dump_file,
2659 " Adding equiv note to insn %u for reg %d ",
2660 INSN_UID (insn), to_regno);
2661 dump_value_slim (ira_dump_file, x, 1);
2662 fprintf (ira_dump_file, "\n");
2666 ira_reg_equiv[to_regno].init_insns
2667 = gen_rtx_INSN_LIST (VOIDmode, insn,
2668 ira_reg_equiv[to_regno].init_insns);
2669 if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
2670 fprintf (ira_dump_file,
2671 " Adding equiv init move insn %u to reg %d\n",
2672 INSN_UID (insn), to_regno);
2675 /* Fix values of array REG_EQUIV_INIT after live range splitting done
2676 by IRA. */
2677 static void
2678 fix_reg_equiv_init (void)
2680 int max_regno = max_reg_num ();
2681 int i, new_regno, max;
2682 rtx set;
2683 rtx_insn_list *x, *next, *prev;
2684 rtx_insn *insn;
2686 if (max_regno_before_ira < max_regno)
2688 max = vec_safe_length (reg_equivs);
2689 grow_reg_equivs ();
2690 for (i = FIRST_PSEUDO_REGISTER; i < max; i++)
2691 for (prev = NULL, x = reg_equiv_init (i);
2692 x != NULL_RTX;
2693 x = next)
2695 next = x->next ();
2696 insn = x->insn ();
2697 set = single_set (insn);
2698 ira_assert (set != NULL_RTX
2699 && (REG_P (SET_DEST (set)) || REG_P (SET_SRC (set))));
2700 if (REG_P (SET_DEST (set))
2701 && ((int) REGNO (SET_DEST (set)) == i
2702 || (int) ORIGINAL_REGNO (SET_DEST (set)) == i))
2703 new_regno = REGNO (SET_DEST (set));
2704 else if (REG_P (SET_SRC (set))
2705 && ((int) REGNO (SET_SRC (set)) == i
2706 || (int) ORIGINAL_REGNO (SET_SRC (set)) == i))
2707 new_regno = REGNO (SET_SRC (set));
2708 else
2709 gcc_unreachable ();
2710 if (new_regno == i)
2711 prev = x;
2712 else
2714 /* Remove the wrong list element. */
2715 if (prev == NULL_RTX)
2716 reg_equiv_init (i) = next;
2717 else
2718 XEXP (prev, 1) = next;
2719 XEXP (x, 1) = reg_equiv_init (new_regno);
2720 reg_equiv_init (new_regno) = x;
2726 #ifdef ENABLE_IRA_CHECKING
2727 /* Print redundant memory-memory copies. */
2728 static void
2729 print_redundant_copies (void)
2731 int hard_regno;
2732 ira_allocno_t a;
2733 ira_copy_t cp, next_cp;
2734 ira_allocno_iterator ai;
2736 FOR_EACH_ALLOCNO (a, ai)
2738 if (ALLOCNO_CAP_MEMBER (a) != NULL)
2739 /* It is a cap. */
2740 continue;
2741 hard_regno = ALLOCNO_HARD_REGNO (a);
2742 if (hard_regno >= 0)
2743 continue;
2744 for (cp = ALLOCNO_COPIES (a); cp != NULL; cp = next_cp)
2745 if (cp->first == a)
2746 next_cp = cp->next_first_allocno_copy;
2747 else
2749 next_cp = cp->next_second_allocno_copy;
2750 if (internal_flag_ira_verbose > 4 && ira_dump_file != NULL
2751 && cp->insn != NULL_RTX
2752 && ALLOCNO_HARD_REGNO (cp->first) == hard_regno)
2753 fprintf (ira_dump_file,
2754 " Redundant move from %d(freq %d):%d\n",
2755 INSN_UID (cp->insn), cp->freq, hard_regno);
2759 #endif
2761 /* Setup preferred and alternative classes for new pseudo-registers
2762 created by IRA starting with START. */
2763 static void
2764 setup_preferred_alternate_classes_for_new_pseudos (int start)
2766 int i, old_regno;
2767 int max_regno = max_reg_num ();
2769 for (i = start; i < max_regno; i++)
2771 old_regno = ORIGINAL_REGNO (regno_reg_rtx[i]);
2772 ira_assert (i != old_regno);
2773 setup_reg_classes (i, reg_preferred_class (old_regno),
2774 reg_alternate_class (old_regno),
2775 reg_allocno_class (old_regno));
2776 if (internal_flag_ira_verbose > 2 && ira_dump_file != NULL)
2777 fprintf (ira_dump_file,
2778 " New r%d: setting preferred %s, alternative %s\n",
2779 i, reg_class_names[reg_preferred_class (old_regno)],
2780 reg_class_names[reg_alternate_class (old_regno)]);
2785 /* The number of entries allocated in reg_info. */
2786 static int allocated_reg_info_size;
2788 /* Regional allocation can create new pseudo-registers. This function
2789 expands some arrays for pseudo-registers. */
2790 static void
2791 expand_reg_info (void)
2793 int i;
2794 int size = max_reg_num ();
2796 resize_reg_info ();
2797 for (i = allocated_reg_info_size; i < size; i++)
2798 setup_reg_classes (i, GENERAL_REGS, ALL_REGS, GENERAL_REGS);
2799 setup_preferred_alternate_classes_for_new_pseudos (allocated_reg_info_size);
2800 allocated_reg_info_size = size;
2803 /* Return TRUE if there is too high register pressure in the function.
2804 It is used to decide when stack slot sharing is worth to do. */
2805 static bool
2806 too_high_register_pressure_p (void)
2808 int i;
2809 enum reg_class pclass;
2811 for (i = 0; i < ira_pressure_classes_num; i++)
2813 pclass = ira_pressure_classes[i];
2814 if (ira_loop_tree_root->reg_pressure[pclass] > 10000)
2815 return true;
2817 return false;
2822 /* Indicate that hard register number FROM was eliminated and replaced with
2823 an offset from hard register number TO. The status of hard registers live
2824 at the start of a basic block is updated by replacing a use of FROM with
2825 a use of TO. */
2827 void
2828 mark_elimination (int from, int to)
2830 basic_block bb;
2831 bitmap r;
2833 FOR_EACH_BB_FN (bb, cfun)
2835 r = DF_LR_IN (bb);
2836 if (bitmap_bit_p (r, from))
2838 bitmap_clear_bit (r, from);
2839 bitmap_set_bit (r, to);
2841 if (! df_live)
2842 continue;
2843 r = DF_LIVE_IN (bb);
2844 if (bitmap_bit_p (r, from))
2846 bitmap_clear_bit (r, from);
2847 bitmap_set_bit (r, to);
2854 /* The length of the following array. */
2855 int ira_reg_equiv_len;
2857 /* Info about equiv. info for each register. */
2858 struct ira_reg_equiv_s *ira_reg_equiv;
2860 /* Expand ira_reg_equiv if necessary. */
2861 void
2862 ira_expand_reg_equiv (void)
2864 int old = ira_reg_equiv_len;
2866 if (ira_reg_equiv_len > max_reg_num ())
2867 return;
2868 ira_reg_equiv_len = max_reg_num () * 3 / 2 + 1;
2869 ira_reg_equiv
2870 = (struct ira_reg_equiv_s *) xrealloc (ira_reg_equiv,
2871 ira_reg_equiv_len
2872 * sizeof (struct ira_reg_equiv_s));
2873 gcc_assert (old < ira_reg_equiv_len);
2874 memset (ira_reg_equiv + old, 0,
2875 sizeof (struct ira_reg_equiv_s) * (ira_reg_equiv_len - old));
2878 static void
2879 init_reg_equiv (void)
2881 ira_reg_equiv_len = 0;
2882 ira_reg_equiv = NULL;
2883 ira_expand_reg_equiv ();
2886 static void
2887 finish_reg_equiv (void)
2889 free (ira_reg_equiv);
2894 struct equivalence
2896 /* Set when a REG_EQUIV note is found or created. Use to
2897 keep track of what memory accesses might be created later,
2898 e.g. by reload. */
2899 rtx replacement;
2900 rtx *src_p;
2902 /* The list of each instruction which initializes this register.
2904 NULL indicates we know nothing about this register's equivalence
2905 properties.
2907 An INSN_LIST with a NULL insn indicates this pseudo is already
2908 known to not have a valid equivalence. */
2909 rtx_insn_list *init_insns;
2911 /* Loop depth is used to recognize equivalences which appear
2912 to be present within the same loop (or in an inner loop). */
2913 short loop_depth;
2914 /* Nonzero if this had a preexisting REG_EQUIV note. */
2915 unsigned char is_arg_equivalence : 1;
2916 /* Set when an attempt should be made to replace a register
2917 with the associated src_p entry. */
2918 unsigned char replace : 1;
2919 /* Set if this register has no known equivalence. */
2920 unsigned char no_equiv : 1;
2923 /* reg_equiv[N] (where N is a pseudo reg number) is the equivalence
2924 structure for that register. */
2925 static struct equivalence *reg_equiv;
2927 /* Used for communication between the following two functions: contains
2928 a MEM that we wish to ensure remains unchanged. */
2929 static rtx equiv_mem;
2931 /* Set nonzero if EQUIV_MEM is modified. */
2932 static int equiv_mem_modified;
2934 /* If EQUIV_MEM is modified by modifying DEST, indicate that it is modified.
2935 Called via note_stores. */
2936 static void
2937 validate_equiv_mem_from_store (rtx dest, const_rtx set ATTRIBUTE_UNUSED,
2938 void *data ATTRIBUTE_UNUSED)
2940 if ((REG_P (dest)
2941 && reg_overlap_mentioned_p (dest, equiv_mem))
2942 || (MEM_P (dest)
2943 && anti_dependence (equiv_mem, dest)))
2944 equiv_mem_modified = 1;
2947 /* Verify that no store between START and the death of REG invalidates
2948 MEMREF. MEMREF is invalidated by modifying a register used in MEMREF,
2949 by storing into an overlapping memory location, or with a non-const
2950 CALL_INSN.
2952 Return 1 if MEMREF remains valid. */
2953 static int
2954 validate_equiv_mem (rtx_insn *start, rtx reg, rtx memref)
2956 rtx_insn *insn;
2957 rtx note;
2959 equiv_mem = memref;
2960 equiv_mem_modified = 0;
2962 /* If the memory reference has side effects or is volatile, it isn't a
2963 valid equivalence. */
2964 if (side_effects_p (memref))
2965 return 0;
2967 for (insn = start; insn && ! equiv_mem_modified; insn = NEXT_INSN (insn))
2969 if (! INSN_P (insn))
2970 continue;
2972 if (find_reg_note (insn, REG_DEAD, reg))
2973 return 1;
2975 /* This used to ignore readonly memory and const/pure calls. The problem
2976 is the equivalent form may reference a pseudo which gets assigned a
2977 call clobbered hard reg. When we later replace REG with its
2978 equivalent form, the value in the call-clobbered reg has been
2979 changed and all hell breaks loose. */
2980 if (CALL_P (insn))
2981 return 0;
2983 note_stores (PATTERN (insn), validate_equiv_mem_from_store, NULL);
2985 /* If a register mentioned in MEMREF is modified via an
2986 auto-increment, we lose the equivalence. Do the same if one
2987 dies; although we could extend the life, it doesn't seem worth
2988 the trouble. */
2990 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
2991 if ((REG_NOTE_KIND (note) == REG_INC
2992 || REG_NOTE_KIND (note) == REG_DEAD)
2993 && REG_P (XEXP (note, 0))
2994 && reg_overlap_mentioned_p (XEXP (note, 0), memref))
2995 return 0;
2998 return 0;
3001 /* Returns zero if X is known to be invariant. */
3002 static int
3003 equiv_init_varies_p (rtx x)
3005 RTX_CODE code = GET_CODE (x);
3006 int i;
3007 const char *fmt;
3009 switch (code)
3011 case MEM:
3012 return !MEM_READONLY_P (x) || equiv_init_varies_p (XEXP (x, 0));
3014 case CONST:
3015 CASE_CONST_ANY:
3016 case SYMBOL_REF:
3017 case LABEL_REF:
3018 return 0;
3020 case REG:
3021 return reg_equiv[REGNO (x)].replace == 0 && rtx_varies_p (x, 0);
3023 case ASM_OPERANDS:
3024 if (MEM_VOLATILE_P (x))
3025 return 1;
3027 /* Fall through. */
3029 default:
3030 break;
3033 fmt = GET_RTX_FORMAT (code);
3034 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3035 if (fmt[i] == 'e')
3037 if (equiv_init_varies_p (XEXP (x, i)))
3038 return 1;
3040 else if (fmt[i] == 'E')
3042 int j;
3043 for (j = 0; j < XVECLEN (x, i); j++)
3044 if (equiv_init_varies_p (XVECEXP (x, i, j)))
3045 return 1;
3048 return 0;
3051 /* Returns nonzero if X (used to initialize register REGNO) is movable.
