2003-12-26 Guilhem Lavaux <guilhem@kaffe.org>
[official-gcc.git] / libjava / java / awt / geom / doc-files / FlatteningPathIterator-1.html
blob5a52d693edd582824fb97422d1d92571834644fc
1 <?xml version="1.0" encoding="US-ASCII"?>
2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
4 <html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
5 <head>
6 <title>The GNU Implementation of java.awt.geom.FlatteningPathIterator</title>
7 <meta name="author" content="Sascha Brawer" />
8 <style type="text/css"><!--
9 td { white-space: nowrap; }
10 li { margin: 2mm 0; }
11 --></style>
12 </head>
13 <body>
15 <h1>The GNU Implementation of FlatteningPathIterator</h1>
17 <p><i><a href="http://www.dandelis.ch/people/brawer/">Sascha
18 Brawer</a>, November 2003</i></p>
20 <p>This document describes the GNU implementation of the class
21 <code>java.awt.geom.FlatteningPathIterator</code>. It does
22 <em>not</em> describe how a programmer should use this class; please
23 refer to the generated API documentation for this purpose. Instead, it
24 is intended for maintenance programmers who want to understand the
25 implementation, for example because they want to extend the class or
26 fix a bug.</p>
29 <h2>Data Structures</h2>
31 <p>The algorithm uses a stack. Its allocation is delayed to the time
32 when the source path iterator actually returns the first curved
33 segment (either <code>SEG_QUADTO</code> or <code>SEG_CUBICTO</code>).
34 If the input path does not contain any curved segments, the value of
35 the <code>stack</code> variable stays <code>null</code>. In this quite
36 common case, the memory consumption is minimal.</p>
38 <dl><dt><code>stack</code></dt><dd>The variable <code>stack</code> is
39 a <code>double</code> array that holds the start, control and end
40 points of individual sub-segments.</dd>
42 <dt><code>recLevel</code></dt><dd>The variable <code>recLevel</code>
43 holds how many recursive sub-divisions were needed to calculate a
44 segment. The original curve has recursion level 0. For each
45 sub-division, the corresponding recursion level is increased by
46 one.</dd>
48 <dt><code>stackSize</code></dt><dd>Finally, the variable
49 <code>stackSize</code> indicates how many sub-segments are stored on
50 the stack.</dd></dl>
52 <h2>Algorithm</h2>
54 <p>The implementation separately processes each segment that the
55 base iterator returns.</p>
57 <p>In the case of <code>SEG_CLOSE</code>,
58 <code>SEG_MOVETO</code> and <code>SEG_LINETO</code> segments, the
59 implementation simply hands the segment to the consumer, without actually
60 doing anything.</p>
62 <p>Any <code>SEG_QUADTO</code> and <code>SEG_CUBICTO</code> segments
63 need to be flattened. Flattening is performed with a fixed-sized
64 stack, holding the coordinates of subdivided segments. When the base
65 iterator returns a <code>SEG_QUADTO</code> and
66 <code>SEG_CUBICTO</code> segments, it is recursively flattened as
67 follows:</p>
69 <ol><li>Intialization: Allocate memory for the stack (unless a
70 sufficiently large stack has been allocated previously). Push the
71 original quadratic or cubic curve onto the stack. Mark that segment as
72 having a <code>recLevel</code> of zero.</li>
74 <li>If the stack is empty, flattening the segment is complete,
75 and the next segment is fetched from the base iterator.</li>
77 <li>If the stack is not empty, pop a curve segment from the
78 stack.
80 <ul><li>If its <code>recLevel</code> exceeds the recursion limit,
81 hand the current segment to the consumer.</li>
83 <li>Calculate the squared flatness of the segment. If it smaller
84 than <code>flatnessSq</code>, hand the current segment to the
85 consumer.</li>
87 <li>Otherwise, split the segment in two halves. Push the right
88 half onto the stack. Then, push the left half onto the stack.
