[Patch AArch64 1/3] Enable CRC by default for armv8.1-a
[official-gcc.git] / gcc / ifcvt.c
blob4949965c9dc771bbd2f219fa72bdace3d40424da
1 /* If-conversion support.
2 Copyright (C) 2000-2016 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
9 any later version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
13 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
14 License for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "backend.h"
24 #include "target.h"
25 #include "rtl.h"
26 #include "tree.h"
27 #include "cfghooks.h"
28 #include "df.h"
29 #include "tm_p.h"
30 #include "expmed.h"
31 #include "optabs.h"
32 #include "regs.h"
33 #include "emit-rtl.h"
34 #include "recog.h"
36 #include "cfgrtl.h"
37 #include "cfganal.h"
38 #include "cfgcleanup.h"
39 #include "expr.h"
40 #include "output.h"
41 #include "cfgloop.h"
42 #include "tree-pass.h"
43 #include "dbgcnt.h"
44 #include "shrink-wrap.h"
45 #include "rtl-iter.h"
46 #include "ifcvt.h"
47 #include "params.h"
49 #ifndef MAX_CONDITIONAL_EXECUTE
50 #define MAX_CONDITIONAL_EXECUTE \
51 (BRANCH_COST (optimize_function_for_speed_p (cfun), false) \
52 + 1)
53 #endif
55 #define IFCVT_MULTIPLE_DUMPS 1
57 #define NULL_BLOCK ((basic_block) NULL)
59 /* True if after combine pass. */
60 static bool ifcvt_after_combine;
62 /* True if the target has the cbranchcc4 optab. */
63 static bool have_cbranchcc4;
65 /* # of IF-THEN or IF-THEN-ELSE blocks we looked at */
66 static int num_possible_if_blocks;
68 /* # of IF-THEN or IF-THEN-ELSE blocks were converted to conditional
69 execution. */
70 static int num_updated_if_blocks;
72 /* # of changes made. */
73 static int num_true_changes;
75 /* Whether conditional execution changes were made. */
76 static int cond_exec_changed_p;
78 /* Forward references. */
79 static int count_bb_insns (const_basic_block);
80 static bool cheap_bb_rtx_cost_p (const_basic_block, int, int);
81 static rtx_insn *first_active_insn (basic_block);
82 static rtx_insn *last_active_insn (basic_block, int);
83 static rtx_insn *find_active_insn_before (basic_block, rtx_insn *);
84 static rtx_insn *find_active_insn_after (basic_block, rtx_insn *);
85 static basic_block block_fallthru (basic_block);
86 static int cond_exec_process_insns (ce_if_block *, rtx_insn *, rtx, rtx, int,
87 int);
88 static rtx cond_exec_get_condition (rtx_insn *);
89 static rtx noce_get_condition (rtx_insn *, rtx_insn **, bool);
90 static int noce_operand_ok (const_rtx);
91 static void merge_if_block (ce_if_block *);
92 static int find_cond_trap (basic_block, edge, edge);
93 static basic_block find_if_header (basic_block, int);
94 static int block_jumps_and_fallthru_p (basic_block, basic_block);
95 static int noce_find_if_block (basic_block, edge, edge, int);
96 static int cond_exec_find_if_block (ce_if_block *);
97 static int find_if_case_1 (basic_block, edge, edge);
98 static int find_if_case_2 (basic_block, edge, edge);
99 static int dead_or_predicable (basic_block, basic_block, basic_block,
100 edge, int);
101 static void noce_emit_move_insn (rtx, rtx);
102 static rtx_insn *block_has_only_trap (basic_block);
104 /* Count the number of non-jump active insns in BB. */
106 static int
107 count_bb_insns (const_basic_block bb)
109 int count = 0;
110 rtx_insn *insn = BB_HEAD (bb);
112 while (1)
114 if (active_insn_p (insn) && !JUMP_P (insn))
115 count++;
117 if (insn == BB_END (bb))
118 break;
119 insn = NEXT_INSN (insn);
122 return count;
125 /* Determine whether the total insn_rtx_cost on non-jump insns in
126 basic block BB is less than MAX_COST. This function returns
127 false if the cost of any instruction could not be estimated.
129 The cost of the non-jump insns in BB is scaled by REG_BR_PROB_BASE
130 as those insns are being speculated. MAX_COST is scaled with SCALE
131 plus a small fudge factor. */
133 static bool
134 cheap_bb_rtx_cost_p (const_basic_block bb, int scale, int max_cost)
136 int count = 0;
137 rtx_insn *insn = BB_HEAD (bb);
138 bool speed = optimize_bb_for_speed_p (bb);
140 /* Set scale to REG_BR_PROB_BASE to void the identical scaling
141 applied to insn_rtx_cost when optimizing for size. Only do
142 this after combine because if-conversion might interfere with
143 passes before combine.
145 Use optimize_function_for_speed_p instead of the pre-defined
146 variable speed to make sure it is set to same value for all
147 basic blocks in one if-conversion transformation. */
148 if (!optimize_function_for_speed_p (cfun) && ifcvt_after_combine)
149 scale = REG_BR_PROB_BASE;
150 /* Our branch probability/scaling factors are just estimates and don't
151 account for cases where we can get speculation for free and other
152 secondary benefits. So we fudge the scale factor to make speculating
153 appear a little more profitable when optimizing for performance. */
154 else
155 scale += REG_BR_PROB_BASE / 8;
158 max_cost *= scale;
160 while (1)
162 if (NONJUMP_INSN_P (insn))
164 int cost = insn_rtx_cost (PATTERN (insn), speed) * REG_BR_PROB_BASE;
165 if (cost == 0)
166 return false;
168 /* If this instruction is the load or set of a "stack" register,
169 such as a floating point register on x87, then the cost of
170 speculatively executing this insn may need to include
171 the additional cost of popping its result off of the
172 register stack. Unfortunately, correctly recognizing and
173 accounting for this additional overhead is tricky, so for
174 now we simply prohibit such speculative execution. */
175 #ifdef STACK_REGS
177 rtx set = single_set (insn);
178 if (set && STACK_REG_P (SET_DEST (set)))
179 return false;
181 #endif
183 count += cost;
184 if (count >= max_cost)
185 return false;
187 else if (CALL_P (insn))
188 return false;
190 if (insn == BB_END (bb))
191 break;
192 insn = NEXT_INSN (insn);
195 return true;
198 /* Return the first non-jump active insn in the basic block. */
200 static rtx_insn *
201 first_active_insn (basic_block bb)
203 rtx_insn *insn = BB_HEAD (bb);
205 if (LABEL_P (insn))
207 if (insn == BB_END (bb))
208 return NULL;
209 insn = NEXT_INSN (insn);
212 while (NOTE_P (insn) || DEBUG_INSN_P (insn))
214 if (insn == BB_END (bb))
215 return NULL;
216 insn = NEXT_INSN (insn);
219 if (JUMP_P (insn))
220 return NULL;
222 return insn;
225 /* Return the last non-jump active (non-jump) insn in the basic block. */
227 static rtx_insn *
228 last_active_insn (basic_block bb, int skip_use_p)
230 rtx_insn *insn = BB_END (bb);
231 rtx_insn *head = BB_HEAD (bb);
233 while (NOTE_P (insn)
234 || JUMP_P (insn)
235 || DEBUG_INSN_P (insn)
236 || (skip_use_p
237 && NONJUMP_INSN_P (insn)
238 && GET_CODE (PATTERN (insn)) == USE))
240 if (insn == head)
241 return NULL;
242 insn = PREV_INSN (insn);
245 if (LABEL_P (insn))
246 return NULL;
248 return insn;
251 /* Return the active insn before INSN inside basic block CURR_BB. */
253 static rtx_insn *
254 find_active_insn_before (basic_block curr_bb, rtx_insn *insn)
256 if (!insn || insn == BB_HEAD (curr_bb))
257 return NULL;
259 while ((insn = PREV_INSN (insn)) != NULL_RTX)
261 if (NONJUMP_INSN_P (insn) || JUMP_P (insn) || CALL_P (insn))
262 break;
264 /* No other active insn all the way to the start of the basic block. */
265 if (insn == BB_HEAD (curr_bb))
266 return NULL;
269 return insn;
272 /* Return the active insn after INSN inside basic block CURR_BB. */
274 static rtx_insn *
275 find_active_insn_after (basic_block curr_bb, rtx_insn *insn)
277 if (!insn || insn == BB_END (curr_bb))
278 return NULL;
280 while ((insn = NEXT_INSN (insn)) != NULL_RTX)
282 if (NONJUMP_INSN_P (insn) || JUMP_P (insn) || CALL_P (insn))
283 break;
285 /* No other active insn all the way to the end of the basic block. */
286 if (insn == BB_END (curr_bb))
287 return NULL;
290 return insn;
293 /* Return the basic block reached by falling though the basic block BB. */
295 static basic_block
296 block_fallthru (basic_block bb)
298 edge e = find_fallthru_edge (bb->succs);
300 return (e) ? e->dest : NULL_BLOCK;
303 /* Return true if RTXs A and B can be safely interchanged. */
305 static bool
306 rtx_interchangeable_p (const_rtx a, const_rtx b)
308 if (!rtx_equal_p (a, b))
309 return false;
311 if (GET_CODE (a) != MEM)
312 return true;
314 /* A dead type-unsafe memory reference is legal, but a live type-unsafe memory
315 reference is not. Interchanging a dead type-unsafe memory reference with
316 a live type-safe one creates a live type-unsafe memory reference, in other
317 words, it makes the program illegal.
318 We check here conservatively whether the two memory references have equal
319 memory attributes. */
321 return mem_attrs_eq_p (get_mem_attrs (a), get_mem_attrs (b));
325 /* Go through a bunch of insns, converting them to conditional
326 execution format if possible. Return TRUE if all of the non-note
327 insns were processed. */
329 static int
330 cond_exec_process_insns (ce_if_block *ce_info ATTRIBUTE_UNUSED,
331 /* if block information */rtx_insn *start,
332 /* first insn to look at */rtx end,
333 /* last insn to look at */rtx test,
334 /* conditional execution test */int prob_val,
335 /* probability of branch taken. */int mod_ok)
337 int must_be_last = FALSE;
338 rtx_insn *insn;
339 rtx xtest;
340 rtx pattern;
342 if (!start || !end)
343 return FALSE;
345 for (insn = start; ; insn = NEXT_INSN (insn))
347 /* dwarf2out can't cope with conditional prologues. */
348 if (NOTE_P (insn) && NOTE_KIND (insn) == NOTE_INSN_PROLOGUE_END)
349 return FALSE;
351 if (NOTE_P (insn) || DEBUG_INSN_P (insn))
352 goto insn_done;
354 gcc_assert (NONJUMP_INSN_P (insn) || CALL_P (insn));
356 /* dwarf2out can't cope with conditional unwind info. */
357 if (RTX_FRAME_RELATED_P (insn))
358 return FALSE;
360 /* Remove USE insns that get in the way. */
361 if (reload_completed && GET_CODE (PATTERN (insn)) == USE)
363 /* ??? Ug. Actually unlinking the thing is problematic,
364 given what we'd have to coordinate with our callers. */
365 SET_INSN_DELETED (insn);
366 goto insn_done;
369 /* Last insn wasn't last? */
370 if (must_be_last)
371 return FALSE;
373 if (modified_in_p (test, insn))
375 if (!mod_ok)
376 return FALSE;
377 must_be_last = TRUE;
380 /* Now build the conditional form of the instruction. */
381 pattern = PATTERN (insn);
382 xtest = copy_rtx (test);
384 /* If this is already a COND_EXEC, rewrite the test to be an AND of the
385 two conditions. */
386 if (GET_CODE (pattern) == COND_EXEC)
388 if (GET_MODE (xtest) != GET_MODE (COND_EXEC_TEST (pattern)))
389 return FALSE;
391 xtest = gen_rtx_AND (GET_MODE (xtest), xtest,
392 COND_EXEC_TEST (pattern));
393 pattern = COND_EXEC_CODE (pattern);
396 pattern = gen_rtx_COND_EXEC (VOIDmode, xtest, pattern);
398 /* If the machine needs to modify the insn being conditionally executed,
399 say for example to force a constant integer operand into a temp
400 register, do so here. */
401 #ifdef IFCVT_MODIFY_INSN
402 IFCVT_MODIFY_INSN (ce_info, pattern, insn);
403 if (! pattern)
404 return FALSE;
405 #endif
407 validate_change (insn, &PATTERN (insn), pattern, 1);
409 if (CALL_P (insn) && prob_val >= 0)
410 validate_change (insn, &REG_NOTES (insn),
411 gen_rtx_INT_LIST ((machine_mode) REG_BR_PROB,
412 prob_val, REG_NOTES (insn)), 1);
414 insn_done:
415 if (insn == end)
416 break;
419 return TRUE;
422 /* Return the condition for a jump. Do not do any special processing. */
424 static rtx
425 cond_exec_get_condition (rtx_insn *jump)
427 rtx test_if, cond;
429 if (any_condjump_p (jump))
430 test_if = SET_SRC (pc_set (jump));
431 else
432 return NULL_RTX;
433 cond = XEXP (test_if, 0);
435 /* If this branches to JUMP_LABEL when the condition is false,
436 reverse the condition. */
437 if (GET_CODE (XEXP (test_if, 2)) == LABEL_REF
438 && LABEL_REF_LABEL (XEXP (test_if, 2)) == JUMP_LABEL (jump))
440 enum rtx_code rev = reversed_comparison_code (cond, jump);
441 if (rev == UNKNOWN)
442 return NULL_RTX;
444 cond = gen_rtx_fmt_ee (rev, GET_MODE (cond), XEXP (cond, 0),
445 XEXP (cond, 1));
448 return cond;
451 /* Given a simple IF-THEN or IF-THEN-ELSE block, attempt to convert it
452 to conditional execution. Return TRUE if we were successful at
453 converting the block. */
455 static int
456 cond_exec_process_if_block (ce_if_block * ce_info,
457 /* if block information */int do_multiple_p)
459 basic_block test_bb = ce_info->test_bb; /* last test block */
460 basic_block then_bb = ce_info->then_bb; /* THEN */
461 basic_block else_bb = ce_info->else_bb; /* ELSE or NULL */
462 rtx test_expr; /* expression in IF_THEN_ELSE that is tested */
463 rtx_insn *then_start; /* first insn in THEN block */
464 rtx_insn *then_end; /* last insn + 1 in THEN block */
465 rtx_insn *else_start = NULL; /* first insn in ELSE block or NULL */
466 rtx_insn *else_end = NULL; /* last insn + 1 in ELSE block */
467 int max; /* max # of insns to convert. */
468 int then_mod_ok; /* whether conditional mods are ok in THEN */
469 rtx true_expr; /* test for else block insns */
470 rtx false_expr; /* test for then block insns */
471 int true_prob_val; /* probability of else block */
472 int false_prob_val; /* probability of then block */
473 rtx_insn *then_last_head = NULL; /* Last match at the head of THEN */
474 rtx_insn *else_last_head = NULL; /* Last match at the head of ELSE */
475 rtx_insn *then_first_tail = NULL; /* First match at the tail of THEN */
476 rtx_insn *else_first_tail = NULL; /* First match at the tail of ELSE */
477 int then_n_insns, else_n_insns, n_insns;
478 enum rtx_code false_code;
479 rtx note;
481 /* If test is comprised of && or || elements, and we've failed at handling
482 all of them together, just use the last test if it is the special case of
483 && elements without an ELSE block. */
484 if (!do_multiple_p && ce_info->num_multiple_test_blocks)
486 if (else_bb || ! ce_info->and_and_p)
487 return FALSE;
489 ce_info->test_bb = test_bb = ce_info->last_test_bb;
490 ce_info->num_multiple_test_blocks = 0;
491 ce_info->num_and_and_blocks = 0;
492 ce_info->num_or_or_blocks = 0;
495 /* Find the conditional jump to the ELSE or JOIN part, and isolate
496 the test. */
497 test_expr = cond_exec_get_condition (BB_END (test_bb));
498 if (! test_expr)
499 return FALSE;
501 /* If the conditional jump is more than just a conditional jump,
502 then we can not do conditional execution conversion on this block. */
503 if (! onlyjump_p (BB_END (test_bb)))
504 return FALSE;
506 /* Collect the bounds of where we're to search, skipping any labels, jumps
507 and notes at the beginning and end of the block. Then count the total
508 number of insns and see if it is small enough to convert. */
509 then_start = first_active_insn (then_bb);
510 then_end = last_active_insn (then_bb, TRUE);
511 then_n_insns = ce_info->num_then_insns = count_bb_insns (then_bb);
512 n_insns = then_n_insns;
513 max = MAX_CONDITIONAL_EXECUTE;
515 if (else_bb)
517 int n_matching;
519 max *= 2;
520 else_start = first_active_insn (else_bb);
521 else_end = last_active_insn (else_bb, TRUE);
522 else_n_insns = ce_info->num_else_insns = count_bb_insns (else_bb);
523 n_insns += else_n_insns;
525 /* Look for matching sequences at the head and tail of the two blocks,
526 and limit the range of insns to be converted if possible. */
527 n_matching = flow_find_cross_jump (then_bb, else_bb,
528 &then_first_tail, &else_first_tail,
529 NULL);
530 if (then_first_tail == BB_HEAD (then_bb))
531 then_start = then_end = NULL;
532 if (else_first_tail == BB_HEAD (else_bb))
533 else_start = else_end = NULL;
535 if (n_matching > 0)
537 if (then_end)
538 then_end = find_active_insn_before (then_bb, then_first_tail);
539 if (else_end)
540 else_end = find_active_insn_before (else_bb, else_first_tail);
541 n_insns -= 2 * n_matching;
544 if (then_start
545 && else_start
546 && then_n_insns > n_matching
547 && else_n_insns > n_matching)
549 int longest_match = MIN (then_n_insns - n_matching,
550 else_n_insns - n_matching);
551 n_matching
552 = flow_find_head_matching_sequence (then_bb, else_bb,
553 &then_last_head,
554 &else_last_head,
555 longest_match);
557 if (n_matching > 0)
559 rtx_insn *insn;
561 /* We won't pass the insns in the head sequence to
562 cond_exec_process_insns, so we need to test them here
563 to make sure that they don't clobber the condition. */
564 for (insn = BB_HEAD (then_bb);
565 insn != NEXT_INSN (then_last_head);
566 insn = NEXT_INSN (insn))
567 if (!LABEL_P (insn) && !NOTE_P (insn)
568 && !DEBUG_INSN_P (insn)
569 && modified_in_p (test_expr, insn))
570 return FALSE;
573 if (then_last_head == then_end)
574 then_start = then_end = NULL;
575 if (else_last_head == else_end)
576 else_start = else_end = NULL;
578 if (n_matching > 0)
580 if (then_start)
581 then_start = find_active_insn_after (then_bb, then_last_head);
582 if (else_start)
583 else_start = find_active_insn_after (else_bb, else_last_head);
584 n_insns -= 2 * n_matching;
589 if (n_insns > max)
590 return FALSE;
592 /* Map test_expr/test_jump into the appropriate MD tests to use on
593 the conditionally executed code. */
595 true_expr = test_expr;
597 false_code = reversed_comparison_code (true_expr, BB_END (test_bb));
598 if (false_code != UNKNOWN)
599 false_expr = gen_rtx_fmt_ee (false_code, GET_MODE (true_expr),
600 XEXP (true_expr, 0), XEXP (true_expr, 1));
601 else
602 false_expr = NULL_RTX;
604 #ifdef IFCVT_MODIFY_TESTS
605 /* If the machine description needs to modify the tests, such as setting a
606 conditional execution register from a comparison, it can do so here. */
607 IFCVT_MODIFY_TESTS (ce_info, true_expr, false_expr);
609 /* See if the conversion failed. */
610 if (!true_expr || !false_expr)
611 goto fail;
612 #endif
614 note = find_reg_note (BB_END (test_bb), REG_BR_PROB, NULL_RTX);
615 if (note)
617 true_prob_val = XINT (note, 0);
618 false_prob_val = REG_BR_PROB_BASE - true_prob_val;
620 else
622 true_prob_val = -1;
623 false_prob_val = -1;
626 /* If we have && or || tests, do them here. These tests are in the adjacent
627 blocks after the first block containing the test. */
628 if (ce_info->num_multiple_test_blocks > 0)
630 basic_block bb = test_bb;
631 basic_block last_test_bb = ce_info->last_test_bb;
633 if (! false_expr)
634 goto fail;
638 rtx_insn *start, *end;
639 rtx t, f;
640 enum rtx_code f_code;
642 bb = block_fallthru (bb);
643 start = first_active_insn (bb);
644 end = last_active_insn (bb, TRUE);
645 if (start
646 && ! cond_exec_process_insns (ce_info, start, end, false_expr,
647 false_prob_val, FALSE))
648 goto fail;
650 /* If the conditional jump is more than just a conditional jump, then
651 we can not do conditional execution conversion on this block. */
652 if (! onlyjump_p (BB_END (bb)))
653 goto fail;
655 /* Find the conditional jump and isolate the test. */
656 t = cond_exec_get_condition (BB_END (bb));
657 if (! t)
658 goto fail;
660 f_code = reversed_comparison_code (t, BB_END (bb));
661 if (f_code == UNKNOWN)
662 goto fail;
664 f = gen_rtx_fmt_ee (f_code, GET_MODE (t), XEXP (t, 0), XEXP (t, 1));
665 if (ce_info->and_and_p)
667 t = gen_rtx_AND (GET_MODE (t), true_expr, t);
668 f = gen_rtx_IOR (GET_MODE (t), false_expr, f);
670 else
672 t = gen_rtx_IOR (GET_MODE (t), true_expr, t);
673 f = gen_rtx_AND (GET_MODE (t), false_expr, f);
676 /* If the machine description needs to modify the tests, such as
677 setting a conditional execution register from a comparison, it can
678 do so here. */
679 #ifdef IFCVT_MODIFY_MULTIPLE_TESTS
680 IFCVT_MODIFY_MULTIPLE_TESTS (ce_info, bb, t, f);
682 /* See if the conversion failed. */
683 if (!t || !f)
684 goto fail;
685 #endif
687 true_expr = t;
688 false_expr = f;
690 while (bb != last_test_bb);
693 /* For IF-THEN-ELSE blocks, we don't allow modifications of the test
694 on then THEN block. */
695 then_mod_ok = (else_bb == NULL_BLOCK);
697 /* Go through the THEN and ELSE blocks converting the insns if possible
698 to conditional execution. */
700 if (then_end
701 && (! false_expr
702 || ! cond_exec_process_insns (ce_info, then_start, then_end,
703 false_expr, false_prob_val,
704 then_mod_ok)))
705 goto fail;
707 if (else_bb && else_end
708 && ! cond_exec_process_insns (ce_info, else_start, else_end,
709 true_expr, true_prob_val, TRUE))
710 goto fail;
712 /* If we cannot apply the changes, fail. Do not go through the normal fail
713 processing, since apply_change_group will call cancel_changes. */
714 if (! apply_change_group ())
716 #ifdef IFCVT_MODIFY_CANCEL
717 /* Cancel any machine dependent changes. */
718 IFCVT_MODIFY_CANCEL (ce_info);
719 #endif
720 return FALSE;
723 #ifdef IFCVT_MODIFY_FINAL
724 /* Do any machine dependent final modifications. */
725 IFCVT_MODIFY_FINAL (ce_info);
726 #endif
728 /* Conversion succeeded. */
729 if (dump_file)
730 fprintf (dump_file, "%d insn%s converted to conditional execution.\n",
731 n_insns, (n_insns == 1) ? " was" : "s were");
733 /* Merge the blocks! If we had matching sequences, make sure to delete one
734 copy at the appropriate location first: delete the copy in the THEN branch
735 for a tail sequence so that the remaining one is executed last for both
736 branches, and delete the copy in the ELSE branch for a head sequence so
737 that the remaining one is executed first for both branches. */
738 if (then_first_tail)
740 rtx_insn *from = then_first_tail;
741 if (!INSN_P (from))
742 from = find_active_insn_after (then_bb, from);
743 delete_insn_chain (from, get_last_bb_insn (then_bb), false);
745 if (else_last_head)
746 delete_insn_chain (first_active_insn (else_bb), else_last_head, false);
748 merge_if_block (ce_info);
749 cond_exec_changed_p = TRUE;
750 return TRUE;
752 fail:
753 #ifdef IFCVT_MODIFY_CANCEL
754 /* Cancel any machine dependent changes. */
755 IFCVT_MODIFY_CANCEL (ce_info);
756 #endif
758 cancel_changes (0);
759 return FALSE;
762 /* Used by noce_process_if_block to communicate with its subroutines.
