2003-12-26 Guilhem Lavaux <guilhem@kaffe.org>
[official-gcc.git] / libstdc++-v3 / include / bits / stl_function.h
blob556104c714d48476c6fa71f593b2fcd5be5c8206
1 // Functor implementations -*- C++ -*-
3 // Copyright (C) 2001, 2002 Free Software Foundation, Inc.
4 //
5 // This file is part of the GNU ISO C++ Library. This library is free
6 // software; you can redistribute it and/or modify it under the
7 // terms of the GNU General Public License as published by the
8 // Free Software Foundation; either version 2, or (at your option)
9 // any later version.
11 // This library is distributed in the hope that it will be useful,
12 // but WITHOUT ANY WARRANTY; without even the implied warranty of
13 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 // GNU General Public License for more details.
16 // You should have received a copy of the GNU General Public License along
17 // with this library; see the file COPYING. If not, write to the Free
18 // Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307,
19 // USA.
21 // As a special exception, you may use this file as part of a free software
22 // library without restriction. Specifically, if other files instantiate
23 // templates or use macros or inline functions from this file, or you compile
24 // this file and link it with other files to produce an executable, this
25 // file does not by itself cause the resulting executable to be covered by
26 // the GNU General Public License. This exception does not however
27 // invalidate any other reasons why the executable file might be covered by
28 // the GNU General Public License.
32 * Copyright (c) 1994
33 * Hewlett-Packard Company
35 * Permission to use, copy, modify, distribute and sell this software
36 * and its documentation for any purpose is hereby granted without fee,
37 * provided that the above copyright notice appear in all copies and
38 * that both that copyright notice and this permission notice appear
39 * in supporting documentation. Hewlett-Packard Company makes no
40 * representations about the suitability of this software for any
41 * purpose. It is provided "as is" without express or implied warranty.
44 * Copyright (c) 1996-1998
45 * Silicon Graphics Computer Systems, Inc.
47 * Permission to use, copy, modify, distribute and sell this software
48 * and its documentation for any purpose is hereby granted without fee,
49 * provided that the above copyright notice appear in all copies and
50 * that both that copyright notice and this permission notice appear
51 * in supporting documentation. Silicon Graphics makes no
52 * representations about the suitability of this software for any
53 * purpose. It is provided "as is" without express or implied warranty.
56 /** @file stl_function.h
57 * This is an internal header file, included by other library headers.
58 * You should not attempt to use it directly.
61 #ifndef _FUNCTION_H
62 #define _FUNCTION_H 1
64 namespace std
66 // 20.3.1 base classes
67 /** @defgroup s20_3_1_base Functor Base Classes
68 * Function objects, or @e functors, are objects with an @c operator()
69 * defined and accessible. They can be passed as arguments to algorithm
70 * templates and used in place of a function pointer. Not only is the
71 * resulting expressiveness of the library increased, but the generated
72 * code can be more efficient than what you might write by hand. When we
73 * refer to "functors," then, generally we include function pointers in
74 * the description as well.
76 * Often, functors are only created as temporaries passed to algorithm
77 * calls, rather than being created as named variables.
79 * Two examples taken from the standard itself follow. To perform a
80 * by-element addition of two vectors @c a and @c b containing @c double,
81 * and put the result in @c a, use
82 * \code
83 * transform (a.begin(), a.end(), b.begin(), a.begin(), plus<double>());
84 * \endcode
85 * To negate every element in @c a, use
86 * \code
87 * transform(a.begin(), a.end(), a.begin(), negate<double>());
88 * \endcode
89 * The addition and negation functions will be inlined directly.
91 * The standard functiors are derived from structs named @c unary_function
92 * and @c binary_function. These two classes contain nothing but typedefs,
93 * to aid in generic (template) programming. If you write your own
94 * functors, you might consider doing the same.
96 * @{
98 /**
99 * This is one of the @link s20_3_1_base functor base classes@endlink.