89 Continue with step two.</li></ul></li>
90 </ol>
92 <p>The implementation is slightly complicated by the fact that
93 consumers <em>pull</em> the flattened segments from the
94 <code>FlatteningPathIterator</code>. This means that we actually
95 cannot &#x201c;hand the curent segment over to the consumer.&#x201d;
96 But the algorithm is easier to understand if one assumes a
97 <em>push</em> paradigm.</p>
100 <h2>Example</h2>
102 <p>The following example shows how a
103 <code>FlatteningPathIterator</code> processes a
104 <code>SEG_QUADTO</code> segment. It is (arbitrarily) assumed that the
105 recursion limit was set to 2.</p>
107 <blockquote>
108 <table border="1" cellspacing="0" cellpadding="8">
109 <tr align="center" valign="baseline">
110 <th></th><th>A</th><th>B</th><th>C</th>
111 <th>D</th><th>E</th><th>F</th><th>G</th><th>H</th>
112 </tr>
113 <tr align="center" valign="baseline">
114 <th><code>stack[0]</code></th>
115 <td>&#x2014;</td>
116 <td>&#x2014;</td>
117 <td><i>S<sub>ll</sub>.x</i></td>
118 <td>&#x2014;</td>
119 <td>&#x2014;</td>
120 <td>&#x2014;</td>
121 <td>&#x2014;</td>
122 <td>&#x2014;</td>
123 </tr>
124 <tr align="center" valign="baseline">
125 <th><code>stack[1]</code></th>
126 <td>&#x2014;</td>
127 <td>&#x2014;</td>
128 <td><i>S<sub>ll</sub>.y</i></td>
129 <td>&#x2014;</td>
130 <td>&#x2014;</td>
131 <td>&#x2014;</td>
132 <td>&#x2014;</td>
133 <td>&#x2014;</td>
134 </tr>
135 <tr align="center" valign="baseline">
136 <th><code>stack[2]</code></th>
137 <td>&#x2014;</td>
138 <td>&#x2014;</td>
139 <td><i>C<sub>ll</sub>.x</i></td>
140 <td>&#x2014;</td>
141 <td>&#x2014;</td>
142 <td>&#x2014;</td>
143 <td>&#x2014;</td>
144 <td>&#x2014;</td>
145 </tr>
146 <tr align="center" valign="baseline">
147 <th><code>stack[3]</code></th>
148 <td>&#x2014;</td>
149 <td>&#x2014;</td>
150 <td><i>C<sub>ll</sub>.y</i></td>
151 <td>&#x2014;</td>
152 <td>&#x2014;</td>
153 <td>&#x2014;</td>
154 <td>&#x2014;</td>
155 <td>&#x2014;</td>
156 </tr>
157 <tr align="center" valign="baseline">
158 <th><code>stack[4]</code></th>
159 <td>&#x2014;</td>
160 <td><i>S<sub>l</sub>.x</i></td>
161 <td><i>E<sub>ll</sub>.x</i>
162 = <i>S<sub>lr</sub>.x</i></td>
163 <td><i>S<sub>lr</sub>.x</i></td>
164 <td>&#x2014;</td>
165 <td><i>S<sub>rl</sub>.x</i></td>
166 <td>&#x2014;</td>
167 <td>&#x2014;</td>
168 </tr>
169 <tr align="center" valign="baseline">
170 <th><code>stack[5]</code></th>
171 <td>&#x2014;</td>
172 <td><i>S<sub>l</sub>.y</i></td>
173 <td><i>E<sub>ll</sub>.x</i>
174 = <i>S<sub>lr</sub>.y</i></td>
175 <td><i>S<sub>lr</sub>.y</i></td>
176 <td>&#x2014;</td>
177 <td><i>S<sub>rl</sub>.y</i></td>
178 <td>&#x2014;</td>
179 <td>&#x2014;</td>
180 </tr>
181 <tr align="center" valign="baseline">
182 <th><code>stack[6]</code></th>
183 <td>&#x2014;</td>
184 <td><i>C<sub>l</sub>.x</i></td>
185 <td><i>C<sub>lr</sub>.x</i></td>
186 <td><i>C<sub>lr</sub>.x</i></td>
187 <td>&#x2014;</td>
188 <td><i>C<sub>rl</sub>.x</i></td>
189 <td>&#x2014;</td>
190 <td>&#x2014;</td>
191 </tr>
192 <tr align="center" valign="baseline">
193 <th><code>stack[7]</code></th>
194 <td>&#x2014;</td>
195 <td><i>C<sub>l</sub>.y</i></td>
196 <td><i>C<sub>lr</sub>.y</i></td>
197 <td><i>C<sub>lr</sub>.y</i></td>
198 <td>&#x2014;</td>
199 <td><i>C<sub>rl</sub>.y</i></td>
200 <td>&#x2014;</td>
201 <td>&#x2014;</td>
202 </tr>
203 <tr align="center" valign="baseline">