764 The subroutines know that A and B may be evaluated freely. They
765 know that X is a register. They should insert new instructions
766 before cond_earliest. */
768 struct noce_if_info
770 /* The basic blocks that make up the IF-THEN-{ELSE-,}JOIN block. */
771 basic_block test_bb, then_bb, else_bb, join_bb;
773 /* The jump that ends TEST_BB. */
774 rtx_insn *jump;
776 /* The jump condition. */
777 rtx cond;
779 /* New insns should be inserted before this one. */
780 rtx_insn *cond_earliest;
782 /* Insns in the THEN and ELSE block. There is always just this
783 one insns in those blocks. The insns are single_set insns.
784 If there was no ELSE block, INSN_B is the last insn before
785 COND_EARLIEST, or NULL_RTX. In the former case, the insn
786 operands are still valid, as if INSN_B was moved down below
787 the jump. */
788 rtx_insn *insn_a, *insn_b;
790 /* The SET_SRC of INSN_A and INSN_B. */
791 rtx a, b;
793 /* The SET_DEST of INSN_A. */
794 rtx x;
796 /* The original set destination that the THEN and ELSE basic blocks finally
797 write their result to. */
798 rtx orig_x;
799 /* True if this if block is not canonical. In the canonical form of
800 if blocks, the THEN_BB is the block reached via the fallthru edge
801 from TEST_BB. For the noce transformations, we allow the symmetric
802 form as well. */
803 bool then_else_reversed;
805 /* True if the contents of then_bb and else_bb are a
806 simple single set instruction. */
807 bool then_simple;
808 bool else_simple;
810 /* The total rtx cost of the instructions in then_bb and else_bb. */
811 unsigned int then_cost;
812 unsigned int else_cost;
814 /* Estimated cost of the particular branch instruction. */
815 unsigned int branch_cost;
818 static rtx noce_emit_store_flag (struct noce_if_info *, rtx, int, int);
819 static int noce_try_move (struct noce_if_info *);
820 static int noce_try_store_flag (struct noce_if_info *);
821 static int noce_try_addcc (struct noce_if_info *);
822 static int noce_try_store_flag_constants (struct noce_if_info *);
823 static int noce_try_store_flag_mask (struct noce_if_info *);
824 static rtx noce_emit_cmove (struct noce_if_info *, rtx, enum rtx_code, rtx,
825 rtx, rtx, rtx);
826 static int noce_try_cmove (struct noce_if_info *);
827 static int noce_try_cmove_arith (struct noce_if_info *);
828 static rtx noce_get_alt_condition (struct noce_if_info *, rtx, rtx_insn **);
829 static int noce_try_minmax (struct noce_if_info *);
830 static int noce_try_abs (struct noce_if_info *);
831 static int noce_try_sign_mask (struct noce_if_info *);
833 /* Helper function for noce_try_store_flag*. */
835 static rtx
836 noce_emit_store_flag (struct noce_if_info *if_info, rtx x, int reversep,
837 int normalize)
839 rtx cond = if_info->cond;
840 int cond_complex;
841 enum rtx_code code;
843 cond_complex = (! general_operand (XEXP (cond, 0), VOIDmode)
844 || ! general_operand (XEXP (cond, 1), VOIDmode));
846 /* If earliest == jump, or when the condition is complex, try to
847 build the store_flag insn directly. */
849 if (cond_complex)
851 rtx set = pc_set (if_info->jump);
852 cond = XEXP (SET_SRC (set), 0);
853 if (GET_CODE (XEXP (SET_SRC (set), 2)) == LABEL_REF
854 && LABEL_REF_LABEL (XEXP (SET_SRC (set), 2)) == JUMP_LABEL (if_info->jump))
855 reversep = !reversep;
856 if (if_info->then_else_reversed)
857 reversep = !reversep;
860 if (reversep)
861 code = reversed_comparison_code (cond, if_info->jump);
862 else
863 code = GET_CODE (cond);
865 if ((if_info->cond_earliest == if_info->jump || cond_complex)
866 && (normalize == 0 || STORE_FLAG_VALUE == normalize))
868 rtx src = gen_rtx_fmt_ee (code, GET_MODE (x), XEXP (cond, 0),
869 XEXP (cond, 1));
870 rtx set = gen_rtx_SET (x, src);
872 start_sequence ();
873 rtx_insn *insn = emit_insn (set);
875 if (recog_memoized (insn) >= 0)
877 rtx_insn *seq = get_insns ();
878 end_sequence ();
879 emit_insn (seq);
881 if_info->cond_earliest = if_info->jump;
883 return x;
886 end_sequence ();
889 /* Don't even try if the comparison operands or the mode of X are weird. */
890 if (cond_complex || !SCALAR_INT_MODE_P (GET_MODE (x)))
891 return NULL_RTX;
893 return emit_store_flag (x, code, XEXP (cond, 0),
894 XEXP (cond, 1), VOIDmode,
895 (code == LTU || code == LEU
896 || code == GEU || code == GTU), normalize);
899 /* Emit instruction to move an rtx, possibly into STRICT_LOW_PART.
900 X is the destination/target and Y is the value to copy. */
902 static void
903 noce_emit_move_insn (rtx x, rtx y)
905 machine_mode outmode;
906 rtx outer, inner;
907 int bitpos;
909 if (GET_CODE (x) != STRICT_LOW_PART)
911 rtx_insn *seq, *insn;
912 rtx target;
913 optab ot;
915 start_sequence ();
916 /* Check that the SET_SRC is reasonable before calling emit_move_insn,
917 otherwise construct a suitable SET pattern ourselves. */
918 insn = (OBJECT_P (y) || CONSTANT_P (y) || GET_CODE (y) == SUBREG)
919 ? emit_move_insn (x, y)
920 : emit_insn (gen_rtx_SET (x, y));
921 seq = get_insns ();
922 end_sequence ();
924 if (recog_memoized (insn) <= 0)
926 if (GET_CODE (x) == ZERO_EXTRACT)
928 rtx op = XEXP (x, 0);
929 unsigned HOST_WIDE_INT size = INTVAL (XEXP (x, 1));
930 unsigned HOST_WIDE_INT start = INTVAL (XEXP (x, 2));
932 /* store_bit_field expects START to be relative to
933 BYTES_BIG_ENDIAN and adjusts this value for machines with
934 BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN. In order to be able to
935 invoke store_bit_field again it is necessary to have the START
936 value from the first call. */
937 if (BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
939 if (MEM_P (op))
940 start = BITS_PER_UNIT - start - size;
941 else
943 gcc_assert (REG_P (op));
944 start = BITS_PER_WORD - start - size;
948 gcc_assert (start < (MEM_P (op) ? BITS_PER_UNIT : BITS_PER_WORD));
949 store_bit_field (op, size, start, 0, 0, GET_MODE (x), y, false);
950 return;
953 switch (GET_RTX_CLASS (GET_CODE (y)))
955 case RTX_UNARY:
956 ot = code_to_optab (GET_CODE (y));
957 if (ot)
959 start_sequence ();
960 target = expand_unop (GET_MODE (y), ot, XEXP (y, 0), x, 0);
961 if (target != NULL_RTX)
963 if (target != x)
964 emit_move_insn (x, target);
965 seq = get_insns ();
967 end_sequence ();
969 break;
971 case RTX_BIN_ARITH:
972 case RTX_COMM_ARITH:
973 ot = code_to_optab (GET_CODE (y));
974 if (ot)
976 start_sequence ();
977 target = expand_binop (GET_MODE (y), ot,
978 XEXP (y, 0), XEXP (y, 1),
979 x, 0, OPTAB_DIRECT);
980 if (target != NULL_RTX)
982 if (target != x)
983 emit_move_insn (x, target);
984 seq = get_insns ();
986 end_sequence ();
988 break;
990 default:
991 break;
995 emit_insn (seq);
996 return;
999 outer = XEXP (x, 0);
1000 inner = XEXP (outer, 0);
1001 outmode = GET_MODE (outer);
1002 bitpos = SUBREG_BYTE (outer) * BITS_PER_UNIT;
1003 store_bit_field (inner, GET_MODE_BITSIZE (outmode), bitpos,
1004 0, 0, outmode, y, false);
1007 /* Return the CC reg if it is used in COND. */
1009 static rtx
1010 cc_in_cond (rtx cond)
1012 if (have_cbranchcc4 && cond
1013 && GET_MODE_CLASS (GET_MODE (XEXP (cond, 0))) == MODE_CC)
1014 return XEXP (cond, 0);
1016 return NULL_RTX;
1019 /* Return sequence of instructions generated by if conversion. This
1020 function calls end_sequence() to end the current stream, ensures
1021 that the instructions are unshared, recognizable non-jump insns.
1022 On failure, this function returns a NULL_RTX. */
1024 static rtx_insn *
1025 end_ifcvt_sequence (struct noce_if_info *if_info)
1027 rtx_insn *insn;
1028 rtx_insn *seq = get_insns ();
1029 rtx cc = cc_in_cond (if_info->cond);
1031 set_used_flags (if_info->x);
1032 set_used_flags (if_info->cond);
1033 set_used_flags (if_info->a);
1034 set_used_flags (if_info->b);
1036 for (insn = seq; insn; insn = NEXT_INSN (insn))
1037 set_used_flags (insn);
1039 unshare_all_rtl_in_chain (seq);
1040 end_sequence ();
1042 /* Make sure that all of the instructions emitted are recognizable,
1043 and that we haven't introduced a new jump instruction.
1044 As an exercise for the reader, build a general mechanism that
1045 allows proper placement of required clobbers. */
1046 for (insn = seq; insn; insn = NEXT_INSN (insn))
1047 if (JUMP_P (insn)
1048 || recog_memoized (insn) == -1
1049 /* Make sure new generated code does not clobber CC. */
1050 || (cc && set_of (cc, insn)))
1051 return NULL;
1053 return seq;
1056 /* Return true iff the then and else basic block (if it exists)
1057 consist of a single simple set instruction. */
1059 static bool
1060 noce_simple_bbs (struct noce_if_info *if_info)
1062 if (!if_info->then_simple)
1063 return false;
1065 if (if_info->else_bb)
1066 return if_info->else_simple;
1068 return true;
1071 /* Convert "if (a != b) x = a; else x = b" into "x = a" and
1072 "if (a == b) x = a; else x = b" into "x = b". */
1074 static int
1075 noce_try_move (struct noce_if_info *if_info)
1077 rtx cond = if_info->cond;
1078 enum rtx_code code = GET_CODE (cond);
1079 rtx y;
1080 rtx_insn *seq;
1082 if (code != NE && code != EQ)
1083 return FALSE;
1085 if (!noce_simple_bbs (if_info))
1086 return FALSE;
1088 /* This optimization isn't valid if either A or B could be a NaN
1089 or a signed zero. */
1090 if (HONOR_NANS (if_info->x)
1091 || HONOR_SIGNED_ZEROS (if_info->x))
1092 return FALSE;
1094 /* Check whether the operands of the comparison are A and in
1095 either order. */
1096 if ((rtx_equal_p (if_info->a, XEXP (cond, 0))
1097 && rtx_equal_p (if_info->b, XEXP (cond, 1)))
1098 || (rtx_equal_p (if_info->a, XEXP (cond, 1))
1099 && rtx_equal_p (if_info->b, XEXP (cond, 0))))
1101 if (!rtx_interchangeable_p (if_info->a, if_info->b))
1102 return FALSE;
1104 y = (code == EQ) ? if_info->a : if_info->b;
1106 /* Avoid generating the move if the source is the destination. */
1107 if (! rtx_equal_p (if_info->x, y))
1109 start_sequence ();
1110 noce_emit_move_insn (if_info->x, y);
1111 seq = end_ifcvt_sequence (if_info);
1112 if (!seq)
1113 return FALSE;
1115 emit_insn_before_setloc (seq, if_info->jump,
1116 INSN_LOCATION (if_info->insn_a));
1118 return TRUE;
1120 return FALSE;
1123 /* Convert "if (test) x = 1; else x = 0".
1125 Only try 0 and STORE_FLAG_VALUE here. Other combinations will be
1126 tried in noce_try_store_flag_constants after noce_try_cmove has had
1127 a go at the conversion. */
1129 static int
1130 noce_try_store_flag (struct noce_if_info *if_info)
1132 int reversep;
1133 rtx target;
1134 rtx_insn *seq;
1136 if (!noce_simple_bbs (if_info))
1137 return FALSE;
1139 if (CONST_INT_P (if_info->b)
1140 && INTVAL (if_info->b) == STORE_FLAG_VALUE
1141 && if_info->a == const0_rtx)
1142 reversep = 0;
1143 else if (if_info->b == const0_rtx
1144 && CONST_INT_P (if_info->a)
1145 && INTVAL (if_info->a) == STORE_FLAG_VALUE
1146 && (reversed_comparison_code (if_info->cond, if_info->jump)
1147 != UNKNOWN))
1148 reversep = 1;
1149 else
1150 return FALSE;
1152 start_sequence ();
1154 target = noce_emit_store_flag (if_info, if_info->x, reversep, 0);
1155 if (target)
1157 if (target != if_info->x)
1158 noce_emit_move_insn (if_info->x, target);
1160 seq = end_ifcvt_sequence (if_info);
1161 if (! seq)
1162 return FALSE;
1164 emit_insn_before_setloc (seq, if_info->jump,
1165 INSN_LOCATION (if_info->insn_a));
1166 return TRUE;
1168 else
1170 end_sequence ();
1171 return FALSE;
1176 /* Convert "if (test) x = -A; else x = A" into
1177 x = A; if (test) x = -x if the machine can do the
1178 conditional negate form of this cheaply.
1179 Try this before noce_try_cmove that will just load the
1180 immediates into two registers and do a conditional select
1181 between them. If the target has a conditional negate or
1182 conditional invert operation we can save a potentially
1183 expensive constant synthesis. */
1185 static bool
1186 noce_try_inverse_constants (struct noce_if_info *if_info)
1188 if (!noce_simple_bbs (if_info))
1189 return false;
1191 if (!CONST_INT_P (if_info->a)
1192 || !CONST_INT_P (if_info->b)
1193 || !REG_P (if_info->x))
1194 return false;
1196 machine_mode mode = GET_MODE (if_info->x);
1198 HOST_WIDE_INT val_a = INTVAL (if_info->a);
1199 HOST_WIDE_INT val_b = INTVAL (if_info->b);
1201 rtx cond = if_info->cond;
1203 rtx x = if_info->x;
1204 rtx target;
1206 start_sequence ();
1208 rtx_code code;
1209 if (val_b != HOST_WIDE_INT_MIN && val_a == -val_b)
1210 code = NEG;
1211 else if (val_a == ~val_b)
1212 code = NOT;
1213 else
1215 end_sequence ();
1216 return false;
1219 rtx tmp = gen_reg_rtx (mode);
1220 noce_emit_move_insn (tmp, if_info->a);
1222 target = emit_conditional_neg_or_complement (x, code, mode, cond, tmp, tmp);
1224 if (target)
1226 rtx_insn *seq = get_insns ();
1228 if (!seq)
1230 end_sequence ();
1231 return false;
1234 if (target != if_info->x)
1235 noce_emit_move_insn (if_info->x, target);
1237 seq = end_ifcvt_sequence (if_info);
1239 if (!seq)
1240 return false;
1242 emit_insn_before_setloc (seq, if_info->jump,
1243 INSN_LOCATION (if_info->insn_a));
1244 return true;
1247 end_sequence ();
1248 return false;
1252 /* Convert "if (test) x = a; else x = b", for A and B constant.