101 template <class _Arg, class _Result>
102 struct unary_function {
103 typedef _Arg argument_type; ///< @c argument_type is the type of the argument (no surprises here)
104 typedef _Result result_type; ///< @c result_type is the return type
108 * This is one of the @link s20_3_1_base functor base classes@endlink.
110 template <class _Arg1, class _Arg2, class _Result>
111 struct binary_function {
112 typedef _Arg1 first_argument_type; ///< the type of the first argument (no surprises here)
113 typedef _Arg2 second_argument_type; ///< the type of the second argument
114 typedef _Result result_type; ///< type of the return type
116 /** @} */
118 // 20.3.2 arithmetic
119 /** @defgroup s20_3_2_arithmetic Arithmetic Classes
120 * Because basic math often needs to be done during an algorithm, the library
121 * provides functors for those operations. See the documentation for
122 * @link s20_3_1_base the base classes@endlink for examples of their use.
124 * @{
126 /// One of the @link s20_3_2_arithmetic math functors@endlink.
127 template <class _Tp>
128 struct plus : public binary_function<_Tp,_Tp,_Tp> {
129 _Tp operator()(const _Tp& __x, const _Tp& __y) const { return __x + __y; }
132 /// One of the @link s20_3_2_arithmetic math functors@endlink.
133 template <class _Tp>
134 struct minus : public binary_function<_Tp,_Tp,_Tp> {
135 _Tp operator()(const _Tp& __x, const _Tp& __y) const { return __x - __y; }
138 /// One of the @link s20_3_2_arithmetic math functors@endlink.
139 template <class _Tp>
140 struct multiplies : public binary_function<_Tp,_Tp,_Tp> {
141 _Tp operator()(const _Tp& __x, const _Tp& __y) const { return __x * __y; }
144 /// One of the @link s20_3_2_arithmetic math functors@endlink.
145 template <class _Tp>
146 struct divides : public binary_function<_Tp,_Tp,_Tp> {
147 _Tp operator()(const _Tp& __x, const _Tp& __y) const { return __x / __y; }
150 /// One of the @link s20_3_2_arithmetic math functors@endlink.
151 template <class _Tp>
152 struct modulus : public binary_function<_Tp,_Tp,_Tp>
154 _Tp operator()(const _Tp& __x, const _Tp& __y) const { return __x % __y; }
157 /// One of the @link s20_3_2_arithmetic math functors@endlink.
158 template <class _Tp>
159 struct negate : public unary_function<_Tp,_Tp>
161 _Tp operator()(const _Tp& __x) const { return -__x; }
163 /** @} */
165 // 20.3.3 comparisons
166 /** @defgroup s20_3_3_comparisons Comparison Classes
167 * The library provides six wrapper functors for all the basic comparisons
168 * in C++, like @c <.
170 * @{
172 /// One of the @link s20_3_3_comparisons comparison functors@endlink.
173 template <class _Tp>
174 struct equal_to : public binary_function<_Tp,_Tp,bool>
176 bool operator()(const _Tp& __x, const _Tp& __y) const { return __x == __y; }
179 /// One of the @link s20_3_3_comparisons comparison functors@endlink.
180 template <class _Tp>
181 struct not_equal_to : public binary_function<_Tp,_Tp,bool>
183 bool operator()(const _Tp& __x, const _Tp& __y) const { return __x != __y; }
186 /// One of the @link s20_3_3_comparisons comparison functors@endlink.
187 template <class _Tp>
188 struct greater : public binary_function<_Tp,_Tp,bool>
190 bool operator()(const _Tp& __x, const _Tp& __y) const { return __x > __y; }
193 /// One of the @link s20_3_3_comparisons comparison functors@endlink.
194 template <class _Tp>
195 struct less : public binary_function<_Tp,_Tp,bool>
197 bool operator()(const _Tp& __x, const _Tp& __y) const { return __x < __y; }
200 /// One of the @link s20_3_3_comparisons comparison functors@endlink.
