2003-12-26 Guilhem Lavaux <guilhem@kaffe.org>
[official-gcc.git] / libjava / java / lang / e_exp.c
blobe11ca8b38565af00e42474538cb2e4c70972bf98
2 /* @(#)e_exp.c 5.1 93/09/24 */
3 /*
4 * ====================================================
5 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
7 * Developed at SunPro, a Sun Microsystems, Inc. business.
8 * Permission to use, copy, modify, and distribute this
9 * software is freely granted, provided that this notice
10 * is preserved.
11 * ====================================================
14 /* __ieee754_exp(x)
15 * Returns the exponential of x.
17 * Method
18 * 1. Argument reduction:
19 * Reduce x to an r so that |r| <= 0.5*ln2 ~ 0.34658.
20 * Given x, find r and integer k such that
22 * x = k*ln2 + r, |r| <= 0.5*ln2.
24 * Here r will be represented as r = hi-lo for better
25 * accuracy.
27 * 2. Approximation of exp(r) by a special rational function on
28 * the interval [0,0.34658]:
29 * Write
30 * R(r**2) = r*(exp(r)+1)/(exp(r)-1) = 2 + r*r/6 - r**4/360 + ...
31 * We use a special Reme algorithm on [0,0.34658] to generate
32 * a polynomial of degree 5 to approximate R. The maximum error
33 * of this polynomial approximation is bounded by 2**-59. In
34 * other words,
35 * R(z) ~ 2.0 + P1*z + P2*z**2 + P3*z**3 + P4*z**4 + P5*z**5
36 * (where z=r*r, and the values of P1 to P5 are listed below)
37 * and
38 * | 5 | -59
39 * | 2.0+P1*z+...+P5*z - R(z) | <= 2
40 * | |
41 * The computation of exp(r) thus becomes
42 * 2*r
43 * exp(r) = 1 + -------
44 * R - r
45 * r*R1(r)
46 * = 1 + r + ----------- (for better accuracy)
47 * 2 - R1(r)
48 * where
49 * 2 4 10
50 * R1(r) = r - (P1*r + P2*r + ... + P5*r ).
52 * 3. Scale back to obtain exp(x):
53 * From step 1, we have
54 * exp(x) = 2^k * exp(r)
56 * Special cases:
57 * exp(INF) is INF, exp(NaN) is NaN;
58 * exp(-INF) is 0, and
59 * for finite argument, only exp(0)=1 is exact.
61 * Accuracy:
62 * according to an error analysis, the error is always less than
63 * 1 ulp (unit in the last place).
65 * Misc. info.
66 * For IEEE double
67 * if x > 7.09782712893383973096e+02 then exp(x) overflow
68 * if x < -7.45133219101941108420e+02 then exp(x) underflow
70 * Constants:
71 * The hexadecimal values are the intended ones for the following
72 * constants. The decimal values may be used, provided that the
73 * compiler will convert from decimal to binary accurately enough
74 * to produce the hexadecimal values shown.
77 #include "fdlibm.h"
79 #ifndef _DOUBLE_IS_32BITS
81 #ifdef __STDC__
82 static const double
83 #else
84 static double
85 #endif
86 one = 1.0,
87 halF[2] = {0.5,-0.5,},
88 huge = 1.0e+300,
89 twom1000= 9.33263618503218878990e-302, /* 2**-1000=0x01700000,0*/
90 o_threshold= 7.09782712893383973096e+02, /* 0x40862E42, 0xFEFA39EF */
91 u_threshold= -7.45133219101941108420e+02, /* 0xc0874910, 0xD52D3051 */
92 ln2HI[2] ={ 6.93147180369123816490e-01, /* 0x3fe62e42, 0xfee00000 */
93 -6.93147180369123816490e-01,},/* 0xbfe62e42, 0xfee00000 */
94 ln2LO[2] ={ 1.90821492927058770002e-10, /* 0x3dea39ef, 0x35793c76 */
95 -1.90821492927058770002e-10,},/* 0xbdea39ef, 0x35793c76 */
96 invln2 = 1.44269504088896338700e+00, /* 0x3ff71547, 0x652b82fe */
97 P1 = 1.66666666666666019037e-01, /* 0x3FC55555, 0x5555553E */
98 P2 = -2.77777777770155933842e-03, /* 0xBF66C16C, 0x16BEBD93 */
99 P3 = 6.61375632143793436117e-05, /* 0x3F11566A, 0xAF25DE2C */
100 P4 = -1.65339022054652515390e-06, /* 0xBEBBBD41, 0xC5D26BF1 */
101 P5 = 4.13813679705723846039e-08; /* 0x3E663769, 0x72BEA4D0 */
104 #ifdef __STDC__
105 double __ieee754_exp(double x) /* default IEEE double exp */
106 #else
107 double __ieee754_exp(x) /* default IEEE double exp */
108 double x;
109 #endif
111 double y,hi,lo,c,t;
112 int32_t k,xsb;
113 uint32_t hx;
115 GET_HIGH_WORD(hx,x);
116 xsb = (hx>>31)&1; /* sign bit of x */
117 hx &= 0x7fffffff; /* high word of |x| */
119 /* filter out non-finite argument */
120 if(hx >= 0x40862E42) { /* if |x|>=709.78... */
121 if(hx>=0x7ff00000) {
122 uint32_t lx;
123 GET_LOW_WORD(lx,x);
124 if(((hx&0xfffff)|lx)!=0)
125 return x+x; /* NaN */
126 else return (xsb==0)? x:0.0; /* exp(+-inf)={inf,0} */
128 if(x > o_threshold) return huge*huge; /* overflow */
129 if(x < u_threshold) return twom1000*twom1000; /* underflow */
132 /* argument reduction */
133 if(hx > 0x3fd62e42) { /* if |x| > 0.5 ln2 */
134 if(hx < 0x3FF0A2B2) { /* and |x| < 1.5 ln2 */
135 hi = x-ln2HI[xsb]; lo=ln2LO[xsb]; k = 1-xsb-xsb;
136 } else {
137 k = invln2*x+halF[xsb];
138 t = k;
139 hi = x - t*ln2HI[0]; /* t*ln2HI is exact here */
140 lo = t*ln2LO[0];
142 x = hi - lo;
144 else if(hx < 0x3e300000) { /* when |x|<2**-28 */
145 if(huge+x>one) return one+x;/* trigger inexact */
147 else k = 0;
149 /* x is now in primary range */
150 t = x*x;
151 c = x - t*(P1+t*(P2+t*(P3+t*(P4+t*P5))));
152 if(k==0) return one-((x*c)/(c-2.0)-x);
153 else y = one-((lo-(x*c)/(2.0-c))-hi);
154 if(k >= -1021) {
155 uint32_t hy;
156 GET_HIGH_WORD(hy,y);
157 SET_HIGH_WORD(y,hy+(k<<20)); /* add k to y's exponent */
158 return y;
159 } else {
160 uint32_t hy;
161 GET_HIGH_WORD(hy,y);
162 SET_HIGH_WORD(y,hy+((k+1000)<<20)); /* add k to y's exponent */
163 return y*twom1000;
167 #endif /* defined(_DOUBLE_IS_32BITS) */