1253 Also allow A = y + c1, B = y + c2, with a common y between A
1254 and B. */
1256 static int
1257 noce_try_store_flag_constants (struct noce_if_info *if_info)
1259 rtx target;
1260 rtx_insn *seq;
1261 bool reversep;
1262 HOST_WIDE_INT itrue, ifalse, diff, tmp;
1263 int normalize;
1264 bool can_reverse;
1265 machine_mode mode = GET_MODE (if_info->x);;
1266 rtx common = NULL_RTX;
1268 rtx a = if_info->a;
1269 rtx b = if_info->b;
1271 /* Handle cases like x := test ? y + 3 : y + 4. */
1272 if (GET_CODE (a) == PLUS
1273 && GET_CODE (b) == PLUS
1274 && CONST_INT_P (XEXP (a, 1))
1275 && CONST_INT_P (XEXP (b, 1))
1276 && rtx_equal_p (XEXP (a, 0), XEXP (b, 0))
1277 /* Allow expressions that are not using the result or plain
1278 registers where we handle overlap below. */
1279 && (REG_P (XEXP (a, 0))
1280 || (noce_operand_ok (XEXP (a, 0))
1281 && ! reg_overlap_mentioned_p (if_info->x, XEXP (a, 0))))
1282 && if_info->branch_cost >= 2)
1284 common = XEXP (a, 0);
1285 a = XEXP (a, 1);
1286 b = XEXP (b, 1);
1289 if (!noce_simple_bbs (if_info))
1290 return FALSE;
1292 if (CONST_INT_P (a)
1293 && CONST_INT_P (b))
1295 ifalse = INTVAL (a);
1296 itrue = INTVAL (b);
1297 bool subtract_flag_p = false;
1299 diff = (unsigned HOST_WIDE_INT) itrue - ifalse;
1300 /* Make sure we can represent the difference between the two values. */
1301 if ((diff > 0)
1302 != ((ifalse < 0) != (itrue < 0) ? ifalse < 0 : ifalse < itrue))
1303 return FALSE;
1305 diff = trunc_int_for_mode (diff, mode);
1307 can_reverse = (reversed_comparison_code (if_info->cond, if_info->jump)
1308 != UNKNOWN);
1310 reversep = false;
1311 if (diff == STORE_FLAG_VALUE || diff == -STORE_FLAG_VALUE)
1313 normalize = 0;
1314 /* We could collapse these cases but it is easier to follow the
1315 diff/STORE_FLAG_VALUE combinations when they are listed
1316 explicitly. */
1318 /* test ? 3 : 4
1319 => 4 + (test != 0). */
1320 if (diff < 0 && STORE_FLAG_VALUE < 0)
1321 reversep = false;
1322 /* test ? 4 : 3
1323 => can_reverse | 4 + (test == 0)
1324 !can_reverse | 3 - (test != 0). */
1325 else if (diff > 0 && STORE_FLAG_VALUE < 0)
1327 reversep = can_reverse;
1328 subtract_flag_p = !can_reverse;
1329 /* If we need to subtract the flag and we have PLUS-immediate
1330 A and B then it is unlikely to be beneficial to play tricks
1331 here. */
1332 if (subtract_flag_p && common)
1333 return FALSE;
1335 /* test ? 3 : 4
1336 => can_reverse | 3 + (test == 0)
1337 !can_reverse | 4 - (test != 0). */
1338 else if (diff < 0 && STORE_FLAG_VALUE > 0)
1340 reversep = can_reverse;
1341 subtract_flag_p = !can_reverse;
1342 /* If we need to subtract the flag and we have PLUS-immediate
1343 A and B then it is unlikely to be beneficial to play tricks
1344 here. */
1345 if (subtract_flag_p && common)
1346 return FALSE;
1348 /* test ? 4 : 3
1349 => 4 + (test != 0). */
1350 else if (diff > 0 && STORE_FLAG_VALUE > 0)
1351 reversep = false;
1352 else
1353 gcc_unreachable ();
1355 else if (ifalse == 0 && exact_log2 (itrue) >= 0
1356 && (STORE_FLAG_VALUE == 1
1357 || if_info->branch_cost >= 2))
1358 normalize = 1;
1359 else if (itrue == 0 && exact_log2 (ifalse) >= 0 && can_reverse
1360 && (STORE_FLAG_VALUE == 1 || if_info->branch_cost >= 2))
1362 normalize = 1;
1363 reversep = true;
1365 else if (itrue == -1
1366 && (STORE_FLAG_VALUE == -1
1367 || if_info->branch_cost >= 2))
1368 normalize = -1;
1369 else if (ifalse == -1 && can_reverse
1370 && (STORE_FLAG_VALUE == -1 || if_info->branch_cost >= 2))
1372 normalize = -1;
1373 reversep = true;
1375 else
1376 return FALSE;
1378 if (reversep)
1380 std::swap (itrue, ifalse);
1381 diff = trunc_int_for_mode (-(unsigned HOST_WIDE_INT) diff, mode);
1384 start_sequence ();
1386 /* If we have x := test ? x + 3 : x + 4 then move the original
1387 x out of the way while we store flags. */
1388 if (common && rtx_equal_p (common, if_info->x))
1390 common = gen_reg_rtx (mode);
1391 noce_emit_move_insn (common, if_info->x);
1394 target = noce_emit_store_flag (if_info, if_info->x, reversep, normalize);
1395 if (! target)
1397 end_sequence ();
1398 return FALSE;
1401 /* if (test) x = 3; else x = 4;
1402 => x = 3 + (test == 0); */
1403 if (diff == STORE_FLAG_VALUE || diff == -STORE_FLAG_VALUE)
1405 /* Add the common part now. This may allow combine to merge this
1406 with the store flag operation earlier into some sort of conditional
1407 increment/decrement if the target allows it. */
1408 if (common)
1409 target = expand_simple_binop (mode, PLUS,
1410 target, common,
1411 target, 0, OPTAB_WIDEN);
1413 /* Always use ifalse here. It should have been swapped with itrue
1414 when appropriate when reversep is true. */
1415 target = expand_simple_binop (mode, subtract_flag_p ? MINUS : PLUS,
1416 gen_int_mode (ifalse, mode), target,
1417 if_info->x, 0, OPTAB_WIDEN);
1419 /* Other cases are not beneficial when the original A and B are PLUS
1420 expressions. */
1421 else if (common)
1423 end_sequence ();
1424 return FALSE;
1426 /* if (test) x = 8; else x = 0;
1427 => x = (test != 0) << 3; */
1428 else if (ifalse == 0 && (tmp = exact_log2 (itrue)) >= 0)
1430 target = expand_simple_binop (mode, ASHIFT,
1431 target, GEN_INT (tmp), if_info->x, 0,
1432 OPTAB_WIDEN);
1435 /* if (test) x = -1; else x = b;
1436 => x = -(test != 0) | b; */
1437 else if (itrue == -1)
1439 target = expand_simple_binop (mode, IOR,
1440 target, gen_int_mode (ifalse, mode),
1441 if_info->x, 0, OPTAB_WIDEN);
1443 else
1445 end_sequence ();
1446 return FALSE;
1449 if (! target)
1451 end_sequence ();
1452 return FALSE;
1455 if (target != if_info->x)
1456 noce_emit_move_insn (if_info->x, target);
1458 seq = end_ifcvt_sequence (if_info);
1459 if (!seq)
1460 return FALSE;
1462 emit_insn_before_setloc (seq, if_info->jump,
1463 INSN_LOCATION (if_info->insn_a));
1464 return TRUE;
1467 return FALSE;
1470 /* Convert "if (test) foo++" into "foo += (test != 0)", and
1471 similarly for "foo--". */
1473 static int
1474 noce_try_addcc (struct noce_if_info *if_info)
1476 rtx target;
1477 rtx_insn *seq;
1478 int subtract, normalize;
1480 if (!noce_simple_bbs (if_info))
1481 return FALSE;
1483 if (GET_CODE (if_info->a) == PLUS
1484 && rtx_equal_p (XEXP (if_info->a, 0), if_info->b)
1485 && (reversed_comparison_code (if_info->cond, if_info->jump)
1486 != UNKNOWN))
1488 rtx cond = if_info->cond;
1489 enum rtx_code code = reversed_comparison_code (cond, if_info->jump);
1491 /* First try to use addcc pattern. */
1492 if (general_operand (XEXP (cond, 0), VOIDmode)
1493 && general_operand (XEXP (cond, 1), VOIDmode))
1495 start_sequence ();
1496 target = emit_conditional_add (if_info->x, code,
1497 XEXP (cond, 0),
1498 XEXP (cond, 1),
1499 VOIDmode,
1500 if_info->b,
1501 XEXP (if_info->a, 1),
1502 GET_MODE (if_info->x),
1503 (code == LTU || code == GEU
1504 || code == LEU || code == GTU));
1505 if (target)
1507 if (target != if_info->x)
1508 noce_emit_move_insn (if_info->x, target);
1510 seq = end_ifcvt_sequence (if_info);
1511 if (!seq)
1512 return FALSE;
1514 emit_insn_before_setloc (seq, if_info->jump,
1515 INSN_LOCATION (if_info->insn_a));
1516 return TRUE;
1518 end_sequence ();
1521 /* If that fails, construct conditional increment or decrement using
1522 setcc. */
1523 if (if_info->branch_cost >= 2
1524 && (XEXP (if_info->a, 1) == const1_rtx
1525 || XEXP (if_info->a, 1) == constm1_rtx))
1527 start_sequence ();
1528 if (STORE_FLAG_VALUE == INTVAL (XEXP (if_info->a, 1)))
1529 subtract = 0, normalize = 0;
1530 else if (-STORE_FLAG_VALUE == INTVAL (XEXP (if_info->a, 1)))
1531 subtract = 1, normalize = 0;
1532 else
1533 subtract = 0, normalize = INTVAL (XEXP (if_info->a, 1));
1536 target = noce_emit_store_flag (if_info,
1537 gen_reg_rtx (GET_MODE (if_info->x)),
1538 1, normalize);
1540 if (target)
1541 target = expand_simple_binop (GET_MODE (if_info->x),
1542 subtract ? MINUS : PLUS,
1543 if_info->b, target, if_info->x,
1544 0, OPTAB_WIDEN);
1545 if (target)
1547 if (target != if_info->x)
1548 noce_emit_move_insn (if_info->x, target);
1550 seq = end_ifcvt_sequence (if_info);
1551 if (!seq)
1552 return FALSE;
1554 emit_insn_before_setloc (seq, if_info->jump,
1555 INSN_LOCATION (if_info->insn_a));
1556 return TRUE;
1558 end_sequence ();
1562 return FALSE;
1565 /* Convert "if (test) x = 0;" to "x &= -(test == 0);" */
1567 static int
1568 noce_try_store_flag_mask (struct noce_if_info *if_info)
1570 rtx target;
1571 rtx_insn *seq;
1572 int reversep;
1574 if (!noce_simple_bbs (if_info))
1575 return FALSE;
1577 reversep = 0;
1578 if ((if_info->branch_cost >= 2
1579 || STORE_FLAG_VALUE == -1)
1580 && ((if_info->a == const0_rtx
1581 && rtx_equal_p (if_info->b, if_info->x))
1582 || ((reversep = (reversed_comparison_code (if_info->cond,
1583 if_info->jump)
1584 != UNKNOWN))
1585 && if_info->b == const0_rtx
1586 && rtx_equal_p (if_info->a, if_info->x))))
1588 start_sequence ();
1589 target = noce_emit_store_flag (if_info,
1590 gen_reg_rtx (GET_MODE (if_info->x)),
1591 reversep, -1);
1592 if (target)
1593 target = expand_simple_binop (GET_MODE (if_info->x), AND,
1594 if_info->x,
1595 target, if_info->x, 0,
1596 OPTAB_WIDEN);
1598 if (target)
1600 int old_cost, new_cost, insn_cost;
1601 int speed_p;
1603 if (target != if_info->x)
1604 noce_emit_move_insn (if_info->x, target);
1606 seq = end_ifcvt_sequence (if_info);
1607 if (!seq)
1608 return FALSE;
1610 speed_p = optimize_bb_for_speed_p (BLOCK_FOR_INSN (if_info->insn_a));
1611 insn_cost = insn_rtx_cost (PATTERN (if_info->insn_a), speed_p);
1612 old_cost = COSTS_N_INSNS (if_info->branch_cost) + insn_cost;
1613 new_cost = seq_cost (seq, speed_p);
1615 if (new_cost > old_cost)
1616 return FALSE;
1618 emit_insn_before_setloc (seq, if_info->jump,
1619 INSN_LOCATION (if_info->insn_a));
1620 return TRUE;
1623 end_sequence ();
1626 return FALSE;
1629 /* Helper function for noce_try_cmove and noce_try_cmove_arith. */
1631 static rtx
1632 noce_emit_cmove (struct noce_if_info *if_info, rtx x, enum rtx_code code,
1633 rtx cmp_a, rtx cmp_b, rtx vfalse, rtx vtrue)
1635 rtx target ATTRIBUTE_UNUSED;
1636 int unsignedp ATTRIBUTE_UNUSED;
1638 /* If earliest == jump, try to build the cmove insn directly.
1639 This is helpful when combine has created some complex condition
1640 (like for alpha's cmovlbs) that we can't hope to regenerate
1641 through the normal interface. */
1643 if (if_info->cond_earliest == if_info->jump)
1645 rtx cond = gen_rtx_fmt_ee (code, GET_MODE (if_info->cond), cmp_a, cmp_b);
1646 rtx if_then_else = gen_rtx_IF_THEN_ELSE (GET_MODE (x),
1647 cond, vtrue, vfalse);
1648 rtx set = gen_rtx_SET (x, if_then_else);
1650 start_sequence ();
1651 rtx_insn *insn = emit_insn (set);
1653 if (recog_memoized (insn) >= 0)
1655 rtx_insn *seq = get_insns ();
1656 end_sequence ();
1657 emit_insn (seq);
1659 return x;
1662 end_sequence ();
1665 /* Don't even try if the comparison operands are weird
1666 except that the target supports cbranchcc4. */
1667 if (! general_operand (cmp_a, GET_MODE (cmp_a))
1668 || ! general_operand (cmp_b, GET_MODE (cmp_b)))
1670 if (!have_cbranchcc4
1671 || GET_MODE_CLASS (GET_MODE (cmp_a)) != MODE_CC
1672 || cmp_b != const0_rtx)
1673 return NULL_RTX;
1676 unsignedp = (code == LTU || code == GEU
1677 || code == LEU || code == GTU);
1679 target = emit_conditional_move (x, code, cmp_a, cmp_b, VOIDmode,
1680 vtrue, vfalse, GET_MODE (x),
1681 unsignedp);
1682 if (target)
1683 return target;
1685 /* We might be faced with a situation like:
1687 x = (reg:M TARGET)
1688 vtrue = (subreg:M (reg:N VTRUE) BYTE)
1689 vfalse = (subreg:M (reg:N VFALSE) BYTE)
1691 We can't do a conditional move in mode M, but it's possible that we
1692 could do a conditional move in mode N instead and take a subreg of
1693 the result.
1695 If we can't create new pseudos, though, don't bother. */
1696 if (reload_completed)
1697 return NULL_RTX;
1699 if (GET_CODE (vtrue) == SUBREG && GET_CODE (vfalse) == SUBREG)
1701 rtx reg_vtrue = SUBREG_REG (vtrue);
1702 rtx reg_vfalse = SUBREG_REG (vfalse);
1703 unsigned int byte_vtrue = SUBREG_BYTE (vtrue);
1704 unsigned int byte_vfalse = SUBREG_BYTE (vfalse);
1705 rtx promoted_target;
1707 if (GET_MODE (reg_vtrue) != GET_MODE (reg_vfalse)
1708 || byte_vtrue != byte_vfalse
1709 || (SUBREG_PROMOTED_VAR_P (vtrue)
1710 != SUBREG_PROMOTED_VAR_P (vfalse))
1711 || (SUBREG_PROMOTED_GET (vtrue)
1712 != SUBREG_PROMOTED_GET (vfalse)))
1713 return NULL_RTX;
1715 promoted_target = gen_reg_rtx (GET_MODE (reg_vtrue));
1717 target = emit_conditional_move (promoted_target, code, cmp_a, cmp_b,
1718 VOIDmode, reg_vtrue, reg_vfalse,
1719 GET_MODE (reg_vtrue), unsignedp);
1720 /* Nope, couldn't do it in that mode either. */
1721 if (!target)
1722 return NULL_RTX;
1724 target = gen_rtx_SUBREG (GET_MODE (vtrue), promoted_target, byte_vtrue);
1725 SUBREG_PROMOTED_VAR_P (target) = SUBREG_PROMOTED_VAR_P (vtrue);
1726 SUBREG_PROMOTED_SET (target, SUBREG_PROMOTED_GET (vtrue));
1727 emit_move_insn (x, target);
1728 return x;
1730 else
1731 return NULL_RTX;
1734 /* Try only simple constants and registers here. More complex cases
1735 are handled in noce_try_cmove_arith after noce_try_store_flag_arith
1736 has had a go at it. */
1738 static int
1739 noce_try_cmove (struct noce_if_info *if_info)
1741 enum rtx_code code;
1742 rtx target;
1743 rtx_insn *seq;
1745 if (!noce_simple_bbs (if_info))
1746 return FALSE;
1748 if ((CONSTANT_P (if_info->a) || register_operand (if_info->a, VOIDmode))
1749 && (CONSTANT_P (if_info->b) || register_operand (if_info->b, VOIDmode)))
1751 start_sequence ();
1753 code = GET_CODE (if_info->cond);
1754 target = noce_emit_cmove (if_info, if_info->x, code,
1755 XEXP (if_info->cond, 0),
1756 XEXP (if_info->cond, 1),
1757 if_info->a, if_info->b);
1759 if (target)
1761 if (target != if_info->x)
1762 noce_emit_move_insn (if_info->x, target);
1764 seq = end_ifcvt_sequence (if_info);
1765 if (!seq)
1766 return FALSE;
1768 emit_insn_before_setloc (seq, if_info->jump,
1769 INSN_LOCATION (if_info->insn_a));
1770 return TRUE;
1772 /* If both a and b are constants try a last-ditch transformation:
1773 if (test) x = a; else x = b;
1774 => x = (-(test != 0) & (b - a)) + a;
1775 Try this only if the target-specific expansion above has failed.
1776 The target-specific expander may want to generate sequences that
1777 we don't know about, so give them a chance before trying this
1778 approach. */
1779 else if (!targetm.have_conditional_execution ()
1780 && CONST_INT_P (if_info->a) && CONST_INT_P (if_info->b)
1781 && ((if_info->branch_cost >= 2 && STORE_FLAG_VALUE == -1)
1782 || if_info->branch_cost >= 3))
1784 machine_mode mode = GET_MODE (if_info->x);
1785 HOST_WIDE_INT ifalse = INTVAL (if_info->a);
1786 HOST_WIDE_INT itrue = INTVAL (if_info->b);
1787 rtx target = noce_emit_store_flag (if_info, if_info->x, false, -1);
1788 if (!target)
1790 end_sequence ();
1791 return FALSE;
1794 HOST_WIDE_INT diff = (unsigned HOST_WIDE_INT) itrue - ifalse;
1795 /* Make sure we can represent the difference
1796 between the two values. */
1797 if ((diff > 0)
1798 != ((ifalse < 0) != (itrue < 0) ? ifalse < 0 : ifalse < itrue))
1800 end_sequence ();
1801 return FALSE;
1804 diff = trunc_int_for_mode (diff, mode);
1805 target = expand_simple_binop (mode, AND,
1806 target, gen_int_mode (diff, mode),
1807 if_info->x, 0, OPTAB_WIDEN);
1808 if (target)
1809 target = expand_simple_binop (mode, PLUS,
1810 target, gen_int_mode (ifalse, mode),
1811 if_info->x, 0, OPTAB_WIDEN);
1812 if (target)
1814 if (target != if_info->x)
1815 noce_emit_move_insn (if_info->x, target);
1817 seq = end_ifcvt_sequence (if_info);
1818 if (!seq)
1819 return FALSE;
1821 emit_insn_before_setloc (seq, if_info->jump,
1822 INSN_LOCATION (if_info->insn_a));
1823 return TRUE;
1825 else
1827 end_sequence ();
1828 return FALSE;
1831 else
1832 end_sequence ();
1835 return FALSE;
1838 /* Return true if X contains a conditional code mode rtx. */
1840 static bool
1841 contains_ccmode_rtx_p (rtx x)
1843 subrtx_iterator::array_type array;
1844 FOR_EACH_SUBRTX (iter, array, x, ALL)
1845 if (GET_MODE_CLASS (GET_MODE (*iter)) == MODE_CC)
1846 return true;
1848 return false;
1851 /* Helper for bb_valid_for_noce_process_p. Validate that
1852 the rtx insn INSN is a single set that does not set
1853 the conditional register CC and is in general valid for
1854 if-conversion. */
1856 static bool
1857 insn_valid_noce_process_p (rtx_insn *insn, rtx cc)
1859 if (!insn
1860 || !NONJUMP_INSN_P (insn)
1861 || (cc && set_of (cc, insn)))
1862 return false;
1864 rtx sset = single_set (insn);
1866 /* Currently support only simple single sets in test_bb. */
1867 if (!sset
1868 || !noce_operand_ok (SET_DEST (sset))
1869 || contains_ccmode_rtx_p (SET_DEST (sset))
1870 || !noce_operand_ok (SET_SRC (sset)))
1871 return false;
1873 return true;
1877 /* Return true iff the registers that the insns in BB_A set do not get
1878 used in BB_B. If TO_RENAME is non-NULL then it is a location that will be
1879 renamed later by the caller and so conflicts on it should be ignored
1880 in this function. */
1882 static bool
1883 bbs_ok_for_cmove_arith (basic_block bb_a, basic_block bb_b, rtx to_rename)
1885 rtx_insn *a_insn;
1886 bitmap bba_sets = BITMAP_ALLOC (&reg_obstack);
1888 df_ref def;
1889 df_ref use;
1891 FOR_BB_INSNS (bb_a, a_insn)
1893 if (!active_insn_p (a_insn))
1894 continue;
1896 rtx sset_a = single_set (a_insn);
1898 if (!sset_a)
1900 BITMAP_FREE (bba_sets);
1901 return false;
1903 /* Record all registers that BB_A sets. */
1904 FOR_EACH_INSN_DEF (def, a_insn)
1905 if (!(to_rename && DF_REF_REG (def) == to_rename))
1906 bitmap_set_bit (bba_sets, DF_REF_REGNO (def));
1909 rtx_insn *b_insn;
1911 FOR_BB_INSNS (bb_b, b_insn)
1913 if (!active_insn_p (b_insn))
1914 continue;
1916 rtx sset_b = single_set (b_insn);
1918 if (!sset_b)
1920 BITMAP_FREE (bba_sets);
1921 return false;
1924 /* Make sure this is a REG and not some instance
1925 of ZERO_EXTRACT or SUBREG or other dangerous stuff.
1926 If we have a memory destination then we have a pair of simple
1927 basic blocks performing an operation of the form [addr] = c ? a : b.
1928 bb_valid_for_noce_process_p will have ensured that these are
1929 the only stores present. In that case [addr] should be the location
1930 to be renamed. Assert that the callers set this up properly. */
1931 if (MEM_P (SET_DEST (sset_b)))
1932 gcc_assert (rtx_equal_p (SET_DEST (sset_b), to_rename));
1933 else if (!REG_P (SET_DEST (sset_b)))
1935 BITMAP_FREE (bba_sets);
1936 return false;
1939 /* If the insn uses a reg set in BB_A return false. */
1940 FOR_EACH_INSN_USE (use, b_insn)
1942 if (bitmap_bit_p (bba_sets, DF_REF_REGNO (use)))
1944 BITMAP_FREE (bba_sets);
1945 return false;
1951 BITMAP_FREE (bba_sets);
1952 return true;
1955 /* Emit copies of all the active instructions in BB except the last.
1956 This is a helper for noce_try_cmove_arith. */
1958 static void
1959 noce_emit_all_but_last (basic_block bb)
1961 rtx_insn *last = last_active_insn (bb, FALSE);
1962 rtx_insn *insn;
1963 FOR_BB_INSNS (bb, insn)
1965 if (insn != last && active_insn_p (insn))
1967 rtx_insn *to_emit = as_a <rtx_insn *> (copy_rtx (insn));
1969 emit_insn (PATTERN (to_emit));
1974 /* Helper for noce_try_cmove_arith. Emit the pattern TO_EMIT and return
1975 the resulting insn or NULL if it's not a valid insn. */
1977 static rtx_insn *
1978 noce_emit_insn (rtx to_emit)
1980 gcc_assert (to_emit);
1981 rtx_insn *insn = emit_insn (to_emit);
1983 if (recog_memoized (insn) < 0)
1984 return NULL;
1986 return insn;
1989 /* Helper for noce_try_cmove_arith. Emit a copy of the insns up to
1990 and including the penultimate one in BB if it is not simple
1991 (as indicated by SIMPLE). Then emit LAST_INSN as the last
1992 insn in the block. The reason for that is that LAST_INSN may
1993 have been modified by the preparation in noce_try_cmove_arith. */
1995 static bool
1996 noce_emit_bb (rtx last_insn, basic_block bb, bool simple)
1998 if (bb && !simple)
1999 noce_emit_all_but_last (bb);
2001 if (last_insn && !noce_emit_insn (last_insn))
2002 return false;
2004 return true;
2007 /* Try more complex cases involving conditional_move. */
2009 static int
2010 noce_try_cmove_arith (struct noce_if_info *if_info)
2012 rtx a = if_info->a;
2013 rtx b = if_info->b;
2014 rtx x = if_info->x;
2015 rtx orig_a, orig_b;
2016 rtx_insn *insn_a, *insn_b;
2017 bool a_simple = if_info->then_simple;
2018 bool b_simple = if_info->else_simple;
2019 basic_block then_bb = if_info->then_bb;
2020 basic_block else_bb = if_info->else_bb;
2021 rtx target;
2022 int is_mem = 0;
2023 enum rtx_code code;
2024 rtx_insn *ifcvt_seq;
2026 /* A conditional move from two memory sources is equivalent to a
2027 conditional on their addresses followed by a load. Don't do this
2028 early because it'll screw alias analysis. Note that we've
2029 already checked for no side effects. */
2030 /* ??? FIXME: Magic number 5. */
2031 if (cse_not_expected
2032 && MEM_P (a) && MEM_P (b)
2033 && MEM_ADDR_SPACE (a) == MEM_ADDR_SPACE (b)
2034 && if_info->branch_cost >= 5)
2036 machine_mode address_mode = get_address_mode (a);
2038 a = XEXP (a, 0);
2039 b = XEXP (b, 0);
2040 x = gen_reg_rtx (address_mode);
2041 is_mem = 1;
2044 /* ??? We could handle this if we knew that a load from A or B could
2045 not trap or fault. This is also true if we've already loaded
2046 from the address along the path from ENTRY. */
2047 else if (may_trap_or_fault_p (a) || may_trap_or_fault_p (b))
2048 return FALSE;
2050 /* if (test) x = a + b; else x = c - d;
2051 => y = a + b;
2052 x = c - d;
2053 if (test)
2054 x = y;
2057 code = GET_CODE (if_info->cond);
2058 insn_a = if_info->insn_a;
2059 insn_b = if_info->insn_b;
2061 machine_mode x_mode = GET_MODE (x);
2063 if (!can_conditionally_move_p (x_mode))
2064 return FALSE;
2066 unsigned int then_cost;
2067 unsigned int else_cost;
2068 if (insn_a)
2069 then_cost = if_info->then_cost;
2070 else
2071 then_cost = 0;
2073 if (insn_b)
2074 else_cost = if_info->else_cost;
2075 else
2076 else_cost = 0;
2078 /* We're going to execute one of the basic blocks anyway, so
2079 bail out if the most expensive of the two blocks is unacceptable. */
2080 if (MAX (then_cost, else_cost) > COSTS_N_INSNS (if_info->branch_cost))
2081 return FALSE;
2083 /* Possibly rearrange operands to make things come out more natural. */
2084 if (reversed_comparison_code (if_info->cond, if_info->jump) != UNKNOWN)
2086 int reversep = 0;
2087 if (rtx_equal_p (b, x))
2088 reversep = 1;
2089 else if (general_operand (b, GET_MODE (b)))
2090 reversep = 1;
2092 if (reversep)
2094 code = reversed_comparison_code (if_info->cond, if_info->jump);
2095 std::swap (a, b);
2096 std::swap (insn_a, insn_b);
2097 std::swap (a_simple, b_simple);
2098 std::swap (then_bb, else_bb);
2102 if (then_bb && else_bb
2103 && (!bbs_ok_for_cmove_arith (then_bb, else_bb, if_info->orig_x)
2104 || !bbs_ok_for_cmove_arith (else_bb, then_bb, if_info->orig_x)))
2105 return FALSE;
2107 start_sequence ();
2109 /* If one of the blocks is empty then the corresponding B or A value
2110 came from the test block. The non-empty complex block that we will
2111 emit might clobber the register used by B or A, so move it to a pseudo
2112 first. */
2114 rtx tmp_a = NULL_RTX;
2115 rtx tmp_b = NULL_RTX;
2117 if (b_simple || !else_bb)
2118 tmp_b = gen_reg_rtx (x_mode);
2120 if (a_simple || !then_bb)
2121 tmp_a = gen_reg_rtx (x_mode);
2123 orig_a = a;
2124 orig_b = b;
2126 rtx emit_a = NULL_RTX;
2127 rtx emit_b = NULL_RTX;
2128 rtx_insn *tmp_insn = NULL;
2129 bool modified_in_a = false;
2130 bool modified_in_b = false;
2131 /* If either operand is complex, load it into a register first.