201 template <class _Tp>
202 struct greater_equal : public binary_function<_Tp,_Tp,bool>
204 bool operator()(const _Tp& __x, const _Tp& __y) const { return __x >= __y; }
207 /// One of the @link s20_3_3_comparisons comparison functors@endlink.
208 template <class _Tp>
209 struct less_equal : public binary_function<_Tp,_Tp,bool>
211 bool operator()(const _Tp& __x, const _Tp& __y) const { return __x <= __y; }
213 /** @} */
215 // 20.3.4 logical operations
216 /** @defgroup s20_3_4_logical Boolean Operations Classes
217 * Here are wrapper functors for Boolean operations: @c &&, @c ||, and @c !.
219 * @{
221 /// One of the @link s20_3_4_logical Boolean operations functors@endlink.
222 template <class _Tp>
223 struct logical_and : public binary_function<_Tp,_Tp,bool>
225 bool operator()(const _Tp& __x, const _Tp& __y) const { return __x && __y; }
228 /// One of the @link s20_3_4_logical Boolean operations functors@endlink.
229 template <class _Tp>
230 struct logical_or : public binary_function<_Tp,_Tp,bool>
232 bool operator()(const _Tp& __x, const _Tp& __y) const { return __x || __y; }
235 /// One of the @link s20_3_4_logical Boolean operations functors@endlink.
236 template <class _Tp>
237 struct logical_not : public unary_function<_Tp,bool>
239 bool operator()(const _Tp& __x) const { return !__x; }
241 /** @} */
243 // 20.3.5 negators
244 /** @defgroup s20_3_5_negators Negators
245 * The functions @c not1 and @c not2 each take a predicate functor
246 * and return an instance of @c unary_negate or
247 * @c binary_negate, respectively. These classes are functors whose
248 * @c operator() performs the stored predicate function and then returns
249 * the negation of the result.
251 * For example, given a vector of integers and a trivial predicate,
252 * \code
253 * struct IntGreaterThanThree
254 * : public std::unary_function<int, bool>
256 * bool operator() (int x) { return x > 3; }
257 * };
259 * std::find_if (v.begin(), v.end(), not1(IntGreaterThanThree()));
260 * \endcode
261 * The call to @c find_if will locate the first index (i) of @c v for which
262 * "!(v[i] > 3)" is true.
264 * The not1/unary_negate combination works on predicates taking a single
265 * argument. The not2/binary_negate combination works on predicates which
266 * take two arguments.
268 * @{
270 /// One of the @link s20_3_5_negators negation functors@endlink.
271 template <class _Predicate>
272 class unary_negate
273 : public unary_function<typename _Predicate::argument_type, bool> {
274 protected:
275 _Predicate _M_pred;
276 public:
277 explicit unary_negate(const _Predicate& __x) : _M_pred(__x) {}
278 bool operator()(const typename _Predicate::argument_type& __x) const {
279 return !_M_pred(__x);
283 /// One of the @link s20_3_5_negators negation functors@endlink.
284 template <class _Predicate>
285 inline unary_negate<_Predicate>
286 not1(const _Predicate& __pred)
288 return unary_negate<_Predicate>(__pred);
291 /// One of the @link s20_3_5_negators negation functors@endlink.
292 template <class _Predicate>
293 class binary_negate
294 : public binary_function<typename _Predicate::first_argument_type,
295 typename _Predicate::second_argument_type,
296 bool> {
297 protected:
298 _Predicate _M_pred;
299 public:
300 explicit binary_negate(const _Predicate& __x) : _M_pred(__x) {}
301 bool operator()(const typename _Predicate::first_argument_type& __x,
302 const typename _Predicate::second_argument_type& __y) const
304 return !_M_pred(__x, __y);
308 /// One of the @link s20_3_5_negators negation functors@endlink.