3052 X is only movable if the registers it uses have equivalent initializations
3053 which appear to be within the same loop (or in an inner loop) and movable
3054 or if they are not candidates for local_alloc and don't vary. */
3055 static int
3056 equiv_init_movable_p (rtx x, int regno)
3058 int i, j;
3059 const char *fmt;
3060 enum rtx_code code = GET_CODE (x);
3062 switch (code)
3064 case SET:
3065 return equiv_init_movable_p (SET_SRC (x), regno);
3067 case CC0:
3068 case CLOBBER:
3069 return 0;
3071 case PRE_INC:
3072 case PRE_DEC:
3073 case POST_INC:
3074 case POST_DEC:
3075 case PRE_MODIFY:
3076 case POST_MODIFY:
3077 return 0;
3079 case REG:
3080 return ((reg_equiv[REGNO (x)].loop_depth >= reg_equiv[regno].loop_depth
3081 && reg_equiv[REGNO (x)].replace)
3082 || (REG_BASIC_BLOCK (REGNO (x)) < NUM_FIXED_BLOCKS
3083 && ! rtx_varies_p (x, 0)));
3085 case UNSPEC_VOLATILE:
3086 return 0;
3088 case ASM_OPERANDS:
3089 if (MEM_VOLATILE_P (x))
3090 return 0;
3092 /* Fall through. */
3094 default:
3095 break;
3098 fmt = GET_RTX_FORMAT (code);
3099 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3100 switch (fmt[i])
3102 case 'e':
3103 if (! equiv_init_movable_p (XEXP (x, i), regno))
3104 return 0;
3105 break;
3106 case 'E':
3107 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3108 if (! equiv_init_movable_p (XVECEXP (x, i, j), regno))
3109 return 0;
3110 break;
3113 return 1;
3116 /* TRUE if X uses any registers for which reg_equiv[REGNO].replace is
3117 true. */
3118 static int
3119 contains_replace_regs (rtx x)
3121 int i, j;
3122 const char *fmt;
3123 enum rtx_code code = GET_CODE (x);
3125 switch (code)
3127 case CONST:
3128 case LABEL_REF:
3129 case SYMBOL_REF:
3130 CASE_CONST_ANY:
3131 case PC:
3132 case CC0:
3133 case HIGH:
3134 return 0;
3136 case REG:
3137 return reg_equiv[REGNO (x)].replace;
3139 default:
3140 break;
3143 fmt = GET_RTX_FORMAT (code);
3144 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3145 switch (fmt[i])
3147 case 'e':
3148 if (contains_replace_regs (XEXP (x, i)))
3149 return 1;
3150 break;
3151 case 'E':
3152 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3153 if (contains_replace_regs (XVECEXP (x, i, j)))
3154 return 1;
3155 break;
3158 return 0;
3161 /* TRUE if X references a memory location that would be affected by a store
3162 to MEMREF. */
3163 static int
3164 memref_referenced_p (rtx memref, rtx x)
3166 int i, j;
3167 const char *fmt;
3168 enum rtx_code code = GET_CODE (x);
3170 switch (code)
3172 case CONST:
3173 case LABEL_REF:
3174 case SYMBOL_REF:
3175 CASE_CONST_ANY:
3176 case PC:
3177 case CC0:
3178 case HIGH:
3179 case LO_SUM:
3180 return 0;
3182 case REG:
3183 return (reg_equiv[REGNO (x)].replacement
3184 && memref_referenced_p (memref,
3185 reg_equiv[REGNO (x)].replacement));
3187 case MEM:
3188 if (true_dependence (memref, VOIDmode, x))
3189 return 1;
3190 break;
3192 case SET:
3193 /* If we are setting a MEM, it doesn't count (its address does), but any
3194 other SET_DEST that has a MEM in it is referencing the MEM. */
3195 if (MEM_P (SET_DEST (x)))
3197 if (memref_referenced_p (memref, XEXP (SET_DEST (x), 0)))
3198 return 1;
3200 else if (memref_referenced_p (memref, SET_DEST (x)))
3201 return 1;
3203 return memref_referenced_p (memref, SET_SRC (x));
3205 default:
3206 break;
3209 fmt = GET_RTX_FORMAT (code);
3210 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3211 switch (fmt[i])
3213 case 'e':
3214 if (memref_referenced_p (memref, XEXP (x, i)))
3215 return 1;
3216 break;
3217 case 'E':
3218 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3219 if (memref_referenced_p (memref, XVECEXP (x, i, j)))
3220 return 1;
3221 break;
3224 return 0;
3227 /* TRUE if some insn in the range (START, END] references a memory location
3228 that would be affected by a store to MEMREF.
3230 Callers should not call this routine if START is after END in the
3231 RTL chain. */
3233 static int
3234 memref_used_between_p (rtx memref, rtx_insn *start, rtx_insn *end)
3236 rtx_insn *insn;
3238 for (insn = NEXT_INSN (start);
3239 insn && insn != NEXT_INSN (end);
3240 insn = NEXT_INSN (insn))
3242 if (!NONDEBUG_INSN_P (insn))
3243 continue;
3245 if (memref_referenced_p (memref, PATTERN (insn)))
3246 return 1;
3248 /* Nonconst functions may access memory. */
3249 if (CALL_P (insn) && (! RTL_CONST_CALL_P (insn)))
3250 return 1;
3253 gcc_assert (insn == NEXT_INSN (end));
3254 return 0;
3257 /* Mark REG as having no known equivalence.
3258 Some instructions might have been processed before and furnished
3259 with REG_EQUIV notes for this register; these notes will have to be
3260 removed.
3261 STORE is the piece of RTL that does the non-constant / conflicting
3262 assignment - a SET, CLOBBER or REG_INC note. It is currently not used,
3263 but needs to be there because this function is called from note_stores. */
3264 static void
3265 no_equiv (rtx reg, const_rtx store ATTRIBUTE_UNUSED,
3266 void *data ATTRIBUTE_UNUSED)
3268 int regno;
3269 rtx_insn_list *list;
3271 if (!REG_P (reg))
3272 return;
3273 regno = REGNO (reg);
3274 reg_equiv[regno].no_equiv = 1;
3275 list = reg_equiv[regno].init_insns;
3276 if (list && list->insn () == NULL)
3277 return;
3278 reg_equiv[regno].init_insns = gen_rtx_INSN_LIST (VOIDmode, NULL_RTX, NULL);
3279 reg_equiv[regno].replacement = NULL_RTX;
3280 /* This doesn't matter for equivalences made for argument registers, we
3281 should keep their initialization insns. */
3282 if (reg_equiv[regno].is_arg_equivalence)
3283 return;
3284 ira_reg_equiv[regno].defined_p = false;
3285 ira_reg_equiv[regno].init_insns = NULL;
3286 for (; list; list = list->next ())
3288 rtx_insn *insn = list->insn ();
3289 remove_note (insn, find_reg_note (insn, REG_EQUIV, NULL_RTX));
3293 /* Check whether the SUBREG is a paradoxical subreg and set the result
3294 in PDX_SUBREGS. */
3296 static void
3297 set_paradoxical_subreg (rtx_insn *insn, bool *pdx_subregs)
3299 subrtx_iterator::array_type array;
3300 FOR_EACH_SUBRTX (iter, array, PATTERN (insn), NONCONST)
3302 const_rtx subreg = *iter;
3303 if (GET_CODE (subreg) == SUBREG)
3305 const_rtx reg = SUBREG_REG (subreg);
3306 if (REG_P (reg) && paradoxical_subreg_p (subreg))
3307 pdx_subregs[REGNO (reg)] = true;
3312 /* In DEBUG_INSN location adjust REGs from CLEARED_REGS bitmap to the
3313 equivalent replacement. */
3315 static rtx
3316 adjust_cleared_regs (rtx loc, const_rtx old_rtx ATTRIBUTE_UNUSED, void *data)
3318 if (REG_P (loc))
3320 bitmap cleared_regs = (bitmap) data;
3321 if (bitmap_bit_p (cleared_regs, REGNO (loc)))
3322 return simplify_replace_fn_rtx (copy_rtx (*reg_equiv[REGNO (loc)].src_p),
3323 NULL_RTX, adjust_cleared_regs, data);
3325 return NULL_RTX;
3328 /* Find registers that are equivalent to a single value throughout the
3329 compilation (either because they can be referenced in memory or are
3330 set once from a single constant). Lower their priority for a
3331 register.
3333 If such a register is only referenced once, try substituting its
3334 value into the using insn. If it succeeds, we can eliminate the
3335 register completely.
3337 Initialize init_insns in ira_reg_equiv array. */
3338 static void
3339 update_equiv_regs (void)
3341 rtx_insn *insn;
3342 basic_block bb;
3343 int loop_depth;
3344 bitmap cleared_regs;
3345 bool *pdx_subregs;
3346 bitmap_head seen_insns;
3348 /* Use pdx_subregs to show whether a reg is used in a paradoxical
3349 subreg. */
3350 pdx_subregs = XCNEWVEC (bool, max_regno);
3352 reg_equiv = XCNEWVEC (struct equivalence, max_regno);
3353 grow_reg_equivs ();
3355 init_alias_analysis ();
3357 /* Scan insns and set pdx_subregs[regno] if the reg is used in a
3358 paradoxical subreg. Don't set such reg equivalent to a mem,
3359 because lra will not substitute such equiv memory in order to
3360 prevent access beyond allocated memory for paradoxical memory subreg. */
3361 FOR_EACH_BB_FN (bb, cfun)
3362 FOR_BB_INSNS (bb, insn)
3363 if (NONDEBUG_INSN_P (insn))
3364 set_paradoxical_subreg (insn, pdx_subregs);
3366 /* Scan the insns and find which registers have equivalences. Do this
3367 in a separate scan of the insns because (due to -fcse-follow-jumps)
3368 a register can be set below its use. */
3369 FOR_EACH_BB_FN (bb, cfun)
3371 loop_depth = bb_loop_depth (bb);
3373 for (insn = BB_HEAD (bb);
3374 insn != NEXT_INSN (BB_END (bb));
3375 insn = NEXT_INSN (insn))
3377 rtx note;
3378 rtx set;
3379 rtx dest, src;
3380 int regno;
3382 if (! INSN_P (insn))
3383 continue;
3385 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
3386 if (REG_NOTE_KIND (note) == REG_INC)
3387 no_equiv (XEXP (note, 0), note, NULL);
3389 set = single_set (insn);
3391 /* If this insn contains more (or less) than a single SET,
3392 only mark all destinations as having no known equivalence. */
3393 if (set == NULL_RTX
3394 || side_effects_p (SET_SRC (set)))
3396 note_stores (PATTERN (insn), no_equiv, NULL);
3397 continue;
3399 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
3401 int i;
3403 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
3405 rtx part = XVECEXP (PATTERN (insn), 0, i);
3406 if (part != set)
3407 note_stores (part, no_equiv, NULL);
3411 dest = SET_DEST (set);
3412 src = SET_SRC (set);
3414 /* See if this is setting up the equivalence between an argument
3415 register and its stack slot. */
3416 note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
3417 if (note)
3419 gcc_assert (REG_P (dest));
3420 regno = REGNO (dest);
3422 /* Note that we don't want to clear init_insns in
3423 ira_reg_equiv even if there are multiple sets of this
3424 register. */
3425 reg_equiv[regno].is_arg_equivalence = 1;
3427 /* The insn result can have equivalence memory although
3428 the equivalence is not set up by the insn. We add
3429 this insn to init insns as it is a flag for now that
3430 regno has an equivalence. We will remove the insn
3431 from init insn list later. */
3432 if (rtx_equal_p (src, XEXP (note, 0)) || MEM_P (XEXP (note, 0)))
3433 ira_reg_equiv[regno].init_insns
3434 = gen_rtx_INSN_LIST (VOIDmode, insn,
3435 ira_reg_equiv[regno].init_insns);
3437 /* Continue normally in case this is a candidate for
3438 replacements. */
3441 if (!optimize)
3442 continue;
3444 /* We only handle the case of a pseudo register being set
3445 once, or always to the same value. */
3446 /* ??? The mn10200 port breaks if we add equivalences for
3447 values that need an ADDRESS_REGS register and set them equivalent
3448 to a MEM of a pseudo. The actual problem is in the over-conservative
3449 handling of INPADDR_ADDRESS / INPUT_ADDRESS / INPUT triples in
3450 calculate_needs, but we traditionally work around this problem
3451 here by rejecting equivalences when the destination is in a register
3452 that's likely spilled. This is fragile, of course, since the
3453 preferred class of a pseudo depends on all instructions that set
3454 or use it. */
3456 if (!REG_P (dest)
3457 || (regno = REGNO (dest)) < FIRST_PSEUDO_REGISTER
3458 || (reg_equiv[regno].init_insns
3459 && reg_equiv[regno].init_insns->insn () == NULL)
3460 || (targetm.class_likely_spilled_p (reg_preferred_class (regno))
3461 && MEM_P (src) && ! reg_equiv[regno].is_arg_equivalence))
3463 /* This might be setting a SUBREG of a pseudo, a pseudo that is
3464 also set somewhere else to a constant. */
3465 note_stores (set, no_equiv, NULL);
3466 continue;
3469 /* Don't set reg (if pdx_subregs[regno] == true) equivalent to a mem. */
3470 if (MEM_P (src) && pdx_subregs[regno])
3472 note_stores (set, no_equiv, NULL);
3473 continue;
3476 note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
3478 /* cse sometimes generates function invariants, but doesn't put a
3479 REG_EQUAL note on the insn. Since this note would be redundant,
3480 there's no point creating it earlier than here. */
3481 if (! note && ! rtx_varies_p (src, 0))
3482 note = set_unique_reg_note (insn, REG_EQUAL, copy_rtx (src));
3484 /* Don't bother considering a REG_EQUAL note containing an EXPR_LIST
3485 since it represents a function call. */
3486 if (note && GET_CODE (XEXP (note, 0)) == EXPR_LIST)
3487 note = NULL_RTX;
3489 if (DF_REG_DEF_COUNT (regno) != 1)
3491 bool equal_p = true;
3492 rtx_insn_list *list;
3494 /* If we have already processed this pseudo and determined it
3495 can not have an equivalence, then honor that decision. */
3496 if (reg_equiv[regno].no_equiv)
3497 continue;
3499 if (! note
3500 || rtx_varies_p (XEXP (note, 0), 0)
3501 || (reg_equiv[regno].replacement
3502 && ! rtx_equal_p (XEXP (note, 0),
3503 reg_equiv[regno].replacement)))
3505 no_equiv (dest, set, NULL);
3506 continue;
3509 list = reg_equiv[regno].init_insns;
3510 for (; list; list = list->next ())
3512 rtx note_tmp;
3513 rtx_insn *insn_tmp;
3515 insn_tmp = list->insn ();
3516 note_tmp = find_reg_note (insn_tmp, REG_EQUAL, NULL_RTX);
3517 gcc_assert (note_tmp);
3518 if (! rtx_equal_p (XEXP (note, 0), XEXP (note_tmp, 0)))
3520 equal_p = false;
3521 break;
3525 if (! equal_p)
3527 no_equiv (dest, set, NULL);
3528 continue;
3532 /* Record this insn as initializing this register. */
3533 reg_equiv[regno].init_insns
3534 = gen_rtx_INSN_LIST (VOIDmode, insn, reg_equiv[regno].init_insns);
3536 /* If this register is known to be equal to a constant, record that
3537 it is always equivalent to the constant. */
3538 if (DF_REG_DEF_COUNT (regno) == 1
3539 && note && ! rtx_varies_p (XEXP (note, 0), 0))
3541 rtx note_value = XEXP (note, 0);
3542 remove_note (insn, note);
3543 set_unique_reg_note (insn, REG_EQUIV, note_value);
3546 /* If this insn introduces a "constant" register, decrease the priority
3547 of that register. Record this insn if the register is only used once
3548 more and the equivalence value is the same as our source.