204 <th><code>stack[8]</code></th>
205 <td><i>S.x</i></td>
206 <td><i>E<sub>l</sub>.x</i>
207 = <i>S<sub>r</sub>.x</i></td>
208 <td><i>E<sub>lr</sub>.x</i>
209 = <i>S<sub>r</sub>.x</i></td>
210 <td><i>E<sub>lr</sub>.x</i>
211 = <i>S<sub>r</sub>.x</i></td>
212 <td><i>S<sub>r</sub>.x</i></td>
213 <td><i>E<sub>rl</sub>.x</i>
214 = <i>S<sub>rr</sub>.x</i></td>
215 <td><i>S<sub>rr</sub>.x</i></td>
216 <td>&#x2014;</td>
217 </tr>
218 <tr align="center" valign="baseline">
219 <th><code>stack[9]</code></th>
220 <td><i>S.y</i></td>
221 <td><i>E<sub>l</sub>.y</i>
222 = <i>S<sub>r</sub>.y</i></td>
223 <td><i>E<sub>lr</sub>.y</i>
224 = <i>S<sub>r</sub>.y</i></td>
225 <td><i>E<sub>lr</sub>.y</i>
226 = <i>S<sub>r</sub>.y</i></td>
227 <td><i>S<sub>r</sub>.y</i></td>
228 <td><i>E<sub>rl</sub>.y</i>
229 = <i>S<sub>rr</sub>.y</i></td>
230 <td><i>S<sub>rr</sub>.y</i></td>
231 <td>&#x2014;</td>
232 </tr>
233 <tr align="center" valign="baseline">
234 <th><code>stack[10]</code></th>
235 <td><i>C.x</i></td>
236 <td><i>C<sub>r</sub>.x</i></td>
237 <td><i>C<sub>r</sub>.x</i></td>
238 <td><i>C<sub>r</sub>.x</i></td>
239 <td><i>C<sub>r</sub>.x</i></td>
240 <td><i>C<sub>rr</sub>.x</i></td>
241 <td><i>C<sub>rr</sub>.x</i></td>
242 <td>&#x2014;</td>
243 </tr>
244 <tr align="center" valign="baseline">
245 <th><code>stack[11]</code></th>
246 <td><i>C.y</i></td>
247 <td><i>C<sub>r</sub>.y</i></td>
248 <td><i>C<sub>r</sub>.y</i></td>
249 <td><i>C<sub>r</sub>.y</i></td>
250 <td><i>C<sub>r</sub>.y</i></td>
251 <td><i>C<sub>rr</sub>.y</i></td>
252 <td><i>C<sub>rr</sub>.y</i></td>
253 <td>&#x2014;</td>
254 </tr>
255 <tr align="center" valign="baseline">
256 <th><code>stack[12]</code></th>
257 <td><i>E.x</i></td>
258 <td><i>E<sub>r</sub>.x</i></td>
259 <td><i>E<sub>r</sub>.x</i></td>
260 <td><i>E<sub>r</sub>.x</i></td>
261 <td><i>E<sub>r</sub>.x</i></td>
262 <td><i>E<sub>rr</sub>.x</i></td>
263 <td><i>E<sub>rr</sub>.x</i></td>
264 <td>&#x2014;</td>
265 </tr>
266 <tr align="center" valign="baseline">
267 <th><code>stack[13]</code></th>
268 <td><i>E.y</i></td>
269 <td><i>E<sub>r</sub>.y</i></td>
270 <td><i>E<sub>r</sub>.y</i></td>
271 <td><i>E<sub>r</sub>.y</i></td>
272 <td><i>E<sub>r</sub>.y</i></td>
273 <td><i>E<sub>rr</sub>.y</i></td>
274 <td><i>E<sub>rr</sub>.x</i></td>
275 <td>&#x2014;</td>
276 </tr>
277 <tr align="center" valign="baseline">
278 <th><code>stackSize</code></th>
279 <td>1</td>
280 <td>2</td>
281 <td>3</td>
282 <td>2</td>
283 <td>1</td>
284 <td>2</td>
285 <td>1</td>
286 <td>0</td>
287 </tr>
288 <tr align="center" valign="baseline">
289 <th><code>recLevel[2]</code></th>
290 <td>&#x2014;</td>
291 <td>&#x2014;</td>
292 <td>2</td>
293 <td>&#x2014;</td>
294 <td>&#x2014;</td>
295 <td>&#x2014;</td>
296 <td>&#x2014;</td>
297 <td>&#x2014;</td>
298 </tr>
299 <tr align="center" valign="baseline">
300 <th><code>recLevel[1]</code></th>
301 <td>&#x2014;</td>
302 <td>1</td>
303 <td>2</td>
304 <td>2</td>
305 <td>&#x2014;</td>
306 <td>2</td>
307 <td>&#x2014;</td>
308 <td>&#x2014;</td>
309 </tr>
310 <tr align="center" valign="baseline">
311 <th><code>recLevel[0]</code></th>
312 <td>0</td>
313 <td>1</td>
314 <td>1</td>
315 <td>1</td>
316 <td>1</td>
317 <td>2</td>
318 <td>2</td>
319 <td>&#x2014;</td>
320 </tr>
321 </table>
322 </blockquote>
324 <ol>
326 <li>The data structures are initialized as follows.