309 template <class _Predicate>
310 inline binary_negate<_Predicate>
311 not2(const _Predicate& __pred)
313 return binary_negate<_Predicate>(__pred);
315 /** @} */
317 // 20.3.6 binders
318 /** @defgroup s20_3_6_binder Binder Classes
319 * Binders turn functions/functors with two arguments into functors with
320 * a single argument, storing an argument to be applied later. For
321 * example, an variable @c B of type @c binder1st is constructed from a functor
322 * @c f and an argument @c x. Later, B's @c operator() is called with a
323 * single argument @c y. The return value is the value of @c f(x,y).
324 * @c B can be "called" with various arguments (y1, y2, ...) and will in
325 * turn call @c f(x,y1), @c f(x,y2), ...
327 * The function @c bind1st is provided to save some typing. It takes the
328 * function and an argument as parameters, and returns an instance of
329 * @c binder1st.
331 * The type @c binder2nd and its creator function @c bind2nd do the same
332 * thing, but the stored argument is passed as the second parameter instead
333 * of the first, e.g., @c bind2nd(std::minus<float>,1.3) will create a
334 * functor whose @c operator() accepts a floating-point number, subtracts
335 * 1.3 from it, and returns the result. (If @c bind1st had been used,
336 * the functor would perform "1.3 - x" instead.
338 * Creator-wrapper functions like @c bind1st are intended to be used in
339 * calling algorithms. Their return values will be temporary objects.
340 * (The goal is to not require you to type names like
341 * @c std::binder1st<std::plus<int>> for declaring a variable to hold the
342 * return value from @c bind1st(std::plus<int>,5).
344 * These become more useful when combined with the composition functions.
346 * @{
348 /// One of the @link s20_3_6_binder binder functors@endlink.
349 template <class _Operation>
350 class binder1st
351 : public unary_function<typename _Operation::second_argument_type,
352 typename _Operation::result_type> {
353 protected:
354 _Operation op;
355 typename _Operation::first_argument_type value;
356 public:
357 binder1st(const _Operation& __x,
358 const typename _Operation::first_argument_type& __y)
359 : op(__x), value(__y) {}
360 typename _Operation::result_type
361 operator()(const typename _Operation::second_argument_type& __x) const {
362 return op(value, __x);
364 // _GLIBCXX_RESOLVE_LIB_DEFECTS
365 // 109. Missing binders for non-const sequence elements
366 typename _Operation::result_type
367 operator()(typename _Operation::second_argument_type& __x) const {
368 return op(value, __x);
372 /// One of the @link s20_3_6_binder binder functors@endlink.
373 template <class _Operation, class _Tp>
374 inline binder1st<_Operation>
375 bind1st(const _Operation& __fn, const _Tp& __x)
377 typedef typename _Operation::first_argument_type _Arg1_type;
378 return binder1st<_Operation>(__fn, _Arg1_type(__x));
381 /// One of the @link s20_3_6_binder binder functors@endlink.
382 template <class _Operation>
383 class binder2nd
384 : public unary_function<typename _Operation::first_argument_type,
385 typename _Operation::result_type> {
386 protected:
387 _Operation op;
388 typename _Operation::second_argument_type value;
389 public:
390 binder2nd(const _Operation& __x,
391 const typename _Operation::second_argument_type& __y)
392 : op(__x), value(__y) {}
393 typename _Operation::result_type
394 operator()(const typename _Operation::first_argument_type& __x) const {
395 return op(__x, value);
397 // _GLIBCXX_RESOLVE_LIB_DEFECTS
398 // 109. Missing binders for non-const sequence elements
399 typename _Operation::result_type
400 operator()(typename _Operation::first_argument_type& __x) const {
401 return op(__x, value);
405 /// One of the @link s20_3_6_binder binder functors@endlink.