3550 The latter condition is checked for two reasons: First, it is an
3551 indication that it may be more efficient to actually emit the insn
3552 as written (if no registers are available, reload will substitute
3553 the equivalence). Secondly, it avoids problems with any registers
3554 dying in this insn whose death notes would be missed.
3556 If we don't have a REG_EQUIV note, see if this insn is loading
3557 a register used only in one basic block from a MEM. If so, and the
3558 MEM remains unchanged for the life of the register, add a REG_EQUIV
3559 note. */
3560 note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
3562 if (note == NULL_RTX && REG_BASIC_BLOCK (regno) >= NUM_FIXED_BLOCKS
3563 && MEM_P (SET_SRC (set))
3564 && validate_equiv_mem (insn, dest, SET_SRC (set)))
3565 note = set_unique_reg_note (insn, REG_EQUIV, copy_rtx (SET_SRC (set)));
3567 if (note)
3569 int regno = REGNO (dest);
3570 rtx x = XEXP (note, 0);
3572 /* If we haven't done so, record for reload that this is an
3573 equivalencing insn. */
3574 if (!reg_equiv[regno].is_arg_equivalence)
3575 ira_reg_equiv[regno].init_insns
3576 = gen_rtx_INSN_LIST (VOIDmode, insn,
3577 ira_reg_equiv[regno].init_insns);
3579 reg_equiv[regno].replacement = x;
3580 reg_equiv[regno].src_p = &SET_SRC (set);
3581 reg_equiv[regno].loop_depth = (short) loop_depth;
3583 /* Don't mess with things live during setjmp. */
3584 if (REG_LIVE_LENGTH (regno) >= 0 && optimize)
3586 /* Note that the statement below does not affect the priority
3587 in local-alloc! */
3588 REG_LIVE_LENGTH (regno) *= 2;
3590 /* If the register is referenced exactly twice, meaning it is
3591 set once and used once, indicate that the reference may be
3592 replaced by the equivalence we computed above. Do this
3593 even if the register is only used in one block so that
3594 dependencies can be handled where the last register is
3595 used in a different block (i.e. HIGH / LO_SUM sequences)
3596 and to reduce the number of registers alive across
3597 calls. */
3599 if (REG_N_REFS (regno) == 2
3600 && (rtx_equal_p (x, src)
3601 || ! equiv_init_varies_p (src))
3602 && NONJUMP_INSN_P (insn)
3603 && equiv_init_movable_p (PATTERN (insn), regno))
3604 reg_equiv[regno].replace = 1;
3610 if (!optimize)
3611 goto out;
3613 /* A second pass, to gather additional equivalences with memory. This needs
3614 to be done after we know which registers we are going to replace. */
3616 bitmap_initialize (&seen_insns, NULL);
3617 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
3619 rtx set, src, dest;
3620 unsigned regno;
3622 bitmap_set_bit (&seen_insns, INSN_UID (insn));
3624 if (! INSN_P (insn))
3625 continue;
3627 set = single_set (insn);
3628 if (! set)
3629 continue;
3631 dest = SET_DEST (set);
3632 src = SET_SRC (set);
3634 /* If this sets a MEM to the contents of a REG that is only used
3635 in a single basic block, see if the register is always equivalent
3636 to that memory location and if moving the store from INSN to the
3637 insn that set REG is safe. If so, put a REG_EQUIV note on the
3638 initializing insn.
3640 Don't add a REG_EQUIV note if the insn already has one. The existing
3641 REG_EQUIV is likely more useful than the one we are adding.
3643 If one of the regs in the address has reg_equiv[REGNO].replace set,
3644 then we can't add this REG_EQUIV note. The reg_equiv[REGNO].replace
3645 optimization may move the set of this register immediately before
3646 insn, which puts it after reg_equiv[REGNO].init_insns, and hence
3647 the mention in the REG_EQUIV note would be to an uninitialized
3648 pseudo. */
3650 if (MEM_P (dest) && REG_P (src)
3651 && (regno = REGNO (src)) >= FIRST_PSEUDO_REGISTER
3652 && REG_BASIC_BLOCK (regno) >= NUM_FIXED_BLOCKS
3653 && DF_REG_DEF_COUNT (regno) == 1
3654 && reg_equiv[regno].init_insns != NULL
3655 && reg_equiv[regno].init_insns->insn () != NULL
3656 && ! find_reg_note (XEXP (reg_equiv[regno].init_insns, 0),
3657 REG_EQUIV, NULL_RTX)
3658 && ! contains_replace_regs (XEXP (dest, 0))
3659 && ! pdx_subregs[regno])
3661 rtx_insn *init_insn =
3662 as_a <rtx_insn *> (XEXP (reg_equiv[regno].init_insns, 0));
3663 if (validate_equiv_mem (init_insn, src, dest)
3664 && bitmap_bit_p (&seen_insns, INSN_UID (init_insn))
3665 && ! memref_used_between_p (dest, init_insn, insn)
3666 /* Attaching a REG_EQUIV note will fail if INIT_INSN has
3667 multiple sets. */
3668 && set_unique_reg_note (init_insn, REG_EQUIV, copy_rtx (dest)))
3670 /* This insn makes the equivalence, not the one initializing
3671 the register. */
3672 ira_reg_equiv[regno].init_insns
3673 = gen_rtx_INSN_LIST (VOIDmode, insn, NULL_RTX);
3674 df_notes_rescan (init_insn);
3675 if (dump_file)
3676 fprintf (dump_file,
3677 "Adding REG_EQUIV to insn %d for source of insn %d\n",
3678 INSN_UID (init_insn),
3679 INSN_UID (insn));
3683 bitmap_clear (&seen_insns);
3685 cleared_regs = BITMAP_ALLOC (NULL);
3686 /* Now scan all regs killed in an insn to see if any of them are
3687 registers only used that once. If so, see if we can replace the
3688 reference with the equivalent form. If we can, delete the
3689 initializing reference and this register will go away. If we
3690 can't replace the reference, and the initializing reference is
3691 within the same loop (or in an inner loop), then move the register
3692 initialization just before the use, so that they are in the same
3693 basic block. */
3694 FOR_EACH_BB_REVERSE_FN (bb, cfun)
3696 loop_depth = bb_loop_depth (bb);
3697 for (insn = BB_END (bb);
3698 insn != PREV_INSN (BB_HEAD (bb));
3699 insn = PREV_INSN (insn))
3701 rtx link;
3703 if (! INSN_P (insn))
3704 continue;
3706 /* Don't substitute into jumps. indirect_jump_optimize does
3707 this for anything we are prepared to handle. */
3708 if (JUMP_P (insn))
3709 continue;
3711 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
3713 if (REG_NOTE_KIND (link) == REG_DEAD
3714 /* Make sure this insn still refers to the register. */
3715 && reg_mentioned_p (XEXP (link, 0), PATTERN (insn)))
3717 int regno = REGNO (XEXP (link, 0));
3718 rtx equiv_insn;
3720 if (! reg_equiv[regno].replace
3721 || reg_equiv[regno].loop_depth < (short) loop_depth
3722 /* There is no sense to move insns if live range
3723 shrinkage or register pressure-sensitive
3724 scheduling were done because it will not
3725 improve allocation but worsen insn schedule
3726 with a big probability. */
3727 || flag_live_range_shrinkage
3728 || (flag_sched_pressure && flag_schedule_insns))
3729 continue;
3731 /* reg_equiv[REGNO].replace gets set only when
3732 REG_N_REFS[REGNO] is 2, i.e. the register is set
3733 once and used once. (If it were only set, but
3734 not used, flow would have deleted the setting
3735 insns.) Hence there can only be one insn in
3736 reg_equiv[REGNO].init_insns. */
3737 gcc_assert (reg_equiv[regno].init_insns
3738 && !XEXP (reg_equiv[regno].init_insns, 1));
3739 equiv_insn = XEXP (reg_equiv[regno].init_insns, 0);
3741 /* We may not move instructions that can throw, since
3742 that changes basic block boundaries and we are not
3743 prepared to adjust the CFG to match. */
3744 if (can_throw_internal (equiv_insn))
3745 continue;
3747 if (asm_noperands (PATTERN (equiv_insn)) < 0
3748 && validate_replace_rtx (regno_reg_rtx[regno],
3749 *(reg_equiv[regno].src_p), insn))
3751 rtx equiv_link;
3752 rtx last_link;
3753 rtx note;
3755 /* Find the last note. */
3756 for (last_link = link; XEXP (last_link, 1);
3757 last_link = XEXP (last_link, 1))
3760 /* Append the REG_DEAD notes from equiv_insn. */
3761 equiv_link = REG_NOTES (equiv_insn);
3762 while (equiv_link)
3764 note = equiv_link;
3765 equiv_link = XEXP (equiv_link, 1);
3766 if (REG_NOTE_KIND (note) == REG_DEAD)
3768 remove_note (equiv_insn, note);
3769 XEXP (last_link, 1) = note;
3770 XEXP (note, 1) = NULL_RTX;
3771 last_link = note;
3775 remove_death (regno, insn);
3776 SET_REG_N_REFS (regno, 0);
3777 REG_FREQ (regno) = 0;
3778 delete_insn (equiv_insn);
3780 reg_equiv[regno].init_insns
3781 = reg_equiv[regno].init_insns->next ();
3783 ira_reg_equiv[regno].init_insns = NULL;
3784 bitmap_set_bit (cleared_regs, regno);
3786 /* Move the initialization of the register to just before
3787 INSN. Update the flow information. */
3788 else if (prev_nondebug_insn (insn) != equiv_insn)
3790 rtx_insn *new_insn;
3792 new_insn = emit_insn_before (PATTERN (equiv_insn), insn);
3793 REG_NOTES (new_insn) = REG_NOTES (equiv_insn);
3794 REG_NOTES (equiv_insn) = 0;
3795 /* Rescan it to process the notes. */
3796 df_insn_rescan (new_insn);
3798 /* Make sure this insn is recognized before
3799 reload begins, otherwise
3800 eliminate_regs_in_insn will die. */
3801 INSN_CODE (new_insn) = INSN_CODE (equiv_insn);
3803 delete_insn (equiv_insn);
3805 XEXP (reg_equiv[regno].init_insns, 0) = new_insn;
3807 REG_BASIC_BLOCK (regno) = bb->index;
3808 REG_N_CALLS_CROSSED (regno) = 0;
3809 REG_FREQ_CALLS_CROSSED (regno) = 0;
3810 REG_N_THROWING_CALLS_CROSSED (regno) = 0;
3811 REG_LIVE_LENGTH (regno) = 2;
3813 if (insn == BB_HEAD (bb))
3814 BB_HEAD (bb) = PREV_INSN (insn);
3816 ira_reg_equiv[regno].init_insns
3817 = gen_rtx_INSN_LIST (VOIDmode, new_insn, NULL_RTX);
3818 bitmap_set_bit (cleared_regs, regno);
3825 if (!bitmap_empty_p (cleared_regs))
3827 FOR_EACH_BB_FN (bb, cfun)
3829 bitmap_and_compl_into (DF_LR_IN (bb), cleared_regs);
3830 bitmap_and_compl_into (DF_LR_OUT (bb), cleared_regs);
3831 if (! df_live)
3832 continue;
3833 bitmap_and_compl_into (DF_LIVE_IN (bb), cleared_regs);
3834 bitmap_and_compl_into (DF_LIVE_OUT (bb), cleared_regs);
3837 /* Last pass - adjust debug insns referencing cleared regs. */
3838 if (MAY_HAVE_DEBUG_INSNS)
3839 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
3840 if (DEBUG_INSN_P (insn))
3842 rtx old_loc = INSN_VAR_LOCATION_LOC (insn);
3843 INSN_VAR_LOCATION_LOC (insn)
3844 = simplify_replace_fn_rtx (old_loc, NULL_RTX,
3845 adjust_cleared_regs,
3846 (void *) cleared_regs);
3847 if (old_loc != INSN_VAR_LOCATION_LOC (insn))
3848 df_insn_rescan (insn);
3852 BITMAP_FREE (cleared_regs);
3854 out:
3855 /* Clean up. */
3857 end_alias_analysis ();
3858 free (reg_equiv);
3859 free (pdx_subregs);
3862 /* A pass over indirect jumps, converting simple cases to direct jumps.
3863 Combine does this optimization too, but only within a basic block. */
3864 static void
3865 indirect_jump_optimize (void)
3867 basic_block bb;
3868 bool rebuild_p = false;
3870 FOR_EACH_BB_REVERSE_FN (bb, cfun)
3872 rtx_insn *insn = BB_END (bb);
3873 if (!JUMP_P (insn)
3874 || find_reg_note (insn, REG_NON_LOCAL_GOTO, NULL_RTX))
3875 continue;
3877 rtx x = pc_set (insn);
3878 if (!x || !REG_P (SET_SRC (x)))
3879 continue;
3881 int regno = REGNO (SET_SRC (x));
3882 if (DF_REG_DEF_COUNT (regno) == 1)
3884 df_ref def = DF_REG_DEF_CHAIN (regno);
3885 if (!DF_REF_IS_ARTIFICIAL (def))
3887 rtx_insn *def_insn = DF_REF_INSN (def);
3888 rtx lab = NULL_RTX;
3889 rtx set = single_set (def_insn);
3890 if (set && GET_CODE (SET_SRC (set)) == LABEL_REF)
3891 lab = SET_SRC (set);
3892 else
3894 rtx eqnote = find_reg_note (def_insn, REG_EQUAL, NULL_RTX);
3895 if (eqnote && GET_CODE (XEXP (eqnote, 0)) == LABEL_REF)
3896 lab = XEXP (eqnote, 0);
3898 if (lab && validate_replace_rtx (SET_SRC (x), lab, insn))
3899 rebuild_p = true;
3904 if (rebuild_p)
3906 timevar_push (TV_JUMP);
3907 rebuild_jump_labels (get_insns ());
3908 if (purge_all_dead_edges ())
3909 delete_unreachable_blocks ();
3910 timevar_pop (TV_JUMP);
3914 /* Set up fields memory, constant, and invariant from init_insns in
3915 the structures of array ira_reg_equiv. */
3916 static void
3917 setup_reg_equiv (void)
3919 int i;
3920 rtx_insn_list *elem, *prev_elem, *next_elem;
3921 rtx_insn *insn;
3922 rtx set, x;
3924 for (i = FIRST_PSEUDO_REGISTER; i < ira_reg_equiv_len; i++)
3925 for (prev_elem = NULL, elem = ira_reg_equiv[i].init_insns;
3926 elem;
3927 prev_elem = elem, elem = next_elem)
3929 next_elem = elem->next ();
3930 insn = elem->insn ();
3931 set = single_set (insn);
3933 /* Init insns can set up equivalence when the reg is a destination or
3934 a source (in this case the destination is memory). */
3935 if (set != 0 && (REG_P (SET_DEST (set)) || REG_P (SET_SRC (set))))
3937 if ((x = find_reg_note (insn, REG_EQUIV, NULL_RTX)) != NULL)
3939 x = XEXP (x, 0);
3940 if (REG_P (SET_DEST (set))
3941 && REGNO (SET_DEST (set)) == (unsigned int) i
3942 && ! rtx_equal_p (SET_SRC (set), x) && MEM_P (x))
3944 /* This insn reporting the equivalence but
3945 actually not setting it. Remove it from the
3946 list. */
3947 if (prev_elem == NULL)
3948 ira_reg_equiv[i].init_insns = next_elem;
3949 else
3950 XEXP (prev_elem, 1) = next_elem;
3951 elem = prev_elem;
3954 else if (REG_P (SET_DEST (set))
3955 && REGNO (SET_DEST (set)) == (unsigned int) i)
3956 x = SET_SRC (set);
3957 else
3959 gcc_assert (REG_P (SET_SRC (set))
3960 && REGNO (SET_SRC (set)) == (unsigned int) i);
3961 x = SET_DEST (set);
3963 if (! function_invariant_p (x)
3964 || ! flag_pic
3965 /* A function invariant is often CONSTANT_P but may
3966 include a register. We promise to only pass
3967 CONSTANT_P objects to LEGITIMATE_PIC_OPERAND_P. */
3968 || (CONSTANT_P (x) && LEGITIMATE_PIC_OPERAND_P (x)))
3970 /* It can happen that a REG_EQUIV note contains a MEM
3971 that is not a legitimate memory operand. As later
3972 stages of reload assume that all addresses found in
3973 the lra_regno_equiv_* arrays were originally
3974 legitimate, we ignore such REG_EQUIV notes. */
3975 if (memory_operand (x, VOIDmode))
3977 ira_reg_equiv[i].defined_p = true;
3978 ira_reg_equiv[i].memory = x;
3979 continue;
3981 else if (function_invariant_p (x))
3983 machine_mode mode;
3985 mode = GET_MODE (SET_DEST (set));
3986 if (GET_CODE (x) == PLUS
3987 || x == frame_pointer_rtx || x == arg_pointer_rtx)
3988 /* This is PLUS of frame pointer and a constant,
3989 or fp, or argp. */
3990 ira_reg_equiv[i].invariant = x;
3991 else if (targetm.legitimate_constant_p (mode, x))
3992 ira_reg_equiv[i].constant = x;
3993 else
3995 ira_reg_equiv[i].memory = force_const_mem (mode, x);
3996 if (ira_reg_equiv[i].memory == NULL_RTX)
3998 ira_reg_equiv[i].defined_p = false;
3999 ira_reg_equiv[i].init_insns = NULL;
4000 break;
4003 ira_reg_equiv[i].defined_p = true;
4004 continue;
4008 ira_reg_equiv[i].defined_p = false;
4009 ira_reg_equiv[i].init_insns = NULL;
4010 break;
4016 /* Print chain C to FILE. */
4017 static void
4018 print_insn_chain (FILE *file, struct insn_chain *c)
4020 fprintf (file, "insn=%d, ", INSN_UID (c->insn));
4021 bitmap_print (file, &c->live_throughout, "live_throughout: ", ", ");
4022 bitmap_print (file, &c->dead_or_set, "dead_or_set: ", "\n");
4026 /* Print all reload_insn_chains to FILE. */
4027 static void
4028 print_insn_chains (FILE *file)
4030 struct insn_chain *c;
4031 for (c = reload_insn_chain; c ; c = c->next)
4032 print_insn_chain (file, c);
4035 /* Return true if pseudo REGNO should be added to set live_throughout
4036 or dead_or_set of the insn chains for reload consideration. */
4037 static bool
4038 pseudo_for_reload_consideration_p (int regno)
4040 /* Consider spilled pseudos too for IRA because they still have a
4041 chance to get hard-registers in the reload when IRA is used. */
4042 return (reg_renumber[regno] >= 0 || ira_conflicts_p);
4045 /* Init LIVE_SUBREGS[ALLOCNUM] and LIVE_SUBREGS_USED[ALLOCNUM] using
4046 REG to the number of nregs, and INIT_VALUE to get the
4047 initialization. ALLOCNUM need not be the regno of REG. */
4048 static void
4049 init_live_subregs (bool init_value, sbitmap *live_subregs,
4050 bitmap live_subregs_used, int allocnum, rtx reg)
4052 unsigned int regno = REGNO (SUBREG_REG (reg));
4053 int size = GET_MODE_SIZE (GET_MODE (regno_reg_rtx[regno]));
4055 gcc_assert (size > 0);
4057 /* Been there, done that. */
4058 if (bitmap_bit_p (live_subregs_used, allocnum))
4059 return;
4061 /* Create a new one. */
4062 if (live_subregs[allocnum] == NULL)
4063 live_subregs[allocnum] = sbitmap_alloc (size);
4065 /* If the entire reg was live before blasting into subregs, we need
4066 to init all of the subregs to ones else init to 0. */
4067 if (init_value)
4068 bitmap_ones (live_subregs[allocnum]);
4069 else
4070 bitmap_clear (live_subregs[allocnum]);
4072 bitmap_set_bit (live_subregs_used, allocnum);
4075 /* Walk the insns of the current function and build reload_insn_chain,
4076 and record register life information. */
4077 static void
4078 build_insn_chain (void)
4080 unsigned int i;
4081 struct insn_chain **p = &reload_insn_chain;
4082 basic_block bb;
4083 struct insn_chain *c = NULL;
4084 struct insn_chain *next = NULL;
4085 bitmap live_relevant_regs = BITMAP_ALLOC (NULL);
4086 bitmap elim_regset = BITMAP_ALLOC (NULL);
4087 /* live_subregs is a vector used to keep accurate information about
4088 which hardregs are live in multiword pseudos. live_subregs and
4089 live_subregs_used are indexed by pseudo number. The live_subreg
4090 entry for a particular pseudo is only used if the corresponding
4091 element is non zero in live_subregs_used. The sbitmap size of
4092 live_subreg[allocno] is number of bytes that the pseudo can
4093 occupy. */
4094 sbitmap *live_subregs = XCNEWVEC (sbitmap, max_regno);
4095 bitmap live_subregs_used = BITMAP_ALLOC (NULL);
4097 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4098 if (TEST_HARD_REG_BIT (eliminable_regset, i))
4099 bitmap_set_bit (elim_regset, i);
4100 FOR_EACH_BB_REVERSE_FN (bb, cfun)
4102 bitmap_iterator bi;
4103 rtx_insn *insn;
4105 CLEAR_REG_SET (live_relevant_regs);
4106 bitmap_clear (live_subregs_used);
4108 EXECUTE_IF_SET_IN_BITMAP (df_get_live_out (bb), 0, i, bi)
4110 if (i >= FIRST_PSEUDO_REGISTER)
4111 break;
4112 bitmap_set_bit (live_relevant_regs, i);
4115 EXECUTE_IF_SET_IN_BITMAP (df_get_live_out (bb),
4116 FIRST_PSEUDO_REGISTER, i, bi)
4118 if (pseudo_for_reload_consideration_p (i))
4119 bitmap_set_bit (live_relevant_regs, i);
4122 FOR_BB_INSNS_REVERSE (bb, insn)
4124 if (!NOTE_P (insn) && !BARRIER_P (insn))
4126 struct df_insn_info *insn_info = DF_INSN_INFO_GET (insn);
4127 df_ref def, use;
4129 c = new_insn_chain ();
4130 c->next = next;
4131 next = c;
4132 *p = c;
4133 p = &c->prev;
4135 c->insn = insn;
4136 c->block = bb->index;
4138 if (NONDEBUG_INSN_P (insn))
4139 FOR_EACH_INSN_INFO_DEF (def, insn_info)
4141 unsigned int regno = DF_REF_REGNO (def);
4143 /* Ignore may clobbers because these are generated
4144 from calls. However, every other kind of def is
4145 added to dead_or_set. */
4146 if (!DF_REF_FLAGS_IS_SET (def, DF_REF_MAY_CLOBBER))
4148 if (regno < FIRST_PSEUDO_REGISTER)
4150 if (!fixed_regs[regno])
4151 bitmap_set_bit (&c->dead_or_set, regno);
4153 else if (pseudo_for_reload_consideration_p (regno))
4154 bitmap_set_bit (&c->dead_or_set, regno);
4157 if ((regno < FIRST_PSEUDO_REGISTER
4158 || reg_renumber[regno] >= 0
4159 || ira_conflicts_p)
4160 && (!DF_REF_FLAGS_IS_SET (def, DF_REF_CONDITIONAL)))
4162 rtx reg = DF_REF_REG (def);
4164 /* We can model subregs, but not if they are
4165 wrapped in ZERO_EXTRACTS. */
4166 if (GET_CODE (reg) == SUBREG
4167 && !DF_REF_FLAGS_IS_SET (def, DF_REF_ZERO_EXTRACT))
4169 unsigned int start = SUBREG_BYTE (reg);
4170 unsigned int last = start
4171 + GET_MODE_SIZE (GET_MODE (reg));
4173 init_live_subregs
4174 (bitmap_bit_p (live_relevant_regs, regno),
4175 live_subregs, live_subregs_used, regno, reg);
4177 if (!DF_REF_FLAGS_IS_SET
4178 (def, DF_REF_STRICT_LOW_PART))
4180 /* Expand the range to cover entire words.