328 <ul><li>The segment&#x2019;s end point <i>E</i>, control point
329 <i>C</i>, and start point <i>S</i> are pushed onto the stack.</li>
331 <li>Currently, the curve in the stack would be approximated by one
332 single straight line segment (<i>S</i> &#x2013; <i>E</i>).
333 Therefore, <code>stackSize</code> is set to 1.</li>
335 <li>This single straight line segment is approximating the original
336 curve, which can be seen as the result of zero recursive
337 splits. Therefore, <code>recLevel[0]</code> is set to
338 zero.</li></ul>
340 Column A shows the state after the initialization step.</li>
342 <li>The algorithm proceeds by taking the topmost curve segment
343 (<i>S</i> &#x2013; <i>C</i> &#x2013; <i>E</i>) from the stack.
345 <ul><li>The recursion level of this segment (stored in
346 <code>recLevel[0]</code>) is zero, which is smaller than
347 the limit 2.</li>
349 <li>The method <code>java.awt.geom.QuadCurve2D.getFlatnessSq</code>
350 is called to calculate the squared flatness.</li>
352 <li>For the sake of argument, we assume that the squared flatness is
353 exceeding the threshold stored in <code>flatnessSq</code>. Thus, the
354 curve segment <i>S</i> &#x2013; <i>C</i> &#x2013; <i>E</i> gets
355 subdivided into a left and a right half, namely
356 <i>S<sub>l</sub></i> &#x2013; <i>C<sub>l</sub></i> &#x2013;
357 <i>E<sub>l</sub></i> and <i>S<sub>r</sub></i> &#x2013;
358 <i>C<sub>r</sub></i> &#x2013; <i>E<sub>r</sub></i>. Both halves are
359 pushed onto the stack, so the left half is now on top.
361 <br />&nbsp;<br />The left half starts at the same point
362 as the original curve, so <i>S<sub>l</sub></i> has the same
363 coordinates as <i>S</i>. Similarly, the end point of the right
364 half and of the original curve are identical
365 (<i>E<sub>r</sub></i> = <i>E</i>). More interestingly, the left
366 half ends where the right half starts. Because
367 <i>E<sub>l</sub></i> = <i>S<sub>r</sub></i>, their coordinates need
368 to be stored only once, which amounts to saving 16 bytes (two
369 <code>double</code> values) for each iteration.</li></ul>
371 Column B shows the state after the first iteration.</li>
373 <li>Again, the topmost curve segment (<i>S<sub>l</sub></i>
374 &#x2013; <i>C<sub>l</sub></i> &#x2013; <i>E<sub>l</sub></i>) is
375 taken from the stack.
377 <ul><li>The recursion level of this segment (stored in
378 <code>recLevel[1]</code>) is 1, which is smaller than
379 the limit 2.</li>
381 <li>The method <code>java.awt.geom.QuadCurve2D.getFlatnessSq</code>
382 is called to calculate the squared flatness.</li>
384 <li>Assuming that the segment is still not considered
385 flat enough, it gets subdivided into a left
386 (<i>S<sub>ll</sub></i> &#x2013; <i>C<sub>ll</sub></i> &#x2013;
387 <i>E<sub>ll</sub></i>) and a right (<i>S<sub>lr</sub></i>
388 &#x2013; <i>C<sub>lr</sub></i> &#x2013; <i>E<sub>lr</sub></i>)
389 half.</li></ul>
391 Column C shows the state after the second iteration.</li>
393 <li>The topmost curve segment (<i>S<sub>ll</sub></i> &#x2013;
394 <i>C<sub>ll</sub></i> &#x2013; <i>E<sub>ll</sub></i>) is popped from
395 the stack.