406 template <class _Operation, class _Tp>
407 inline binder2nd<_Operation>
408 bind2nd(const _Operation& __fn, const _Tp& __x)
410 typedef typename _Operation::second_argument_type _Arg2_type;
411 return binder2nd<_Operation>(__fn, _Arg2_type(__x));
413 /** @} */
415 // 20.3.7 adaptors pointers functions
416 /** @defgroup s20_3_7_adaptors Adaptors for pointers to functions
417 * The advantage of function objects over pointers to functions is that
418 * the objects in the standard library declare nested typedefs describing
419 * their argument and result types with uniform names (e.g., @c result_type
420 * from the base classes @c unary_function and @c binary_function).
421 * Sometimes those typedefs are required, not just optional.
423 * Adaptors are provided to turn pointers to unary (single-argument) and
424 * binary (double-argument) functions into function objects. The long-winded
425 * functor @c pointer_to_unary_function is constructed with a function
426 * pointer @c f, and its @c operator() called with argument @c x returns
427 * @c f(x). The functor @c pointer_to_binary_function does the same thing,
428 * but with a double-argument @c f and @c operator().
430 * The function @c ptr_fun takes a pointer-to-function @c f and constructs
431 * an instance of the appropriate functor.
433 * @{
435 /// One of the @link s20_3_7_adaptors adaptors for function pointers@endlink.
436 template <class _Arg, class _Result>
437 class pointer_to_unary_function : public unary_function<_Arg, _Result> {
438 protected:
439 _Result (*_M_ptr)(_Arg);
440 public:
441 pointer_to_unary_function() {}
442 explicit pointer_to_unary_function(_Result (*__x)(_Arg)) : _M_ptr(__x) {}
443 _Result operator()(_Arg __x) const { return _M_ptr(__x); }
446 /// One of the @link s20_3_7_adaptors adaptors for function pointers@endlink.
447 template <class _Arg, class _Result>
448 inline pointer_to_unary_function<_Arg, _Result> ptr_fun(_Result (*__x)(_Arg))
450 return pointer_to_unary_function<_Arg, _Result>(__x);
453 /// One of the @link s20_3_7_adaptors adaptors for function pointers@endlink.
454 template <class _Arg1, class _Arg2, class _Result>
455 class pointer_to_binary_function :
456 public binary_function<_Arg1,_Arg2,_Result> {
457 protected:
458 _Result (*_M_ptr)(_Arg1, _Arg2);
459 public:
460 pointer_to_binary_function() {}
461 explicit pointer_to_binary_function(_Result (*__x)(_Arg1, _Arg2))
462 : _M_ptr(__x) {}
463 _Result operator()(_Arg1 __x, _Arg2 __y) const {
464 return _M_ptr(__x, __y);
468 /// One of the @link s20_3_7_adaptors adaptors for function pointers@endlink.
469 template <class _Arg1, class _Arg2, class _Result>
470 inline pointer_to_binary_function<_Arg1,_Arg2,_Result>
471 ptr_fun(_Result (*__x)(_Arg1, _Arg2)) {
472 return pointer_to_binary_function<_Arg1,_Arg2,_Result>(__x);
474 /** @} */
476 template <class _Tp>
477 struct _Identity : public unary_function<_Tp,_Tp> {
478 _Tp& operator()(_Tp& __x) const { return __x; }
479 const _Tp& operator()(const _Tp& __x) const { return __x; }
482 template <class _Pair>
483 struct _Select1st : public unary_function<_Pair, typename _Pair::first_type> {
484 typename _Pair::first_type& operator()(_Pair& __x) const {
485 return __x.first;
487 const typename _Pair::first_type& operator()(const _Pair& __x) const {
488 return __x.first;
492 template <class _Pair>
493 struct _Select2nd : public unary_function<_Pair, typename _Pair::second_type>
495 typename _Pair::second_type& operator()(_Pair& __x) const {
496 return __x.second;
498 const typename _Pair::second_type& operator()(const _Pair& __x) const {
499 return __x.second;
503 // 20.3.8 adaptors pointers members
504 /** @defgroup s20_3_8_memadaptors Adaptors for pointers to members
505 * There are a total of 16 = 2^4 function objects in this family.