2132 The best way to do this is to copy the original insn. In this
2133 way we preserve any clobbers etc that the insn may have had.
2134 This is of course not possible in the IS_MEM case. */
2136 if (! general_operand (a, GET_MODE (a)) || tmp_a)
2139 if (is_mem)
2141 rtx reg = gen_reg_rtx (GET_MODE (a));
2142 emit_a = gen_rtx_SET (reg, a);
2144 else
2146 if (insn_a)
2148 a = tmp_a ? tmp_a : gen_reg_rtx (GET_MODE (a));
2150 rtx_insn *copy_of_a = as_a <rtx_insn *> (copy_rtx (insn_a));
2151 rtx set = single_set (copy_of_a);
2152 SET_DEST (set) = a;
2154 emit_a = PATTERN (copy_of_a);
2156 else
2158 rtx tmp_reg = tmp_a ? tmp_a : gen_reg_rtx (GET_MODE (a));
2159 emit_a = gen_rtx_SET (tmp_reg, a);
2160 a = tmp_reg;
2165 if (! general_operand (b, GET_MODE (b)) || tmp_b)
2167 if (is_mem)
2169 rtx reg = gen_reg_rtx (GET_MODE (b));
2170 emit_b = gen_rtx_SET (reg, b);
2172 else
2174 if (insn_b)
2176 b = tmp_b ? tmp_b : gen_reg_rtx (GET_MODE (b));
2177 rtx_insn *copy_of_b = as_a <rtx_insn *> (copy_rtx (insn_b));
2178 rtx set = single_set (copy_of_b);
2180 SET_DEST (set) = b;
2181 emit_b = PATTERN (copy_of_b);
2183 else
2185 rtx tmp_reg = tmp_b ? tmp_b : gen_reg_rtx (GET_MODE (b));
2186 emit_b = gen_rtx_SET (tmp_reg, b);
2187 b = tmp_reg;
2192 modified_in_a = emit_a != NULL_RTX && modified_in_p (orig_b, emit_a);
2193 if (tmp_b && then_bb)
2195 FOR_BB_INSNS (then_bb, tmp_insn)
2196 /* Don't check inside insn_a. We will have changed it to emit_a
2197 with a destination that doesn't conflict. */
2198 if (!(insn_a && tmp_insn == insn_a)
2199 && modified_in_p (orig_b, tmp_insn))
2201 modified_in_a = true;
2202 break;
2207 modified_in_b = emit_b != NULL_RTX && modified_in_p (orig_a, emit_b);
2208 if (tmp_a && else_bb)
2210 FOR_BB_INSNS (else_bb, tmp_insn)
2211 /* Don't check inside insn_b. We will have changed it to emit_b
2212 with a destination that doesn't conflict. */
2213 if (!(insn_b && tmp_insn == insn_b)
2214 && modified_in_p (orig_a, tmp_insn))
2216 modified_in_b = true;
2217 break;
2221 /* If insn to set up A clobbers any registers B depends on, try to
2222 swap insn that sets up A with the one that sets up B. If even
2223 that doesn't help, punt. */
2224 if (modified_in_a && !modified_in_b)
2226 if (!noce_emit_bb (emit_b, else_bb, b_simple))
2227 goto end_seq_and_fail;
2229 if (!noce_emit_bb (emit_a, then_bb, a_simple))
2230 goto end_seq_and_fail;
2232 else if (!modified_in_a)
2234 if (!noce_emit_bb (emit_a, then_bb, a_simple))
2235 goto end_seq_and_fail;
2237 if (!noce_emit_bb (emit_b, else_bb, b_simple))
2238 goto end_seq_and_fail;
2240 else
2241 goto end_seq_and_fail;
2243 target = noce_emit_cmove (if_info, x, code, XEXP (if_info->cond, 0),
2244 XEXP (if_info->cond, 1), a, b);
2246 if (! target)
2247 goto end_seq_and_fail;
2249 /* If we're handling a memory for above, emit the load now. */
2250 if (is_mem)
2252 rtx mem = gen_rtx_MEM (GET_MODE (if_info->x), target);
2254 /* Copy over flags as appropriate. */
2255 if (MEM_VOLATILE_P (if_info->a) || MEM_VOLATILE_P (if_info->b))
2256 MEM_VOLATILE_P (mem) = 1;
2257 if (MEM_ALIAS_SET (if_info->a) == MEM_ALIAS_SET (if_info->b))
2258 set_mem_alias_set (mem, MEM_ALIAS_SET (if_info->a));
2259 set_mem_align (mem,
2260 MIN (MEM_ALIGN (if_info->a), MEM_ALIGN (if_info->b)));
2262 gcc_assert (MEM_ADDR_SPACE (if_info->a) == MEM_ADDR_SPACE (if_info->b));
2263 set_mem_addr_space (mem, MEM_ADDR_SPACE (if_info->a));
2265 noce_emit_move_insn (if_info->x, mem);
2267 else if (target != x)
2268 noce_emit_move_insn (x, target);
2270 ifcvt_seq = end_ifcvt_sequence (if_info);
2271 if (!ifcvt_seq)
2272 return FALSE;
2274 emit_insn_before_setloc (ifcvt_seq, if_info->jump,
2275 INSN_LOCATION (if_info->insn_a));
2276 return TRUE;
2278 end_seq_and_fail:
2279 end_sequence ();
2280 return FALSE;
2283 /* For most cases, the simplified condition we found is the best
2284 choice, but this is not the case for the min/max/abs transforms.
2285 For these we wish to know that it is A or B in the condition. */
2287 static rtx
2288 noce_get_alt_condition (struct noce_if_info *if_info, rtx target,
2289 rtx_insn **earliest)
2291 rtx cond, set;
2292 rtx_insn *insn;
2293 int reverse;
2295 /* If target is already mentioned in the known condition, return it. */
2296 if (reg_mentioned_p (target, if_info->cond))
2298 *earliest = if_info->cond_earliest;
2299 return if_info->cond;
2302 set = pc_set (if_info->jump);
2303 cond = XEXP (SET_SRC (set), 0);
2304 reverse
2305 = GET_CODE (XEXP (SET_SRC (set), 2)) == LABEL_REF
2306 && LABEL_REF_LABEL (XEXP (SET_SRC (set), 2)) == JUMP_LABEL (if_info->jump);
2307 if (if_info->then_else_reversed)
2308 reverse = !reverse;
2310 /* If we're looking for a constant, try to make the conditional
2311 have that constant in it. There are two reasons why it may
2312 not have the constant we want:
2314 1. GCC may have needed to put the constant in a register, because
2315 the target can't compare directly against that constant. For
2316 this case, we look for a SET immediately before the comparison
2317 that puts a constant in that register.
2319 2. GCC may have canonicalized the conditional, for example
2320 replacing "if x < 4" with "if x <= 3". We can undo that (or
2321 make equivalent types of changes) to get the constants we need
2322 if they're off by one in the right direction. */
2324 if (CONST_INT_P (target))
2326 enum rtx_code code = GET_CODE (if_info->cond);
2327 rtx op_a = XEXP (if_info->cond, 0);
2328 rtx op_b = XEXP (if_info->cond, 1);
2329 rtx_insn *prev_insn;
2331 /* First, look to see if we put a constant in a register. */
2332 prev_insn = prev_nonnote_insn (if_info->cond_earliest);
2333 if (prev_insn
2334 && BLOCK_FOR_INSN (prev_insn)
2335 == BLOCK_FOR_INSN (if_info->cond_earliest)
2336 && INSN_P (prev_insn)
2337 && GET_CODE (PATTERN (prev_insn)) == SET)
2339 rtx src = find_reg_equal_equiv_note (prev_insn);
2340 if (!src)
2341 src = SET_SRC (PATTERN (prev_insn));
2342 if (CONST_INT_P (src))
2344 if (rtx_equal_p (op_a, SET_DEST (PATTERN (prev_insn))))
2345 op_a = src;
2346 else if (rtx_equal_p (op_b, SET_DEST (PATTERN (prev_insn))))
2347 op_b = src;
2349 if (CONST_INT_P (op_a))
2351 std::swap (op_a, op_b);
2352 code = swap_condition (code);
2357 /* Now, look to see if we can get the right constant by
2358 adjusting the conditional. */
2359 if (CONST_INT_P (op_b))
2361 HOST_WIDE_INT desired_val = INTVAL (target);
2362 HOST_WIDE_INT actual_val = INTVAL (op_b);
2364 switch (code)
2366 case LT:
2367 if (actual_val == desired_val + 1)
2369 code = LE;
2370 op_b = GEN_INT (desired_val);
2372 break;
2373 case LE:
2374 if (actual_val == desired_val - 1)
2376 code = LT;
2377 op_b = GEN_INT (desired_val);
2379 break;
2380 case GT:
2381 if (actual_val == desired_val - 1)
2383 code = GE;
2384 op_b = GEN_INT (desired_val);
2386 break;
2387 case GE:
2388 if (actual_val == desired_val + 1)
2390 code = GT;
2391 op_b = GEN_INT (desired_val);
2393 break;
2394 default:
2395 break;
2399 /* If we made any changes, generate a new conditional that is
2400 equivalent to what we started with, but has the right
2401 constants in it. */
2402 if (code != GET_CODE (if_info->cond)
2403 || op_a != XEXP (if_info->cond, 0)
2404 || op_b != XEXP (if_info->cond, 1))
2406 cond = gen_rtx_fmt_ee (code, GET_MODE (cond), op_a, op_b);
2407 *earliest = if_info->cond_earliest;
2408 return cond;
2412 cond = canonicalize_condition (if_info->jump, cond, reverse,
2413 earliest, target, have_cbranchcc4, true);
2414 if (! cond || ! reg_mentioned_p (target, cond))
2415 return NULL;
2417 /* We almost certainly searched back to a different place.
2418 Need to re-verify correct lifetimes. */
2420 /* X may not be mentioned in the range (cond_earliest, jump]. */
2421 for (insn = if_info->jump; insn != *earliest; insn = PREV_INSN (insn))
2422 if (INSN_P (insn) && reg_overlap_mentioned_p (if_info->x, PATTERN (insn)))
2423 return NULL;
2425 /* A and B may not be modified in the range [cond_earliest, jump). */
2426 for (insn = *earliest; insn != if_info->jump; insn = NEXT_INSN (insn))
2427 if (INSN_P (insn)
2428 && (modified_in_p (if_info->a, insn)
2429 || modified_in_p (if_info->b, insn)))
2430 return NULL;
2432 return cond;
2435 /* Convert "if (a < b) x = a; else x = b;" to "x = min(a, b);", etc. */
2437 static int
2438 noce_try_minmax (struct noce_if_info *if_info)
2440 rtx cond, target;
2441 rtx_insn *earliest, *seq;
2442 enum rtx_code code, op;
2443 int unsignedp;
2445 if (!noce_simple_bbs (if_info))
2446 return FALSE;
2448 /* ??? Reject modes with NaNs or signed zeros since we don't know how
2449 they will be resolved with an SMIN/SMAX. It wouldn't be too hard
2450 to get the target to tell us... */
2451 if (HONOR_SIGNED_ZEROS (if_info->x)
2452 || HONOR_NANS (if_info->x))
2453 return FALSE;
2455 cond = noce_get_alt_condition (if_info, if_info->a, &earliest);
2456 if (!cond)
2457 return FALSE;
2459 /* Verify the condition is of the form we expect, and canonicalize
2460 the comparison code. */
2461 code = GET_CODE (cond);
2462 if (rtx_equal_p (XEXP (cond, 0), if_info->a))
2464 if (! rtx_equal_p (XEXP (cond, 1), if_info->b))
2465 return FALSE;
2467 else if (rtx_equal_p (XEXP (cond, 1), if_info->a))
2469 if (! rtx_equal_p (XEXP (cond, 0), if_info->b))
2470 return FALSE;
2471 code = swap_condition (code);
2473 else
2474 return FALSE;
2476 /* Determine what sort of operation this is. Note that the code is for
2477 a taken branch, so the code->operation mapping appears backwards. */
2478 switch (code)
2480 case LT:
2481 case LE:
2482 case UNLT:
2483 case UNLE:
2484 op = SMAX;
2485 unsignedp = 0;
2486 break;
2487 case GT:
2488 case GE:
2489 case UNGT:
2490 case UNGE:
2491 op = SMIN;
2492 unsignedp = 0;
2493 break;
2494 case LTU:
2495 case LEU:
2496 op = UMAX;
2497 unsignedp = 1;
2498 break;
2499 case GTU:
2500 case GEU:
2501 op = UMIN;
2502 unsignedp = 1;
2503 break;
2504 default:
2505 return FALSE;
2508 start_sequence ();
2510 target = expand_simple_binop (GET_MODE (if_info->x), op,
2511 if_info->a, if_info->b,
2512 if_info->x, unsignedp, OPTAB_WIDEN);
2513 if (! target)
2515 end_sequence ();
2516 return FALSE;
2518 if (target != if_info->x)
2519 noce_emit_move_insn (if_info->x, target);
2521 seq = end_ifcvt_sequence (if_info);
2522 if (!seq)
2523 return FALSE;
2525 emit_insn_before_setloc (seq, if_info->jump, INSN_LOCATION (if_info->insn_a));
2526 if_info->cond = cond;
2527 if_info->cond_earliest = earliest;
2529 return TRUE;
2532 /* Convert "if (a < 0) x = -a; else x = a;" to "x = abs(a);",
2533 "if (a < 0) x = ~a; else x = a;" to "x = one_cmpl_abs(a);",
2534 etc. */
2536 static int
2537 noce_try_abs (struct noce_if_info *if_info)
2539 rtx cond, target, a, b, c;
2540 rtx_insn *earliest, *seq;
2541 int negate;
2542 bool one_cmpl = false;
2544 if (!noce_simple_bbs (if_info))
2545 return FALSE;
2547 /* Reject modes with signed zeros. */
2548 if (HONOR_SIGNED_ZEROS (if_info->x))
2549 return FALSE;
2551 /* Recognize A and B as constituting an ABS or NABS. The canonical
2552 form is a branch around the negation, taken when the object is the
2553 first operand of a comparison against 0 that evaluates to true. */
2554 a = if_info->a;
2555 b = if_info->b;
2556 if (GET_CODE (a) == NEG && rtx_equal_p (XEXP (a, 0), b))
2557 negate = 0;
2558 else if (GET_CODE (b) == NEG && rtx_equal_p (XEXP (b, 0), a))
2560 std::swap (a, b);
2561 negate = 1;
2563 else if (GET_CODE (a) == NOT && rtx_equal_p (XEXP (a, 0), b))
2565 negate = 0;
2566 one_cmpl = true;
2568 else if (GET_CODE (b) == NOT && rtx_equal_p (XEXP (b, 0), a))
2570 std::swap (a, b);
2571 negate = 1;
2572 one_cmpl = true;
2574 else
2575 return FALSE;
2577 cond = noce_get_alt_condition (if_info, b, &earliest);
2578 if (!cond)
2579 return FALSE;
2581 /* Verify the condition is of the form we expect. */
2582 if (rtx_equal_p (XEXP (cond, 0), b))
2583 c = XEXP (cond, 1);
2584 else if (rtx_equal_p (XEXP (cond, 1), b))
2586 c = XEXP (cond, 0);
2587 negate = !negate;
2589 else
2590 return FALSE;
2592 /* Verify that C is zero. Search one step backward for a
2593 REG_EQUAL note or a simple source if necessary. */
2594 if (REG_P (c))
2596 rtx set;
2597 rtx_insn *insn = prev_nonnote_insn (earliest);
2598 if (insn
2599 && BLOCK_FOR_INSN (insn) == BLOCK_FOR_INSN (earliest)
2600 && (set = single_set (insn))
2601 && rtx_equal_p (SET_DEST (set), c))
2603 rtx note = find_reg_equal_equiv_note (insn);
2604 if (note)
2605 c = XEXP (note, 0);
2606 else
2607 c = SET_SRC (set);
2609 else
2610 return FALSE;
2612 if (MEM_P (c)
2613 && GET_CODE (XEXP (c, 0)) == SYMBOL_REF
2614 && CONSTANT_POOL_ADDRESS_P (XEXP (c, 0)))
2615 c = get_pool_constant (XEXP (c, 0));
2617 /* Work around funny ideas get_condition has wrt canonicalization.
2618 Note that these rtx constants are known to be CONST_INT, and
2619 therefore imply integer comparisons.
2620 The one_cmpl case is more complicated, as we want to handle
2621 only x < 0 ? ~x : x or x >= 0 ? x : ~x to one_cmpl_abs (x)
2622 and x < 0 ? x : ~x or x >= 0 ? ~x : x to ~one_cmpl_abs (x),
2623 but not other cases (x > -1 is equivalent of x >= 0). */
2624 if (c == constm1_rtx && GET_CODE (cond) == GT)
2626 else if (c == const1_rtx && GET_CODE (cond) == LT)
2628 if (one_cmpl)
2629 return FALSE;
2631 else if (c == CONST0_RTX (GET_MODE (b)))
2633 if (one_cmpl
2634 && GET_CODE (cond) != GE
2635 && GET_CODE (cond) != LT)
2636 return FALSE;
2638 else
2639 return FALSE;
2641 /* Determine what sort of operation this is. */
2642 switch (GET_CODE (cond))
2644 case LT:
2645 case LE:
2646 case UNLT:
2647 case UNLE:
2648 negate = !negate;
2649 break;
2650 case GT:
2651 case GE:
2652 case UNGT:
2653 case UNGE:
2654 break;
2655 default:
2656 return FALSE;
2659 start_sequence ();
2660 if (one_cmpl)
2661 target = expand_one_cmpl_abs_nojump (GET_MODE (if_info->x), b,
2662 if_info->x);
2663 else
2664 target = expand_abs_nojump (GET_MODE (if_info->x), b, if_info->x, 1);
2666 /* ??? It's a quandary whether cmove would be better here, especially
2667 for integers. Perhaps combine will clean things up. */
2668 if (target && negate)
2670 if (one_cmpl)
2671 target = expand_simple_unop (GET_MODE (target), NOT, target,
2672 if_info->x, 0);
2673 else
2674 target = expand_simple_unop (GET_MODE (target), NEG, target,
2675 if_info->x, 0);
2678 if (! target)
2680 end_sequence ();
2681 return FALSE;
2684 if (target != if_info->x)
2685 noce_emit_move_insn (if_info->x, target);
2687 seq = end_ifcvt_sequence (if_info);
2688 if (!seq)
2689 return FALSE;
2691 emit_insn_before_setloc (seq, if_info->jump, INSN_LOCATION (if_info->insn_a));
2692 if_info->cond = cond;
2693 if_info->cond_earliest = earliest;
2695 return TRUE;
2698 /* Convert "if (m < 0) x = b; else x = 0;" to "x = (m >> C) & b;". */
2700 static int
2701 noce_try_sign_mask (struct noce_if_info *if_info)
2703 rtx cond, t, m, c;
2704 rtx_insn *seq;
2705 machine_mode mode;
2706 enum rtx_code code;
2707 bool t_unconditional;
2709 if (!noce_simple_bbs (if_info))
2710 return FALSE;
2712 cond = if_info->cond;
2713 code = GET_CODE (cond);
2714 m = XEXP (cond, 0);
2715 c = XEXP (cond, 1);
2717 t = NULL_RTX;
2718 if (if_info->a == const0_rtx)
2720 if ((code == LT && c == const0_rtx)
2721 || (code == LE && c == constm1_rtx))
2722 t = if_info->b;
2724 else if (if_info->b == const0_rtx)
2726 if ((code == GE && c == const0_rtx)
2727 || (code == GT && c == constm1_rtx))
2728 t = if_info->a;
2731 if (! t || side_effects_p (t))
2732 return FALSE;
2734 /* We currently don't handle different modes. */
2735 mode = GET_MODE (t);
2736 if (GET_MODE (m) != mode)
2737 return FALSE;
2739 /* This is only profitable if T is unconditionally executed/evaluated in the
2740 original insn sequence or T is cheap. The former happens if B is the
2741 non-zero (T) value and if INSN_B was taken from TEST_BB, or there was no
2742 INSN_B which can happen for e.g. conditional stores to memory. For the
2743 cost computation use the block TEST_BB where the evaluation will end up
2744 after the transformation. */
2745 t_unconditional =
2746 (t == if_info->b
2747 && (if_info->insn_b == NULL_RTX
2748 || BLOCK_FOR_INSN (if_info->insn_b) == if_info->test_bb));
2749 if (!(t_unconditional
2750 || (set_src_cost (t, mode, optimize_bb_for_speed_p (if_info->test_bb))
2751 < COSTS_N_INSNS (2))))
2752 return FALSE;
2754 start_sequence ();
2755 /* Use emit_store_flag to generate "m < 0 ? -1 : 0" instead of expanding
2756 "(signed) m >> 31" directly. This benefits targets with specialized
2757 insns to obtain the signmask, but still uses ashr_optab otherwise. */
2758 m = emit_store_flag (gen_reg_rtx (mode), LT, m, const0_rtx, mode, 0, -1);
2759 t = m ? expand_binop (mode, and_optab, m, t, NULL_RTX, 0, OPTAB_DIRECT)
2760 : NULL_RTX;
2762 if (!t)
2764 end_sequence ();
2765 return FALSE;
2768 noce_emit_move_insn (if_info->x, t);
2770 seq = end_ifcvt_sequence (if_info);
2771 if (!seq)
2772 return FALSE;
2774 emit_insn_before_setloc (seq, if_info->jump, INSN_LOCATION (if_info->insn_a));
2775 return TRUE;
2779 /* Optimize away "if (x & C) x |= C" and similar bit manipulation
2780 transformations. */
2782 static int
2783 noce_try_bitop (struct noce_if_info *if_info)
2785 rtx cond, x, a, result;
2786 rtx_insn *seq;
2787 machine_mode mode;
2788 enum rtx_code code;
2789 int bitnum;
2791 x = if_info->x;
2792 cond = if_info->cond;
2793 code = GET_CODE (cond);
2795 if (!noce_simple_bbs (if_info))
2796 return FALSE;
2798 /* Check for no else condition. */
2799 if (! rtx_equal_p (x, if_info->b))
2800 return FALSE;
2802 /* Check for a suitable condition. */
2803 if (code != NE && code != EQ)
2804 return FALSE;
2805 if (XEXP (cond, 1) != const0_rtx)
2806 return FALSE;
2807 cond = XEXP (cond, 0);
2809 /* ??? We could also handle AND here. */
2810 if (GET_CODE (cond) == ZERO_EXTRACT)
2812 if (XEXP (cond, 1) != const1_rtx
2813 || !CONST_INT_P (XEXP (cond, 2))
2814 || ! rtx_equal_p (x, XEXP (cond, 0)))
2815 return FALSE;
2816 bitnum = INTVAL (XEXP (cond, 2));
2817 mode = GET_MODE (x);
2818 if (BITS_BIG_ENDIAN)
2819 bitnum = GET_MODE_BITSIZE (mode) - 1 - bitnum;
2820 if (bitnum < 0 || bitnum >= HOST_BITS_PER_WIDE_INT)
2821 return FALSE;
2823 else
2824 return FALSE;
2826 a = if_info->a;
2827 if (GET_CODE (a) == IOR || GET_CODE (a) == XOR)
2829 /* Check for "if (X & C) x = x op C". */
2830 if (! rtx_equal_p (x, XEXP (a, 0))
2831 || !CONST_INT_P (XEXP (a, 1))
2832 || (INTVAL (XEXP (a, 1)) & GET_MODE_MASK (mode))
2833 != (unsigned HOST_WIDE_INT) 1 << bitnum)
2834 return FALSE;
2836 /* if ((x & C) == 0) x |= C; is transformed to x |= C. */
2837 /* if ((x & C) != 0) x |= C; is transformed to nothing. */
2838 if (GET_CODE (a) == IOR)
2839 result = (code == NE) ? a : NULL_RTX;
2840 else if (code == NE)
2842 /* if ((x & C) == 0) x ^= C; is transformed to x |= C. */
2843 result = gen_int_mode ((HOST_WIDE_INT) 1 << bitnum, mode);
2844 result = simplify_gen_binary (IOR, mode, x, result);
2846 else
2848 /* if ((x & C) != 0) x ^= C; is transformed to x &= ~C. */
2849 result = gen_int_mode (~((HOST_WIDE_INT) 1 << bitnum), mode);
2850 result = simplify_gen_binary (AND, mode, x, result);
2853 else if (GET_CODE (a) == AND)
2855 /* Check for "if (X & C) x &= ~C". */
2856 if (! rtx_equal_p (x, XEXP (a, 0))
2857 || !CONST_INT_P (XEXP (a, 1))
2858 || (INTVAL (XEXP (a, 1)) & GET_MODE_MASK (mode))
2859 != (~((HOST_WIDE_INT) 1 << bitnum) & GET_MODE_MASK (mode)))
2860 return FALSE;
2862 /* if ((x & C) == 0) x &= ~C; is transformed to nothing. */
2863 /* if ((x & C) != 0) x &= ~C; is transformed to x &= ~C. */
2864 result = (code == EQ) ? a : NULL_RTX;
2866 else
2867 return FALSE;
2869 if (result)
2871 start_sequence ();
2872 noce_emit_move_insn (x, result);
2873 seq = end_ifcvt_sequence (if_info);
2874 if (!seq)
2875 return FALSE;
2877 emit_insn_before_setloc (seq, if_info->jump,
2878 INSN_LOCATION (if_info->insn_a));
2880 return TRUE;
2884 /* Similar to get_condition, only the resulting condition must be
2885 valid at JUMP, instead of at EARLIEST.