397 <ul><li>The recursion level of this segment (stored in
398 <code>recLevel[2]</code>) is 2, which is <em>not</em> smaller than
399 the limit 2. Therefore, a <code>SEG_LINETO</code> (from
400 <i>S<sub>ll</sub></i> to <i>E<sub>ll</sub></i>) is passed to the
401 consumer.</li></ul>
403 The new state is shown in column D.</li>
406 <li>The topmost curve segment (<i>S<sub>lr</sub></i> &#x2013;
407 <i>C<sub>lr</sub></i> &#x2013; <i>E<sub>lr</sub></i>) is popped from
408 the stack.
410 <ul><li>The recursion level of this segment (stored in
411 <code>recLevel[1]</code>) is 2, which is <em>not</em> smaller than
412 the limit 2. Therefore, a <code>SEG_LINETO</code> (from
413 <i>S<sub>lr</sub></i> to <i>E<sub>lr</sub></i>) is passed to the
414 consumer.</li></ul>
416 The new state is shown in column E.</li>
418 <li>The algorithm proceeds by taking the topmost curve segment
419 (<i>S<sub>r</sub></i> &#x2013; <i>C<sub>r</sub></i> &#x2013;
420 <i>E<sub>r</sub></i>) from the stack.
422 <ul><li>The recursion level of this segment (stored in
423 <code>recLevel[0]</code>) is 1, which is smaller than
424 the limit 2.</li>
426 <li>The method <code>java.awt.geom.QuadCurve2D.getFlatnessSq</code>
427 is called to calculate the squared flatness.</li>
429 <li>For the sake of argument, we again assume that the squared
430 flatness is exceeding the threshold stored in
431 <code>flatnessSq</code>. Thus, the curve segment
432 (<i>S<sub>r</sub></i> &#x2013; <i>C<sub>r</sub></i> &#x2013;
433 <i>E<sub>r</sub></i>) is subdivided into a left and a right half,
434 namely
435 <i>S<sub>rl</sub></i> &#x2013; <i>C<sub>rl</sub></i> &#x2013;
436 <i>E<sub>rl</sub></i> and <i>S<sub>rr</sub></i> &#x2013;
437 <i>C<sub>rr</sub></i> &#x2013; <i>E<sub>rr</sub></i>. Both halves
438 are pushed onto the stack.</li></ul>
440 The new state is shown in column F.</li>
442 <li>The topmost curve segment (<i>S<sub>rl</sub></i> &#x2013;
443 <i>C<sub>rl</sub></i> &#x2013; <i>E<sub>rl</sub></i>) is popped from
444 the stack.
446 <ul><li>The recursion level of this segment (stored in
447 <code>recLevel[2]</code>) is 2, which is <em>not</em> smaller than
448 the limit 2. Therefore, a <code>SEG_LINETO</code> (from
449 <i>S<sub>rl</sub></i> to <i>E<sub>rl</sub></i>) is passed to the
450 consumer.</li></ul>
452 The new state is shown in column G.</li>
454 <li>The topmost curve segment (<i>S<sub>rr</sub></i> &#x2013;
455 <i>C<sub>rr</sub></i> &#x2013; <i>E<sub>rr</sub></i>) is popped from
456 the stack.
458 <ul><li>The recursion level of this segment (stored in
459 <code>recLevel[2]</code>) is 2, which is <em>not</em> smaller than
460 the limit 2. Therefore, a <code>SEG_LINETO</code> (from
461 <i>S<sub>rr</sub></i> to <i>E<sub>rr</sub></i>) is passed to the
462 consumer.</li></ul>
464 The new state is shown in column H.</li>
466 <li>The stack is now empty. The FlatteningPathIterator will fetch the
467 next segment from the base iterator, and process it.</li>
469 </ol>
471 <p>In order to split the most recently pushed segment, the
472 <code>subdivideQuadratic()</code> method passes <code>stack</code>
473 directly to
474 <code>QuadCurve2D.subdivide(double[],int,double[],int,double[],int)</code>.
475 Because the stack grows towards the beginning of the array, no data
476 needs to be copied around: <code>subdivide</code> will directly store
477 the result into the stack, which will have the contents shown to the
478 right.</p>
480 </body>
481 </html>