506 * (1) Member functions taking no arguments vs member functions taking
507 * one argument.
508 * (2) Call through pointer vs call through reference.
509 * (3) Member function with void return type vs member function with
510 * non-void return type.
511 * (4) Const vs non-const member function.
513 * Note that choice (3) is nothing more than a workaround: according
514 * to the draft, compilers should handle void and non-void the same way.
515 * This feature is not yet widely implemented, though. You can only use
516 * member functions returning void if your compiler supports partial
517 * specialization.
519 * All of this complexity is in the function objects themselves. You can
520 * ignore it by using the helper function mem_fun and mem_fun_ref,
521 * which create whichever type of adaptor is appropriate.
523 * @{
525 /// One of the @link s20_3_8_memadaptors adaptors for member pointers@endlink.
526 template <class _Ret, class _Tp>
527 class mem_fun_t : public unary_function<_Tp*,_Ret> {
528 public:
529 explicit mem_fun_t(_Ret (_Tp::*__pf)()) : _M_f(__pf) {}
530 _Ret operator()(_Tp* __p) const { return (__p->*_M_f)(); }
531 private:
532 _Ret (_Tp::*_M_f)();
535 /// One of the @link s20_3_8_memadaptors adaptors for member pointers@endlink.
536 template <class _Ret, class _Tp>
537 class const_mem_fun_t : public unary_function<const _Tp*,_Ret> {
538 public:
539 explicit const_mem_fun_t(_Ret (_Tp::*__pf)() const) : _M_f(__pf) {}
540 _Ret operator()(const _Tp* __p) const { return (__p->*_M_f)(); }
541 private:
542 _Ret (_Tp::*_M_f)() const;
545 /// One of the @link s20_3_8_memadaptors adaptors for member pointers@endlink.
546 template <class _Ret, class _Tp>
547 class mem_fun_ref_t : public unary_function<_Tp,_Ret> {
548 public:
549 explicit mem_fun_ref_t(_Ret (_Tp::*__pf)()) : _M_f(__pf) {}
550 _Ret operator()(_Tp& __r) const { return (__r.*_M_f)(); }
551 private:
552 _Ret (_Tp::*_M_f)();
555 /// One of the @link s20_3_8_memadaptors adaptors for member pointers@endlink.
556 template <class _Ret, class _Tp>
557 class const_mem_fun_ref_t : public unary_function<_Tp,_Ret> {
558 public:
559 explicit const_mem_fun_ref_t(_Ret (_Tp::*__pf)() const) : _M_f(__pf) {}
560 _Ret operator()(const _Tp& __r) const { return (__r.*_M_f)(); }
561 private:
562 _Ret (_Tp::*_M_f)() const;
565 /// One of the @link s20_3_8_memadaptors adaptors for member pointers@endlink.
566 template <class _Ret, class _Tp, class _Arg>
567 class mem_fun1_t : public binary_function<_Tp*,_Arg,_Ret> {
568 public:
569 explicit mem_fun1_t(_Ret (_Tp::*__pf)(_Arg)) : _M_f(__pf) {}
570 _Ret operator()(_Tp* __p, _Arg __x) const { return (__p->*_M_f)(__x); }
571 private:
572 _Ret (_Tp::*_M_f)(_Arg);
575 /// One of the @link s20_3_8_memadaptors adaptors for member pointers@endlink.
576 template <class _Ret, class _Tp, class _Arg>
577 class const_mem_fun1_t : public binary_function<const _Tp*,_Arg,_Ret> {
578 public:
579 explicit const_mem_fun1_t(_Ret (_Tp::*__pf)(_Arg) const) : _M_f(__pf) {}
580 _Ret operator()(const _Tp* __p, _Arg __x) const
581 { return (__p->*_M_f)(__x); }
582 private:
583 _Ret (_Tp::*_M_f)(_Arg) const;
586 /// One of the @link s20_3_8_memadaptors adaptors for member pointers@endlink.