2887 If THEN_ELSE_REVERSED is true, the fallthrough does not go to the
2888 THEN block of the caller, and we have to reverse the condition. */
2890 static rtx
2891 noce_get_condition (rtx_insn *jump, rtx_insn **earliest, bool then_else_reversed)
2893 rtx cond, set, tmp;
2894 bool reverse;
2896 if (! any_condjump_p (jump))
2897 return NULL_RTX;
2899 set = pc_set (jump);
2901 /* If this branches to JUMP_LABEL when the condition is false,
2902 reverse the condition. */
2903 reverse = (GET_CODE (XEXP (SET_SRC (set), 2)) == LABEL_REF
2904 && LABEL_REF_LABEL (XEXP (SET_SRC (set), 2)) == JUMP_LABEL (jump));
2906 /* We may have to reverse because the caller's if block is not canonical,
2907 i.e. the THEN block isn't the fallthrough block for the TEST block
2908 (see find_if_header). */
2909 if (then_else_reversed)
2910 reverse = !reverse;
2912 /* If the condition variable is a register and is MODE_INT, accept it. */
2914 cond = XEXP (SET_SRC (set), 0);
2915 tmp = XEXP (cond, 0);
2916 if (REG_P (tmp) && GET_MODE_CLASS (GET_MODE (tmp)) == MODE_INT
2917 && (GET_MODE (tmp) != BImode
2918 || !targetm.small_register_classes_for_mode_p (BImode)))
2920 *earliest = jump;
2922 if (reverse)
2923 cond = gen_rtx_fmt_ee (reverse_condition (GET_CODE (cond)),
2924 GET_MODE (cond), tmp, XEXP (cond, 1));
2925 return cond;
2928 /* Otherwise, fall back on canonicalize_condition to do the dirty
2929 work of manipulating MODE_CC values and COMPARE rtx codes. */
2930 tmp = canonicalize_condition (jump, cond, reverse, earliest,
2931 NULL_RTX, have_cbranchcc4, true);
2933 /* We don't handle side-effects in the condition, like handling
2934 REG_INC notes and making sure no duplicate conditions are emitted. */
2935 if (tmp != NULL_RTX && side_effects_p (tmp))
2936 return NULL_RTX;
2938 return tmp;
2941 /* Return true if OP is ok for if-then-else processing. */
2943 static int
2944 noce_operand_ok (const_rtx op)
2946 if (side_effects_p (op))
2947 return FALSE;
2949 /* We special-case memories, so handle any of them with
2950 no address side effects. */
2951 if (MEM_P (op))
2952 return ! side_effects_p (XEXP (op, 0));
2954 return ! may_trap_p (op);
2957 /* Return true if X contains a MEM subrtx. */
2959 static bool
2960 contains_mem_rtx_p (rtx x)
2962 subrtx_iterator::array_type array;
2963 FOR_EACH_SUBRTX (iter, array, x, ALL)
2964 if (MEM_P (*iter))
2965 return true;
2967 return false;
2970 /* Return true iff basic block TEST_BB is valid for noce if-conversion.
2971 The condition used in this if-conversion is in COND.
2972 In practice, check that TEST_BB ends with a single set
2973 x := a and all previous computations
2974 in TEST_BB don't produce any values that are live after TEST_BB.
2975 In other words, all the insns in TEST_BB are there only
2976 to compute a value for x. Put the rtx cost of the insns
2977 in TEST_BB into COST. Record whether TEST_BB is a single simple
2978 set instruction in SIMPLE_P. */
2980 static bool
2981 bb_valid_for_noce_process_p (basic_block test_bb, rtx cond,
2982 unsigned int *cost, bool *simple_p)
2984 if (!test_bb)
2985 return false;
2987 rtx_insn *last_insn = last_active_insn (test_bb, FALSE);
2988 rtx last_set = NULL_RTX;
2990 rtx cc = cc_in_cond (cond);
2992 if (!insn_valid_noce_process_p (last_insn, cc))
2993 return false;
2994 last_set = single_set (last_insn);
2996 rtx x = SET_DEST (last_set);
2997 rtx_insn *first_insn = first_active_insn (test_bb);
2998 rtx first_set = single_set (first_insn);
3000 if (!first_set)
3001 return false;
3003 /* We have a single simple set, that's okay. */
3004 bool speed_p = optimize_bb_for_speed_p (test_bb);
3006 if (first_insn == last_insn)
3008 *simple_p = noce_operand_ok (SET_DEST (first_set));
3009 *cost = insn_rtx_cost (first_set, speed_p);
3010 return *simple_p;
3013 rtx_insn *prev_last_insn = PREV_INSN (last_insn);
3014 gcc_assert (prev_last_insn);
3016 /* For now, disallow setting x multiple times in test_bb. */
3017 if (REG_P (x) && reg_set_between_p (x, first_insn, prev_last_insn))
3018 return false;
3020 bitmap test_bb_temps = BITMAP_ALLOC (&reg_obstack);
3022 /* The regs that are live out of test_bb. */
3023 bitmap test_bb_live_out = df_get_live_out (test_bb);
3025 int potential_cost = insn_rtx_cost (last_set, speed_p);
3026 rtx_insn *insn;
3027 FOR_BB_INSNS (test_bb, insn)
3029 if (insn != last_insn)
3031 if (!active_insn_p (insn))
3032 continue;
3034 if (!insn_valid_noce_process_p (insn, cc))
3035 goto free_bitmap_and_fail;
3037 rtx sset = single_set (insn);
3038 gcc_assert (sset);
3040 if (contains_mem_rtx_p (SET_SRC (sset))
3041 || !REG_P (SET_DEST (sset))
3042 || reg_overlap_mentioned_p (SET_DEST (sset), cond))
3043 goto free_bitmap_and_fail;
3045 potential_cost += insn_rtx_cost (sset, speed_p);
3046 bitmap_set_bit (test_bb_temps, REGNO (SET_DEST (sset)));
3050 /* If any of the intermediate results in test_bb are live after test_bb
3051 then fail. */
3052 if (bitmap_intersect_p (test_bb_live_out, test_bb_temps))
3053 goto free_bitmap_and_fail;
3055 BITMAP_FREE (test_bb_temps);
3056 *cost = potential_cost;
3057 *simple_p = false;
3058 return true;
3060 free_bitmap_and_fail:
3061 BITMAP_FREE (test_bb_temps);
3062 return false;
3065 /* We have something like:
3067 if (x > y)
3068 { i = a; j = b; k = c; }
3070 Make it:
3072 tmp_i = (x > y) ? a : i;
3073 tmp_j = (x > y) ? b : j;
3074 tmp_k = (x > y) ? c : k;
3075 i = tmp_i;
3076 j = tmp_j;
3077 k = tmp_k;
3079 Subsequent passes are expected to clean up the extra moves.
3081 Look for special cases such as writes to one register which are
3082 read back in another SET, as might occur in a swap idiom or
3083 similar.
3085 These look like:
3087 if (x > y)
3088 i = a;
3089 j = i;
3091 Which we want to rewrite to:
3093 tmp_i = (x > y) ? a : i;
3094 tmp_j = (x > y) ? tmp_i : j;
3095 i = tmp_i;
3096 j = tmp_j;
3098 We can catch these when looking at (SET x y) by keeping a list of the
3099 registers we would have targeted before if-conversion and looking back
3100 through it for an overlap with Y. If we find one, we rewire the
3101 conditional set to use the temporary we introduced earlier.
3103 IF_INFO contains the useful information about the block structure and
3104 jump instructions. */
3106 static int
3107 noce_convert_multiple_sets (struct noce_if_info *if_info)
3109 basic_block test_bb = if_info->test_bb;
3110 basic_block then_bb = if_info->then_bb;
3111 basic_block join_bb = if_info->join_bb;
3112 rtx_insn *jump = if_info->jump;
3113 rtx_insn *cond_earliest;
3114 rtx_insn *insn;
3116 start_sequence ();
3118 /* Decompose the condition attached to the jump. */
3119 rtx cond = noce_get_condition (jump, &cond_earliest, false);
3120 rtx x = XEXP (cond, 0);
3121 rtx y = XEXP (cond, 1);
3122 rtx_code cond_code = GET_CODE (cond);
3124 /* The true targets for a conditional move. */
3125 auto_vec<rtx> targets;
3126 /* The temporaries introduced to allow us to not consider register
3127 overlap. */
3128 auto_vec<rtx> temporaries;
3129 /* The insns we've emitted. */
3130 auto_vec<rtx_insn *> unmodified_insns;
3131 int count = 0;
3133 FOR_BB_INSNS (then_bb, insn)
3135 /* Skip over non-insns. */
3136 if (!active_insn_p (insn))
3137 continue;
3139 rtx set = single_set (insn);
3140 gcc_checking_assert (set);
3142 rtx target = SET_DEST (set);
3143 rtx temp = gen_reg_rtx (GET_MODE (target));
3144 rtx new_val = SET_SRC (set);
3145 rtx old_val = target;
3147 /* If we were supposed to read from an earlier write in this block,
3148 we've changed the register allocation. Rewire the read. While
3149 we are looking, also try to catch a swap idiom. */
3150 for (int i = count - 1; i >= 0; --i)
3151 if (reg_overlap_mentioned_p (new_val, targets[i]))
3153 /* Catch a "swap" style idiom. */
3154 if (find_reg_note (insn, REG_DEAD, new_val) != NULL_RTX)
3155 /* The write to targets[i] is only live until the read
3156 here. As the condition codes match, we can propagate
3157 the set to here. */
3158 new_val = SET_SRC (single_set (unmodified_insns[i]));
3159 else
3160 new_val = temporaries[i];
3161 break;
3164 /* If we had a non-canonical conditional jump (i.e. one where
3165 the fallthrough is to the "else" case) we need to reverse
3166 the conditional select. */
3167 if (if_info->then_else_reversed)
3168 std::swap (old_val, new_val);
3170 /* Actually emit the conditional move. */
3171 rtx temp_dest = noce_emit_cmove (if_info, temp, cond_code,
3172 x, y, new_val, old_val);
3174 /* If we failed to expand the conditional move, drop out and don't
3175 try to continue. */
3176 if (temp_dest == NULL_RTX)
3178 end_sequence ();
3179 return FALSE;
3182 /* Bookkeeping. */
3183 count++;
3184 targets.safe_push (target);
3185 temporaries.safe_push (temp_dest);
3186 unmodified_insns.safe_push (insn);
3189 /* We must have seen some sort of insn to insert, otherwise we were
3190 given an empty BB to convert, and we can't handle that. */
3191 gcc_assert (!unmodified_insns.is_empty ());
3193 /* Now fixup the assignments. */
3194 for (int i = 0; i < count; i++)
3195 noce_emit_move_insn (targets[i], temporaries[i]);
3197 /* Actually emit the sequence. */
3198 rtx_insn *seq = get_insns ();
3200 for (insn = seq; insn; insn = NEXT_INSN (insn))
3201 set_used_flags (insn);
3203 /* Mark all our temporaries and targets as used. */
3204 for (int i = 0; i < count; i++)
3206 set_used_flags (temporaries[i]);
3207 set_used_flags (targets[i]);
3210 set_used_flags (cond);
3211 set_used_flags (x);
3212 set_used_flags (y);
3214 unshare_all_rtl_in_chain (seq);
3215 end_sequence ();
3217 if (!seq)
3218 return FALSE;
3220 for (insn = seq; insn; insn = NEXT_INSN (insn))
3221 if (JUMP_P (insn)
3222 || recog_memoized (insn) == -1)
3223 return FALSE;
3225 emit_insn_before_setloc (seq, if_info->jump,
3226 INSN_LOCATION (unmodified_insns.last ()));
3228 /* Clean up THEN_BB and the edges in and out of it. */
3229 remove_edge (find_edge (test_bb, join_bb));
3230 remove_edge (find_edge (then_bb, join_bb));
3231 redirect_edge_and_branch_force (single_succ_edge (test_bb), join_bb);
3232 delete_basic_block (then_bb);
3233 num_true_changes++;
3235 /* Maybe merge blocks now the jump is simple enough. */
3236 if (can_merge_blocks_p (test_bb, join_bb))
3238 merge_blocks (test_bb, join_bb);
3239 num_true_changes++;
3242 num_updated_if_blocks++;
3243 return TRUE;
3246 /* Return true iff basic block TEST_BB is comprised of only
3247 (SET (REG) (REG)) insns suitable for conversion to a series
3248 of conditional moves. FORNOW: Use II to find the expected cost of
3249 the branch into/over TEST_BB.
3251 TODO: This creates an implicit "magic number" for branch_cost.
3252 II->branch_cost now guides the maximum number of set instructions in
3253 a basic block which is considered profitable to completely
3254 if-convert. */
3256 static bool
3257 bb_ok_for_noce_convert_multiple_sets (basic_block test_bb,
3258 struct noce_if_info *ii)
3260 rtx_insn *insn;
3261 unsigned count = 0;
3262 unsigned param = PARAM_VALUE (PARAM_MAX_RTL_IF_CONVERSION_INSNS);
3263 unsigned limit = MIN (ii->branch_cost, param);
3265 FOR_BB_INSNS (test_bb, insn)
3267 /* Skip over notes etc. */
3268 if (!active_insn_p (insn))
3269 continue;
3271 /* We only handle SET insns. */
3272 rtx set = single_set (insn);
3273 if (set == NULL_RTX)
3274 return false;
3276 rtx dest = SET_DEST (set);
3277 rtx src = SET_SRC (set);
3279 /* We can possibly relax this, but for now only handle REG to REG
3280 moves. This avoids any issues that might come from introducing
3281 loads/stores that might violate data-race-freedom guarantees. */
3282 if (!(REG_P (src) && REG_P (dest)))
3283 return false;
3285 /* Destination must be appropriate for a conditional write. */
3286 if (!noce_operand_ok (dest))
3287 return false;
3289 /* We must be able to conditionally move in this mode. */
3290 if (!can_conditionally_move_p (GET_MODE (dest)))
3291 return false;
3293 /* FORNOW: Our cost model is a count of the number of instructions we
3294 would if-convert. This is suboptimal, and should be improved as part
3295 of a wider rework of branch_cost. */
3296 if (++count > limit)
3297 return false;
3300 return count > 1;
3303 /* Given a simple IF-THEN-JOIN or IF-THEN-ELSE-JOIN block, attempt to convert
3304 it without using conditional execution. Return TRUE if we were successful
3305 at converting the block. */
3307 static int
3308 noce_process_if_block (struct noce_if_info *if_info)
3310 basic_block test_bb = if_info->test_bb; /* test block */
3311 basic_block then_bb = if_info->then_bb; /* THEN */
3312 basic_block else_bb = if_info->else_bb; /* ELSE or NULL */
3313 basic_block join_bb = if_info->join_bb; /* JOIN */
3314 rtx_insn *jump = if_info->jump;
3315 rtx cond = if_info->cond;
3316 rtx_insn *insn_a, *insn_b;
3317 rtx set_a, set_b;
3318 rtx orig_x, x, a, b;
3320 /* We're looking for patterns of the form
3322 (1) if (...) x = a; else x = b;
3323 (2) x = b; if (...) x = a;
3324 (3) if (...) x = a; // as if with an initial x = x.
3325 (4) if (...) { x = a; y = b; z = c; } // Like 3, for multiple SETS.
3326 The later patterns require jumps to be more expensive.
3327 For the if (...) x = a; else x = b; case we allow multiple insns
3328 inside the then and else blocks as long as their only effect is
3329 to calculate a value for x.
3330 ??? For future expansion, further expand the "multiple X" rules. */
3332 /* First look for multiple SETS. */
3333 if (!else_bb
3334 && HAVE_conditional_move
3335 && !HAVE_cc0
3336 && bb_ok_for_noce_convert_multiple_sets (then_bb, if_info))
3338 if (noce_convert_multiple_sets (if_info))
3339 return TRUE;
3342 if (! bb_valid_for_noce_process_p (then_bb, cond, &if_info->then_cost,
3343 &if_info->then_simple))
3344 return false;
3346 if (else_bb
3347 && ! bb_valid_for_noce_process_p (else_bb, cond, &if_info->else_cost,
3348 &if_info->else_simple))
3349 return false;
3351 insn_a = last_active_insn (then_bb, FALSE);
3352 set_a = single_set (insn_a);
3353 gcc_assert (set_a);
3355 x = SET_DEST (set_a);
3356 a = SET_SRC (set_a);
3358 /* Look for the other potential set. Make sure we've got equivalent
3359 destinations. */
3360 /* ??? This is overconservative. Storing to two different mems is
3361 as easy as conditionally computing the address. Storing to a
3362 single mem merely requires a scratch memory to use as one of the
3363 destination addresses; often the memory immediately below the
3364 stack pointer is available for this. */
3365 set_b = NULL_RTX;
3366 if (else_bb)
3368 insn_b = last_active_insn (else_bb, FALSE);
3369 set_b = single_set (insn_b);
3370 gcc_assert (set_b);
3372 if (!rtx_interchangeable_p (x, SET_DEST (set_b)))
3373 return FALSE;
3375 else
3377 insn_b = prev_nonnote_nondebug_insn (if_info->cond_earliest);
3378 /* We're going to be moving the evaluation of B down from above
3379 COND_EARLIEST to JUMP. Make sure the relevant data is still
3380 intact. */
3381 if (! insn_b
3382 || BLOCK_FOR_INSN (insn_b) != BLOCK_FOR_INSN (if_info->cond_earliest)
3383 || !NONJUMP_INSN_P (insn_b)
3384 || (set_b = single_set (insn_b)) == NULL_RTX
3385 || ! rtx_interchangeable_p (x, SET_DEST (set_b))
3386 || ! noce_operand_ok (SET_SRC (set_b))
3387 || reg_overlap_mentioned_p (x, SET_SRC (set_b))
3388 || modified_between_p (SET_SRC (set_b), insn_b, jump)
3389 /* Avoid extending the lifetime of hard registers on small
3390 register class machines. */
3391 || (REG_P (SET_SRC (set_b))
3392 && HARD_REGISTER_P (SET_SRC (set_b))
3393 && targetm.small_register_classes_for_mode_p
3394 (GET_MODE (SET_SRC (set_b))))
3395 /* Likewise with X. In particular this can happen when
3396 noce_get_condition looks farther back in the instruction
3397 stream than one might expect. */
3398 || reg_overlap_mentioned_p (x, cond)
3399 || reg_overlap_mentioned_p (x, a)
3400 || modified_between_p (x, insn_b, jump))
3402 insn_b = NULL;
3403 set_b = NULL_RTX;
3407 /* If x has side effects then only the if-then-else form is safe to
3408 convert. But even in that case we would need to restore any notes
3409 (such as REG_INC) at then end. That can be tricky if
3410 noce_emit_move_insn expands to more than one insn, so disable the
3411 optimization entirely for now if there are side effects. */
3412 if (side_effects_p (x))
3413 return FALSE;
3415 b = (set_b ? SET_SRC (set_b) : x);
3417 /* Only operate on register destinations, and even then avoid extending
3418 the lifetime of hard registers on small register class machines. */
3419 orig_x = x;
3420 if_info->orig_x = orig_x;
3421 if (!REG_P (x)
3422 || (HARD_REGISTER_P (x)
3423 && targetm.small_register_classes_for_mode_p (GET_MODE (x))))
3425 if (GET_MODE (x) == BLKmode)
3426 return FALSE;
3428 if (GET_CODE (x) == ZERO_EXTRACT
3429 && (!CONST_INT_P (XEXP (x, 1))
3430 || !CONST_INT_P (XEXP (x, 2))))
3431 return FALSE;
3433 x = gen_reg_rtx (GET_MODE (GET_CODE (x) == STRICT_LOW_PART
3434 ? XEXP (x, 0) : x));
3437 /* Don't operate on sources that may trap or are volatile. */
3438 if (! noce_operand_ok (a) || ! noce_operand_ok (b))
3439 return FALSE;
3441 retry:
3442 /* Set up the info block for our subroutines. */
3443 if_info->insn_a = insn_a;
3444 if_info->insn_b = insn_b;
3445 if_info->x = x;
3446 if_info->a = a;
3447 if_info->b = b;
3449 /* Try optimizations in some approximation of a useful order. */
3450 /* ??? Should first look to see if X is live incoming at all. If it
3451 isn't, we don't need anything but an unconditional set. */
3453 /* Look and see if A and B are really the same. Avoid creating silly
3454 cmove constructs that no one will fix up later. */
3455 if (noce_simple_bbs (if_info)
3456 && rtx_interchangeable_p (a, b))
3458 /* If we have an INSN_B, we don't have to create any new rtl. Just
3459 move the instruction that we already have. If we don't have an
3460 INSN_B, that means that A == X, and we've got a noop move. In
3461 that case don't do anything and let the code below delete INSN_A. */
3462 if (insn_b && else_bb)
3464 rtx note;
3466 if (else_bb && insn_b == BB_END (else_bb))
3467 BB_END (else_bb) = PREV_INSN (insn_b);
3468 reorder_insns (insn_b, insn_b, PREV_INSN (jump));
3470 /* If there was a REG_EQUAL note, delete it since it may have been
3471 true due to this insn being after a jump. */
3472 if ((note = find_reg_note (insn_b, REG_EQUAL, NULL_RTX)) != 0)
3473 remove_note (insn_b, note);
3475 insn_b = NULL;
3477 /* If we have "x = b; if (...) x = a;", and x has side-effects, then
3478 x must be executed twice. */
3479 else if (insn_b && side_effects_p (orig_x))
3480 return FALSE;
3482 x = orig_x;
3483 goto success;
3486 if (!set_b && MEM_P (orig_x))
3487 /* We want to avoid store speculation to avoid cases like
3488 if (pthread_mutex_trylock(mutex))
3489 ++global_variable;
3490 Rather than go to much effort here, we rely on the SSA optimizers,
3491 which do a good enough job these days. */
3492 return FALSE;
3494 if (noce_try_move (if_info))
3495 goto success;
3496 if (noce_try_store_flag (if_info))
3497 goto success;
3498 if (noce_try_bitop (if_info))
3499 goto success;
3500 if (noce_try_minmax (if_info))
3501 goto success;
3502 if (noce_try_abs (if_info))
3503 goto success;
3504 if (noce_try_inverse_constants (if_info))
3505 goto success;
3506 if (!targetm.have_conditional_execution ()
3507 && noce_try_store_flag_constants (if_info))
3508 goto success;
3509 if (HAVE_conditional_move
3510 && noce_try_cmove (if_info))
3511 goto success;
3512 if (! targetm.have_conditional_execution ())
3514 if (noce_try_addcc (if_info))
3515 goto success;
3516 if (noce_try_store_flag_mask (if_info))
3517 goto success;
3518 if (HAVE_conditional_move
3519 && noce_try_cmove_arith (if_info))
3520 goto success;
3521 if (noce_try_sign_mask (if_info))
3522 goto success;
3525 if (!else_bb && set_b)
3527 insn_b = NULL;
3528 set_b = NULL_RTX;
3529 b = orig_x;
3530 goto retry;
3533 return FALSE;
3535 success:
3537 /* If we used a temporary, fix it up now. */
3538 if (orig_x != x)
3540 rtx_insn *seq;
3542 start_sequence ();
3543 noce_emit_move_insn (orig_x, x);
3544 seq = get_insns ();
3545 set_used_flags (orig_x);
3546 unshare_all_rtl_in_chain (seq);
3547 end_sequence ();
3549 emit_insn_before_setloc (seq, BB_END (test_bb), INSN_LOCATION (insn_a));
3552 /* The original THEN and ELSE blocks may now be removed. The test block
3553 must now jump to the join block. If the test block and the join block
3554 can be merged, do so. */
3555 if (else_bb)
3557 delete_basic_block (else_bb);
3558 num_true_changes++;
3560 else
3561 remove_edge (find_edge (test_bb, join_bb));
3563 remove_edge (find_edge (then_bb, join_bb));
3564 redirect_edge_and_branch_force (single_succ_edge (test_bb), join_bb);
3565 delete_basic_block (then_bb);
3566 num_true_changes++;
3568 if (can_merge_blocks_p (test_bb, join_bb))
3570 merge_blocks (test_bb, join_bb);
3571 num_true_changes++;
3574 num_updated_if_blocks++;
3575 return TRUE;
3578 /* Check whether a block is suitable for conditional move conversion.
3579 Every insn must be a simple set of a register to a constant or a
3580 register. For each assignment, store the value in the pointer map
3581 VALS, keyed indexed by register pointer, then store the register
3582 pointer in REGS. COND is the condition we will test. */
3584 static int
3585 check_cond_move_block (basic_block bb,
3586 hash_map<rtx, rtx> *vals,
3587 vec<rtx> *regs,
3588 rtx cond)
3590 rtx_insn *insn;
3591 rtx cc = cc_in_cond (cond);
3593 /* We can only handle simple jumps at the end of the basic block.
3594 It is almost impossible to update the CFG otherwise. */
3595 insn = BB_END (bb);
3596 if (JUMP_P (insn) && !onlyjump_p (insn))
3597 return FALSE;
3599 FOR_BB_INSNS (bb, insn)
3601 rtx set, dest, src;
3603 if (!NONDEBUG_INSN_P (insn) || JUMP_P (insn))
3604 continue;
3605 set = single_set (insn);
3606 if (!set)
3607 return FALSE;
3609 dest = SET_DEST (set);
3610 src = SET_SRC (set);
3611 if (!REG_P (dest)
3612 || (HARD_REGISTER_P (dest)
3613 && targetm.small_register_classes_for_mode_p (GET_MODE (dest))))
3614 return FALSE;
3616 if (!CONSTANT_P (src) && !register_operand (src, VOIDmode))
3617 return FALSE;
3619 if (side_effects_p (src) || side_effects_p (dest))
3620 return FALSE;
3622 if (may_trap_p (src) || may_trap_p (dest))
3623 return FALSE;
3625 /* Don't try to handle this if the source register was
3626 modified earlier in the block. */
3627 if ((REG_P (src)
3628 && vals->get (src))
3629 || (GET_CODE (src) == SUBREG && REG_P (SUBREG_REG (src))
3630 && vals->get (SUBREG_REG (src))))
3631 return FALSE;
3633 /* Don't try to handle this if the destination register was
3634 modified earlier in the block. */
3635 if (vals->get (dest))
3636 return FALSE;
3638 /* Don't try to handle this if the condition uses the
3639 destination register. */
3640 if (reg_overlap_mentioned_p (dest, cond))
3641 return FALSE;
3643 /* Don't try to handle this if the source register is modified
3644 later in the block. */
3645 if (!CONSTANT_P (src)
3646 && modified_between_p (src, insn, NEXT_INSN (BB_END (bb))))
3647 return FALSE;
3649 /* Skip it if the instruction to be moved might clobber CC. */
3650 if (cc && set_of (cc, insn))
3651 return FALSE;
3653 vals->put (dest, src);
3655 regs->safe_push (dest);
3658 return TRUE;
3661 /* Given a basic block BB suitable for conditional move conversion,
3662 a condition COND, and pointer maps THEN_VALS and ELSE_VALS containing
3663 the register values depending on COND, emit the insns in the block as
3664 conditional moves. If ELSE_BLOCK is true, THEN_BB was already
3665 processed. The caller has started a sequence for the conversion.
3666 Return true if successful, false if something goes wrong. */
3668 static bool
3669 cond_move_convert_if_block (struct noce_if_info *if_infop,
3670 basic_block bb, rtx cond,
3671 hash_map<rtx, rtx> *then_vals,
3672 hash_map<rtx, rtx> *else_vals,
3673 bool else_block_p)
3675 enum rtx_code code;
3676 rtx_insn *insn;
3677 rtx cond_arg0, cond_arg1;
3679 code = GET_CODE (cond);
3680 cond_arg0 = XEXP (cond, 0);
3681 cond_arg1 = XEXP (cond, 1);
3683 FOR_BB_INSNS (bb, insn)
3685 rtx set, target, dest, t, e;
3687 /* ??? Maybe emit conditional debug insn? */
3688 if (!NONDEBUG_INSN_P (insn) || JUMP_P (insn))
3689 continue;
3690 set = single_set (insn);
3691 gcc_assert (set && REG_P (SET_DEST (set)));
3693 dest = SET_DEST (set);
3695 rtx *then_slot = then_vals->get (dest);
3696 rtx *else_slot = else_vals->get (dest);
3697 t = then_slot ? *then_slot : NULL_RTX;
3698 e = else_slot ? *else_slot : NULL_RTX;
3700 if (else_block_p)
3702 /* If this register was set in the then block, we already
3703 handled this case there. */
3704 if (t)
3705 continue;
3706 t = dest;
3707 gcc_assert (e);
3709 else
3711 gcc_assert (t);
3712 if (!e)
3713 e = dest;
3716 target = noce_emit_cmove (if_infop, dest, code, cond_arg0, cond_arg1,
3717 t, e);
3718 if (!target)
3719 return false;
3721 if (target != dest)
3722 noce_emit_move_insn (dest, target);
3725 return true;
3728 /* Given a simple IF-THEN-JOIN or IF-THEN-ELSE-JOIN block, attempt to convert
3729 it using only conditional moves. Return TRUE if we were successful at
3730 converting the block. */
3732 static int
3733 cond_move_process_if_block (struct noce_if_info *if_info)
3735 basic_block test_bb = if_info->test_bb;
3736 basic_block then_bb = if_info->then_bb;
3737 basic_block else_bb = if_info->else_bb;
3738 basic_block join_bb = if_info->join_bb;
3739 rtx_insn *jump = if_info->jump;
3740 rtx cond = if_info->cond;
3741 rtx_insn *seq, *loc_insn;
3742 rtx reg;
3743 int c;
3744 vec<rtx> then_regs = vNULL;
3745 vec<rtx> else_regs = vNULL;
3746 unsigned int i;
3747 int success_p = FALSE;
3748 int limit = PARAM_VALUE (PARAM_MAX_RTL_IF_CONVERSION_INSNS);
3750 /* Build a mapping for each block to the value used for each
3751 register. */
3752 hash_map<rtx, rtx> then_vals;
3753 hash_map<rtx, rtx> else_vals;
3755 /* Make sure the blocks are suitable. */
3756 if (!check_cond_move_block (then_bb, &then_vals, &then_regs, cond)
3757 || (else_bb
3758 && !check_cond_move_block (else_bb, &else_vals, &else_regs, cond)))
3759 goto done;
3761 /* Make sure the blocks can be used together. If the same register
3762 is set in both blocks, and is not set to a constant in both
3763 cases, then both blocks must set it to the same register. We
3764 have already verified that if it is set to a register, that the
3765 source register does not change after the assignment. Also count
3766 the number of registers set in only one of the blocks. */
3767 c = 0;
3768 FOR_EACH_VEC_ELT (then_regs, i, reg)
3770 rtx *then_slot = then_vals.get (reg);
3771 rtx *else_slot = else_vals.get (reg);
3773 gcc_checking_assert (then_slot);
3774 if (!else_slot)
3775 ++c;
3776 else
3778 rtx then_val = *then_slot;
3779 rtx else_val = *else_slot;
3780 if (!CONSTANT_P (then_val) && !CONSTANT_P (else_val)
3781 && !rtx_equal_p (then_val, else_val))
3782 goto done;
3786 /* Finish off c for MAX_CONDITIONAL_EXECUTE. */
3787 FOR_EACH_VEC_ELT (else_regs, i, reg)
3789 gcc_checking_assert (else_vals.get (reg));
3790 if (!then_vals.get (reg))
3791 ++c;
3794 /* Make sure it is reasonable to convert this block. What matters
3795 is the number of assignments currently made in only one of the
3796 branches, since if we convert we are going to always execute
3797 them. */
3798 if (c > MAX_CONDITIONAL_EXECUTE
3799 || c > limit)
3800 goto done;
3802 /* Try to emit the conditional moves. First do the then block,
3803 then do anything left in the else blocks. */
3804 start_sequence ();
3805 if (!cond_move_convert_if_block (if_info, then_bb, cond,
3806 &then_vals, &else_vals, false)
3807 || (else_bb
3808 && !cond_move_convert_if_block (if_info, else_bb, cond,
3809 &then_vals, &else_vals, true)))
3811 end_sequence ();
3812 goto done;
3814 seq = end_ifcvt_sequence (if_info);
3815 if (!seq)
3816 goto done;
3818 loc_insn = first_active_insn (then_bb);
3819 if (!loc_insn)
3821 loc_insn = first_active_insn (else_bb);
3822 gcc_assert (loc_insn);
3824 emit_insn_before_setloc (seq, jump, INSN_LOCATION (loc_insn));
3826 if (else_bb)
3828 delete_basic_block (else_bb);
3829 num_true_changes++;
3831 else
3832 remove_edge (find_edge (test_bb, join_bb));
3834 remove_edge (find_edge (then_bb, join_bb));
3835 redirect_edge_and_branch_force (single_succ_edge (test_bb), join_bb);
3836 delete_basic_block (then_bb);
3837 num_true_changes++;
3839 if (can_merge_blocks_p (test_bb, join_bb))
3841 merge_blocks (test_bb, join_bb);
3842 num_true_changes++;
3845 num_updated_if_blocks++;
3846 success_p = TRUE;
3848 done:
3849 then_regs.release ();
3850 else_regs.release ();
3851 return success_p;
3855 /* Determine if a given basic block heads a simple IF-THEN-JOIN or an
3856 IF-THEN-ELSE-JOIN block.
3858 If so, we'll try to convert the insns to not require the branch,
3859 using only transformations that do not require conditional execution.
3861 Return TRUE if we were successful at converting the block. */
3863 static int
3864 noce_find_if_block (basic_block test_bb, edge then_edge, edge else_edge,
3865 int pass)
3867 basic_block then_bb, else_bb, join_bb;
3868 bool then_else_reversed = false;
3869 rtx_insn *jump;
3870 rtx cond;
3871 rtx_insn *cond_earliest;
3872 struct noce_if_info if_info;
3874 /* We only ever should get here before reload. */
3875 gcc_assert (!reload_completed);
3877 /* Recognize an IF-THEN-ELSE-JOIN block. */
3878 if (single_pred_p (then_edge->dest)
3879 && single_succ_p (then_edge->dest)
3880 && single_pred_p (else_edge->dest)
3881 && single_succ_p (else_edge->dest)
3882 && single_succ (then_edge->dest) == single_succ (else_edge->dest))
3884 then_bb = then_edge->dest;
3885 else_bb = else_edge->dest;
3886 join_bb = single_succ (then_bb);
3888 /* Recognize an IF-THEN-JOIN block. */
3889 else if (single_pred_p (then_edge->dest)
3890 && single_succ_p (then_edge->dest)
3891 && single_succ (then_edge->dest) == else_edge->dest)
3893 then_bb = then_edge->dest;
3894 else_bb = NULL_BLOCK;
3895 join_bb = else_edge->dest;
3897 /* Recognize an IF-ELSE-JOIN block. We can have those because the order
3898 of basic blocks in cfglayout mode does not matter, so the fallthrough
3899 edge can go to any basic block (and not just to bb->next_bb, like in
3900 cfgrtl mode). */
3901 else if (single_pred_p (else_edge->dest)
3902 && single_succ_p (else_edge->dest)
3903 && single_succ (else_edge->dest) == then_edge->dest)
3905 /* The noce transformations do not apply to IF-ELSE-JOIN blocks.
3906 To make this work, we have to invert the THEN and ELSE blocks
3907 and reverse the jump condition. */
3908 then_bb = else_edge->dest;
3909 else_bb = NULL_BLOCK;
3910 join_bb = single_succ (then_bb);
3911 then_else_reversed = true;
3913 else
3914 /* Not a form we can handle. */
3915 return FALSE;
3917 /* The edges of the THEN and ELSE blocks cannot have complex edges. */
3918 if (single_succ_edge (then_bb)->flags & EDGE_COMPLEX)
3919 return FALSE;
3920 if (else_bb
3921 && single_succ_edge (else_bb)->flags & EDGE_COMPLEX)
3922 return FALSE;
3924 num_possible_if_blocks++;
3926 if (dump_file)
3928 fprintf (dump_file,
3929 "\nIF-THEN%s-JOIN block found, pass %d, test %d, then %d",
3930 (else_bb) ? "-ELSE" : "",
3931 pass, test_bb->index, then_bb->index);
3933 if (else_bb)
3934 fprintf (dump_file, ", else %d", else_bb->index);
3936 fprintf (dump_file, ", join %d\n", join_bb->index);
3939 /* If the conditional jump is more than just a conditional
3940 jump, then we can not do if-conversion on this block. */
3941 jump = BB_END (test_bb);
3942 if (! onlyjump_p (jump))
3943 return FALSE;
3945 /* If this is not a standard conditional jump, we can't parse it. */
3946 cond = noce_get_condition (jump, &cond_earliest, then_else_reversed);
3947 if (!cond)
3948 return FALSE;
3950 /* We must be comparing objects whose modes imply the size. */
3951 if (GET_MODE (XEXP (cond, 0)) == BLKmode)
3952 return FALSE;
3954 /* Initialize an IF_INFO struct to pass around. */
3955 memset (&if_info, 0, sizeof if_info);
3956 if_info.test_bb = test_bb;
3957 if_info.then_bb = then_bb;
3958 if_info.else_bb = else_bb;
3959 if_info.join_bb = join_bb;
3960 if_info.cond = cond;
3961 if_info.cond_earliest = cond_earliest;
3962 if_info.jump = jump;
3963 if_info.then_else_reversed = then_else_reversed;
3964 if_info.branch_cost = BRANCH_COST (optimize_bb_for_speed_p (test_bb),
3965 predictable_edge_p (then_edge));
3967 /* Do the real work. */
3969 if (noce_process_if_block (&if_info))
3970 return TRUE;
3972 if (HAVE_conditional_move
3973 && cond_move_process_if_block (&if_info))
3974 return TRUE;
3976 return FALSE;
3980 /* Merge the blocks and mark for local life update. */
3982 static void
3983 merge_if_block (struct ce_if_block * ce_info)
3985 basic_block test_bb = ce_info->test_bb; /* last test block */
3986 basic_block then_bb = ce_info->then_bb; /* THEN */
3987 basic_block else_bb = ce_info->else_bb; /* ELSE or NULL */
3988 basic_block join_bb = ce_info->join_bb; /* join block */
3989 basic_block combo_bb;
3991 /* All block merging is done into the lower block numbers. */
3993 combo_bb = test_bb;
3994 df_set_bb_dirty (test_bb);
3996 /* Merge any basic blocks to handle && and || subtests. Each of
3997 the blocks are on the fallthru path from the predecessor block. */
3998 if (ce_info->num_multiple_test_blocks > 0)
4000 basic_block bb = test_bb;
4001 basic_block last_test_bb = ce_info->last_test_bb;
4002 basic_block fallthru = block_fallthru (bb);
4006 bb = fallthru;
4007 fallthru = block_fallthru (bb);
4008 merge_blocks (combo_bb, bb);
4009 num_true_changes++;
4011 while (bb != last_test_bb);
4014 /* Merge TEST block into THEN block. Normally the THEN block won't have a
4015 label, but it might if there were || tests. That label's count should be
4016 zero, and it normally should be removed. */
4018 if (then_bb)
4020 /* If THEN_BB has no successors, then there's a BARRIER after it.
4021 If COMBO_BB has more than one successor (THEN_BB), then that BARRIER
4022 is no longer needed, and in fact it is incorrect to leave it in
4023 the insn stream. */
4024 if (EDGE_COUNT (then_bb->succs) == 0
4025 && EDGE_COUNT (combo_bb->succs) > 1)
4027 rtx_insn *end = NEXT_INSN (BB_END (then_bb));
4028 while (end && NOTE_P (end) && !NOTE_INSN_BASIC_BLOCK_P (end))
4029 end = NEXT_INSN (end);
4031 if (end && BARRIER_P (end))
4032 delete_insn (end);
4034 merge_blocks (combo_bb, then_bb);
4035 num_true_changes++;
4038 /* The ELSE block, if it existed, had a label. That label count
4039 will almost always be zero, but odd things can happen when labels
4040 get their addresses taken. */
4041 if (else_bb)
4043 /* If ELSE_BB has no successors, then there's a BARRIER after it.
4044 If COMBO_BB has more than one successor (ELSE_BB), then that BARRIER
4045 is no longer needed, and in fact it is incorrect to leave it in
4046 the insn stream. */
4047 if (EDGE_COUNT (else_bb->succs) == 0
4048 && EDGE_COUNT (combo_bb->succs) > 1)
4050 rtx_insn *end = NEXT_INSN (BB_END (else_bb));
4051 while (end && NOTE_P (end) && !NOTE_INSN_BASIC_BLOCK_P (end))
4052 end = NEXT_INSN (end);
4054 if (end && BARRIER_P (end))
4055 delete_insn (end);
4057 merge_blocks (combo_bb, else_bb);
4058 num_true_changes++;
4061 /* If there was no join block reported, that means it was not adjacent
4062 to the others, and so we cannot merge them. */
4064 if (! join_bb)
4066 rtx_insn *last = BB_END (combo_bb);
4068 /* The outgoing edge for the current COMBO block should already
4069 be correct. Verify this. */
4070 if (EDGE_COUNT (combo_bb->succs) == 0)
4071 gcc_assert (find_reg_note (last, REG_NORETURN, NULL)
4072 || (NONJUMP_INSN_P (last)
4073 && GET_CODE (PATTERN (last)) == TRAP_IF
4074 && (TRAP_CONDITION (PATTERN (last))
4075 == const_true_rtx)));
4077 else
4078 /* There should still be something at the end of the THEN or ELSE
4079 blocks taking us to our final destination. */
4080 gcc_assert (JUMP_P (last)
4081 || (EDGE_SUCC (combo_bb, 0)->dest
4082 == EXIT_BLOCK_PTR_FOR_FN (cfun)
4083 && CALL_P (last)
4084 && SIBLING_CALL_P (last))
4085 || ((EDGE_SUCC (combo_bb, 0)->flags & EDGE_EH)
4086 && can_throw_internal (last)));
4089 /* The JOIN block may have had quite a number of other predecessors too.
4090 Since we've already merged the TEST, THEN and ELSE blocks, we should
4091 have only one remaining edge from our if-then-else diamond. If there
4092 is more than one remaining edge, it must come from elsewhere. There
4093 may be zero incoming edges if the THEN block didn't actually join
4094 back up (as with a call to a non-return function). */
4095 else if (EDGE_COUNT (join_bb->preds) < 2
4096 && join_bb != EXIT_BLOCK_PTR_FOR_FN (cfun))
4098 /* We can merge the JOIN cleanly and update the dataflow try
4099 again on this pass.*/
4100 merge_blocks (combo_bb, join_bb);
4101 num_true_changes++;
4103 else
4105 /* We cannot merge the JOIN. */
4107 /* The outgoing edge for the current COMBO block should already
4108 be correct. Verify this. */
4109 gcc_assert (single_succ_p (combo_bb)
4110 && single_succ (combo_bb) == join_bb);
4112 /* Remove the jump and cruft from the end of the COMBO block. */
4113 if (join_bb != EXIT_BLOCK_PTR_FOR_FN (cfun))
4114 tidy_fallthru_edge (single_succ_edge (combo_bb));
4117 num_updated_if_blocks++;
4120 /* Find a block ending in a simple IF condition and try to transform it
4121 in some way. When converting a multi-block condition, put the new code
4122 in the first such block and delete the rest. Return a pointer to this
4123 first block if some transformation was done. Return NULL otherwise. */
4125 static basic_block
4126 find_if_header (basic_block test_bb, int pass)
4128 ce_if_block ce_info;
4129 edge then_edge;
4130 edge else_edge;
4132 /* The kind of block we're looking for has exactly two successors. */
4133 if (EDGE_COUNT (test_bb->succs) != 2)
4134 return NULL;
4136 then_edge = EDGE_SUCC (test_bb, 0);
4137 else_edge = EDGE_SUCC (test_bb, 1);
4139 if (df_get_bb_dirty (then_edge->dest))
4140 return NULL;
4141 if (df_get_bb_dirty (else_edge->dest))
4142 return NULL;
4144 /* Neither edge should be abnormal. */
4145 if ((then_edge->flags & EDGE_COMPLEX)
4146 || (else_edge->flags & EDGE_COMPLEX))
4147 return NULL;
4149 /* Nor exit the loop. */
4150 if ((then_edge->flags & EDGE_LOOP_EXIT)
4151 || (else_edge->flags & EDGE_LOOP_EXIT))
4152 return NULL;
4154 /* The THEN edge is canonically the one that falls through. */
4155 if (then_edge->flags & EDGE_FALLTHRU)
4157 else if (else_edge->flags & EDGE_FALLTHRU)
4158 std::swap (then_edge, else_edge);
4159 else
4160 /* Otherwise this must be a multiway branch of some sort. */
4161 return NULL;
4163 memset (&ce_info, 0, sizeof (ce_info));
4164 ce_info.test_bb = test_bb;
4165 ce_info.then_bb = then_edge->dest;
4166 ce_info.else_bb = else_edge->dest;
4167 ce_info.pass = pass;
4169 #ifdef IFCVT_MACHDEP_INIT
4170 IFCVT_MACHDEP_INIT (&ce_info);
4171 #endif
4173 if (!reload_completed
4174 && noce_find_if_block (test_bb, then_edge, else_edge, pass))
4175 goto success;
4177 if (reload_completed
4178 && targetm.have_conditional_execution ()
4179 && cond_exec_find_if_block (&ce_info))
4180 goto success;
4182 if (targetm.have_trap ()
4183 && optab_handler (ctrap_optab, word_mode) != CODE_FOR_nothing
4184 && find_cond_trap (test_bb, then_edge, else_edge))
4185 goto success;
4187 if (dom_info_state (CDI_POST_DOMINATORS) >= DOM_NO_FAST_QUERY
4188 && (reload_completed || !targetm.have_conditional_execution ()))
4190 if (find_if_case_1 (test_bb, then_edge, else_edge))
4191 goto success;
4192 if (find_if_case_2 (test_bb, then_edge, else_edge))
4193 goto success;
4196 return NULL;
4198 success:
4199 if (dump_file)
4200 fprintf (dump_file, "Conversion succeeded on pass %d.\n", pass);
4201 /* Set this so we continue looking. */
4202 cond_exec_changed_p = TRUE;
4203 return ce_info.test_bb;
4206 /* Return true if a block has two edges, one of which falls through to the next
4207 block, and the other jumps to a specific block, so that we can tell if the
4208 block is part of an && test or an || test. Returns either -1 or the number
4209 of non-note, non-jump, non-USE/CLOBBER insns in the block. */
4211 static int
4212 block_jumps_and_fallthru_p (basic_block cur_bb, basic_block target_bb)
4214 edge cur_edge;
4215 int fallthru_p = FALSE;
4216 int jump_p = FALSE;
4217 rtx_insn *insn;
4218 rtx_insn *end;
4219 int n_insns = 0;
4220 edge_iterator ei;
4222 if (!cur_bb || !target_bb)
4223 return -1;
4225 /* If no edges, obviously it doesn't jump or fallthru. */
4226 if (EDGE_COUNT (cur_bb->succs) == 0)
4227 return FALSE;
4229 FOR_EACH_EDGE (cur_edge, ei, cur_bb->succs)
4231 if (cur_edge->flags & EDGE_COMPLEX)
4232 /* Anything complex isn't what we want. */
4233 return -1;
4235 else if (cur_edge->flags & EDGE_FALLTHRU)
4236 fallthru_p = TRUE;
4238 else if (cur_edge->dest == target_bb)
4239 jump_p = TRUE;
4241 else
4242 return -1;
4245 if ((jump_p & fallthru_p) == 0)
4246 return -1;
4248 /* Don't allow calls in the block, since this is used to group && and ||
4249 together for conditional execution support. ??? we should support
4250 conditional execution support across calls for IA-64 some day, but
4251 for now it makes the code simpler. */
4252 end = BB_END (cur_bb);
4253 insn = BB_HEAD (cur_bb);
4255 while (insn != NULL_RTX)
4257 if (CALL_P (insn))
4258 return -1;
4260 if (INSN_P (insn)
4261 && !JUMP_P (insn)
4262 && !DEBUG_INSN_P (insn)
4263 && GET_CODE (PATTERN (insn)) != USE
4264 && GET_CODE (PATTERN (insn)) != CLOBBER)
4265 n_insns++;
4267 if (insn == end)
4268 break;
4270 insn = NEXT_INSN (insn);
4273 return n_insns;
4276 /* Determine if a given basic block heads a simple IF-THEN or IF-THEN-ELSE
4277 block. If so, we'll try to convert the insns to not require the branch.
4278 Return TRUE if we were successful at converting the block. */
4280 static int
4281 cond_exec_find_if_block (struct ce_if_block * ce_info)
4283 basic_block test_bb = ce_info->test_bb;
4284 basic_block then_bb = ce_info->then_bb;
4285 basic_block else_bb = ce_info->else_bb;
4286 basic_block join_bb = NULL_BLOCK;
4287 edge cur_edge;
4288 basic_block next;
4289 edge_iterator ei;
4291 ce_info->last_test_bb = test_bb;
4293 /* We only ever should get here after reload,
4294 and if we have conditional execution. */
4295 gcc_assert (reload_completed && targetm.have_conditional_execution ());
4297 /* Discover if any fall through predecessors of the current test basic block
4298 were && tests (which jump to the else block) or || tests (which jump to
4299 the then block). */
4300 if (single_pred_p (test_bb)
4301 && single_pred_edge (test_bb)->flags == EDGE_FALLTHRU)
4303 basic_block bb = single_pred (test_bb);
4304 basic_block target_bb;
4305 int max_insns = MAX_CONDITIONAL_EXECUTE;
4306 int n_insns;
4308 /* Determine if the preceding block is an && or || block. */
4309 if ((n_insns = block_jumps_and_fallthru_p (bb, else_bb)) >= 0)
4311 ce_info->and_and_p = TRUE;
4312 target_bb = else_bb;
4314 else if ((n_insns = block_jumps_and_fallthru_p (bb, then_bb)) >= 0)
4316 ce_info->and_and_p = FALSE;
4317 target_bb = then_bb;
4319 else
4320 target_bb = NULL_BLOCK;
4322 if (target_bb && n_insns <= max_insns)
4324 int total_insns = 0;
4325 int blocks = 0;
4327 ce_info->last_test_bb = test_bb;
4329 /* Found at least one && or || block, look for more. */
4332 ce_info->test_bb = test_bb = bb;
4333 total_insns += n_insns;
4334 blocks++;
4336 if (!single_pred_p (bb))
4337 break;
4339 bb = single_pred (bb);
4340 n_insns = block_jumps_and_fallthru_p (bb, target_bb);
4342 while (n_insns >= 0 && (total_insns + n_insns) <= max_insns);
4344 ce_info->num_multiple_test_blocks = blocks;
4345 ce_info->num_multiple_test_insns = total_insns;
4347 if (ce_info->and_and_p)
4348 ce_info->num_and_and_blocks = blocks;
4349 else
4350 ce_info->num_or_or_blocks = blocks;
4354 /* The THEN block of an IF-THEN combo must have exactly one predecessor,
4355 other than any || blocks which jump to the THEN block. */
4356 if ((EDGE_COUNT (then_bb->preds) - ce_info->num_or_or_blocks) != 1)
4357 return FALSE;
4359 /* The edges of the THEN and ELSE blocks cannot have complex edges. */
4360 FOR_EACH_EDGE (cur_edge, ei, then_bb->preds)
4362 if (cur_edge->flags & EDGE_COMPLEX)
4363 return FALSE;
4366 FOR_EACH_EDGE (cur_edge, ei, else_bb->preds)
4368 if (cur_edge->flags & EDGE_COMPLEX)
4369 return FALSE;
4372 /* The THEN block of an IF-THEN combo must have zero or one successors. */
4373 if (EDGE_COUNT (then_bb->succs) > 0
4374 && (!single_succ_p (then_bb)
4375 || (single_succ_edge (then_bb)->flags & EDGE_COMPLEX)
4376 || (epilogue_completed
4377 && tablejump_p (BB_END (then_bb), NULL, NULL))))
4378 return FALSE;
4380 /* If the THEN block has no successors, conditional execution can still
4381 make a conditional call. Don't do this unless the ELSE block has
4382 only one incoming edge -- the CFG manipulation is too ugly otherwise.
4383 Check for the last insn of the THEN block being an indirect jump, which
4384 is listed as not having any successors, but confuses the rest of the CE
4385 code processing. ??? we should fix this in the future. */
4386 if (EDGE_COUNT (then_bb->succs) == 0)
4388 if (single_pred_p (else_bb) && else_bb != EXIT_BLOCK_PTR_FOR_FN (cfun))
4390 rtx_insn *last_insn = BB_END (then_bb);
4392 while (last_insn
4393 && NOTE_P (last_insn)
4394 && last_insn != BB_HEAD (then_bb))
4395 last_insn = PREV_INSN (last_insn);
4397 if (last_insn
4398 && JUMP_P (last_insn)
4399 && ! simplejump_p (last_insn))
4400 return FALSE;
4402 join_bb = else_bb;
4403 else_bb = NULL_BLOCK;
4405 else
4406 return FALSE;
4409 /* If the THEN block's successor is the other edge out of the TEST block,
4410 then we have an IF-THEN combo without an ELSE. */
4411 else if (single_succ (then_bb) == else_bb)
4413 join_bb = else_bb;
4414 else_bb = NULL_BLOCK;
4417 /* If the THEN and ELSE block meet in a subsequent block, and the ELSE
4418 has exactly one predecessor and one successor, and the outgoing edge
4419 is not complex, then we have an IF-THEN-ELSE combo. */
4420 else if (single_succ_p (else_bb)
4421 && single_succ (then_bb) == single_succ (else_bb)
4422 && single_pred_p (else_bb)
4423 && !(single_succ_edge (else_bb)->flags & EDGE_COMPLEX)
4424 && !(epilogue_completed
4425 && tablejump_p (BB_END (else_bb), NULL, NULL)))
4426 join_bb = single_succ (else_bb);
4428 /* Otherwise it is not an IF-THEN or IF-THEN-ELSE combination. */
4429 else
4430 return FALSE;
4432 num_possible_if_blocks++;
4434 if (dump_file)
4436 fprintf (dump_file,
4437 "\nIF-THEN%s block found, pass %d, start block %d "
4438 "[insn %d], then %d [%d]",
4439 (else_bb) ? "-ELSE" : "",
4440 ce_info->pass,
4441 test_bb->index,
4442 BB_HEAD (test_bb) ? (int)INSN_UID (BB_HEAD (test_bb)) : -1,
4443 then_bb->index,
4444 BB_HEAD (then_bb) ? (int)INSN_UID (BB_HEAD (then_bb)) : -1);
4446 if (else_bb)
4447 fprintf (dump_file, ", else %d [%d]",
4448 else_bb->index,
4449 BB_HEAD (else_bb) ? (int)INSN_UID (BB_HEAD (else_bb)) : -1);
4451 fprintf (dump_file, ", join %d [%d]",
4452 join_bb->index,
4453 BB_HEAD (join_bb) ? (int)INSN_UID (BB_HEAD (join_bb)) : -1);
4455 if (ce_info->num_multiple_test_blocks > 0)
4456 fprintf (dump_file, ", %d %s block%s last test %d [%d]",
4457 ce_info->num_multiple_test_blocks,
4458 (ce_info->and_and_p) ? "&&" : "||",
4459 (ce_info->num_multiple_test_blocks == 1) ? "" : "s",
4460 ce_info->last_test_bb->index,
4461 ((BB_HEAD (ce_info->last_test_bb))
4462 ? (int)INSN_UID (BB_HEAD (ce_info->last_test_bb))
4463 : -1));
4465 fputc ('\n', dump_file);
4468 /* Make sure IF, THEN, and ELSE, blocks are adjacent. Actually, we get the
4469 first condition for free, since we've already asserted that there's a
4470 fallthru edge from IF to THEN. Likewise for the && and || blocks, since
4471 we checked the FALLTHRU flag, those are already adjacent to the last IF
4472 block. */
4473 /* ??? As an enhancement, move the ELSE block. Have to deal with
4474 BLOCK notes, if by no other means than backing out the merge if they
4475 exist. Sticky enough I don't want to think about it now. */
4476 next = then_bb;
4477 if (else_bb && (next = next->next_bb) != else_bb)
4478 return FALSE;
4479 if ((next = next->next_bb) != join_bb
4480 && join_bb != EXIT_BLOCK_PTR_FOR_FN (cfun))
4482 if (else_bb)
4483 join_bb = NULL;
4484 else
4485 return FALSE;
4488 /* Do the real work. */
4490 ce_info->else_bb = else_bb;
4491 ce_info->join_bb = join_bb;
4493 /* If we have && and || tests, try to first handle combining the && and ||
4494 tests into the conditional code, and if that fails, go back and handle
4495 it without the && and ||, which at present handles the && case if there
4496 was no ELSE block. */
4497 if (cond_exec_process_if_block (ce_info, TRUE))
4498 return TRUE;
4500 if (ce_info->num_multiple_test_blocks)
4502 cancel_changes (0);
4504 if (cond_exec_process_if_block (ce_info, FALSE))
4505 return TRUE;
4508 return FALSE;
4511 /* Convert a branch over a trap, or a branch
4512 to a trap, into a conditional trap. */
4514 static int
4515 find_cond_trap (basic_block test_bb, edge then_edge, edge else_edge)
4517 basic_block then_bb = then_edge->dest;
4518 basic_block else_bb = else_edge->dest;
4519 basic_block other_bb, trap_bb;
4520 rtx_insn *trap, *jump;
4521 rtx cond;
4522 rtx_insn *cond_earliest;
4523 enum rtx_code code;
4525 /* Locate the block with the trap instruction. */
4526 /* ??? While we look for no successors, we really ought to allow
4527 EH successors. Need to fix merge_if_block for that to work. */
4528 if ((trap = block_has_only_trap (then_bb)) != NULL)
4529 trap_bb = then_bb, other_bb = else_bb;
4530 else if ((trap = block_has_only_trap (else_bb)) != NULL)
4531 trap_bb = else_bb, other_bb = then_bb;
4532 else
4533 return FALSE;
4535 if (dump_file)
4537 fprintf (dump_file, "\nTRAP-IF block found, start %d, trap %d\n",
4538 test_bb->index, trap_bb->index);
4541 /* If this is not a standard conditional jump, we can't parse it. */
4542 jump = BB_END (test_bb);
4543 cond = noce_get_condition (jump, &cond_earliest, false);
4544 if (! cond)
4545 return FALSE;
4547 /* If the conditional jump is more than just a conditional jump, then
4548 we can not do if-conversion on this block. Give up for returnjump_p,
4549 changing a conditional return followed by unconditional trap for
4550 conditional trap followed by unconditional return is likely not
4551 beneficial and harder to handle. */
4552 if (! onlyjump_p (jump) || returnjump_p (jump))
4553 return FALSE;
4555 /* We must be comparing objects whose modes imply the size. */
4556 if (GET_MODE (XEXP (cond, 0)) == BLKmode)
4557 return FALSE;
4559 /* Reverse the comparison code, if necessary. */
4560 code = GET_CODE (cond);
4561 if (then_bb == trap_bb)
4563 code = reversed_comparison_code (cond, jump);
4564 if (code == UNKNOWN)
4565 return FALSE;
4568 /* Attempt to generate the conditional trap. */
4569 rtx_insn *seq = gen_cond_trap (code, copy_rtx (XEXP (cond, 0)),
4570 copy_rtx (XEXP (cond, 1)),
4571 TRAP_CODE (PATTERN (trap)));
4572 if (seq == NULL)
4573 return FALSE;
4575 /* Emit the new insns before cond_earliest. */
4576 emit_insn_before_setloc (seq, cond_earliest, INSN_LOCATION (trap));
4578 /* Delete the trap block if possible. */
4579 remove_edge (trap_bb == then_bb ? then_edge : else_edge);
4580 df_set_bb_dirty (test_bb);
4581 df_set_bb_dirty (then_bb);
4582 df_set_bb_dirty (else_bb);
4584 if (EDGE_COUNT (trap_bb->preds) == 0)
4586 delete_basic_block (trap_bb);
4587 num_true_changes++;
4590 /* Wire together the blocks again. */
4591 if (current_ir_type () == IR_RTL_CFGLAYOUT)
4592 single_succ_edge (test_bb)->flags |= EDGE_FALLTHRU;
4593 else if (trap_bb == then_bb)
4595 rtx lab = JUMP_LABEL (jump);
4596 rtx_insn *seq = targetm.gen_jump (lab);
4597 rtx_jump_insn *newjump = emit_jump_insn_after (seq, jump);
4598 LABEL_NUSES (lab) += 1;
4599 JUMP_LABEL (newjump) = lab;
4600 emit_barrier_after (newjump);
4602 delete_insn (jump);
4604 if (can_merge_blocks_p (test_bb, other_bb))
4606 merge_blocks (test_bb, other_bb);
4607 num_true_changes++;
4610 num_updated_if_blocks++;
4611 return TRUE;
4614 /* Subroutine of find_cond_trap: if BB contains only a trap insn,
4615 return it. */
4617 static rtx_insn *
4618 block_has_only_trap (basic_block bb)
4620 rtx_insn *trap;
4622 /* We're not the exit block. */
4623 if (bb == EXIT_BLOCK_PTR_FOR_FN (cfun))
4624 return NULL;
4626 /* The block must have no successors. */
4627 if (EDGE_COUNT (bb->succs) > 0)
4628 return NULL;
4630 /* The only instruction in the THEN block must be the trap. */
4631 trap = first_active_insn (bb);
4632 if (! (trap == BB_END (bb)
4633 && GET_CODE (PATTERN (trap)) == TRAP_IF
4634 && TRAP_CONDITION (PATTERN (trap)) == const_true_rtx))
4635 return NULL;
4637 return trap;
4640 /* Look for IF-THEN-ELSE cases in which one of THEN or ELSE is
4641 transformable, but not necessarily the other. There need be no
4642 JOIN block.
4644 Return TRUE if we were successful at converting the block.
4646 Cases we'd like to look at:
4649 if (test) goto over; // x not live
4650 x = a;
4651 goto label;
4652 over:
4654 becomes
4656 x = a;
4657 if (! test) goto label;
4660 if (test) goto E; // x not live
4661 x = big();
4662 goto L;
4664 x = b;
4665 goto M;
4667 becomes
4669 x = b;
4670 if (test) goto M;
4671 x = big();
4672 goto L;
4674 (3) // This one's really only interesting for targets that can do
4675 // multiway branching, e.g. IA-64 BBB bundles. For other targets
4676 // it results in multiple branches on a cache line, which often
4677 // does not sit well with predictors.
4679 if (test1) goto E; // predicted not taken
4680 x = a;
4681 if (test2) goto F;
4684 x = b;
4687 becomes
4689 x = a;
4690 if (test1) goto E;
4691 if (test2) goto F;
4693 Notes:
4695 (A) Don't do (2) if the branch is predicted against the block we're
4696 eliminating. Do it anyway if we can eliminate a branch; this requires
4697 that the sole successor of the eliminated block postdominate the other
4698 side of the if.
4700 (B) With CE, on (3) we can steal from both sides of the if, creating
4702 if (test1) x = a;
4703 if (!test1) x = b;
4704 if (test1) goto J;
4705 if (test2) goto F;
4709 Again, this is most useful if J postdominates.
4711 (C) CE substitutes for helpful life information.
4713 (D) These heuristics need a lot of work. */
4715 /* Tests for case 1 above. */
4717 static int
4718 find_if_case_1 (basic_block test_bb, edge then_edge, edge else_edge)
4720 basic_block then_bb = then_edge->dest;
4721 basic_block else_bb = else_edge->dest;
4722 basic_block new_bb;
4723 int then_bb_index, then_prob;
4724 rtx else_target = NULL_RTX;
4726 /* If we are partitioning hot/cold basic blocks, we don't want to
4727 mess up unconditional or indirect jumps that cross between hot
4728 and cold sections.
4730 Basic block partitioning may result in some jumps that appear to
4731 be optimizable (or blocks that appear to be mergeable), but which really
4732 must be left untouched (they are required to make it safely across
4733 partition boundaries). See the comments at the top of
4734 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
4736 if ((BB_END (then_bb)
4737 && JUMP_P (BB_END (then_bb))
4738 && CROSSING_JUMP_P (BB_END (then_bb)))
4739 || (BB_END (test_bb)
4740 && JUMP_P (BB_END (test_bb))
4741 && CROSSING_JUMP_P (BB_END (test_bb)))
4742 || (BB_END (else_bb)
4743 && JUMP_P (BB_END (else_bb))
4744 && CROSSING_JUMP_P (BB_END (else_bb))))
4745 return FALSE;
4747 /* THEN has one successor. */
4748 if (!single_succ_p (then_bb))
4749 return FALSE;
4751 /* THEN does not fall through, but is not strange either. */
4752 if (single_succ_edge (then_bb)->flags & (EDGE_COMPLEX | EDGE_FALLTHRU))
4753 return FALSE;
4755 /* THEN has one predecessor. */
4756 if (!single_pred_p (then_bb))
4757 return FALSE;
4759 /* THEN must do something. */
4760 if (forwarder_block_p (then_bb))
4761 return FALSE;
4763 num_possible_if_blocks++;
4764 if (dump_file)
4765 fprintf (dump_file,
4766 "\nIF-CASE-1 found, start %d, then %d\n",
4767 test_bb->index, then_bb->index);
4769 if (then_edge->probability)
4770 then_prob = REG_BR_PROB_BASE - then_edge->probability;
4771 else
4772 then_prob = REG_BR_PROB_BASE / 2;
4774 /* We're speculating from the THEN path, we want to make sure the cost
4775 of speculation is within reason. */
4776 if (! cheap_bb_rtx_cost_p (then_bb, then_prob,
4777 COSTS_N_INSNS (BRANCH_COST (optimize_bb_for_speed_p (then_edge->src),
4778 predictable_edge_p (then_edge)))))
4779 return FALSE;
4781 if (else_bb == EXIT_BLOCK_PTR_FOR_FN (cfun))
4783 rtx_insn *jump = BB_END (else_edge->src);
4784 gcc_assert (JUMP_P (jump));
4785 else_target = JUMP_LABEL (jump);
4788 /* Registers set are dead, or are predicable. */
4789 if (! dead_or_predicable (test_bb, then_bb, else_bb,
4790 single_succ_edge (then_bb), 1))
4791 return FALSE;
4793 /* Conversion went ok, including moving the insns and fixing up the
4794 jump. Adjust the CFG to match. */
4796 /* We can avoid creating a new basic block if then_bb is immediately
4797 followed by else_bb, i.e. deleting then_bb allows test_bb to fall
4798 through to else_bb. */
4800 if (then_bb->next_bb == else_bb
4801 && then_bb->prev_bb == test_bb
4802 && else_bb != EXIT_BLOCK_PTR_FOR_FN (cfun))
4804 redirect_edge_succ (FALLTHRU_EDGE (test_bb), else_bb);
4805 new_bb = 0;
4807 else if (else_bb == EXIT_BLOCK_PTR_FOR_FN (cfun))
4808 new_bb = force_nonfallthru_and_redirect (FALLTHRU_EDGE (test_bb),
4809 else_bb, else_target);
4810 else
4811 new_bb = redirect_edge_and_branch_force (FALLTHRU_EDGE (test_bb),
4812 else_bb);
4814 df_set_bb_dirty (test_bb);
4815 df_set_bb_dirty (else_bb);
4817 then_bb_index = then_bb->index;
4818 delete_basic_block (then_bb);
4820 /* Make rest of code believe that the newly created block is the THEN_BB
4821 block we removed. */
4822 if (new_bb)
4824 df_bb_replace (then_bb_index, new_bb);
4825 /* This should have been done above via force_nonfallthru_and_redirect
4826 (possibly called from redirect_edge_and_branch_force). */
4827 gcc_checking_assert (BB_PARTITION (new_bb) == BB_PARTITION (test_bb));
4830 num_true_changes++;
4831 num_updated_if_blocks++;
4832 return TRUE;
4835 /* Test for case 2 above. */
4837 static int
4838 find_if_case_2 (basic_block test_bb, edge then_edge, edge else_edge)
4840 basic_block then_bb = then_edge->dest;
4841 basic_block else_bb = else_edge->dest;
4842 edge else_succ;
4843 int then_prob, else_prob;
4845 /* We do not want to speculate (empty) loop latches. */
4846 if (current_loops
4847 && else_bb->loop_father->latch == else_bb)
4848 return FALSE;
4850 /* If we are partitioning hot/cold basic blocks, we don't want to
4851 mess up unconditional or indirect jumps that cross between hot
4852 and cold sections.
4854 Basic block partitioning may result in some jumps that appear to
4855 be optimizable (or blocks that appear to be mergeable), but which really
4856 must be left untouched (they are required to make it safely across
4857 partition boundaries). See the comments at the top of
4858 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
4860 if ((BB_END (then_bb)
4861 && JUMP_P (BB_END (then_bb))
4862 && CROSSING_JUMP_P (BB_END (then_bb)))
4863 || (BB_END (test_bb)
4864 && JUMP_P (BB_END (test_bb))
4865 && CROSSING_JUMP_P (BB_END (test_bb)))
4866 || (BB_END (else_bb)
4867 && JUMP_P (BB_END (else_bb))
4868 && CROSSING_JUMP_P (BB_END (else_bb))))
4869 return FALSE;
4871 /* ELSE has one successor. */
4872 if (!single_succ_p (else_bb))
4873 return FALSE;
4874 else
4875 else_succ = single_succ_edge (else_bb);
4877 /* ELSE outgoing edge is not complex. */
4878 if (else_succ->flags & EDGE_COMPLEX)
4879 return FALSE;
4881 /* ELSE has one predecessor. */
4882 if (!single_pred_p (else_bb))
4883 return FALSE;
4885 /* THEN is not EXIT. */
4886 if (then_bb->index < NUM_FIXED_BLOCKS)
4887 return FALSE;
4889 if (else_edge->probability)
4891 else_prob = else_edge->probability;
4892 then_prob = REG_BR_PROB_BASE - else_prob;
4894 else
4896 else_prob = REG_BR_PROB_BASE / 2;
4897 then_prob = REG_BR_PROB_BASE / 2;
4900 /* ELSE is predicted or SUCC(ELSE) postdominates THEN. */
4901 if (else_prob > then_prob)
4903 else if (else_succ->dest->index < NUM_FIXED_BLOCKS
4904 || dominated_by_p (CDI_POST_DOMINATORS, then_bb,
4905 else_succ->dest))
4907 else
4908 return FALSE;
4910 num_possible_if_blocks++;
4911 if (dump_file)
4912 fprintf (dump_file,
4913 "\nIF-CASE-2 found, start %d, else %d\n",
4914 test_bb->index, else_bb->index);
4916 /* We're speculating from the ELSE path, we want to make sure the cost
4917 of speculation is within reason. */
4918 if (! cheap_bb_rtx_cost_p (else_bb, else_prob,
4919 COSTS_N_INSNS (BRANCH_COST (optimize_bb_for_speed_p (else_edge->src),
4920 predictable_edge_p (else_edge)))))
4921 return FALSE;
4923 /* Registers set are dead, or are predicable. */
4924 if (! dead_or_predicable (test_bb, else_bb, then_bb, else_succ, 0))
4925 return FALSE;
4927 /* Conversion went ok, including moving the insns and fixing up the
4928 jump. Adjust the CFG to match. */
4930 df_set_bb_dirty (test_bb);
4931 df_set_bb_dirty (then_bb);
4932 delete_basic_block (else_bb);
4934 num_true_changes++;
4935 num_updated_if_blocks++;
4937 /* ??? We may now fallthru from one of THEN's successors into a join
4938 block. Rerun cleanup_cfg? Examine things manually? Wait? */
4940 return TRUE;
4943 /* Used by the code above to perform the actual rtl transformations.
4944 Return TRUE if successful.
4946 TEST_BB is the block containing the conditional branch. MERGE_BB
4947 is the block containing the code to manipulate. DEST_EDGE is an
4948 edge representing a jump to the join block; after the conversion,
4949 TEST_BB should be branching to its destination.
4950 REVERSEP is true if the sense of the branch should be reversed. */
4952 static int
4953 dead_or_predicable (basic_block test_bb, basic_block merge_bb,
4954 basic_block other_bb, edge dest_edge, int reversep)
4956 basic_block new_dest = dest_edge->dest;
4957 rtx_insn *head, *end, *jump;
4958 rtx_insn *earliest = NULL;
4959 rtx old_dest;
4960 bitmap merge_set = NULL;
4961 /* Number of pending changes. */
4962 int n_validated_changes = 0;
4963 rtx new_dest_label = NULL_RTX;
4965 jump = BB_END (test_bb);
4967 /* Find the extent of the real code in the merge block. */
4968 head = BB_HEAD (merge_bb);
4969 end = BB_END (merge_bb);
4971 while (DEBUG_INSN_P (end) && end != head)
4972 end = PREV_INSN (end);
4974 /* If merge_bb ends with a tablejump, predicating/moving insn's
4975 into test_bb and then deleting merge_bb will result in the jumptable
4976 that follows merge_bb being removed along with merge_bb and then we
4977 get an unresolved reference to the jumptable. */
4978 if (tablejump_p (end, NULL, NULL))
4979 return FALSE;
4981 if (LABEL_P (head))
4982 head = NEXT_INSN (head);
4983 while (DEBUG_INSN_P (head) && head != end)
4984 head = NEXT_INSN (head);
4985 if (NOTE_P (head))
4987 if (head == end)
4989 head = end = NULL;
4990 goto no_body;
4992 head = NEXT_INSN (head);
4993 while (DEBUG_INSN_P (head) && head != end)
4994 head = NEXT_INSN (head);
4997 if (JUMP_P (end))
4999 if (!onlyjump_p (end))
5000 return FALSE;
5001 if (head == end)
5003 head = end = NULL;
5004 goto no_body;
5006 end = PREV_INSN (end);
5007 while (DEBUG_INSN_P (end) && end != head)
5008 end = PREV_INSN (end);
5011 /* Don't move frame-related insn across the conditional branch. This
5012 can lead to one of the paths of the branch having wrong unwind info. */
5013 if (epilogue_completed)
5015 rtx_insn *insn = head;
5016 while (1)
5018 if (INSN_P (insn) && RTX_FRAME_RELATED_P (insn))
5019 return FALSE;
5020 if (insn == end)
5021 break;
5022 insn = NEXT_INSN (insn);
5026 /* Disable handling dead code by conditional execution if the machine needs
5027 to do anything funny with the tests, etc. */
5028 #ifndef IFCVT_MODIFY_TESTS
5029 if (targetm.have_conditional_execution ())
5031 /* In the conditional execution case, we have things easy. We know
5032 the condition is reversible. We don't have to check life info
5033 because we're going to conditionally execute the code anyway.
5034 All that's left is making sure the insns involved can actually
5035 be predicated. */
5037 rtx cond;
5039 cond = cond_exec_get_condition (jump);
5040 if (! cond)
5041 return FALSE;
5043 rtx note = find_reg_note (jump, REG_BR_PROB, NULL_RTX);
5044 int prob_val = (note ? XINT (note, 0) : -1);
5046 if (reversep)
5048 enum rtx_code rev = reversed_comparison_code (cond, jump);
5049 if (rev == UNKNOWN)
5050 return FALSE;
5051 cond = gen_rtx_fmt_ee (rev, GET_MODE (cond), XEXP (cond, 0),
5052 XEXP (cond, 1));
5053 if (prob_val >= 0)
5054 prob_val = REG_BR_PROB_BASE - prob_val;
5057 if (cond_exec_process_insns (NULL, head, end, cond, prob_val, 0)
5058 && verify_changes (0))
5059 n_validated_changes = num_validated_changes ();
5060 else
5061 cancel_changes (0);
5063 earliest = jump;
5065 #endif
5067 /* If we allocated new pseudos (e.g. in the conditional move
5068 expander called from noce_emit_cmove), we must resize the
5069 array first. */
5070 if (max_regno < max_reg_num ())
5071 max_regno = max_reg_num ();
5073 /* Try the NCE path if the CE path did not result in any changes. */
5074 if (n_validated_changes == 0)
5076 rtx cond;
5077 rtx_insn *insn;
5078 regset live;
5079 bool success;
5081 /* In the non-conditional execution case, we have to verify that there
5082 are no trapping operations, no calls, no references to memory, and
5083 that any registers modified are dead at the branch site. */
5085 if (!any_condjump_p (jump))
5086 return FALSE;
5088 /* Find the extent of the conditional. */
5089 cond = noce_get_condition (jump, &earliest, false);
5090 if (!cond)
5091 return FALSE;
5093 live = BITMAP_ALLOC (&reg_obstack);
5094 simulate_backwards_to_point (merge_bb, live, end);
5095 success = can_move_insns_across (head, end, earliest, jump,
5096 merge_bb, live,
5097 df_get_live_in (other_bb), NULL);
5098 BITMAP_FREE (live);
5099 if (!success)
5100 return FALSE;
5102 /* Collect the set of registers set in MERGE_BB. */
5103 merge_set = BITMAP_ALLOC (&reg_obstack);
5105 FOR_BB_INSNS (merge_bb, insn)
5106 if (NONDEBUG_INSN_P (insn))
5107 df_simulate_find_defs (insn, merge_set);
5109 /* If shrink-wrapping, disable this optimization when test_bb is
5110 the first basic block and merge_bb exits. The idea is to not
5111 move code setting up a return register as that may clobber a
5112 register used to pass function parameters, which then must be
5113 saved in caller-saved regs. A caller-saved reg requires the
5114 prologue, killing a shrink-wrap opportunity. */
5115 if ((SHRINK_WRAPPING_ENABLED && !epilogue_completed)
5116 && ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb == test_bb
5117 && single_succ_p (new_dest)
5118 && single_succ (new_dest) == EXIT_BLOCK_PTR_FOR_FN (cfun)
5119 && bitmap_intersect_p (df_get_live_in (new_dest), merge_set))
5121 regset return_regs;
5122 unsigned int i;
5124 return_regs = BITMAP_ALLOC (&reg_obstack);
5126 /* Start off with the intersection of regs used to pass
5127 params and regs used to return values. */
5128 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
5129 if (FUNCTION_ARG_REGNO_P (i)
5130 && targetm.calls.function_value_regno_p (i))
5131 bitmap_set_bit (return_regs, INCOMING_REGNO (i));
5133 bitmap_and_into (return_regs,
5134 df_get_live_out (ENTRY_BLOCK_PTR_FOR_FN (cfun)));
5135 bitmap_and_into (return_regs,
5136 df_get_live_in (EXIT_BLOCK_PTR_FOR_FN (cfun)));
5137 if (!bitmap_empty_p (return_regs))
5139 FOR_BB_INSNS_REVERSE (new_dest, insn)
5140 if (NONDEBUG_INSN_P (insn))
5142 df_ref def;
5144 /* If this insn sets any reg in return_regs, add all
5145 reg uses to the set of regs we're interested in. */
5146 FOR_EACH_INSN_DEF (def, insn)
5147 if (bitmap_bit_p (return_regs, DF_REF_REGNO (def)))
5149 df_simulate_uses (insn, return_regs);
5150 break;
5153 if (bitmap_intersect_p (merge_set, return_regs))
5155 BITMAP_FREE (return_regs);
5156 BITMAP_FREE (merge_set);
5157 return FALSE;
5160 BITMAP_FREE (return_regs);
5164 no_body:
5165 /* We don't want to use normal invert_jump or redirect_jump because
5166 we don't want to delete_insn called. Also, we want to do our own
5167 change group management. */
5169 old_dest = JUMP_LABEL (jump);
5170 if (other_bb != new_dest)
5172 if (!any_condjump_p (jump))
5173 goto cancel;
5175 if (JUMP_P (BB_END (dest_edge->src)))
5176 new_dest_label = JUMP_LABEL (BB_END (dest_edge->src));
5177 else if (new_dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
5178 new_dest_label = ret_rtx;
5179 else
5180 new_dest_label = block_label (new_dest);
5182 rtx_jump_insn *jump_insn = as_a <rtx_jump_insn *> (jump);
5183 if (reversep
5184 ? ! invert_jump_1 (jump_insn, new_dest_label)
5185 : ! redirect_jump_1 (jump_insn, new_dest_label))
5186 goto cancel;
5189 if (verify_changes (n_validated_changes))
5190 confirm_change_group ();
5191 else
5192 goto cancel;
5194 if (other_bb != new_dest)
5196 redirect_jump_2 (as_a <rtx_jump_insn *> (jump), old_dest, new_dest_label,
5197 0, reversep);
5199 redirect_edge_succ (BRANCH_EDGE (test_bb), new_dest);
5200 if (reversep)
5202 std::swap (BRANCH_EDGE (test_bb)->count,
5203 FALLTHRU_EDGE (test_bb)->count);
5204 std::swap (BRANCH_EDGE (test_bb)->probability,
5205 FALLTHRU_EDGE (test_bb)->probability);
5206 update_br_prob_note (test_bb);
5210 /* Move the insns out of MERGE_BB to before the branch. */
5211 if (head != NULL)
5213 rtx_insn *insn;
5215 if (end == BB_END (merge_bb))
5216 BB_END (merge_bb) = PREV_INSN (head);
5218 /* PR 21767: when moving insns above a conditional branch, the REG_EQUAL
5219 notes being moved might become invalid. */
5220 insn = head;
5223 rtx note;
5225 if (! INSN_P (insn))
5226 continue;
5227 note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
5228 if (! note)
5229 continue;
5230 remove_note (insn, note);
5231 } while (insn != end && (insn = NEXT_INSN (insn)));
5233 /* PR46315: when moving insns above a conditional branch, the REG_EQUAL
5234 notes referring to the registers being set might become invalid. */
5235 if (merge_set)
5237 unsigned i;
5238 bitmap_iterator bi;
5240 EXECUTE_IF_SET_IN_BITMAP (merge_set, 0, i, bi)
5241 remove_reg_equal_equiv_notes_for_regno (i);
5243 BITMAP_FREE (merge_set);
5246 reorder_insns (head, end, PREV_INSN (earliest));
5249 /* Remove the jump and edge if we can. */
5250 if (other_bb == new_dest)
5252 delete_insn (jump);
5253 remove_edge (BRANCH_EDGE (test_bb));
5254 /* ??? Can't merge blocks here, as then_bb is still in use.
5255 At minimum, the merge will get done just before bb-reorder. */
5258 return TRUE;
5260 cancel:
5261 cancel_changes (0);
5263 if (merge_set)
5264 BITMAP_FREE (merge_set);
5266 return FALSE;
5269 /* Main entry point for all if-conversion. AFTER_COMBINE is true if
5270 we are after combine pass. */
5272 static void
5273 if_convert (bool after_combine)
5275 basic_block bb;
5276 int pass;
5278 if (optimize == 1)
5280 df_live_add_problem ();
5281 df_live_set_all_dirty ();
5284 /* Record whether we are after combine pass. */
5285 ifcvt_after_combine = after_combine;
5286 have_cbranchcc4 = (direct_optab_handler (cbranch_optab, CCmode)
5287 != CODE_FOR_nothing);
5288 num_possible_if_blocks = 0;
5289 num_updated_if_blocks = 0;
5290 num_true_changes = 0;
5292 loop_optimizer_init (AVOID_CFG_MODIFICATIONS);
5293 mark_loop_exit_edges ();
5294 loop_optimizer_finalize ();
5295 free_dominance_info (CDI_DOMINATORS);
5297 /* Compute postdominators. */
5298 calculate_dominance_info (CDI_POST_DOMINATORS);
5300 df_set_flags (DF_LR_RUN_DCE);
5302 /* Go through each of the basic blocks looking for things to convert. If we
5303 have conditional execution, we make multiple passes to allow us to handle
5304 IF-THEN{-ELSE} blocks within other IF-THEN{-ELSE} blocks. */
5305 pass = 0;
5308 df_analyze ();
5309 /* Only need to do dce on the first pass. */
5310 df_clear_flags (DF_LR_RUN_DCE);
5311 cond_exec_changed_p = FALSE;
5312 pass++;
5314 #ifdef IFCVT_MULTIPLE_DUMPS
5315 if (dump_file && pass > 1)
5316 fprintf (dump_file, "\n\n========== Pass %d ==========\n", pass);
5317 #endif
5319 FOR_EACH_BB_FN (bb, cfun)
5321 basic_block new_bb;
5322 while (!df_get_bb_dirty (bb)
5323 && (new_bb = find_if_header (bb, pass)) != NULL)
5324 bb = new_bb;
5327 #ifdef IFCVT_MULTIPLE_DUMPS
5328 if (dump_file && cond_exec_changed_p)
5329 print_rtl_with_bb (dump_file, get_insns (), dump_flags);
5330 #endif
5332 while (cond_exec_changed_p);
5334 #ifdef IFCVT_MULTIPLE_DUMPS
5335 if (dump_file)
5336 fprintf (dump_file, "\n\n========== no more changes\n");
5337 #endif
5339 free_dominance_info (CDI_POST_DOMINATORS);
5341 if (dump_file)
5342 fflush (dump_file);
5344 clear_aux_for_blocks ();
5346 /* If we allocated new pseudos, we must resize the array for sched1. */
5347 if (max_regno < max_reg_num ())
5348 max_regno = max_reg_num ();
5350 /* Write the final stats. */
5351 if (dump_file && num_possible_if_blocks > 0)
5353 fprintf (dump_file,
5354 "\n%d possible IF blocks searched.\n",
5355 num_possible_if_blocks);
5356 fprintf (dump_file,
5357 "%d IF blocks converted.\n",
5358 num_updated_if_blocks);
5359 fprintf (dump_file,
5360 "%d true changes made.\n\n\n",
5361 num_true_changes);
5364 if (optimize == 1)
5365 df_remove_problem (df_live);
5367 checking_verify_flow_info ();
5370 /* If-conversion and CFG cleanup. */
5371 static unsigned int
5372 rest_of_handle_if_conversion (void)
5374 if (flag_if_conversion)
5376 if (dump_file)
5378 dump_reg_info (dump_file);
5379 dump_flow_info (dump_file, dump_flags);
5381 cleanup_cfg (CLEANUP_EXPENSIVE);
5382 if_convert (false);
5385 cleanup_cfg (0);
5386 return 0;
5389 namespace {
5391 const pass_data pass_data_rtl_ifcvt =
5393 RTL_PASS, /* type */
5394 "ce1", /* name */
5395 OPTGROUP_NONE, /* optinfo_flags */
5396 TV_IFCVT, /* tv_id */
5397 0, /* properties_required */
5398 0, /* properties_provided */
5399 0, /* properties_destroyed */
5400 0, /* todo_flags_start */
5401 TODO_df_finish, /* todo_flags_finish */
5404 class pass_rtl_ifcvt : public rtl_opt_pass
5406 public:
5407 pass_rtl_ifcvt (gcc::context *ctxt)
5408 : rtl_opt_pass (pass_data_rtl_ifcvt, ctxt)
5411 /* opt_pass methods: */
5412 virtual bool gate (function *)
5414 return (optimize > 0) && dbg_cnt (if_conversion);
5417 virtual unsigned int execute (function *)
5419 return rest_of_handle_if_conversion ();
5422 }; // class pass_rtl_ifcvt
5424 } // anon namespace
5426 rtl_opt_pass *
5427 make_pass_rtl_ifcvt (gcc::context *ctxt)
5429 return new pass_rtl_ifcvt (ctxt);
5433 /* Rerun if-conversion, as combine may have simplified things enough
5434 to now meet sequence length restrictions. */
5436 namespace {
5438 const pass_data pass_data_if_after_combine =
5440 RTL_PASS, /* type */
5441 "ce2", /* name */
5442 OPTGROUP_NONE, /* optinfo_flags */
5443 TV_IFCVT, /* tv_id */
5444 0, /* properties_required */
5445 0, /* properties_provided */
5446 0, /* properties_destroyed */
5447 0, /* todo_flags_start */
5448 TODO_df_finish, /* todo_flags_finish */
5451 class pass_if_after_combine : public rtl_opt_pass
5453 public:
5454 pass_if_after_combine (gcc::context *ctxt)
5455 : rtl_opt_pass (pass_data_if_after_combine, ctxt)
5458 /* opt_pass methods: */
5459 virtual bool gate (function *)
5461 return optimize > 0 && flag_if_conversion
5462 && dbg_cnt (if_after_combine);
5465 virtual unsigned int execute (function *)
5467 if_convert (true);
5468 return 0;
5471 }; // class pass_if_after_combine
5473 } // anon namespace
5475 rtl_opt_pass *
5476 make_pass_if_after_combine (gcc::context *ctxt)
5478 return new pass_if_after_combine (ctxt);
5482 namespace {
5484 const pass_data pass_data_if_after_reload =
5486 RTL_PASS, /* type */
5487 "ce3", /* name */
5488 OPTGROUP_NONE, /* optinfo_flags */
5489 TV_IFCVT2, /* tv_id */
5490 0, /* properties_required */
5491 0, /* properties_provided */
5492 0, /* properties_destroyed */
5493 0, /* todo_flags_start */
5494 TODO_df_finish, /* todo_flags_finish */
5497 class pass_if_after_reload : public rtl_opt_pass
5499 public:
5500 pass_if_after_reload (gcc::context *ctxt)
5501 : rtl_opt_pass (pass_data_if_after_reload, ctxt)
5504 /* opt_pass methods: */
5505 virtual bool gate (function *)
5507 return optimize > 0 && flag_if_conversion2
5508 && dbg_cnt (if_after_reload);
5511 virtual unsigned int execute (function *)
5513 if_convert (true);
5514 return 0;
5517 }; // class pass_if_after_reload
5519 } // anon namespace
5521 rtl_opt_pass *
5522 make_pass_if_after_reload (gcc::context *ctxt)
5524 return new pass_if_after_reload (ctxt);