4181 Bytes added here are "don't care". */
4182 start
4183 = start / UNITS_PER_WORD * UNITS_PER_WORD;
4184 last = ((last + UNITS_PER_WORD - 1)
4185 / UNITS_PER_WORD * UNITS_PER_WORD);
4188 /* Ignore the paradoxical bits. */
4189 if (last > SBITMAP_SIZE (live_subregs[regno]))
4190 last = SBITMAP_SIZE (live_subregs[regno]);
4192 while (start < last)
4194 bitmap_clear_bit (live_subregs[regno], start);
4195 start++;
4198 if (bitmap_empty_p (live_subregs[regno]))
4200 bitmap_clear_bit (live_subregs_used, regno);
4201 bitmap_clear_bit (live_relevant_regs, regno);
4203 else
4204 /* Set live_relevant_regs here because
4205 that bit has to be true to get us to
4206 look at the live_subregs fields. */
4207 bitmap_set_bit (live_relevant_regs, regno);
4209 else
4211 /* DF_REF_PARTIAL is generated for
4212 subregs, STRICT_LOW_PART, and
4213 ZERO_EXTRACT. We handle the subreg
4214 case above so here we have to keep from
4215 modeling the def as a killing def. */
4216 if (!DF_REF_FLAGS_IS_SET (def, DF_REF_PARTIAL))
4218 bitmap_clear_bit (live_subregs_used, regno);
4219 bitmap_clear_bit (live_relevant_regs, regno);
4225 bitmap_and_compl_into (live_relevant_regs, elim_regset);
4226 bitmap_copy (&c->live_throughout, live_relevant_regs);
4228 if (NONDEBUG_INSN_P (insn))
4229 FOR_EACH_INSN_INFO_USE (use, insn_info)
4231 unsigned int regno = DF_REF_REGNO (use);
4232 rtx reg = DF_REF_REG (use);
4234 /* DF_REF_READ_WRITE on a use means that this use
4235 is fabricated from a def that is a partial set
4236 to a multiword reg. Here, we only model the
4237 subreg case that is not wrapped in ZERO_EXTRACT
4238 precisely so we do not need to look at the
4239 fabricated use. */
4240 if (DF_REF_FLAGS_IS_SET (use, DF_REF_READ_WRITE)
4241 && !DF_REF_FLAGS_IS_SET (use, DF_REF_ZERO_EXTRACT)
4242 && DF_REF_FLAGS_IS_SET (use, DF_REF_SUBREG))
4243 continue;
4245 /* Add the last use of each var to dead_or_set. */
4246 if (!bitmap_bit_p (live_relevant_regs, regno))
4248 if (regno < FIRST_PSEUDO_REGISTER)
4250 if (!fixed_regs[regno])
4251 bitmap_set_bit (&c->dead_or_set, regno);
4253 else if (pseudo_for_reload_consideration_p (regno))
4254 bitmap_set_bit (&c->dead_or_set, regno);
4257 if (regno < FIRST_PSEUDO_REGISTER
4258 || pseudo_for_reload_consideration_p (regno))
4260 if (GET_CODE (reg) == SUBREG
4261 && !DF_REF_FLAGS_IS_SET (use,
4262 DF_REF_SIGN_EXTRACT
4263 | DF_REF_ZERO_EXTRACT))
4265 unsigned int start = SUBREG_BYTE (reg);
4266 unsigned int last = start
4267 + GET_MODE_SIZE (GET_MODE (reg));
4269 init_live_subregs
4270 (bitmap_bit_p (live_relevant_regs, regno),
4271 live_subregs, live_subregs_used, regno, reg);
4273 /* Ignore the paradoxical bits. */
4274 if (last > SBITMAP_SIZE (live_subregs[regno]))
4275 last = SBITMAP_SIZE (live_subregs[regno]);
4277 while (start < last)
4279 bitmap_set_bit (live_subregs[regno], start);
4280 start++;
4283 else
4284 /* Resetting the live_subregs_used is
4285 effectively saying do not use the subregs
4286 because we are reading the whole
4287 pseudo. */
4288 bitmap_clear_bit (live_subregs_used, regno);
4289 bitmap_set_bit (live_relevant_regs, regno);
4295 /* FIXME!! The following code is a disaster. Reload needs to see the
4296 labels and jump tables that are just hanging out in between
4297 the basic blocks. See pr33676. */
4298 insn = BB_HEAD (bb);
4300 /* Skip over the barriers and cruft. */
4301 while (insn && (BARRIER_P (insn) || NOTE_P (insn)
4302 || BLOCK_FOR_INSN (insn) == bb))
4303 insn = PREV_INSN (insn);
4305 /* While we add anything except barriers and notes, the focus is
4306 to get the labels and jump tables into the
4307 reload_insn_chain. */
4308 while (insn)
4310 if (!NOTE_P (insn) && !BARRIER_P (insn))
4312 if (BLOCK_FOR_INSN (insn))
4313 break;
4315 c = new_insn_chain ();
4316 c->next = next;
4317 next = c;
4318 *p = c;
4319 p = &c->prev;
4321 /* The block makes no sense here, but it is what the old
4322 code did. */
4323 c->block = bb->index;
4324 c->insn = insn;
4325 bitmap_copy (&c->live_throughout, live_relevant_regs);
4327 insn = PREV_INSN (insn);
4331 reload_insn_chain = c;
4332 *p = NULL;
4334 for (i = 0; i < (unsigned int) max_regno; i++)
4335 if (live_subregs[i] != NULL)
4336 sbitmap_free (live_subregs[i]);
4337 free (live_subregs);
4338 BITMAP_FREE (live_subregs_used);
4339 BITMAP_FREE (live_relevant_regs);
4340 BITMAP_FREE (elim_regset);
4342 if (dump_file)
4343 print_insn_chains (dump_file);
4346 /* Examine the rtx found in *LOC, which is read or written to as determined
4347 by TYPE. Return false if we find a reason why an insn containing this
4348 rtx should not be moved (such as accesses to non-constant memory), true
4349 otherwise. */
4350 static bool
4351 rtx_moveable_p (rtx *loc, enum op_type type)
4353 const char *fmt;
4354 rtx x = *loc;
4355 enum rtx_code code = GET_CODE (x);
4356 int i, j;
4358 code = GET_CODE (x);
4359 switch (code)
4361 case CONST:
4362 CASE_CONST_ANY:
4363 case SYMBOL_REF:
4364 case LABEL_REF:
4365 return true;
4367 case PC:
4368 return type == OP_IN;
4370 case CC0:
4371 return false;
4373 case REG:
4374 if (x == frame_pointer_rtx)
4375 return true;
4376 if (HARD_REGISTER_P (x))
4377 return false;
4379 return true;
4381 case MEM:
4382 if (type == OP_IN && MEM_READONLY_P (x))
4383 return rtx_moveable_p (&XEXP (x, 0), OP_IN);
4384 return false;
4386 case SET:
4387 return (rtx_moveable_p (&SET_SRC (x), OP_IN)
4388 && rtx_moveable_p (&SET_DEST (x), OP_OUT));
4390 case STRICT_LOW_PART:
4391 return rtx_moveable_p (&XEXP (x, 0), OP_OUT);
4393 case ZERO_EXTRACT:
4394 case SIGN_EXTRACT:
4395 return (rtx_moveable_p (&XEXP (x, 0), type)
4396 && rtx_moveable_p (&XEXP (x, 1), OP_IN)
4397 && rtx_moveable_p (&XEXP (x, 2), OP_IN));
4399 case CLOBBER:
4400 return rtx_moveable_p (&SET_DEST (x), OP_OUT);
4402 case UNSPEC_VOLATILE:
4403 /* It is a bad idea to consider insns with such rtl
4404 as moveable ones. The insn scheduler also considers them as barrier
4405 for a reason. */
4406 return false;
4408 default:
4409 break;
4412 fmt = GET_RTX_FORMAT (code);
4413 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4415 if (fmt[i] == 'e')
4417 if (!rtx_moveable_p (&XEXP (x, i), type))
4418 return false;
4420 else if (fmt[i] == 'E')
4421 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
4423 if (!rtx_moveable_p (&XVECEXP (x, i, j), type))
4424 return false;
4427 return true;
4430 /* A wrapper around dominated_by_p, which uses the information in UID_LUID
4431 to give dominance relationships between two insns I1 and I2. */
4432 static bool
4433 insn_dominated_by_p (rtx i1, rtx i2, int *uid_luid)
4435 basic_block bb1 = BLOCK_FOR_INSN (i1);
4436 basic_block bb2 = BLOCK_FOR_INSN (i2);
4438 if (bb1 == bb2)
4439 return uid_luid[INSN_UID (i2)] < uid_luid[INSN_UID (i1)];
4440 return dominated_by_p (CDI_DOMINATORS, bb1, bb2);
4443 /* Record the range of register numbers added by find_moveable_pseudos. */
4444 int first_moveable_pseudo, last_moveable_pseudo;
4446 /* These two vectors hold data for every register added by
4447 find_movable_pseudos, with index 0 holding data for the
4448 first_moveable_pseudo. */
4449 /* The original home register. */
4450 static vec<rtx> pseudo_replaced_reg;
4452 /* Look for instances where we have an instruction that is known to increase
4453 register pressure, and whose result is not used immediately. If it is
4454 possible to move the instruction downwards to just before its first use,
4455 split its lifetime into two ranges. We create a new pseudo to compute the
4456 value, and emit a move instruction just before the first use. If, after
4457 register allocation, the new pseudo remains unallocated, the function
4458 move_unallocated_pseudos then deletes the move instruction and places
4459 the computation just before the first use.
4461 Such a move is safe and profitable if all the input registers remain live
4462 and unchanged between the original computation and its first use. In such
4463 a situation, the computation is known to increase register pressure, and
4464 moving it is known to at least not worsen it.