587 template <class _Ret, class _Tp, class _Arg>
588 class mem_fun1_ref_t : public binary_function<_Tp,_Arg,_Ret> {
589 public:
590 explicit mem_fun1_ref_t(_Ret (_Tp::*__pf)(_Arg)) : _M_f(__pf) {}
591 _Ret operator()(_Tp& __r, _Arg __x) const { return (__r.*_M_f)(__x); }
592 private:
593 _Ret (_Tp::*_M_f)(_Arg);
596 /// One of the @link s20_3_8_memadaptors adaptors for member pointers@endlink.
597 template <class _Ret, class _Tp, class _Arg>
598 class const_mem_fun1_ref_t : public binary_function<_Tp,_Arg,_Ret> {
599 public:
600 explicit const_mem_fun1_ref_t(_Ret (_Tp::*__pf)(_Arg) const) : _M_f(__pf) {}
601 _Ret operator()(const _Tp& __r, _Arg __x) const { return (__r.*_M_f)(__x); }
602 private:
603 _Ret (_Tp::*_M_f)(_Arg) const;
606 /// One of the @link s20_3_8_memadaptors adaptors for member pointers@endlink.
607 template <class _Tp>
608 class mem_fun_t<void, _Tp> : public unary_function<_Tp*,void> {
609 public:
610 explicit mem_fun_t(void (_Tp::*__pf)()) : _M_f(__pf) {}
611 void operator()(_Tp* __p) const { (__p->*_M_f)(); }
612 private:
613 void (_Tp::*_M_f)();
616 /// One of the @link s20_3_8_memadaptors adaptors for member pointers@endlink.
617 template <class _Tp>
618 class const_mem_fun_t<void, _Tp> : public unary_function<const _Tp*,void> {
619 public:
620 explicit const_mem_fun_t(void (_Tp::*__pf)() const) : _M_f(__pf) {}
621 void operator()(const _Tp* __p) const { (__p->*_M_f)(); }
622 private:
623 void (_Tp::*_M_f)() const;
626 /// One of the @link s20_3_8_memadaptors adaptors for member pointers@endlink.
627 template <class _Tp>
628 class mem_fun_ref_t<void, _Tp> : public unary_function<_Tp,void> {
629 public:
630 explicit mem_fun_ref_t(void (_Tp::*__pf)()) : _M_f(__pf) {}
631 void operator()(_Tp& __r) const { (__r.*_M_f)(); }
632 private:
633 void (_Tp::*_M_f)();
636 /// One of the @link s20_3_8_memadaptors adaptors for member pointers@endlink.
637 template <class _Tp>
638 class const_mem_fun_ref_t<void, _Tp> : public unary_function<_Tp,void> {
639 public:
640 explicit const_mem_fun_ref_t(void (_Tp::*__pf)() const) : _M_f(__pf) {}
641 void operator()(const _Tp& __r) const { (__r.*_M_f)(); }
642 private:
643 void (_Tp::*_M_f)() const;
646 /// One of the @link s20_3_8_memadaptors adaptors for member pointers@endlink.
647 template <class _Tp, class _Arg>
648 class mem_fun1_t<void, _Tp, _Arg> : public binary_function<_Tp*,_Arg,void> {
649 public:
650 explicit mem_fun1_t(void (_Tp::*__pf)(_Arg)) : _M_f(__pf) {}
651 void operator()(_Tp* __p, _Arg __x) const { (__p->*_M_f)(__x); }
652 private:
653 void (_Tp::*_M_f)(_Arg);
656 /// One of the @link s20_3_8_memadaptors adaptors for member pointers@endlink.