4466 We restrict moves to only those cases where a register remains unallocated,
4467 in order to avoid interfering too much with the instruction schedule. As
4468 an exception, we may move insns which only modify their input register
4469 (typically induction variables), as this increases the freedom for our
4470 intended transformation, and does not limit the second instruction
4471 scheduler pass. */
4473 static void
4474 find_moveable_pseudos (void)
4476 unsigned i;
4477 int max_regs = max_reg_num ();
4478 int max_uid = get_max_uid ();
4479 basic_block bb;
4480 int *uid_luid = XNEWVEC (int, max_uid);
4481 rtx_insn **closest_uses = XNEWVEC (rtx_insn *, max_regs);
4482 /* A set of registers which are live but not modified throughout a block. */
4483 bitmap_head *bb_transp_live = XNEWVEC (bitmap_head,
4484 last_basic_block_for_fn (cfun));
4485 /* A set of registers which only exist in a given basic block. */
4486 bitmap_head *bb_local = XNEWVEC (bitmap_head,
4487 last_basic_block_for_fn (cfun));
4488 /* A set of registers which are set once, in an instruction that can be
4489 moved freely downwards, but are otherwise transparent to a block. */
4490 bitmap_head *bb_moveable_reg_sets = XNEWVEC (bitmap_head,
4491 last_basic_block_for_fn (cfun));
4492 bitmap_head live, used, set, interesting, unusable_as_input;
4493 bitmap_iterator bi;
4494 bitmap_initialize (&interesting, 0);
4496 first_moveable_pseudo = max_regs;
4497 pseudo_replaced_reg.release ();
4498 pseudo_replaced_reg.safe_grow_cleared (max_regs);
4500 df_analyze ();
4501 calculate_dominance_info (CDI_DOMINATORS);
4503 i = 0;
4504 bitmap_initialize (&live, 0);
4505 bitmap_initialize (&used, 0);
4506 bitmap_initialize (&set, 0);
4507 bitmap_initialize (&unusable_as_input, 0);
4508 FOR_EACH_BB_FN (bb, cfun)
4510 rtx_insn *insn;
4511 bitmap transp = bb_transp_live + bb->index;
4512 bitmap moveable = bb_moveable_reg_sets + bb->index;
4513 bitmap local = bb_local + bb->index;
4515 bitmap_initialize (local, 0);
4516 bitmap_initialize (transp, 0);
4517 bitmap_initialize (moveable, 0);
4518 bitmap_copy (&live, df_get_live_out (bb));
4519 bitmap_and_into (&live, df_get_live_in (bb));
4520 bitmap_copy (transp, &live);
4521 bitmap_clear (moveable);
4522 bitmap_clear (&live);
4523 bitmap_clear (&used);
4524 bitmap_clear (&set);
4525 FOR_BB_INSNS (bb, insn)
4526 if (NONDEBUG_INSN_P (insn))
4528 df_insn_info *insn_info = DF_INSN_INFO_GET (insn);
4529 df_ref def, use;
4531 uid_luid[INSN_UID (insn)] = i++;
4533 def = df_single_def (insn_info);
4534 use = df_single_use (insn_info);
4535 if (use
4536 && def
4537 && DF_REF_REGNO (use) == DF_REF_REGNO (def)
4538 && !bitmap_bit_p (&set, DF_REF_REGNO (use))
4539 && rtx_moveable_p (&PATTERN (insn), OP_IN))
4541 unsigned regno = DF_REF_REGNO (use);
4542 bitmap_set_bit (moveable, regno);
4543 bitmap_set_bit (&set, regno);
4544 bitmap_set_bit (&used, regno);
4545 bitmap_clear_bit (transp, regno);
4546 continue;
4548 FOR_EACH_INSN_INFO_USE (use, insn_info)
4550 unsigned regno = DF_REF_REGNO (use);
4551 bitmap_set_bit (&used, regno);
4552 if (bitmap_clear_bit (moveable, regno))
4553 bitmap_clear_bit (transp, regno);
4556 FOR_EACH_INSN_INFO_DEF (def, insn_info)
4558 unsigned regno = DF_REF_REGNO (def);
4559 bitmap_set_bit (&set, regno);
4560 bitmap_clear_bit (transp, regno);
4561 bitmap_clear_bit (moveable, regno);
4566 bitmap_clear (&live);
4567 bitmap_clear (&used);
4568 bitmap_clear (&set);
4570 FOR_EACH_BB_FN (bb, cfun)
4572 bitmap local = bb_local + bb->index;
4573 rtx_insn *insn;
4575 FOR_BB_INSNS (bb, insn)
4576 if (NONDEBUG_INSN_P (insn))
4578 df_insn_info *insn_info = DF_INSN_INFO_GET (insn);
4579 rtx_insn *def_insn;
4580 rtx closest_use, note;
4581 df_ref def, use;
4582 unsigned regno;
4583 bool all_dominated, all_local;
4584 machine_mode mode;
4586 def = df_single_def (insn_info);
4587 /* There must be exactly one def in this insn. */
4588 if (!def || !single_set (insn))
4589 continue;
4590 /* This must be the only definition of the reg. We also limit
4591 which modes we deal with so that we can assume we can generate
4592 move instructions. */
4593 regno = DF_REF_REGNO (def);
4594 mode = GET_MODE (DF_REF_REG (def));
4595 if (DF_REG_DEF_COUNT (regno) != 1
4596 || !DF_REF_INSN_INFO (def)
4597 || HARD_REGISTER_NUM_P (regno)
4598 || DF_REG_EQ_USE_COUNT (regno) > 0
4599 || (!INTEGRAL_MODE_P (mode) && !FLOAT_MODE_P (mode)))
4600 continue;
4601 def_insn = DF_REF_INSN (def);
4603 for (note = REG_NOTES (def_insn); note; note = XEXP (note, 1))
4604 if (REG_NOTE_KIND (note) == REG_EQUIV && MEM_P (XEXP (note, 0)))
4605 break;
4607 if (note)
4609 if (dump_file)
4610 fprintf (dump_file, "Ignoring reg %d, has equiv memory\n",
4611 regno);
4612 bitmap_set_bit (&unusable_as_input, regno);
4613 continue;
4616 use = DF_REG_USE_CHAIN (regno);
4617 all_dominated = true;
4618 all_local = true;
4619 closest_use = NULL_RTX;
4620 for (; use; use = DF_REF_NEXT_REG (use))
4622 rtx_insn *insn;
4623 if (!DF_REF_INSN_INFO (use))
4625 all_dominated = false;
4626 all_local = false;
4627 break;
4629 insn = DF_REF_INSN (use);
4630 if (DEBUG_INSN_P (insn))
4631 continue;
4632 if (BLOCK_FOR_INSN (insn) != BLOCK_FOR_INSN (def_insn))
4633 all_local = false;
4634 if (!insn_dominated_by_p (insn, def_insn, uid_luid))
4635 all_dominated = false;
4636 if (closest_use != insn && closest_use != const0_rtx)
4638 if (closest_use == NULL_RTX)
4639 closest_use = insn;
4640 else if (insn_dominated_by_p (closest_use, insn, uid_luid))
4641 closest_use = insn;
4642 else if (!insn_dominated_by_p (insn, closest_use, uid_luid))
4643 closest_use = const0_rtx;
4646 if (!all_dominated)
4648 if (dump_file)
4649 fprintf (dump_file, "Reg %d not all uses dominated by set\n",
4650 regno);
4651 continue;
4653 if (all_local)
4654 bitmap_set_bit (local, regno);
4655 if (closest_use == const0_rtx || closest_use == NULL
4656 || next_nonnote_nondebug_insn (def_insn) == closest_use)
4658 if (dump_file)
4659 fprintf (dump_file, "Reg %d uninteresting%s\n", regno,
4660 closest_use == const0_rtx || closest_use == NULL
4661 ? " (no unique first use)" : "");
4662 continue;
4664 if (HAVE_cc0 && reg_referenced_p (cc0_rtx, PATTERN (closest_use)))
4666 if (dump_file)
4667 fprintf (dump_file, "Reg %d: closest user uses cc0\n",
4668 regno);
4669 continue;
4672 bitmap_set_bit (&interesting, regno);
4673 /* If we get here, we know closest_use is a non-NULL insn
4674 (as opposed to const_0_rtx). */
4675 closest_uses[regno] = as_a <rtx_insn *> (closest_use);
4677 if (dump_file && (all_local || all_dominated))
4679 fprintf (dump_file, "Reg %u:", regno);
4680 if (all_local)
4681 fprintf (dump_file, " local to bb %d", bb->index);
4682 if (all_dominated)
4683 fprintf (dump_file, " def dominates all uses");
4684 if (closest_use != const0_rtx)
4685 fprintf (dump_file, " has unique first use");
4686 fputs ("\n", dump_file);
4691 EXECUTE_IF_SET_IN_BITMAP (&interesting, 0, i, bi)
4693 df_ref def = DF_REG_DEF_CHAIN (i);
4694 rtx_insn *def_insn = DF_REF_INSN (def);
4695 basic_block def_block = BLOCK_FOR_INSN (def_insn);
4696 bitmap def_bb_local = bb_local + def_block->index;
4697 bitmap def_bb_moveable = bb_moveable_reg_sets + def_block->index;
4698 bitmap def_bb_transp = bb_transp_live + def_block->index;
4699 bool local_to_bb_p = bitmap_bit_p (def_bb_local, i);
4700 rtx_insn *use_insn = closest_uses[i];
4701 df_ref use;
4702 bool all_ok = true;
4703 bool all_transp = true;
4705 if (!REG_P (DF_REF_REG (def)))
4706 continue;
4708 if (!local_to_bb_p)
4710 if (dump_file)
4711 fprintf (dump_file, "Reg %u not local to one basic block\n",
4713 continue;
4715 if (reg_equiv_init (i) != NULL_RTX)
4717 if (dump_file)
4718 fprintf (dump_file, "Ignoring reg %u with equiv init insn\n",
4720 continue;
4722 if (!rtx_moveable_p (&PATTERN (def_insn), OP_IN))
4724 if (dump_file)
4725 fprintf (dump_file, "Found def insn %d for %d to be not moveable\n",
4726 INSN_UID (def_insn), i);
4727 continue;
4729 if (dump_file)
4730 fprintf (dump_file, "Examining insn %d, def for %d\n",
4731 INSN_UID (def_insn), i);
4732 FOR_EACH_INSN_USE (use, def_insn)
4734 unsigned regno = DF_REF_REGNO (use);
4735 if (bitmap_bit_p (&unusable_as_input, regno))
4737 all_ok = false;
4738 if (dump_file)
4739 fprintf (dump_file, " found unusable input reg %u.\n", regno);
4740 break;
4742 if (!bitmap_bit_p (def_bb_transp, regno))
4744 if (bitmap_bit_p (def_bb_moveable, regno)
4745 && !control_flow_insn_p (use_insn)
4746 && (!HAVE_cc0 || !sets_cc0_p (use_insn)))
4748 if (modified_between_p (DF_REF_REG (use), def_insn, use_insn))
4750 rtx_insn *x = NEXT_INSN (def_insn);
4751 while (!modified_in_p (DF_REF_REG (use), x))
4753 gcc_assert (x != use_insn);
4754 x = NEXT_INSN (x);
4756 if (dump_file)
4757 fprintf (dump_file, " input reg %u modified but insn %d moveable\n",
4758 regno, INSN_UID (x));
4759 emit_insn_after (PATTERN (x), use_insn);
4760 set_insn_deleted (x);
4762 else
4764 if (dump_file)
4765 fprintf (dump_file, " input reg %u modified between def and use\n",
4766 regno);
4767 all_transp = false;
4770 else
4771 all_transp = false;
4774 if (!all_ok)
4775 continue;
4776 if (!dbg_cnt (ira_move))
4777 break;
4778 if (dump_file)
4779 fprintf (dump_file, " all ok%s\n", all_transp ? " and transp" : "");
4781 if (all_transp)
4783 rtx def_reg = DF_REF_REG (def);
4784 rtx newreg = ira_create_new_reg (def_reg);
4785 if (validate_change (def_insn, DF_REF_REAL_LOC (def), newreg, 0))
4787 unsigned nregno = REGNO (newreg);
4788 emit_insn_before (gen_move_insn (def_reg, newreg), use_insn);
4789 nregno -= max_regs;
4790 pseudo_replaced_reg[nregno] = def_reg;
4795 FOR_EACH_BB_FN (bb, cfun)
4797 bitmap_clear (bb_local + bb->index);
4798 bitmap_clear (bb_transp_live + bb->index);
4799 bitmap_clear (bb_moveable_reg_sets + bb->index);
4801 bitmap_clear (&interesting);
4802 bitmap_clear (&unusable_as_input);
4803 free (uid_luid);
4804 free (closest_uses);
4805 free (bb_local);
4806 free (bb_transp_live);
4807 free (bb_moveable_reg_sets);
4809 last_moveable_pseudo = max_reg_num ();
4811 fix_reg_equiv_init ();
4812 expand_reg_info ();
4813 regstat_free_n_sets_and_refs ();
4814 regstat_free_ri ();
4815 regstat_init_n_sets_and_refs ();
4816 regstat_compute_ri ();
4817 free_dominance_info (CDI_DOMINATORS);
4820 /* If SET pattern SET is an assignment from a hard register to a pseudo which
4821 is live at CALL_DOM (if non-NULL, otherwise this check is omitted), return
4822 the destination. Otherwise return NULL. */
4824 static rtx
4825 interesting_dest_for_shprep_1 (rtx set, basic_block call_dom)
4827 rtx src = SET_SRC (set);
4828 rtx dest = SET_DEST (set);
4829 if (!REG_P (src) || !HARD_REGISTER_P (src)
4830 || !REG_P (dest) || HARD_REGISTER_P (dest)
4831 || (call_dom && !bitmap_bit_p (df_get_live_in (call_dom), REGNO (dest))))
4832 return NULL;
4833 return dest;
4836 /* If insn is interesting for parameter range-splitting shrink-wrapping
4837 preparation, i.e. it is a single set from a hard register to a pseudo, which
4838 is live at CALL_DOM (if non-NULL, otherwise this check is omitted), or a
4839 parallel statement with only one such statement, return the destination.
4840 Otherwise return NULL. */
4842 static rtx
4843 interesting_dest_for_shprep (rtx_insn *insn, basic_block call_dom)
4845 if (!INSN_P (insn))
4846 return NULL;
4847 rtx pat = PATTERN (insn);
4848 if (GET_CODE (pat) == SET)
4849 return interesting_dest_for_shprep_1 (pat, call_dom);
4851 if (GET_CODE (pat) != PARALLEL)
4852 return NULL;
4853 rtx ret = NULL;
4854 for (int i = 0; i < XVECLEN (pat, 0); i++)
4856 rtx sub = XVECEXP (pat, 0, i);
4857 if (GET_CODE (sub) == USE || GET_CODE (sub) == CLOBBER)
4858 continue;
4859 if (GET_CODE (sub) != SET
4860 || side_effects_p (sub))
4861 return NULL;
4862 rtx dest = interesting_dest_for_shprep_1 (sub, call_dom);
4863 if (dest && ret)
4864 return NULL;
4865 if (dest)
4866 ret = dest;
4868 return ret;
4871 /* Split live ranges of pseudos that are loaded from hard registers in the
4872 first BB in a BB that dominates all non-sibling call if such a BB can be
4873 found and is not in a loop. Return true if the function has made any
4874 changes. */
4876 static bool
4877 split_live_ranges_for_shrink_wrap (void)
4879 basic_block bb, call_dom = NULL;
4880 basic_block first = single_succ (ENTRY_BLOCK_PTR_FOR_FN (cfun));
4881 rtx_insn *insn, *last_interesting_insn = NULL;
4882 bitmap_head need_new, reachable;
4883 vec<basic_block> queue;
4885 if (!SHRINK_WRAPPING_ENABLED)
4886 return false;
4888 bitmap_initialize (&need_new, 0);
4889 bitmap_initialize (&reachable, 0);
4890 queue.create (n_basic_blocks_for_fn (cfun));
4892 FOR_EACH_BB_FN (bb, cfun)
4893 FOR_BB_INSNS (bb, insn)
4894 if (CALL_P (insn) && !SIBLING_CALL_P (insn))
4896 if (bb == first)
4898 bitmap_clear (&need_new);
4899 bitmap_clear (&reachable);
4900 queue.release ();
4901 return false;
4904 bitmap_set_bit (&need_new, bb->index);
4905 bitmap_set_bit (&reachable, bb->index);
4906 queue.quick_push (bb);
4907 break;
4910 if (queue.is_empty ())
4912 bitmap_clear (&need_new);
4913 bitmap_clear (&reachable);
4914 queue.release ();
4915 return false;
4918 while (!queue.is_empty ())
4920 edge e;
4921 edge_iterator ei;
4923 bb = queue.pop ();
4924 FOR_EACH_EDGE (e, ei, bb->succs)
4925 if (e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
4926 && bitmap_set_bit (&reachable, e->dest->index))
4927 queue.quick_push (e->dest);
4929 queue.release ();
4931 FOR_BB_INSNS (first, insn)
4933 rtx dest = interesting_dest_for_shprep (insn, NULL);
4934 if (!dest)
4935 continue;
4937 if (DF_REG_DEF_COUNT (REGNO (dest)) > 1)
4939 bitmap_clear (&need_new);
4940 bitmap_clear (&reachable);
4941 return false;
4944 for (df_ref use = DF_REG_USE_CHAIN (REGNO(dest));
4945 use;
4946 use = DF_REF_NEXT_REG (use))
4948 int ubbi = DF_REF_BB (use)->index;
4949 if (bitmap_bit_p (&reachable, ubbi))
4950 bitmap_set_bit (&need_new, ubbi);
4952 last_interesting_insn = insn;
4955 bitmap_clear (&reachable);
4956 if (!last_interesting_insn)
4958 bitmap_clear (&need_new);
4959 return false;
4962 call_dom = nearest_common_dominator_for_set (CDI_DOMINATORS, &need_new);
4963 bitmap_clear (&need_new);
4964 if (call_dom == first)
4965 return false;
4967 loop_optimizer_init (AVOID_CFG_MODIFICATIONS);
4968 while (bb_loop_depth (call_dom) > 0)
4969 call_dom = get_immediate_dominator (CDI_DOMINATORS, call_dom);
4970 loop_optimizer_finalize ();
4972 if (call_dom == first)
4973 return false;
4975 calculate_dominance_info (CDI_POST_DOMINATORS);
4976 if (dominated_by_p (CDI_POST_DOMINATORS, first, call_dom))
4978 free_dominance_info (CDI_POST_DOMINATORS);
4979 return false;
4981 free_dominance_info (CDI_POST_DOMINATORS);
4983 if (dump_file)
4984 fprintf (dump_file, "Will split live ranges of parameters at BB %i\n",
4985 call_dom->index);
4987 bool ret = false;
4988 FOR_BB_INSNS (first, insn)
4990 rtx dest = interesting_dest_for_shprep (insn, call_dom);
4991 if (!dest || dest == pic_offset_table_rtx)
4992 continue;
4994 rtx newreg = NULL_RTX;
4995 df_ref use, next;
4996 for (use = DF_REG_USE_CHAIN (REGNO (dest)); use; use = next)
4998 rtx_insn *uin = DF_REF_INSN (use);
4999 next = DF_REF_NEXT_REG (use);
5001 basic_block ubb = BLOCK_FOR_INSN (uin);
5002 if (ubb == call_dom
5003 || dominated_by_p (CDI_DOMINATORS, ubb, call_dom))
5005 if (!newreg)
5006 newreg = ira_create_new_reg (dest);
5007 validate_change (uin, DF_REF_REAL_LOC (use), newreg, true);
5011 if (newreg)
5013 rtx_insn *new_move = gen_move_insn (newreg, dest);
5014 emit_insn_after (new_move, bb_note (call_dom));
5015 if (dump_file)
5017 fprintf (dump_file, "Split live-range of register ");
5018 print_rtl_single (dump_file, dest);
5020 ret = true;
5023 if (insn == last_interesting_insn)
5024 break;
5026 apply_change_group ();
5027 return ret;
5030 /* Perform the second half of the transformation started in
5031 find_moveable_pseudos. We look for instances where the newly introduced
5032 pseudo remains unallocated, and remove it by moving the definition to
5033 just before its use, replacing the move instruction generated by
5034 find_moveable_pseudos. */
5035 static void
5036 move_unallocated_pseudos (void)
5038 int i;
5039 for (i = first_moveable_pseudo; i < last_moveable_pseudo; i++)
5040 if (reg_renumber[i] < 0)
5042 int idx = i - first_moveable_pseudo;
5043 rtx other_reg = pseudo_replaced_reg[idx];
5044 rtx_insn *def_insn = DF_REF_INSN (DF_REG_DEF_CHAIN (i));
5045 /* The use must follow all definitions of OTHER_REG, so we can
5046 insert the new definition immediately after any of them. */
5047 df_ref other_def = DF_REG_DEF_CHAIN (REGNO (other_reg));
5048 rtx_insn *move_insn = DF_REF_INSN (other_def);
5049 rtx_insn *newinsn = emit_insn_after (PATTERN (def_insn), move_insn);
5050 rtx set;
5051 int success;
5053 if (dump_file)
5054 fprintf (dump_file, "moving def of %d (insn %d now) ",
5055 REGNO (other_reg), INSN_UID (def_insn));
5057 delete_insn (move_insn);
5058 while ((other_def = DF_REG_DEF_CHAIN (REGNO (other_reg))))
5059 delete_insn (DF_REF_INSN (other_def));
5060 delete_insn (def_insn);
5062 set = single_set (newinsn);
5063 success = validate_change (newinsn, &SET_DEST (set), other_reg, 0);
5064 gcc_assert (success);
5065 if (dump_file)
5066 fprintf (dump_file, " %d) rather than keep unallocated replacement %d\n",
5067 INSN_UID (newinsn), i);
5068 SET_REG_N_REFS (i, 0);
5072 /* If the backend knows where to allocate pseudos for hard
5073 register initial values, register these allocations now. */
5074 static void
5075 allocate_initial_values (void)
5077 if (targetm.allocate_initial_value)
5079 rtx hreg, preg, x;
5080 int i, regno;
5082 for (i = 0; HARD_REGISTER_NUM_P (i); i++)
5084 if (! initial_value_entry (i, &hreg, &preg))
5085 break;
5087 x = targetm.allocate_initial_value (hreg);
5088 regno = REGNO (preg);
5089 if (x && REG_N_SETS (regno) <= 1)
5091 if (MEM_P (x))
5092 reg_equiv_memory_loc (regno) = x;
5093 else
5095 basic_block bb;
5096 int new_regno;
5098 gcc_assert (REG_P (x));
5099 new_regno = REGNO (x);
5100 reg_renumber[regno] = new_regno;
5101 /* Poke the regno right into regno_reg_rtx so that even
5102 fixed regs are accepted. */
5103 SET_REGNO (preg, new_regno);
5104 /* Update global register liveness information. */
5105 FOR_EACH_BB_FN (bb, cfun)
5107 if (REGNO_REG_SET_P (df_get_live_in (bb), regno))
5108 SET_REGNO_REG_SET (df_get_live_in (bb), new_regno);
5109 if (REGNO_REG_SET_P (df_get_live_out (bb), regno))
5110 SET_REGNO_REG_SET (df_get_live_out (bb), new_regno);
5116 gcc_checking_assert (! initial_value_entry (FIRST_PSEUDO_REGISTER,
5117 &hreg, &preg));
5122 /* True when we use LRA instead of reload pass for the current
5123 function. */
5124 bool ira_use_lra_p;
5126 /* True if we have allocno conflicts. It is false for non-optimized
5127 mode or when the conflict table is too big. */
5128 bool ira_conflicts_p;
5130 /* Saved between IRA and reload. */
5131 static int saved_flag_ira_share_spill_slots;
5133 /* This is the main entry of IRA. */
5134 static void
5135 ira (FILE *f)
5137 bool loops_p;
5138 int ira_max_point_before_emit;
5139 bool saved_flag_caller_saves = flag_caller_saves;
5140 enum ira_region saved_flag_ira_region = flag_ira_region;
5142 /* Perform target specific PIC register initialization. */
5143 targetm.init_pic_reg ();
5145 ira_conflicts_p = optimize > 0;
5147 ira_use_lra_p = targetm.lra_p ();
5148 /* If there are too many pseudos and/or basic blocks (e.g. 10K
5149 pseudos and 10K blocks or 100K pseudos and 1K blocks), we will
5150 use simplified and faster algorithms in LRA. */
5151 lra_simple_p
5152 = (ira_use_lra_p
5153 && max_reg_num () >= (1 << 26) / last_basic_block_for_fn (cfun));
5154 if (lra_simple_p)
5156 /* It permits to skip live range splitting in LRA. */
5157 flag_caller_saves = false;
5158 /* There is no sense to do regional allocation when we use
5159 simplified LRA. */
5160 flag_ira_region = IRA_REGION_ONE;
5161 ira_conflicts_p = false;
5164 #ifndef IRA_NO_OBSTACK
5165 gcc_obstack_init (&ira_obstack);
5166 #endif
5167 bitmap_obstack_initialize (&ira_bitmap_obstack);
5169 /* LRA uses its own infrastructure to handle caller save registers. */
5170 if (flag_caller_saves && !ira_use_lra_p)
5171 init_caller_save ();
5173 if (flag_ira_verbose < 10)
5175 internal_flag_ira_verbose = flag_ira_verbose;
5176 ira_dump_file = f;
5178 else
5180 internal_flag_ira_verbose = flag_ira_verbose - 10;
5181 ira_dump_file = stderr;
5184 setup_prohibited_mode_move_regs ();
5185 decrease_live_ranges_number ();
5186 df_note_add_problem ();
5188 /* DF_LIVE can't be used in the register allocator, too many other
5189 parts of the compiler depend on using the "classic" liveness
5190 interpretation of the DF_LR problem. See PR38711.
5191 Remove the problem, so that we don't spend time updating it in
5192 any of the df_analyze() calls during IRA/LRA. */
5193 if (optimize > 1)
5194 df_remove_problem (df_live);
5195 gcc_checking_assert (df_live == NULL);
5197 if (flag_checking)
5198 df->changeable_flags |= DF_VERIFY_SCHEDULED;
5200 df_analyze ();
5202 init_reg_equiv ();
5203 if (ira_conflicts_p)
5205 calculate_dominance_info (CDI_DOMINATORS);
5207 if (split_live_ranges_for_shrink_wrap ())
5208 df_analyze ();
5210 free_dominance_info (CDI_DOMINATORS);
5213 df_clear_flags (DF_NO_INSN_RESCAN);
5215 indirect_jump_optimize ();
5216 if (delete_trivially_dead_insns (get_insns (), max_reg_num ()))
5217 df_analyze ();
5219 regstat_init_n_sets_and_refs ();
5220 regstat_compute_ri ();
5222 /* If we are not optimizing, then this is the only place before
5223 register allocation where dataflow is done. And that is needed
5224 to generate these warnings. */
5225 if (warn_clobbered)
5226 generate_setjmp_warnings ();
5228 /* Determine if the current function is a leaf before running IRA
5229 since this can impact optimizations done by the prologue and
5230 epilogue thus changing register elimination offsets. */
5231 crtl->is_leaf = leaf_function_p ();
5233 if (resize_reg_info () && flag_ira_loop_pressure)
5234 ira_set_pseudo_classes (true, ira_dump_file);
5236 update_equiv_regs ();
5237 setup_reg_equiv ();
5238 setup_reg_equiv_init ();
5240 allocated_reg_info_size = max_reg_num ();
5242 /* It is not worth to do such improvement when we use a simple
5243 allocation because of -O0 usage or because the function is too
5244 big. */
5245 if (ira_conflicts_p)
5246 find_moveable_pseudos ();
5248 max_regno_before_ira = max_reg_num ();
5249 ira_setup_eliminable_regset ();
5251 ira_overall_cost = ira_reg_cost = ira_mem_cost = 0;
5252 ira_load_cost = ira_store_cost = ira_shuffle_cost = 0;
5253 ira_move_loops_num = ira_additional_jumps_num = 0;
5255 ira_assert (current_loops == NULL);
5256 if (flag_ira_region == IRA_REGION_ALL || flag_ira_region == IRA_REGION_MIXED)
5257 loop_optimizer_init (AVOID_CFG_MODIFICATIONS | LOOPS_HAVE_RECORDED_EXITS);
5259 if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL)
5260 fprintf (ira_dump_file, "Building IRA IR\n");
5261 loops_p = ira_build ();
5263 ira_assert (ira_conflicts_p || !loops_p);
5265 saved_flag_ira_share_spill_slots = flag_ira_share_spill_slots;
5266 if (too_high_register_pressure_p () || cfun->calls_setjmp)
5267 /* It is just wasting compiler's time to pack spilled pseudos into
5268 stack slots in this case -- prohibit it. We also do this if
5269 there is setjmp call because a variable not modified between
5270 setjmp and longjmp the compiler is required to preserve its
5271 value and sharing slots does not guarantee it. */
5272 flag_ira_share_spill_slots = FALSE;
5274 ira_color ();
5276 ira_max_point_before_emit = ira_max_point;
5278 ira_initiate_emit_data ();
5280 ira_emit (loops_p);
5282 max_regno = max_reg_num ();
5283 if (ira_conflicts_p)
5285 if (! loops_p)
5287 if (! ira_use_lra_p)
5288 ira_initiate_assign ();
5290 else
5292 expand_reg_info ();
5294 if (ira_use_lra_p)
5296 ira_allocno_t a;
5297 ira_allocno_iterator ai;
5299 FOR_EACH_ALLOCNO (a, ai)
5301 int old_regno = ALLOCNO_REGNO (a);
5302 int new_regno = REGNO (ALLOCNO_EMIT_DATA (a)->reg);
5304 ALLOCNO_REGNO (a) = new_regno;
5306 if (old_regno != new_regno)
5307 setup_reg_classes (new_regno, reg_preferred_class (old_regno),
5308 reg_alternate_class (old_regno),
5309 reg_allocno_class (old_regno));
5313 else
5315 if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL)
5316 fprintf (ira_dump_file, "Flattening IR\n");
5317 ira_flattening (max_regno_before_ira, ira_max_point_before_emit);
5319 /* New insns were generated: add notes and recalculate live
5320 info. */
5321 df_analyze ();
5323 /* ??? Rebuild the loop tree, but why? Does the loop tree
5324 change if new insns were generated? Can that be handled
5325 by updating the loop tree incrementally? */
5326 loop_optimizer_finalize ();
5327 free_dominance_info (CDI_DOMINATORS);
5328 loop_optimizer_init (AVOID_CFG_MODIFICATIONS
5329 | LOOPS_HAVE_RECORDED_EXITS);
5331 if (! ira_use_lra_p)
5333 setup_allocno_assignment_flags ();
5334 ira_initiate_assign ();
5335 ira_reassign_conflict_allocnos (max_regno);
5340 ira_finish_emit_data ();
5342 setup_reg_renumber ();
5344 calculate_allocation_cost ();
5346 #ifdef ENABLE_IRA_CHECKING
5347 if (ira_conflicts_p)
5348 check_allocation ();
5349 #endif
5351 if (max_regno != max_regno_before_ira)
5353 regstat_free_n_sets_and_refs ();
5354 regstat_free_ri ();
5355 regstat_init_n_sets_and_refs ();
5356 regstat_compute_ri ();
5359 overall_cost_before = ira_overall_cost;
5360 if (! ira_conflicts_p)
5361 grow_reg_equivs ();
5362 else
5364 fix_reg_equiv_init ();
5366 #ifdef ENABLE_IRA_CHECKING
5367 print_redundant_copies ();
5368 #endif
5369 if (! ira_use_lra_p)
5371 ira_spilled_reg_stack_slots_num = 0;
5372 ira_spilled_reg_stack_slots
5373 = ((struct ira_spilled_reg_stack_slot *)
5374 ira_allocate (max_regno
5375 * sizeof (struct ira_spilled_reg_stack_slot)));
5376 memset (ira_spilled_reg_stack_slots, 0,
5377 max_regno * sizeof (struct ira_spilled_reg_stack_slot));
5380 allocate_initial_values ();
5382 /* See comment for find_moveable_pseudos call. */
5383 if (ira_conflicts_p)
5384 move_unallocated_pseudos ();
5386 /* Restore original values. */
5387 if (lra_simple_p)
5389 flag_caller_saves = saved_flag_caller_saves;
5390 flag_ira_region = saved_flag_ira_region;
5394 static void
5395 do_reload (void)
5397 basic_block bb;
5398 bool need_dce;
5399 unsigned pic_offset_table_regno = INVALID_REGNUM;
5401 if (flag_ira_verbose < 10)
5402 ira_dump_file = dump_file;
5404 /* If pic_offset_table_rtx is a pseudo register, then keep it so
5405 after reload to avoid possible wrong usages of hard reg assigned
5406 to it. */
5407 if (pic_offset_table_rtx
5408 && REGNO (pic_offset_table_rtx) >= FIRST_PSEUDO_REGISTER)
5409 pic_offset_table_regno = REGNO (pic_offset_table_rtx);
5411 timevar_push (TV_RELOAD);
5412 if (ira_use_lra_p)
5414 if (current_loops != NULL)
5416 loop_optimizer_finalize ();
5417 free_dominance_info (CDI_DOMINATORS);
5419 FOR_ALL_BB_FN (bb, cfun)
5420 bb->loop_father = NULL;
5421 current_loops = NULL;
5423 ira_destroy ();
5425 lra (ira_dump_file);
5426 /* ???!!! Move it before lra () when we use ira_reg_equiv in
5427 LRA. */
5428 vec_free (reg_equivs);
5429 reg_equivs = NULL;
5430 need_dce = false;
5432 else
5434 df_set_flags (DF_NO_INSN_RESCAN);
5435 build_insn_chain ();
5437 need_dce = reload (get_insns (), ira_conflicts_p);
5440 timevar_pop (TV_RELOAD);
5442 timevar_push (TV_IRA);
5444 if (ira_conflicts_p && ! ira_use_lra_p)
5446 ira_free (ira_spilled_reg_stack_slots);
5447 ira_finish_assign ();
5450 if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL
5451 && overall_cost_before != ira_overall_cost)
5452 fprintf (ira_dump_file, "+++Overall after reload %" PRId64 "\n",
5453 ira_overall_cost);
5455 flag_ira_share_spill_slots = saved_flag_ira_share_spill_slots;
5457 if (! ira_use_lra_p)
5459 ira_destroy ();
5460 if (current_loops != NULL)
5462 loop_optimizer_finalize ();
5463 free_dominance_info (CDI_DOMINATORS);
5465 FOR_ALL_BB_FN (bb, cfun)
5466 bb->loop_father = NULL;
5467 current_loops = NULL;
5469 regstat_free_ri ();
5470 regstat_free_n_sets_and_refs ();
5473 if (optimize)
5474 cleanup_cfg (CLEANUP_EXPENSIVE);
5476 finish_reg_equiv ();
5478 bitmap_obstack_release (&ira_bitmap_obstack);
5479 #ifndef IRA_NO_OBSTACK
5480 obstack_free (&ira_obstack, NULL);
5481 #endif
5483 /* The code after the reload has changed so much that at this point
5484 we might as well just rescan everything. Note that
5485 df_rescan_all_insns is not going to help here because it does not
5486 touch the artificial uses and defs. */
5487 df_finish_pass (true);
5488 df_scan_alloc (NULL);
5489 df_scan_blocks ();
5491 if (optimize > 1)
5493 df_live_add_problem ();
5494 df_live_set_all_dirty ();
5497 if (optimize)
5498 df_analyze ();
5500 if (need_dce && optimize)
5501 run_fast_dce ();
5503 /* Diagnose uses of the hard frame pointer when it is used as a global
5504 register. Often we can get away with letting the user appropriate
5505 the frame pointer, but we should let them know when code generation
5506 makes that impossible. */
5507 if (global_regs[HARD_FRAME_POINTER_REGNUM] && frame_pointer_needed)
5509 tree decl = global_regs_decl[HARD_FRAME_POINTER_REGNUM];
5510 error_at (DECL_SOURCE_LOCATION (current_function_decl),
5511 "frame pointer required, but reserved");
5512 inform (DECL_SOURCE_LOCATION (decl), "for %qD", decl);
5515 /* If we are doing generic stack checking, give a warning if this
5516 function's frame size is larger than we expect. */
5517 if (flag_stack_check == GENERIC_STACK_CHECK)
5519 HOST_WIDE_INT size = get_frame_size () + STACK_CHECK_FIXED_FRAME_SIZE;
5521 for (int i = 0; i < FIRST_PSEUDO_REGISTER; i++)
5522 if (df_regs_ever_live_p (i) && !fixed_regs[i] && call_used_regs[i])
5523 size += UNITS_PER_WORD;
5525 if (size > STACK_CHECK_MAX_FRAME_SIZE)
5526 warning (0, "frame size too large for reliable stack checking");
5529 if (pic_offset_table_regno != INVALID_REGNUM)
5530 pic_offset_table_rtx = gen_rtx_REG (Pmode, pic_offset_table_regno);
5532 timevar_pop (TV_IRA);
5535 /* Run the integrated register allocator. */
5537 namespace {
5539 const pass_data pass_data_ira =
5541 RTL_PASS, /* type */
5542 "ira", /* name */
5543 OPTGROUP_NONE, /* optinfo_flags */
5544 TV_IRA, /* tv_id */
5545 0, /* properties_required */
5546 0, /* properties_provided */
5547 0, /* properties_destroyed */
5548 0, /* todo_flags_start */
5549 TODO_do_not_ggc_collect, /* todo_flags_finish */
5552 class pass_ira : public rtl_opt_pass
5554 public:
5555 pass_ira (gcc::context *ctxt)
5556 : rtl_opt_pass (pass_data_ira, ctxt)
5559 /* opt_pass methods: */
5560 virtual bool gate (function *)
5562 return !targetm.no_register_allocation;
5564 virtual unsigned int execute (function *)
5566 ira (dump_file);
5567 return 0;
5570 }; // class pass_ira
5572 } // anon namespace
5574 rtl_opt_pass *
5575 make_pass_ira (gcc::context *ctxt)
5577 return new pass_ira (ctxt);
5580 namespace {
5582 const pass_data pass_data_reload =
5584 RTL_PASS, /* type */
5585 "reload", /* name */
5586 OPTGROUP_NONE, /* optinfo_flags */
5587 TV_RELOAD, /* tv_id */
5588 0, /* properties_required */
5589 0, /* properties_provided */
5590 0, /* properties_destroyed */
5591 0, /* todo_flags_start */
5592 0, /* todo_flags_finish */
5595 class pass_reload : public rtl_opt_pass
5597 public:
5598 pass_reload (gcc::context *ctxt)
5599 : rtl_opt_pass (pass_data_reload, ctxt)
5602 /* opt_pass methods: */
5603 virtual bool gate (function *)
5605 return !targetm.no_register_allocation;
5607 virtual unsigned int execute (function *)
5609 do_reload ();
5610 return 0;
5613 }; // class pass_reload
5615 } // anon namespace
5617 rtl_opt_pass *
5618 make_pass_reload (gcc::context *ctxt)
5620 return new pass_reload (ctxt);