657 template <class _Tp, class _Arg>
658 class const_mem_fun1_t<void, _Tp, _Arg>
659 : public binary_function<const _Tp*,_Arg,void> {
660 public:
661 explicit const_mem_fun1_t(void (_Tp::*__pf)(_Arg) const) : _M_f(__pf) {}
662 void operator()(const _Tp* __p, _Arg __x) const { (__p->*_M_f)(__x); }
663 private:
664 void (_Tp::*_M_f)(_Arg) const;
667 /// One of the @link s20_3_8_memadaptors adaptors for member pointers@endlink.
668 template <class _Tp, class _Arg>
669 class mem_fun1_ref_t<void, _Tp, _Arg>
670 : public binary_function<_Tp,_Arg,void> {
671 public:
672 explicit mem_fun1_ref_t(void (_Tp::*__pf)(_Arg)) : _M_f(__pf) {}
673 void operator()(_Tp& __r, _Arg __x) const { (__r.*_M_f)(__x); }
674 private:
675 void (_Tp::*_M_f)(_Arg);
678 /// One of the @link s20_3_8_memadaptors adaptors for member pointers@endlink.
679 template <class _Tp, class _Arg>
680 class const_mem_fun1_ref_t<void, _Tp, _Arg>
681 : public binary_function<_Tp,_Arg,void> {
682 public:
683 explicit const_mem_fun1_ref_t(void (_Tp::*__pf)(_Arg) const) : _M_f(__pf) {}
684 void operator()(const _Tp& __r, _Arg __x) const { (__r.*_M_f)(__x); }
685 private:
686 void (_Tp::*_M_f)(_Arg) const;
690 // Mem_fun adaptor helper functions. There are only two:
691 // mem_fun and mem_fun_ref.
693 template <class _Ret, class _Tp>
694 inline mem_fun_t<_Ret,_Tp> mem_fun(_Ret (_Tp::*__f)())
695 { return mem_fun_t<_Ret,_Tp>(__f); }
697 template <class _Ret, class _Tp>
698 inline const_mem_fun_t<_Ret,_Tp> mem_fun(_Ret (_Tp::*__f)() const)
699 { return const_mem_fun_t<_Ret,_Tp>(__f); }
701 template <class _Ret, class _Tp>
702 inline mem_fun_ref_t<_Ret,_Tp> mem_fun_ref(_Ret (_Tp::*__f)())
703 { return mem_fun_ref_t<_Ret,_Tp>(__f); }
705 template <class _Ret, class _Tp>
706 inline const_mem_fun_ref_t<_Ret,_Tp> mem_fun_ref(_Ret (_Tp::*__f)() const)
707 { return const_mem_fun_ref_t<_Ret,_Tp>(__f); }
709 template <class _Ret, class _Tp, class _Arg>
710 inline mem_fun1_t<_Ret,_Tp,_Arg> mem_fun(_Ret (_Tp::*__f)(_Arg))
711 { return mem_fun1_t<_Ret,_Tp,_Arg>(__f); }
713 template <class _Ret, class _Tp, class _Arg>
714 inline const_mem_fun1_t<_Ret,_Tp,_Arg> mem_fun(_Ret (_Tp::*__f)(_Arg) const)
715 { return const_mem_fun1_t<_Ret,_Tp,_Arg>(__f); }
717 template <class _Ret, class _Tp, class _Arg>
718 inline mem_fun1_ref_t<_Ret,_Tp,_Arg> mem_fun_ref(_Ret (_Tp::*__f)(_Arg))
719 { return mem_fun1_ref_t<_Ret,_Tp,_Arg>(__f); }
721 template <class _Ret, class _Tp, class _Arg>
722 inline const_mem_fun1_ref_t<_Ret,_Tp,_Arg>
723 mem_fun_ref(_Ret (_Tp::*__f)(_Arg) const)
724 { return const_mem_fun1_ref_t<_Ret,_Tp,_Arg>(__f); }
726 /** @} */
728 } // namespace std
730 #endif /* _FUNCTION_H */
732 // Local Variables:
733 // mode:C++
734 // End: